dir.c 24 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028
  1. /*
  2. * fs/kernfs/dir.c - kernfs directory implementation
  3. *
  4. * Copyright (c) 2001-3 Patrick Mochel
  5. * Copyright (c) 2007 SUSE Linux Products GmbH
  6. * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
  7. *
  8. * This file is released under the GPLv2.
  9. */
  10. #include <linux/sched.h>
  11. #include <linux/fs.h>
  12. #include <linux/namei.h>
  13. #include <linux/idr.h>
  14. #include <linux/slab.h>
  15. #include <linux/security.h>
  16. #include <linux/hash.h>
  17. #include "kernfs-internal.h"
  18. DEFINE_MUTEX(kernfs_mutex);
  19. #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
  20. static bool kernfs_lockdep(struct kernfs_node *kn)
  21. {
  22. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  23. return kn->flags & KERNFS_LOCKDEP;
  24. #else
  25. return false;
  26. #endif
  27. }
  28. /**
  29. * kernfs_name_hash
  30. * @name: Null terminated string to hash
  31. * @ns: Namespace tag to hash
  32. *
  33. * Returns 31 bit hash of ns + name (so it fits in an off_t )
  34. */
  35. static unsigned int kernfs_name_hash(const char *name, const void *ns)
  36. {
  37. unsigned long hash = init_name_hash();
  38. unsigned int len = strlen(name);
  39. while (len--)
  40. hash = partial_name_hash(*name++, hash);
  41. hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31));
  42. hash &= 0x7fffffffU;
  43. /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
  44. if (hash < 1)
  45. hash += 2;
  46. if (hash >= INT_MAX)
  47. hash = INT_MAX - 1;
  48. return hash;
  49. }
  50. static int kernfs_name_compare(unsigned int hash, const char *name,
  51. const void *ns, const struct kernfs_node *kn)
  52. {
  53. if (hash != kn->hash)
  54. return hash - kn->hash;
  55. if (ns != kn->ns)
  56. return ns - kn->ns;
  57. return strcmp(name, kn->name);
  58. }
  59. static int kernfs_sd_compare(const struct kernfs_node *left,
  60. const struct kernfs_node *right)
  61. {
  62. return kernfs_name_compare(left->hash, left->name, left->ns, right);
  63. }
  64. /**
  65. * kernfs_link_sibling - link kernfs_node into sibling rbtree
  66. * @kn: kernfs_node of interest
  67. *
  68. * Link @kn into its sibling rbtree which starts from
  69. * @kn->parent->dir.children.
  70. *
  71. * Locking:
  72. * mutex_lock(kernfs_mutex)
  73. *
  74. * RETURNS:
  75. * 0 on susccess -EEXIST on failure.
  76. */
  77. static int kernfs_link_sibling(struct kernfs_node *kn)
  78. {
  79. struct rb_node **node = &kn->parent->dir.children.rb_node;
  80. struct rb_node *parent = NULL;
  81. if (kernfs_type(kn) == KERNFS_DIR)
  82. kn->parent->dir.subdirs++;
  83. while (*node) {
  84. struct kernfs_node *pos;
  85. int result;
  86. pos = rb_to_kn(*node);
  87. parent = *node;
  88. result = kernfs_sd_compare(kn, pos);
  89. if (result < 0)
  90. node = &pos->rb.rb_left;
  91. else if (result > 0)
  92. node = &pos->rb.rb_right;
  93. else
  94. return -EEXIST;
  95. }
  96. /* add new node and rebalance the tree */
  97. rb_link_node(&kn->rb, parent, node);
  98. rb_insert_color(&kn->rb, &kn->parent->dir.children);
  99. return 0;
  100. }
  101. /**
  102. * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
  103. * @kn: kernfs_node of interest
  104. *
  105. * Try to unlink @kn from its sibling rbtree which starts from
  106. * kn->parent->dir.children. Returns %true if @kn was actually
  107. * removed, %false if @kn wasn't on the rbtree.
  108. *
  109. * Locking:
  110. * mutex_lock(kernfs_mutex)
  111. */
  112. static bool kernfs_unlink_sibling(struct kernfs_node *kn)
  113. {
  114. if (RB_EMPTY_NODE(&kn->rb))
  115. return false;
  116. if (kernfs_type(kn) == KERNFS_DIR)
  117. kn->parent->dir.subdirs--;
  118. rb_erase(&kn->rb, &kn->parent->dir.children);
  119. RB_CLEAR_NODE(&kn->rb);
  120. return true;
  121. }
  122. /**
  123. * kernfs_get_active - get an active reference to kernfs_node
  124. * @kn: kernfs_node to get an active reference to
  125. *
  126. * Get an active reference of @kn. This function is noop if @kn
  127. * is NULL.
  128. *
  129. * RETURNS:
  130. * Pointer to @kn on success, NULL on failure.
  131. */
  132. struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
  133. {
  134. if (unlikely(!kn))
  135. return NULL;
  136. if (!atomic_inc_unless_negative(&kn->active))
  137. return NULL;
  138. if (kernfs_lockdep(kn))
  139. rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
  140. return kn;
  141. }
  142. /**
  143. * kernfs_put_active - put an active reference to kernfs_node
  144. * @kn: kernfs_node to put an active reference to
  145. *
  146. * Put an active reference to @kn. This function is noop if @kn
  147. * is NULL.
  148. */
  149. void kernfs_put_active(struct kernfs_node *kn)
  150. {
  151. struct kernfs_root *root = kernfs_root(kn);
  152. int v;
  153. if (unlikely(!kn))
  154. return;
  155. if (kernfs_lockdep(kn))
  156. rwsem_release(&kn->dep_map, 1, _RET_IP_);
  157. v = atomic_dec_return(&kn->active);
  158. if (likely(v != KN_DEACTIVATED_BIAS))
  159. return;
  160. wake_up_all(&root->deactivate_waitq);
  161. }
  162. /**
  163. * kernfs_deactivate - deactivate kernfs_node
  164. * @kn: kernfs_node to deactivate
  165. *
  166. * Deny new active references, drain existing ones and nuke all
  167. * existing mmaps. Mutiple removers may invoke this function
  168. * concurrently on @kn and all will return after deactivation and
  169. * draining are complete.
  170. */
  171. static void kernfs_deactivate(struct kernfs_node *kn)
  172. __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
  173. {
  174. struct kernfs_root *root = kernfs_root(kn);
  175. lockdep_assert_held(&kernfs_mutex);
  176. BUG_ON(!(kn->flags & KERNFS_REMOVED));
  177. /* only the first invocation on @kn should deactivate it */
  178. if (atomic_read(&kn->active) >= 0)
  179. atomic_add(KN_DEACTIVATED_BIAS, &kn->active);
  180. mutex_unlock(&kernfs_mutex);
  181. if (kernfs_lockdep(kn)) {
  182. rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
  183. if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
  184. lock_contended(&kn->dep_map, _RET_IP_);
  185. }
  186. /* but everyone should wait for draining */
  187. wait_event(root->deactivate_waitq,
  188. atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
  189. if (kernfs_lockdep(kn)) {
  190. lock_acquired(&kn->dep_map, _RET_IP_);
  191. rwsem_release(&kn->dep_map, 1, _RET_IP_);
  192. }
  193. kernfs_unmap_bin_file(kn);
  194. mutex_lock(&kernfs_mutex);
  195. }
  196. /**
  197. * kernfs_get - get a reference count on a kernfs_node
  198. * @kn: the target kernfs_node
  199. */
  200. void kernfs_get(struct kernfs_node *kn)
  201. {
  202. if (kn) {
  203. WARN_ON(!atomic_read(&kn->count));
  204. atomic_inc(&kn->count);
  205. }
  206. }
  207. EXPORT_SYMBOL_GPL(kernfs_get);
  208. /**
  209. * kernfs_put - put a reference count on a kernfs_node
  210. * @kn: the target kernfs_node
  211. *
  212. * Put a reference count of @kn and destroy it if it reached zero.
  213. */
  214. void kernfs_put(struct kernfs_node *kn)
  215. {
  216. struct kernfs_node *parent;
  217. struct kernfs_root *root;
  218. if (!kn || !atomic_dec_and_test(&kn->count))
  219. return;
  220. root = kernfs_root(kn);
  221. repeat:
  222. /* Moving/renaming is always done while holding reference.
  223. * kn->parent won't change beneath us.
  224. */
  225. parent = kn->parent;
  226. WARN(!(kn->flags & KERNFS_REMOVED), "kernfs: free using entry: %s/%s\n",
  227. parent ? parent->name : "", kn->name);
  228. if (kernfs_type(kn) == KERNFS_LINK)
  229. kernfs_put(kn->symlink.target_kn);
  230. if (!(kn->flags & KERNFS_STATIC_NAME))
  231. kfree(kn->name);
  232. if (kn->iattr) {
  233. if (kn->iattr->ia_secdata)
  234. security_release_secctx(kn->iattr->ia_secdata,
  235. kn->iattr->ia_secdata_len);
  236. simple_xattrs_free(&kn->iattr->xattrs);
  237. }
  238. kfree(kn->iattr);
  239. ida_simple_remove(&root->ino_ida, kn->ino);
  240. kmem_cache_free(kernfs_node_cache, kn);
  241. kn = parent;
  242. if (kn) {
  243. if (atomic_dec_and_test(&kn->count))
  244. goto repeat;
  245. } else {
  246. /* just released the root kn, free @root too */
  247. ida_destroy(&root->ino_ida);
  248. kfree(root);
  249. }
  250. }
  251. EXPORT_SYMBOL_GPL(kernfs_put);
  252. static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
  253. {
  254. struct kernfs_node *kn;
  255. if (flags & LOOKUP_RCU)
  256. return -ECHILD;
  257. /* Always perform fresh lookup for negatives */
  258. if (!dentry->d_inode)
  259. goto out_bad_unlocked;
  260. kn = dentry->d_fsdata;
  261. mutex_lock(&kernfs_mutex);
  262. /* The kernfs node has been deleted */
  263. if (kn->flags & KERNFS_REMOVED)
  264. goto out_bad;
  265. /* The kernfs node has been moved? */
  266. if (dentry->d_parent->d_fsdata != kn->parent)
  267. goto out_bad;
  268. /* The kernfs node has been renamed */
  269. if (strcmp(dentry->d_name.name, kn->name) != 0)
  270. goto out_bad;
  271. /* The kernfs node has been moved to a different namespace */
  272. if (kn->parent && kernfs_ns_enabled(kn->parent) &&
  273. kernfs_info(dentry->d_sb)->ns != kn->ns)
  274. goto out_bad;
  275. mutex_unlock(&kernfs_mutex);
  276. out_valid:
  277. return 1;
  278. out_bad:
  279. mutex_unlock(&kernfs_mutex);
  280. out_bad_unlocked:
  281. /*
  282. * @dentry doesn't match the underlying kernfs node, drop the
  283. * dentry and force lookup. If we have submounts we must allow the
  284. * vfs caches to lie about the state of the filesystem to prevent
  285. * leaks and other nasty things, so use check_submounts_and_drop()
  286. * instead of d_drop().
  287. */
  288. if (check_submounts_and_drop(dentry) != 0)
  289. goto out_valid;
  290. return 0;
  291. }
  292. static void kernfs_dop_release(struct dentry *dentry)
  293. {
  294. kernfs_put(dentry->d_fsdata);
  295. }
  296. const struct dentry_operations kernfs_dops = {
  297. .d_revalidate = kernfs_dop_revalidate,
  298. .d_release = kernfs_dop_release,
  299. };
  300. static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
  301. const char *name, umode_t mode,
  302. unsigned flags)
  303. {
  304. char *dup_name = NULL;
  305. struct kernfs_node *kn;
  306. int ret;
  307. if (!(flags & KERNFS_STATIC_NAME)) {
  308. name = dup_name = kstrdup(name, GFP_KERNEL);
  309. if (!name)
  310. return NULL;
  311. }
  312. kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
  313. if (!kn)
  314. goto err_out1;
  315. ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
  316. if (ret < 0)
  317. goto err_out2;
  318. kn->ino = ret;
  319. atomic_set(&kn->count, 1);
  320. atomic_set(&kn->active, 0);
  321. RB_CLEAR_NODE(&kn->rb);
  322. kn->name = name;
  323. kn->mode = mode;
  324. kn->flags = flags | KERNFS_REMOVED;
  325. return kn;
  326. err_out2:
  327. kmem_cache_free(kernfs_node_cache, kn);
  328. err_out1:
  329. kfree(dup_name);
  330. return NULL;
  331. }
  332. struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
  333. const char *name, umode_t mode,
  334. unsigned flags)
  335. {
  336. struct kernfs_node *kn;
  337. kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
  338. if (kn) {
  339. kernfs_get(parent);
  340. kn->parent = parent;
  341. }
  342. return kn;
  343. }
  344. /**
  345. * kernfs_add_one - add kernfs_node to parent without warning
  346. * @kn: kernfs_node to be added
  347. *
  348. * The caller must already have initialized @kn->parent. This
  349. * function increments nlink of the parent's inode if @kn is a
  350. * directory and link into the children list of the parent.
  351. *
  352. * RETURNS:
  353. * 0 on success, -EEXIST if entry with the given name already
  354. * exists.
  355. */
  356. int kernfs_add_one(struct kernfs_node *kn)
  357. {
  358. struct kernfs_node *parent = kn->parent;
  359. struct kernfs_iattrs *ps_iattr;
  360. bool has_ns;
  361. int ret;
  362. mutex_lock(&kernfs_mutex);
  363. ret = -EINVAL;
  364. has_ns = kernfs_ns_enabled(parent);
  365. if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
  366. has_ns ? "required" : "invalid", parent->name, kn->name))
  367. goto out_unlock;
  368. if (kernfs_type(parent) != KERNFS_DIR)
  369. goto out_unlock;
  370. ret = -ENOENT;
  371. if (parent->flags & KERNFS_REMOVED)
  372. goto out_unlock;
  373. kn->hash = kernfs_name_hash(kn->name, kn->ns);
  374. ret = kernfs_link_sibling(kn);
  375. if (ret)
  376. goto out_unlock;
  377. /* Update timestamps on the parent */
  378. ps_iattr = parent->iattr;
  379. if (ps_iattr) {
  380. struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
  381. ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME;
  382. }
  383. /* Mark the entry added into directory tree */
  384. kn->flags &= ~KERNFS_REMOVED;
  385. ret = 0;
  386. out_unlock:
  387. mutex_unlock(&kernfs_mutex);
  388. return ret;
  389. }
  390. /**
  391. * kernfs_find_ns - find kernfs_node with the given name
  392. * @parent: kernfs_node to search under
  393. * @name: name to look for
  394. * @ns: the namespace tag to use
  395. *
  396. * Look for kernfs_node with name @name under @parent. Returns pointer to
  397. * the found kernfs_node on success, %NULL on failure.
  398. */
  399. static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
  400. const unsigned char *name,
  401. const void *ns)
  402. {
  403. struct rb_node *node = parent->dir.children.rb_node;
  404. bool has_ns = kernfs_ns_enabled(parent);
  405. unsigned int hash;
  406. lockdep_assert_held(&kernfs_mutex);
  407. if (has_ns != (bool)ns) {
  408. WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
  409. has_ns ? "required" : "invalid", parent->name, name);
  410. return NULL;
  411. }
  412. hash = kernfs_name_hash(name, ns);
  413. while (node) {
  414. struct kernfs_node *kn;
  415. int result;
  416. kn = rb_to_kn(node);
  417. result = kernfs_name_compare(hash, name, ns, kn);
  418. if (result < 0)
  419. node = node->rb_left;
  420. else if (result > 0)
  421. node = node->rb_right;
  422. else
  423. return kn;
  424. }
  425. return NULL;
  426. }
  427. /**
  428. * kernfs_find_and_get_ns - find and get kernfs_node with the given name
  429. * @parent: kernfs_node to search under
  430. * @name: name to look for
  431. * @ns: the namespace tag to use
  432. *
  433. * Look for kernfs_node with name @name under @parent and get a reference
  434. * if found. This function may sleep and returns pointer to the found
  435. * kernfs_node on success, %NULL on failure.
  436. */
  437. struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
  438. const char *name, const void *ns)
  439. {
  440. struct kernfs_node *kn;
  441. mutex_lock(&kernfs_mutex);
  442. kn = kernfs_find_ns(parent, name, ns);
  443. kernfs_get(kn);
  444. mutex_unlock(&kernfs_mutex);
  445. return kn;
  446. }
  447. EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
  448. /**
  449. * kernfs_create_root - create a new kernfs hierarchy
  450. * @kdops: optional directory syscall operations for the hierarchy
  451. * @priv: opaque data associated with the new directory
  452. *
  453. * Returns the root of the new hierarchy on success, ERR_PTR() value on
  454. * failure.
  455. */
  456. struct kernfs_root *kernfs_create_root(struct kernfs_dir_ops *kdops, void *priv)
  457. {
  458. struct kernfs_root *root;
  459. struct kernfs_node *kn;
  460. root = kzalloc(sizeof(*root), GFP_KERNEL);
  461. if (!root)
  462. return ERR_PTR(-ENOMEM);
  463. ida_init(&root->ino_ida);
  464. kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
  465. KERNFS_DIR);
  466. if (!kn) {
  467. ida_destroy(&root->ino_ida);
  468. kfree(root);
  469. return ERR_PTR(-ENOMEM);
  470. }
  471. kn->flags &= ~KERNFS_REMOVED;
  472. kn->priv = priv;
  473. kn->dir.root = root;
  474. root->dir_ops = kdops;
  475. root->kn = kn;
  476. init_waitqueue_head(&root->deactivate_waitq);
  477. return root;
  478. }
  479. /**
  480. * kernfs_destroy_root - destroy a kernfs hierarchy
  481. * @root: root of the hierarchy to destroy
  482. *
  483. * Destroy the hierarchy anchored at @root by removing all existing
  484. * directories and destroying @root.
  485. */
  486. void kernfs_destroy_root(struct kernfs_root *root)
  487. {
  488. kernfs_remove(root->kn); /* will also free @root */
  489. }
  490. /**
  491. * kernfs_create_dir_ns - create a directory
  492. * @parent: parent in which to create a new directory
  493. * @name: name of the new directory
  494. * @mode: mode of the new directory
  495. * @priv: opaque data associated with the new directory
  496. * @ns: optional namespace tag of the directory
  497. *
  498. * Returns the created node on success, ERR_PTR() value on failure.
  499. */
  500. struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
  501. const char *name, umode_t mode,
  502. void *priv, const void *ns)
  503. {
  504. struct kernfs_node *kn;
  505. int rc;
  506. /* allocate */
  507. kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
  508. if (!kn)
  509. return ERR_PTR(-ENOMEM);
  510. kn->dir.root = parent->dir.root;
  511. kn->ns = ns;
  512. kn->priv = priv;
  513. /* link in */
  514. rc = kernfs_add_one(kn);
  515. if (!rc)
  516. return kn;
  517. kernfs_put(kn);
  518. return ERR_PTR(rc);
  519. }
  520. static struct dentry *kernfs_iop_lookup(struct inode *dir,
  521. struct dentry *dentry,
  522. unsigned int flags)
  523. {
  524. struct dentry *ret;
  525. struct kernfs_node *parent = dentry->d_parent->d_fsdata;
  526. struct kernfs_node *kn;
  527. struct inode *inode;
  528. const void *ns = NULL;
  529. mutex_lock(&kernfs_mutex);
  530. if (kernfs_ns_enabled(parent))
  531. ns = kernfs_info(dir->i_sb)->ns;
  532. kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
  533. /* no such entry */
  534. if (!kn) {
  535. ret = NULL;
  536. goto out_unlock;
  537. }
  538. kernfs_get(kn);
  539. dentry->d_fsdata = kn;
  540. /* attach dentry and inode */
  541. inode = kernfs_get_inode(dir->i_sb, kn);
  542. if (!inode) {
  543. ret = ERR_PTR(-ENOMEM);
  544. goto out_unlock;
  545. }
  546. /* instantiate and hash dentry */
  547. ret = d_materialise_unique(dentry, inode);
  548. out_unlock:
  549. mutex_unlock(&kernfs_mutex);
  550. return ret;
  551. }
  552. static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
  553. umode_t mode)
  554. {
  555. struct kernfs_node *parent = dir->i_private;
  556. struct kernfs_dir_ops *kdops = kernfs_root(parent)->dir_ops;
  557. if (!kdops || !kdops->mkdir)
  558. return -EPERM;
  559. return kdops->mkdir(parent, dentry->d_name.name, mode);
  560. }
  561. static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
  562. {
  563. struct kernfs_node *kn = dentry->d_fsdata;
  564. struct kernfs_dir_ops *kdops = kernfs_root(kn)->dir_ops;
  565. if (!kdops || !kdops->rmdir)
  566. return -EPERM;
  567. return kdops->rmdir(kn);
  568. }
  569. static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
  570. struct inode *new_dir, struct dentry *new_dentry)
  571. {
  572. struct kernfs_node *kn = old_dentry->d_fsdata;
  573. struct kernfs_node *new_parent = new_dir->i_private;
  574. struct kernfs_dir_ops *kdops = kernfs_root(kn)->dir_ops;
  575. if (!kdops || !kdops->rename)
  576. return -EPERM;
  577. return kdops->rename(kn, new_parent, new_dentry->d_name.name);
  578. }
  579. const struct inode_operations kernfs_dir_iops = {
  580. .lookup = kernfs_iop_lookup,
  581. .permission = kernfs_iop_permission,
  582. .setattr = kernfs_iop_setattr,
  583. .getattr = kernfs_iop_getattr,
  584. .setxattr = kernfs_iop_setxattr,
  585. .removexattr = kernfs_iop_removexattr,
  586. .getxattr = kernfs_iop_getxattr,
  587. .listxattr = kernfs_iop_listxattr,
  588. .mkdir = kernfs_iop_mkdir,
  589. .rmdir = kernfs_iop_rmdir,
  590. .rename = kernfs_iop_rename,
  591. };
  592. static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
  593. {
  594. struct kernfs_node *last;
  595. while (true) {
  596. struct rb_node *rbn;
  597. last = pos;
  598. if (kernfs_type(pos) != KERNFS_DIR)
  599. break;
  600. rbn = rb_first(&pos->dir.children);
  601. if (!rbn)
  602. break;
  603. pos = rb_to_kn(rbn);
  604. }
  605. return last;
  606. }
  607. /**
  608. * kernfs_next_descendant_post - find the next descendant for post-order walk
  609. * @pos: the current position (%NULL to initiate traversal)
  610. * @root: kernfs_node whose descendants to walk
  611. *
  612. * Find the next descendant to visit for post-order traversal of @root's
  613. * descendants. @root is included in the iteration and the last node to be
  614. * visited.
  615. */
  616. static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
  617. struct kernfs_node *root)
  618. {
  619. struct rb_node *rbn;
  620. lockdep_assert_held(&kernfs_mutex);
  621. /* if first iteration, visit leftmost descendant which may be root */
  622. if (!pos)
  623. return kernfs_leftmost_descendant(root);
  624. /* if we visited @root, we're done */
  625. if (pos == root)
  626. return NULL;
  627. /* if there's an unvisited sibling, visit its leftmost descendant */
  628. rbn = rb_next(&pos->rb);
  629. if (rbn)
  630. return kernfs_leftmost_descendant(rb_to_kn(rbn));
  631. /* no sibling left, visit parent */
  632. return pos->parent;
  633. }
  634. static void __kernfs_remove(struct kernfs_node *kn)
  635. {
  636. struct kernfs_node *pos;
  637. lockdep_assert_held(&kernfs_mutex);
  638. if (!kn)
  639. return;
  640. pr_debug("kernfs %s: removing\n", kn->name);
  641. /* disable lookup and node creation under @kn */
  642. pos = NULL;
  643. while ((pos = kernfs_next_descendant_post(pos, kn)))
  644. pos->flags |= KERNFS_REMOVED;
  645. /* deactivate and unlink the subtree node-by-node */
  646. do {
  647. pos = kernfs_leftmost_descendant(kn);
  648. /*
  649. * kernfs_deactivate() drops kernfs_mutex temporarily and
  650. * @pos's base ref could have been put by someone else by
  651. * the time the function returns. Make sure it doesn't go
  652. * away underneath us.
  653. */
  654. kernfs_get(pos);
  655. kernfs_deactivate(pos);
  656. /*
  657. * kernfs_unlink_sibling() succeeds once per node. Use it
  658. * to decide who's responsible for cleanups.
  659. */
  660. if (!pos->parent || kernfs_unlink_sibling(pos)) {
  661. struct kernfs_iattrs *ps_iattr =
  662. pos->parent ? pos->parent->iattr : NULL;
  663. /* update timestamps on the parent */
  664. if (ps_iattr) {
  665. ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME;
  666. ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME;
  667. }
  668. kernfs_put(pos);
  669. }
  670. kernfs_put(pos);
  671. } while (pos != kn);
  672. }
  673. /**
  674. * kernfs_remove - remove a kernfs_node recursively
  675. * @kn: the kernfs_node to remove
  676. *
  677. * Remove @kn along with all its subdirectories and files.
  678. */
  679. void kernfs_remove(struct kernfs_node *kn)
  680. {
  681. mutex_lock(&kernfs_mutex);
  682. __kernfs_remove(kn);
  683. mutex_unlock(&kernfs_mutex);
  684. }
  685. /**
  686. * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
  687. * @parent: parent of the target
  688. * @name: name of the kernfs_node to remove
  689. * @ns: namespace tag of the kernfs_node to remove
  690. *
  691. * Look for the kernfs_node with @name and @ns under @parent and remove it.
  692. * Returns 0 on success, -ENOENT if such entry doesn't exist.
  693. */
  694. int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
  695. const void *ns)
  696. {
  697. struct kernfs_node *kn;
  698. if (!parent) {
  699. WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
  700. name);
  701. return -ENOENT;
  702. }
  703. mutex_lock(&kernfs_mutex);
  704. kn = kernfs_find_ns(parent, name, ns);
  705. if (kn)
  706. __kernfs_remove(kn);
  707. mutex_unlock(&kernfs_mutex);
  708. if (kn)
  709. return 0;
  710. else
  711. return -ENOENT;
  712. }
  713. /**
  714. * kernfs_rename_ns - move and rename a kernfs_node
  715. * @kn: target node
  716. * @new_parent: new parent to put @sd under
  717. * @new_name: new name
  718. * @new_ns: new namespace tag
  719. */
  720. int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
  721. const char *new_name, const void *new_ns)
  722. {
  723. int error;
  724. mutex_lock(&kernfs_mutex);
  725. error = -ENOENT;
  726. if ((kn->flags | new_parent->flags) & KERNFS_REMOVED)
  727. goto out;
  728. error = 0;
  729. if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
  730. (strcmp(kn->name, new_name) == 0))
  731. goto out; /* nothing to rename */
  732. error = -EEXIST;
  733. if (kernfs_find_ns(new_parent, new_name, new_ns))
  734. goto out;
  735. /* rename kernfs_node */
  736. if (strcmp(kn->name, new_name) != 0) {
  737. error = -ENOMEM;
  738. new_name = kstrdup(new_name, GFP_KERNEL);
  739. if (!new_name)
  740. goto out;
  741. if (kn->flags & KERNFS_STATIC_NAME)
  742. kn->flags &= ~KERNFS_STATIC_NAME;
  743. else
  744. kfree(kn->name);
  745. kn->name = new_name;
  746. }
  747. /*
  748. * Move to the appropriate place in the appropriate directories rbtree.
  749. */
  750. kernfs_unlink_sibling(kn);
  751. kernfs_get(new_parent);
  752. kernfs_put(kn->parent);
  753. kn->ns = new_ns;
  754. kn->hash = kernfs_name_hash(kn->name, kn->ns);
  755. kn->parent = new_parent;
  756. kernfs_link_sibling(kn);
  757. error = 0;
  758. out:
  759. mutex_unlock(&kernfs_mutex);
  760. return error;
  761. }
  762. /* Relationship between s_mode and the DT_xxx types */
  763. static inline unsigned char dt_type(struct kernfs_node *kn)
  764. {
  765. return (kn->mode >> 12) & 15;
  766. }
  767. static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
  768. {
  769. kernfs_put(filp->private_data);
  770. return 0;
  771. }
  772. static struct kernfs_node *kernfs_dir_pos(const void *ns,
  773. struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
  774. {
  775. if (pos) {
  776. int valid = !(pos->flags & KERNFS_REMOVED) &&
  777. pos->parent == parent && hash == pos->hash;
  778. kernfs_put(pos);
  779. if (!valid)
  780. pos = NULL;
  781. }
  782. if (!pos && (hash > 1) && (hash < INT_MAX)) {
  783. struct rb_node *node = parent->dir.children.rb_node;
  784. while (node) {
  785. pos = rb_to_kn(node);
  786. if (hash < pos->hash)
  787. node = node->rb_left;
  788. else if (hash > pos->hash)
  789. node = node->rb_right;
  790. else
  791. break;
  792. }
  793. }
  794. /* Skip over entries in the wrong namespace */
  795. while (pos && pos->ns != ns) {
  796. struct rb_node *node = rb_next(&pos->rb);
  797. if (!node)
  798. pos = NULL;
  799. else
  800. pos = rb_to_kn(node);
  801. }
  802. return pos;
  803. }
  804. static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
  805. struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
  806. {
  807. pos = kernfs_dir_pos(ns, parent, ino, pos);
  808. if (pos)
  809. do {
  810. struct rb_node *node = rb_next(&pos->rb);
  811. if (!node)
  812. pos = NULL;
  813. else
  814. pos = rb_to_kn(node);
  815. } while (pos && pos->ns != ns);
  816. return pos;
  817. }
  818. static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
  819. {
  820. struct dentry *dentry = file->f_path.dentry;
  821. struct kernfs_node *parent = dentry->d_fsdata;
  822. struct kernfs_node *pos = file->private_data;
  823. const void *ns = NULL;
  824. if (!dir_emit_dots(file, ctx))
  825. return 0;
  826. mutex_lock(&kernfs_mutex);
  827. if (kernfs_ns_enabled(parent))
  828. ns = kernfs_info(dentry->d_sb)->ns;
  829. for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
  830. pos;
  831. pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
  832. const char *name = pos->name;
  833. unsigned int type = dt_type(pos);
  834. int len = strlen(name);
  835. ino_t ino = pos->ino;
  836. ctx->pos = pos->hash;
  837. file->private_data = pos;
  838. kernfs_get(pos);
  839. mutex_unlock(&kernfs_mutex);
  840. if (!dir_emit(ctx, name, len, ino, type))
  841. return 0;
  842. mutex_lock(&kernfs_mutex);
  843. }
  844. mutex_unlock(&kernfs_mutex);
  845. file->private_data = NULL;
  846. ctx->pos = INT_MAX;
  847. return 0;
  848. }
  849. static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset,
  850. int whence)
  851. {
  852. struct inode *inode = file_inode(file);
  853. loff_t ret;
  854. mutex_lock(&inode->i_mutex);
  855. ret = generic_file_llseek(file, offset, whence);
  856. mutex_unlock(&inode->i_mutex);
  857. return ret;
  858. }
  859. const struct file_operations kernfs_dir_fops = {
  860. .read = generic_read_dir,
  861. .iterate = kernfs_fop_readdir,
  862. .release = kernfs_dir_fop_release,
  863. .llseek = kernfs_dir_fop_llseek,
  864. };