main.c 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845
  1. /*
  2. * drivers/base/power/main.c - Where the driver meets power management.
  3. *
  4. * Copyright (c) 2003 Patrick Mochel
  5. * Copyright (c) 2003 Open Source Development Lab
  6. *
  7. * This file is released under the GPLv2
  8. *
  9. *
  10. * The driver model core calls device_pm_add() when a device is registered.
  11. * This will initialize the embedded device_pm_info object in the device
  12. * and add it to the list of power-controlled devices. sysfs entries for
  13. * controlling device power management will also be added.
  14. *
  15. * A separate list is used for keeping track of power info, because the power
  16. * domain dependencies may differ from the ancestral dependencies that the
  17. * subsystem list maintains.
  18. */
  19. #include <linux/device.h>
  20. #include <linux/kallsyms.h>
  21. #include <linux/export.h>
  22. #include <linux/mutex.h>
  23. #include <linux/pm.h>
  24. #include <linux/pm_runtime.h>
  25. #include <linux/pm-trace.h>
  26. #include <linux/pm_wakeirq.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/sched.h>
  29. #include <linux/async.h>
  30. #include <linux/suspend.h>
  31. #include <trace/events/power.h>
  32. #include <linux/cpufreq.h>
  33. #include <linux/cpuidle.h>
  34. #include <linux/timer.h>
  35. #include "../base.h"
  36. #include "power.h"
  37. typedef int (*pm_callback_t)(struct device *);
  38. /*
  39. * The entries in the dpm_list list are in a depth first order, simply
  40. * because children are guaranteed to be discovered after parents, and
  41. * are inserted at the back of the list on discovery.
  42. *
  43. * Since device_pm_add() may be called with a device lock held,
  44. * we must never try to acquire a device lock while holding
  45. * dpm_list_mutex.
  46. */
  47. LIST_HEAD(dpm_list);
  48. static LIST_HEAD(dpm_prepared_list);
  49. static LIST_HEAD(dpm_suspended_list);
  50. static LIST_HEAD(dpm_late_early_list);
  51. static LIST_HEAD(dpm_noirq_list);
  52. struct suspend_stats suspend_stats;
  53. static DEFINE_MUTEX(dpm_list_mtx);
  54. static pm_message_t pm_transition;
  55. static int async_error;
  56. static char *pm_verb(int event)
  57. {
  58. switch (event) {
  59. case PM_EVENT_SUSPEND:
  60. return "suspend";
  61. case PM_EVENT_RESUME:
  62. return "resume";
  63. case PM_EVENT_FREEZE:
  64. return "freeze";
  65. case PM_EVENT_QUIESCE:
  66. return "quiesce";
  67. case PM_EVENT_HIBERNATE:
  68. return "hibernate";
  69. case PM_EVENT_THAW:
  70. return "thaw";
  71. case PM_EVENT_RESTORE:
  72. return "restore";
  73. case PM_EVENT_RECOVER:
  74. return "recover";
  75. default:
  76. return "(unknown PM event)";
  77. }
  78. }
  79. /**
  80. * device_pm_sleep_init - Initialize system suspend-related device fields.
  81. * @dev: Device object being initialized.
  82. */
  83. void device_pm_sleep_init(struct device *dev)
  84. {
  85. dev->power.is_prepared = false;
  86. dev->power.is_suspended = false;
  87. dev->power.is_noirq_suspended = false;
  88. dev->power.is_late_suspended = false;
  89. init_completion(&dev->power.completion);
  90. complete_all(&dev->power.completion);
  91. dev->power.wakeup = NULL;
  92. INIT_LIST_HEAD(&dev->power.entry);
  93. }
  94. /**
  95. * device_pm_lock - Lock the list of active devices used by the PM core.
  96. */
  97. void device_pm_lock(void)
  98. {
  99. mutex_lock(&dpm_list_mtx);
  100. }
  101. /**
  102. * device_pm_unlock - Unlock the list of active devices used by the PM core.
  103. */
  104. void device_pm_unlock(void)
  105. {
  106. mutex_unlock(&dpm_list_mtx);
  107. }
  108. /**
  109. * device_pm_add - Add a device to the PM core's list of active devices.
  110. * @dev: Device to add to the list.
  111. */
  112. void device_pm_add(struct device *dev)
  113. {
  114. pr_debug("PM: Adding info for %s:%s\n",
  115. dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
  116. device_pm_check_callbacks(dev);
  117. mutex_lock(&dpm_list_mtx);
  118. if (dev->parent && dev->parent->power.is_prepared)
  119. dev_warn(dev, "parent %s should not be sleeping\n",
  120. dev_name(dev->parent));
  121. list_add_tail(&dev->power.entry, &dpm_list);
  122. dev->power.in_dpm_list = true;
  123. mutex_unlock(&dpm_list_mtx);
  124. }
  125. /**
  126. * device_pm_remove - Remove a device from the PM core's list of active devices.
  127. * @dev: Device to be removed from the list.
  128. */
  129. void device_pm_remove(struct device *dev)
  130. {
  131. pr_debug("PM: Removing info for %s:%s\n",
  132. dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
  133. complete_all(&dev->power.completion);
  134. mutex_lock(&dpm_list_mtx);
  135. list_del_init(&dev->power.entry);
  136. dev->power.in_dpm_list = false;
  137. mutex_unlock(&dpm_list_mtx);
  138. device_wakeup_disable(dev);
  139. pm_runtime_remove(dev);
  140. device_pm_check_callbacks(dev);
  141. }
  142. /**
  143. * device_pm_move_before - Move device in the PM core's list of active devices.
  144. * @deva: Device to move in dpm_list.
  145. * @devb: Device @deva should come before.
  146. */
  147. void device_pm_move_before(struct device *deva, struct device *devb)
  148. {
  149. pr_debug("PM: Moving %s:%s before %s:%s\n",
  150. deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
  151. devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
  152. /* Delete deva from dpm_list and reinsert before devb. */
  153. list_move_tail(&deva->power.entry, &devb->power.entry);
  154. }
  155. /**
  156. * device_pm_move_after - Move device in the PM core's list of active devices.
  157. * @deva: Device to move in dpm_list.
  158. * @devb: Device @deva should come after.
  159. */
  160. void device_pm_move_after(struct device *deva, struct device *devb)
  161. {
  162. pr_debug("PM: Moving %s:%s after %s:%s\n",
  163. deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
  164. devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
  165. /* Delete deva from dpm_list and reinsert after devb. */
  166. list_move(&deva->power.entry, &devb->power.entry);
  167. }
  168. /**
  169. * device_pm_move_last - Move device to end of the PM core's list of devices.
  170. * @dev: Device to move in dpm_list.
  171. */
  172. void device_pm_move_last(struct device *dev)
  173. {
  174. pr_debug("PM: Moving %s:%s to end of list\n",
  175. dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
  176. list_move_tail(&dev->power.entry, &dpm_list);
  177. }
  178. static ktime_t initcall_debug_start(struct device *dev)
  179. {
  180. ktime_t calltime = ktime_set(0, 0);
  181. if (pm_print_times_enabled) {
  182. pr_info("calling %s+ @ %i, parent: %s\n",
  183. dev_name(dev), task_pid_nr(current),
  184. dev->parent ? dev_name(dev->parent) : "none");
  185. calltime = ktime_get();
  186. }
  187. return calltime;
  188. }
  189. static void initcall_debug_report(struct device *dev, ktime_t calltime,
  190. int error, pm_message_t state, char *info)
  191. {
  192. ktime_t rettime;
  193. s64 nsecs;
  194. rettime = ktime_get();
  195. nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
  196. if (pm_print_times_enabled) {
  197. pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
  198. error, (unsigned long long)nsecs >> 10);
  199. }
  200. }
  201. /**
  202. * dpm_wait - Wait for a PM operation to complete.
  203. * @dev: Device to wait for.
  204. * @async: If unset, wait only if the device's power.async_suspend flag is set.
  205. */
  206. static void dpm_wait(struct device *dev, bool async)
  207. {
  208. if (!dev)
  209. return;
  210. if (async || (pm_async_enabled && dev->power.async_suspend))
  211. wait_for_completion(&dev->power.completion);
  212. }
  213. static int dpm_wait_fn(struct device *dev, void *async_ptr)
  214. {
  215. dpm_wait(dev, *((bool *)async_ptr));
  216. return 0;
  217. }
  218. static void dpm_wait_for_children(struct device *dev, bool async)
  219. {
  220. device_for_each_child(dev, &async, dpm_wait_fn);
  221. }
  222. static void dpm_wait_for_suppliers(struct device *dev, bool async)
  223. {
  224. struct device_link *link;
  225. int idx;
  226. idx = device_links_read_lock();
  227. /*
  228. * If the supplier goes away right after we've checked the link to it,
  229. * we'll wait for its completion to change the state, but that's fine,
  230. * because the only things that will block as a result are the SRCU
  231. * callbacks freeing the link objects for the links in the list we're
  232. * walking.
  233. */
  234. list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
  235. if (READ_ONCE(link->status) != DL_STATE_DORMANT)
  236. dpm_wait(link->supplier, async);
  237. device_links_read_unlock(idx);
  238. }
  239. static void dpm_wait_for_superior(struct device *dev, bool async)
  240. {
  241. dpm_wait(dev->parent, async);
  242. dpm_wait_for_suppliers(dev, async);
  243. }
  244. static void dpm_wait_for_consumers(struct device *dev, bool async)
  245. {
  246. struct device_link *link;
  247. int idx;
  248. idx = device_links_read_lock();
  249. /*
  250. * The status of a device link can only be changed from "dormant" by a
  251. * probe, but that cannot happen during system suspend/resume. In
  252. * theory it can change to "dormant" at that time, but then it is
  253. * reasonable to wait for the target device anyway (eg. if it goes
  254. * away, it's better to wait for it to go away completely and then
  255. * continue instead of trying to continue in parallel with its
  256. * unregistration).
  257. */
  258. list_for_each_entry_rcu(link, &dev->links.consumers, s_node)
  259. if (READ_ONCE(link->status) != DL_STATE_DORMANT)
  260. dpm_wait(link->consumer, async);
  261. device_links_read_unlock(idx);
  262. }
  263. static void dpm_wait_for_subordinate(struct device *dev, bool async)
  264. {
  265. dpm_wait_for_children(dev, async);
  266. dpm_wait_for_consumers(dev, async);
  267. }
  268. /**
  269. * pm_op - Return the PM operation appropriate for given PM event.
  270. * @ops: PM operations to choose from.
  271. * @state: PM transition of the system being carried out.
  272. */
  273. static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
  274. {
  275. switch (state.event) {
  276. #ifdef CONFIG_SUSPEND
  277. case PM_EVENT_SUSPEND:
  278. return ops->suspend;
  279. case PM_EVENT_RESUME:
  280. return ops->resume;
  281. #endif /* CONFIG_SUSPEND */
  282. #ifdef CONFIG_HIBERNATE_CALLBACKS
  283. case PM_EVENT_FREEZE:
  284. case PM_EVENT_QUIESCE:
  285. return ops->freeze;
  286. case PM_EVENT_HIBERNATE:
  287. return ops->poweroff;
  288. case PM_EVENT_THAW:
  289. case PM_EVENT_RECOVER:
  290. return ops->thaw;
  291. break;
  292. case PM_EVENT_RESTORE:
  293. return ops->restore;
  294. #endif /* CONFIG_HIBERNATE_CALLBACKS */
  295. }
  296. return NULL;
  297. }
  298. /**
  299. * pm_late_early_op - Return the PM operation appropriate for given PM event.
  300. * @ops: PM operations to choose from.
  301. * @state: PM transition of the system being carried out.
  302. *
  303. * Runtime PM is disabled for @dev while this function is being executed.
  304. */
  305. static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
  306. pm_message_t state)
  307. {
  308. switch (state.event) {
  309. #ifdef CONFIG_SUSPEND
  310. case PM_EVENT_SUSPEND:
  311. return ops->suspend_late;
  312. case PM_EVENT_RESUME:
  313. return ops->resume_early;
  314. #endif /* CONFIG_SUSPEND */
  315. #ifdef CONFIG_HIBERNATE_CALLBACKS
  316. case PM_EVENT_FREEZE:
  317. case PM_EVENT_QUIESCE:
  318. return ops->freeze_late;
  319. case PM_EVENT_HIBERNATE:
  320. return ops->poweroff_late;
  321. case PM_EVENT_THAW:
  322. case PM_EVENT_RECOVER:
  323. return ops->thaw_early;
  324. case PM_EVENT_RESTORE:
  325. return ops->restore_early;
  326. #endif /* CONFIG_HIBERNATE_CALLBACKS */
  327. }
  328. return NULL;
  329. }
  330. /**
  331. * pm_noirq_op - Return the PM operation appropriate for given PM event.
  332. * @ops: PM operations to choose from.
  333. * @state: PM transition of the system being carried out.
  334. *
  335. * The driver of @dev will not receive interrupts while this function is being
  336. * executed.
  337. */
  338. static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
  339. {
  340. switch (state.event) {
  341. #ifdef CONFIG_SUSPEND
  342. case PM_EVENT_SUSPEND:
  343. return ops->suspend_noirq;
  344. case PM_EVENT_RESUME:
  345. return ops->resume_noirq;
  346. #endif /* CONFIG_SUSPEND */
  347. #ifdef CONFIG_HIBERNATE_CALLBACKS
  348. case PM_EVENT_FREEZE:
  349. case PM_EVENT_QUIESCE:
  350. return ops->freeze_noirq;
  351. case PM_EVENT_HIBERNATE:
  352. return ops->poweroff_noirq;
  353. case PM_EVENT_THAW:
  354. case PM_EVENT_RECOVER:
  355. return ops->thaw_noirq;
  356. case PM_EVENT_RESTORE:
  357. return ops->restore_noirq;
  358. #endif /* CONFIG_HIBERNATE_CALLBACKS */
  359. }
  360. return NULL;
  361. }
  362. static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
  363. {
  364. dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
  365. ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
  366. ", may wakeup" : "");
  367. }
  368. static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
  369. int error)
  370. {
  371. printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
  372. dev_name(dev), pm_verb(state.event), info, error);
  373. }
  374. static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
  375. {
  376. ktime_t calltime;
  377. u64 usecs64;
  378. int usecs;
  379. calltime = ktime_get();
  380. usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
  381. do_div(usecs64, NSEC_PER_USEC);
  382. usecs = usecs64;
  383. if (usecs == 0)
  384. usecs = 1;
  385. pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
  386. info ?: "", info ? " " : "", pm_verb(state.event),
  387. usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
  388. }
  389. static int dpm_run_callback(pm_callback_t cb, struct device *dev,
  390. pm_message_t state, char *info)
  391. {
  392. ktime_t calltime;
  393. int error;
  394. if (!cb)
  395. return 0;
  396. calltime = initcall_debug_start(dev);
  397. pm_dev_dbg(dev, state, info);
  398. trace_device_pm_callback_start(dev, info, state.event);
  399. error = cb(dev);
  400. trace_device_pm_callback_end(dev, error);
  401. suspend_report_result(cb, error);
  402. initcall_debug_report(dev, calltime, error, state, info);
  403. return error;
  404. }
  405. #ifdef CONFIG_DPM_WATCHDOG
  406. struct dpm_watchdog {
  407. struct device *dev;
  408. struct task_struct *tsk;
  409. struct timer_list timer;
  410. };
  411. #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
  412. struct dpm_watchdog wd
  413. /**
  414. * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
  415. * @data: Watchdog object address.
  416. *
  417. * Called when a driver has timed out suspending or resuming.
  418. * There's not much we can do here to recover so panic() to
  419. * capture a crash-dump in pstore.
  420. */
  421. static void dpm_watchdog_handler(unsigned long data)
  422. {
  423. struct dpm_watchdog *wd = (void *)data;
  424. dev_emerg(wd->dev, "**** DPM device timeout ****\n");
  425. show_stack(wd->tsk, NULL);
  426. panic("%s %s: unrecoverable failure\n",
  427. dev_driver_string(wd->dev), dev_name(wd->dev));
  428. }
  429. /**
  430. * dpm_watchdog_set - Enable pm watchdog for given device.
  431. * @wd: Watchdog. Must be allocated on the stack.
  432. * @dev: Device to handle.
  433. */
  434. static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
  435. {
  436. struct timer_list *timer = &wd->timer;
  437. wd->dev = dev;
  438. wd->tsk = current;
  439. init_timer_on_stack(timer);
  440. /* use same timeout value for both suspend and resume */
  441. timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
  442. timer->function = dpm_watchdog_handler;
  443. timer->data = (unsigned long)wd;
  444. add_timer(timer);
  445. }
  446. /**
  447. * dpm_watchdog_clear - Disable suspend/resume watchdog.
  448. * @wd: Watchdog to disable.
  449. */
  450. static void dpm_watchdog_clear(struct dpm_watchdog *wd)
  451. {
  452. struct timer_list *timer = &wd->timer;
  453. del_timer_sync(timer);
  454. destroy_timer_on_stack(timer);
  455. }
  456. #else
  457. #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
  458. #define dpm_watchdog_set(x, y)
  459. #define dpm_watchdog_clear(x)
  460. #endif
  461. /*------------------------- Resume routines -------------------------*/
  462. /**
  463. * device_resume_noirq - Execute an "early resume" callback for given device.
  464. * @dev: Device to handle.
  465. * @state: PM transition of the system being carried out.
  466. * @async: If true, the device is being resumed asynchronously.
  467. *
  468. * The driver of @dev will not receive interrupts while this function is being
  469. * executed.
  470. */
  471. static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
  472. {
  473. pm_callback_t callback = NULL;
  474. char *info = NULL;
  475. int error = 0;
  476. TRACE_DEVICE(dev);
  477. TRACE_RESUME(0);
  478. if (dev->power.syscore || dev->power.direct_complete)
  479. goto Out;
  480. if (!dev->power.is_noirq_suspended)
  481. goto Out;
  482. dpm_wait_for_superior(dev, async);
  483. if (dev->pm_domain) {
  484. info = "noirq power domain ";
  485. callback = pm_noirq_op(&dev->pm_domain->ops, state);
  486. } else if (dev->type && dev->type->pm) {
  487. info = "noirq type ";
  488. callback = pm_noirq_op(dev->type->pm, state);
  489. } else if (dev->class && dev->class->pm) {
  490. info = "noirq class ";
  491. callback = pm_noirq_op(dev->class->pm, state);
  492. } else if (dev->bus && dev->bus->pm) {
  493. info = "noirq bus ";
  494. callback = pm_noirq_op(dev->bus->pm, state);
  495. }
  496. if (!callback && dev->driver && dev->driver->pm) {
  497. info = "noirq driver ";
  498. callback = pm_noirq_op(dev->driver->pm, state);
  499. }
  500. error = dpm_run_callback(callback, dev, state, info);
  501. dev->power.is_noirq_suspended = false;
  502. Out:
  503. complete_all(&dev->power.completion);
  504. TRACE_RESUME(error);
  505. return error;
  506. }
  507. static bool is_async(struct device *dev)
  508. {
  509. return dev->power.async_suspend && pm_async_enabled
  510. && !pm_trace_is_enabled();
  511. }
  512. static void async_resume_noirq(void *data, async_cookie_t cookie)
  513. {
  514. struct device *dev = (struct device *)data;
  515. int error;
  516. error = device_resume_noirq(dev, pm_transition, true);
  517. if (error)
  518. pm_dev_err(dev, pm_transition, " async", error);
  519. put_device(dev);
  520. }
  521. /**
  522. * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
  523. * @state: PM transition of the system being carried out.
  524. *
  525. * Call the "noirq" resume handlers for all devices in dpm_noirq_list and
  526. * enable device drivers to receive interrupts.
  527. */
  528. void dpm_resume_noirq(pm_message_t state)
  529. {
  530. struct device *dev;
  531. ktime_t starttime = ktime_get();
  532. trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
  533. mutex_lock(&dpm_list_mtx);
  534. pm_transition = state;
  535. /*
  536. * Advanced the async threads upfront,
  537. * in case the starting of async threads is
  538. * delayed by non-async resuming devices.
  539. */
  540. list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
  541. reinit_completion(&dev->power.completion);
  542. if (is_async(dev)) {
  543. get_device(dev);
  544. async_schedule(async_resume_noirq, dev);
  545. }
  546. }
  547. while (!list_empty(&dpm_noirq_list)) {
  548. dev = to_device(dpm_noirq_list.next);
  549. get_device(dev);
  550. list_move_tail(&dev->power.entry, &dpm_late_early_list);
  551. mutex_unlock(&dpm_list_mtx);
  552. if (!is_async(dev)) {
  553. int error;
  554. error = device_resume_noirq(dev, state, false);
  555. if (error) {
  556. suspend_stats.failed_resume_noirq++;
  557. dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
  558. dpm_save_failed_dev(dev_name(dev));
  559. pm_dev_err(dev, state, " noirq", error);
  560. }
  561. }
  562. mutex_lock(&dpm_list_mtx);
  563. put_device(dev);
  564. }
  565. mutex_unlock(&dpm_list_mtx);
  566. async_synchronize_full();
  567. dpm_show_time(starttime, state, "noirq");
  568. resume_device_irqs();
  569. device_wakeup_disarm_wake_irqs();
  570. cpuidle_resume();
  571. trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
  572. }
  573. /**
  574. * device_resume_early - Execute an "early resume" callback for given device.
  575. * @dev: Device to handle.
  576. * @state: PM transition of the system being carried out.
  577. * @async: If true, the device is being resumed asynchronously.
  578. *
  579. * Runtime PM is disabled for @dev while this function is being executed.
  580. */
  581. static int device_resume_early(struct device *dev, pm_message_t state, bool async)
  582. {
  583. pm_callback_t callback = NULL;
  584. char *info = NULL;
  585. int error = 0;
  586. TRACE_DEVICE(dev);
  587. TRACE_RESUME(0);
  588. if (dev->power.syscore || dev->power.direct_complete)
  589. goto Out;
  590. if (!dev->power.is_late_suspended)
  591. goto Out;
  592. dpm_wait_for_superior(dev, async);
  593. if (dev->pm_domain) {
  594. info = "early power domain ";
  595. callback = pm_late_early_op(&dev->pm_domain->ops, state);
  596. } else if (dev->type && dev->type->pm) {
  597. info = "early type ";
  598. callback = pm_late_early_op(dev->type->pm, state);
  599. } else if (dev->class && dev->class->pm) {
  600. info = "early class ";
  601. callback = pm_late_early_op(dev->class->pm, state);
  602. } else if (dev->bus && dev->bus->pm) {
  603. info = "early bus ";
  604. callback = pm_late_early_op(dev->bus->pm, state);
  605. }
  606. if (!callback && dev->driver && dev->driver->pm) {
  607. info = "early driver ";
  608. callback = pm_late_early_op(dev->driver->pm, state);
  609. }
  610. error = dpm_run_callback(callback, dev, state, info);
  611. dev->power.is_late_suspended = false;
  612. Out:
  613. TRACE_RESUME(error);
  614. pm_runtime_enable(dev);
  615. complete_all(&dev->power.completion);
  616. return error;
  617. }
  618. static void async_resume_early(void *data, async_cookie_t cookie)
  619. {
  620. struct device *dev = (struct device *)data;
  621. int error;
  622. error = device_resume_early(dev, pm_transition, true);
  623. if (error)
  624. pm_dev_err(dev, pm_transition, " async", error);
  625. put_device(dev);
  626. }
  627. /**
  628. * dpm_resume_early - Execute "early resume" callbacks for all devices.
  629. * @state: PM transition of the system being carried out.
  630. */
  631. void dpm_resume_early(pm_message_t state)
  632. {
  633. struct device *dev;
  634. ktime_t starttime = ktime_get();
  635. trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
  636. mutex_lock(&dpm_list_mtx);
  637. pm_transition = state;
  638. /*
  639. * Advanced the async threads upfront,
  640. * in case the starting of async threads is
  641. * delayed by non-async resuming devices.
  642. */
  643. list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
  644. reinit_completion(&dev->power.completion);
  645. if (is_async(dev)) {
  646. get_device(dev);
  647. async_schedule(async_resume_early, dev);
  648. }
  649. }
  650. while (!list_empty(&dpm_late_early_list)) {
  651. dev = to_device(dpm_late_early_list.next);
  652. get_device(dev);
  653. list_move_tail(&dev->power.entry, &dpm_suspended_list);
  654. mutex_unlock(&dpm_list_mtx);
  655. if (!is_async(dev)) {
  656. int error;
  657. error = device_resume_early(dev, state, false);
  658. if (error) {
  659. suspend_stats.failed_resume_early++;
  660. dpm_save_failed_step(SUSPEND_RESUME_EARLY);
  661. dpm_save_failed_dev(dev_name(dev));
  662. pm_dev_err(dev, state, " early", error);
  663. }
  664. }
  665. mutex_lock(&dpm_list_mtx);
  666. put_device(dev);
  667. }
  668. mutex_unlock(&dpm_list_mtx);
  669. async_synchronize_full();
  670. dpm_show_time(starttime, state, "early");
  671. trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
  672. }
  673. /**
  674. * dpm_resume_start - Execute "noirq" and "early" device callbacks.
  675. * @state: PM transition of the system being carried out.
  676. */
  677. void dpm_resume_start(pm_message_t state)
  678. {
  679. dpm_resume_noirq(state);
  680. dpm_resume_early(state);
  681. }
  682. EXPORT_SYMBOL_GPL(dpm_resume_start);
  683. /**
  684. * device_resume - Execute "resume" callbacks for given device.
  685. * @dev: Device to handle.
  686. * @state: PM transition of the system being carried out.
  687. * @async: If true, the device is being resumed asynchronously.
  688. */
  689. static int device_resume(struct device *dev, pm_message_t state, bool async)
  690. {
  691. pm_callback_t callback = NULL;
  692. char *info = NULL;
  693. int error = 0;
  694. DECLARE_DPM_WATCHDOG_ON_STACK(wd);
  695. TRACE_DEVICE(dev);
  696. TRACE_RESUME(0);
  697. if (dev->power.syscore)
  698. goto Complete;
  699. if (dev->power.direct_complete) {
  700. /* Match the pm_runtime_disable() in __device_suspend(). */
  701. pm_runtime_enable(dev);
  702. goto Complete;
  703. }
  704. dpm_wait_for_superior(dev, async);
  705. dpm_watchdog_set(&wd, dev);
  706. device_lock(dev);
  707. /*
  708. * This is a fib. But we'll allow new children to be added below
  709. * a resumed device, even if the device hasn't been completed yet.
  710. */
  711. dev->power.is_prepared = false;
  712. if (!dev->power.is_suspended)
  713. goto Unlock;
  714. if (dev->pm_domain) {
  715. info = "power domain ";
  716. callback = pm_op(&dev->pm_domain->ops, state);
  717. goto Driver;
  718. }
  719. if (dev->type && dev->type->pm) {
  720. info = "type ";
  721. callback = pm_op(dev->type->pm, state);
  722. goto Driver;
  723. }
  724. if (dev->class) {
  725. if (dev->class->pm) {
  726. info = "class ";
  727. callback = pm_op(dev->class->pm, state);
  728. goto Driver;
  729. } else if (dev->class->resume) {
  730. info = "legacy class ";
  731. callback = dev->class->resume;
  732. goto End;
  733. }
  734. }
  735. if (dev->bus) {
  736. if (dev->bus->pm) {
  737. info = "bus ";
  738. callback = pm_op(dev->bus->pm, state);
  739. } else if (dev->bus->resume) {
  740. info = "legacy bus ";
  741. callback = dev->bus->resume;
  742. goto End;
  743. }
  744. }
  745. Driver:
  746. if (!callback && dev->driver && dev->driver->pm) {
  747. info = "driver ";
  748. callback = pm_op(dev->driver->pm, state);
  749. }
  750. End:
  751. error = dpm_run_callback(callback, dev, state, info);
  752. dev->power.is_suspended = false;
  753. Unlock:
  754. device_unlock(dev);
  755. dpm_watchdog_clear(&wd);
  756. Complete:
  757. complete_all(&dev->power.completion);
  758. TRACE_RESUME(error);
  759. return error;
  760. }
  761. static void async_resume(void *data, async_cookie_t cookie)
  762. {
  763. struct device *dev = (struct device *)data;
  764. int error;
  765. error = device_resume(dev, pm_transition, true);
  766. if (error)
  767. pm_dev_err(dev, pm_transition, " async", error);
  768. put_device(dev);
  769. }
  770. /**
  771. * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
  772. * @state: PM transition of the system being carried out.
  773. *
  774. * Execute the appropriate "resume" callback for all devices whose status
  775. * indicates that they are suspended.
  776. */
  777. void dpm_resume(pm_message_t state)
  778. {
  779. struct device *dev;
  780. ktime_t starttime = ktime_get();
  781. trace_suspend_resume(TPS("dpm_resume"), state.event, true);
  782. might_sleep();
  783. mutex_lock(&dpm_list_mtx);
  784. pm_transition = state;
  785. async_error = 0;
  786. list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
  787. reinit_completion(&dev->power.completion);
  788. if (is_async(dev)) {
  789. get_device(dev);
  790. async_schedule(async_resume, dev);
  791. }
  792. }
  793. while (!list_empty(&dpm_suspended_list)) {
  794. dev = to_device(dpm_suspended_list.next);
  795. get_device(dev);
  796. if (!is_async(dev)) {
  797. int error;
  798. mutex_unlock(&dpm_list_mtx);
  799. error = device_resume(dev, state, false);
  800. if (error) {
  801. suspend_stats.failed_resume++;
  802. dpm_save_failed_step(SUSPEND_RESUME);
  803. dpm_save_failed_dev(dev_name(dev));
  804. pm_dev_err(dev, state, "", error);
  805. }
  806. mutex_lock(&dpm_list_mtx);
  807. }
  808. if (!list_empty(&dev->power.entry))
  809. list_move_tail(&dev->power.entry, &dpm_prepared_list);
  810. put_device(dev);
  811. }
  812. mutex_unlock(&dpm_list_mtx);
  813. async_synchronize_full();
  814. dpm_show_time(starttime, state, NULL);
  815. cpufreq_resume();
  816. trace_suspend_resume(TPS("dpm_resume"), state.event, false);
  817. }
  818. /**
  819. * device_complete - Complete a PM transition for given device.
  820. * @dev: Device to handle.
  821. * @state: PM transition of the system being carried out.
  822. */
  823. static void device_complete(struct device *dev, pm_message_t state)
  824. {
  825. void (*callback)(struct device *) = NULL;
  826. char *info = NULL;
  827. if (dev->power.syscore)
  828. return;
  829. device_lock(dev);
  830. if (dev->pm_domain) {
  831. info = "completing power domain ";
  832. callback = dev->pm_domain->ops.complete;
  833. } else if (dev->type && dev->type->pm) {
  834. info = "completing type ";
  835. callback = dev->type->pm->complete;
  836. } else if (dev->class && dev->class->pm) {
  837. info = "completing class ";
  838. callback = dev->class->pm->complete;
  839. } else if (dev->bus && dev->bus->pm) {
  840. info = "completing bus ";
  841. callback = dev->bus->pm->complete;
  842. }
  843. if (!callback && dev->driver && dev->driver->pm) {
  844. info = "completing driver ";
  845. callback = dev->driver->pm->complete;
  846. }
  847. if (callback) {
  848. pm_dev_dbg(dev, state, info);
  849. callback(dev);
  850. }
  851. device_unlock(dev);
  852. pm_runtime_put(dev);
  853. }
  854. /**
  855. * dpm_complete - Complete a PM transition for all non-sysdev devices.
  856. * @state: PM transition of the system being carried out.
  857. *
  858. * Execute the ->complete() callbacks for all devices whose PM status is not
  859. * DPM_ON (this allows new devices to be registered).
  860. */
  861. void dpm_complete(pm_message_t state)
  862. {
  863. struct list_head list;
  864. trace_suspend_resume(TPS("dpm_complete"), state.event, true);
  865. might_sleep();
  866. INIT_LIST_HEAD(&list);
  867. mutex_lock(&dpm_list_mtx);
  868. while (!list_empty(&dpm_prepared_list)) {
  869. struct device *dev = to_device(dpm_prepared_list.prev);
  870. get_device(dev);
  871. dev->power.is_prepared = false;
  872. list_move(&dev->power.entry, &list);
  873. mutex_unlock(&dpm_list_mtx);
  874. trace_device_pm_callback_start(dev, "", state.event);
  875. device_complete(dev, state);
  876. trace_device_pm_callback_end(dev, 0);
  877. mutex_lock(&dpm_list_mtx);
  878. put_device(dev);
  879. }
  880. list_splice(&list, &dpm_list);
  881. mutex_unlock(&dpm_list_mtx);
  882. /* Allow device probing and trigger re-probing of deferred devices */
  883. device_unblock_probing();
  884. trace_suspend_resume(TPS("dpm_complete"), state.event, false);
  885. }
  886. /**
  887. * dpm_resume_end - Execute "resume" callbacks and complete system transition.
  888. * @state: PM transition of the system being carried out.
  889. *
  890. * Execute "resume" callbacks for all devices and complete the PM transition of
  891. * the system.
  892. */
  893. void dpm_resume_end(pm_message_t state)
  894. {
  895. dpm_resume(state);
  896. dpm_complete(state);
  897. }
  898. EXPORT_SYMBOL_GPL(dpm_resume_end);
  899. /*------------------------- Suspend routines -------------------------*/
  900. /**
  901. * resume_event - Return a "resume" message for given "suspend" sleep state.
  902. * @sleep_state: PM message representing a sleep state.
  903. *
  904. * Return a PM message representing the resume event corresponding to given
  905. * sleep state.
  906. */
  907. static pm_message_t resume_event(pm_message_t sleep_state)
  908. {
  909. switch (sleep_state.event) {
  910. case PM_EVENT_SUSPEND:
  911. return PMSG_RESUME;
  912. case PM_EVENT_FREEZE:
  913. case PM_EVENT_QUIESCE:
  914. return PMSG_RECOVER;
  915. case PM_EVENT_HIBERNATE:
  916. return PMSG_RESTORE;
  917. }
  918. return PMSG_ON;
  919. }
  920. /**
  921. * device_suspend_noirq - Execute a "late suspend" callback for given device.
  922. * @dev: Device to handle.
  923. * @state: PM transition of the system being carried out.
  924. * @async: If true, the device is being suspended asynchronously.
  925. *
  926. * The driver of @dev will not receive interrupts while this function is being
  927. * executed.
  928. */
  929. static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
  930. {
  931. pm_callback_t callback = NULL;
  932. char *info = NULL;
  933. int error = 0;
  934. TRACE_DEVICE(dev);
  935. TRACE_SUSPEND(0);
  936. dpm_wait_for_children(dev, async);
  937. if (async_error)
  938. goto Complete;
  939. if (pm_wakeup_pending()) {
  940. async_error = -EBUSY;
  941. goto Complete;
  942. }
  943. if (dev->power.syscore || dev->power.direct_complete)
  944. goto Complete;
  945. dpm_wait_for_subordinate(dev, async);
  946. if (dev->pm_domain) {
  947. info = "noirq power domain ";
  948. callback = pm_noirq_op(&dev->pm_domain->ops, state);
  949. } else if (dev->type && dev->type->pm) {
  950. info = "noirq type ";
  951. callback = pm_noirq_op(dev->type->pm, state);
  952. } else if (dev->class && dev->class->pm) {
  953. info = "noirq class ";
  954. callback = pm_noirq_op(dev->class->pm, state);
  955. } else if (dev->bus && dev->bus->pm) {
  956. info = "noirq bus ";
  957. callback = pm_noirq_op(dev->bus->pm, state);
  958. }
  959. if (!callback && dev->driver && dev->driver->pm) {
  960. info = "noirq driver ";
  961. callback = pm_noirq_op(dev->driver->pm, state);
  962. }
  963. error = dpm_run_callback(callback, dev, state, info);
  964. if (!error)
  965. dev->power.is_noirq_suspended = true;
  966. else
  967. async_error = error;
  968. Complete:
  969. complete_all(&dev->power.completion);
  970. TRACE_SUSPEND(error);
  971. return error;
  972. }
  973. static void async_suspend_noirq(void *data, async_cookie_t cookie)
  974. {
  975. struct device *dev = (struct device *)data;
  976. int error;
  977. error = __device_suspend_noirq(dev, pm_transition, true);
  978. if (error) {
  979. dpm_save_failed_dev(dev_name(dev));
  980. pm_dev_err(dev, pm_transition, " async", error);
  981. }
  982. put_device(dev);
  983. }
  984. static int device_suspend_noirq(struct device *dev)
  985. {
  986. reinit_completion(&dev->power.completion);
  987. if (is_async(dev)) {
  988. get_device(dev);
  989. async_schedule(async_suspend_noirq, dev);
  990. return 0;
  991. }
  992. return __device_suspend_noirq(dev, pm_transition, false);
  993. }
  994. /**
  995. * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
  996. * @state: PM transition of the system being carried out.
  997. *
  998. * Prevent device drivers from receiving interrupts and call the "noirq" suspend
  999. * handlers for all non-sysdev devices.
  1000. */
  1001. int dpm_suspend_noirq(pm_message_t state)
  1002. {
  1003. ktime_t starttime = ktime_get();
  1004. int error = 0;
  1005. trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
  1006. cpuidle_pause();
  1007. device_wakeup_arm_wake_irqs();
  1008. suspend_device_irqs();
  1009. mutex_lock(&dpm_list_mtx);
  1010. pm_transition = state;
  1011. async_error = 0;
  1012. while (!list_empty(&dpm_late_early_list)) {
  1013. struct device *dev = to_device(dpm_late_early_list.prev);
  1014. get_device(dev);
  1015. mutex_unlock(&dpm_list_mtx);
  1016. error = device_suspend_noirq(dev);
  1017. mutex_lock(&dpm_list_mtx);
  1018. if (error) {
  1019. pm_dev_err(dev, state, " noirq", error);
  1020. dpm_save_failed_dev(dev_name(dev));
  1021. put_device(dev);
  1022. break;
  1023. }
  1024. if (!list_empty(&dev->power.entry))
  1025. list_move(&dev->power.entry, &dpm_noirq_list);
  1026. put_device(dev);
  1027. if (async_error)
  1028. break;
  1029. }
  1030. mutex_unlock(&dpm_list_mtx);
  1031. async_synchronize_full();
  1032. if (!error)
  1033. error = async_error;
  1034. if (error) {
  1035. suspend_stats.failed_suspend_noirq++;
  1036. dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
  1037. dpm_resume_noirq(resume_event(state));
  1038. } else {
  1039. dpm_show_time(starttime, state, "noirq");
  1040. }
  1041. trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
  1042. return error;
  1043. }
  1044. /**
  1045. * device_suspend_late - Execute a "late suspend" callback for given device.
  1046. * @dev: Device to handle.
  1047. * @state: PM transition of the system being carried out.
  1048. * @async: If true, the device is being suspended asynchronously.
  1049. *
  1050. * Runtime PM is disabled for @dev while this function is being executed.
  1051. */
  1052. static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
  1053. {
  1054. pm_callback_t callback = NULL;
  1055. char *info = NULL;
  1056. int error = 0;
  1057. TRACE_DEVICE(dev);
  1058. TRACE_SUSPEND(0);
  1059. __pm_runtime_disable(dev, false);
  1060. dpm_wait_for_children(dev, async);
  1061. if (async_error)
  1062. goto Complete;
  1063. if (pm_wakeup_pending()) {
  1064. async_error = -EBUSY;
  1065. goto Complete;
  1066. }
  1067. if (dev->power.syscore || dev->power.direct_complete)
  1068. goto Complete;
  1069. dpm_wait_for_subordinate(dev, async);
  1070. if (dev->pm_domain) {
  1071. info = "late power domain ";
  1072. callback = pm_late_early_op(&dev->pm_domain->ops, state);
  1073. } else if (dev->type && dev->type->pm) {
  1074. info = "late type ";
  1075. callback = pm_late_early_op(dev->type->pm, state);
  1076. } else if (dev->class && dev->class->pm) {
  1077. info = "late class ";
  1078. callback = pm_late_early_op(dev->class->pm, state);
  1079. } else if (dev->bus && dev->bus->pm) {
  1080. info = "late bus ";
  1081. callback = pm_late_early_op(dev->bus->pm, state);
  1082. }
  1083. if (!callback && dev->driver && dev->driver->pm) {
  1084. info = "late driver ";
  1085. callback = pm_late_early_op(dev->driver->pm, state);
  1086. }
  1087. error = dpm_run_callback(callback, dev, state, info);
  1088. if (!error)
  1089. dev->power.is_late_suspended = true;
  1090. else
  1091. async_error = error;
  1092. Complete:
  1093. TRACE_SUSPEND(error);
  1094. complete_all(&dev->power.completion);
  1095. return error;
  1096. }
  1097. static void async_suspend_late(void *data, async_cookie_t cookie)
  1098. {
  1099. struct device *dev = (struct device *)data;
  1100. int error;
  1101. error = __device_suspend_late(dev, pm_transition, true);
  1102. if (error) {
  1103. dpm_save_failed_dev(dev_name(dev));
  1104. pm_dev_err(dev, pm_transition, " async", error);
  1105. }
  1106. put_device(dev);
  1107. }
  1108. static int device_suspend_late(struct device *dev)
  1109. {
  1110. reinit_completion(&dev->power.completion);
  1111. if (is_async(dev)) {
  1112. get_device(dev);
  1113. async_schedule(async_suspend_late, dev);
  1114. return 0;
  1115. }
  1116. return __device_suspend_late(dev, pm_transition, false);
  1117. }
  1118. /**
  1119. * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
  1120. * @state: PM transition of the system being carried out.
  1121. */
  1122. int dpm_suspend_late(pm_message_t state)
  1123. {
  1124. ktime_t starttime = ktime_get();
  1125. int error = 0;
  1126. trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
  1127. mutex_lock(&dpm_list_mtx);
  1128. pm_transition = state;
  1129. async_error = 0;
  1130. while (!list_empty(&dpm_suspended_list)) {
  1131. struct device *dev = to_device(dpm_suspended_list.prev);
  1132. get_device(dev);
  1133. mutex_unlock(&dpm_list_mtx);
  1134. error = device_suspend_late(dev);
  1135. mutex_lock(&dpm_list_mtx);
  1136. if (!list_empty(&dev->power.entry))
  1137. list_move(&dev->power.entry, &dpm_late_early_list);
  1138. if (error) {
  1139. pm_dev_err(dev, state, " late", error);
  1140. dpm_save_failed_dev(dev_name(dev));
  1141. put_device(dev);
  1142. break;
  1143. }
  1144. put_device(dev);
  1145. if (async_error)
  1146. break;
  1147. }
  1148. mutex_unlock(&dpm_list_mtx);
  1149. async_synchronize_full();
  1150. if (!error)
  1151. error = async_error;
  1152. if (error) {
  1153. suspend_stats.failed_suspend_late++;
  1154. dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
  1155. dpm_resume_early(resume_event(state));
  1156. } else {
  1157. dpm_show_time(starttime, state, "late");
  1158. }
  1159. trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
  1160. return error;
  1161. }
  1162. /**
  1163. * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
  1164. * @state: PM transition of the system being carried out.
  1165. */
  1166. int dpm_suspend_end(pm_message_t state)
  1167. {
  1168. int error = dpm_suspend_late(state);
  1169. if (error)
  1170. return error;
  1171. error = dpm_suspend_noirq(state);
  1172. if (error) {
  1173. dpm_resume_early(resume_event(state));
  1174. return error;
  1175. }
  1176. return 0;
  1177. }
  1178. EXPORT_SYMBOL_GPL(dpm_suspend_end);
  1179. /**
  1180. * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
  1181. * @dev: Device to suspend.
  1182. * @state: PM transition of the system being carried out.
  1183. * @cb: Suspend callback to execute.
  1184. * @info: string description of caller.
  1185. */
  1186. static int legacy_suspend(struct device *dev, pm_message_t state,
  1187. int (*cb)(struct device *dev, pm_message_t state),
  1188. char *info)
  1189. {
  1190. int error;
  1191. ktime_t calltime;
  1192. calltime = initcall_debug_start(dev);
  1193. trace_device_pm_callback_start(dev, info, state.event);
  1194. error = cb(dev, state);
  1195. trace_device_pm_callback_end(dev, error);
  1196. suspend_report_result(cb, error);
  1197. initcall_debug_report(dev, calltime, error, state, info);
  1198. return error;
  1199. }
  1200. static void dpm_clear_suppliers_direct_complete(struct device *dev)
  1201. {
  1202. struct device_link *link;
  1203. int idx;
  1204. idx = device_links_read_lock();
  1205. list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) {
  1206. spin_lock_irq(&link->supplier->power.lock);
  1207. link->supplier->power.direct_complete = false;
  1208. spin_unlock_irq(&link->supplier->power.lock);
  1209. }
  1210. device_links_read_unlock(idx);
  1211. }
  1212. /**
  1213. * device_suspend - Execute "suspend" callbacks for given device.
  1214. * @dev: Device to handle.
  1215. * @state: PM transition of the system being carried out.
  1216. * @async: If true, the device is being suspended asynchronously.
  1217. */
  1218. static int __device_suspend(struct device *dev, pm_message_t state, bool async)
  1219. {
  1220. pm_callback_t callback = NULL;
  1221. char *info = NULL;
  1222. int error = 0;
  1223. DECLARE_DPM_WATCHDOG_ON_STACK(wd);
  1224. TRACE_DEVICE(dev);
  1225. TRACE_SUSPEND(0);
  1226. dpm_wait_for_subordinate(dev, async);
  1227. if (async_error)
  1228. goto Complete;
  1229. /*
  1230. * If a device configured to wake up the system from sleep states
  1231. * has been suspended at run time and there's a resume request pending
  1232. * for it, this is equivalent to the device signaling wakeup, so the
  1233. * system suspend operation should be aborted.
  1234. */
  1235. if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
  1236. pm_wakeup_event(dev, 0);
  1237. if (pm_wakeup_pending()) {
  1238. async_error = -EBUSY;
  1239. goto Complete;
  1240. }
  1241. if (dev->power.syscore)
  1242. goto Complete;
  1243. if (dev->power.direct_complete) {
  1244. if (pm_runtime_status_suspended(dev)) {
  1245. pm_runtime_disable(dev);
  1246. if (pm_runtime_status_suspended(dev))
  1247. goto Complete;
  1248. pm_runtime_enable(dev);
  1249. }
  1250. dev->power.direct_complete = false;
  1251. }
  1252. dpm_watchdog_set(&wd, dev);
  1253. device_lock(dev);
  1254. if (dev->pm_domain) {
  1255. info = "power domain ";
  1256. callback = pm_op(&dev->pm_domain->ops, state);
  1257. goto Run;
  1258. }
  1259. if (dev->type && dev->type->pm) {
  1260. info = "type ";
  1261. callback = pm_op(dev->type->pm, state);
  1262. goto Run;
  1263. }
  1264. if (dev->class) {
  1265. if (dev->class->pm) {
  1266. info = "class ";
  1267. callback = pm_op(dev->class->pm, state);
  1268. goto Run;
  1269. } else if (dev->class->suspend) {
  1270. pm_dev_dbg(dev, state, "legacy class ");
  1271. error = legacy_suspend(dev, state, dev->class->suspend,
  1272. "legacy class ");
  1273. goto End;
  1274. }
  1275. }
  1276. if (dev->bus) {
  1277. if (dev->bus->pm) {
  1278. info = "bus ";
  1279. callback = pm_op(dev->bus->pm, state);
  1280. } else if (dev->bus->suspend) {
  1281. pm_dev_dbg(dev, state, "legacy bus ");
  1282. error = legacy_suspend(dev, state, dev->bus->suspend,
  1283. "legacy bus ");
  1284. goto End;
  1285. }
  1286. }
  1287. Run:
  1288. if (!callback && dev->driver && dev->driver->pm) {
  1289. info = "driver ";
  1290. callback = pm_op(dev->driver->pm, state);
  1291. }
  1292. error = dpm_run_callback(callback, dev, state, info);
  1293. End:
  1294. if (!error) {
  1295. struct device *parent = dev->parent;
  1296. dev->power.is_suspended = true;
  1297. if (parent) {
  1298. spin_lock_irq(&parent->power.lock);
  1299. dev->parent->power.direct_complete = false;
  1300. if (dev->power.wakeup_path
  1301. && !dev->parent->power.ignore_children)
  1302. dev->parent->power.wakeup_path = true;
  1303. spin_unlock_irq(&parent->power.lock);
  1304. }
  1305. dpm_clear_suppliers_direct_complete(dev);
  1306. }
  1307. device_unlock(dev);
  1308. dpm_watchdog_clear(&wd);
  1309. Complete:
  1310. complete_all(&dev->power.completion);
  1311. if (error)
  1312. async_error = error;
  1313. TRACE_SUSPEND(error);
  1314. return error;
  1315. }
  1316. static void async_suspend(void *data, async_cookie_t cookie)
  1317. {
  1318. struct device *dev = (struct device *)data;
  1319. int error;
  1320. error = __device_suspend(dev, pm_transition, true);
  1321. if (error) {
  1322. dpm_save_failed_dev(dev_name(dev));
  1323. pm_dev_err(dev, pm_transition, " async", error);
  1324. }
  1325. put_device(dev);
  1326. }
  1327. static int device_suspend(struct device *dev)
  1328. {
  1329. reinit_completion(&dev->power.completion);
  1330. if (is_async(dev)) {
  1331. get_device(dev);
  1332. async_schedule(async_suspend, dev);
  1333. return 0;
  1334. }
  1335. return __device_suspend(dev, pm_transition, false);
  1336. }
  1337. /**
  1338. * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
  1339. * @state: PM transition of the system being carried out.
  1340. */
  1341. int dpm_suspend(pm_message_t state)
  1342. {
  1343. ktime_t starttime = ktime_get();
  1344. int error = 0;
  1345. trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
  1346. might_sleep();
  1347. cpufreq_suspend();
  1348. mutex_lock(&dpm_list_mtx);
  1349. pm_transition = state;
  1350. async_error = 0;
  1351. while (!list_empty(&dpm_prepared_list)) {
  1352. struct device *dev = to_device(dpm_prepared_list.prev);
  1353. get_device(dev);
  1354. mutex_unlock(&dpm_list_mtx);
  1355. error = device_suspend(dev);
  1356. mutex_lock(&dpm_list_mtx);
  1357. if (error) {
  1358. pm_dev_err(dev, state, "", error);
  1359. dpm_save_failed_dev(dev_name(dev));
  1360. put_device(dev);
  1361. break;
  1362. }
  1363. if (!list_empty(&dev->power.entry))
  1364. list_move(&dev->power.entry, &dpm_suspended_list);
  1365. put_device(dev);
  1366. if (async_error)
  1367. break;
  1368. }
  1369. mutex_unlock(&dpm_list_mtx);
  1370. async_synchronize_full();
  1371. if (!error)
  1372. error = async_error;
  1373. if (error) {
  1374. suspend_stats.failed_suspend++;
  1375. dpm_save_failed_step(SUSPEND_SUSPEND);
  1376. } else
  1377. dpm_show_time(starttime, state, NULL);
  1378. trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
  1379. return error;
  1380. }
  1381. /**
  1382. * device_prepare - Prepare a device for system power transition.
  1383. * @dev: Device to handle.
  1384. * @state: PM transition of the system being carried out.
  1385. *
  1386. * Execute the ->prepare() callback(s) for given device. No new children of the
  1387. * device may be registered after this function has returned.
  1388. */
  1389. static int device_prepare(struct device *dev, pm_message_t state)
  1390. {
  1391. int (*callback)(struct device *) = NULL;
  1392. int ret = 0;
  1393. if (dev->power.syscore)
  1394. return 0;
  1395. /*
  1396. * If a device's parent goes into runtime suspend at the wrong time,
  1397. * it won't be possible to resume the device. To prevent this we
  1398. * block runtime suspend here, during the prepare phase, and allow
  1399. * it again during the complete phase.
  1400. */
  1401. pm_runtime_get_noresume(dev);
  1402. device_lock(dev);
  1403. dev->power.wakeup_path = device_may_wakeup(dev);
  1404. if (dev->power.no_pm_callbacks) {
  1405. ret = 1; /* Let device go direct_complete */
  1406. goto unlock;
  1407. }
  1408. if (dev->pm_domain)
  1409. callback = dev->pm_domain->ops.prepare;
  1410. else if (dev->type && dev->type->pm)
  1411. callback = dev->type->pm->prepare;
  1412. else if (dev->class && dev->class->pm)
  1413. callback = dev->class->pm->prepare;
  1414. else if (dev->bus && dev->bus->pm)
  1415. callback = dev->bus->pm->prepare;
  1416. if (!callback && dev->driver && dev->driver->pm)
  1417. callback = dev->driver->pm->prepare;
  1418. if (callback)
  1419. ret = callback(dev);
  1420. unlock:
  1421. device_unlock(dev);
  1422. if (ret < 0) {
  1423. suspend_report_result(callback, ret);
  1424. pm_runtime_put(dev);
  1425. return ret;
  1426. }
  1427. /*
  1428. * A positive return value from ->prepare() means "this device appears
  1429. * to be runtime-suspended and its state is fine, so if it really is
  1430. * runtime-suspended, you can leave it in that state provided that you
  1431. * will do the same thing with all of its descendants". This only
  1432. * applies to suspend transitions, however.
  1433. */
  1434. spin_lock_irq(&dev->power.lock);
  1435. dev->power.direct_complete = ret > 0 && state.event == PM_EVENT_SUSPEND;
  1436. spin_unlock_irq(&dev->power.lock);
  1437. return 0;
  1438. }
  1439. /**
  1440. * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
  1441. * @state: PM transition of the system being carried out.
  1442. *
  1443. * Execute the ->prepare() callback(s) for all devices.
  1444. */
  1445. int dpm_prepare(pm_message_t state)
  1446. {
  1447. int error = 0;
  1448. trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
  1449. might_sleep();
  1450. /*
  1451. * Give a chance for the known devices to complete their probes, before
  1452. * disable probing of devices. This sync point is important at least
  1453. * at boot time + hibernation restore.
  1454. */
  1455. wait_for_device_probe();
  1456. /*
  1457. * It is unsafe if probing of devices will happen during suspend or
  1458. * hibernation and system behavior will be unpredictable in this case.
  1459. * So, let's prohibit device's probing here and defer their probes
  1460. * instead. The normal behavior will be restored in dpm_complete().
  1461. */
  1462. device_block_probing();
  1463. mutex_lock(&dpm_list_mtx);
  1464. while (!list_empty(&dpm_list)) {
  1465. struct device *dev = to_device(dpm_list.next);
  1466. get_device(dev);
  1467. mutex_unlock(&dpm_list_mtx);
  1468. trace_device_pm_callback_start(dev, "", state.event);
  1469. error = device_prepare(dev, state);
  1470. trace_device_pm_callback_end(dev, error);
  1471. mutex_lock(&dpm_list_mtx);
  1472. if (error) {
  1473. if (error == -EAGAIN) {
  1474. put_device(dev);
  1475. error = 0;
  1476. continue;
  1477. }
  1478. printk(KERN_INFO "PM: Device %s not prepared "
  1479. "for power transition: code %d\n",
  1480. dev_name(dev), error);
  1481. put_device(dev);
  1482. break;
  1483. }
  1484. dev->power.is_prepared = true;
  1485. if (!list_empty(&dev->power.entry))
  1486. list_move_tail(&dev->power.entry, &dpm_prepared_list);
  1487. put_device(dev);
  1488. }
  1489. mutex_unlock(&dpm_list_mtx);
  1490. trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
  1491. return error;
  1492. }
  1493. /**
  1494. * dpm_suspend_start - Prepare devices for PM transition and suspend them.
  1495. * @state: PM transition of the system being carried out.
  1496. *
  1497. * Prepare all non-sysdev devices for system PM transition and execute "suspend"
  1498. * callbacks for them.
  1499. */
  1500. int dpm_suspend_start(pm_message_t state)
  1501. {
  1502. int error;
  1503. error = dpm_prepare(state);
  1504. if (error) {
  1505. suspend_stats.failed_prepare++;
  1506. dpm_save_failed_step(SUSPEND_PREPARE);
  1507. } else
  1508. error = dpm_suspend(state);
  1509. return error;
  1510. }
  1511. EXPORT_SYMBOL_GPL(dpm_suspend_start);
  1512. void __suspend_report_result(const char *function, void *fn, int ret)
  1513. {
  1514. if (ret)
  1515. printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
  1516. }
  1517. EXPORT_SYMBOL_GPL(__suspend_report_result);
  1518. /**
  1519. * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
  1520. * @dev: Device to wait for.
  1521. * @subordinate: Device that needs to wait for @dev.
  1522. */
  1523. int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
  1524. {
  1525. dpm_wait(dev, subordinate->power.async_suspend);
  1526. return async_error;
  1527. }
  1528. EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
  1529. /**
  1530. * dpm_for_each_dev - device iterator.
  1531. * @data: data for the callback.
  1532. * @fn: function to be called for each device.
  1533. *
  1534. * Iterate over devices in dpm_list, and call @fn for each device,
  1535. * passing it @data.
  1536. */
  1537. void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
  1538. {
  1539. struct device *dev;
  1540. if (!fn)
  1541. return;
  1542. device_pm_lock();
  1543. list_for_each_entry(dev, &dpm_list, power.entry)
  1544. fn(dev, data);
  1545. device_pm_unlock();
  1546. }
  1547. EXPORT_SYMBOL_GPL(dpm_for_each_dev);
  1548. static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
  1549. {
  1550. if (!ops)
  1551. return true;
  1552. return !ops->prepare &&
  1553. !ops->suspend &&
  1554. !ops->suspend_late &&
  1555. !ops->suspend_noirq &&
  1556. !ops->resume_noirq &&
  1557. !ops->resume_early &&
  1558. !ops->resume &&
  1559. !ops->complete;
  1560. }
  1561. void device_pm_check_callbacks(struct device *dev)
  1562. {
  1563. spin_lock_irq(&dev->power.lock);
  1564. dev->power.no_pm_callbacks =
  1565. (!dev->bus || pm_ops_is_empty(dev->bus->pm)) &&
  1566. (!dev->class || pm_ops_is_empty(dev->class->pm)) &&
  1567. (!dev->type || pm_ops_is_empty(dev->type->pm)) &&
  1568. (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
  1569. (!dev->driver || pm_ops_is_empty(dev->driver->pm));
  1570. spin_unlock_irq(&dev->power.lock);
  1571. }