loop.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353
  1. /*
  2. * linux/drivers/block/loop.c
  3. *
  4. * Written by Theodore Ts'o, 3/29/93
  5. *
  6. * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
  7. * permitted under the GNU General Public License.
  8. *
  9. * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
  10. * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
  11. *
  12. * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
  13. * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
  14. *
  15. * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
  16. *
  17. * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
  18. *
  19. * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
  20. *
  21. * Loadable modules and other fixes by AK, 1998
  22. *
  23. * Make real block number available to downstream transfer functions, enables
  24. * CBC (and relatives) mode encryption requiring unique IVs per data block.
  25. * Reed H. Petty, rhp@draper.net
  26. *
  27. * Maximum number of loop devices now dynamic via max_loop module parameter.
  28. * Russell Kroll <rkroll@exploits.org> 19990701
  29. *
  30. * Maximum number of loop devices when compiled-in now selectable by passing
  31. * max_loop=<1-255> to the kernel on boot.
  32. * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
  33. *
  34. * Completely rewrite request handling to be make_request_fn style and
  35. * non blocking, pushing work to a helper thread. Lots of fixes from
  36. * Al Viro too.
  37. * Jens Axboe <axboe@suse.de>, Nov 2000
  38. *
  39. * Support up to 256 loop devices
  40. * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
  41. *
  42. * Support for falling back on the write file operation when the address space
  43. * operations prepare_write and/or commit_write are not available on the
  44. * backing filesystem.
  45. * Anton Altaparmakov, 16 Feb 2005
  46. *
  47. * Still To Fix:
  48. * - Advisory locking is ignored here.
  49. * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
  50. *
  51. */
  52. #include <linux/config.h>
  53. #include <linux/module.h>
  54. #include <linux/moduleparam.h>
  55. #include <linux/sched.h>
  56. #include <linux/fs.h>
  57. #include <linux/file.h>
  58. #include <linux/stat.h>
  59. #include <linux/errno.h>
  60. #include <linux/major.h>
  61. #include <linux/wait.h>
  62. #include <linux/blkdev.h>
  63. #include <linux/blkpg.h>
  64. #include <linux/init.h>
  65. #include <linux/devfs_fs_kernel.h>
  66. #include <linux/smp_lock.h>
  67. #include <linux/swap.h>
  68. #include <linux/slab.h>
  69. #include <linux/loop.h>
  70. #include <linux/suspend.h>
  71. #include <linux/writeback.h>
  72. #include <linux/buffer_head.h> /* for invalidate_bdev() */
  73. #include <linux/completion.h>
  74. #include <linux/highmem.h>
  75. #include <linux/gfp.h>
  76. #include <linux/kthread.h>
  77. #include <asm/uaccess.h>
  78. static int max_loop = 8;
  79. static struct loop_device *loop_dev;
  80. static struct gendisk **disks;
  81. /*
  82. * Transfer functions
  83. */
  84. static int transfer_none(struct loop_device *lo, int cmd,
  85. struct page *raw_page, unsigned raw_off,
  86. struct page *loop_page, unsigned loop_off,
  87. int size, sector_t real_block)
  88. {
  89. char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
  90. char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
  91. if (cmd == READ)
  92. memcpy(loop_buf, raw_buf, size);
  93. else
  94. memcpy(raw_buf, loop_buf, size);
  95. kunmap_atomic(raw_buf, KM_USER0);
  96. kunmap_atomic(loop_buf, KM_USER1);
  97. cond_resched();
  98. return 0;
  99. }
  100. static int transfer_xor(struct loop_device *lo, int cmd,
  101. struct page *raw_page, unsigned raw_off,
  102. struct page *loop_page, unsigned loop_off,
  103. int size, sector_t real_block)
  104. {
  105. char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
  106. char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
  107. char *in, *out, *key;
  108. int i, keysize;
  109. if (cmd == READ) {
  110. in = raw_buf;
  111. out = loop_buf;
  112. } else {
  113. in = loop_buf;
  114. out = raw_buf;
  115. }
  116. key = lo->lo_encrypt_key;
  117. keysize = lo->lo_encrypt_key_size;
  118. for (i = 0; i < size; i++)
  119. *out++ = *in++ ^ key[(i & 511) % keysize];
  120. kunmap_atomic(raw_buf, KM_USER0);
  121. kunmap_atomic(loop_buf, KM_USER1);
  122. cond_resched();
  123. return 0;
  124. }
  125. static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
  126. {
  127. if (unlikely(info->lo_encrypt_key_size <= 0))
  128. return -EINVAL;
  129. return 0;
  130. }
  131. static struct loop_func_table none_funcs = {
  132. .number = LO_CRYPT_NONE,
  133. .transfer = transfer_none,
  134. };
  135. static struct loop_func_table xor_funcs = {
  136. .number = LO_CRYPT_XOR,
  137. .transfer = transfer_xor,
  138. .init = xor_init
  139. };
  140. /* xfer_funcs[0] is special - its release function is never called */
  141. static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
  142. &none_funcs,
  143. &xor_funcs
  144. };
  145. static loff_t get_loop_size(struct loop_device *lo, struct file *file)
  146. {
  147. loff_t size, offset, loopsize;
  148. /* Compute loopsize in bytes */
  149. size = i_size_read(file->f_mapping->host);
  150. offset = lo->lo_offset;
  151. loopsize = size - offset;
  152. if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
  153. loopsize = lo->lo_sizelimit;
  154. /*
  155. * Unfortunately, if we want to do I/O on the device,
  156. * the number of 512-byte sectors has to fit into a sector_t.
  157. */
  158. return loopsize >> 9;
  159. }
  160. static int
  161. figure_loop_size(struct loop_device *lo)
  162. {
  163. loff_t size = get_loop_size(lo, lo->lo_backing_file);
  164. sector_t x = (sector_t)size;
  165. if (unlikely((loff_t)x != size))
  166. return -EFBIG;
  167. set_capacity(disks[lo->lo_number], x);
  168. return 0;
  169. }
  170. static inline int
  171. lo_do_transfer(struct loop_device *lo, int cmd,
  172. struct page *rpage, unsigned roffs,
  173. struct page *lpage, unsigned loffs,
  174. int size, sector_t rblock)
  175. {
  176. if (unlikely(!lo->transfer))
  177. return 0;
  178. return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
  179. }
  180. /**
  181. * do_lo_send_aops - helper for writing data to a loop device
  182. *
  183. * This is the fast version for backing filesystems which implement the address
  184. * space operations prepare_write and commit_write.
  185. */
  186. static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
  187. int bsize, loff_t pos, struct page *page)
  188. {
  189. struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
  190. struct address_space *mapping = file->f_mapping;
  191. struct address_space_operations *aops = mapping->a_ops;
  192. pgoff_t index;
  193. unsigned offset, bv_offs;
  194. int len, ret;
  195. mutex_lock(&mapping->host->i_mutex);
  196. index = pos >> PAGE_CACHE_SHIFT;
  197. offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
  198. bv_offs = bvec->bv_offset;
  199. len = bvec->bv_len;
  200. while (len > 0) {
  201. sector_t IV;
  202. unsigned size;
  203. int transfer_result;
  204. IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
  205. size = PAGE_CACHE_SIZE - offset;
  206. if (size > len)
  207. size = len;
  208. page = grab_cache_page(mapping, index);
  209. if (unlikely(!page))
  210. goto fail;
  211. ret = aops->prepare_write(file, page, offset,
  212. offset + size);
  213. if (unlikely(ret)) {
  214. if (ret == AOP_TRUNCATED_PAGE) {
  215. page_cache_release(page);
  216. continue;
  217. }
  218. goto unlock;
  219. }
  220. transfer_result = lo_do_transfer(lo, WRITE, page, offset,
  221. bvec->bv_page, bv_offs, size, IV);
  222. if (unlikely(transfer_result)) {
  223. char *kaddr;
  224. /*
  225. * The transfer failed, but we still write the data to
  226. * keep prepare/commit calls balanced.
  227. */
  228. printk(KERN_ERR "loop: transfer error block %llu\n",
  229. (unsigned long long)index);
  230. kaddr = kmap_atomic(page, KM_USER0);
  231. memset(kaddr + offset, 0, size);
  232. kunmap_atomic(kaddr, KM_USER0);
  233. }
  234. flush_dcache_page(page);
  235. ret = aops->commit_write(file, page, offset,
  236. offset + size);
  237. if (unlikely(ret)) {
  238. if (ret == AOP_TRUNCATED_PAGE) {
  239. page_cache_release(page);
  240. continue;
  241. }
  242. goto unlock;
  243. }
  244. if (unlikely(transfer_result))
  245. goto unlock;
  246. bv_offs += size;
  247. len -= size;
  248. offset = 0;
  249. index++;
  250. pos += size;
  251. unlock_page(page);
  252. page_cache_release(page);
  253. }
  254. ret = 0;
  255. out:
  256. mutex_unlock(&mapping->host->i_mutex);
  257. return ret;
  258. unlock:
  259. unlock_page(page);
  260. page_cache_release(page);
  261. fail:
  262. ret = -1;
  263. goto out;
  264. }
  265. /**
  266. * __do_lo_send_write - helper for writing data to a loop device
  267. *
  268. * This helper just factors out common code between do_lo_send_direct_write()
  269. * and do_lo_send_write().
  270. */
  271. static int __do_lo_send_write(struct file *file,
  272. u8 __user *buf, const int len, loff_t pos)
  273. {
  274. ssize_t bw;
  275. mm_segment_t old_fs = get_fs();
  276. set_fs(get_ds());
  277. bw = file->f_op->write(file, buf, len, &pos);
  278. set_fs(old_fs);
  279. if (likely(bw == len))
  280. return 0;
  281. printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
  282. (unsigned long long)pos, len);
  283. if (bw >= 0)
  284. bw = -EIO;
  285. return bw;
  286. }
  287. /**
  288. * do_lo_send_direct_write - helper for writing data to a loop device
  289. *
  290. * This is the fast, non-transforming version for backing filesystems which do
  291. * not implement the address space operations prepare_write and commit_write.
  292. * It uses the write file operation which should be present on all writeable
  293. * filesystems.
  294. */
  295. static int do_lo_send_direct_write(struct loop_device *lo,
  296. struct bio_vec *bvec, int bsize, loff_t pos, struct page *page)
  297. {
  298. ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
  299. (u8 __user *)kmap(bvec->bv_page) + bvec->bv_offset,
  300. bvec->bv_len, pos);
  301. kunmap(bvec->bv_page);
  302. cond_resched();
  303. return bw;
  304. }
  305. /**
  306. * do_lo_send_write - helper for writing data to a loop device
  307. *
  308. * This is the slow, transforming version for filesystems which do not
  309. * implement the address space operations prepare_write and commit_write. It
  310. * uses the write file operation which should be present on all writeable
  311. * filesystems.
  312. *
  313. * Using fops->write is slower than using aops->{prepare,commit}_write in the
  314. * transforming case because we need to double buffer the data as we cannot do
  315. * the transformations in place as we do not have direct access to the
  316. * destination pages of the backing file.
  317. */
  318. static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
  319. int bsize, loff_t pos, struct page *page)
  320. {
  321. int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
  322. bvec->bv_offset, bvec->bv_len, pos >> 9);
  323. if (likely(!ret))
  324. return __do_lo_send_write(lo->lo_backing_file,
  325. (u8 __user *)page_address(page), bvec->bv_len,
  326. pos);
  327. printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
  328. "length %i.\n", (unsigned long long)pos, bvec->bv_len);
  329. if (ret > 0)
  330. ret = -EIO;
  331. return ret;
  332. }
  333. static int lo_send(struct loop_device *lo, struct bio *bio, int bsize,
  334. loff_t pos)
  335. {
  336. int (*do_lo_send)(struct loop_device *, struct bio_vec *, int, loff_t,
  337. struct page *page);
  338. struct bio_vec *bvec;
  339. struct page *page = NULL;
  340. int i, ret = 0;
  341. do_lo_send = do_lo_send_aops;
  342. if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
  343. do_lo_send = do_lo_send_direct_write;
  344. if (lo->transfer != transfer_none) {
  345. page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
  346. if (unlikely(!page))
  347. goto fail;
  348. kmap(page);
  349. do_lo_send = do_lo_send_write;
  350. }
  351. }
  352. bio_for_each_segment(bvec, bio, i) {
  353. ret = do_lo_send(lo, bvec, bsize, pos, page);
  354. if (ret < 0)
  355. break;
  356. pos += bvec->bv_len;
  357. }
  358. if (page) {
  359. kunmap(page);
  360. __free_page(page);
  361. }
  362. out:
  363. return ret;
  364. fail:
  365. printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
  366. ret = -ENOMEM;
  367. goto out;
  368. }
  369. struct lo_read_data {
  370. struct loop_device *lo;
  371. struct page *page;
  372. unsigned offset;
  373. int bsize;
  374. };
  375. static int
  376. lo_read_actor(read_descriptor_t *desc, struct page *page,
  377. unsigned long offset, unsigned long size)
  378. {
  379. unsigned long count = desc->count;
  380. struct lo_read_data *p = desc->arg.data;
  381. struct loop_device *lo = p->lo;
  382. sector_t IV;
  383. IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
  384. if (size > count)
  385. size = count;
  386. if (lo_do_transfer(lo, READ, page, offset, p->page, p->offset, size, IV)) {
  387. size = 0;
  388. printk(KERN_ERR "loop: transfer error block %ld\n",
  389. page->index);
  390. desc->error = -EINVAL;
  391. }
  392. flush_dcache_page(p->page);
  393. desc->count = count - size;
  394. desc->written += size;
  395. p->offset += size;
  396. return size;
  397. }
  398. static int
  399. do_lo_receive(struct loop_device *lo,
  400. struct bio_vec *bvec, int bsize, loff_t pos)
  401. {
  402. struct lo_read_data cookie;
  403. struct file *file;
  404. int retval;
  405. cookie.lo = lo;
  406. cookie.page = bvec->bv_page;
  407. cookie.offset = bvec->bv_offset;
  408. cookie.bsize = bsize;
  409. file = lo->lo_backing_file;
  410. retval = file->f_op->sendfile(file, &pos, bvec->bv_len,
  411. lo_read_actor, &cookie);
  412. return (retval < 0)? retval: 0;
  413. }
  414. static int
  415. lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
  416. {
  417. struct bio_vec *bvec;
  418. int i, ret = 0;
  419. bio_for_each_segment(bvec, bio, i) {
  420. ret = do_lo_receive(lo, bvec, bsize, pos);
  421. if (ret < 0)
  422. break;
  423. pos += bvec->bv_len;
  424. }
  425. return ret;
  426. }
  427. static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
  428. {
  429. loff_t pos;
  430. int ret;
  431. pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
  432. if (bio_rw(bio) == WRITE)
  433. ret = lo_send(lo, bio, lo->lo_blocksize, pos);
  434. else
  435. ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
  436. return ret;
  437. }
  438. /*
  439. * Add bio to back of pending list
  440. */
  441. static void loop_add_bio(struct loop_device *lo, struct bio *bio)
  442. {
  443. if (lo->lo_biotail) {
  444. lo->lo_biotail->bi_next = bio;
  445. lo->lo_biotail = bio;
  446. } else
  447. lo->lo_bio = lo->lo_biotail = bio;
  448. }
  449. /*
  450. * Grab first pending buffer
  451. */
  452. static struct bio *loop_get_bio(struct loop_device *lo)
  453. {
  454. struct bio *bio;
  455. if ((bio = lo->lo_bio)) {
  456. if (bio == lo->lo_biotail)
  457. lo->lo_biotail = NULL;
  458. lo->lo_bio = bio->bi_next;
  459. bio->bi_next = NULL;
  460. }
  461. return bio;
  462. }
  463. static int loop_make_request(request_queue_t *q, struct bio *old_bio)
  464. {
  465. struct loop_device *lo = q->queuedata;
  466. int rw = bio_rw(old_bio);
  467. if (rw == READA)
  468. rw = READ;
  469. BUG_ON(!lo || (rw != READ && rw != WRITE));
  470. spin_lock_irq(&lo->lo_lock);
  471. if (lo->lo_state != Lo_bound)
  472. goto out;
  473. if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
  474. goto out;
  475. lo->lo_pending++;
  476. loop_add_bio(lo, old_bio);
  477. spin_unlock_irq(&lo->lo_lock);
  478. complete(&lo->lo_bh_done);
  479. return 0;
  480. out:
  481. if (lo->lo_pending == 0)
  482. complete(&lo->lo_bh_done);
  483. spin_unlock_irq(&lo->lo_lock);
  484. bio_io_error(old_bio, old_bio->bi_size);
  485. return 0;
  486. }
  487. /*
  488. * kick off io on the underlying address space
  489. */
  490. static void loop_unplug(request_queue_t *q)
  491. {
  492. struct loop_device *lo = q->queuedata;
  493. clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags);
  494. blk_run_address_space(lo->lo_backing_file->f_mapping);
  495. }
  496. struct switch_request {
  497. struct file *file;
  498. struct completion wait;
  499. };
  500. static void do_loop_switch(struct loop_device *, struct switch_request *);
  501. static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
  502. {
  503. if (unlikely(!bio->bi_bdev)) {
  504. do_loop_switch(lo, bio->bi_private);
  505. bio_put(bio);
  506. } else {
  507. int ret = do_bio_filebacked(lo, bio);
  508. bio_endio(bio, bio->bi_size, ret);
  509. }
  510. }
  511. /*
  512. * worker thread that handles reads/writes to file backed loop devices,
  513. * to avoid blocking in our make_request_fn. it also does loop decrypting
  514. * on reads for block backed loop, as that is too heavy to do from
  515. * b_end_io context where irqs may be disabled.
  516. */
  517. static int loop_thread(void *data)
  518. {
  519. struct loop_device *lo = data;
  520. struct bio *bio;
  521. /*
  522. * loop can be used in an encrypted device,
  523. * hence, it mustn't be stopped at all
  524. * because it could be indirectly used during suspension
  525. */
  526. current->flags |= PF_NOFREEZE;
  527. set_user_nice(current, -20);
  528. lo->lo_state = Lo_bound;
  529. lo->lo_pending = 1;
  530. for (;;) {
  531. int pending;
  532. if (wait_for_completion_interruptible(&lo->lo_bh_done))
  533. continue;
  534. spin_lock_irq(&lo->lo_lock);
  535. /*
  536. * could be completed because of tear-down, not pending work
  537. */
  538. if (unlikely(!lo->lo_pending)) {
  539. spin_unlock_irq(&lo->lo_lock);
  540. break;
  541. }
  542. bio = loop_get_bio(lo);
  543. lo->lo_pending--;
  544. pending = lo->lo_pending;
  545. spin_unlock_irq(&lo->lo_lock);
  546. BUG_ON(!bio);
  547. loop_handle_bio(lo, bio);
  548. /*
  549. * upped both for pending work and tear-down, lo_pending
  550. * will hit zero then
  551. */
  552. if (unlikely(!pending))
  553. break;
  554. }
  555. return 0;
  556. }
  557. /*
  558. * loop_switch performs the hard work of switching a backing store.
  559. * First it needs to flush existing IO, it does this by sending a magic
  560. * BIO down the pipe. The completion of this BIO does the actual switch.
  561. */
  562. static int loop_switch(struct loop_device *lo, struct file *file)
  563. {
  564. struct switch_request w;
  565. struct bio *bio = bio_alloc(GFP_KERNEL, 1);
  566. if (!bio)
  567. return -ENOMEM;
  568. init_completion(&w.wait);
  569. w.file = file;
  570. bio->bi_private = &w;
  571. bio->bi_bdev = NULL;
  572. loop_make_request(lo->lo_queue, bio);
  573. wait_for_completion(&w.wait);
  574. return 0;
  575. }
  576. /*
  577. * Do the actual switch; called from the BIO completion routine
  578. */
  579. static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
  580. {
  581. struct file *file = p->file;
  582. struct file *old_file = lo->lo_backing_file;
  583. struct address_space *mapping = file->f_mapping;
  584. mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
  585. lo->lo_backing_file = file;
  586. lo->lo_blocksize = mapping->host->i_blksize;
  587. lo->old_gfp_mask = mapping_gfp_mask(mapping);
  588. mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
  589. complete(&p->wait);
  590. }
  591. /*
  592. * loop_change_fd switched the backing store of a loopback device to
  593. * a new file. This is useful for operating system installers to free up
  594. * the original file and in High Availability environments to switch to
  595. * an alternative location for the content in case of server meltdown.
  596. * This can only work if the loop device is used read-only, and if the
  597. * new backing store is the same size and type as the old backing store.
  598. */
  599. static int loop_change_fd(struct loop_device *lo, struct file *lo_file,
  600. struct block_device *bdev, unsigned int arg)
  601. {
  602. struct file *file, *old_file;
  603. struct inode *inode;
  604. int error;
  605. error = -ENXIO;
  606. if (lo->lo_state != Lo_bound)
  607. goto out;
  608. /* the loop device has to be read-only */
  609. error = -EINVAL;
  610. if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
  611. goto out;
  612. error = -EBADF;
  613. file = fget(arg);
  614. if (!file)
  615. goto out;
  616. inode = file->f_mapping->host;
  617. old_file = lo->lo_backing_file;
  618. error = -EINVAL;
  619. if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
  620. goto out_putf;
  621. /* new backing store needs to support loop (eg sendfile) */
  622. if (!inode->i_fop->sendfile)
  623. goto out_putf;
  624. /* size of the new backing store needs to be the same */
  625. if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
  626. goto out_putf;
  627. /* and ... switch */
  628. error = loop_switch(lo, file);
  629. if (error)
  630. goto out_putf;
  631. fput(old_file);
  632. return 0;
  633. out_putf:
  634. fput(file);
  635. out:
  636. return error;
  637. }
  638. static inline int is_loop_device(struct file *file)
  639. {
  640. struct inode *i = file->f_mapping->host;
  641. return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
  642. }
  643. static int loop_set_fd(struct loop_device *lo, struct file *lo_file,
  644. struct block_device *bdev, unsigned int arg)
  645. {
  646. struct file *file, *f;
  647. struct inode *inode;
  648. struct address_space *mapping;
  649. unsigned lo_blocksize;
  650. int lo_flags = 0;
  651. int error;
  652. struct task_struct *tsk;
  653. loff_t size;
  654. /* This is safe, since we have a reference from open(). */
  655. __module_get(THIS_MODULE);
  656. error = -EBADF;
  657. file = fget(arg);
  658. if (!file)
  659. goto out;
  660. error = -EBUSY;
  661. if (lo->lo_state != Lo_unbound)
  662. goto out_putf;
  663. /* Avoid recursion */
  664. f = file;
  665. while (is_loop_device(f)) {
  666. struct loop_device *l;
  667. if (f->f_mapping->host->i_rdev == lo_file->f_mapping->host->i_rdev)
  668. goto out_putf;
  669. l = f->f_mapping->host->i_bdev->bd_disk->private_data;
  670. if (l->lo_state == Lo_unbound) {
  671. error = -EINVAL;
  672. goto out_putf;
  673. }
  674. f = l->lo_backing_file;
  675. }
  676. mapping = file->f_mapping;
  677. inode = mapping->host;
  678. if (!(file->f_mode & FMODE_WRITE))
  679. lo_flags |= LO_FLAGS_READ_ONLY;
  680. error = -EINVAL;
  681. if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  682. struct address_space_operations *aops = mapping->a_ops;
  683. /*
  684. * If we can't read - sorry. If we only can't write - well,
  685. * it's going to be read-only.
  686. */
  687. if (!file->f_op->sendfile)
  688. goto out_putf;
  689. if (aops->prepare_write && aops->commit_write)
  690. lo_flags |= LO_FLAGS_USE_AOPS;
  691. if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
  692. lo_flags |= LO_FLAGS_READ_ONLY;
  693. lo_blocksize = inode->i_blksize;
  694. error = 0;
  695. } else {
  696. goto out_putf;
  697. }
  698. size = get_loop_size(lo, file);
  699. if ((loff_t)(sector_t)size != size) {
  700. error = -EFBIG;
  701. goto out_putf;
  702. }
  703. if (!(lo_file->f_mode & FMODE_WRITE))
  704. lo_flags |= LO_FLAGS_READ_ONLY;
  705. set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
  706. lo->lo_blocksize = lo_blocksize;
  707. lo->lo_device = bdev;
  708. lo->lo_flags = lo_flags;
  709. lo->lo_backing_file = file;
  710. lo->transfer = transfer_none;
  711. lo->ioctl = NULL;
  712. lo->lo_sizelimit = 0;
  713. lo->old_gfp_mask = mapping_gfp_mask(mapping);
  714. mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
  715. lo->lo_bio = lo->lo_biotail = NULL;
  716. /*
  717. * set queue make_request_fn, and add limits based on lower level
  718. * device
  719. */
  720. blk_queue_make_request(lo->lo_queue, loop_make_request);
  721. lo->lo_queue->queuedata = lo;
  722. lo->lo_queue->unplug_fn = loop_unplug;
  723. set_capacity(disks[lo->lo_number], size);
  724. bd_set_size(bdev, size << 9);
  725. set_blocksize(bdev, lo_blocksize);
  726. tsk = kthread_run(loop_thread, lo, "loop%d", lo->lo_number);
  727. if (IS_ERR(tsk)) {
  728. error = PTR_ERR(tsk);
  729. goto out_putf;
  730. }
  731. return 0;
  732. out_putf:
  733. fput(file);
  734. out:
  735. /* This is safe: open() is still holding a reference. */
  736. module_put(THIS_MODULE);
  737. return error;
  738. }
  739. static int
  740. loop_release_xfer(struct loop_device *lo)
  741. {
  742. int err = 0;
  743. struct loop_func_table *xfer = lo->lo_encryption;
  744. if (xfer) {
  745. if (xfer->release)
  746. err = xfer->release(lo);
  747. lo->transfer = NULL;
  748. lo->lo_encryption = NULL;
  749. module_put(xfer->owner);
  750. }
  751. return err;
  752. }
  753. static int
  754. loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
  755. const struct loop_info64 *i)
  756. {
  757. int err = 0;
  758. if (xfer) {
  759. struct module *owner = xfer->owner;
  760. if (!try_module_get(owner))
  761. return -EINVAL;
  762. if (xfer->init)
  763. err = xfer->init(lo, i);
  764. if (err)
  765. module_put(owner);
  766. else
  767. lo->lo_encryption = xfer;
  768. }
  769. return err;
  770. }
  771. static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
  772. {
  773. struct file *filp = lo->lo_backing_file;
  774. gfp_t gfp = lo->old_gfp_mask;
  775. if (lo->lo_state != Lo_bound)
  776. return -ENXIO;
  777. if (!lo->lo_thread)
  778. return -EINVAL;
  779. if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */
  780. return -EBUSY;
  781. if (filp == NULL)
  782. return -EINVAL;
  783. spin_lock_irq(&lo->lo_lock);
  784. lo->lo_state = Lo_rundown;
  785. lo->lo_pending--;
  786. if (!lo->lo_pending)
  787. complete(&lo->lo_bh_done);
  788. spin_unlock_irq(&lo->lo_lock);
  789. kthread_stop(lo->lo_thread);
  790. lo->lo_backing_file = NULL;
  791. loop_release_xfer(lo);
  792. lo->transfer = NULL;
  793. lo->ioctl = NULL;
  794. lo->lo_device = NULL;
  795. lo->lo_encryption = NULL;
  796. lo->lo_offset = 0;
  797. lo->lo_sizelimit = 0;
  798. lo->lo_encrypt_key_size = 0;
  799. lo->lo_flags = 0;
  800. lo->lo_thread = NULL;
  801. memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
  802. memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
  803. memset(lo->lo_file_name, 0, LO_NAME_SIZE);
  804. invalidate_bdev(bdev, 0);
  805. set_capacity(disks[lo->lo_number], 0);
  806. bd_set_size(bdev, 0);
  807. mapping_set_gfp_mask(filp->f_mapping, gfp);
  808. lo->lo_state = Lo_unbound;
  809. fput(filp);
  810. /* This is safe: open() is still holding a reference. */
  811. module_put(THIS_MODULE);
  812. return 0;
  813. }
  814. static int
  815. loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
  816. {
  817. int err;
  818. struct loop_func_table *xfer;
  819. if (lo->lo_encrypt_key_size && lo->lo_key_owner != current->uid &&
  820. !capable(CAP_SYS_ADMIN))
  821. return -EPERM;
  822. if (lo->lo_state != Lo_bound)
  823. return -ENXIO;
  824. if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
  825. return -EINVAL;
  826. err = loop_release_xfer(lo);
  827. if (err)
  828. return err;
  829. if (info->lo_encrypt_type) {
  830. unsigned int type = info->lo_encrypt_type;
  831. if (type >= MAX_LO_CRYPT)
  832. return -EINVAL;
  833. xfer = xfer_funcs[type];
  834. if (xfer == NULL)
  835. return -EINVAL;
  836. } else
  837. xfer = NULL;
  838. err = loop_init_xfer(lo, xfer, info);
  839. if (err)
  840. return err;
  841. if (lo->lo_offset != info->lo_offset ||
  842. lo->lo_sizelimit != info->lo_sizelimit) {
  843. lo->lo_offset = info->lo_offset;
  844. lo->lo_sizelimit = info->lo_sizelimit;
  845. if (figure_loop_size(lo))
  846. return -EFBIG;
  847. }
  848. memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
  849. memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
  850. lo->lo_file_name[LO_NAME_SIZE-1] = 0;
  851. lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
  852. if (!xfer)
  853. xfer = &none_funcs;
  854. lo->transfer = xfer->transfer;
  855. lo->ioctl = xfer->ioctl;
  856. lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
  857. lo->lo_init[0] = info->lo_init[0];
  858. lo->lo_init[1] = info->lo_init[1];
  859. if (info->lo_encrypt_key_size) {
  860. memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
  861. info->lo_encrypt_key_size);
  862. lo->lo_key_owner = current->uid;
  863. }
  864. return 0;
  865. }
  866. static int
  867. loop_get_status(struct loop_device *lo, struct loop_info64 *info)
  868. {
  869. struct file *file = lo->lo_backing_file;
  870. struct kstat stat;
  871. int error;
  872. if (lo->lo_state != Lo_bound)
  873. return -ENXIO;
  874. error = vfs_getattr(file->f_vfsmnt, file->f_dentry, &stat);
  875. if (error)
  876. return error;
  877. memset(info, 0, sizeof(*info));
  878. info->lo_number = lo->lo_number;
  879. info->lo_device = huge_encode_dev(stat.dev);
  880. info->lo_inode = stat.ino;
  881. info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
  882. info->lo_offset = lo->lo_offset;
  883. info->lo_sizelimit = lo->lo_sizelimit;
  884. info->lo_flags = lo->lo_flags;
  885. memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
  886. memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
  887. info->lo_encrypt_type =
  888. lo->lo_encryption ? lo->lo_encryption->number : 0;
  889. if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
  890. info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
  891. memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
  892. lo->lo_encrypt_key_size);
  893. }
  894. return 0;
  895. }
  896. static void
  897. loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
  898. {
  899. memset(info64, 0, sizeof(*info64));
  900. info64->lo_number = info->lo_number;
  901. info64->lo_device = info->lo_device;
  902. info64->lo_inode = info->lo_inode;
  903. info64->lo_rdevice = info->lo_rdevice;
  904. info64->lo_offset = info->lo_offset;
  905. info64->lo_sizelimit = 0;
  906. info64->lo_encrypt_type = info->lo_encrypt_type;
  907. info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
  908. info64->lo_flags = info->lo_flags;
  909. info64->lo_init[0] = info->lo_init[0];
  910. info64->lo_init[1] = info->lo_init[1];
  911. if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
  912. memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
  913. else
  914. memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
  915. memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
  916. }
  917. static int
  918. loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
  919. {
  920. memset(info, 0, sizeof(*info));
  921. info->lo_number = info64->lo_number;
  922. info->lo_device = info64->lo_device;
  923. info->lo_inode = info64->lo_inode;
  924. info->lo_rdevice = info64->lo_rdevice;
  925. info->lo_offset = info64->lo_offset;
  926. info->lo_encrypt_type = info64->lo_encrypt_type;
  927. info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
  928. info->lo_flags = info64->lo_flags;
  929. info->lo_init[0] = info64->lo_init[0];
  930. info->lo_init[1] = info64->lo_init[1];
  931. if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
  932. memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
  933. else
  934. memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
  935. memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
  936. /* error in case values were truncated */
  937. if (info->lo_device != info64->lo_device ||
  938. info->lo_rdevice != info64->lo_rdevice ||
  939. info->lo_inode != info64->lo_inode ||
  940. info->lo_offset != info64->lo_offset)
  941. return -EOVERFLOW;
  942. return 0;
  943. }
  944. static int
  945. loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
  946. {
  947. struct loop_info info;
  948. struct loop_info64 info64;
  949. if (copy_from_user(&info, arg, sizeof (struct loop_info)))
  950. return -EFAULT;
  951. loop_info64_from_old(&info, &info64);
  952. return loop_set_status(lo, &info64);
  953. }
  954. static int
  955. loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
  956. {
  957. struct loop_info64 info64;
  958. if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
  959. return -EFAULT;
  960. return loop_set_status(lo, &info64);
  961. }
  962. static int
  963. loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
  964. struct loop_info info;
  965. struct loop_info64 info64;
  966. int err = 0;
  967. if (!arg)
  968. err = -EINVAL;
  969. if (!err)
  970. err = loop_get_status(lo, &info64);
  971. if (!err)
  972. err = loop_info64_to_old(&info64, &info);
  973. if (!err && copy_to_user(arg, &info, sizeof(info)))
  974. err = -EFAULT;
  975. return err;
  976. }
  977. static int
  978. loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
  979. struct loop_info64 info64;
  980. int err = 0;
  981. if (!arg)
  982. err = -EINVAL;
  983. if (!err)
  984. err = loop_get_status(lo, &info64);
  985. if (!err && copy_to_user(arg, &info64, sizeof(info64)))
  986. err = -EFAULT;
  987. return err;
  988. }
  989. static int lo_ioctl(struct inode * inode, struct file * file,
  990. unsigned int cmd, unsigned long arg)
  991. {
  992. struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
  993. int err;
  994. mutex_lock(&lo->lo_ctl_mutex);
  995. switch (cmd) {
  996. case LOOP_SET_FD:
  997. err = loop_set_fd(lo, file, inode->i_bdev, arg);
  998. break;
  999. case LOOP_CHANGE_FD:
  1000. err = loop_change_fd(lo, file, inode->i_bdev, arg);
  1001. break;
  1002. case LOOP_CLR_FD:
  1003. err = loop_clr_fd(lo, inode->i_bdev);
  1004. break;
  1005. case LOOP_SET_STATUS:
  1006. err = loop_set_status_old(lo, (struct loop_info __user *) arg);
  1007. break;
  1008. case LOOP_GET_STATUS:
  1009. err = loop_get_status_old(lo, (struct loop_info __user *) arg);
  1010. break;
  1011. case LOOP_SET_STATUS64:
  1012. err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
  1013. break;
  1014. case LOOP_GET_STATUS64:
  1015. err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
  1016. break;
  1017. default:
  1018. err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
  1019. }
  1020. mutex_unlock(&lo->lo_ctl_mutex);
  1021. return err;
  1022. }
  1023. static int lo_open(struct inode *inode, struct file *file)
  1024. {
  1025. struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
  1026. mutex_lock(&lo->lo_ctl_mutex);
  1027. lo->lo_refcnt++;
  1028. mutex_unlock(&lo->lo_ctl_mutex);
  1029. return 0;
  1030. }
  1031. static int lo_release(struct inode *inode, struct file *file)
  1032. {
  1033. struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
  1034. mutex_lock(&lo->lo_ctl_mutex);
  1035. --lo->lo_refcnt;
  1036. mutex_unlock(&lo->lo_ctl_mutex);
  1037. return 0;
  1038. }
  1039. static struct block_device_operations lo_fops = {
  1040. .owner = THIS_MODULE,
  1041. .open = lo_open,
  1042. .release = lo_release,
  1043. .ioctl = lo_ioctl,
  1044. };
  1045. /*
  1046. * And now the modules code and kernel interface.
  1047. */
  1048. module_param(max_loop, int, 0);
  1049. MODULE_PARM_DESC(max_loop, "Maximum number of loop devices (1-256)");
  1050. MODULE_LICENSE("GPL");
  1051. MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
  1052. int loop_register_transfer(struct loop_func_table *funcs)
  1053. {
  1054. unsigned int n = funcs->number;
  1055. if (n >= MAX_LO_CRYPT || xfer_funcs[n])
  1056. return -EINVAL;
  1057. xfer_funcs[n] = funcs;
  1058. return 0;
  1059. }
  1060. int loop_unregister_transfer(int number)
  1061. {
  1062. unsigned int n = number;
  1063. struct loop_device *lo;
  1064. struct loop_func_table *xfer;
  1065. if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
  1066. return -EINVAL;
  1067. xfer_funcs[n] = NULL;
  1068. for (lo = &loop_dev[0]; lo < &loop_dev[max_loop]; lo++) {
  1069. mutex_lock(&lo->lo_ctl_mutex);
  1070. if (lo->lo_encryption == xfer)
  1071. loop_release_xfer(lo);
  1072. mutex_unlock(&lo->lo_ctl_mutex);
  1073. }
  1074. return 0;
  1075. }
  1076. EXPORT_SYMBOL(loop_register_transfer);
  1077. EXPORT_SYMBOL(loop_unregister_transfer);
  1078. static int __init loop_init(void)
  1079. {
  1080. int i;
  1081. if (max_loop < 1 || max_loop > 256) {
  1082. printk(KERN_WARNING "loop: invalid max_loop (must be between"
  1083. " 1 and 256), using default (8)\n");
  1084. max_loop = 8;
  1085. }
  1086. if (register_blkdev(LOOP_MAJOR, "loop"))
  1087. return -EIO;
  1088. loop_dev = kmalloc(max_loop * sizeof(struct loop_device), GFP_KERNEL);
  1089. if (!loop_dev)
  1090. goto out_mem1;
  1091. memset(loop_dev, 0, max_loop * sizeof(struct loop_device));
  1092. disks = kmalloc(max_loop * sizeof(struct gendisk *), GFP_KERNEL);
  1093. if (!disks)
  1094. goto out_mem2;
  1095. for (i = 0; i < max_loop; i++) {
  1096. disks[i] = alloc_disk(1);
  1097. if (!disks[i])
  1098. goto out_mem3;
  1099. }
  1100. devfs_mk_dir("loop");
  1101. for (i = 0; i < max_loop; i++) {
  1102. struct loop_device *lo = &loop_dev[i];
  1103. struct gendisk *disk = disks[i];
  1104. memset(lo, 0, sizeof(*lo));
  1105. lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
  1106. if (!lo->lo_queue)
  1107. goto out_mem4;
  1108. mutex_init(&lo->lo_ctl_mutex);
  1109. init_completion(&lo->lo_bh_done);
  1110. lo->lo_number = i;
  1111. spin_lock_init(&lo->lo_lock);
  1112. disk->major = LOOP_MAJOR;
  1113. disk->first_minor = i;
  1114. disk->fops = &lo_fops;
  1115. sprintf(disk->disk_name, "loop%d", i);
  1116. sprintf(disk->devfs_name, "loop/%d", i);
  1117. disk->private_data = lo;
  1118. disk->queue = lo->lo_queue;
  1119. }
  1120. /* We cannot fail after we call this, so another loop!*/
  1121. for (i = 0; i < max_loop; i++)
  1122. add_disk(disks[i]);
  1123. printk(KERN_INFO "loop: loaded (max %d devices)\n", max_loop);
  1124. return 0;
  1125. out_mem4:
  1126. while (i--)
  1127. blk_cleanup_queue(loop_dev[i].lo_queue);
  1128. devfs_remove("loop");
  1129. i = max_loop;
  1130. out_mem3:
  1131. while (i--)
  1132. put_disk(disks[i]);
  1133. kfree(disks);
  1134. out_mem2:
  1135. kfree(loop_dev);
  1136. out_mem1:
  1137. unregister_blkdev(LOOP_MAJOR, "loop");
  1138. printk(KERN_ERR "loop: ran out of memory\n");
  1139. return -ENOMEM;
  1140. }
  1141. static void loop_exit(void)
  1142. {
  1143. int i;
  1144. for (i = 0; i < max_loop; i++) {
  1145. del_gendisk(disks[i]);
  1146. blk_cleanup_queue(loop_dev[i].lo_queue);
  1147. put_disk(disks[i]);
  1148. }
  1149. devfs_remove("loop");
  1150. if (unregister_blkdev(LOOP_MAJOR, "loop"))
  1151. printk(KERN_WARNING "loop: cannot unregister blkdev\n");
  1152. kfree(disks);
  1153. kfree(loop_dev);
  1154. }
  1155. module_init(loop_init);
  1156. module_exit(loop_exit);
  1157. #ifndef MODULE
  1158. static int __init max_loop_setup(char *str)
  1159. {
  1160. max_loop = simple_strtol(str, NULL, 0);
  1161. return 1;
  1162. }
  1163. __setup("max_loop=", max_loop_setup);
  1164. #endif