page_alloc.c 193 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/kasan.h>
  28. #include <linux/module.h>
  29. #include <linux/suspend.h>
  30. #include <linux/pagevec.h>
  31. #include <linux/blkdev.h>
  32. #include <linux/slab.h>
  33. #include <linux/ratelimit.h>
  34. #include <linux/oom.h>
  35. #include <linux/notifier.h>
  36. #include <linux/topology.h>
  37. #include <linux/sysctl.h>
  38. #include <linux/cpu.h>
  39. #include <linux/cpuset.h>
  40. #include <linux/memory_hotplug.h>
  41. #include <linux/nodemask.h>
  42. #include <linux/vmalloc.h>
  43. #include <linux/vmstat.h>
  44. #include <linux/mempolicy.h>
  45. #include <linux/memremap.h>
  46. #include <linux/stop_machine.h>
  47. #include <linux/sort.h>
  48. #include <linux/pfn.h>
  49. #include <linux/backing-dev.h>
  50. #include <linux/fault-inject.h>
  51. #include <linux/page-isolation.h>
  52. #include <linux/page_ext.h>
  53. #include <linux/debugobjects.h>
  54. #include <linux/kmemleak.h>
  55. #include <linux/compaction.h>
  56. #include <trace/events/kmem.h>
  57. #include <linux/prefetch.h>
  58. #include <linux/mm_inline.h>
  59. #include <linux/migrate.h>
  60. #include <linux/page_ext.h>
  61. #include <linux/hugetlb.h>
  62. #include <linux/sched/rt.h>
  63. #include <linux/page_owner.h>
  64. #include <linux/kthread.h>
  65. #include <asm/sections.h>
  66. #include <asm/tlbflush.h>
  67. #include <asm/div64.h>
  68. #include "internal.h"
  69. /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  70. static DEFINE_MUTEX(pcp_batch_high_lock);
  71. #define MIN_PERCPU_PAGELIST_FRACTION (8)
  72. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  73. DEFINE_PER_CPU(int, numa_node);
  74. EXPORT_PER_CPU_SYMBOL(numa_node);
  75. #endif
  76. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  77. /*
  78. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  79. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  80. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  81. * defined in <linux/topology.h>.
  82. */
  83. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  84. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  85. int _node_numa_mem_[MAX_NUMNODES];
  86. #endif
  87. /*
  88. * Array of node states.
  89. */
  90. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  91. [N_POSSIBLE] = NODE_MASK_ALL,
  92. [N_ONLINE] = { { [0] = 1UL } },
  93. #ifndef CONFIG_NUMA
  94. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  95. #ifdef CONFIG_HIGHMEM
  96. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  97. #endif
  98. #ifdef CONFIG_MOVABLE_NODE
  99. [N_MEMORY] = { { [0] = 1UL } },
  100. #endif
  101. [N_CPU] = { { [0] = 1UL } },
  102. #endif /* NUMA */
  103. };
  104. EXPORT_SYMBOL(node_states);
  105. /* Protect totalram_pages and zone->managed_pages */
  106. static DEFINE_SPINLOCK(managed_page_count_lock);
  107. unsigned long totalram_pages __read_mostly;
  108. unsigned long totalreserve_pages __read_mostly;
  109. unsigned long totalcma_pages __read_mostly;
  110. int percpu_pagelist_fraction;
  111. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  112. /*
  113. * A cached value of the page's pageblock's migratetype, used when the page is
  114. * put on a pcplist. Used to avoid the pageblock migratetype lookup when
  115. * freeing from pcplists in most cases, at the cost of possibly becoming stale.
  116. * Also the migratetype set in the page does not necessarily match the pcplist
  117. * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
  118. * other index - this ensures that it will be put on the correct CMA freelist.
  119. */
  120. static inline int get_pcppage_migratetype(struct page *page)
  121. {
  122. return page->index;
  123. }
  124. static inline void set_pcppage_migratetype(struct page *page, int migratetype)
  125. {
  126. page->index = migratetype;
  127. }
  128. #ifdef CONFIG_PM_SLEEP
  129. /*
  130. * The following functions are used by the suspend/hibernate code to temporarily
  131. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  132. * while devices are suspended. To avoid races with the suspend/hibernate code,
  133. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  134. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  135. * guaranteed not to run in parallel with that modification).
  136. */
  137. static gfp_t saved_gfp_mask;
  138. void pm_restore_gfp_mask(void)
  139. {
  140. WARN_ON(!mutex_is_locked(&pm_mutex));
  141. if (saved_gfp_mask) {
  142. gfp_allowed_mask = saved_gfp_mask;
  143. saved_gfp_mask = 0;
  144. }
  145. }
  146. void pm_restrict_gfp_mask(void)
  147. {
  148. WARN_ON(!mutex_is_locked(&pm_mutex));
  149. WARN_ON(saved_gfp_mask);
  150. saved_gfp_mask = gfp_allowed_mask;
  151. gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
  152. }
  153. bool pm_suspended_storage(void)
  154. {
  155. if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
  156. return false;
  157. return true;
  158. }
  159. #endif /* CONFIG_PM_SLEEP */
  160. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  161. unsigned int pageblock_order __read_mostly;
  162. #endif
  163. static void __free_pages_ok(struct page *page, unsigned int order);
  164. /*
  165. * results with 256, 32 in the lowmem_reserve sysctl:
  166. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  167. * 1G machine -> (16M dma, 784M normal, 224M high)
  168. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  169. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  170. * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
  171. *
  172. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  173. * don't need any ZONE_NORMAL reservation
  174. */
  175. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  176. #ifdef CONFIG_ZONE_DMA
  177. 256,
  178. #endif
  179. #ifdef CONFIG_ZONE_DMA32
  180. 256,
  181. #endif
  182. #ifdef CONFIG_HIGHMEM
  183. 32,
  184. #endif
  185. 32,
  186. };
  187. EXPORT_SYMBOL(totalram_pages);
  188. static char * const zone_names[MAX_NR_ZONES] = {
  189. #ifdef CONFIG_ZONE_DMA
  190. "DMA",
  191. #endif
  192. #ifdef CONFIG_ZONE_DMA32
  193. "DMA32",
  194. #endif
  195. "Normal",
  196. #ifdef CONFIG_HIGHMEM
  197. "HighMem",
  198. #endif
  199. "Movable",
  200. #ifdef CONFIG_ZONE_DEVICE
  201. "Device",
  202. #endif
  203. };
  204. char * const migratetype_names[MIGRATE_TYPES] = {
  205. "Unmovable",
  206. "Movable",
  207. "Reclaimable",
  208. "HighAtomic",
  209. #ifdef CONFIG_CMA
  210. "CMA",
  211. #endif
  212. #ifdef CONFIG_MEMORY_ISOLATION
  213. "Isolate",
  214. #endif
  215. };
  216. compound_page_dtor * const compound_page_dtors[] = {
  217. NULL,
  218. free_compound_page,
  219. #ifdef CONFIG_HUGETLB_PAGE
  220. free_huge_page,
  221. #endif
  222. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  223. free_transhuge_page,
  224. #endif
  225. };
  226. int min_free_kbytes = 1024;
  227. int user_min_free_kbytes = -1;
  228. static unsigned long __meminitdata nr_kernel_pages;
  229. static unsigned long __meminitdata nr_all_pages;
  230. static unsigned long __meminitdata dma_reserve;
  231. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  232. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  233. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  234. static unsigned long __initdata required_kernelcore;
  235. static unsigned long __initdata required_movablecore;
  236. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  237. static bool mirrored_kernelcore;
  238. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  239. int movable_zone;
  240. EXPORT_SYMBOL(movable_zone);
  241. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  242. #if MAX_NUMNODES > 1
  243. int nr_node_ids __read_mostly = MAX_NUMNODES;
  244. int nr_online_nodes __read_mostly = 1;
  245. EXPORT_SYMBOL(nr_node_ids);
  246. EXPORT_SYMBOL(nr_online_nodes);
  247. #endif
  248. int page_group_by_mobility_disabled __read_mostly;
  249. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  250. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  251. {
  252. pgdat->first_deferred_pfn = ULONG_MAX;
  253. }
  254. /* Returns true if the struct page for the pfn is uninitialised */
  255. static inline bool __meminit early_page_uninitialised(unsigned long pfn)
  256. {
  257. if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
  258. return true;
  259. return false;
  260. }
  261. static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
  262. {
  263. if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
  264. return true;
  265. return false;
  266. }
  267. /*
  268. * Returns false when the remaining initialisation should be deferred until
  269. * later in the boot cycle when it can be parallelised.
  270. */
  271. static inline bool update_defer_init(pg_data_t *pgdat,
  272. unsigned long pfn, unsigned long zone_end,
  273. unsigned long *nr_initialised)
  274. {
  275. /* Always populate low zones for address-contrained allocations */
  276. if (zone_end < pgdat_end_pfn(pgdat))
  277. return true;
  278. /* Initialise at least 2G of the highest zone */
  279. (*nr_initialised)++;
  280. if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
  281. (pfn & (PAGES_PER_SECTION - 1)) == 0) {
  282. pgdat->first_deferred_pfn = pfn;
  283. return false;
  284. }
  285. return true;
  286. }
  287. #else
  288. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  289. {
  290. }
  291. static inline bool early_page_uninitialised(unsigned long pfn)
  292. {
  293. return false;
  294. }
  295. static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
  296. {
  297. return false;
  298. }
  299. static inline bool update_defer_init(pg_data_t *pgdat,
  300. unsigned long pfn, unsigned long zone_end,
  301. unsigned long *nr_initialised)
  302. {
  303. return true;
  304. }
  305. #endif
  306. void set_pageblock_migratetype(struct page *page, int migratetype)
  307. {
  308. if (unlikely(page_group_by_mobility_disabled &&
  309. migratetype < MIGRATE_PCPTYPES))
  310. migratetype = MIGRATE_UNMOVABLE;
  311. set_pageblock_flags_group(page, (unsigned long)migratetype,
  312. PB_migrate, PB_migrate_end);
  313. }
  314. #ifdef CONFIG_DEBUG_VM
  315. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  316. {
  317. int ret = 0;
  318. unsigned seq;
  319. unsigned long pfn = page_to_pfn(page);
  320. unsigned long sp, start_pfn;
  321. do {
  322. seq = zone_span_seqbegin(zone);
  323. start_pfn = zone->zone_start_pfn;
  324. sp = zone->spanned_pages;
  325. if (!zone_spans_pfn(zone, pfn))
  326. ret = 1;
  327. } while (zone_span_seqretry(zone, seq));
  328. if (ret)
  329. pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
  330. pfn, zone_to_nid(zone), zone->name,
  331. start_pfn, start_pfn + sp);
  332. return ret;
  333. }
  334. static int page_is_consistent(struct zone *zone, struct page *page)
  335. {
  336. if (!pfn_valid_within(page_to_pfn(page)))
  337. return 0;
  338. if (zone != page_zone(page))
  339. return 0;
  340. return 1;
  341. }
  342. /*
  343. * Temporary debugging check for pages not lying within a given zone.
  344. */
  345. static int bad_range(struct zone *zone, struct page *page)
  346. {
  347. if (page_outside_zone_boundaries(zone, page))
  348. return 1;
  349. if (!page_is_consistent(zone, page))
  350. return 1;
  351. return 0;
  352. }
  353. #else
  354. static inline int bad_range(struct zone *zone, struct page *page)
  355. {
  356. return 0;
  357. }
  358. #endif
  359. static void bad_page(struct page *page, const char *reason,
  360. unsigned long bad_flags)
  361. {
  362. static unsigned long resume;
  363. static unsigned long nr_shown;
  364. static unsigned long nr_unshown;
  365. /* Don't complain about poisoned pages */
  366. if (PageHWPoison(page)) {
  367. page_mapcount_reset(page); /* remove PageBuddy */
  368. return;
  369. }
  370. /*
  371. * Allow a burst of 60 reports, then keep quiet for that minute;
  372. * or allow a steady drip of one report per second.
  373. */
  374. if (nr_shown == 60) {
  375. if (time_before(jiffies, resume)) {
  376. nr_unshown++;
  377. goto out;
  378. }
  379. if (nr_unshown) {
  380. pr_alert(
  381. "BUG: Bad page state: %lu messages suppressed\n",
  382. nr_unshown);
  383. nr_unshown = 0;
  384. }
  385. nr_shown = 0;
  386. }
  387. if (nr_shown++ == 0)
  388. resume = jiffies + 60 * HZ;
  389. pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
  390. current->comm, page_to_pfn(page));
  391. __dump_page(page, reason);
  392. bad_flags &= page->flags;
  393. if (bad_flags)
  394. pr_alert("bad because of flags: %#lx(%pGp)\n",
  395. bad_flags, &bad_flags);
  396. dump_page_owner(page);
  397. print_modules();
  398. dump_stack();
  399. out:
  400. /* Leave bad fields for debug, except PageBuddy could make trouble */
  401. page_mapcount_reset(page); /* remove PageBuddy */
  402. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  403. }
  404. /*
  405. * Higher-order pages are called "compound pages". They are structured thusly:
  406. *
  407. * The first PAGE_SIZE page is called the "head page" and have PG_head set.
  408. *
  409. * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
  410. * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
  411. *
  412. * The first tail page's ->compound_dtor holds the offset in array of compound
  413. * page destructors. See compound_page_dtors.
  414. *
  415. * The first tail page's ->compound_order holds the order of allocation.
  416. * This usage means that zero-order pages may not be compound.
  417. */
  418. void free_compound_page(struct page *page)
  419. {
  420. __free_pages_ok(page, compound_order(page));
  421. }
  422. void prep_compound_page(struct page *page, unsigned int order)
  423. {
  424. int i;
  425. int nr_pages = 1 << order;
  426. set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
  427. set_compound_order(page, order);
  428. __SetPageHead(page);
  429. for (i = 1; i < nr_pages; i++) {
  430. struct page *p = page + i;
  431. set_page_count(p, 0);
  432. p->mapping = TAIL_MAPPING;
  433. set_compound_head(p, page);
  434. }
  435. atomic_set(compound_mapcount_ptr(page), -1);
  436. }
  437. #ifdef CONFIG_DEBUG_PAGEALLOC
  438. unsigned int _debug_guardpage_minorder;
  439. bool _debug_pagealloc_enabled __read_mostly
  440. = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
  441. bool _debug_guardpage_enabled __read_mostly;
  442. static int __init early_debug_pagealloc(char *buf)
  443. {
  444. if (!buf)
  445. return -EINVAL;
  446. if (strcmp(buf, "on") == 0)
  447. _debug_pagealloc_enabled = true;
  448. if (strcmp(buf, "off") == 0)
  449. _debug_pagealloc_enabled = false;
  450. return 0;
  451. }
  452. early_param("debug_pagealloc", early_debug_pagealloc);
  453. static bool need_debug_guardpage(void)
  454. {
  455. /* If we don't use debug_pagealloc, we don't need guard page */
  456. if (!debug_pagealloc_enabled())
  457. return false;
  458. return true;
  459. }
  460. static void init_debug_guardpage(void)
  461. {
  462. if (!debug_pagealloc_enabled())
  463. return;
  464. _debug_guardpage_enabled = true;
  465. }
  466. struct page_ext_operations debug_guardpage_ops = {
  467. .need = need_debug_guardpage,
  468. .init = init_debug_guardpage,
  469. };
  470. static int __init debug_guardpage_minorder_setup(char *buf)
  471. {
  472. unsigned long res;
  473. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  474. printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
  475. return 0;
  476. }
  477. _debug_guardpage_minorder = res;
  478. printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
  479. return 0;
  480. }
  481. __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
  482. static inline void set_page_guard(struct zone *zone, struct page *page,
  483. unsigned int order, int migratetype)
  484. {
  485. struct page_ext *page_ext;
  486. if (!debug_guardpage_enabled())
  487. return;
  488. page_ext = lookup_page_ext(page);
  489. __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  490. INIT_LIST_HEAD(&page->lru);
  491. set_page_private(page, order);
  492. /* Guard pages are not available for any usage */
  493. __mod_zone_freepage_state(zone, -(1 << order), migratetype);
  494. }
  495. static inline void clear_page_guard(struct zone *zone, struct page *page,
  496. unsigned int order, int migratetype)
  497. {
  498. struct page_ext *page_ext;
  499. if (!debug_guardpage_enabled())
  500. return;
  501. page_ext = lookup_page_ext(page);
  502. __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  503. set_page_private(page, 0);
  504. if (!is_migrate_isolate(migratetype))
  505. __mod_zone_freepage_state(zone, (1 << order), migratetype);
  506. }
  507. #else
  508. struct page_ext_operations debug_guardpage_ops = { NULL, };
  509. static inline void set_page_guard(struct zone *zone, struct page *page,
  510. unsigned int order, int migratetype) {}
  511. static inline void clear_page_guard(struct zone *zone, struct page *page,
  512. unsigned int order, int migratetype) {}
  513. #endif
  514. static inline void set_page_order(struct page *page, unsigned int order)
  515. {
  516. set_page_private(page, order);
  517. __SetPageBuddy(page);
  518. }
  519. static inline void rmv_page_order(struct page *page)
  520. {
  521. __ClearPageBuddy(page);
  522. set_page_private(page, 0);
  523. }
  524. /*
  525. * This function checks whether a page is free && is the buddy
  526. * we can do coalesce a page and its buddy if
  527. * (a) the buddy is not in a hole &&
  528. * (b) the buddy is in the buddy system &&
  529. * (c) a page and its buddy have the same order &&
  530. * (d) a page and its buddy are in the same zone.
  531. *
  532. * For recording whether a page is in the buddy system, we set ->_mapcount
  533. * PAGE_BUDDY_MAPCOUNT_VALUE.
  534. * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
  535. * serialized by zone->lock.
  536. *
  537. * For recording page's order, we use page_private(page).
  538. */
  539. static inline int page_is_buddy(struct page *page, struct page *buddy,
  540. unsigned int order)
  541. {
  542. if (!pfn_valid_within(page_to_pfn(buddy)))
  543. return 0;
  544. if (page_is_guard(buddy) && page_order(buddy) == order) {
  545. if (page_zone_id(page) != page_zone_id(buddy))
  546. return 0;
  547. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  548. return 1;
  549. }
  550. if (PageBuddy(buddy) && page_order(buddy) == order) {
  551. /*
  552. * zone check is done late to avoid uselessly
  553. * calculating zone/node ids for pages that could
  554. * never merge.
  555. */
  556. if (page_zone_id(page) != page_zone_id(buddy))
  557. return 0;
  558. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  559. return 1;
  560. }
  561. return 0;
  562. }
  563. /*
  564. * Freeing function for a buddy system allocator.
  565. *
  566. * The concept of a buddy system is to maintain direct-mapped table
  567. * (containing bit values) for memory blocks of various "orders".
  568. * The bottom level table contains the map for the smallest allocatable
  569. * units of memory (here, pages), and each level above it describes
  570. * pairs of units from the levels below, hence, "buddies".
  571. * At a high level, all that happens here is marking the table entry
  572. * at the bottom level available, and propagating the changes upward
  573. * as necessary, plus some accounting needed to play nicely with other
  574. * parts of the VM system.
  575. * At each level, we keep a list of pages, which are heads of continuous
  576. * free pages of length of (1 << order) and marked with _mapcount
  577. * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
  578. * field.
  579. * So when we are allocating or freeing one, we can derive the state of the
  580. * other. That is, if we allocate a small block, and both were
  581. * free, the remainder of the region must be split into blocks.
  582. * If a block is freed, and its buddy is also free, then this
  583. * triggers coalescing into a block of larger size.
  584. *
  585. * -- nyc
  586. */
  587. static inline void __free_one_page(struct page *page,
  588. unsigned long pfn,
  589. struct zone *zone, unsigned int order,
  590. int migratetype)
  591. {
  592. unsigned long page_idx;
  593. unsigned long combined_idx;
  594. unsigned long uninitialized_var(buddy_idx);
  595. struct page *buddy;
  596. unsigned int max_order = MAX_ORDER;
  597. VM_BUG_ON(!zone_is_initialized(zone));
  598. VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
  599. VM_BUG_ON(migratetype == -1);
  600. if (is_migrate_isolate(migratetype)) {
  601. /*
  602. * We restrict max order of merging to prevent merge
  603. * between freepages on isolate pageblock and normal
  604. * pageblock. Without this, pageblock isolation
  605. * could cause incorrect freepage accounting.
  606. */
  607. max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
  608. } else {
  609. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  610. }
  611. page_idx = pfn & ((1 << max_order) - 1);
  612. VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
  613. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  614. while (order < max_order - 1) {
  615. buddy_idx = __find_buddy_index(page_idx, order);
  616. buddy = page + (buddy_idx - page_idx);
  617. if (!page_is_buddy(page, buddy, order))
  618. break;
  619. /*
  620. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  621. * merge with it and move up one order.
  622. */
  623. if (page_is_guard(buddy)) {
  624. clear_page_guard(zone, buddy, order, migratetype);
  625. } else {
  626. list_del(&buddy->lru);
  627. zone->free_area[order].nr_free--;
  628. rmv_page_order(buddy);
  629. }
  630. combined_idx = buddy_idx & page_idx;
  631. page = page + (combined_idx - page_idx);
  632. page_idx = combined_idx;
  633. order++;
  634. }
  635. set_page_order(page, order);
  636. /*
  637. * If this is not the largest possible page, check if the buddy
  638. * of the next-highest order is free. If it is, it's possible
  639. * that pages are being freed that will coalesce soon. In case,
  640. * that is happening, add the free page to the tail of the list
  641. * so it's less likely to be used soon and more likely to be merged
  642. * as a higher order page
  643. */
  644. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  645. struct page *higher_page, *higher_buddy;
  646. combined_idx = buddy_idx & page_idx;
  647. higher_page = page + (combined_idx - page_idx);
  648. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  649. higher_buddy = higher_page + (buddy_idx - combined_idx);
  650. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  651. list_add_tail(&page->lru,
  652. &zone->free_area[order].free_list[migratetype]);
  653. goto out;
  654. }
  655. }
  656. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  657. out:
  658. zone->free_area[order].nr_free++;
  659. }
  660. static inline int free_pages_check(struct page *page)
  661. {
  662. const char *bad_reason = NULL;
  663. unsigned long bad_flags = 0;
  664. if (unlikely(atomic_read(&page->_mapcount) != -1))
  665. bad_reason = "nonzero mapcount";
  666. if (unlikely(page->mapping != NULL))
  667. bad_reason = "non-NULL mapping";
  668. if (unlikely(atomic_read(&page->_count) != 0))
  669. bad_reason = "nonzero _count";
  670. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
  671. bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
  672. bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
  673. }
  674. #ifdef CONFIG_MEMCG
  675. if (unlikely(page->mem_cgroup))
  676. bad_reason = "page still charged to cgroup";
  677. #endif
  678. if (unlikely(bad_reason)) {
  679. bad_page(page, bad_reason, bad_flags);
  680. return 1;
  681. }
  682. page_cpupid_reset_last(page);
  683. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  684. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  685. return 0;
  686. }
  687. /*
  688. * Frees a number of pages from the PCP lists
  689. * Assumes all pages on list are in same zone, and of same order.
  690. * count is the number of pages to free.
  691. *
  692. * If the zone was previously in an "all pages pinned" state then look to
  693. * see if this freeing clears that state.
  694. *
  695. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  696. * pinned" detection logic.
  697. */
  698. static void free_pcppages_bulk(struct zone *zone, int count,
  699. struct per_cpu_pages *pcp)
  700. {
  701. int migratetype = 0;
  702. int batch_free = 0;
  703. int to_free = count;
  704. unsigned long nr_scanned;
  705. spin_lock(&zone->lock);
  706. nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
  707. if (nr_scanned)
  708. __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
  709. while (to_free) {
  710. struct page *page;
  711. struct list_head *list;
  712. /*
  713. * Remove pages from lists in a round-robin fashion. A
  714. * batch_free count is maintained that is incremented when an
  715. * empty list is encountered. This is so more pages are freed
  716. * off fuller lists instead of spinning excessively around empty
  717. * lists
  718. */
  719. do {
  720. batch_free++;
  721. if (++migratetype == MIGRATE_PCPTYPES)
  722. migratetype = 0;
  723. list = &pcp->lists[migratetype];
  724. } while (list_empty(list));
  725. /* This is the only non-empty list. Free them all. */
  726. if (batch_free == MIGRATE_PCPTYPES)
  727. batch_free = to_free;
  728. do {
  729. int mt; /* migratetype of the to-be-freed page */
  730. page = list_last_entry(list, struct page, lru);
  731. /* must delete as __free_one_page list manipulates */
  732. list_del(&page->lru);
  733. mt = get_pcppage_migratetype(page);
  734. /* MIGRATE_ISOLATE page should not go to pcplists */
  735. VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
  736. /* Pageblock could have been isolated meanwhile */
  737. if (unlikely(has_isolate_pageblock(zone)))
  738. mt = get_pageblock_migratetype(page);
  739. __free_one_page(page, page_to_pfn(page), zone, 0, mt);
  740. trace_mm_page_pcpu_drain(page, 0, mt);
  741. } while (--to_free && --batch_free && !list_empty(list));
  742. }
  743. spin_unlock(&zone->lock);
  744. }
  745. static void free_one_page(struct zone *zone,
  746. struct page *page, unsigned long pfn,
  747. unsigned int order,
  748. int migratetype)
  749. {
  750. unsigned long nr_scanned;
  751. spin_lock(&zone->lock);
  752. nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
  753. if (nr_scanned)
  754. __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
  755. if (unlikely(has_isolate_pageblock(zone) ||
  756. is_migrate_isolate(migratetype))) {
  757. migratetype = get_pfnblock_migratetype(page, pfn);
  758. }
  759. __free_one_page(page, pfn, zone, order, migratetype);
  760. spin_unlock(&zone->lock);
  761. }
  762. static int free_tail_pages_check(struct page *head_page, struct page *page)
  763. {
  764. int ret = 1;
  765. /*
  766. * We rely page->lru.next never has bit 0 set, unless the page
  767. * is PageTail(). Let's make sure that's true even for poisoned ->lru.
  768. */
  769. BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
  770. if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
  771. ret = 0;
  772. goto out;
  773. }
  774. switch (page - head_page) {
  775. case 1:
  776. /* the first tail page: ->mapping is compound_mapcount() */
  777. if (unlikely(compound_mapcount(page))) {
  778. bad_page(page, "nonzero compound_mapcount", 0);
  779. goto out;
  780. }
  781. break;
  782. case 2:
  783. /*
  784. * the second tail page: ->mapping is
  785. * page_deferred_list().next -- ignore value.
  786. */
  787. break;
  788. default:
  789. if (page->mapping != TAIL_MAPPING) {
  790. bad_page(page, "corrupted mapping in tail page", 0);
  791. goto out;
  792. }
  793. break;
  794. }
  795. if (unlikely(!PageTail(page))) {
  796. bad_page(page, "PageTail not set", 0);
  797. goto out;
  798. }
  799. if (unlikely(compound_head(page) != head_page)) {
  800. bad_page(page, "compound_head not consistent", 0);
  801. goto out;
  802. }
  803. ret = 0;
  804. out:
  805. page->mapping = NULL;
  806. clear_compound_head(page);
  807. return ret;
  808. }
  809. static void __meminit __init_single_page(struct page *page, unsigned long pfn,
  810. unsigned long zone, int nid)
  811. {
  812. set_page_links(page, zone, nid, pfn);
  813. init_page_count(page);
  814. page_mapcount_reset(page);
  815. page_cpupid_reset_last(page);
  816. INIT_LIST_HEAD(&page->lru);
  817. #ifdef WANT_PAGE_VIRTUAL
  818. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  819. if (!is_highmem_idx(zone))
  820. set_page_address(page, __va(pfn << PAGE_SHIFT));
  821. #endif
  822. }
  823. static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
  824. int nid)
  825. {
  826. return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
  827. }
  828. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  829. static void init_reserved_page(unsigned long pfn)
  830. {
  831. pg_data_t *pgdat;
  832. int nid, zid;
  833. if (!early_page_uninitialised(pfn))
  834. return;
  835. nid = early_pfn_to_nid(pfn);
  836. pgdat = NODE_DATA(nid);
  837. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  838. struct zone *zone = &pgdat->node_zones[zid];
  839. if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
  840. break;
  841. }
  842. __init_single_pfn(pfn, zid, nid);
  843. }
  844. #else
  845. static inline void init_reserved_page(unsigned long pfn)
  846. {
  847. }
  848. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  849. /*
  850. * Initialised pages do not have PageReserved set. This function is
  851. * called for each range allocated by the bootmem allocator and
  852. * marks the pages PageReserved. The remaining valid pages are later
  853. * sent to the buddy page allocator.
  854. */
  855. void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
  856. {
  857. unsigned long start_pfn = PFN_DOWN(start);
  858. unsigned long end_pfn = PFN_UP(end);
  859. for (; start_pfn < end_pfn; start_pfn++) {
  860. if (pfn_valid(start_pfn)) {
  861. struct page *page = pfn_to_page(start_pfn);
  862. init_reserved_page(start_pfn);
  863. /* Avoid false-positive PageTail() */
  864. INIT_LIST_HEAD(&page->lru);
  865. SetPageReserved(page);
  866. }
  867. }
  868. }
  869. static bool free_pages_prepare(struct page *page, unsigned int order)
  870. {
  871. bool compound = PageCompound(page);
  872. int i, bad = 0;
  873. VM_BUG_ON_PAGE(PageTail(page), page);
  874. VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
  875. trace_mm_page_free(page, order);
  876. kmemcheck_free_shadow(page, order);
  877. kasan_free_pages(page, order);
  878. if (PageAnon(page))
  879. page->mapping = NULL;
  880. bad += free_pages_check(page);
  881. for (i = 1; i < (1 << order); i++) {
  882. if (compound)
  883. bad += free_tail_pages_check(page, page + i);
  884. bad += free_pages_check(page + i);
  885. }
  886. if (bad)
  887. return false;
  888. reset_page_owner(page, order);
  889. if (!PageHighMem(page)) {
  890. debug_check_no_locks_freed(page_address(page),
  891. PAGE_SIZE << order);
  892. debug_check_no_obj_freed(page_address(page),
  893. PAGE_SIZE << order);
  894. }
  895. arch_free_page(page, order);
  896. kernel_poison_pages(page, 1 << order, 0);
  897. kernel_map_pages(page, 1 << order, 0);
  898. return true;
  899. }
  900. static void __free_pages_ok(struct page *page, unsigned int order)
  901. {
  902. unsigned long flags;
  903. int migratetype;
  904. unsigned long pfn = page_to_pfn(page);
  905. if (!free_pages_prepare(page, order))
  906. return;
  907. migratetype = get_pfnblock_migratetype(page, pfn);
  908. local_irq_save(flags);
  909. __count_vm_events(PGFREE, 1 << order);
  910. free_one_page(page_zone(page), page, pfn, order, migratetype);
  911. local_irq_restore(flags);
  912. }
  913. static void __init __free_pages_boot_core(struct page *page,
  914. unsigned long pfn, unsigned int order)
  915. {
  916. unsigned int nr_pages = 1 << order;
  917. struct page *p = page;
  918. unsigned int loop;
  919. prefetchw(p);
  920. for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
  921. prefetchw(p + 1);
  922. __ClearPageReserved(p);
  923. set_page_count(p, 0);
  924. }
  925. __ClearPageReserved(p);
  926. set_page_count(p, 0);
  927. page_zone(page)->managed_pages += nr_pages;
  928. set_page_refcounted(page);
  929. __free_pages(page, order);
  930. }
  931. #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
  932. defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
  933. static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
  934. int __meminit early_pfn_to_nid(unsigned long pfn)
  935. {
  936. static DEFINE_SPINLOCK(early_pfn_lock);
  937. int nid;
  938. spin_lock(&early_pfn_lock);
  939. nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
  940. if (nid < 0)
  941. nid = 0;
  942. spin_unlock(&early_pfn_lock);
  943. return nid;
  944. }
  945. #endif
  946. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  947. static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
  948. struct mminit_pfnnid_cache *state)
  949. {
  950. int nid;
  951. nid = __early_pfn_to_nid(pfn, state);
  952. if (nid >= 0 && nid != node)
  953. return false;
  954. return true;
  955. }
  956. /* Only safe to use early in boot when initialisation is single-threaded */
  957. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  958. {
  959. return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
  960. }
  961. #else
  962. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  963. {
  964. return true;
  965. }
  966. static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
  967. struct mminit_pfnnid_cache *state)
  968. {
  969. return true;
  970. }
  971. #endif
  972. void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
  973. unsigned int order)
  974. {
  975. if (early_page_uninitialised(pfn))
  976. return;
  977. return __free_pages_boot_core(page, pfn, order);
  978. }
  979. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  980. static void __init deferred_free_range(struct page *page,
  981. unsigned long pfn, int nr_pages)
  982. {
  983. int i;
  984. if (!page)
  985. return;
  986. /* Free a large naturally-aligned chunk if possible */
  987. if (nr_pages == MAX_ORDER_NR_PAGES &&
  988. (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
  989. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  990. __free_pages_boot_core(page, pfn, MAX_ORDER-1);
  991. return;
  992. }
  993. for (i = 0; i < nr_pages; i++, page++, pfn++)
  994. __free_pages_boot_core(page, pfn, 0);
  995. }
  996. /* Completion tracking for deferred_init_memmap() threads */
  997. static atomic_t pgdat_init_n_undone __initdata;
  998. static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
  999. static inline void __init pgdat_init_report_one_done(void)
  1000. {
  1001. if (atomic_dec_and_test(&pgdat_init_n_undone))
  1002. complete(&pgdat_init_all_done_comp);
  1003. }
  1004. /* Initialise remaining memory on a node */
  1005. static int __init deferred_init_memmap(void *data)
  1006. {
  1007. pg_data_t *pgdat = data;
  1008. int nid = pgdat->node_id;
  1009. struct mminit_pfnnid_cache nid_init_state = { };
  1010. unsigned long start = jiffies;
  1011. unsigned long nr_pages = 0;
  1012. unsigned long walk_start, walk_end;
  1013. int i, zid;
  1014. struct zone *zone;
  1015. unsigned long first_init_pfn = pgdat->first_deferred_pfn;
  1016. const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
  1017. if (first_init_pfn == ULONG_MAX) {
  1018. pgdat_init_report_one_done();
  1019. return 0;
  1020. }
  1021. /* Bind memory initialisation thread to a local node if possible */
  1022. if (!cpumask_empty(cpumask))
  1023. set_cpus_allowed_ptr(current, cpumask);
  1024. /* Sanity check boundaries */
  1025. BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
  1026. BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
  1027. pgdat->first_deferred_pfn = ULONG_MAX;
  1028. /* Only the highest zone is deferred so find it */
  1029. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  1030. zone = pgdat->node_zones + zid;
  1031. if (first_init_pfn < zone_end_pfn(zone))
  1032. break;
  1033. }
  1034. for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
  1035. unsigned long pfn, end_pfn;
  1036. struct page *page = NULL;
  1037. struct page *free_base_page = NULL;
  1038. unsigned long free_base_pfn = 0;
  1039. int nr_to_free = 0;
  1040. end_pfn = min(walk_end, zone_end_pfn(zone));
  1041. pfn = first_init_pfn;
  1042. if (pfn < walk_start)
  1043. pfn = walk_start;
  1044. if (pfn < zone->zone_start_pfn)
  1045. pfn = zone->zone_start_pfn;
  1046. for (; pfn < end_pfn; pfn++) {
  1047. if (!pfn_valid_within(pfn))
  1048. goto free_range;
  1049. /*
  1050. * Ensure pfn_valid is checked every
  1051. * MAX_ORDER_NR_PAGES for memory holes
  1052. */
  1053. if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
  1054. if (!pfn_valid(pfn)) {
  1055. page = NULL;
  1056. goto free_range;
  1057. }
  1058. }
  1059. if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
  1060. page = NULL;
  1061. goto free_range;
  1062. }
  1063. /* Minimise pfn page lookups and scheduler checks */
  1064. if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
  1065. page++;
  1066. } else {
  1067. nr_pages += nr_to_free;
  1068. deferred_free_range(free_base_page,
  1069. free_base_pfn, nr_to_free);
  1070. free_base_page = NULL;
  1071. free_base_pfn = nr_to_free = 0;
  1072. page = pfn_to_page(pfn);
  1073. cond_resched();
  1074. }
  1075. if (page->flags) {
  1076. VM_BUG_ON(page_zone(page) != zone);
  1077. goto free_range;
  1078. }
  1079. __init_single_page(page, pfn, zid, nid);
  1080. if (!free_base_page) {
  1081. free_base_page = page;
  1082. free_base_pfn = pfn;
  1083. nr_to_free = 0;
  1084. }
  1085. nr_to_free++;
  1086. /* Where possible, batch up pages for a single free */
  1087. continue;
  1088. free_range:
  1089. /* Free the current block of pages to allocator */
  1090. nr_pages += nr_to_free;
  1091. deferred_free_range(free_base_page, free_base_pfn,
  1092. nr_to_free);
  1093. free_base_page = NULL;
  1094. free_base_pfn = nr_to_free = 0;
  1095. }
  1096. first_init_pfn = max(end_pfn, first_init_pfn);
  1097. }
  1098. /* Sanity check that the next zone really is unpopulated */
  1099. WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
  1100. pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
  1101. jiffies_to_msecs(jiffies - start));
  1102. pgdat_init_report_one_done();
  1103. return 0;
  1104. }
  1105. void __init page_alloc_init_late(void)
  1106. {
  1107. int nid;
  1108. /* There will be num_node_state(N_MEMORY) threads */
  1109. atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
  1110. for_each_node_state(nid, N_MEMORY) {
  1111. kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
  1112. }
  1113. /* Block until all are initialised */
  1114. wait_for_completion(&pgdat_init_all_done_comp);
  1115. /* Reinit limits that are based on free pages after the kernel is up */
  1116. files_maxfiles_init();
  1117. }
  1118. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  1119. #ifdef CONFIG_CMA
  1120. /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
  1121. void __init init_cma_reserved_pageblock(struct page *page)
  1122. {
  1123. unsigned i = pageblock_nr_pages;
  1124. struct page *p = page;
  1125. do {
  1126. __ClearPageReserved(p);
  1127. set_page_count(p, 0);
  1128. } while (++p, --i);
  1129. set_pageblock_migratetype(page, MIGRATE_CMA);
  1130. if (pageblock_order >= MAX_ORDER) {
  1131. i = pageblock_nr_pages;
  1132. p = page;
  1133. do {
  1134. set_page_refcounted(p);
  1135. __free_pages(p, MAX_ORDER - 1);
  1136. p += MAX_ORDER_NR_PAGES;
  1137. } while (i -= MAX_ORDER_NR_PAGES);
  1138. } else {
  1139. set_page_refcounted(page);
  1140. __free_pages(page, pageblock_order);
  1141. }
  1142. adjust_managed_page_count(page, pageblock_nr_pages);
  1143. }
  1144. #endif
  1145. /*
  1146. * The order of subdivision here is critical for the IO subsystem.
  1147. * Please do not alter this order without good reasons and regression
  1148. * testing. Specifically, as large blocks of memory are subdivided,
  1149. * the order in which smaller blocks are delivered depends on the order
  1150. * they're subdivided in this function. This is the primary factor
  1151. * influencing the order in which pages are delivered to the IO
  1152. * subsystem according to empirical testing, and this is also justified
  1153. * by considering the behavior of a buddy system containing a single
  1154. * large block of memory acted on by a series of small allocations.
  1155. * This behavior is a critical factor in sglist merging's success.
  1156. *
  1157. * -- nyc
  1158. */
  1159. static inline void expand(struct zone *zone, struct page *page,
  1160. int low, int high, struct free_area *area,
  1161. int migratetype)
  1162. {
  1163. unsigned long size = 1 << high;
  1164. while (high > low) {
  1165. area--;
  1166. high--;
  1167. size >>= 1;
  1168. VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
  1169. if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
  1170. debug_guardpage_enabled() &&
  1171. high < debug_guardpage_minorder()) {
  1172. /*
  1173. * Mark as guard pages (or page), that will allow to
  1174. * merge back to allocator when buddy will be freed.
  1175. * Corresponding page table entries will not be touched,
  1176. * pages will stay not present in virtual address space
  1177. */
  1178. set_page_guard(zone, &page[size], high, migratetype);
  1179. continue;
  1180. }
  1181. list_add(&page[size].lru, &area->free_list[migratetype]);
  1182. area->nr_free++;
  1183. set_page_order(&page[size], high);
  1184. }
  1185. }
  1186. /*
  1187. * This page is about to be returned from the page allocator
  1188. */
  1189. static inline int check_new_page(struct page *page)
  1190. {
  1191. const char *bad_reason = NULL;
  1192. unsigned long bad_flags = 0;
  1193. if (unlikely(atomic_read(&page->_mapcount) != -1))
  1194. bad_reason = "nonzero mapcount";
  1195. if (unlikely(page->mapping != NULL))
  1196. bad_reason = "non-NULL mapping";
  1197. if (unlikely(atomic_read(&page->_count) != 0))
  1198. bad_reason = "nonzero _count";
  1199. if (unlikely(page->flags & __PG_HWPOISON)) {
  1200. bad_reason = "HWPoisoned (hardware-corrupted)";
  1201. bad_flags = __PG_HWPOISON;
  1202. }
  1203. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
  1204. bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
  1205. bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
  1206. }
  1207. #ifdef CONFIG_MEMCG
  1208. if (unlikely(page->mem_cgroup))
  1209. bad_reason = "page still charged to cgroup";
  1210. #endif
  1211. if (unlikely(bad_reason)) {
  1212. bad_page(page, bad_reason, bad_flags);
  1213. return 1;
  1214. }
  1215. return 0;
  1216. }
  1217. static inline bool free_pages_prezeroed(bool poisoned)
  1218. {
  1219. return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
  1220. page_poisoning_enabled() && poisoned;
  1221. }
  1222. static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
  1223. int alloc_flags)
  1224. {
  1225. int i;
  1226. bool poisoned = true;
  1227. for (i = 0; i < (1 << order); i++) {
  1228. struct page *p = page + i;
  1229. if (unlikely(check_new_page(p)))
  1230. return 1;
  1231. if (poisoned)
  1232. poisoned &= page_is_poisoned(p);
  1233. }
  1234. set_page_private(page, 0);
  1235. set_page_refcounted(page);
  1236. arch_alloc_page(page, order);
  1237. kernel_map_pages(page, 1 << order, 1);
  1238. kernel_poison_pages(page, 1 << order, 1);
  1239. kasan_alloc_pages(page, order);
  1240. if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
  1241. for (i = 0; i < (1 << order); i++)
  1242. clear_highpage(page + i);
  1243. if (order && (gfp_flags & __GFP_COMP))
  1244. prep_compound_page(page, order);
  1245. set_page_owner(page, order, gfp_flags);
  1246. /*
  1247. * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
  1248. * allocate the page. The expectation is that the caller is taking
  1249. * steps that will free more memory. The caller should avoid the page
  1250. * being used for !PFMEMALLOC purposes.
  1251. */
  1252. if (alloc_flags & ALLOC_NO_WATERMARKS)
  1253. set_page_pfmemalloc(page);
  1254. else
  1255. clear_page_pfmemalloc(page);
  1256. return 0;
  1257. }
  1258. /*
  1259. * Go through the free lists for the given migratetype and remove
  1260. * the smallest available page from the freelists
  1261. */
  1262. static inline
  1263. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  1264. int migratetype)
  1265. {
  1266. unsigned int current_order;
  1267. struct free_area *area;
  1268. struct page *page;
  1269. /* Find a page of the appropriate size in the preferred list */
  1270. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  1271. area = &(zone->free_area[current_order]);
  1272. page = list_first_entry_or_null(&area->free_list[migratetype],
  1273. struct page, lru);
  1274. if (!page)
  1275. continue;
  1276. list_del(&page->lru);
  1277. rmv_page_order(page);
  1278. area->nr_free--;
  1279. expand(zone, page, order, current_order, area, migratetype);
  1280. set_pcppage_migratetype(page, migratetype);
  1281. return page;
  1282. }
  1283. return NULL;
  1284. }
  1285. /*
  1286. * This array describes the order lists are fallen back to when
  1287. * the free lists for the desirable migrate type are depleted
  1288. */
  1289. static int fallbacks[MIGRATE_TYPES][4] = {
  1290. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1291. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1292. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
  1293. #ifdef CONFIG_CMA
  1294. [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
  1295. #endif
  1296. #ifdef CONFIG_MEMORY_ISOLATION
  1297. [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
  1298. #endif
  1299. };
  1300. #ifdef CONFIG_CMA
  1301. static struct page *__rmqueue_cma_fallback(struct zone *zone,
  1302. unsigned int order)
  1303. {
  1304. return __rmqueue_smallest(zone, order, MIGRATE_CMA);
  1305. }
  1306. #else
  1307. static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
  1308. unsigned int order) { return NULL; }
  1309. #endif
  1310. /*
  1311. * Move the free pages in a range to the free lists of the requested type.
  1312. * Note that start_page and end_pages are not aligned on a pageblock
  1313. * boundary. If alignment is required, use move_freepages_block()
  1314. */
  1315. int move_freepages(struct zone *zone,
  1316. struct page *start_page, struct page *end_page,
  1317. int migratetype)
  1318. {
  1319. struct page *page;
  1320. unsigned int order;
  1321. int pages_moved = 0;
  1322. #ifndef CONFIG_HOLES_IN_ZONE
  1323. /*
  1324. * page_zone is not safe to call in this context when
  1325. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  1326. * anyway as we check zone boundaries in move_freepages_block().
  1327. * Remove at a later date when no bug reports exist related to
  1328. * grouping pages by mobility
  1329. */
  1330. VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
  1331. #endif
  1332. for (page = start_page; page <= end_page;) {
  1333. /* Make sure we are not inadvertently changing nodes */
  1334. VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
  1335. if (!pfn_valid_within(page_to_pfn(page))) {
  1336. page++;
  1337. continue;
  1338. }
  1339. if (!PageBuddy(page)) {
  1340. page++;
  1341. continue;
  1342. }
  1343. order = page_order(page);
  1344. list_move(&page->lru,
  1345. &zone->free_area[order].free_list[migratetype]);
  1346. page += 1 << order;
  1347. pages_moved += 1 << order;
  1348. }
  1349. return pages_moved;
  1350. }
  1351. int move_freepages_block(struct zone *zone, struct page *page,
  1352. int migratetype)
  1353. {
  1354. unsigned long start_pfn, end_pfn;
  1355. struct page *start_page, *end_page;
  1356. start_pfn = page_to_pfn(page);
  1357. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  1358. start_page = pfn_to_page(start_pfn);
  1359. end_page = start_page + pageblock_nr_pages - 1;
  1360. end_pfn = start_pfn + pageblock_nr_pages - 1;
  1361. /* Do not cross zone boundaries */
  1362. if (!zone_spans_pfn(zone, start_pfn))
  1363. start_page = page;
  1364. if (!zone_spans_pfn(zone, end_pfn))
  1365. return 0;
  1366. return move_freepages(zone, start_page, end_page, migratetype);
  1367. }
  1368. static void change_pageblock_range(struct page *pageblock_page,
  1369. int start_order, int migratetype)
  1370. {
  1371. int nr_pageblocks = 1 << (start_order - pageblock_order);
  1372. while (nr_pageblocks--) {
  1373. set_pageblock_migratetype(pageblock_page, migratetype);
  1374. pageblock_page += pageblock_nr_pages;
  1375. }
  1376. }
  1377. /*
  1378. * When we are falling back to another migratetype during allocation, try to
  1379. * steal extra free pages from the same pageblocks to satisfy further
  1380. * allocations, instead of polluting multiple pageblocks.
  1381. *
  1382. * If we are stealing a relatively large buddy page, it is likely there will
  1383. * be more free pages in the pageblock, so try to steal them all. For
  1384. * reclaimable and unmovable allocations, we steal regardless of page size,
  1385. * as fragmentation caused by those allocations polluting movable pageblocks
  1386. * is worse than movable allocations stealing from unmovable and reclaimable
  1387. * pageblocks.
  1388. */
  1389. static bool can_steal_fallback(unsigned int order, int start_mt)
  1390. {
  1391. /*
  1392. * Leaving this order check is intended, although there is
  1393. * relaxed order check in next check. The reason is that
  1394. * we can actually steal whole pageblock if this condition met,
  1395. * but, below check doesn't guarantee it and that is just heuristic
  1396. * so could be changed anytime.
  1397. */
  1398. if (order >= pageblock_order)
  1399. return true;
  1400. if (order >= pageblock_order / 2 ||
  1401. start_mt == MIGRATE_RECLAIMABLE ||
  1402. start_mt == MIGRATE_UNMOVABLE ||
  1403. page_group_by_mobility_disabled)
  1404. return true;
  1405. return false;
  1406. }
  1407. /*
  1408. * This function implements actual steal behaviour. If order is large enough,
  1409. * we can steal whole pageblock. If not, we first move freepages in this
  1410. * pageblock and check whether half of pages are moved or not. If half of
  1411. * pages are moved, we can change migratetype of pageblock and permanently
  1412. * use it's pages as requested migratetype in the future.
  1413. */
  1414. static void steal_suitable_fallback(struct zone *zone, struct page *page,
  1415. int start_type)
  1416. {
  1417. unsigned int current_order = page_order(page);
  1418. int pages;
  1419. /* Take ownership for orders >= pageblock_order */
  1420. if (current_order >= pageblock_order) {
  1421. change_pageblock_range(page, current_order, start_type);
  1422. return;
  1423. }
  1424. pages = move_freepages_block(zone, page, start_type);
  1425. /* Claim the whole block if over half of it is free */
  1426. if (pages >= (1 << (pageblock_order-1)) ||
  1427. page_group_by_mobility_disabled)
  1428. set_pageblock_migratetype(page, start_type);
  1429. }
  1430. /*
  1431. * Check whether there is a suitable fallback freepage with requested order.
  1432. * If only_stealable is true, this function returns fallback_mt only if
  1433. * we can steal other freepages all together. This would help to reduce
  1434. * fragmentation due to mixed migratetype pages in one pageblock.
  1435. */
  1436. int find_suitable_fallback(struct free_area *area, unsigned int order,
  1437. int migratetype, bool only_stealable, bool *can_steal)
  1438. {
  1439. int i;
  1440. int fallback_mt;
  1441. if (area->nr_free == 0)
  1442. return -1;
  1443. *can_steal = false;
  1444. for (i = 0;; i++) {
  1445. fallback_mt = fallbacks[migratetype][i];
  1446. if (fallback_mt == MIGRATE_TYPES)
  1447. break;
  1448. if (list_empty(&area->free_list[fallback_mt]))
  1449. continue;
  1450. if (can_steal_fallback(order, migratetype))
  1451. *can_steal = true;
  1452. if (!only_stealable)
  1453. return fallback_mt;
  1454. if (*can_steal)
  1455. return fallback_mt;
  1456. }
  1457. return -1;
  1458. }
  1459. /*
  1460. * Reserve a pageblock for exclusive use of high-order atomic allocations if
  1461. * there are no empty page blocks that contain a page with a suitable order
  1462. */
  1463. static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
  1464. unsigned int alloc_order)
  1465. {
  1466. int mt;
  1467. unsigned long max_managed, flags;
  1468. /*
  1469. * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
  1470. * Check is race-prone but harmless.
  1471. */
  1472. max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
  1473. if (zone->nr_reserved_highatomic >= max_managed)
  1474. return;
  1475. spin_lock_irqsave(&zone->lock, flags);
  1476. /* Recheck the nr_reserved_highatomic limit under the lock */
  1477. if (zone->nr_reserved_highatomic >= max_managed)
  1478. goto out_unlock;
  1479. /* Yoink! */
  1480. mt = get_pageblock_migratetype(page);
  1481. if (mt != MIGRATE_HIGHATOMIC &&
  1482. !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
  1483. zone->nr_reserved_highatomic += pageblock_nr_pages;
  1484. set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
  1485. move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
  1486. }
  1487. out_unlock:
  1488. spin_unlock_irqrestore(&zone->lock, flags);
  1489. }
  1490. /*
  1491. * Used when an allocation is about to fail under memory pressure. This
  1492. * potentially hurts the reliability of high-order allocations when under
  1493. * intense memory pressure but failed atomic allocations should be easier
  1494. * to recover from than an OOM.
  1495. */
  1496. static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
  1497. {
  1498. struct zonelist *zonelist = ac->zonelist;
  1499. unsigned long flags;
  1500. struct zoneref *z;
  1501. struct zone *zone;
  1502. struct page *page;
  1503. int order;
  1504. for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
  1505. ac->nodemask) {
  1506. /* Preserve at least one pageblock */
  1507. if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
  1508. continue;
  1509. spin_lock_irqsave(&zone->lock, flags);
  1510. for (order = 0; order < MAX_ORDER; order++) {
  1511. struct free_area *area = &(zone->free_area[order]);
  1512. page = list_first_entry_or_null(
  1513. &area->free_list[MIGRATE_HIGHATOMIC],
  1514. struct page, lru);
  1515. if (!page)
  1516. continue;
  1517. /*
  1518. * It should never happen but changes to locking could
  1519. * inadvertently allow a per-cpu drain to add pages
  1520. * to MIGRATE_HIGHATOMIC while unreserving so be safe
  1521. * and watch for underflows.
  1522. */
  1523. zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
  1524. zone->nr_reserved_highatomic);
  1525. /*
  1526. * Convert to ac->migratetype and avoid the normal
  1527. * pageblock stealing heuristics. Minimally, the caller
  1528. * is doing the work and needs the pages. More
  1529. * importantly, if the block was always converted to
  1530. * MIGRATE_UNMOVABLE or another type then the number
  1531. * of pageblocks that cannot be completely freed
  1532. * may increase.
  1533. */
  1534. set_pageblock_migratetype(page, ac->migratetype);
  1535. move_freepages_block(zone, page, ac->migratetype);
  1536. spin_unlock_irqrestore(&zone->lock, flags);
  1537. return;
  1538. }
  1539. spin_unlock_irqrestore(&zone->lock, flags);
  1540. }
  1541. }
  1542. /* Remove an element from the buddy allocator from the fallback list */
  1543. static inline struct page *
  1544. __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
  1545. {
  1546. struct free_area *area;
  1547. unsigned int current_order;
  1548. struct page *page;
  1549. int fallback_mt;
  1550. bool can_steal;
  1551. /* Find the largest possible block of pages in the other list */
  1552. for (current_order = MAX_ORDER-1;
  1553. current_order >= order && current_order <= MAX_ORDER-1;
  1554. --current_order) {
  1555. area = &(zone->free_area[current_order]);
  1556. fallback_mt = find_suitable_fallback(area, current_order,
  1557. start_migratetype, false, &can_steal);
  1558. if (fallback_mt == -1)
  1559. continue;
  1560. page = list_first_entry(&area->free_list[fallback_mt],
  1561. struct page, lru);
  1562. if (can_steal)
  1563. steal_suitable_fallback(zone, page, start_migratetype);
  1564. /* Remove the page from the freelists */
  1565. area->nr_free--;
  1566. list_del(&page->lru);
  1567. rmv_page_order(page);
  1568. expand(zone, page, order, current_order, area,
  1569. start_migratetype);
  1570. /*
  1571. * The pcppage_migratetype may differ from pageblock's
  1572. * migratetype depending on the decisions in
  1573. * find_suitable_fallback(). This is OK as long as it does not
  1574. * differ for MIGRATE_CMA pageblocks. Those can be used as
  1575. * fallback only via special __rmqueue_cma_fallback() function
  1576. */
  1577. set_pcppage_migratetype(page, start_migratetype);
  1578. trace_mm_page_alloc_extfrag(page, order, current_order,
  1579. start_migratetype, fallback_mt);
  1580. return page;
  1581. }
  1582. return NULL;
  1583. }
  1584. /*
  1585. * Do the hard work of removing an element from the buddy allocator.
  1586. * Call me with the zone->lock already held.
  1587. */
  1588. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  1589. int migratetype)
  1590. {
  1591. struct page *page;
  1592. page = __rmqueue_smallest(zone, order, migratetype);
  1593. if (unlikely(!page)) {
  1594. if (migratetype == MIGRATE_MOVABLE)
  1595. page = __rmqueue_cma_fallback(zone, order);
  1596. if (!page)
  1597. page = __rmqueue_fallback(zone, order, migratetype);
  1598. }
  1599. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  1600. return page;
  1601. }
  1602. /*
  1603. * Obtain a specified number of elements from the buddy allocator, all under
  1604. * a single hold of the lock, for efficiency. Add them to the supplied list.
  1605. * Returns the number of new pages which were placed at *list.
  1606. */
  1607. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  1608. unsigned long count, struct list_head *list,
  1609. int migratetype, bool cold)
  1610. {
  1611. int i;
  1612. spin_lock(&zone->lock);
  1613. for (i = 0; i < count; ++i) {
  1614. struct page *page = __rmqueue(zone, order, migratetype);
  1615. if (unlikely(page == NULL))
  1616. break;
  1617. /*
  1618. * Split buddy pages returned by expand() are received here
  1619. * in physical page order. The page is added to the callers and
  1620. * list and the list head then moves forward. From the callers
  1621. * perspective, the linked list is ordered by page number in
  1622. * some conditions. This is useful for IO devices that can
  1623. * merge IO requests if the physical pages are ordered
  1624. * properly.
  1625. */
  1626. if (likely(!cold))
  1627. list_add(&page->lru, list);
  1628. else
  1629. list_add_tail(&page->lru, list);
  1630. list = &page->lru;
  1631. if (is_migrate_cma(get_pcppage_migratetype(page)))
  1632. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  1633. -(1 << order));
  1634. }
  1635. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  1636. spin_unlock(&zone->lock);
  1637. return i;
  1638. }
  1639. #ifdef CONFIG_NUMA
  1640. /*
  1641. * Called from the vmstat counter updater to drain pagesets of this
  1642. * currently executing processor on remote nodes after they have
  1643. * expired.
  1644. *
  1645. * Note that this function must be called with the thread pinned to
  1646. * a single processor.
  1647. */
  1648. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  1649. {
  1650. unsigned long flags;
  1651. int to_drain, batch;
  1652. local_irq_save(flags);
  1653. batch = READ_ONCE(pcp->batch);
  1654. to_drain = min(pcp->count, batch);
  1655. if (to_drain > 0) {
  1656. free_pcppages_bulk(zone, to_drain, pcp);
  1657. pcp->count -= to_drain;
  1658. }
  1659. local_irq_restore(flags);
  1660. }
  1661. #endif
  1662. /*
  1663. * Drain pcplists of the indicated processor and zone.
  1664. *
  1665. * The processor must either be the current processor and the
  1666. * thread pinned to the current processor or a processor that
  1667. * is not online.
  1668. */
  1669. static void drain_pages_zone(unsigned int cpu, struct zone *zone)
  1670. {
  1671. unsigned long flags;
  1672. struct per_cpu_pageset *pset;
  1673. struct per_cpu_pages *pcp;
  1674. local_irq_save(flags);
  1675. pset = per_cpu_ptr(zone->pageset, cpu);
  1676. pcp = &pset->pcp;
  1677. if (pcp->count) {
  1678. free_pcppages_bulk(zone, pcp->count, pcp);
  1679. pcp->count = 0;
  1680. }
  1681. local_irq_restore(flags);
  1682. }
  1683. /*
  1684. * Drain pcplists of all zones on the indicated processor.
  1685. *
  1686. * The processor must either be the current processor and the
  1687. * thread pinned to the current processor or a processor that
  1688. * is not online.
  1689. */
  1690. static void drain_pages(unsigned int cpu)
  1691. {
  1692. struct zone *zone;
  1693. for_each_populated_zone(zone) {
  1694. drain_pages_zone(cpu, zone);
  1695. }
  1696. }
  1697. /*
  1698. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  1699. *
  1700. * The CPU has to be pinned. When zone parameter is non-NULL, spill just
  1701. * the single zone's pages.
  1702. */
  1703. void drain_local_pages(struct zone *zone)
  1704. {
  1705. int cpu = smp_processor_id();
  1706. if (zone)
  1707. drain_pages_zone(cpu, zone);
  1708. else
  1709. drain_pages(cpu);
  1710. }
  1711. /*
  1712. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  1713. *
  1714. * When zone parameter is non-NULL, spill just the single zone's pages.
  1715. *
  1716. * Note that this code is protected against sending an IPI to an offline
  1717. * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
  1718. * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
  1719. * nothing keeps CPUs from showing up after we populated the cpumask and
  1720. * before the call to on_each_cpu_mask().
  1721. */
  1722. void drain_all_pages(struct zone *zone)
  1723. {
  1724. int cpu;
  1725. /*
  1726. * Allocate in the BSS so we wont require allocation in
  1727. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  1728. */
  1729. static cpumask_t cpus_with_pcps;
  1730. /*
  1731. * We don't care about racing with CPU hotplug event
  1732. * as offline notification will cause the notified
  1733. * cpu to drain that CPU pcps and on_each_cpu_mask
  1734. * disables preemption as part of its processing
  1735. */
  1736. for_each_online_cpu(cpu) {
  1737. struct per_cpu_pageset *pcp;
  1738. struct zone *z;
  1739. bool has_pcps = false;
  1740. if (zone) {
  1741. pcp = per_cpu_ptr(zone->pageset, cpu);
  1742. if (pcp->pcp.count)
  1743. has_pcps = true;
  1744. } else {
  1745. for_each_populated_zone(z) {
  1746. pcp = per_cpu_ptr(z->pageset, cpu);
  1747. if (pcp->pcp.count) {
  1748. has_pcps = true;
  1749. break;
  1750. }
  1751. }
  1752. }
  1753. if (has_pcps)
  1754. cpumask_set_cpu(cpu, &cpus_with_pcps);
  1755. else
  1756. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  1757. }
  1758. on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
  1759. zone, 1);
  1760. }
  1761. #ifdef CONFIG_HIBERNATION
  1762. void mark_free_pages(struct zone *zone)
  1763. {
  1764. unsigned long pfn, max_zone_pfn;
  1765. unsigned long flags;
  1766. unsigned int order, t;
  1767. struct page *page;
  1768. if (zone_is_empty(zone))
  1769. return;
  1770. spin_lock_irqsave(&zone->lock, flags);
  1771. max_zone_pfn = zone_end_pfn(zone);
  1772. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  1773. if (pfn_valid(pfn)) {
  1774. page = pfn_to_page(pfn);
  1775. if (!swsusp_page_is_forbidden(page))
  1776. swsusp_unset_page_free(page);
  1777. }
  1778. for_each_migratetype_order(order, t) {
  1779. list_for_each_entry(page,
  1780. &zone->free_area[order].free_list[t], lru) {
  1781. unsigned long i;
  1782. pfn = page_to_pfn(page);
  1783. for (i = 0; i < (1UL << order); i++)
  1784. swsusp_set_page_free(pfn_to_page(pfn + i));
  1785. }
  1786. }
  1787. spin_unlock_irqrestore(&zone->lock, flags);
  1788. }
  1789. #endif /* CONFIG_PM */
  1790. /*
  1791. * Free a 0-order page
  1792. * cold == true ? free a cold page : free a hot page
  1793. */
  1794. void free_hot_cold_page(struct page *page, bool cold)
  1795. {
  1796. struct zone *zone = page_zone(page);
  1797. struct per_cpu_pages *pcp;
  1798. unsigned long flags;
  1799. unsigned long pfn = page_to_pfn(page);
  1800. int migratetype;
  1801. if (!free_pages_prepare(page, 0))
  1802. return;
  1803. migratetype = get_pfnblock_migratetype(page, pfn);
  1804. set_pcppage_migratetype(page, migratetype);
  1805. local_irq_save(flags);
  1806. __count_vm_event(PGFREE);
  1807. /*
  1808. * We only track unmovable, reclaimable and movable on pcp lists.
  1809. * Free ISOLATE pages back to the allocator because they are being
  1810. * offlined but treat RESERVE as movable pages so we can get those
  1811. * areas back if necessary. Otherwise, we may have to free
  1812. * excessively into the page allocator
  1813. */
  1814. if (migratetype >= MIGRATE_PCPTYPES) {
  1815. if (unlikely(is_migrate_isolate(migratetype))) {
  1816. free_one_page(zone, page, pfn, 0, migratetype);
  1817. goto out;
  1818. }
  1819. migratetype = MIGRATE_MOVABLE;
  1820. }
  1821. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1822. if (!cold)
  1823. list_add(&page->lru, &pcp->lists[migratetype]);
  1824. else
  1825. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  1826. pcp->count++;
  1827. if (pcp->count >= pcp->high) {
  1828. unsigned long batch = READ_ONCE(pcp->batch);
  1829. free_pcppages_bulk(zone, batch, pcp);
  1830. pcp->count -= batch;
  1831. }
  1832. out:
  1833. local_irq_restore(flags);
  1834. }
  1835. /*
  1836. * Free a list of 0-order pages
  1837. */
  1838. void free_hot_cold_page_list(struct list_head *list, bool cold)
  1839. {
  1840. struct page *page, *next;
  1841. list_for_each_entry_safe(page, next, list, lru) {
  1842. trace_mm_page_free_batched(page, cold);
  1843. free_hot_cold_page(page, cold);
  1844. }
  1845. }
  1846. /*
  1847. * split_page takes a non-compound higher-order page, and splits it into
  1848. * n (1<<order) sub-pages: page[0..n]
  1849. * Each sub-page must be freed individually.
  1850. *
  1851. * Note: this is probably too low level an operation for use in drivers.
  1852. * Please consult with lkml before using this in your driver.
  1853. */
  1854. void split_page(struct page *page, unsigned int order)
  1855. {
  1856. int i;
  1857. gfp_t gfp_mask;
  1858. VM_BUG_ON_PAGE(PageCompound(page), page);
  1859. VM_BUG_ON_PAGE(!page_count(page), page);
  1860. #ifdef CONFIG_KMEMCHECK
  1861. /*
  1862. * Split shadow pages too, because free(page[0]) would
  1863. * otherwise free the whole shadow.
  1864. */
  1865. if (kmemcheck_page_is_tracked(page))
  1866. split_page(virt_to_page(page[0].shadow), order);
  1867. #endif
  1868. gfp_mask = get_page_owner_gfp(page);
  1869. set_page_owner(page, 0, gfp_mask);
  1870. for (i = 1; i < (1 << order); i++) {
  1871. set_page_refcounted(page + i);
  1872. set_page_owner(page + i, 0, gfp_mask);
  1873. }
  1874. }
  1875. EXPORT_SYMBOL_GPL(split_page);
  1876. int __isolate_free_page(struct page *page, unsigned int order)
  1877. {
  1878. unsigned long watermark;
  1879. struct zone *zone;
  1880. int mt;
  1881. BUG_ON(!PageBuddy(page));
  1882. zone = page_zone(page);
  1883. mt = get_pageblock_migratetype(page);
  1884. if (!is_migrate_isolate(mt)) {
  1885. /* Obey watermarks as if the page was being allocated */
  1886. watermark = low_wmark_pages(zone) + (1 << order);
  1887. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  1888. return 0;
  1889. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  1890. }
  1891. /* Remove page from free list */
  1892. list_del(&page->lru);
  1893. zone->free_area[order].nr_free--;
  1894. rmv_page_order(page);
  1895. set_page_owner(page, order, __GFP_MOVABLE);
  1896. /* Set the pageblock if the isolated page is at least a pageblock */
  1897. if (order >= pageblock_order - 1) {
  1898. struct page *endpage = page + (1 << order) - 1;
  1899. for (; page < endpage; page += pageblock_nr_pages) {
  1900. int mt = get_pageblock_migratetype(page);
  1901. if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
  1902. set_pageblock_migratetype(page,
  1903. MIGRATE_MOVABLE);
  1904. }
  1905. }
  1906. return 1UL << order;
  1907. }
  1908. /*
  1909. * Similar to split_page except the page is already free. As this is only
  1910. * being used for migration, the migratetype of the block also changes.
  1911. * As this is called with interrupts disabled, the caller is responsible
  1912. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  1913. * are enabled.
  1914. *
  1915. * Note: this is probably too low level an operation for use in drivers.
  1916. * Please consult with lkml before using this in your driver.
  1917. */
  1918. int split_free_page(struct page *page)
  1919. {
  1920. unsigned int order;
  1921. int nr_pages;
  1922. order = page_order(page);
  1923. nr_pages = __isolate_free_page(page, order);
  1924. if (!nr_pages)
  1925. return 0;
  1926. /* Split into individual pages */
  1927. set_page_refcounted(page);
  1928. split_page(page, order);
  1929. return nr_pages;
  1930. }
  1931. /*
  1932. * Allocate a page from the given zone. Use pcplists for order-0 allocations.
  1933. */
  1934. static inline
  1935. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1936. struct zone *zone, unsigned int order,
  1937. gfp_t gfp_flags, int alloc_flags, int migratetype)
  1938. {
  1939. unsigned long flags;
  1940. struct page *page;
  1941. bool cold = ((gfp_flags & __GFP_COLD) != 0);
  1942. if (likely(order == 0)) {
  1943. struct per_cpu_pages *pcp;
  1944. struct list_head *list;
  1945. local_irq_save(flags);
  1946. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1947. list = &pcp->lists[migratetype];
  1948. if (list_empty(list)) {
  1949. pcp->count += rmqueue_bulk(zone, 0,
  1950. pcp->batch, list,
  1951. migratetype, cold);
  1952. if (unlikely(list_empty(list)))
  1953. goto failed;
  1954. }
  1955. if (cold)
  1956. page = list_last_entry(list, struct page, lru);
  1957. else
  1958. page = list_first_entry(list, struct page, lru);
  1959. list_del(&page->lru);
  1960. pcp->count--;
  1961. } else {
  1962. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1963. /*
  1964. * __GFP_NOFAIL is not to be used in new code.
  1965. *
  1966. * All __GFP_NOFAIL callers should be fixed so that they
  1967. * properly detect and handle allocation failures.
  1968. *
  1969. * We most definitely don't want callers attempting to
  1970. * allocate greater than order-1 page units with
  1971. * __GFP_NOFAIL.
  1972. */
  1973. WARN_ON_ONCE(order > 1);
  1974. }
  1975. spin_lock_irqsave(&zone->lock, flags);
  1976. page = NULL;
  1977. if (alloc_flags & ALLOC_HARDER) {
  1978. page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
  1979. if (page)
  1980. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  1981. }
  1982. if (!page)
  1983. page = __rmqueue(zone, order, migratetype);
  1984. spin_unlock(&zone->lock);
  1985. if (!page)
  1986. goto failed;
  1987. __mod_zone_freepage_state(zone, -(1 << order),
  1988. get_pcppage_migratetype(page));
  1989. }
  1990. __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
  1991. if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
  1992. !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
  1993. set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
  1994. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1995. zone_statistics(preferred_zone, zone, gfp_flags);
  1996. local_irq_restore(flags);
  1997. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  1998. return page;
  1999. failed:
  2000. local_irq_restore(flags);
  2001. return NULL;
  2002. }
  2003. #ifdef CONFIG_FAIL_PAGE_ALLOC
  2004. static struct {
  2005. struct fault_attr attr;
  2006. bool ignore_gfp_highmem;
  2007. bool ignore_gfp_reclaim;
  2008. u32 min_order;
  2009. } fail_page_alloc = {
  2010. .attr = FAULT_ATTR_INITIALIZER,
  2011. .ignore_gfp_reclaim = true,
  2012. .ignore_gfp_highmem = true,
  2013. .min_order = 1,
  2014. };
  2015. static int __init setup_fail_page_alloc(char *str)
  2016. {
  2017. return setup_fault_attr(&fail_page_alloc.attr, str);
  2018. }
  2019. __setup("fail_page_alloc=", setup_fail_page_alloc);
  2020. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2021. {
  2022. if (order < fail_page_alloc.min_order)
  2023. return false;
  2024. if (gfp_mask & __GFP_NOFAIL)
  2025. return false;
  2026. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  2027. return false;
  2028. if (fail_page_alloc.ignore_gfp_reclaim &&
  2029. (gfp_mask & __GFP_DIRECT_RECLAIM))
  2030. return false;
  2031. return should_fail(&fail_page_alloc.attr, 1 << order);
  2032. }
  2033. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  2034. static int __init fail_page_alloc_debugfs(void)
  2035. {
  2036. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  2037. struct dentry *dir;
  2038. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  2039. &fail_page_alloc.attr);
  2040. if (IS_ERR(dir))
  2041. return PTR_ERR(dir);
  2042. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  2043. &fail_page_alloc.ignore_gfp_reclaim))
  2044. goto fail;
  2045. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  2046. &fail_page_alloc.ignore_gfp_highmem))
  2047. goto fail;
  2048. if (!debugfs_create_u32("min-order", mode, dir,
  2049. &fail_page_alloc.min_order))
  2050. goto fail;
  2051. return 0;
  2052. fail:
  2053. debugfs_remove_recursive(dir);
  2054. return -ENOMEM;
  2055. }
  2056. late_initcall(fail_page_alloc_debugfs);
  2057. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  2058. #else /* CONFIG_FAIL_PAGE_ALLOC */
  2059. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2060. {
  2061. return false;
  2062. }
  2063. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  2064. /*
  2065. * Return true if free base pages are above 'mark'. For high-order checks it
  2066. * will return true of the order-0 watermark is reached and there is at least
  2067. * one free page of a suitable size. Checking now avoids taking the zone lock
  2068. * to check in the allocation paths if no pages are free.
  2069. */
  2070. static bool __zone_watermark_ok(struct zone *z, unsigned int order,
  2071. unsigned long mark, int classzone_idx, int alloc_flags,
  2072. long free_pages)
  2073. {
  2074. long min = mark;
  2075. int o;
  2076. const int alloc_harder = (alloc_flags & ALLOC_HARDER);
  2077. /* free_pages may go negative - that's OK */
  2078. free_pages -= (1 << order) - 1;
  2079. if (alloc_flags & ALLOC_HIGH)
  2080. min -= min / 2;
  2081. /*
  2082. * If the caller does not have rights to ALLOC_HARDER then subtract
  2083. * the high-atomic reserves. This will over-estimate the size of the
  2084. * atomic reserve but it avoids a search.
  2085. */
  2086. if (likely(!alloc_harder))
  2087. free_pages -= z->nr_reserved_highatomic;
  2088. else
  2089. min -= min / 4;
  2090. #ifdef CONFIG_CMA
  2091. /* If allocation can't use CMA areas don't use free CMA pages */
  2092. if (!(alloc_flags & ALLOC_CMA))
  2093. free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
  2094. #endif
  2095. /*
  2096. * Check watermarks for an order-0 allocation request. If these
  2097. * are not met, then a high-order request also cannot go ahead
  2098. * even if a suitable page happened to be free.
  2099. */
  2100. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  2101. return false;
  2102. /* If this is an order-0 request then the watermark is fine */
  2103. if (!order)
  2104. return true;
  2105. /* For a high-order request, check at least one suitable page is free */
  2106. for (o = order; o < MAX_ORDER; o++) {
  2107. struct free_area *area = &z->free_area[o];
  2108. int mt;
  2109. if (!area->nr_free)
  2110. continue;
  2111. if (alloc_harder)
  2112. return true;
  2113. for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
  2114. if (!list_empty(&area->free_list[mt]))
  2115. return true;
  2116. }
  2117. #ifdef CONFIG_CMA
  2118. if ((alloc_flags & ALLOC_CMA) &&
  2119. !list_empty(&area->free_list[MIGRATE_CMA])) {
  2120. return true;
  2121. }
  2122. #endif
  2123. }
  2124. return false;
  2125. }
  2126. bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  2127. int classzone_idx, int alloc_flags)
  2128. {
  2129. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  2130. zone_page_state(z, NR_FREE_PAGES));
  2131. }
  2132. bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
  2133. unsigned long mark, int classzone_idx)
  2134. {
  2135. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  2136. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  2137. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  2138. return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
  2139. free_pages);
  2140. }
  2141. #ifdef CONFIG_NUMA
  2142. static bool zone_local(struct zone *local_zone, struct zone *zone)
  2143. {
  2144. return local_zone->node == zone->node;
  2145. }
  2146. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2147. {
  2148. return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
  2149. RECLAIM_DISTANCE;
  2150. }
  2151. #else /* CONFIG_NUMA */
  2152. static bool zone_local(struct zone *local_zone, struct zone *zone)
  2153. {
  2154. return true;
  2155. }
  2156. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2157. {
  2158. return true;
  2159. }
  2160. #endif /* CONFIG_NUMA */
  2161. static void reset_alloc_batches(struct zone *preferred_zone)
  2162. {
  2163. struct zone *zone = preferred_zone->zone_pgdat->node_zones;
  2164. do {
  2165. mod_zone_page_state(zone, NR_ALLOC_BATCH,
  2166. high_wmark_pages(zone) - low_wmark_pages(zone) -
  2167. atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
  2168. clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
  2169. } while (zone++ != preferred_zone);
  2170. }
  2171. /*
  2172. * get_page_from_freelist goes through the zonelist trying to allocate
  2173. * a page.
  2174. */
  2175. static struct page *
  2176. get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
  2177. const struct alloc_context *ac)
  2178. {
  2179. struct zonelist *zonelist = ac->zonelist;
  2180. struct zoneref *z;
  2181. struct page *page = NULL;
  2182. struct zone *zone;
  2183. int nr_fair_skipped = 0;
  2184. bool zonelist_rescan;
  2185. zonelist_scan:
  2186. zonelist_rescan = false;
  2187. /*
  2188. * Scan zonelist, looking for a zone with enough free.
  2189. * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
  2190. */
  2191. for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
  2192. ac->nodemask) {
  2193. unsigned long mark;
  2194. if (cpusets_enabled() &&
  2195. (alloc_flags & ALLOC_CPUSET) &&
  2196. !cpuset_zone_allowed(zone, gfp_mask))
  2197. continue;
  2198. /*
  2199. * Distribute pages in proportion to the individual
  2200. * zone size to ensure fair page aging. The zone a
  2201. * page was allocated in should have no effect on the
  2202. * time the page has in memory before being reclaimed.
  2203. */
  2204. if (alloc_flags & ALLOC_FAIR) {
  2205. if (!zone_local(ac->preferred_zone, zone))
  2206. break;
  2207. if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
  2208. nr_fair_skipped++;
  2209. continue;
  2210. }
  2211. }
  2212. /*
  2213. * When allocating a page cache page for writing, we
  2214. * want to get it from a zone that is within its dirty
  2215. * limit, such that no single zone holds more than its
  2216. * proportional share of globally allowed dirty pages.
  2217. * The dirty limits take into account the zone's
  2218. * lowmem reserves and high watermark so that kswapd
  2219. * should be able to balance it without having to
  2220. * write pages from its LRU list.
  2221. *
  2222. * This may look like it could increase pressure on
  2223. * lower zones by failing allocations in higher zones
  2224. * before they are full. But the pages that do spill
  2225. * over are limited as the lower zones are protected
  2226. * by this very same mechanism. It should not become
  2227. * a practical burden to them.
  2228. *
  2229. * XXX: For now, allow allocations to potentially
  2230. * exceed the per-zone dirty limit in the slowpath
  2231. * (spread_dirty_pages unset) before going into reclaim,
  2232. * which is important when on a NUMA setup the allowed
  2233. * zones are together not big enough to reach the
  2234. * global limit. The proper fix for these situations
  2235. * will require awareness of zones in the
  2236. * dirty-throttling and the flusher threads.
  2237. */
  2238. if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
  2239. continue;
  2240. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  2241. if (!zone_watermark_ok(zone, order, mark,
  2242. ac->classzone_idx, alloc_flags)) {
  2243. int ret;
  2244. /* Checked here to keep the fast path fast */
  2245. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  2246. if (alloc_flags & ALLOC_NO_WATERMARKS)
  2247. goto try_this_zone;
  2248. if (zone_reclaim_mode == 0 ||
  2249. !zone_allows_reclaim(ac->preferred_zone, zone))
  2250. continue;
  2251. ret = zone_reclaim(zone, gfp_mask, order);
  2252. switch (ret) {
  2253. case ZONE_RECLAIM_NOSCAN:
  2254. /* did not scan */
  2255. continue;
  2256. case ZONE_RECLAIM_FULL:
  2257. /* scanned but unreclaimable */
  2258. continue;
  2259. default:
  2260. /* did we reclaim enough */
  2261. if (zone_watermark_ok(zone, order, mark,
  2262. ac->classzone_idx, alloc_flags))
  2263. goto try_this_zone;
  2264. continue;
  2265. }
  2266. }
  2267. try_this_zone:
  2268. page = buffered_rmqueue(ac->preferred_zone, zone, order,
  2269. gfp_mask, alloc_flags, ac->migratetype);
  2270. if (page) {
  2271. if (prep_new_page(page, order, gfp_mask, alloc_flags))
  2272. goto try_this_zone;
  2273. /*
  2274. * If this is a high-order atomic allocation then check
  2275. * if the pageblock should be reserved for the future
  2276. */
  2277. if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
  2278. reserve_highatomic_pageblock(page, zone, order);
  2279. return page;
  2280. }
  2281. }
  2282. /*
  2283. * The first pass makes sure allocations are spread fairly within the
  2284. * local node. However, the local node might have free pages left
  2285. * after the fairness batches are exhausted, and remote zones haven't
  2286. * even been considered yet. Try once more without fairness, and
  2287. * include remote zones now, before entering the slowpath and waking
  2288. * kswapd: prefer spilling to a remote zone over swapping locally.
  2289. */
  2290. if (alloc_flags & ALLOC_FAIR) {
  2291. alloc_flags &= ~ALLOC_FAIR;
  2292. if (nr_fair_skipped) {
  2293. zonelist_rescan = true;
  2294. reset_alloc_batches(ac->preferred_zone);
  2295. }
  2296. if (nr_online_nodes > 1)
  2297. zonelist_rescan = true;
  2298. }
  2299. if (zonelist_rescan)
  2300. goto zonelist_scan;
  2301. return NULL;
  2302. }
  2303. /*
  2304. * Large machines with many possible nodes should not always dump per-node
  2305. * meminfo in irq context.
  2306. */
  2307. static inline bool should_suppress_show_mem(void)
  2308. {
  2309. bool ret = false;
  2310. #if NODES_SHIFT > 8
  2311. ret = in_interrupt();
  2312. #endif
  2313. return ret;
  2314. }
  2315. static DEFINE_RATELIMIT_STATE(nopage_rs,
  2316. DEFAULT_RATELIMIT_INTERVAL,
  2317. DEFAULT_RATELIMIT_BURST);
  2318. void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
  2319. {
  2320. unsigned int filter = SHOW_MEM_FILTER_NODES;
  2321. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  2322. debug_guardpage_minorder() > 0)
  2323. return;
  2324. /*
  2325. * This documents exceptions given to allocations in certain
  2326. * contexts that are allowed to allocate outside current's set
  2327. * of allowed nodes.
  2328. */
  2329. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2330. if (test_thread_flag(TIF_MEMDIE) ||
  2331. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  2332. filter &= ~SHOW_MEM_FILTER_NODES;
  2333. if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
  2334. filter &= ~SHOW_MEM_FILTER_NODES;
  2335. if (fmt) {
  2336. struct va_format vaf;
  2337. va_list args;
  2338. va_start(args, fmt);
  2339. vaf.fmt = fmt;
  2340. vaf.va = &args;
  2341. pr_warn("%pV", &vaf);
  2342. va_end(args);
  2343. }
  2344. pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
  2345. current->comm, order, gfp_mask, &gfp_mask);
  2346. dump_stack();
  2347. if (!should_suppress_show_mem())
  2348. show_mem(filter);
  2349. }
  2350. static inline struct page *
  2351. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  2352. const struct alloc_context *ac, unsigned long *did_some_progress)
  2353. {
  2354. struct oom_control oc = {
  2355. .zonelist = ac->zonelist,
  2356. .nodemask = ac->nodemask,
  2357. .gfp_mask = gfp_mask,
  2358. .order = order,
  2359. };
  2360. struct page *page;
  2361. *did_some_progress = 0;
  2362. /*
  2363. * Acquire the oom lock. If that fails, somebody else is
  2364. * making progress for us.
  2365. */
  2366. if (!mutex_trylock(&oom_lock)) {
  2367. *did_some_progress = 1;
  2368. schedule_timeout_uninterruptible(1);
  2369. return NULL;
  2370. }
  2371. /*
  2372. * Go through the zonelist yet one more time, keep very high watermark
  2373. * here, this is only to catch a parallel oom killing, we must fail if
  2374. * we're still under heavy pressure.
  2375. */
  2376. page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
  2377. ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
  2378. if (page)
  2379. goto out;
  2380. if (!(gfp_mask & __GFP_NOFAIL)) {
  2381. /* Coredumps can quickly deplete all memory reserves */
  2382. if (current->flags & PF_DUMPCORE)
  2383. goto out;
  2384. /* The OOM killer will not help higher order allocs */
  2385. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2386. goto out;
  2387. /* The OOM killer does not needlessly kill tasks for lowmem */
  2388. if (ac->high_zoneidx < ZONE_NORMAL)
  2389. goto out;
  2390. /* The OOM killer does not compensate for IO-less reclaim */
  2391. if (!(gfp_mask & __GFP_FS)) {
  2392. /*
  2393. * XXX: Page reclaim didn't yield anything,
  2394. * and the OOM killer can't be invoked, but
  2395. * keep looping as per tradition.
  2396. */
  2397. *did_some_progress = 1;
  2398. goto out;
  2399. }
  2400. if (pm_suspended_storage())
  2401. goto out;
  2402. /* The OOM killer may not free memory on a specific node */
  2403. if (gfp_mask & __GFP_THISNODE)
  2404. goto out;
  2405. }
  2406. /* Exhausted what can be done so it's blamo time */
  2407. if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
  2408. *did_some_progress = 1;
  2409. if (gfp_mask & __GFP_NOFAIL) {
  2410. page = get_page_from_freelist(gfp_mask, order,
  2411. ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
  2412. /*
  2413. * fallback to ignore cpuset restriction if our nodes
  2414. * are depleted
  2415. */
  2416. if (!page)
  2417. page = get_page_from_freelist(gfp_mask, order,
  2418. ALLOC_NO_WATERMARKS, ac);
  2419. }
  2420. }
  2421. out:
  2422. mutex_unlock(&oom_lock);
  2423. return page;
  2424. }
  2425. #ifdef CONFIG_COMPACTION
  2426. /* Try memory compaction for high-order allocations before reclaim */
  2427. static struct page *
  2428. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2429. int alloc_flags, const struct alloc_context *ac,
  2430. enum migrate_mode mode, int *contended_compaction,
  2431. bool *deferred_compaction)
  2432. {
  2433. unsigned long compact_result;
  2434. struct page *page;
  2435. if (!order)
  2436. return NULL;
  2437. current->flags |= PF_MEMALLOC;
  2438. compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
  2439. mode, contended_compaction);
  2440. current->flags &= ~PF_MEMALLOC;
  2441. switch (compact_result) {
  2442. case COMPACT_DEFERRED:
  2443. *deferred_compaction = true;
  2444. /* fall-through */
  2445. case COMPACT_SKIPPED:
  2446. return NULL;
  2447. default:
  2448. break;
  2449. }
  2450. /*
  2451. * At least in one zone compaction wasn't deferred or skipped, so let's
  2452. * count a compaction stall
  2453. */
  2454. count_vm_event(COMPACTSTALL);
  2455. page = get_page_from_freelist(gfp_mask, order,
  2456. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  2457. if (page) {
  2458. struct zone *zone = page_zone(page);
  2459. zone->compact_blockskip_flush = false;
  2460. compaction_defer_reset(zone, order, true);
  2461. count_vm_event(COMPACTSUCCESS);
  2462. return page;
  2463. }
  2464. /*
  2465. * It's bad if compaction run occurs and fails. The most likely reason
  2466. * is that pages exist, but not enough to satisfy watermarks.
  2467. */
  2468. count_vm_event(COMPACTFAIL);
  2469. cond_resched();
  2470. return NULL;
  2471. }
  2472. #else
  2473. static inline struct page *
  2474. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2475. int alloc_flags, const struct alloc_context *ac,
  2476. enum migrate_mode mode, int *contended_compaction,
  2477. bool *deferred_compaction)
  2478. {
  2479. return NULL;
  2480. }
  2481. #endif /* CONFIG_COMPACTION */
  2482. /* Perform direct synchronous page reclaim */
  2483. static int
  2484. __perform_reclaim(gfp_t gfp_mask, unsigned int order,
  2485. const struct alloc_context *ac)
  2486. {
  2487. struct reclaim_state reclaim_state;
  2488. int progress;
  2489. cond_resched();
  2490. /* We now go into synchronous reclaim */
  2491. cpuset_memory_pressure_bump();
  2492. current->flags |= PF_MEMALLOC;
  2493. lockdep_set_current_reclaim_state(gfp_mask);
  2494. reclaim_state.reclaimed_slab = 0;
  2495. current->reclaim_state = &reclaim_state;
  2496. progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
  2497. ac->nodemask);
  2498. current->reclaim_state = NULL;
  2499. lockdep_clear_current_reclaim_state();
  2500. current->flags &= ~PF_MEMALLOC;
  2501. cond_resched();
  2502. return progress;
  2503. }
  2504. /* The really slow allocator path where we enter direct reclaim */
  2505. static inline struct page *
  2506. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  2507. int alloc_flags, const struct alloc_context *ac,
  2508. unsigned long *did_some_progress)
  2509. {
  2510. struct page *page = NULL;
  2511. bool drained = false;
  2512. *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
  2513. if (unlikely(!(*did_some_progress)))
  2514. return NULL;
  2515. retry:
  2516. page = get_page_from_freelist(gfp_mask, order,
  2517. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  2518. /*
  2519. * If an allocation failed after direct reclaim, it could be because
  2520. * pages are pinned on the per-cpu lists or in high alloc reserves.
  2521. * Shrink them them and try again
  2522. */
  2523. if (!page && !drained) {
  2524. unreserve_highatomic_pageblock(ac);
  2525. drain_all_pages(NULL);
  2526. drained = true;
  2527. goto retry;
  2528. }
  2529. return page;
  2530. }
  2531. static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
  2532. {
  2533. struct zoneref *z;
  2534. struct zone *zone;
  2535. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
  2536. ac->high_zoneidx, ac->nodemask)
  2537. wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
  2538. }
  2539. static inline int
  2540. gfp_to_alloc_flags(gfp_t gfp_mask)
  2541. {
  2542. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  2543. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  2544. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  2545. /*
  2546. * The caller may dip into page reserves a bit more if the caller
  2547. * cannot run direct reclaim, or if the caller has realtime scheduling
  2548. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  2549. * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
  2550. */
  2551. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  2552. if (gfp_mask & __GFP_ATOMIC) {
  2553. /*
  2554. * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
  2555. * if it can't schedule.
  2556. */
  2557. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2558. alloc_flags |= ALLOC_HARDER;
  2559. /*
  2560. * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
  2561. * comment for __cpuset_node_allowed().
  2562. */
  2563. alloc_flags &= ~ALLOC_CPUSET;
  2564. } else if (unlikely(rt_task(current)) && !in_interrupt())
  2565. alloc_flags |= ALLOC_HARDER;
  2566. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  2567. if (gfp_mask & __GFP_MEMALLOC)
  2568. alloc_flags |= ALLOC_NO_WATERMARKS;
  2569. else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  2570. alloc_flags |= ALLOC_NO_WATERMARKS;
  2571. else if (!in_interrupt() &&
  2572. ((current->flags & PF_MEMALLOC) ||
  2573. unlikely(test_thread_flag(TIF_MEMDIE))))
  2574. alloc_flags |= ALLOC_NO_WATERMARKS;
  2575. }
  2576. #ifdef CONFIG_CMA
  2577. if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2578. alloc_flags |= ALLOC_CMA;
  2579. #endif
  2580. return alloc_flags;
  2581. }
  2582. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  2583. {
  2584. return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
  2585. }
  2586. static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
  2587. {
  2588. return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
  2589. }
  2590. static inline struct page *
  2591. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  2592. struct alloc_context *ac)
  2593. {
  2594. bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
  2595. struct page *page = NULL;
  2596. int alloc_flags;
  2597. unsigned long pages_reclaimed = 0;
  2598. unsigned long did_some_progress;
  2599. enum migrate_mode migration_mode = MIGRATE_ASYNC;
  2600. bool deferred_compaction = false;
  2601. int contended_compaction = COMPACT_CONTENDED_NONE;
  2602. /*
  2603. * In the slowpath, we sanity check order to avoid ever trying to
  2604. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  2605. * be using allocators in order of preference for an area that is
  2606. * too large.
  2607. */
  2608. if (order >= MAX_ORDER) {
  2609. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  2610. return NULL;
  2611. }
  2612. /*
  2613. * We also sanity check to catch abuse of atomic reserves being used by
  2614. * callers that are not in atomic context.
  2615. */
  2616. if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
  2617. (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
  2618. gfp_mask &= ~__GFP_ATOMIC;
  2619. /*
  2620. * If this allocation cannot block and it is for a specific node, then
  2621. * fail early. There's no need to wakeup kswapd or retry for a
  2622. * speculative node-specific allocation.
  2623. */
  2624. if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim)
  2625. goto nopage;
  2626. retry:
  2627. if (gfp_mask & __GFP_KSWAPD_RECLAIM)
  2628. wake_all_kswapds(order, ac);
  2629. /*
  2630. * OK, we're below the kswapd watermark and have kicked background
  2631. * reclaim. Now things get more complex, so set up alloc_flags according
  2632. * to how we want to proceed.
  2633. */
  2634. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  2635. /*
  2636. * Find the true preferred zone if the allocation is unconstrained by
  2637. * cpusets.
  2638. */
  2639. if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
  2640. struct zoneref *preferred_zoneref;
  2641. preferred_zoneref = first_zones_zonelist(ac->zonelist,
  2642. ac->high_zoneidx, NULL, &ac->preferred_zone);
  2643. ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
  2644. }
  2645. /* This is the last chance, in general, before the goto nopage. */
  2646. page = get_page_from_freelist(gfp_mask, order,
  2647. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  2648. if (page)
  2649. goto got_pg;
  2650. /* Allocate without watermarks if the context allows */
  2651. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  2652. /*
  2653. * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
  2654. * the allocation is high priority and these type of
  2655. * allocations are system rather than user orientated
  2656. */
  2657. ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
  2658. page = get_page_from_freelist(gfp_mask, order,
  2659. ALLOC_NO_WATERMARKS, ac);
  2660. if (page)
  2661. goto got_pg;
  2662. }
  2663. /* Caller is not willing to reclaim, we can't balance anything */
  2664. if (!can_direct_reclaim) {
  2665. /*
  2666. * All existing users of the __GFP_NOFAIL are blockable, so warn
  2667. * of any new users that actually allow this type of allocation
  2668. * to fail.
  2669. */
  2670. WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
  2671. goto nopage;
  2672. }
  2673. /* Avoid recursion of direct reclaim */
  2674. if (current->flags & PF_MEMALLOC) {
  2675. /*
  2676. * __GFP_NOFAIL request from this context is rather bizarre
  2677. * because we cannot reclaim anything and only can loop waiting
  2678. * for somebody to do a work for us.
  2679. */
  2680. if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
  2681. cond_resched();
  2682. goto retry;
  2683. }
  2684. goto nopage;
  2685. }
  2686. /* Avoid allocations with no watermarks from looping endlessly */
  2687. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  2688. goto nopage;
  2689. /*
  2690. * Try direct compaction. The first pass is asynchronous. Subsequent
  2691. * attempts after direct reclaim are synchronous
  2692. */
  2693. page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
  2694. migration_mode,
  2695. &contended_compaction,
  2696. &deferred_compaction);
  2697. if (page)
  2698. goto got_pg;
  2699. /* Checks for THP-specific high-order allocations */
  2700. if (is_thp_gfp_mask(gfp_mask)) {
  2701. /*
  2702. * If compaction is deferred for high-order allocations, it is
  2703. * because sync compaction recently failed. If this is the case
  2704. * and the caller requested a THP allocation, we do not want
  2705. * to heavily disrupt the system, so we fail the allocation
  2706. * instead of entering direct reclaim.
  2707. */
  2708. if (deferred_compaction)
  2709. goto nopage;
  2710. /*
  2711. * In all zones where compaction was attempted (and not
  2712. * deferred or skipped), lock contention has been detected.
  2713. * For THP allocation we do not want to disrupt the others
  2714. * so we fallback to base pages instead.
  2715. */
  2716. if (contended_compaction == COMPACT_CONTENDED_LOCK)
  2717. goto nopage;
  2718. /*
  2719. * If compaction was aborted due to need_resched(), we do not
  2720. * want to further increase allocation latency, unless it is
  2721. * khugepaged trying to collapse.
  2722. */
  2723. if (contended_compaction == COMPACT_CONTENDED_SCHED
  2724. && !(current->flags & PF_KTHREAD))
  2725. goto nopage;
  2726. }
  2727. /*
  2728. * It can become very expensive to allocate transparent hugepages at
  2729. * fault, so use asynchronous memory compaction for THP unless it is
  2730. * khugepaged trying to collapse.
  2731. */
  2732. if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
  2733. migration_mode = MIGRATE_SYNC_LIGHT;
  2734. /* Try direct reclaim and then allocating */
  2735. page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
  2736. &did_some_progress);
  2737. if (page)
  2738. goto got_pg;
  2739. /* Do not loop if specifically requested */
  2740. if (gfp_mask & __GFP_NORETRY)
  2741. goto noretry;
  2742. /* Keep reclaiming pages as long as there is reasonable progress */
  2743. pages_reclaimed += did_some_progress;
  2744. if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
  2745. ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
  2746. /* Wait for some write requests to complete then retry */
  2747. wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
  2748. goto retry;
  2749. }
  2750. /* Reclaim has failed us, start killing things */
  2751. page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
  2752. if (page)
  2753. goto got_pg;
  2754. /* Retry as long as the OOM killer is making progress */
  2755. if (did_some_progress)
  2756. goto retry;
  2757. noretry:
  2758. /*
  2759. * High-order allocations do not necessarily loop after
  2760. * direct reclaim and reclaim/compaction depends on compaction
  2761. * being called after reclaim so call directly if necessary
  2762. */
  2763. page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
  2764. ac, migration_mode,
  2765. &contended_compaction,
  2766. &deferred_compaction);
  2767. if (page)
  2768. goto got_pg;
  2769. nopage:
  2770. warn_alloc_failed(gfp_mask, order, NULL);
  2771. got_pg:
  2772. return page;
  2773. }
  2774. /*
  2775. * This is the 'heart' of the zoned buddy allocator.
  2776. */
  2777. struct page *
  2778. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  2779. struct zonelist *zonelist, nodemask_t *nodemask)
  2780. {
  2781. struct zoneref *preferred_zoneref;
  2782. struct page *page = NULL;
  2783. unsigned int cpuset_mems_cookie;
  2784. int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
  2785. gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
  2786. struct alloc_context ac = {
  2787. .high_zoneidx = gfp_zone(gfp_mask),
  2788. .nodemask = nodemask,
  2789. .migratetype = gfpflags_to_migratetype(gfp_mask),
  2790. };
  2791. gfp_mask &= gfp_allowed_mask;
  2792. lockdep_trace_alloc(gfp_mask);
  2793. might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
  2794. if (should_fail_alloc_page(gfp_mask, order))
  2795. return NULL;
  2796. /*
  2797. * Check the zones suitable for the gfp_mask contain at least one
  2798. * valid zone. It's possible to have an empty zonelist as a result
  2799. * of __GFP_THISNODE and a memoryless node
  2800. */
  2801. if (unlikely(!zonelist->_zonerefs->zone))
  2802. return NULL;
  2803. if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
  2804. alloc_flags |= ALLOC_CMA;
  2805. retry_cpuset:
  2806. cpuset_mems_cookie = read_mems_allowed_begin();
  2807. /* We set it here, as __alloc_pages_slowpath might have changed it */
  2808. ac.zonelist = zonelist;
  2809. /* Dirty zone balancing only done in the fast path */
  2810. ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
  2811. /* The preferred zone is used for statistics later */
  2812. preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
  2813. ac.nodemask ? : &cpuset_current_mems_allowed,
  2814. &ac.preferred_zone);
  2815. if (!ac.preferred_zone)
  2816. goto out;
  2817. ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
  2818. /* First allocation attempt */
  2819. alloc_mask = gfp_mask|__GFP_HARDWALL;
  2820. page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
  2821. if (unlikely(!page)) {
  2822. /*
  2823. * Runtime PM, block IO and its error handling path
  2824. * can deadlock because I/O on the device might not
  2825. * complete.
  2826. */
  2827. alloc_mask = memalloc_noio_flags(gfp_mask);
  2828. ac.spread_dirty_pages = false;
  2829. page = __alloc_pages_slowpath(alloc_mask, order, &ac);
  2830. }
  2831. if (kmemcheck_enabled && page)
  2832. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  2833. trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
  2834. out:
  2835. /*
  2836. * When updating a task's mems_allowed, it is possible to race with
  2837. * parallel threads in such a way that an allocation can fail while
  2838. * the mask is being updated. If a page allocation is about to fail,
  2839. * check if the cpuset changed during allocation and if so, retry.
  2840. */
  2841. if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
  2842. goto retry_cpuset;
  2843. return page;
  2844. }
  2845. EXPORT_SYMBOL(__alloc_pages_nodemask);
  2846. /*
  2847. * Common helper functions.
  2848. */
  2849. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  2850. {
  2851. struct page *page;
  2852. /*
  2853. * __get_free_pages() returns a 32-bit address, which cannot represent
  2854. * a highmem page
  2855. */
  2856. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  2857. page = alloc_pages(gfp_mask, order);
  2858. if (!page)
  2859. return 0;
  2860. return (unsigned long) page_address(page);
  2861. }
  2862. EXPORT_SYMBOL(__get_free_pages);
  2863. unsigned long get_zeroed_page(gfp_t gfp_mask)
  2864. {
  2865. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  2866. }
  2867. EXPORT_SYMBOL(get_zeroed_page);
  2868. void __free_pages(struct page *page, unsigned int order)
  2869. {
  2870. if (put_page_testzero(page)) {
  2871. if (order == 0)
  2872. free_hot_cold_page(page, false);
  2873. else
  2874. __free_pages_ok(page, order);
  2875. }
  2876. }
  2877. EXPORT_SYMBOL(__free_pages);
  2878. void free_pages(unsigned long addr, unsigned int order)
  2879. {
  2880. if (addr != 0) {
  2881. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2882. __free_pages(virt_to_page((void *)addr), order);
  2883. }
  2884. }
  2885. EXPORT_SYMBOL(free_pages);
  2886. /*
  2887. * Page Fragment:
  2888. * An arbitrary-length arbitrary-offset area of memory which resides
  2889. * within a 0 or higher order page. Multiple fragments within that page
  2890. * are individually refcounted, in the page's reference counter.
  2891. *
  2892. * The page_frag functions below provide a simple allocation framework for
  2893. * page fragments. This is used by the network stack and network device
  2894. * drivers to provide a backing region of memory for use as either an
  2895. * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
  2896. */
  2897. static struct page *__page_frag_refill(struct page_frag_cache *nc,
  2898. gfp_t gfp_mask)
  2899. {
  2900. struct page *page = NULL;
  2901. gfp_t gfp = gfp_mask;
  2902. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  2903. gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
  2904. __GFP_NOMEMALLOC;
  2905. page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
  2906. PAGE_FRAG_CACHE_MAX_ORDER);
  2907. nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
  2908. #endif
  2909. if (unlikely(!page))
  2910. page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
  2911. nc->va = page ? page_address(page) : NULL;
  2912. return page;
  2913. }
  2914. void *__alloc_page_frag(struct page_frag_cache *nc,
  2915. unsigned int fragsz, gfp_t gfp_mask)
  2916. {
  2917. unsigned int size = PAGE_SIZE;
  2918. struct page *page;
  2919. int offset;
  2920. if (unlikely(!nc->va)) {
  2921. refill:
  2922. page = __page_frag_refill(nc, gfp_mask);
  2923. if (!page)
  2924. return NULL;
  2925. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  2926. /* if size can vary use size else just use PAGE_SIZE */
  2927. size = nc->size;
  2928. #endif
  2929. /* Even if we own the page, we do not use atomic_set().
  2930. * This would break get_page_unless_zero() users.
  2931. */
  2932. atomic_add(size - 1, &page->_count);
  2933. /* reset page count bias and offset to start of new frag */
  2934. nc->pfmemalloc = page_is_pfmemalloc(page);
  2935. nc->pagecnt_bias = size;
  2936. nc->offset = size;
  2937. }
  2938. offset = nc->offset - fragsz;
  2939. if (unlikely(offset < 0)) {
  2940. page = virt_to_page(nc->va);
  2941. if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
  2942. goto refill;
  2943. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  2944. /* if size can vary use size else just use PAGE_SIZE */
  2945. size = nc->size;
  2946. #endif
  2947. /* OK, page count is 0, we can safely set it */
  2948. atomic_set(&page->_count, size);
  2949. /* reset page count bias and offset to start of new frag */
  2950. nc->pagecnt_bias = size;
  2951. offset = size - fragsz;
  2952. }
  2953. nc->pagecnt_bias--;
  2954. nc->offset = offset;
  2955. return nc->va + offset;
  2956. }
  2957. EXPORT_SYMBOL(__alloc_page_frag);
  2958. /*
  2959. * Frees a page fragment allocated out of either a compound or order 0 page.
  2960. */
  2961. void __free_page_frag(void *addr)
  2962. {
  2963. struct page *page = virt_to_head_page(addr);
  2964. if (unlikely(put_page_testzero(page)))
  2965. __free_pages_ok(page, compound_order(page));
  2966. }
  2967. EXPORT_SYMBOL(__free_page_frag);
  2968. /*
  2969. * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
  2970. * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
  2971. * equivalent to alloc_pages.
  2972. *
  2973. * It should be used when the caller would like to use kmalloc, but since the
  2974. * allocation is large, it has to fall back to the page allocator.
  2975. */
  2976. struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
  2977. {
  2978. struct page *page;
  2979. page = alloc_pages(gfp_mask, order);
  2980. if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
  2981. __free_pages(page, order);
  2982. page = NULL;
  2983. }
  2984. return page;
  2985. }
  2986. struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
  2987. {
  2988. struct page *page;
  2989. page = alloc_pages_node(nid, gfp_mask, order);
  2990. if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
  2991. __free_pages(page, order);
  2992. page = NULL;
  2993. }
  2994. return page;
  2995. }
  2996. /*
  2997. * __free_kmem_pages and free_kmem_pages will free pages allocated with
  2998. * alloc_kmem_pages.
  2999. */
  3000. void __free_kmem_pages(struct page *page, unsigned int order)
  3001. {
  3002. memcg_kmem_uncharge(page, order);
  3003. __free_pages(page, order);
  3004. }
  3005. void free_kmem_pages(unsigned long addr, unsigned int order)
  3006. {
  3007. if (addr != 0) {
  3008. VM_BUG_ON(!virt_addr_valid((void *)addr));
  3009. __free_kmem_pages(virt_to_page((void *)addr), order);
  3010. }
  3011. }
  3012. static void *make_alloc_exact(unsigned long addr, unsigned int order,
  3013. size_t size)
  3014. {
  3015. if (addr) {
  3016. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  3017. unsigned long used = addr + PAGE_ALIGN(size);
  3018. split_page(virt_to_page((void *)addr), order);
  3019. while (used < alloc_end) {
  3020. free_page(used);
  3021. used += PAGE_SIZE;
  3022. }
  3023. }
  3024. return (void *)addr;
  3025. }
  3026. /**
  3027. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  3028. * @size: the number of bytes to allocate
  3029. * @gfp_mask: GFP flags for the allocation
  3030. *
  3031. * This function is similar to alloc_pages(), except that it allocates the
  3032. * minimum number of pages to satisfy the request. alloc_pages() can only
  3033. * allocate memory in power-of-two pages.
  3034. *
  3035. * This function is also limited by MAX_ORDER.
  3036. *
  3037. * Memory allocated by this function must be released by free_pages_exact().
  3038. */
  3039. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  3040. {
  3041. unsigned int order = get_order(size);
  3042. unsigned long addr;
  3043. addr = __get_free_pages(gfp_mask, order);
  3044. return make_alloc_exact(addr, order, size);
  3045. }
  3046. EXPORT_SYMBOL(alloc_pages_exact);
  3047. /**
  3048. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  3049. * pages on a node.
  3050. * @nid: the preferred node ID where memory should be allocated
  3051. * @size: the number of bytes to allocate
  3052. * @gfp_mask: GFP flags for the allocation
  3053. *
  3054. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  3055. * back.
  3056. */
  3057. void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  3058. {
  3059. unsigned int order = get_order(size);
  3060. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  3061. if (!p)
  3062. return NULL;
  3063. return make_alloc_exact((unsigned long)page_address(p), order, size);
  3064. }
  3065. /**
  3066. * free_pages_exact - release memory allocated via alloc_pages_exact()
  3067. * @virt: the value returned by alloc_pages_exact.
  3068. * @size: size of allocation, same value as passed to alloc_pages_exact().
  3069. *
  3070. * Release the memory allocated by a previous call to alloc_pages_exact.
  3071. */
  3072. void free_pages_exact(void *virt, size_t size)
  3073. {
  3074. unsigned long addr = (unsigned long)virt;
  3075. unsigned long end = addr + PAGE_ALIGN(size);
  3076. while (addr < end) {
  3077. free_page(addr);
  3078. addr += PAGE_SIZE;
  3079. }
  3080. }
  3081. EXPORT_SYMBOL(free_pages_exact);
  3082. /**
  3083. * nr_free_zone_pages - count number of pages beyond high watermark
  3084. * @offset: The zone index of the highest zone
  3085. *
  3086. * nr_free_zone_pages() counts the number of counts pages which are beyond the
  3087. * high watermark within all zones at or below a given zone index. For each
  3088. * zone, the number of pages is calculated as:
  3089. * managed_pages - high_pages
  3090. */
  3091. static unsigned long nr_free_zone_pages(int offset)
  3092. {
  3093. struct zoneref *z;
  3094. struct zone *zone;
  3095. /* Just pick one node, since fallback list is circular */
  3096. unsigned long sum = 0;
  3097. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  3098. for_each_zone_zonelist(zone, z, zonelist, offset) {
  3099. unsigned long size = zone->managed_pages;
  3100. unsigned long high = high_wmark_pages(zone);
  3101. if (size > high)
  3102. sum += size - high;
  3103. }
  3104. return sum;
  3105. }
  3106. /**
  3107. * nr_free_buffer_pages - count number of pages beyond high watermark
  3108. *
  3109. * nr_free_buffer_pages() counts the number of pages which are beyond the high
  3110. * watermark within ZONE_DMA and ZONE_NORMAL.
  3111. */
  3112. unsigned long nr_free_buffer_pages(void)
  3113. {
  3114. return nr_free_zone_pages(gfp_zone(GFP_USER));
  3115. }
  3116. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  3117. /**
  3118. * nr_free_pagecache_pages - count number of pages beyond high watermark
  3119. *
  3120. * nr_free_pagecache_pages() counts the number of pages which are beyond the
  3121. * high watermark within all zones.
  3122. */
  3123. unsigned long nr_free_pagecache_pages(void)
  3124. {
  3125. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  3126. }
  3127. static inline void show_node(struct zone *zone)
  3128. {
  3129. if (IS_ENABLED(CONFIG_NUMA))
  3130. printk("Node %d ", zone_to_nid(zone));
  3131. }
  3132. void si_meminfo(struct sysinfo *val)
  3133. {
  3134. val->totalram = totalram_pages;
  3135. val->sharedram = global_page_state(NR_SHMEM);
  3136. val->freeram = global_page_state(NR_FREE_PAGES);
  3137. val->bufferram = nr_blockdev_pages();
  3138. val->totalhigh = totalhigh_pages;
  3139. val->freehigh = nr_free_highpages();
  3140. val->mem_unit = PAGE_SIZE;
  3141. }
  3142. EXPORT_SYMBOL(si_meminfo);
  3143. #ifdef CONFIG_NUMA
  3144. void si_meminfo_node(struct sysinfo *val, int nid)
  3145. {
  3146. int zone_type; /* needs to be signed */
  3147. unsigned long managed_pages = 0;
  3148. pg_data_t *pgdat = NODE_DATA(nid);
  3149. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
  3150. managed_pages += pgdat->node_zones[zone_type].managed_pages;
  3151. val->totalram = managed_pages;
  3152. val->sharedram = node_page_state(nid, NR_SHMEM);
  3153. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  3154. #ifdef CONFIG_HIGHMEM
  3155. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
  3156. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  3157. NR_FREE_PAGES);
  3158. #else
  3159. val->totalhigh = 0;
  3160. val->freehigh = 0;
  3161. #endif
  3162. val->mem_unit = PAGE_SIZE;
  3163. }
  3164. #endif
  3165. /*
  3166. * Determine whether the node should be displayed or not, depending on whether
  3167. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  3168. */
  3169. bool skip_free_areas_node(unsigned int flags, int nid)
  3170. {
  3171. bool ret = false;
  3172. unsigned int cpuset_mems_cookie;
  3173. if (!(flags & SHOW_MEM_FILTER_NODES))
  3174. goto out;
  3175. do {
  3176. cpuset_mems_cookie = read_mems_allowed_begin();
  3177. ret = !node_isset(nid, cpuset_current_mems_allowed);
  3178. } while (read_mems_allowed_retry(cpuset_mems_cookie));
  3179. out:
  3180. return ret;
  3181. }
  3182. #define K(x) ((x) << (PAGE_SHIFT-10))
  3183. static void show_migration_types(unsigned char type)
  3184. {
  3185. static const char types[MIGRATE_TYPES] = {
  3186. [MIGRATE_UNMOVABLE] = 'U',
  3187. [MIGRATE_MOVABLE] = 'M',
  3188. [MIGRATE_RECLAIMABLE] = 'E',
  3189. [MIGRATE_HIGHATOMIC] = 'H',
  3190. #ifdef CONFIG_CMA
  3191. [MIGRATE_CMA] = 'C',
  3192. #endif
  3193. #ifdef CONFIG_MEMORY_ISOLATION
  3194. [MIGRATE_ISOLATE] = 'I',
  3195. #endif
  3196. };
  3197. char tmp[MIGRATE_TYPES + 1];
  3198. char *p = tmp;
  3199. int i;
  3200. for (i = 0; i < MIGRATE_TYPES; i++) {
  3201. if (type & (1 << i))
  3202. *p++ = types[i];
  3203. }
  3204. *p = '\0';
  3205. printk("(%s) ", tmp);
  3206. }
  3207. /*
  3208. * Show free area list (used inside shift_scroll-lock stuff)
  3209. * We also calculate the percentage fragmentation. We do this by counting the
  3210. * memory on each free list with the exception of the first item on the list.
  3211. *
  3212. * Bits in @filter:
  3213. * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
  3214. * cpuset.
  3215. */
  3216. void show_free_areas(unsigned int filter)
  3217. {
  3218. unsigned long free_pcp = 0;
  3219. int cpu;
  3220. struct zone *zone;
  3221. for_each_populated_zone(zone) {
  3222. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3223. continue;
  3224. for_each_online_cpu(cpu)
  3225. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  3226. }
  3227. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  3228. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  3229. " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  3230. " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  3231. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  3232. " free:%lu free_pcp:%lu free_cma:%lu\n",
  3233. global_page_state(NR_ACTIVE_ANON),
  3234. global_page_state(NR_INACTIVE_ANON),
  3235. global_page_state(NR_ISOLATED_ANON),
  3236. global_page_state(NR_ACTIVE_FILE),
  3237. global_page_state(NR_INACTIVE_FILE),
  3238. global_page_state(NR_ISOLATED_FILE),
  3239. global_page_state(NR_UNEVICTABLE),
  3240. global_page_state(NR_FILE_DIRTY),
  3241. global_page_state(NR_WRITEBACK),
  3242. global_page_state(NR_UNSTABLE_NFS),
  3243. global_page_state(NR_SLAB_RECLAIMABLE),
  3244. global_page_state(NR_SLAB_UNRECLAIMABLE),
  3245. global_page_state(NR_FILE_MAPPED),
  3246. global_page_state(NR_SHMEM),
  3247. global_page_state(NR_PAGETABLE),
  3248. global_page_state(NR_BOUNCE),
  3249. global_page_state(NR_FREE_PAGES),
  3250. free_pcp,
  3251. global_page_state(NR_FREE_CMA_PAGES));
  3252. for_each_populated_zone(zone) {
  3253. int i;
  3254. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3255. continue;
  3256. free_pcp = 0;
  3257. for_each_online_cpu(cpu)
  3258. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  3259. show_node(zone);
  3260. printk("%s"
  3261. " free:%lukB"
  3262. " min:%lukB"
  3263. " low:%lukB"
  3264. " high:%lukB"
  3265. " active_anon:%lukB"
  3266. " inactive_anon:%lukB"
  3267. " active_file:%lukB"
  3268. " inactive_file:%lukB"
  3269. " unevictable:%lukB"
  3270. " isolated(anon):%lukB"
  3271. " isolated(file):%lukB"
  3272. " present:%lukB"
  3273. " managed:%lukB"
  3274. " mlocked:%lukB"
  3275. " dirty:%lukB"
  3276. " writeback:%lukB"
  3277. " mapped:%lukB"
  3278. " shmem:%lukB"
  3279. " slab_reclaimable:%lukB"
  3280. " slab_unreclaimable:%lukB"
  3281. " kernel_stack:%lukB"
  3282. " pagetables:%lukB"
  3283. " unstable:%lukB"
  3284. " bounce:%lukB"
  3285. " free_pcp:%lukB"
  3286. " local_pcp:%ukB"
  3287. " free_cma:%lukB"
  3288. " writeback_tmp:%lukB"
  3289. " pages_scanned:%lu"
  3290. " all_unreclaimable? %s"
  3291. "\n",
  3292. zone->name,
  3293. K(zone_page_state(zone, NR_FREE_PAGES)),
  3294. K(min_wmark_pages(zone)),
  3295. K(low_wmark_pages(zone)),
  3296. K(high_wmark_pages(zone)),
  3297. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  3298. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  3299. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  3300. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  3301. K(zone_page_state(zone, NR_UNEVICTABLE)),
  3302. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  3303. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  3304. K(zone->present_pages),
  3305. K(zone->managed_pages),
  3306. K(zone_page_state(zone, NR_MLOCK)),
  3307. K(zone_page_state(zone, NR_FILE_DIRTY)),
  3308. K(zone_page_state(zone, NR_WRITEBACK)),
  3309. K(zone_page_state(zone, NR_FILE_MAPPED)),
  3310. K(zone_page_state(zone, NR_SHMEM)),
  3311. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  3312. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  3313. zone_page_state(zone, NR_KERNEL_STACK) *
  3314. THREAD_SIZE / 1024,
  3315. K(zone_page_state(zone, NR_PAGETABLE)),
  3316. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  3317. K(zone_page_state(zone, NR_BOUNCE)),
  3318. K(free_pcp),
  3319. K(this_cpu_read(zone->pageset->pcp.count)),
  3320. K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
  3321. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  3322. K(zone_page_state(zone, NR_PAGES_SCANNED)),
  3323. (!zone_reclaimable(zone) ? "yes" : "no")
  3324. );
  3325. printk("lowmem_reserve[]:");
  3326. for (i = 0; i < MAX_NR_ZONES; i++)
  3327. printk(" %ld", zone->lowmem_reserve[i]);
  3328. printk("\n");
  3329. }
  3330. for_each_populated_zone(zone) {
  3331. unsigned int order;
  3332. unsigned long nr[MAX_ORDER], flags, total = 0;
  3333. unsigned char types[MAX_ORDER];
  3334. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3335. continue;
  3336. show_node(zone);
  3337. printk("%s: ", zone->name);
  3338. spin_lock_irqsave(&zone->lock, flags);
  3339. for (order = 0; order < MAX_ORDER; order++) {
  3340. struct free_area *area = &zone->free_area[order];
  3341. int type;
  3342. nr[order] = area->nr_free;
  3343. total += nr[order] << order;
  3344. types[order] = 0;
  3345. for (type = 0; type < MIGRATE_TYPES; type++) {
  3346. if (!list_empty(&area->free_list[type]))
  3347. types[order] |= 1 << type;
  3348. }
  3349. }
  3350. spin_unlock_irqrestore(&zone->lock, flags);
  3351. for (order = 0; order < MAX_ORDER; order++) {
  3352. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  3353. if (nr[order])
  3354. show_migration_types(types[order]);
  3355. }
  3356. printk("= %lukB\n", K(total));
  3357. }
  3358. hugetlb_show_meminfo();
  3359. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  3360. show_swap_cache_info();
  3361. }
  3362. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  3363. {
  3364. zoneref->zone = zone;
  3365. zoneref->zone_idx = zone_idx(zone);
  3366. }
  3367. /*
  3368. * Builds allocation fallback zone lists.
  3369. *
  3370. * Add all populated zones of a node to the zonelist.
  3371. */
  3372. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  3373. int nr_zones)
  3374. {
  3375. struct zone *zone;
  3376. enum zone_type zone_type = MAX_NR_ZONES;
  3377. do {
  3378. zone_type--;
  3379. zone = pgdat->node_zones + zone_type;
  3380. if (populated_zone(zone)) {
  3381. zoneref_set_zone(zone,
  3382. &zonelist->_zonerefs[nr_zones++]);
  3383. check_highest_zone(zone_type);
  3384. }
  3385. } while (zone_type);
  3386. return nr_zones;
  3387. }
  3388. /*
  3389. * zonelist_order:
  3390. * 0 = automatic detection of better ordering.
  3391. * 1 = order by ([node] distance, -zonetype)
  3392. * 2 = order by (-zonetype, [node] distance)
  3393. *
  3394. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  3395. * the same zonelist. So only NUMA can configure this param.
  3396. */
  3397. #define ZONELIST_ORDER_DEFAULT 0
  3398. #define ZONELIST_ORDER_NODE 1
  3399. #define ZONELIST_ORDER_ZONE 2
  3400. /* zonelist order in the kernel.
  3401. * set_zonelist_order() will set this to NODE or ZONE.
  3402. */
  3403. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3404. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  3405. #ifdef CONFIG_NUMA
  3406. /* The value user specified ....changed by config */
  3407. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3408. /* string for sysctl */
  3409. #define NUMA_ZONELIST_ORDER_LEN 16
  3410. char numa_zonelist_order[16] = "default";
  3411. /*
  3412. * interface for configure zonelist ordering.
  3413. * command line option "numa_zonelist_order"
  3414. * = "[dD]efault - default, automatic configuration.
  3415. * = "[nN]ode - order by node locality, then by zone within node
  3416. * = "[zZ]one - order by zone, then by locality within zone
  3417. */
  3418. static int __parse_numa_zonelist_order(char *s)
  3419. {
  3420. if (*s == 'd' || *s == 'D') {
  3421. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3422. } else if (*s == 'n' || *s == 'N') {
  3423. user_zonelist_order = ZONELIST_ORDER_NODE;
  3424. } else if (*s == 'z' || *s == 'Z') {
  3425. user_zonelist_order = ZONELIST_ORDER_ZONE;
  3426. } else {
  3427. printk(KERN_WARNING
  3428. "Ignoring invalid numa_zonelist_order value: "
  3429. "%s\n", s);
  3430. return -EINVAL;
  3431. }
  3432. return 0;
  3433. }
  3434. static __init int setup_numa_zonelist_order(char *s)
  3435. {
  3436. int ret;
  3437. if (!s)
  3438. return 0;
  3439. ret = __parse_numa_zonelist_order(s);
  3440. if (ret == 0)
  3441. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  3442. return ret;
  3443. }
  3444. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  3445. /*
  3446. * sysctl handler for numa_zonelist_order
  3447. */
  3448. int numa_zonelist_order_handler(struct ctl_table *table, int write,
  3449. void __user *buffer, size_t *length,
  3450. loff_t *ppos)
  3451. {
  3452. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  3453. int ret;
  3454. static DEFINE_MUTEX(zl_order_mutex);
  3455. mutex_lock(&zl_order_mutex);
  3456. if (write) {
  3457. if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
  3458. ret = -EINVAL;
  3459. goto out;
  3460. }
  3461. strcpy(saved_string, (char *)table->data);
  3462. }
  3463. ret = proc_dostring(table, write, buffer, length, ppos);
  3464. if (ret)
  3465. goto out;
  3466. if (write) {
  3467. int oldval = user_zonelist_order;
  3468. ret = __parse_numa_zonelist_order((char *)table->data);
  3469. if (ret) {
  3470. /*
  3471. * bogus value. restore saved string
  3472. */
  3473. strncpy((char *)table->data, saved_string,
  3474. NUMA_ZONELIST_ORDER_LEN);
  3475. user_zonelist_order = oldval;
  3476. } else if (oldval != user_zonelist_order) {
  3477. mutex_lock(&zonelists_mutex);
  3478. build_all_zonelists(NULL, NULL);
  3479. mutex_unlock(&zonelists_mutex);
  3480. }
  3481. }
  3482. out:
  3483. mutex_unlock(&zl_order_mutex);
  3484. return ret;
  3485. }
  3486. #define MAX_NODE_LOAD (nr_online_nodes)
  3487. static int node_load[MAX_NUMNODES];
  3488. /**
  3489. * find_next_best_node - find the next node that should appear in a given node's fallback list
  3490. * @node: node whose fallback list we're appending
  3491. * @used_node_mask: nodemask_t of already used nodes
  3492. *
  3493. * We use a number of factors to determine which is the next node that should
  3494. * appear on a given node's fallback list. The node should not have appeared
  3495. * already in @node's fallback list, and it should be the next closest node
  3496. * according to the distance array (which contains arbitrary distance values
  3497. * from each node to each node in the system), and should also prefer nodes
  3498. * with no CPUs, since presumably they'll have very little allocation pressure
  3499. * on them otherwise.
  3500. * It returns -1 if no node is found.
  3501. */
  3502. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  3503. {
  3504. int n, val;
  3505. int min_val = INT_MAX;
  3506. int best_node = NUMA_NO_NODE;
  3507. const struct cpumask *tmp = cpumask_of_node(0);
  3508. /* Use the local node if we haven't already */
  3509. if (!node_isset(node, *used_node_mask)) {
  3510. node_set(node, *used_node_mask);
  3511. return node;
  3512. }
  3513. for_each_node_state(n, N_MEMORY) {
  3514. /* Don't want a node to appear more than once */
  3515. if (node_isset(n, *used_node_mask))
  3516. continue;
  3517. /* Use the distance array to find the distance */
  3518. val = node_distance(node, n);
  3519. /* Penalize nodes under us ("prefer the next node") */
  3520. val += (n < node);
  3521. /* Give preference to headless and unused nodes */
  3522. tmp = cpumask_of_node(n);
  3523. if (!cpumask_empty(tmp))
  3524. val += PENALTY_FOR_NODE_WITH_CPUS;
  3525. /* Slight preference for less loaded node */
  3526. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  3527. val += node_load[n];
  3528. if (val < min_val) {
  3529. min_val = val;
  3530. best_node = n;
  3531. }
  3532. }
  3533. if (best_node >= 0)
  3534. node_set(best_node, *used_node_mask);
  3535. return best_node;
  3536. }
  3537. /*
  3538. * Build zonelists ordered by node and zones within node.
  3539. * This results in maximum locality--normal zone overflows into local
  3540. * DMA zone, if any--but risks exhausting DMA zone.
  3541. */
  3542. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  3543. {
  3544. int j;
  3545. struct zonelist *zonelist;
  3546. zonelist = &pgdat->node_zonelists[0];
  3547. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  3548. ;
  3549. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3550. zonelist->_zonerefs[j].zone = NULL;
  3551. zonelist->_zonerefs[j].zone_idx = 0;
  3552. }
  3553. /*
  3554. * Build gfp_thisnode zonelists
  3555. */
  3556. static void build_thisnode_zonelists(pg_data_t *pgdat)
  3557. {
  3558. int j;
  3559. struct zonelist *zonelist;
  3560. zonelist = &pgdat->node_zonelists[1];
  3561. j = build_zonelists_node(pgdat, zonelist, 0);
  3562. zonelist->_zonerefs[j].zone = NULL;
  3563. zonelist->_zonerefs[j].zone_idx = 0;
  3564. }
  3565. /*
  3566. * Build zonelists ordered by zone and nodes within zones.
  3567. * This results in conserving DMA zone[s] until all Normal memory is
  3568. * exhausted, but results in overflowing to remote node while memory
  3569. * may still exist in local DMA zone.
  3570. */
  3571. static int node_order[MAX_NUMNODES];
  3572. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  3573. {
  3574. int pos, j, node;
  3575. int zone_type; /* needs to be signed */
  3576. struct zone *z;
  3577. struct zonelist *zonelist;
  3578. zonelist = &pgdat->node_zonelists[0];
  3579. pos = 0;
  3580. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  3581. for (j = 0; j < nr_nodes; j++) {
  3582. node = node_order[j];
  3583. z = &NODE_DATA(node)->node_zones[zone_type];
  3584. if (populated_zone(z)) {
  3585. zoneref_set_zone(z,
  3586. &zonelist->_zonerefs[pos++]);
  3587. check_highest_zone(zone_type);
  3588. }
  3589. }
  3590. }
  3591. zonelist->_zonerefs[pos].zone = NULL;
  3592. zonelist->_zonerefs[pos].zone_idx = 0;
  3593. }
  3594. #if defined(CONFIG_64BIT)
  3595. /*
  3596. * Devices that require DMA32/DMA are relatively rare and do not justify a
  3597. * penalty to every machine in case the specialised case applies. Default
  3598. * to Node-ordering on 64-bit NUMA machines
  3599. */
  3600. static int default_zonelist_order(void)
  3601. {
  3602. return ZONELIST_ORDER_NODE;
  3603. }
  3604. #else
  3605. /*
  3606. * On 32-bit, the Normal zone needs to be preserved for allocations accessible
  3607. * by the kernel. If processes running on node 0 deplete the low memory zone
  3608. * then reclaim will occur more frequency increasing stalls and potentially
  3609. * be easier to OOM if a large percentage of the zone is under writeback or
  3610. * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
  3611. * Hence, default to zone ordering on 32-bit.
  3612. */
  3613. static int default_zonelist_order(void)
  3614. {
  3615. return ZONELIST_ORDER_ZONE;
  3616. }
  3617. #endif /* CONFIG_64BIT */
  3618. static void set_zonelist_order(void)
  3619. {
  3620. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  3621. current_zonelist_order = default_zonelist_order();
  3622. else
  3623. current_zonelist_order = user_zonelist_order;
  3624. }
  3625. static void build_zonelists(pg_data_t *pgdat)
  3626. {
  3627. int i, node, load;
  3628. nodemask_t used_mask;
  3629. int local_node, prev_node;
  3630. struct zonelist *zonelist;
  3631. unsigned int order = current_zonelist_order;
  3632. /* initialize zonelists */
  3633. for (i = 0; i < MAX_ZONELISTS; i++) {
  3634. zonelist = pgdat->node_zonelists + i;
  3635. zonelist->_zonerefs[0].zone = NULL;
  3636. zonelist->_zonerefs[0].zone_idx = 0;
  3637. }
  3638. /* NUMA-aware ordering of nodes */
  3639. local_node = pgdat->node_id;
  3640. load = nr_online_nodes;
  3641. prev_node = local_node;
  3642. nodes_clear(used_mask);
  3643. memset(node_order, 0, sizeof(node_order));
  3644. i = 0;
  3645. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  3646. /*
  3647. * We don't want to pressure a particular node.
  3648. * So adding penalty to the first node in same
  3649. * distance group to make it round-robin.
  3650. */
  3651. if (node_distance(local_node, node) !=
  3652. node_distance(local_node, prev_node))
  3653. node_load[node] = load;
  3654. prev_node = node;
  3655. load--;
  3656. if (order == ZONELIST_ORDER_NODE)
  3657. build_zonelists_in_node_order(pgdat, node);
  3658. else
  3659. node_order[i++] = node; /* remember order */
  3660. }
  3661. if (order == ZONELIST_ORDER_ZONE) {
  3662. /* calculate node order -- i.e., DMA last! */
  3663. build_zonelists_in_zone_order(pgdat, i);
  3664. }
  3665. build_thisnode_zonelists(pgdat);
  3666. }
  3667. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3668. /*
  3669. * Return node id of node used for "local" allocations.
  3670. * I.e., first node id of first zone in arg node's generic zonelist.
  3671. * Used for initializing percpu 'numa_mem', which is used primarily
  3672. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  3673. */
  3674. int local_memory_node(int node)
  3675. {
  3676. struct zone *zone;
  3677. (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  3678. gfp_zone(GFP_KERNEL),
  3679. NULL,
  3680. &zone);
  3681. return zone->node;
  3682. }
  3683. #endif
  3684. #else /* CONFIG_NUMA */
  3685. static void set_zonelist_order(void)
  3686. {
  3687. current_zonelist_order = ZONELIST_ORDER_ZONE;
  3688. }
  3689. static void build_zonelists(pg_data_t *pgdat)
  3690. {
  3691. int node, local_node;
  3692. enum zone_type j;
  3693. struct zonelist *zonelist;
  3694. local_node = pgdat->node_id;
  3695. zonelist = &pgdat->node_zonelists[0];
  3696. j = build_zonelists_node(pgdat, zonelist, 0);
  3697. /*
  3698. * Now we build the zonelist so that it contains the zones
  3699. * of all the other nodes.
  3700. * We don't want to pressure a particular node, so when
  3701. * building the zones for node N, we make sure that the
  3702. * zones coming right after the local ones are those from
  3703. * node N+1 (modulo N)
  3704. */
  3705. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  3706. if (!node_online(node))
  3707. continue;
  3708. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3709. }
  3710. for (node = 0; node < local_node; node++) {
  3711. if (!node_online(node))
  3712. continue;
  3713. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3714. }
  3715. zonelist->_zonerefs[j].zone = NULL;
  3716. zonelist->_zonerefs[j].zone_idx = 0;
  3717. }
  3718. #endif /* CONFIG_NUMA */
  3719. /*
  3720. * Boot pageset table. One per cpu which is going to be used for all
  3721. * zones and all nodes. The parameters will be set in such a way
  3722. * that an item put on a list will immediately be handed over to
  3723. * the buddy list. This is safe since pageset manipulation is done
  3724. * with interrupts disabled.
  3725. *
  3726. * The boot_pagesets must be kept even after bootup is complete for
  3727. * unused processors and/or zones. They do play a role for bootstrapping
  3728. * hotplugged processors.
  3729. *
  3730. * zoneinfo_show() and maybe other functions do
  3731. * not check if the processor is online before following the pageset pointer.
  3732. * Other parts of the kernel may not check if the zone is available.
  3733. */
  3734. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  3735. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  3736. static void setup_zone_pageset(struct zone *zone);
  3737. /*
  3738. * Global mutex to protect against size modification of zonelists
  3739. * as well as to serialize pageset setup for the new populated zone.
  3740. */
  3741. DEFINE_MUTEX(zonelists_mutex);
  3742. /* return values int ....just for stop_machine() */
  3743. static int __build_all_zonelists(void *data)
  3744. {
  3745. int nid;
  3746. int cpu;
  3747. pg_data_t *self = data;
  3748. #ifdef CONFIG_NUMA
  3749. memset(node_load, 0, sizeof(node_load));
  3750. #endif
  3751. if (self && !node_online(self->node_id)) {
  3752. build_zonelists(self);
  3753. }
  3754. for_each_online_node(nid) {
  3755. pg_data_t *pgdat = NODE_DATA(nid);
  3756. build_zonelists(pgdat);
  3757. }
  3758. /*
  3759. * Initialize the boot_pagesets that are going to be used
  3760. * for bootstrapping processors. The real pagesets for
  3761. * each zone will be allocated later when the per cpu
  3762. * allocator is available.
  3763. *
  3764. * boot_pagesets are used also for bootstrapping offline
  3765. * cpus if the system is already booted because the pagesets
  3766. * are needed to initialize allocators on a specific cpu too.
  3767. * F.e. the percpu allocator needs the page allocator which
  3768. * needs the percpu allocator in order to allocate its pagesets
  3769. * (a chicken-egg dilemma).
  3770. */
  3771. for_each_possible_cpu(cpu) {
  3772. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  3773. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3774. /*
  3775. * We now know the "local memory node" for each node--
  3776. * i.e., the node of the first zone in the generic zonelist.
  3777. * Set up numa_mem percpu variable for on-line cpus. During
  3778. * boot, only the boot cpu should be on-line; we'll init the
  3779. * secondary cpus' numa_mem as they come on-line. During
  3780. * node/memory hotplug, we'll fixup all on-line cpus.
  3781. */
  3782. if (cpu_online(cpu))
  3783. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  3784. #endif
  3785. }
  3786. return 0;
  3787. }
  3788. static noinline void __init
  3789. build_all_zonelists_init(void)
  3790. {
  3791. __build_all_zonelists(NULL);
  3792. mminit_verify_zonelist();
  3793. cpuset_init_current_mems_allowed();
  3794. }
  3795. /*
  3796. * Called with zonelists_mutex held always
  3797. * unless system_state == SYSTEM_BOOTING.
  3798. *
  3799. * __ref due to (1) call of __meminit annotated setup_zone_pageset
  3800. * [we're only called with non-NULL zone through __meminit paths] and
  3801. * (2) call of __init annotated helper build_all_zonelists_init
  3802. * [protected by SYSTEM_BOOTING].
  3803. */
  3804. void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
  3805. {
  3806. set_zonelist_order();
  3807. if (system_state == SYSTEM_BOOTING) {
  3808. build_all_zonelists_init();
  3809. } else {
  3810. #ifdef CONFIG_MEMORY_HOTPLUG
  3811. if (zone)
  3812. setup_zone_pageset(zone);
  3813. #endif
  3814. /* we have to stop all cpus to guarantee there is no user
  3815. of zonelist */
  3816. stop_machine(__build_all_zonelists, pgdat, NULL);
  3817. /* cpuset refresh routine should be here */
  3818. }
  3819. vm_total_pages = nr_free_pagecache_pages();
  3820. /*
  3821. * Disable grouping by mobility if the number of pages in the
  3822. * system is too low to allow the mechanism to work. It would be
  3823. * more accurate, but expensive to check per-zone. This check is
  3824. * made on memory-hotadd so a system can start with mobility
  3825. * disabled and enable it later
  3826. */
  3827. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  3828. page_group_by_mobility_disabled = 1;
  3829. else
  3830. page_group_by_mobility_disabled = 0;
  3831. pr_info("Built %i zonelists in %s order, mobility grouping %s. "
  3832. "Total pages: %ld\n",
  3833. nr_online_nodes,
  3834. zonelist_order_name[current_zonelist_order],
  3835. page_group_by_mobility_disabled ? "off" : "on",
  3836. vm_total_pages);
  3837. #ifdef CONFIG_NUMA
  3838. pr_info("Policy zone: %s\n", zone_names[policy_zone]);
  3839. #endif
  3840. }
  3841. /*
  3842. * Helper functions to size the waitqueue hash table.
  3843. * Essentially these want to choose hash table sizes sufficiently
  3844. * large so that collisions trying to wait on pages are rare.
  3845. * But in fact, the number of active page waitqueues on typical
  3846. * systems is ridiculously low, less than 200. So this is even
  3847. * conservative, even though it seems large.
  3848. *
  3849. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  3850. * waitqueues, i.e. the size of the waitq table given the number of pages.
  3851. */
  3852. #define PAGES_PER_WAITQUEUE 256
  3853. #ifndef CONFIG_MEMORY_HOTPLUG
  3854. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3855. {
  3856. unsigned long size = 1;
  3857. pages /= PAGES_PER_WAITQUEUE;
  3858. while (size < pages)
  3859. size <<= 1;
  3860. /*
  3861. * Once we have dozens or even hundreds of threads sleeping
  3862. * on IO we've got bigger problems than wait queue collision.
  3863. * Limit the size of the wait table to a reasonable size.
  3864. */
  3865. size = min(size, 4096UL);
  3866. return max(size, 4UL);
  3867. }
  3868. #else
  3869. /*
  3870. * A zone's size might be changed by hot-add, so it is not possible to determine
  3871. * a suitable size for its wait_table. So we use the maximum size now.
  3872. *
  3873. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  3874. *
  3875. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  3876. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  3877. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  3878. *
  3879. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  3880. * or more by the traditional way. (See above). It equals:
  3881. *
  3882. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  3883. * ia64(16K page size) : = ( 8G + 4M)byte.
  3884. * powerpc (64K page size) : = (32G +16M)byte.
  3885. */
  3886. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3887. {
  3888. return 4096UL;
  3889. }
  3890. #endif
  3891. /*
  3892. * This is an integer logarithm so that shifts can be used later
  3893. * to extract the more random high bits from the multiplicative
  3894. * hash function before the remainder is taken.
  3895. */
  3896. static inline unsigned long wait_table_bits(unsigned long size)
  3897. {
  3898. return ffz(~size);
  3899. }
  3900. /*
  3901. * Initially all pages are reserved - free ones are freed
  3902. * up by free_all_bootmem() once the early boot process is
  3903. * done. Non-atomic initialization, single-pass.
  3904. */
  3905. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  3906. unsigned long start_pfn, enum memmap_context context)
  3907. {
  3908. struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
  3909. unsigned long end_pfn = start_pfn + size;
  3910. pg_data_t *pgdat = NODE_DATA(nid);
  3911. unsigned long pfn;
  3912. unsigned long nr_initialised = 0;
  3913. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  3914. struct memblock_region *r = NULL, *tmp;
  3915. #endif
  3916. if (highest_memmap_pfn < end_pfn - 1)
  3917. highest_memmap_pfn = end_pfn - 1;
  3918. /*
  3919. * Honor reservation requested by the driver for this ZONE_DEVICE
  3920. * memory
  3921. */
  3922. if (altmap && start_pfn == altmap->base_pfn)
  3923. start_pfn += altmap->reserve;
  3924. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3925. /*
  3926. * There can be holes in boot-time mem_map[]s handed to this
  3927. * function. They do not exist on hotplugged memory.
  3928. */
  3929. if (context != MEMMAP_EARLY)
  3930. goto not_early;
  3931. if (!early_pfn_valid(pfn))
  3932. continue;
  3933. if (!early_pfn_in_nid(pfn, nid))
  3934. continue;
  3935. if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
  3936. break;
  3937. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  3938. /*
  3939. * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
  3940. * from zone_movable_pfn[nid] to end of each node should be
  3941. * ZONE_MOVABLE not ZONE_NORMAL. skip it.
  3942. */
  3943. if (!mirrored_kernelcore && zone_movable_pfn[nid])
  3944. if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
  3945. continue;
  3946. /*
  3947. * Check given memblock attribute by firmware which can affect
  3948. * kernel memory layout. If zone==ZONE_MOVABLE but memory is
  3949. * mirrored, it's an overlapped memmap init. skip it.
  3950. */
  3951. if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
  3952. if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
  3953. for_each_memblock(memory, tmp)
  3954. if (pfn < memblock_region_memory_end_pfn(tmp))
  3955. break;
  3956. r = tmp;
  3957. }
  3958. if (pfn >= memblock_region_memory_base_pfn(r) &&
  3959. memblock_is_mirror(r)) {
  3960. /* already initialized as NORMAL */
  3961. pfn = memblock_region_memory_end_pfn(r);
  3962. continue;
  3963. }
  3964. }
  3965. #endif
  3966. not_early:
  3967. /*
  3968. * Mark the block movable so that blocks are reserved for
  3969. * movable at startup. This will force kernel allocations
  3970. * to reserve their blocks rather than leaking throughout
  3971. * the address space during boot when many long-lived
  3972. * kernel allocations are made.
  3973. *
  3974. * bitmap is created for zone's valid pfn range. but memmap
  3975. * can be created for invalid pages (for alignment)
  3976. * check here not to call set_pageblock_migratetype() against
  3977. * pfn out of zone.
  3978. */
  3979. if (!(pfn & (pageblock_nr_pages - 1))) {
  3980. struct page *page = pfn_to_page(pfn);
  3981. __init_single_page(page, pfn, zone, nid);
  3982. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3983. } else {
  3984. __init_single_pfn(pfn, zone, nid);
  3985. }
  3986. }
  3987. }
  3988. static void __meminit zone_init_free_lists(struct zone *zone)
  3989. {
  3990. unsigned int order, t;
  3991. for_each_migratetype_order(order, t) {
  3992. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  3993. zone->free_area[order].nr_free = 0;
  3994. }
  3995. }
  3996. #ifndef __HAVE_ARCH_MEMMAP_INIT
  3997. #define memmap_init(size, nid, zone, start_pfn) \
  3998. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  3999. #endif
  4000. static int zone_batchsize(struct zone *zone)
  4001. {
  4002. #ifdef CONFIG_MMU
  4003. int batch;
  4004. /*
  4005. * The per-cpu-pages pools are set to around 1000th of the
  4006. * size of the zone. But no more than 1/2 of a meg.
  4007. *
  4008. * OK, so we don't know how big the cache is. So guess.
  4009. */
  4010. batch = zone->managed_pages / 1024;
  4011. if (batch * PAGE_SIZE > 512 * 1024)
  4012. batch = (512 * 1024) / PAGE_SIZE;
  4013. batch /= 4; /* We effectively *= 4 below */
  4014. if (batch < 1)
  4015. batch = 1;
  4016. /*
  4017. * Clamp the batch to a 2^n - 1 value. Having a power
  4018. * of 2 value was found to be more likely to have
  4019. * suboptimal cache aliasing properties in some cases.
  4020. *
  4021. * For example if 2 tasks are alternately allocating
  4022. * batches of pages, one task can end up with a lot
  4023. * of pages of one half of the possible page colors
  4024. * and the other with pages of the other colors.
  4025. */
  4026. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  4027. return batch;
  4028. #else
  4029. /* The deferral and batching of frees should be suppressed under NOMMU
  4030. * conditions.
  4031. *
  4032. * The problem is that NOMMU needs to be able to allocate large chunks
  4033. * of contiguous memory as there's no hardware page translation to
  4034. * assemble apparent contiguous memory from discontiguous pages.
  4035. *
  4036. * Queueing large contiguous runs of pages for batching, however,
  4037. * causes the pages to actually be freed in smaller chunks. As there
  4038. * can be a significant delay between the individual batches being
  4039. * recycled, this leads to the once large chunks of space being
  4040. * fragmented and becoming unavailable for high-order allocations.
  4041. */
  4042. return 0;
  4043. #endif
  4044. }
  4045. /*
  4046. * pcp->high and pcp->batch values are related and dependent on one another:
  4047. * ->batch must never be higher then ->high.
  4048. * The following function updates them in a safe manner without read side
  4049. * locking.
  4050. *
  4051. * Any new users of pcp->batch and pcp->high should ensure they can cope with
  4052. * those fields changing asynchronously (acording the the above rule).
  4053. *
  4054. * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
  4055. * outside of boot time (or some other assurance that no concurrent updaters
  4056. * exist).
  4057. */
  4058. static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
  4059. unsigned long batch)
  4060. {
  4061. /* start with a fail safe value for batch */
  4062. pcp->batch = 1;
  4063. smp_wmb();
  4064. /* Update high, then batch, in order */
  4065. pcp->high = high;
  4066. smp_wmb();
  4067. pcp->batch = batch;
  4068. }
  4069. /* a companion to pageset_set_high() */
  4070. static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
  4071. {
  4072. pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
  4073. }
  4074. static void pageset_init(struct per_cpu_pageset *p)
  4075. {
  4076. struct per_cpu_pages *pcp;
  4077. int migratetype;
  4078. memset(p, 0, sizeof(*p));
  4079. pcp = &p->pcp;
  4080. pcp->count = 0;
  4081. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  4082. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  4083. }
  4084. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  4085. {
  4086. pageset_init(p);
  4087. pageset_set_batch(p, batch);
  4088. }
  4089. /*
  4090. * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
  4091. * to the value high for the pageset p.
  4092. */
  4093. static void pageset_set_high(struct per_cpu_pageset *p,
  4094. unsigned long high)
  4095. {
  4096. unsigned long batch = max(1UL, high / 4);
  4097. if ((high / 4) > (PAGE_SHIFT * 8))
  4098. batch = PAGE_SHIFT * 8;
  4099. pageset_update(&p->pcp, high, batch);
  4100. }
  4101. static void pageset_set_high_and_batch(struct zone *zone,
  4102. struct per_cpu_pageset *pcp)
  4103. {
  4104. if (percpu_pagelist_fraction)
  4105. pageset_set_high(pcp,
  4106. (zone->managed_pages /
  4107. percpu_pagelist_fraction));
  4108. else
  4109. pageset_set_batch(pcp, zone_batchsize(zone));
  4110. }
  4111. static void __meminit zone_pageset_init(struct zone *zone, int cpu)
  4112. {
  4113. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  4114. pageset_init(pcp);
  4115. pageset_set_high_and_batch(zone, pcp);
  4116. }
  4117. static void __meminit setup_zone_pageset(struct zone *zone)
  4118. {
  4119. int cpu;
  4120. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  4121. for_each_possible_cpu(cpu)
  4122. zone_pageset_init(zone, cpu);
  4123. }
  4124. /*
  4125. * Allocate per cpu pagesets and initialize them.
  4126. * Before this call only boot pagesets were available.
  4127. */
  4128. void __init setup_per_cpu_pageset(void)
  4129. {
  4130. struct zone *zone;
  4131. for_each_populated_zone(zone)
  4132. setup_zone_pageset(zone);
  4133. }
  4134. static noinline __init_refok
  4135. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  4136. {
  4137. int i;
  4138. size_t alloc_size;
  4139. /*
  4140. * The per-page waitqueue mechanism uses hashed waitqueues
  4141. * per zone.
  4142. */
  4143. zone->wait_table_hash_nr_entries =
  4144. wait_table_hash_nr_entries(zone_size_pages);
  4145. zone->wait_table_bits =
  4146. wait_table_bits(zone->wait_table_hash_nr_entries);
  4147. alloc_size = zone->wait_table_hash_nr_entries
  4148. * sizeof(wait_queue_head_t);
  4149. if (!slab_is_available()) {
  4150. zone->wait_table = (wait_queue_head_t *)
  4151. memblock_virt_alloc_node_nopanic(
  4152. alloc_size, zone->zone_pgdat->node_id);
  4153. } else {
  4154. /*
  4155. * This case means that a zone whose size was 0 gets new memory
  4156. * via memory hot-add.
  4157. * But it may be the case that a new node was hot-added. In
  4158. * this case vmalloc() will not be able to use this new node's
  4159. * memory - this wait_table must be initialized to use this new
  4160. * node itself as well.
  4161. * To use this new node's memory, further consideration will be
  4162. * necessary.
  4163. */
  4164. zone->wait_table = vmalloc(alloc_size);
  4165. }
  4166. if (!zone->wait_table)
  4167. return -ENOMEM;
  4168. for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  4169. init_waitqueue_head(zone->wait_table + i);
  4170. return 0;
  4171. }
  4172. static __meminit void zone_pcp_init(struct zone *zone)
  4173. {
  4174. /*
  4175. * per cpu subsystem is not up at this point. The following code
  4176. * relies on the ability of the linker to provide the
  4177. * offset of a (static) per cpu variable into the per cpu area.
  4178. */
  4179. zone->pageset = &boot_pageset;
  4180. if (populated_zone(zone))
  4181. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  4182. zone->name, zone->present_pages,
  4183. zone_batchsize(zone));
  4184. }
  4185. int __meminit init_currently_empty_zone(struct zone *zone,
  4186. unsigned long zone_start_pfn,
  4187. unsigned long size)
  4188. {
  4189. struct pglist_data *pgdat = zone->zone_pgdat;
  4190. int ret;
  4191. ret = zone_wait_table_init(zone, size);
  4192. if (ret)
  4193. return ret;
  4194. pgdat->nr_zones = zone_idx(zone) + 1;
  4195. zone->zone_start_pfn = zone_start_pfn;
  4196. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  4197. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  4198. pgdat->node_id,
  4199. (unsigned long)zone_idx(zone),
  4200. zone_start_pfn, (zone_start_pfn + size));
  4201. zone_init_free_lists(zone);
  4202. return 0;
  4203. }
  4204. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4205. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  4206. /*
  4207. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  4208. */
  4209. int __meminit __early_pfn_to_nid(unsigned long pfn,
  4210. struct mminit_pfnnid_cache *state)
  4211. {
  4212. unsigned long start_pfn, end_pfn;
  4213. int nid;
  4214. if (state->last_start <= pfn && pfn < state->last_end)
  4215. return state->last_nid;
  4216. nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
  4217. if (nid != -1) {
  4218. state->last_start = start_pfn;
  4219. state->last_end = end_pfn;
  4220. state->last_nid = nid;
  4221. }
  4222. return nid;
  4223. }
  4224. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  4225. /**
  4226. * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
  4227. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  4228. * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
  4229. *
  4230. * If an architecture guarantees that all ranges registered contain no holes
  4231. * and may be freed, this this function may be used instead of calling
  4232. * memblock_free_early_nid() manually.
  4233. */
  4234. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  4235. {
  4236. unsigned long start_pfn, end_pfn;
  4237. int i, this_nid;
  4238. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  4239. start_pfn = min(start_pfn, max_low_pfn);
  4240. end_pfn = min(end_pfn, max_low_pfn);
  4241. if (start_pfn < end_pfn)
  4242. memblock_free_early_nid(PFN_PHYS(start_pfn),
  4243. (end_pfn - start_pfn) << PAGE_SHIFT,
  4244. this_nid);
  4245. }
  4246. }
  4247. /**
  4248. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  4249. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  4250. *
  4251. * If an architecture guarantees that all ranges registered contain no holes and may
  4252. * be freed, this function may be used instead of calling memory_present() manually.
  4253. */
  4254. void __init sparse_memory_present_with_active_regions(int nid)
  4255. {
  4256. unsigned long start_pfn, end_pfn;
  4257. int i, this_nid;
  4258. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  4259. memory_present(this_nid, start_pfn, end_pfn);
  4260. }
  4261. /**
  4262. * get_pfn_range_for_nid - Return the start and end page frames for a node
  4263. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  4264. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  4265. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  4266. *
  4267. * It returns the start and end page frame of a node based on information
  4268. * provided by memblock_set_node(). If called for a node
  4269. * with no available memory, a warning is printed and the start and end
  4270. * PFNs will be 0.
  4271. */
  4272. void __meminit get_pfn_range_for_nid(unsigned int nid,
  4273. unsigned long *start_pfn, unsigned long *end_pfn)
  4274. {
  4275. unsigned long this_start_pfn, this_end_pfn;
  4276. int i;
  4277. *start_pfn = -1UL;
  4278. *end_pfn = 0;
  4279. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  4280. *start_pfn = min(*start_pfn, this_start_pfn);
  4281. *end_pfn = max(*end_pfn, this_end_pfn);
  4282. }
  4283. if (*start_pfn == -1UL)
  4284. *start_pfn = 0;
  4285. }
  4286. /*
  4287. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  4288. * assumption is made that zones within a node are ordered in monotonic
  4289. * increasing memory addresses so that the "highest" populated zone is used
  4290. */
  4291. static void __init find_usable_zone_for_movable(void)
  4292. {
  4293. int zone_index;
  4294. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  4295. if (zone_index == ZONE_MOVABLE)
  4296. continue;
  4297. if (arch_zone_highest_possible_pfn[zone_index] >
  4298. arch_zone_lowest_possible_pfn[zone_index])
  4299. break;
  4300. }
  4301. VM_BUG_ON(zone_index == -1);
  4302. movable_zone = zone_index;
  4303. }
  4304. /*
  4305. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  4306. * because it is sized independent of architecture. Unlike the other zones,
  4307. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  4308. * in each node depending on the size of each node and how evenly kernelcore
  4309. * is distributed. This helper function adjusts the zone ranges
  4310. * provided by the architecture for a given node by using the end of the
  4311. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  4312. * zones within a node are in order of monotonic increases memory addresses
  4313. */
  4314. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  4315. unsigned long zone_type,
  4316. unsigned long node_start_pfn,
  4317. unsigned long node_end_pfn,
  4318. unsigned long *zone_start_pfn,
  4319. unsigned long *zone_end_pfn)
  4320. {
  4321. /* Only adjust if ZONE_MOVABLE is on this node */
  4322. if (zone_movable_pfn[nid]) {
  4323. /* Size ZONE_MOVABLE */
  4324. if (zone_type == ZONE_MOVABLE) {
  4325. *zone_start_pfn = zone_movable_pfn[nid];
  4326. *zone_end_pfn = min(node_end_pfn,
  4327. arch_zone_highest_possible_pfn[movable_zone]);
  4328. /* Check if this whole range is within ZONE_MOVABLE */
  4329. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  4330. *zone_start_pfn = *zone_end_pfn;
  4331. }
  4332. }
  4333. /*
  4334. * Return the number of pages a zone spans in a node, including holes
  4335. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  4336. */
  4337. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4338. unsigned long zone_type,
  4339. unsigned long node_start_pfn,
  4340. unsigned long node_end_pfn,
  4341. unsigned long *zone_start_pfn,
  4342. unsigned long *zone_end_pfn,
  4343. unsigned long *ignored)
  4344. {
  4345. /* When hotadd a new node from cpu_up(), the node should be empty */
  4346. if (!node_start_pfn && !node_end_pfn)
  4347. return 0;
  4348. /* Get the start and end of the zone */
  4349. *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  4350. *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  4351. adjust_zone_range_for_zone_movable(nid, zone_type,
  4352. node_start_pfn, node_end_pfn,
  4353. zone_start_pfn, zone_end_pfn);
  4354. /* Check that this node has pages within the zone's required range */
  4355. if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
  4356. return 0;
  4357. /* Move the zone boundaries inside the node if necessary */
  4358. *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
  4359. *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
  4360. /* Return the spanned pages */
  4361. return *zone_end_pfn - *zone_start_pfn;
  4362. }
  4363. /*
  4364. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  4365. * then all holes in the requested range will be accounted for.
  4366. */
  4367. unsigned long __meminit __absent_pages_in_range(int nid,
  4368. unsigned long range_start_pfn,
  4369. unsigned long range_end_pfn)
  4370. {
  4371. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  4372. unsigned long start_pfn, end_pfn;
  4373. int i;
  4374. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4375. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  4376. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  4377. nr_absent -= end_pfn - start_pfn;
  4378. }
  4379. return nr_absent;
  4380. }
  4381. /**
  4382. * absent_pages_in_range - Return number of page frames in holes within a range
  4383. * @start_pfn: The start PFN to start searching for holes
  4384. * @end_pfn: The end PFN to stop searching for holes
  4385. *
  4386. * It returns the number of pages frames in memory holes within a range.
  4387. */
  4388. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  4389. unsigned long end_pfn)
  4390. {
  4391. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  4392. }
  4393. /* Return the number of page frames in holes in a zone on a node */
  4394. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  4395. unsigned long zone_type,
  4396. unsigned long node_start_pfn,
  4397. unsigned long node_end_pfn,
  4398. unsigned long *ignored)
  4399. {
  4400. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  4401. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  4402. unsigned long zone_start_pfn, zone_end_pfn;
  4403. unsigned long nr_absent;
  4404. /* When hotadd a new node from cpu_up(), the node should be empty */
  4405. if (!node_start_pfn && !node_end_pfn)
  4406. return 0;
  4407. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  4408. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  4409. adjust_zone_range_for_zone_movable(nid, zone_type,
  4410. node_start_pfn, node_end_pfn,
  4411. &zone_start_pfn, &zone_end_pfn);
  4412. nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  4413. /*
  4414. * ZONE_MOVABLE handling.
  4415. * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
  4416. * and vice versa.
  4417. */
  4418. if (zone_movable_pfn[nid]) {
  4419. if (mirrored_kernelcore) {
  4420. unsigned long start_pfn, end_pfn;
  4421. struct memblock_region *r;
  4422. for_each_memblock(memory, r) {
  4423. start_pfn = clamp(memblock_region_memory_base_pfn(r),
  4424. zone_start_pfn, zone_end_pfn);
  4425. end_pfn = clamp(memblock_region_memory_end_pfn(r),
  4426. zone_start_pfn, zone_end_pfn);
  4427. if (zone_type == ZONE_MOVABLE &&
  4428. memblock_is_mirror(r))
  4429. nr_absent += end_pfn - start_pfn;
  4430. if (zone_type == ZONE_NORMAL &&
  4431. !memblock_is_mirror(r))
  4432. nr_absent += end_pfn - start_pfn;
  4433. }
  4434. } else {
  4435. if (zone_type == ZONE_NORMAL)
  4436. nr_absent += node_end_pfn - zone_movable_pfn[nid];
  4437. }
  4438. }
  4439. return nr_absent;
  4440. }
  4441. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4442. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4443. unsigned long zone_type,
  4444. unsigned long node_start_pfn,
  4445. unsigned long node_end_pfn,
  4446. unsigned long *zone_start_pfn,
  4447. unsigned long *zone_end_pfn,
  4448. unsigned long *zones_size)
  4449. {
  4450. unsigned int zone;
  4451. *zone_start_pfn = node_start_pfn;
  4452. for (zone = 0; zone < zone_type; zone++)
  4453. *zone_start_pfn += zones_size[zone];
  4454. *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
  4455. return zones_size[zone_type];
  4456. }
  4457. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  4458. unsigned long zone_type,
  4459. unsigned long node_start_pfn,
  4460. unsigned long node_end_pfn,
  4461. unsigned long *zholes_size)
  4462. {
  4463. if (!zholes_size)
  4464. return 0;
  4465. return zholes_size[zone_type];
  4466. }
  4467. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4468. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  4469. unsigned long node_start_pfn,
  4470. unsigned long node_end_pfn,
  4471. unsigned long *zones_size,
  4472. unsigned long *zholes_size)
  4473. {
  4474. unsigned long realtotalpages = 0, totalpages = 0;
  4475. enum zone_type i;
  4476. for (i = 0; i < MAX_NR_ZONES; i++) {
  4477. struct zone *zone = pgdat->node_zones + i;
  4478. unsigned long zone_start_pfn, zone_end_pfn;
  4479. unsigned long size, real_size;
  4480. size = zone_spanned_pages_in_node(pgdat->node_id, i,
  4481. node_start_pfn,
  4482. node_end_pfn,
  4483. &zone_start_pfn,
  4484. &zone_end_pfn,
  4485. zones_size);
  4486. real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
  4487. node_start_pfn, node_end_pfn,
  4488. zholes_size);
  4489. if (size)
  4490. zone->zone_start_pfn = zone_start_pfn;
  4491. else
  4492. zone->zone_start_pfn = 0;
  4493. zone->spanned_pages = size;
  4494. zone->present_pages = real_size;
  4495. totalpages += size;
  4496. realtotalpages += real_size;
  4497. }
  4498. pgdat->node_spanned_pages = totalpages;
  4499. pgdat->node_present_pages = realtotalpages;
  4500. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  4501. realtotalpages);
  4502. }
  4503. #ifndef CONFIG_SPARSEMEM
  4504. /*
  4505. * Calculate the size of the zone->blockflags rounded to an unsigned long
  4506. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  4507. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  4508. * round what is now in bits to nearest long in bits, then return it in
  4509. * bytes.
  4510. */
  4511. static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
  4512. {
  4513. unsigned long usemapsize;
  4514. zonesize += zone_start_pfn & (pageblock_nr_pages-1);
  4515. usemapsize = roundup(zonesize, pageblock_nr_pages);
  4516. usemapsize = usemapsize >> pageblock_order;
  4517. usemapsize *= NR_PAGEBLOCK_BITS;
  4518. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  4519. return usemapsize / 8;
  4520. }
  4521. static void __init setup_usemap(struct pglist_data *pgdat,
  4522. struct zone *zone,
  4523. unsigned long zone_start_pfn,
  4524. unsigned long zonesize)
  4525. {
  4526. unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
  4527. zone->pageblock_flags = NULL;
  4528. if (usemapsize)
  4529. zone->pageblock_flags =
  4530. memblock_virt_alloc_node_nopanic(usemapsize,
  4531. pgdat->node_id);
  4532. }
  4533. #else
  4534. static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
  4535. unsigned long zone_start_pfn, unsigned long zonesize) {}
  4536. #endif /* CONFIG_SPARSEMEM */
  4537. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  4538. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  4539. void __paginginit set_pageblock_order(void)
  4540. {
  4541. unsigned int order;
  4542. /* Check that pageblock_nr_pages has not already been setup */
  4543. if (pageblock_order)
  4544. return;
  4545. if (HPAGE_SHIFT > PAGE_SHIFT)
  4546. order = HUGETLB_PAGE_ORDER;
  4547. else
  4548. order = MAX_ORDER - 1;
  4549. /*
  4550. * Assume the largest contiguous order of interest is a huge page.
  4551. * This value may be variable depending on boot parameters on IA64 and
  4552. * powerpc.
  4553. */
  4554. pageblock_order = order;
  4555. }
  4556. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4557. /*
  4558. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  4559. * is unused as pageblock_order is set at compile-time. See
  4560. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  4561. * the kernel config
  4562. */
  4563. void __paginginit set_pageblock_order(void)
  4564. {
  4565. }
  4566. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4567. static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
  4568. unsigned long present_pages)
  4569. {
  4570. unsigned long pages = spanned_pages;
  4571. /*
  4572. * Provide a more accurate estimation if there are holes within
  4573. * the zone and SPARSEMEM is in use. If there are holes within the
  4574. * zone, each populated memory region may cost us one or two extra
  4575. * memmap pages due to alignment because memmap pages for each
  4576. * populated regions may not naturally algined on page boundary.
  4577. * So the (present_pages >> 4) heuristic is a tradeoff for that.
  4578. */
  4579. if (spanned_pages > present_pages + (present_pages >> 4) &&
  4580. IS_ENABLED(CONFIG_SPARSEMEM))
  4581. pages = present_pages;
  4582. return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
  4583. }
  4584. /*
  4585. * Set up the zone data structures:
  4586. * - mark all pages reserved
  4587. * - mark all memory queues empty
  4588. * - clear the memory bitmaps
  4589. *
  4590. * NOTE: pgdat should get zeroed by caller.
  4591. */
  4592. static void __paginginit free_area_init_core(struct pglist_data *pgdat)
  4593. {
  4594. enum zone_type j;
  4595. int nid = pgdat->node_id;
  4596. int ret;
  4597. pgdat_resize_init(pgdat);
  4598. #ifdef CONFIG_NUMA_BALANCING
  4599. spin_lock_init(&pgdat->numabalancing_migrate_lock);
  4600. pgdat->numabalancing_migrate_nr_pages = 0;
  4601. pgdat->numabalancing_migrate_next_window = jiffies;
  4602. #endif
  4603. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  4604. spin_lock_init(&pgdat->split_queue_lock);
  4605. INIT_LIST_HEAD(&pgdat->split_queue);
  4606. pgdat->split_queue_len = 0;
  4607. #endif
  4608. init_waitqueue_head(&pgdat->kswapd_wait);
  4609. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  4610. pgdat_page_ext_init(pgdat);
  4611. for (j = 0; j < MAX_NR_ZONES; j++) {
  4612. struct zone *zone = pgdat->node_zones + j;
  4613. unsigned long size, realsize, freesize, memmap_pages;
  4614. unsigned long zone_start_pfn = zone->zone_start_pfn;
  4615. size = zone->spanned_pages;
  4616. realsize = freesize = zone->present_pages;
  4617. /*
  4618. * Adjust freesize so that it accounts for how much memory
  4619. * is used by this zone for memmap. This affects the watermark
  4620. * and per-cpu initialisations
  4621. */
  4622. memmap_pages = calc_memmap_size(size, realsize);
  4623. if (!is_highmem_idx(j)) {
  4624. if (freesize >= memmap_pages) {
  4625. freesize -= memmap_pages;
  4626. if (memmap_pages)
  4627. printk(KERN_DEBUG
  4628. " %s zone: %lu pages used for memmap\n",
  4629. zone_names[j], memmap_pages);
  4630. } else
  4631. printk(KERN_WARNING
  4632. " %s zone: %lu pages exceeds freesize %lu\n",
  4633. zone_names[j], memmap_pages, freesize);
  4634. }
  4635. /* Account for reserved pages */
  4636. if (j == 0 && freesize > dma_reserve) {
  4637. freesize -= dma_reserve;
  4638. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  4639. zone_names[0], dma_reserve);
  4640. }
  4641. if (!is_highmem_idx(j))
  4642. nr_kernel_pages += freesize;
  4643. /* Charge for highmem memmap if there are enough kernel pages */
  4644. else if (nr_kernel_pages > memmap_pages * 2)
  4645. nr_kernel_pages -= memmap_pages;
  4646. nr_all_pages += freesize;
  4647. /*
  4648. * Set an approximate value for lowmem here, it will be adjusted
  4649. * when the bootmem allocator frees pages into the buddy system.
  4650. * And all highmem pages will be managed by the buddy system.
  4651. */
  4652. zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
  4653. #ifdef CONFIG_NUMA
  4654. zone->node = nid;
  4655. zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
  4656. / 100;
  4657. zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
  4658. #endif
  4659. zone->name = zone_names[j];
  4660. spin_lock_init(&zone->lock);
  4661. spin_lock_init(&zone->lru_lock);
  4662. zone_seqlock_init(zone);
  4663. zone->zone_pgdat = pgdat;
  4664. zone_pcp_init(zone);
  4665. /* For bootup, initialized properly in watermark setup */
  4666. mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
  4667. lruvec_init(&zone->lruvec);
  4668. if (!size)
  4669. continue;
  4670. set_pageblock_order();
  4671. setup_usemap(pgdat, zone, zone_start_pfn, size);
  4672. ret = init_currently_empty_zone(zone, zone_start_pfn, size);
  4673. BUG_ON(ret);
  4674. memmap_init(size, nid, j, zone_start_pfn);
  4675. }
  4676. }
  4677. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  4678. {
  4679. unsigned long __maybe_unused start = 0;
  4680. unsigned long __maybe_unused offset = 0;
  4681. /* Skip empty nodes */
  4682. if (!pgdat->node_spanned_pages)
  4683. return;
  4684. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4685. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  4686. offset = pgdat->node_start_pfn - start;
  4687. /* ia64 gets its own node_mem_map, before this, without bootmem */
  4688. if (!pgdat->node_mem_map) {
  4689. unsigned long size, end;
  4690. struct page *map;
  4691. /*
  4692. * The zone's endpoints aren't required to be MAX_ORDER
  4693. * aligned but the node_mem_map endpoints must be in order
  4694. * for the buddy allocator to function correctly.
  4695. */
  4696. end = pgdat_end_pfn(pgdat);
  4697. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  4698. size = (end - start) * sizeof(struct page);
  4699. map = alloc_remap(pgdat->node_id, size);
  4700. if (!map)
  4701. map = memblock_virt_alloc_node_nopanic(size,
  4702. pgdat->node_id);
  4703. pgdat->node_mem_map = map + offset;
  4704. }
  4705. #ifndef CONFIG_NEED_MULTIPLE_NODES
  4706. /*
  4707. * With no DISCONTIG, the global mem_map is just set as node 0's
  4708. */
  4709. if (pgdat == NODE_DATA(0)) {
  4710. mem_map = NODE_DATA(0)->node_mem_map;
  4711. #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
  4712. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  4713. mem_map -= offset;
  4714. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4715. }
  4716. #endif
  4717. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  4718. }
  4719. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  4720. unsigned long node_start_pfn, unsigned long *zholes_size)
  4721. {
  4722. pg_data_t *pgdat = NODE_DATA(nid);
  4723. unsigned long start_pfn = 0;
  4724. unsigned long end_pfn = 0;
  4725. /* pg_data_t should be reset to zero when it's allocated */
  4726. WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
  4727. reset_deferred_meminit(pgdat);
  4728. pgdat->node_id = nid;
  4729. pgdat->node_start_pfn = node_start_pfn;
  4730. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4731. get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
  4732. pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
  4733. (u64)start_pfn << PAGE_SHIFT,
  4734. end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
  4735. #else
  4736. start_pfn = node_start_pfn;
  4737. #endif
  4738. calculate_node_totalpages(pgdat, start_pfn, end_pfn,
  4739. zones_size, zholes_size);
  4740. alloc_node_mem_map(pgdat);
  4741. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4742. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  4743. nid, (unsigned long)pgdat,
  4744. (unsigned long)pgdat->node_mem_map);
  4745. #endif
  4746. free_area_init_core(pgdat);
  4747. }
  4748. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4749. #if MAX_NUMNODES > 1
  4750. /*
  4751. * Figure out the number of possible node ids.
  4752. */
  4753. void __init setup_nr_node_ids(void)
  4754. {
  4755. unsigned int highest;
  4756. highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
  4757. nr_node_ids = highest + 1;
  4758. }
  4759. #endif
  4760. /**
  4761. * node_map_pfn_alignment - determine the maximum internode alignment
  4762. *
  4763. * This function should be called after node map is populated and sorted.
  4764. * It calculates the maximum power of two alignment which can distinguish
  4765. * all the nodes.
  4766. *
  4767. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  4768. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  4769. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  4770. * shifted, 1GiB is enough and this function will indicate so.
  4771. *
  4772. * This is used to test whether pfn -> nid mapping of the chosen memory
  4773. * model has fine enough granularity to avoid incorrect mapping for the
  4774. * populated node map.
  4775. *
  4776. * Returns the determined alignment in pfn's. 0 if there is no alignment
  4777. * requirement (single node).
  4778. */
  4779. unsigned long __init node_map_pfn_alignment(void)
  4780. {
  4781. unsigned long accl_mask = 0, last_end = 0;
  4782. unsigned long start, end, mask;
  4783. int last_nid = -1;
  4784. int i, nid;
  4785. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  4786. if (!start || last_nid < 0 || last_nid == nid) {
  4787. last_nid = nid;
  4788. last_end = end;
  4789. continue;
  4790. }
  4791. /*
  4792. * Start with a mask granular enough to pin-point to the
  4793. * start pfn and tick off bits one-by-one until it becomes
  4794. * too coarse to separate the current node from the last.
  4795. */
  4796. mask = ~((1 << __ffs(start)) - 1);
  4797. while (mask && last_end <= (start & (mask << 1)))
  4798. mask <<= 1;
  4799. /* accumulate all internode masks */
  4800. accl_mask |= mask;
  4801. }
  4802. /* convert mask to number of pages */
  4803. return ~accl_mask + 1;
  4804. }
  4805. /* Find the lowest pfn for a node */
  4806. static unsigned long __init find_min_pfn_for_node(int nid)
  4807. {
  4808. unsigned long min_pfn = ULONG_MAX;
  4809. unsigned long start_pfn;
  4810. int i;
  4811. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  4812. min_pfn = min(min_pfn, start_pfn);
  4813. if (min_pfn == ULONG_MAX) {
  4814. printk(KERN_WARNING
  4815. "Could not find start_pfn for node %d\n", nid);
  4816. return 0;
  4817. }
  4818. return min_pfn;
  4819. }
  4820. /**
  4821. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  4822. *
  4823. * It returns the minimum PFN based on information provided via
  4824. * memblock_set_node().
  4825. */
  4826. unsigned long __init find_min_pfn_with_active_regions(void)
  4827. {
  4828. return find_min_pfn_for_node(MAX_NUMNODES);
  4829. }
  4830. /*
  4831. * early_calculate_totalpages()
  4832. * Sum pages in active regions for movable zone.
  4833. * Populate N_MEMORY for calculating usable_nodes.
  4834. */
  4835. static unsigned long __init early_calculate_totalpages(void)
  4836. {
  4837. unsigned long totalpages = 0;
  4838. unsigned long start_pfn, end_pfn;
  4839. int i, nid;
  4840. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  4841. unsigned long pages = end_pfn - start_pfn;
  4842. totalpages += pages;
  4843. if (pages)
  4844. node_set_state(nid, N_MEMORY);
  4845. }
  4846. return totalpages;
  4847. }
  4848. /*
  4849. * Find the PFN the Movable zone begins in each node. Kernel memory
  4850. * is spread evenly between nodes as long as the nodes have enough
  4851. * memory. When they don't, some nodes will have more kernelcore than
  4852. * others
  4853. */
  4854. static void __init find_zone_movable_pfns_for_nodes(void)
  4855. {
  4856. int i, nid;
  4857. unsigned long usable_startpfn;
  4858. unsigned long kernelcore_node, kernelcore_remaining;
  4859. /* save the state before borrow the nodemask */
  4860. nodemask_t saved_node_state = node_states[N_MEMORY];
  4861. unsigned long totalpages = early_calculate_totalpages();
  4862. int usable_nodes = nodes_weight(node_states[N_MEMORY]);
  4863. struct memblock_region *r;
  4864. /* Need to find movable_zone earlier when movable_node is specified. */
  4865. find_usable_zone_for_movable();
  4866. /*
  4867. * If movable_node is specified, ignore kernelcore and movablecore
  4868. * options.
  4869. */
  4870. if (movable_node_is_enabled()) {
  4871. for_each_memblock(memory, r) {
  4872. if (!memblock_is_hotpluggable(r))
  4873. continue;
  4874. nid = r->nid;
  4875. usable_startpfn = PFN_DOWN(r->base);
  4876. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  4877. min(usable_startpfn, zone_movable_pfn[nid]) :
  4878. usable_startpfn;
  4879. }
  4880. goto out2;
  4881. }
  4882. /*
  4883. * If kernelcore=mirror is specified, ignore movablecore option
  4884. */
  4885. if (mirrored_kernelcore) {
  4886. bool mem_below_4gb_not_mirrored = false;
  4887. for_each_memblock(memory, r) {
  4888. if (memblock_is_mirror(r))
  4889. continue;
  4890. nid = r->nid;
  4891. usable_startpfn = memblock_region_memory_base_pfn(r);
  4892. if (usable_startpfn < 0x100000) {
  4893. mem_below_4gb_not_mirrored = true;
  4894. continue;
  4895. }
  4896. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  4897. min(usable_startpfn, zone_movable_pfn[nid]) :
  4898. usable_startpfn;
  4899. }
  4900. if (mem_below_4gb_not_mirrored)
  4901. pr_warn("This configuration results in unmirrored kernel memory.");
  4902. goto out2;
  4903. }
  4904. /*
  4905. * If movablecore=nn[KMG] was specified, calculate what size of
  4906. * kernelcore that corresponds so that memory usable for
  4907. * any allocation type is evenly spread. If both kernelcore
  4908. * and movablecore are specified, then the value of kernelcore
  4909. * will be used for required_kernelcore if it's greater than
  4910. * what movablecore would have allowed.
  4911. */
  4912. if (required_movablecore) {
  4913. unsigned long corepages;
  4914. /*
  4915. * Round-up so that ZONE_MOVABLE is at least as large as what
  4916. * was requested by the user
  4917. */
  4918. required_movablecore =
  4919. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  4920. required_movablecore = min(totalpages, required_movablecore);
  4921. corepages = totalpages - required_movablecore;
  4922. required_kernelcore = max(required_kernelcore, corepages);
  4923. }
  4924. /*
  4925. * If kernelcore was not specified or kernelcore size is larger
  4926. * than totalpages, there is no ZONE_MOVABLE.
  4927. */
  4928. if (!required_kernelcore || required_kernelcore >= totalpages)
  4929. goto out;
  4930. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  4931. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  4932. restart:
  4933. /* Spread kernelcore memory as evenly as possible throughout nodes */
  4934. kernelcore_node = required_kernelcore / usable_nodes;
  4935. for_each_node_state(nid, N_MEMORY) {
  4936. unsigned long start_pfn, end_pfn;
  4937. /*
  4938. * Recalculate kernelcore_node if the division per node
  4939. * now exceeds what is necessary to satisfy the requested
  4940. * amount of memory for the kernel
  4941. */
  4942. if (required_kernelcore < kernelcore_node)
  4943. kernelcore_node = required_kernelcore / usable_nodes;
  4944. /*
  4945. * As the map is walked, we track how much memory is usable
  4946. * by the kernel using kernelcore_remaining. When it is
  4947. * 0, the rest of the node is usable by ZONE_MOVABLE
  4948. */
  4949. kernelcore_remaining = kernelcore_node;
  4950. /* Go through each range of PFNs within this node */
  4951. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4952. unsigned long size_pages;
  4953. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  4954. if (start_pfn >= end_pfn)
  4955. continue;
  4956. /* Account for what is only usable for kernelcore */
  4957. if (start_pfn < usable_startpfn) {
  4958. unsigned long kernel_pages;
  4959. kernel_pages = min(end_pfn, usable_startpfn)
  4960. - start_pfn;
  4961. kernelcore_remaining -= min(kernel_pages,
  4962. kernelcore_remaining);
  4963. required_kernelcore -= min(kernel_pages,
  4964. required_kernelcore);
  4965. /* Continue if range is now fully accounted */
  4966. if (end_pfn <= usable_startpfn) {
  4967. /*
  4968. * Push zone_movable_pfn to the end so
  4969. * that if we have to rebalance
  4970. * kernelcore across nodes, we will
  4971. * not double account here
  4972. */
  4973. zone_movable_pfn[nid] = end_pfn;
  4974. continue;
  4975. }
  4976. start_pfn = usable_startpfn;
  4977. }
  4978. /*
  4979. * The usable PFN range for ZONE_MOVABLE is from
  4980. * start_pfn->end_pfn. Calculate size_pages as the
  4981. * number of pages used as kernelcore
  4982. */
  4983. size_pages = end_pfn - start_pfn;
  4984. if (size_pages > kernelcore_remaining)
  4985. size_pages = kernelcore_remaining;
  4986. zone_movable_pfn[nid] = start_pfn + size_pages;
  4987. /*
  4988. * Some kernelcore has been met, update counts and
  4989. * break if the kernelcore for this node has been
  4990. * satisfied
  4991. */
  4992. required_kernelcore -= min(required_kernelcore,
  4993. size_pages);
  4994. kernelcore_remaining -= size_pages;
  4995. if (!kernelcore_remaining)
  4996. break;
  4997. }
  4998. }
  4999. /*
  5000. * If there is still required_kernelcore, we do another pass with one
  5001. * less node in the count. This will push zone_movable_pfn[nid] further
  5002. * along on the nodes that still have memory until kernelcore is
  5003. * satisfied
  5004. */
  5005. usable_nodes--;
  5006. if (usable_nodes && required_kernelcore > usable_nodes)
  5007. goto restart;
  5008. out2:
  5009. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  5010. for (nid = 0; nid < MAX_NUMNODES; nid++)
  5011. zone_movable_pfn[nid] =
  5012. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  5013. out:
  5014. /* restore the node_state */
  5015. node_states[N_MEMORY] = saved_node_state;
  5016. }
  5017. /* Any regular or high memory on that node ? */
  5018. static void check_for_memory(pg_data_t *pgdat, int nid)
  5019. {
  5020. enum zone_type zone_type;
  5021. if (N_MEMORY == N_NORMAL_MEMORY)
  5022. return;
  5023. for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
  5024. struct zone *zone = &pgdat->node_zones[zone_type];
  5025. if (populated_zone(zone)) {
  5026. node_set_state(nid, N_HIGH_MEMORY);
  5027. if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
  5028. zone_type <= ZONE_NORMAL)
  5029. node_set_state(nid, N_NORMAL_MEMORY);
  5030. break;
  5031. }
  5032. }
  5033. }
  5034. /**
  5035. * free_area_init_nodes - Initialise all pg_data_t and zone data
  5036. * @max_zone_pfn: an array of max PFNs for each zone
  5037. *
  5038. * This will call free_area_init_node() for each active node in the system.
  5039. * Using the page ranges provided by memblock_set_node(), the size of each
  5040. * zone in each node and their holes is calculated. If the maximum PFN
  5041. * between two adjacent zones match, it is assumed that the zone is empty.
  5042. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  5043. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  5044. * starts where the previous one ended. For example, ZONE_DMA32 starts
  5045. * at arch_max_dma_pfn.
  5046. */
  5047. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  5048. {
  5049. unsigned long start_pfn, end_pfn;
  5050. int i, nid;
  5051. /* Record where the zone boundaries are */
  5052. memset(arch_zone_lowest_possible_pfn, 0,
  5053. sizeof(arch_zone_lowest_possible_pfn));
  5054. memset(arch_zone_highest_possible_pfn, 0,
  5055. sizeof(arch_zone_highest_possible_pfn));
  5056. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  5057. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  5058. for (i = 1; i < MAX_NR_ZONES; i++) {
  5059. if (i == ZONE_MOVABLE)
  5060. continue;
  5061. arch_zone_lowest_possible_pfn[i] =
  5062. arch_zone_highest_possible_pfn[i-1];
  5063. arch_zone_highest_possible_pfn[i] =
  5064. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  5065. }
  5066. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  5067. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  5068. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  5069. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  5070. find_zone_movable_pfns_for_nodes();
  5071. /* Print out the zone ranges */
  5072. pr_info("Zone ranges:\n");
  5073. for (i = 0; i < MAX_NR_ZONES; i++) {
  5074. if (i == ZONE_MOVABLE)
  5075. continue;
  5076. pr_info(" %-8s ", zone_names[i]);
  5077. if (arch_zone_lowest_possible_pfn[i] ==
  5078. arch_zone_highest_possible_pfn[i])
  5079. pr_cont("empty\n");
  5080. else
  5081. pr_cont("[mem %#018Lx-%#018Lx]\n",
  5082. (u64)arch_zone_lowest_possible_pfn[i]
  5083. << PAGE_SHIFT,
  5084. ((u64)arch_zone_highest_possible_pfn[i]
  5085. << PAGE_SHIFT) - 1);
  5086. }
  5087. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  5088. pr_info("Movable zone start for each node\n");
  5089. for (i = 0; i < MAX_NUMNODES; i++) {
  5090. if (zone_movable_pfn[i])
  5091. pr_info(" Node %d: %#018Lx\n", i,
  5092. (u64)zone_movable_pfn[i] << PAGE_SHIFT);
  5093. }
  5094. /* Print out the early node map */
  5095. pr_info("Early memory node ranges\n");
  5096. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  5097. pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
  5098. (u64)start_pfn << PAGE_SHIFT,
  5099. ((u64)end_pfn << PAGE_SHIFT) - 1);
  5100. /* Initialise every node */
  5101. mminit_verify_pageflags_layout();
  5102. setup_nr_node_ids();
  5103. for_each_online_node(nid) {
  5104. pg_data_t *pgdat = NODE_DATA(nid);
  5105. free_area_init_node(nid, NULL,
  5106. find_min_pfn_for_node(nid), NULL);
  5107. /* Any memory on that node */
  5108. if (pgdat->node_present_pages)
  5109. node_set_state(nid, N_MEMORY);
  5110. check_for_memory(pgdat, nid);
  5111. }
  5112. }
  5113. static int __init cmdline_parse_core(char *p, unsigned long *core)
  5114. {
  5115. unsigned long long coremem;
  5116. if (!p)
  5117. return -EINVAL;
  5118. coremem = memparse(p, &p);
  5119. *core = coremem >> PAGE_SHIFT;
  5120. /* Paranoid check that UL is enough for the coremem value */
  5121. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  5122. return 0;
  5123. }
  5124. /*
  5125. * kernelcore=size sets the amount of memory for use for allocations that
  5126. * cannot be reclaimed or migrated.
  5127. */
  5128. static int __init cmdline_parse_kernelcore(char *p)
  5129. {
  5130. /* parse kernelcore=mirror */
  5131. if (parse_option_str(p, "mirror")) {
  5132. mirrored_kernelcore = true;
  5133. return 0;
  5134. }
  5135. return cmdline_parse_core(p, &required_kernelcore);
  5136. }
  5137. /*
  5138. * movablecore=size sets the amount of memory for use for allocations that
  5139. * can be reclaimed or migrated.
  5140. */
  5141. static int __init cmdline_parse_movablecore(char *p)
  5142. {
  5143. return cmdline_parse_core(p, &required_movablecore);
  5144. }
  5145. early_param("kernelcore", cmdline_parse_kernelcore);
  5146. early_param("movablecore", cmdline_parse_movablecore);
  5147. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5148. void adjust_managed_page_count(struct page *page, long count)
  5149. {
  5150. spin_lock(&managed_page_count_lock);
  5151. page_zone(page)->managed_pages += count;
  5152. totalram_pages += count;
  5153. #ifdef CONFIG_HIGHMEM
  5154. if (PageHighMem(page))
  5155. totalhigh_pages += count;
  5156. #endif
  5157. spin_unlock(&managed_page_count_lock);
  5158. }
  5159. EXPORT_SYMBOL(adjust_managed_page_count);
  5160. unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
  5161. {
  5162. void *pos;
  5163. unsigned long pages = 0;
  5164. start = (void *)PAGE_ALIGN((unsigned long)start);
  5165. end = (void *)((unsigned long)end & PAGE_MASK);
  5166. for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
  5167. if ((unsigned int)poison <= 0xFF)
  5168. memset(pos, poison, PAGE_SIZE);
  5169. free_reserved_page(virt_to_page(pos));
  5170. }
  5171. if (pages && s)
  5172. pr_info("Freeing %s memory: %ldK (%p - %p)\n",
  5173. s, pages << (PAGE_SHIFT - 10), start, end);
  5174. return pages;
  5175. }
  5176. EXPORT_SYMBOL(free_reserved_area);
  5177. #ifdef CONFIG_HIGHMEM
  5178. void free_highmem_page(struct page *page)
  5179. {
  5180. __free_reserved_page(page);
  5181. totalram_pages++;
  5182. page_zone(page)->managed_pages++;
  5183. totalhigh_pages++;
  5184. }
  5185. #endif
  5186. void __init mem_init_print_info(const char *str)
  5187. {
  5188. unsigned long physpages, codesize, datasize, rosize, bss_size;
  5189. unsigned long init_code_size, init_data_size;
  5190. physpages = get_num_physpages();
  5191. codesize = _etext - _stext;
  5192. datasize = _edata - _sdata;
  5193. rosize = __end_rodata - __start_rodata;
  5194. bss_size = __bss_stop - __bss_start;
  5195. init_data_size = __init_end - __init_begin;
  5196. init_code_size = _einittext - _sinittext;
  5197. /*
  5198. * Detect special cases and adjust section sizes accordingly:
  5199. * 1) .init.* may be embedded into .data sections
  5200. * 2) .init.text.* may be out of [__init_begin, __init_end],
  5201. * please refer to arch/tile/kernel/vmlinux.lds.S.
  5202. * 3) .rodata.* may be embedded into .text or .data sections.
  5203. */
  5204. #define adj_init_size(start, end, size, pos, adj) \
  5205. do { \
  5206. if (start <= pos && pos < end && size > adj) \
  5207. size -= adj; \
  5208. } while (0)
  5209. adj_init_size(__init_begin, __init_end, init_data_size,
  5210. _sinittext, init_code_size);
  5211. adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
  5212. adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
  5213. adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
  5214. adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
  5215. #undef adj_init_size
  5216. pr_info("Memory: %luK/%luK available "
  5217. "(%luK kernel code, %luK rwdata, %luK rodata, "
  5218. "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
  5219. #ifdef CONFIG_HIGHMEM
  5220. ", %luK highmem"
  5221. #endif
  5222. "%s%s)\n",
  5223. nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
  5224. codesize >> 10, datasize >> 10, rosize >> 10,
  5225. (init_data_size + init_code_size) >> 10, bss_size >> 10,
  5226. (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
  5227. totalcma_pages << (PAGE_SHIFT-10),
  5228. #ifdef CONFIG_HIGHMEM
  5229. totalhigh_pages << (PAGE_SHIFT-10),
  5230. #endif
  5231. str ? ", " : "", str ? str : "");
  5232. }
  5233. /**
  5234. * set_dma_reserve - set the specified number of pages reserved in the first zone
  5235. * @new_dma_reserve: The number of pages to mark reserved
  5236. *
  5237. * The per-cpu batchsize and zone watermarks are determined by managed_pages.
  5238. * In the DMA zone, a significant percentage may be consumed by kernel image
  5239. * and other unfreeable allocations which can skew the watermarks badly. This
  5240. * function may optionally be used to account for unfreeable pages in the
  5241. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  5242. * smaller per-cpu batchsize.
  5243. */
  5244. void __init set_dma_reserve(unsigned long new_dma_reserve)
  5245. {
  5246. dma_reserve = new_dma_reserve;
  5247. }
  5248. void __init free_area_init(unsigned long *zones_size)
  5249. {
  5250. free_area_init_node(0, zones_size,
  5251. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  5252. }
  5253. static int page_alloc_cpu_notify(struct notifier_block *self,
  5254. unsigned long action, void *hcpu)
  5255. {
  5256. int cpu = (unsigned long)hcpu;
  5257. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  5258. lru_add_drain_cpu(cpu);
  5259. drain_pages(cpu);
  5260. /*
  5261. * Spill the event counters of the dead processor
  5262. * into the current processors event counters.
  5263. * This artificially elevates the count of the current
  5264. * processor.
  5265. */
  5266. vm_events_fold_cpu(cpu);
  5267. /*
  5268. * Zero the differential counters of the dead processor
  5269. * so that the vm statistics are consistent.
  5270. *
  5271. * This is only okay since the processor is dead and cannot
  5272. * race with what we are doing.
  5273. */
  5274. cpu_vm_stats_fold(cpu);
  5275. }
  5276. return NOTIFY_OK;
  5277. }
  5278. void __init page_alloc_init(void)
  5279. {
  5280. hotcpu_notifier(page_alloc_cpu_notify, 0);
  5281. }
  5282. /*
  5283. * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
  5284. * or min_free_kbytes changes.
  5285. */
  5286. static void calculate_totalreserve_pages(void)
  5287. {
  5288. struct pglist_data *pgdat;
  5289. unsigned long reserve_pages = 0;
  5290. enum zone_type i, j;
  5291. for_each_online_pgdat(pgdat) {
  5292. for (i = 0; i < MAX_NR_ZONES; i++) {
  5293. struct zone *zone = pgdat->node_zones + i;
  5294. long max = 0;
  5295. /* Find valid and maximum lowmem_reserve in the zone */
  5296. for (j = i; j < MAX_NR_ZONES; j++) {
  5297. if (zone->lowmem_reserve[j] > max)
  5298. max = zone->lowmem_reserve[j];
  5299. }
  5300. /* we treat the high watermark as reserved pages. */
  5301. max += high_wmark_pages(zone);
  5302. if (max > zone->managed_pages)
  5303. max = zone->managed_pages;
  5304. zone->totalreserve_pages = max;
  5305. reserve_pages += max;
  5306. }
  5307. }
  5308. totalreserve_pages = reserve_pages;
  5309. }
  5310. /*
  5311. * setup_per_zone_lowmem_reserve - called whenever
  5312. * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
  5313. * has a correct pages reserved value, so an adequate number of
  5314. * pages are left in the zone after a successful __alloc_pages().
  5315. */
  5316. static void setup_per_zone_lowmem_reserve(void)
  5317. {
  5318. struct pglist_data *pgdat;
  5319. enum zone_type j, idx;
  5320. for_each_online_pgdat(pgdat) {
  5321. for (j = 0; j < MAX_NR_ZONES; j++) {
  5322. struct zone *zone = pgdat->node_zones + j;
  5323. unsigned long managed_pages = zone->managed_pages;
  5324. zone->lowmem_reserve[j] = 0;
  5325. idx = j;
  5326. while (idx) {
  5327. struct zone *lower_zone;
  5328. idx--;
  5329. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  5330. sysctl_lowmem_reserve_ratio[idx] = 1;
  5331. lower_zone = pgdat->node_zones + idx;
  5332. lower_zone->lowmem_reserve[j] = managed_pages /
  5333. sysctl_lowmem_reserve_ratio[idx];
  5334. managed_pages += lower_zone->managed_pages;
  5335. }
  5336. }
  5337. }
  5338. /* update totalreserve_pages */
  5339. calculate_totalreserve_pages();
  5340. }
  5341. static void __setup_per_zone_wmarks(void)
  5342. {
  5343. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  5344. unsigned long lowmem_pages = 0;
  5345. struct zone *zone;
  5346. unsigned long flags;
  5347. /* Calculate total number of !ZONE_HIGHMEM pages */
  5348. for_each_zone(zone) {
  5349. if (!is_highmem(zone))
  5350. lowmem_pages += zone->managed_pages;
  5351. }
  5352. for_each_zone(zone) {
  5353. u64 tmp;
  5354. spin_lock_irqsave(&zone->lock, flags);
  5355. tmp = (u64)pages_min * zone->managed_pages;
  5356. do_div(tmp, lowmem_pages);
  5357. if (is_highmem(zone)) {
  5358. /*
  5359. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  5360. * need highmem pages, so cap pages_min to a small
  5361. * value here.
  5362. *
  5363. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  5364. * deltas control asynch page reclaim, and so should
  5365. * not be capped for highmem.
  5366. */
  5367. unsigned long min_pages;
  5368. min_pages = zone->managed_pages / 1024;
  5369. min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
  5370. zone->watermark[WMARK_MIN] = min_pages;
  5371. } else {
  5372. /*
  5373. * If it's a lowmem zone, reserve a number of pages
  5374. * proportionate to the zone's size.
  5375. */
  5376. zone->watermark[WMARK_MIN] = tmp;
  5377. }
  5378. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  5379. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  5380. __mod_zone_page_state(zone, NR_ALLOC_BATCH,
  5381. high_wmark_pages(zone) - low_wmark_pages(zone) -
  5382. atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
  5383. spin_unlock_irqrestore(&zone->lock, flags);
  5384. }
  5385. /* update totalreserve_pages */
  5386. calculate_totalreserve_pages();
  5387. }
  5388. /**
  5389. * setup_per_zone_wmarks - called when min_free_kbytes changes
  5390. * or when memory is hot-{added|removed}
  5391. *
  5392. * Ensures that the watermark[min,low,high] values for each zone are set
  5393. * correctly with respect to min_free_kbytes.
  5394. */
  5395. void setup_per_zone_wmarks(void)
  5396. {
  5397. mutex_lock(&zonelists_mutex);
  5398. __setup_per_zone_wmarks();
  5399. mutex_unlock(&zonelists_mutex);
  5400. }
  5401. /*
  5402. * The inactive anon list should be small enough that the VM never has to
  5403. * do too much work, but large enough that each inactive page has a chance
  5404. * to be referenced again before it is swapped out.
  5405. *
  5406. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  5407. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  5408. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  5409. * the anonymous pages are kept on the inactive list.
  5410. *
  5411. * total target max
  5412. * memory ratio inactive anon
  5413. * -------------------------------------
  5414. * 10MB 1 5MB
  5415. * 100MB 1 50MB
  5416. * 1GB 3 250MB
  5417. * 10GB 10 0.9GB
  5418. * 100GB 31 3GB
  5419. * 1TB 101 10GB
  5420. * 10TB 320 32GB
  5421. */
  5422. static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
  5423. {
  5424. unsigned int gb, ratio;
  5425. /* Zone size in gigabytes */
  5426. gb = zone->managed_pages >> (30 - PAGE_SHIFT);
  5427. if (gb)
  5428. ratio = int_sqrt(10 * gb);
  5429. else
  5430. ratio = 1;
  5431. zone->inactive_ratio = ratio;
  5432. }
  5433. static void __meminit setup_per_zone_inactive_ratio(void)
  5434. {
  5435. struct zone *zone;
  5436. for_each_zone(zone)
  5437. calculate_zone_inactive_ratio(zone);
  5438. }
  5439. /*
  5440. * Initialise min_free_kbytes.
  5441. *
  5442. * For small machines we want it small (128k min). For large machines
  5443. * we want it large (64MB max). But it is not linear, because network
  5444. * bandwidth does not increase linearly with machine size. We use
  5445. *
  5446. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  5447. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  5448. *
  5449. * which yields
  5450. *
  5451. * 16MB: 512k
  5452. * 32MB: 724k
  5453. * 64MB: 1024k
  5454. * 128MB: 1448k
  5455. * 256MB: 2048k
  5456. * 512MB: 2896k
  5457. * 1024MB: 4096k
  5458. * 2048MB: 5792k
  5459. * 4096MB: 8192k
  5460. * 8192MB: 11584k
  5461. * 16384MB: 16384k
  5462. */
  5463. int __meminit init_per_zone_wmark_min(void)
  5464. {
  5465. unsigned long lowmem_kbytes;
  5466. int new_min_free_kbytes;
  5467. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  5468. new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  5469. if (new_min_free_kbytes > user_min_free_kbytes) {
  5470. min_free_kbytes = new_min_free_kbytes;
  5471. if (min_free_kbytes < 128)
  5472. min_free_kbytes = 128;
  5473. if (min_free_kbytes > 65536)
  5474. min_free_kbytes = 65536;
  5475. } else {
  5476. pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
  5477. new_min_free_kbytes, user_min_free_kbytes);
  5478. }
  5479. setup_per_zone_wmarks();
  5480. refresh_zone_stat_thresholds();
  5481. setup_per_zone_lowmem_reserve();
  5482. setup_per_zone_inactive_ratio();
  5483. return 0;
  5484. }
  5485. module_init(init_per_zone_wmark_min)
  5486. /*
  5487. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  5488. * that we can call two helper functions whenever min_free_kbytes
  5489. * changes.
  5490. */
  5491. int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
  5492. void __user *buffer, size_t *length, loff_t *ppos)
  5493. {
  5494. int rc;
  5495. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5496. if (rc)
  5497. return rc;
  5498. if (write) {
  5499. user_min_free_kbytes = min_free_kbytes;
  5500. setup_per_zone_wmarks();
  5501. }
  5502. return 0;
  5503. }
  5504. #ifdef CONFIG_NUMA
  5505. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
  5506. void __user *buffer, size_t *length, loff_t *ppos)
  5507. {
  5508. struct zone *zone;
  5509. int rc;
  5510. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5511. if (rc)
  5512. return rc;
  5513. for_each_zone(zone)
  5514. zone->min_unmapped_pages = (zone->managed_pages *
  5515. sysctl_min_unmapped_ratio) / 100;
  5516. return 0;
  5517. }
  5518. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
  5519. void __user *buffer, size_t *length, loff_t *ppos)
  5520. {
  5521. struct zone *zone;
  5522. int rc;
  5523. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5524. if (rc)
  5525. return rc;
  5526. for_each_zone(zone)
  5527. zone->min_slab_pages = (zone->managed_pages *
  5528. sysctl_min_slab_ratio) / 100;
  5529. return 0;
  5530. }
  5531. #endif
  5532. /*
  5533. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  5534. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  5535. * whenever sysctl_lowmem_reserve_ratio changes.
  5536. *
  5537. * The reserve ratio obviously has absolutely no relation with the
  5538. * minimum watermarks. The lowmem reserve ratio can only make sense
  5539. * if in function of the boot time zone sizes.
  5540. */
  5541. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
  5542. void __user *buffer, size_t *length, loff_t *ppos)
  5543. {
  5544. proc_dointvec_minmax(table, write, buffer, length, ppos);
  5545. setup_per_zone_lowmem_reserve();
  5546. return 0;
  5547. }
  5548. /*
  5549. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  5550. * cpu. It is the fraction of total pages in each zone that a hot per cpu
  5551. * pagelist can have before it gets flushed back to buddy allocator.
  5552. */
  5553. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
  5554. void __user *buffer, size_t *length, loff_t *ppos)
  5555. {
  5556. struct zone *zone;
  5557. int old_percpu_pagelist_fraction;
  5558. int ret;
  5559. mutex_lock(&pcp_batch_high_lock);
  5560. old_percpu_pagelist_fraction = percpu_pagelist_fraction;
  5561. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5562. if (!write || ret < 0)
  5563. goto out;
  5564. /* Sanity checking to avoid pcp imbalance */
  5565. if (percpu_pagelist_fraction &&
  5566. percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
  5567. percpu_pagelist_fraction = old_percpu_pagelist_fraction;
  5568. ret = -EINVAL;
  5569. goto out;
  5570. }
  5571. /* No change? */
  5572. if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
  5573. goto out;
  5574. for_each_populated_zone(zone) {
  5575. unsigned int cpu;
  5576. for_each_possible_cpu(cpu)
  5577. pageset_set_high_and_batch(zone,
  5578. per_cpu_ptr(zone->pageset, cpu));
  5579. }
  5580. out:
  5581. mutex_unlock(&pcp_batch_high_lock);
  5582. return ret;
  5583. }
  5584. #ifdef CONFIG_NUMA
  5585. int hashdist = HASHDIST_DEFAULT;
  5586. static int __init set_hashdist(char *str)
  5587. {
  5588. if (!str)
  5589. return 0;
  5590. hashdist = simple_strtoul(str, &str, 0);
  5591. return 1;
  5592. }
  5593. __setup("hashdist=", set_hashdist);
  5594. #endif
  5595. /*
  5596. * allocate a large system hash table from bootmem
  5597. * - it is assumed that the hash table must contain an exact power-of-2
  5598. * quantity of entries
  5599. * - limit is the number of hash buckets, not the total allocation size
  5600. */
  5601. void *__init alloc_large_system_hash(const char *tablename,
  5602. unsigned long bucketsize,
  5603. unsigned long numentries,
  5604. int scale,
  5605. int flags,
  5606. unsigned int *_hash_shift,
  5607. unsigned int *_hash_mask,
  5608. unsigned long low_limit,
  5609. unsigned long high_limit)
  5610. {
  5611. unsigned long long max = high_limit;
  5612. unsigned long log2qty, size;
  5613. void *table = NULL;
  5614. /* allow the kernel cmdline to have a say */
  5615. if (!numentries) {
  5616. /* round applicable memory size up to nearest megabyte */
  5617. numentries = nr_kernel_pages;
  5618. /* It isn't necessary when PAGE_SIZE >= 1MB */
  5619. if (PAGE_SHIFT < 20)
  5620. numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
  5621. /* limit to 1 bucket per 2^scale bytes of low memory */
  5622. if (scale > PAGE_SHIFT)
  5623. numentries >>= (scale - PAGE_SHIFT);
  5624. else
  5625. numentries <<= (PAGE_SHIFT - scale);
  5626. /* Make sure we've got at least a 0-order allocation.. */
  5627. if (unlikely(flags & HASH_SMALL)) {
  5628. /* Makes no sense without HASH_EARLY */
  5629. WARN_ON(!(flags & HASH_EARLY));
  5630. if (!(numentries >> *_hash_shift)) {
  5631. numentries = 1UL << *_hash_shift;
  5632. BUG_ON(!numentries);
  5633. }
  5634. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  5635. numentries = PAGE_SIZE / bucketsize;
  5636. }
  5637. numentries = roundup_pow_of_two(numentries);
  5638. /* limit allocation size to 1/16 total memory by default */
  5639. if (max == 0) {
  5640. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  5641. do_div(max, bucketsize);
  5642. }
  5643. max = min(max, 0x80000000ULL);
  5644. if (numentries < low_limit)
  5645. numentries = low_limit;
  5646. if (numentries > max)
  5647. numentries = max;
  5648. log2qty = ilog2(numentries);
  5649. do {
  5650. size = bucketsize << log2qty;
  5651. if (flags & HASH_EARLY)
  5652. table = memblock_virt_alloc_nopanic(size, 0);
  5653. else if (hashdist)
  5654. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  5655. else {
  5656. /*
  5657. * If bucketsize is not a power-of-two, we may free
  5658. * some pages at the end of hash table which
  5659. * alloc_pages_exact() automatically does
  5660. */
  5661. if (get_order(size) < MAX_ORDER) {
  5662. table = alloc_pages_exact(size, GFP_ATOMIC);
  5663. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  5664. }
  5665. }
  5666. } while (!table && size > PAGE_SIZE && --log2qty);
  5667. if (!table)
  5668. panic("Failed to allocate %s hash table\n", tablename);
  5669. printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
  5670. tablename,
  5671. (1UL << log2qty),
  5672. ilog2(size) - PAGE_SHIFT,
  5673. size);
  5674. if (_hash_shift)
  5675. *_hash_shift = log2qty;
  5676. if (_hash_mask)
  5677. *_hash_mask = (1 << log2qty) - 1;
  5678. return table;
  5679. }
  5680. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  5681. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  5682. unsigned long pfn)
  5683. {
  5684. #ifdef CONFIG_SPARSEMEM
  5685. return __pfn_to_section(pfn)->pageblock_flags;
  5686. #else
  5687. return zone->pageblock_flags;
  5688. #endif /* CONFIG_SPARSEMEM */
  5689. }
  5690. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  5691. {
  5692. #ifdef CONFIG_SPARSEMEM
  5693. pfn &= (PAGES_PER_SECTION-1);
  5694. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  5695. #else
  5696. pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
  5697. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  5698. #endif /* CONFIG_SPARSEMEM */
  5699. }
  5700. /**
  5701. * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
  5702. * @page: The page within the block of interest
  5703. * @pfn: The target page frame number
  5704. * @end_bitidx: The last bit of interest to retrieve
  5705. * @mask: mask of bits that the caller is interested in
  5706. *
  5707. * Return: pageblock_bits flags
  5708. */
  5709. unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
  5710. unsigned long end_bitidx,
  5711. unsigned long mask)
  5712. {
  5713. struct zone *zone;
  5714. unsigned long *bitmap;
  5715. unsigned long bitidx, word_bitidx;
  5716. unsigned long word;
  5717. zone = page_zone(page);
  5718. bitmap = get_pageblock_bitmap(zone, pfn);
  5719. bitidx = pfn_to_bitidx(zone, pfn);
  5720. word_bitidx = bitidx / BITS_PER_LONG;
  5721. bitidx &= (BITS_PER_LONG-1);
  5722. word = bitmap[word_bitidx];
  5723. bitidx += end_bitidx;
  5724. return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
  5725. }
  5726. /**
  5727. * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
  5728. * @page: The page within the block of interest
  5729. * @flags: The flags to set
  5730. * @pfn: The target page frame number
  5731. * @end_bitidx: The last bit of interest
  5732. * @mask: mask of bits that the caller is interested in
  5733. */
  5734. void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
  5735. unsigned long pfn,
  5736. unsigned long end_bitidx,
  5737. unsigned long mask)
  5738. {
  5739. struct zone *zone;
  5740. unsigned long *bitmap;
  5741. unsigned long bitidx, word_bitidx;
  5742. unsigned long old_word, word;
  5743. BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
  5744. zone = page_zone(page);
  5745. bitmap = get_pageblock_bitmap(zone, pfn);
  5746. bitidx = pfn_to_bitidx(zone, pfn);
  5747. word_bitidx = bitidx / BITS_PER_LONG;
  5748. bitidx &= (BITS_PER_LONG-1);
  5749. VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
  5750. bitidx += end_bitidx;
  5751. mask <<= (BITS_PER_LONG - bitidx - 1);
  5752. flags <<= (BITS_PER_LONG - bitidx - 1);
  5753. word = READ_ONCE(bitmap[word_bitidx]);
  5754. for (;;) {
  5755. old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
  5756. if (word == old_word)
  5757. break;
  5758. word = old_word;
  5759. }
  5760. }
  5761. /*
  5762. * This function checks whether pageblock includes unmovable pages or not.
  5763. * If @count is not zero, it is okay to include less @count unmovable pages
  5764. *
  5765. * PageLRU check without isolation or lru_lock could race so that
  5766. * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
  5767. * expect this function should be exact.
  5768. */
  5769. bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
  5770. bool skip_hwpoisoned_pages)
  5771. {
  5772. unsigned long pfn, iter, found;
  5773. int mt;
  5774. /*
  5775. * For avoiding noise data, lru_add_drain_all() should be called
  5776. * If ZONE_MOVABLE, the zone never contains unmovable pages
  5777. */
  5778. if (zone_idx(zone) == ZONE_MOVABLE)
  5779. return false;
  5780. mt = get_pageblock_migratetype(page);
  5781. if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
  5782. return false;
  5783. pfn = page_to_pfn(page);
  5784. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  5785. unsigned long check = pfn + iter;
  5786. if (!pfn_valid_within(check))
  5787. continue;
  5788. page = pfn_to_page(check);
  5789. /*
  5790. * Hugepages are not in LRU lists, but they're movable.
  5791. * We need not scan over tail pages bacause we don't
  5792. * handle each tail page individually in migration.
  5793. */
  5794. if (PageHuge(page)) {
  5795. iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
  5796. continue;
  5797. }
  5798. /*
  5799. * We can't use page_count without pin a page
  5800. * because another CPU can free compound page.
  5801. * This check already skips compound tails of THP
  5802. * because their page->_count is zero at all time.
  5803. */
  5804. if (!atomic_read(&page->_count)) {
  5805. if (PageBuddy(page))
  5806. iter += (1 << page_order(page)) - 1;
  5807. continue;
  5808. }
  5809. /*
  5810. * The HWPoisoned page may be not in buddy system, and
  5811. * page_count() is not 0.
  5812. */
  5813. if (skip_hwpoisoned_pages && PageHWPoison(page))
  5814. continue;
  5815. if (!PageLRU(page))
  5816. found++;
  5817. /*
  5818. * If there are RECLAIMABLE pages, we need to check
  5819. * it. But now, memory offline itself doesn't call
  5820. * shrink_node_slabs() and it still to be fixed.
  5821. */
  5822. /*
  5823. * If the page is not RAM, page_count()should be 0.
  5824. * we don't need more check. This is an _used_ not-movable page.
  5825. *
  5826. * The problematic thing here is PG_reserved pages. PG_reserved
  5827. * is set to both of a memory hole page and a _used_ kernel
  5828. * page at boot.
  5829. */
  5830. if (found > count)
  5831. return true;
  5832. }
  5833. return false;
  5834. }
  5835. bool is_pageblock_removable_nolock(struct page *page)
  5836. {
  5837. struct zone *zone;
  5838. unsigned long pfn;
  5839. /*
  5840. * We have to be careful here because we are iterating over memory
  5841. * sections which are not zone aware so we might end up outside of
  5842. * the zone but still within the section.
  5843. * We have to take care about the node as well. If the node is offline
  5844. * its NODE_DATA will be NULL - see page_zone.
  5845. */
  5846. if (!node_online(page_to_nid(page)))
  5847. return false;
  5848. zone = page_zone(page);
  5849. pfn = page_to_pfn(page);
  5850. if (!zone_spans_pfn(zone, pfn))
  5851. return false;
  5852. return !has_unmovable_pages(zone, page, 0, true);
  5853. }
  5854. #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
  5855. static unsigned long pfn_max_align_down(unsigned long pfn)
  5856. {
  5857. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5858. pageblock_nr_pages) - 1);
  5859. }
  5860. static unsigned long pfn_max_align_up(unsigned long pfn)
  5861. {
  5862. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5863. pageblock_nr_pages));
  5864. }
  5865. /* [start, end) must belong to a single zone. */
  5866. static int __alloc_contig_migrate_range(struct compact_control *cc,
  5867. unsigned long start, unsigned long end)
  5868. {
  5869. /* This function is based on compact_zone() from compaction.c. */
  5870. unsigned long nr_reclaimed;
  5871. unsigned long pfn = start;
  5872. unsigned int tries = 0;
  5873. int ret = 0;
  5874. migrate_prep();
  5875. while (pfn < end || !list_empty(&cc->migratepages)) {
  5876. if (fatal_signal_pending(current)) {
  5877. ret = -EINTR;
  5878. break;
  5879. }
  5880. if (list_empty(&cc->migratepages)) {
  5881. cc->nr_migratepages = 0;
  5882. pfn = isolate_migratepages_range(cc, pfn, end);
  5883. if (!pfn) {
  5884. ret = -EINTR;
  5885. break;
  5886. }
  5887. tries = 0;
  5888. } else if (++tries == 5) {
  5889. ret = ret < 0 ? ret : -EBUSY;
  5890. break;
  5891. }
  5892. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
  5893. &cc->migratepages);
  5894. cc->nr_migratepages -= nr_reclaimed;
  5895. ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
  5896. NULL, 0, cc->mode, MR_CMA);
  5897. }
  5898. if (ret < 0) {
  5899. putback_movable_pages(&cc->migratepages);
  5900. return ret;
  5901. }
  5902. return 0;
  5903. }
  5904. /**
  5905. * alloc_contig_range() -- tries to allocate given range of pages
  5906. * @start: start PFN to allocate
  5907. * @end: one-past-the-last PFN to allocate
  5908. * @migratetype: migratetype of the underlaying pageblocks (either
  5909. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  5910. * in range must have the same migratetype and it must
  5911. * be either of the two.
  5912. *
  5913. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  5914. * aligned, however it's the caller's responsibility to guarantee that
  5915. * we are the only thread that changes migrate type of pageblocks the
  5916. * pages fall in.
  5917. *
  5918. * The PFN range must belong to a single zone.
  5919. *
  5920. * Returns zero on success or negative error code. On success all
  5921. * pages which PFN is in [start, end) are allocated for the caller and
  5922. * need to be freed with free_contig_range().
  5923. */
  5924. int alloc_contig_range(unsigned long start, unsigned long end,
  5925. unsigned migratetype)
  5926. {
  5927. unsigned long outer_start, outer_end;
  5928. unsigned int order;
  5929. int ret = 0;
  5930. struct compact_control cc = {
  5931. .nr_migratepages = 0,
  5932. .order = -1,
  5933. .zone = page_zone(pfn_to_page(start)),
  5934. .mode = MIGRATE_SYNC,
  5935. .ignore_skip_hint = true,
  5936. };
  5937. INIT_LIST_HEAD(&cc.migratepages);
  5938. /*
  5939. * What we do here is we mark all pageblocks in range as
  5940. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  5941. * have different sizes, and due to the way page allocator
  5942. * work, we align the range to biggest of the two pages so
  5943. * that page allocator won't try to merge buddies from
  5944. * different pageblocks and change MIGRATE_ISOLATE to some
  5945. * other migration type.
  5946. *
  5947. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  5948. * migrate the pages from an unaligned range (ie. pages that
  5949. * we are interested in). This will put all the pages in
  5950. * range back to page allocator as MIGRATE_ISOLATE.
  5951. *
  5952. * When this is done, we take the pages in range from page
  5953. * allocator removing them from the buddy system. This way
  5954. * page allocator will never consider using them.
  5955. *
  5956. * This lets us mark the pageblocks back as
  5957. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  5958. * aligned range but not in the unaligned, original range are
  5959. * put back to page allocator so that buddy can use them.
  5960. */
  5961. ret = start_isolate_page_range(pfn_max_align_down(start),
  5962. pfn_max_align_up(end), migratetype,
  5963. false);
  5964. if (ret)
  5965. return ret;
  5966. /*
  5967. * In case of -EBUSY, we'd like to know which page causes problem.
  5968. * So, just fall through. We will check it in test_pages_isolated().
  5969. */
  5970. ret = __alloc_contig_migrate_range(&cc, start, end);
  5971. if (ret && ret != -EBUSY)
  5972. goto done;
  5973. /*
  5974. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  5975. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  5976. * more, all pages in [start, end) are free in page allocator.
  5977. * What we are going to do is to allocate all pages from
  5978. * [start, end) (that is remove them from page allocator).
  5979. *
  5980. * The only problem is that pages at the beginning and at the
  5981. * end of interesting range may be not aligned with pages that
  5982. * page allocator holds, ie. they can be part of higher order
  5983. * pages. Because of this, we reserve the bigger range and
  5984. * once this is done free the pages we are not interested in.
  5985. *
  5986. * We don't have to hold zone->lock here because the pages are
  5987. * isolated thus they won't get removed from buddy.
  5988. */
  5989. lru_add_drain_all();
  5990. drain_all_pages(cc.zone);
  5991. order = 0;
  5992. outer_start = start;
  5993. while (!PageBuddy(pfn_to_page(outer_start))) {
  5994. if (++order >= MAX_ORDER) {
  5995. outer_start = start;
  5996. break;
  5997. }
  5998. outer_start &= ~0UL << order;
  5999. }
  6000. if (outer_start != start) {
  6001. order = page_order(pfn_to_page(outer_start));
  6002. /*
  6003. * outer_start page could be small order buddy page and
  6004. * it doesn't include start page. Adjust outer_start
  6005. * in this case to report failed page properly
  6006. * on tracepoint in test_pages_isolated()
  6007. */
  6008. if (outer_start + (1UL << order) <= start)
  6009. outer_start = start;
  6010. }
  6011. /* Make sure the range is really isolated. */
  6012. if (test_pages_isolated(outer_start, end, false)) {
  6013. pr_info("%s: [%lx, %lx) PFNs busy\n",
  6014. __func__, outer_start, end);
  6015. ret = -EBUSY;
  6016. goto done;
  6017. }
  6018. /* Grab isolated pages from freelists. */
  6019. outer_end = isolate_freepages_range(&cc, outer_start, end);
  6020. if (!outer_end) {
  6021. ret = -EBUSY;
  6022. goto done;
  6023. }
  6024. /* Free head and tail (if any) */
  6025. if (start != outer_start)
  6026. free_contig_range(outer_start, start - outer_start);
  6027. if (end != outer_end)
  6028. free_contig_range(end, outer_end - end);
  6029. done:
  6030. undo_isolate_page_range(pfn_max_align_down(start),
  6031. pfn_max_align_up(end), migratetype);
  6032. return ret;
  6033. }
  6034. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  6035. {
  6036. unsigned int count = 0;
  6037. for (; nr_pages--; pfn++) {
  6038. struct page *page = pfn_to_page(pfn);
  6039. count += page_count(page) != 1;
  6040. __free_page(page);
  6041. }
  6042. WARN(count != 0, "%d pages are still in use!\n", count);
  6043. }
  6044. #endif
  6045. #ifdef CONFIG_MEMORY_HOTPLUG
  6046. /*
  6047. * The zone indicated has a new number of managed_pages; batch sizes and percpu
  6048. * page high values need to be recalulated.
  6049. */
  6050. void __meminit zone_pcp_update(struct zone *zone)
  6051. {
  6052. unsigned cpu;
  6053. mutex_lock(&pcp_batch_high_lock);
  6054. for_each_possible_cpu(cpu)
  6055. pageset_set_high_and_batch(zone,
  6056. per_cpu_ptr(zone->pageset, cpu));
  6057. mutex_unlock(&pcp_batch_high_lock);
  6058. }
  6059. #endif
  6060. void zone_pcp_reset(struct zone *zone)
  6061. {
  6062. unsigned long flags;
  6063. int cpu;
  6064. struct per_cpu_pageset *pset;
  6065. /* avoid races with drain_pages() */
  6066. local_irq_save(flags);
  6067. if (zone->pageset != &boot_pageset) {
  6068. for_each_online_cpu(cpu) {
  6069. pset = per_cpu_ptr(zone->pageset, cpu);
  6070. drain_zonestat(zone, pset);
  6071. }
  6072. free_percpu(zone->pageset);
  6073. zone->pageset = &boot_pageset;
  6074. }
  6075. local_irq_restore(flags);
  6076. }
  6077. #ifdef CONFIG_MEMORY_HOTREMOVE
  6078. /*
  6079. * All pages in the range must be isolated before calling this.
  6080. */
  6081. void
  6082. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  6083. {
  6084. struct page *page;
  6085. struct zone *zone;
  6086. unsigned int order, i;
  6087. unsigned long pfn;
  6088. unsigned long flags;
  6089. /* find the first valid pfn */
  6090. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  6091. if (pfn_valid(pfn))
  6092. break;
  6093. if (pfn == end_pfn)
  6094. return;
  6095. zone = page_zone(pfn_to_page(pfn));
  6096. spin_lock_irqsave(&zone->lock, flags);
  6097. pfn = start_pfn;
  6098. while (pfn < end_pfn) {
  6099. if (!pfn_valid(pfn)) {
  6100. pfn++;
  6101. continue;
  6102. }
  6103. page = pfn_to_page(pfn);
  6104. /*
  6105. * The HWPoisoned page may be not in buddy system, and
  6106. * page_count() is not 0.
  6107. */
  6108. if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
  6109. pfn++;
  6110. SetPageReserved(page);
  6111. continue;
  6112. }
  6113. BUG_ON(page_count(page));
  6114. BUG_ON(!PageBuddy(page));
  6115. order = page_order(page);
  6116. #ifdef CONFIG_DEBUG_VM
  6117. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  6118. pfn, 1 << order, end_pfn);
  6119. #endif
  6120. list_del(&page->lru);
  6121. rmv_page_order(page);
  6122. zone->free_area[order].nr_free--;
  6123. for (i = 0; i < (1 << order); i++)
  6124. SetPageReserved((page+i));
  6125. pfn += (1 << order);
  6126. }
  6127. spin_unlock_irqrestore(&zone->lock, flags);
  6128. }
  6129. #endif
  6130. #ifdef CONFIG_MEMORY_FAILURE
  6131. bool is_free_buddy_page(struct page *page)
  6132. {
  6133. struct zone *zone = page_zone(page);
  6134. unsigned long pfn = page_to_pfn(page);
  6135. unsigned long flags;
  6136. unsigned int order;
  6137. spin_lock_irqsave(&zone->lock, flags);
  6138. for (order = 0; order < MAX_ORDER; order++) {
  6139. struct page *page_head = page - (pfn & ((1 << order) - 1));
  6140. if (PageBuddy(page_head) && page_order(page_head) >= order)
  6141. break;
  6142. }
  6143. spin_unlock_irqrestore(&zone->lock, flags);
  6144. return order < MAX_ORDER;
  6145. }
  6146. #endif