disk-io.c 111 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <linux/uuid.h>
  33. #include <linux/semaphore.h>
  34. #include <asm/unaligned.h>
  35. #include "compat.h"
  36. #include "ctree.h"
  37. #include "disk-io.h"
  38. #include "transaction.h"
  39. #include "btrfs_inode.h"
  40. #include "volumes.h"
  41. #include "print-tree.h"
  42. #include "async-thread.h"
  43. #include "locking.h"
  44. #include "tree-log.h"
  45. #include "free-space-cache.h"
  46. #include "inode-map.h"
  47. #include "check-integrity.h"
  48. #include "rcu-string.h"
  49. #include "dev-replace.h"
  50. #include "raid56.h"
  51. #ifdef CONFIG_X86
  52. #include <asm/cpufeature.h>
  53. #endif
  54. static struct extent_io_ops btree_extent_io_ops;
  55. static void end_workqueue_fn(struct btrfs_work *work);
  56. static void free_fs_root(struct btrfs_root *root);
  57. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  58. int read_only);
  59. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  60. struct btrfs_root *root);
  61. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  62. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  63. struct btrfs_root *root);
  64. static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
  65. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  66. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  67. struct extent_io_tree *dirty_pages,
  68. int mark);
  69. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  70. struct extent_io_tree *pinned_extents);
  71. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  72. static void btrfs_error_commit_super(struct btrfs_root *root);
  73. /*
  74. * end_io_wq structs are used to do processing in task context when an IO is
  75. * complete. This is used during reads to verify checksums, and it is used
  76. * by writes to insert metadata for new file extents after IO is complete.
  77. */
  78. struct end_io_wq {
  79. struct bio *bio;
  80. bio_end_io_t *end_io;
  81. void *private;
  82. struct btrfs_fs_info *info;
  83. int error;
  84. int metadata;
  85. struct list_head list;
  86. struct btrfs_work work;
  87. };
  88. /*
  89. * async submit bios are used to offload expensive checksumming
  90. * onto the worker threads. They checksum file and metadata bios
  91. * just before they are sent down the IO stack.
  92. */
  93. struct async_submit_bio {
  94. struct inode *inode;
  95. struct bio *bio;
  96. struct list_head list;
  97. extent_submit_bio_hook_t *submit_bio_start;
  98. extent_submit_bio_hook_t *submit_bio_done;
  99. int rw;
  100. int mirror_num;
  101. unsigned long bio_flags;
  102. /*
  103. * bio_offset is optional, can be used if the pages in the bio
  104. * can't tell us where in the file the bio should go
  105. */
  106. u64 bio_offset;
  107. struct btrfs_work work;
  108. int error;
  109. };
  110. /*
  111. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  112. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  113. * the level the eb occupies in the tree.
  114. *
  115. * Different roots are used for different purposes and may nest inside each
  116. * other and they require separate keysets. As lockdep keys should be
  117. * static, assign keysets according to the purpose of the root as indicated
  118. * by btrfs_root->objectid. This ensures that all special purpose roots
  119. * have separate keysets.
  120. *
  121. * Lock-nesting across peer nodes is always done with the immediate parent
  122. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  123. * subclass to avoid triggering lockdep warning in such cases.
  124. *
  125. * The key is set by the readpage_end_io_hook after the buffer has passed
  126. * csum validation but before the pages are unlocked. It is also set by
  127. * btrfs_init_new_buffer on freshly allocated blocks.
  128. *
  129. * We also add a check to make sure the highest level of the tree is the
  130. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  131. * needs update as well.
  132. */
  133. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  134. # if BTRFS_MAX_LEVEL != 8
  135. # error
  136. # endif
  137. static struct btrfs_lockdep_keyset {
  138. u64 id; /* root objectid */
  139. const char *name_stem; /* lock name stem */
  140. char names[BTRFS_MAX_LEVEL + 1][20];
  141. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  142. } btrfs_lockdep_keysets[] = {
  143. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  144. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  145. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  146. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  147. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  148. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  149. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  150. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  151. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  152. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  153. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  154. { .id = 0, .name_stem = "tree" },
  155. };
  156. void __init btrfs_init_lockdep(void)
  157. {
  158. int i, j;
  159. /* initialize lockdep class names */
  160. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  161. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  162. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  163. snprintf(ks->names[j], sizeof(ks->names[j]),
  164. "btrfs-%s-%02d", ks->name_stem, j);
  165. }
  166. }
  167. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  168. int level)
  169. {
  170. struct btrfs_lockdep_keyset *ks;
  171. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  172. /* find the matching keyset, id 0 is the default entry */
  173. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  174. if (ks->id == objectid)
  175. break;
  176. lockdep_set_class_and_name(&eb->lock,
  177. &ks->keys[level], ks->names[level]);
  178. }
  179. #endif
  180. /*
  181. * extents on the btree inode are pretty simple, there's one extent
  182. * that covers the entire device
  183. */
  184. static struct extent_map *btree_get_extent(struct inode *inode,
  185. struct page *page, size_t pg_offset, u64 start, u64 len,
  186. int create)
  187. {
  188. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  189. struct extent_map *em;
  190. int ret;
  191. read_lock(&em_tree->lock);
  192. em = lookup_extent_mapping(em_tree, start, len);
  193. if (em) {
  194. em->bdev =
  195. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  196. read_unlock(&em_tree->lock);
  197. goto out;
  198. }
  199. read_unlock(&em_tree->lock);
  200. em = alloc_extent_map();
  201. if (!em) {
  202. em = ERR_PTR(-ENOMEM);
  203. goto out;
  204. }
  205. em->start = 0;
  206. em->len = (u64)-1;
  207. em->block_len = (u64)-1;
  208. em->block_start = 0;
  209. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  210. write_lock(&em_tree->lock);
  211. ret = add_extent_mapping(em_tree, em, 0);
  212. if (ret == -EEXIST) {
  213. free_extent_map(em);
  214. em = lookup_extent_mapping(em_tree, start, len);
  215. if (!em)
  216. em = ERR_PTR(-EIO);
  217. } else if (ret) {
  218. free_extent_map(em);
  219. em = ERR_PTR(ret);
  220. }
  221. write_unlock(&em_tree->lock);
  222. out:
  223. return em;
  224. }
  225. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  226. {
  227. return crc32c(seed, data, len);
  228. }
  229. void btrfs_csum_final(u32 crc, char *result)
  230. {
  231. put_unaligned_le32(~crc, result);
  232. }
  233. /*
  234. * compute the csum for a btree block, and either verify it or write it
  235. * into the csum field of the block.
  236. */
  237. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  238. int verify)
  239. {
  240. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  241. char *result = NULL;
  242. unsigned long len;
  243. unsigned long cur_len;
  244. unsigned long offset = BTRFS_CSUM_SIZE;
  245. char *kaddr;
  246. unsigned long map_start;
  247. unsigned long map_len;
  248. int err;
  249. u32 crc = ~(u32)0;
  250. unsigned long inline_result;
  251. len = buf->len - offset;
  252. while (len > 0) {
  253. err = map_private_extent_buffer(buf, offset, 32,
  254. &kaddr, &map_start, &map_len);
  255. if (err)
  256. return 1;
  257. cur_len = min(len, map_len - (offset - map_start));
  258. crc = btrfs_csum_data(kaddr + offset - map_start,
  259. crc, cur_len);
  260. len -= cur_len;
  261. offset += cur_len;
  262. }
  263. if (csum_size > sizeof(inline_result)) {
  264. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  265. if (!result)
  266. return 1;
  267. } else {
  268. result = (char *)&inline_result;
  269. }
  270. btrfs_csum_final(crc, result);
  271. if (verify) {
  272. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  273. u32 val;
  274. u32 found = 0;
  275. memcpy(&found, result, csum_size);
  276. read_extent_buffer(buf, &val, 0, csum_size);
  277. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  278. "failed on %llu wanted %X found %X "
  279. "level %d\n",
  280. root->fs_info->sb->s_id, buf->start,
  281. val, found, btrfs_header_level(buf));
  282. if (result != (char *)&inline_result)
  283. kfree(result);
  284. return 1;
  285. }
  286. } else {
  287. write_extent_buffer(buf, result, 0, csum_size);
  288. }
  289. if (result != (char *)&inline_result)
  290. kfree(result);
  291. return 0;
  292. }
  293. /*
  294. * we can't consider a given block up to date unless the transid of the
  295. * block matches the transid in the parent node's pointer. This is how we
  296. * detect blocks that either didn't get written at all or got written
  297. * in the wrong place.
  298. */
  299. static int verify_parent_transid(struct extent_io_tree *io_tree,
  300. struct extent_buffer *eb, u64 parent_transid,
  301. int atomic)
  302. {
  303. struct extent_state *cached_state = NULL;
  304. int ret;
  305. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  306. return 0;
  307. if (atomic)
  308. return -EAGAIN;
  309. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  310. 0, &cached_state);
  311. if (extent_buffer_uptodate(eb) &&
  312. btrfs_header_generation(eb) == parent_transid) {
  313. ret = 0;
  314. goto out;
  315. }
  316. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  317. "found %llu\n",
  318. eb->start, parent_transid, btrfs_header_generation(eb));
  319. ret = 1;
  320. clear_extent_buffer_uptodate(eb);
  321. out:
  322. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  323. &cached_state, GFP_NOFS);
  324. return ret;
  325. }
  326. /*
  327. * Return 0 if the superblock checksum type matches the checksum value of that
  328. * algorithm. Pass the raw disk superblock data.
  329. */
  330. static int btrfs_check_super_csum(char *raw_disk_sb)
  331. {
  332. struct btrfs_super_block *disk_sb =
  333. (struct btrfs_super_block *)raw_disk_sb;
  334. u16 csum_type = btrfs_super_csum_type(disk_sb);
  335. int ret = 0;
  336. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  337. u32 crc = ~(u32)0;
  338. const int csum_size = sizeof(crc);
  339. char result[csum_size];
  340. /*
  341. * The super_block structure does not span the whole
  342. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  343. * is filled with zeros and is included in the checkum.
  344. */
  345. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  346. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  347. btrfs_csum_final(crc, result);
  348. if (memcmp(raw_disk_sb, result, csum_size))
  349. ret = 1;
  350. if (ret && btrfs_super_generation(disk_sb) < 10) {
  351. printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
  352. ret = 0;
  353. }
  354. }
  355. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  356. printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
  357. csum_type);
  358. ret = 1;
  359. }
  360. return ret;
  361. }
  362. /*
  363. * helper to read a given tree block, doing retries as required when
  364. * the checksums don't match and we have alternate mirrors to try.
  365. */
  366. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  367. struct extent_buffer *eb,
  368. u64 start, u64 parent_transid)
  369. {
  370. struct extent_io_tree *io_tree;
  371. int failed = 0;
  372. int ret;
  373. int num_copies = 0;
  374. int mirror_num = 0;
  375. int failed_mirror = 0;
  376. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  377. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  378. while (1) {
  379. ret = read_extent_buffer_pages(io_tree, eb, start,
  380. WAIT_COMPLETE,
  381. btree_get_extent, mirror_num);
  382. if (!ret) {
  383. if (!verify_parent_transid(io_tree, eb,
  384. parent_transid, 0))
  385. break;
  386. else
  387. ret = -EIO;
  388. }
  389. /*
  390. * This buffer's crc is fine, but its contents are corrupted, so
  391. * there is no reason to read the other copies, they won't be
  392. * any less wrong.
  393. */
  394. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  395. break;
  396. num_copies = btrfs_num_copies(root->fs_info,
  397. eb->start, eb->len);
  398. if (num_copies == 1)
  399. break;
  400. if (!failed_mirror) {
  401. failed = 1;
  402. failed_mirror = eb->read_mirror;
  403. }
  404. mirror_num++;
  405. if (mirror_num == failed_mirror)
  406. mirror_num++;
  407. if (mirror_num > num_copies)
  408. break;
  409. }
  410. if (failed && !ret && failed_mirror)
  411. repair_eb_io_failure(root, eb, failed_mirror);
  412. return ret;
  413. }
  414. /*
  415. * checksum a dirty tree block before IO. This has extra checks to make sure
  416. * we only fill in the checksum field in the first page of a multi-page block
  417. */
  418. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  419. {
  420. struct extent_io_tree *tree;
  421. u64 start = page_offset(page);
  422. u64 found_start;
  423. struct extent_buffer *eb;
  424. tree = &BTRFS_I(page->mapping->host)->io_tree;
  425. eb = (struct extent_buffer *)page->private;
  426. if (page != eb->pages[0])
  427. return 0;
  428. found_start = btrfs_header_bytenr(eb);
  429. if (found_start != start) {
  430. WARN_ON(1);
  431. return 0;
  432. }
  433. if (!PageUptodate(page)) {
  434. WARN_ON(1);
  435. return 0;
  436. }
  437. csum_tree_block(root, eb, 0);
  438. return 0;
  439. }
  440. static int check_tree_block_fsid(struct btrfs_root *root,
  441. struct extent_buffer *eb)
  442. {
  443. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  444. u8 fsid[BTRFS_UUID_SIZE];
  445. int ret = 1;
  446. read_extent_buffer(eb, fsid, btrfs_header_fsid(eb), BTRFS_FSID_SIZE);
  447. while (fs_devices) {
  448. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  449. ret = 0;
  450. break;
  451. }
  452. fs_devices = fs_devices->seed;
  453. }
  454. return ret;
  455. }
  456. #define CORRUPT(reason, eb, root, slot) \
  457. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  458. "root=%llu, slot=%d\n", reason, \
  459. btrfs_header_bytenr(eb), root->objectid, slot)
  460. static noinline int check_leaf(struct btrfs_root *root,
  461. struct extent_buffer *leaf)
  462. {
  463. struct btrfs_key key;
  464. struct btrfs_key leaf_key;
  465. u32 nritems = btrfs_header_nritems(leaf);
  466. int slot;
  467. if (nritems == 0)
  468. return 0;
  469. /* Check the 0 item */
  470. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  471. BTRFS_LEAF_DATA_SIZE(root)) {
  472. CORRUPT("invalid item offset size pair", leaf, root, 0);
  473. return -EIO;
  474. }
  475. /*
  476. * Check to make sure each items keys are in the correct order and their
  477. * offsets make sense. We only have to loop through nritems-1 because
  478. * we check the current slot against the next slot, which verifies the
  479. * next slot's offset+size makes sense and that the current's slot
  480. * offset is correct.
  481. */
  482. for (slot = 0; slot < nritems - 1; slot++) {
  483. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  484. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  485. /* Make sure the keys are in the right order */
  486. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  487. CORRUPT("bad key order", leaf, root, slot);
  488. return -EIO;
  489. }
  490. /*
  491. * Make sure the offset and ends are right, remember that the
  492. * item data starts at the end of the leaf and grows towards the
  493. * front.
  494. */
  495. if (btrfs_item_offset_nr(leaf, slot) !=
  496. btrfs_item_end_nr(leaf, slot + 1)) {
  497. CORRUPT("slot offset bad", leaf, root, slot);
  498. return -EIO;
  499. }
  500. /*
  501. * Check to make sure that we don't point outside of the leaf,
  502. * just incase all the items are consistent to eachother, but
  503. * all point outside of the leaf.
  504. */
  505. if (btrfs_item_end_nr(leaf, slot) >
  506. BTRFS_LEAF_DATA_SIZE(root)) {
  507. CORRUPT("slot end outside of leaf", leaf, root, slot);
  508. return -EIO;
  509. }
  510. }
  511. return 0;
  512. }
  513. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  514. u64 phy_offset, struct page *page,
  515. u64 start, u64 end, int mirror)
  516. {
  517. struct extent_io_tree *tree;
  518. u64 found_start;
  519. int found_level;
  520. struct extent_buffer *eb;
  521. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  522. int ret = 0;
  523. int reads_done;
  524. if (!page->private)
  525. goto out;
  526. tree = &BTRFS_I(page->mapping->host)->io_tree;
  527. eb = (struct extent_buffer *)page->private;
  528. /* the pending IO might have been the only thing that kept this buffer
  529. * in memory. Make sure we have a ref for all this other checks
  530. */
  531. extent_buffer_get(eb);
  532. reads_done = atomic_dec_and_test(&eb->io_pages);
  533. if (!reads_done)
  534. goto err;
  535. eb->read_mirror = mirror;
  536. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  537. ret = -EIO;
  538. goto err;
  539. }
  540. found_start = btrfs_header_bytenr(eb);
  541. if (found_start != eb->start) {
  542. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  543. "%llu %llu\n",
  544. found_start, eb->start);
  545. ret = -EIO;
  546. goto err;
  547. }
  548. if (check_tree_block_fsid(root, eb)) {
  549. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  550. eb->start);
  551. ret = -EIO;
  552. goto err;
  553. }
  554. found_level = btrfs_header_level(eb);
  555. if (found_level >= BTRFS_MAX_LEVEL) {
  556. btrfs_info(root->fs_info, "bad tree block level %d\n",
  557. (int)btrfs_header_level(eb));
  558. ret = -EIO;
  559. goto err;
  560. }
  561. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  562. eb, found_level);
  563. ret = csum_tree_block(root, eb, 1);
  564. if (ret) {
  565. ret = -EIO;
  566. goto err;
  567. }
  568. /*
  569. * If this is a leaf block and it is corrupt, set the corrupt bit so
  570. * that we don't try and read the other copies of this block, just
  571. * return -EIO.
  572. */
  573. if (found_level == 0 && check_leaf(root, eb)) {
  574. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  575. ret = -EIO;
  576. }
  577. if (!ret)
  578. set_extent_buffer_uptodate(eb);
  579. err:
  580. if (reads_done &&
  581. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  582. btree_readahead_hook(root, eb, eb->start, ret);
  583. if (ret) {
  584. /*
  585. * our io error hook is going to dec the io pages
  586. * again, we have to make sure it has something
  587. * to decrement
  588. */
  589. atomic_inc(&eb->io_pages);
  590. clear_extent_buffer_uptodate(eb);
  591. }
  592. free_extent_buffer(eb);
  593. out:
  594. return ret;
  595. }
  596. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  597. {
  598. struct extent_buffer *eb;
  599. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  600. eb = (struct extent_buffer *)page->private;
  601. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  602. eb->read_mirror = failed_mirror;
  603. atomic_dec(&eb->io_pages);
  604. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  605. btree_readahead_hook(root, eb, eb->start, -EIO);
  606. return -EIO; /* we fixed nothing */
  607. }
  608. static void end_workqueue_bio(struct bio *bio, int err)
  609. {
  610. struct end_io_wq *end_io_wq = bio->bi_private;
  611. struct btrfs_fs_info *fs_info;
  612. fs_info = end_io_wq->info;
  613. end_io_wq->error = err;
  614. end_io_wq->work.func = end_workqueue_fn;
  615. end_io_wq->work.flags = 0;
  616. if (bio->bi_rw & REQ_WRITE) {
  617. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
  618. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  619. &end_io_wq->work);
  620. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
  621. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  622. &end_io_wq->work);
  623. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  624. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  625. &end_io_wq->work);
  626. else
  627. btrfs_queue_worker(&fs_info->endio_write_workers,
  628. &end_io_wq->work);
  629. } else {
  630. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  631. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  632. &end_io_wq->work);
  633. else if (end_io_wq->metadata)
  634. btrfs_queue_worker(&fs_info->endio_meta_workers,
  635. &end_io_wq->work);
  636. else
  637. btrfs_queue_worker(&fs_info->endio_workers,
  638. &end_io_wq->work);
  639. }
  640. }
  641. /*
  642. * For the metadata arg you want
  643. *
  644. * 0 - if data
  645. * 1 - if normal metadta
  646. * 2 - if writing to the free space cache area
  647. * 3 - raid parity work
  648. */
  649. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  650. int metadata)
  651. {
  652. struct end_io_wq *end_io_wq;
  653. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  654. if (!end_io_wq)
  655. return -ENOMEM;
  656. end_io_wq->private = bio->bi_private;
  657. end_io_wq->end_io = bio->bi_end_io;
  658. end_io_wq->info = info;
  659. end_io_wq->error = 0;
  660. end_io_wq->bio = bio;
  661. end_io_wq->metadata = metadata;
  662. bio->bi_private = end_io_wq;
  663. bio->bi_end_io = end_workqueue_bio;
  664. return 0;
  665. }
  666. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  667. {
  668. unsigned long limit = min_t(unsigned long,
  669. info->workers.max_workers,
  670. info->fs_devices->open_devices);
  671. return 256 * limit;
  672. }
  673. static void run_one_async_start(struct btrfs_work *work)
  674. {
  675. struct async_submit_bio *async;
  676. int ret;
  677. async = container_of(work, struct async_submit_bio, work);
  678. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  679. async->mirror_num, async->bio_flags,
  680. async->bio_offset);
  681. if (ret)
  682. async->error = ret;
  683. }
  684. static void run_one_async_done(struct btrfs_work *work)
  685. {
  686. struct btrfs_fs_info *fs_info;
  687. struct async_submit_bio *async;
  688. int limit;
  689. async = container_of(work, struct async_submit_bio, work);
  690. fs_info = BTRFS_I(async->inode)->root->fs_info;
  691. limit = btrfs_async_submit_limit(fs_info);
  692. limit = limit * 2 / 3;
  693. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  694. waitqueue_active(&fs_info->async_submit_wait))
  695. wake_up(&fs_info->async_submit_wait);
  696. /* If an error occured we just want to clean up the bio and move on */
  697. if (async->error) {
  698. bio_endio(async->bio, async->error);
  699. return;
  700. }
  701. async->submit_bio_done(async->inode, async->rw, async->bio,
  702. async->mirror_num, async->bio_flags,
  703. async->bio_offset);
  704. }
  705. static void run_one_async_free(struct btrfs_work *work)
  706. {
  707. struct async_submit_bio *async;
  708. async = container_of(work, struct async_submit_bio, work);
  709. kfree(async);
  710. }
  711. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  712. int rw, struct bio *bio, int mirror_num,
  713. unsigned long bio_flags,
  714. u64 bio_offset,
  715. extent_submit_bio_hook_t *submit_bio_start,
  716. extent_submit_bio_hook_t *submit_bio_done)
  717. {
  718. struct async_submit_bio *async;
  719. async = kmalloc(sizeof(*async), GFP_NOFS);
  720. if (!async)
  721. return -ENOMEM;
  722. async->inode = inode;
  723. async->rw = rw;
  724. async->bio = bio;
  725. async->mirror_num = mirror_num;
  726. async->submit_bio_start = submit_bio_start;
  727. async->submit_bio_done = submit_bio_done;
  728. async->work.func = run_one_async_start;
  729. async->work.ordered_func = run_one_async_done;
  730. async->work.ordered_free = run_one_async_free;
  731. async->work.flags = 0;
  732. async->bio_flags = bio_flags;
  733. async->bio_offset = bio_offset;
  734. async->error = 0;
  735. atomic_inc(&fs_info->nr_async_submits);
  736. if (rw & REQ_SYNC)
  737. btrfs_set_work_high_prio(&async->work);
  738. btrfs_queue_worker(&fs_info->workers, &async->work);
  739. while (atomic_read(&fs_info->async_submit_draining) &&
  740. atomic_read(&fs_info->nr_async_submits)) {
  741. wait_event(fs_info->async_submit_wait,
  742. (atomic_read(&fs_info->nr_async_submits) == 0));
  743. }
  744. return 0;
  745. }
  746. static int btree_csum_one_bio(struct bio *bio)
  747. {
  748. struct bio_vec *bvec = bio->bi_io_vec;
  749. int bio_index = 0;
  750. struct btrfs_root *root;
  751. int ret = 0;
  752. WARN_ON(bio->bi_vcnt <= 0);
  753. while (bio_index < bio->bi_vcnt) {
  754. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  755. ret = csum_dirty_buffer(root, bvec->bv_page);
  756. if (ret)
  757. break;
  758. bio_index++;
  759. bvec++;
  760. }
  761. return ret;
  762. }
  763. static int __btree_submit_bio_start(struct inode *inode, int rw,
  764. struct bio *bio, int mirror_num,
  765. unsigned long bio_flags,
  766. u64 bio_offset)
  767. {
  768. /*
  769. * when we're called for a write, we're already in the async
  770. * submission context. Just jump into btrfs_map_bio
  771. */
  772. return btree_csum_one_bio(bio);
  773. }
  774. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  775. int mirror_num, unsigned long bio_flags,
  776. u64 bio_offset)
  777. {
  778. int ret;
  779. /*
  780. * when we're called for a write, we're already in the async
  781. * submission context. Just jump into btrfs_map_bio
  782. */
  783. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  784. if (ret)
  785. bio_endio(bio, ret);
  786. return ret;
  787. }
  788. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  789. {
  790. if (bio_flags & EXTENT_BIO_TREE_LOG)
  791. return 0;
  792. #ifdef CONFIG_X86
  793. if (cpu_has_xmm4_2)
  794. return 0;
  795. #endif
  796. return 1;
  797. }
  798. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  799. int mirror_num, unsigned long bio_flags,
  800. u64 bio_offset)
  801. {
  802. int async = check_async_write(inode, bio_flags);
  803. int ret;
  804. if (!(rw & REQ_WRITE)) {
  805. /*
  806. * called for a read, do the setup so that checksum validation
  807. * can happen in the async kernel threads
  808. */
  809. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  810. bio, 1);
  811. if (ret)
  812. goto out_w_error;
  813. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  814. mirror_num, 0);
  815. } else if (!async) {
  816. ret = btree_csum_one_bio(bio);
  817. if (ret)
  818. goto out_w_error;
  819. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  820. mirror_num, 0);
  821. } else {
  822. /*
  823. * kthread helpers are used to submit writes so that
  824. * checksumming can happen in parallel across all CPUs
  825. */
  826. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  827. inode, rw, bio, mirror_num, 0,
  828. bio_offset,
  829. __btree_submit_bio_start,
  830. __btree_submit_bio_done);
  831. }
  832. if (ret) {
  833. out_w_error:
  834. bio_endio(bio, ret);
  835. }
  836. return ret;
  837. }
  838. #ifdef CONFIG_MIGRATION
  839. static int btree_migratepage(struct address_space *mapping,
  840. struct page *newpage, struct page *page,
  841. enum migrate_mode mode)
  842. {
  843. /*
  844. * we can't safely write a btree page from here,
  845. * we haven't done the locking hook
  846. */
  847. if (PageDirty(page))
  848. return -EAGAIN;
  849. /*
  850. * Buffers may be managed in a filesystem specific way.
  851. * We must have no buffers or drop them.
  852. */
  853. if (page_has_private(page) &&
  854. !try_to_release_page(page, GFP_KERNEL))
  855. return -EAGAIN;
  856. return migrate_page(mapping, newpage, page, mode);
  857. }
  858. #endif
  859. static int btree_writepages(struct address_space *mapping,
  860. struct writeback_control *wbc)
  861. {
  862. struct extent_io_tree *tree;
  863. struct btrfs_fs_info *fs_info;
  864. int ret;
  865. tree = &BTRFS_I(mapping->host)->io_tree;
  866. if (wbc->sync_mode == WB_SYNC_NONE) {
  867. if (wbc->for_kupdate)
  868. return 0;
  869. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  870. /* this is a bit racy, but that's ok */
  871. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  872. BTRFS_DIRTY_METADATA_THRESH);
  873. if (ret < 0)
  874. return 0;
  875. }
  876. return btree_write_cache_pages(mapping, wbc);
  877. }
  878. static int btree_readpage(struct file *file, struct page *page)
  879. {
  880. struct extent_io_tree *tree;
  881. tree = &BTRFS_I(page->mapping->host)->io_tree;
  882. return extent_read_full_page(tree, page, btree_get_extent, 0);
  883. }
  884. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  885. {
  886. if (PageWriteback(page) || PageDirty(page))
  887. return 0;
  888. return try_release_extent_buffer(page);
  889. }
  890. static void btree_invalidatepage(struct page *page, unsigned int offset,
  891. unsigned int length)
  892. {
  893. struct extent_io_tree *tree;
  894. tree = &BTRFS_I(page->mapping->host)->io_tree;
  895. extent_invalidatepage(tree, page, offset);
  896. btree_releasepage(page, GFP_NOFS);
  897. if (PagePrivate(page)) {
  898. printk(KERN_WARNING "btrfs warning page private not zero "
  899. "on page %llu\n", (unsigned long long)page_offset(page));
  900. ClearPagePrivate(page);
  901. set_page_private(page, 0);
  902. page_cache_release(page);
  903. }
  904. }
  905. static int btree_set_page_dirty(struct page *page)
  906. {
  907. #ifdef DEBUG
  908. struct extent_buffer *eb;
  909. BUG_ON(!PagePrivate(page));
  910. eb = (struct extent_buffer *)page->private;
  911. BUG_ON(!eb);
  912. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  913. BUG_ON(!atomic_read(&eb->refs));
  914. btrfs_assert_tree_locked(eb);
  915. #endif
  916. return __set_page_dirty_nobuffers(page);
  917. }
  918. static const struct address_space_operations btree_aops = {
  919. .readpage = btree_readpage,
  920. .writepages = btree_writepages,
  921. .releasepage = btree_releasepage,
  922. .invalidatepage = btree_invalidatepage,
  923. #ifdef CONFIG_MIGRATION
  924. .migratepage = btree_migratepage,
  925. #endif
  926. .set_page_dirty = btree_set_page_dirty,
  927. };
  928. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  929. u64 parent_transid)
  930. {
  931. struct extent_buffer *buf = NULL;
  932. struct inode *btree_inode = root->fs_info->btree_inode;
  933. int ret = 0;
  934. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  935. if (!buf)
  936. return 0;
  937. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  938. buf, 0, WAIT_NONE, btree_get_extent, 0);
  939. free_extent_buffer(buf);
  940. return ret;
  941. }
  942. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  943. int mirror_num, struct extent_buffer **eb)
  944. {
  945. struct extent_buffer *buf = NULL;
  946. struct inode *btree_inode = root->fs_info->btree_inode;
  947. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  948. int ret;
  949. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  950. if (!buf)
  951. return 0;
  952. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  953. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  954. btree_get_extent, mirror_num);
  955. if (ret) {
  956. free_extent_buffer(buf);
  957. return ret;
  958. }
  959. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  960. free_extent_buffer(buf);
  961. return -EIO;
  962. } else if (extent_buffer_uptodate(buf)) {
  963. *eb = buf;
  964. } else {
  965. free_extent_buffer(buf);
  966. }
  967. return 0;
  968. }
  969. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  970. u64 bytenr, u32 blocksize)
  971. {
  972. struct inode *btree_inode = root->fs_info->btree_inode;
  973. struct extent_buffer *eb;
  974. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  975. bytenr, blocksize);
  976. return eb;
  977. }
  978. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  979. u64 bytenr, u32 blocksize)
  980. {
  981. struct inode *btree_inode = root->fs_info->btree_inode;
  982. struct extent_buffer *eb;
  983. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  984. bytenr, blocksize);
  985. return eb;
  986. }
  987. int btrfs_write_tree_block(struct extent_buffer *buf)
  988. {
  989. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  990. buf->start + buf->len - 1);
  991. }
  992. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  993. {
  994. return filemap_fdatawait_range(buf->pages[0]->mapping,
  995. buf->start, buf->start + buf->len - 1);
  996. }
  997. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  998. u32 blocksize, u64 parent_transid)
  999. {
  1000. struct extent_buffer *buf = NULL;
  1001. int ret;
  1002. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  1003. if (!buf)
  1004. return NULL;
  1005. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1006. if (ret) {
  1007. free_extent_buffer(buf);
  1008. return NULL;
  1009. }
  1010. return buf;
  1011. }
  1012. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1013. struct extent_buffer *buf)
  1014. {
  1015. struct btrfs_fs_info *fs_info = root->fs_info;
  1016. if (btrfs_header_generation(buf) ==
  1017. fs_info->running_transaction->transid) {
  1018. btrfs_assert_tree_locked(buf);
  1019. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1020. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1021. -buf->len,
  1022. fs_info->dirty_metadata_batch);
  1023. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1024. btrfs_set_lock_blocking(buf);
  1025. clear_extent_buffer_dirty(buf);
  1026. }
  1027. }
  1028. }
  1029. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  1030. u32 stripesize, struct btrfs_root *root,
  1031. struct btrfs_fs_info *fs_info,
  1032. u64 objectid)
  1033. {
  1034. root->node = NULL;
  1035. root->commit_root = NULL;
  1036. root->sectorsize = sectorsize;
  1037. root->nodesize = nodesize;
  1038. root->leafsize = leafsize;
  1039. root->stripesize = stripesize;
  1040. root->ref_cows = 0;
  1041. root->track_dirty = 0;
  1042. root->in_radix = 0;
  1043. root->orphan_item_inserted = 0;
  1044. root->orphan_cleanup_state = 0;
  1045. root->objectid = objectid;
  1046. root->last_trans = 0;
  1047. root->highest_objectid = 0;
  1048. root->nr_delalloc_inodes = 0;
  1049. root->nr_ordered_extents = 0;
  1050. root->name = NULL;
  1051. root->inode_tree = RB_ROOT;
  1052. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1053. root->block_rsv = NULL;
  1054. root->orphan_block_rsv = NULL;
  1055. INIT_LIST_HEAD(&root->dirty_list);
  1056. INIT_LIST_HEAD(&root->root_list);
  1057. INIT_LIST_HEAD(&root->delalloc_inodes);
  1058. INIT_LIST_HEAD(&root->delalloc_root);
  1059. INIT_LIST_HEAD(&root->ordered_extents);
  1060. INIT_LIST_HEAD(&root->ordered_root);
  1061. INIT_LIST_HEAD(&root->logged_list[0]);
  1062. INIT_LIST_HEAD(&root->logged_list[1]);
  1063. spin_lock_init(&root->orphan_lock);
  1064. spin_lock_init(&root->inode_lock);
  1065. spin_lock_init(&root->delalloc_lock);
  1066. spin_lock_init(&root->ordered_extent_lock);
  1067. spin_lock_init(&root->accounting_lock);
  1068. spin_lock_init(&root->log_extents_lock[0]);
  1069. spin_lock_init(&root->log_extents_lock[1]);
  1070. mutex_init(&root->objectid_mutex);
  1071. mutex_init(&root->log_mutex);
  1072. init_waitqueue_head(&root->log_writer_wait);
  1073. init_waitqueue_head(&root->log_commit_wait[0]);
  1074. init_waitqueue_head(&root->log_commit_wait[1]);
  1075. atomic_set(&root->log_commit[0], 0);
  1076. atomic_set(&root->log_commit[1], 0);
  1077. atomic_set(&root->log_writers, 0);
  1078. atomic_set(&root->log_batch, 0);
  1079. atomic_set(&root->orphan_inodes, 0);
  1080. atomic_set(&root->refs, 1);
  1081. root->log_transid = 0;
  1082. root->last_log_commit = 0;
  1083. extent_io_tree_init(&root->dirty_log_pages,
  1084. fs_info->btree_inode->i_mapping);
  1085. memset(&root->root_key, 0, sizeof(root->root_key));
  1086. memset(&root->root_item, 0, sizeof(root->root_item));
  1087. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1088. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1089. root->defrag_trans_start = fs_info->generation;
  1090. init_completion(&root->kobj_unregister);
  1091. root->defrag_running = 0;
  1092. root->root_key.objectid = objectid;
  1093. root->anon_dev = 0;
  1094. spin_lock_init(&root->root_item_lock);
  1095. }
  1096. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1097. {
  1098. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1099. if (root)
  1100. root->fs_info = fs_info;
  1101. return root;
  1102. }
  1103. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1104. struct btrfs_fs_info *fs_info,
  1105. u64 objectid)
  1106. {
  1107. struct extent_buffer *leaf;
  1108. struct btrfs_root *tree_root = fs_info->tree_root;
  1109. struct btrfs_root *root;
  1110. struct btrfs_key key;
  1111. int ret = 0;
  1112. u64 bytenr;
  1113. uuid_le uuid;
  1114. root = btrfs_alloc_root(fs_info);
  1115. if (!root)
  1116. return ERR_PTR(-ENOMEM);
  1117. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1118. tree_root->sectorsize, tree_root->stripesize,
  1119. root, fs_info, objectid);
  1120. root->root_key.objectid = objectid;
  1121. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1122. root->root_key.offset = 0;
  1123. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  1124. 0, objectid, NULL, 0, 0, 0);
  1125. if (IS_ERR(leaf)) {
  1126. ret = PTR_ERR(leaf);
  1127. leaf = NULL;
  1128. goto fail;
  1129. }
  1130. bytenr = leaf->start;
  1131. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1132. btrfs_set_header_bytenr(leaf, leaf->start);
  1133. btrfs_set_header_generation(leaf, trans->transid);
  1134. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1135. btrfs_set_header_owner(leaf, objectid);
  1136. root->node = leaf;
  1137. write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(leaf),
  1138. BTRFS_FSID_SIZE);
  1139. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1140. btrfs_header_chunk_tree_uuid(leaf),
  1141. BTRFS_UUID_SIZE);
  1142. btrfs_mark_buffer_dirty(leaf);
  1143. root->commit_root = btrfs_root_node(root);
  1144. root->track_dirty = 1;
  1145. root->root_item.flags = 0;
  1146. root->root_item.byte_limit = 0;
  1147. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1148. btrfs_set_root_generation(&root->root_item, trans->transid);
  1149. btrfs_set_root_level(&root->root_item, 0);
  1150. btrfs_set_root_refs(&root->root_item, 1);
  1151. btrfs_set_root_used(&root->root_item, leaf->len);
  1152. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1153. btrfs_set_root_dirid(&root->root_item, 0);
  1154. uuid_le_gen(&uuid);
  1155. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1156. root->root_item.drop_level = 0;
  1157. key.objectid = objectid;
  1158. key.type = BTRFS_ROOT_ITEM_KEY;
  1159. key.offset = 0;
  1160. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1161. if (ret)
  1162. goto fail;
  1163. btrfs_tree_unlock(leaf);
  1164. return root;
  1165. fail:
  1166. if (leaf) {
  1167. btrfs_tree_unlock(leaf);
  1168. free_extent_buffer(leaf);
  1169. }
  1170. kfree(root);
  1171. return ERR_PTR(ret);
  1172. }
  1173. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1174. struct btrfs_fs_info *fs_info)
  1175. {
  1176. struct btrfs_root *root;
  1177. struct btrfs_root *tree_root = fs_info->tree_root;
  1178. struct extent_buffer *leaf;
  1179. root = btrfs_alloc_root(fs_info);
  1180. if (!root)
  1181. return ERR_PTR(-ENOMEM);
  1182. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1183. tree_root->sectorsize, tree_root->stripesize,
  1184. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1185. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1186. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1187. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1188. /*
  1189. * log trees do not get reference counted because they go away
  1190. * before a real commit is actually done. They do store pointers
  1191. * to file data extents, and those reference counts still get
  1192. * updated (along with back refs to the log tree).
  1193. */
  1194. root->ref_cows = 0;
  1195. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1196. BTRFS_TREE_LOG_OBJECTID, NULL,
  1197. 0, 0, 0);
  1198. if (IS_ERR(leaf)) {
  1199. kfree(root);
  1200. return ERR_CAST(leaf);
  1201. }
  1202. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1203. btrfs_set_header_bytenr(leaf, leaf->start);
  1204. btrfs_set_header_generation(leaf, trans->transid);
  1205. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1206. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1207. root->node = leaf;
  1208. write_extent_buffer(root->node, root->fs_info->fsid,
  1209. btrfs_header_fsid(root->node), BTRFS_FSID_SIZE);
  1210. btrfs_mark_buffer_dirty(root->node);
  1211. btrfs_tree_unlock(root->node);
  1212. return root;
  1213. }
  1214. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1215. struct btrfs_fs_info *fs_info)
  1216. {
  1217. struct btrfs_root *log_root;
  1218. log_root = alloc_log_tree(trans, fs_info);
  1219. if (IS_ERR(log_root))
  1220. return PTR_ERR(log_root);
  1221. WARN_ON(fs_info->log_root_tree);
  1222. fs_info->log_root_tree = log_root;
  1223. return 0;
  1224. }
  1225. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1226. struct btrfs_root *root)
  1227. {
  1228. struct btrfs_root *log_root;
  1229. struct btrfs_inode_item *inode_item;
  1230. log_root = alloc_log_tree(trans, root->fs_info);
  1231. if (IS_ERR(log_root))
  1232. return PTR_ERR(log_root);
  1233. log_root->last_trans = trans->transid;
  1234. log_root->root_key.offset = root->root_key.objectid;
  1235. inode_item = &log_root->root_item.inode;
  1236. btrfs_set_stack_inode_generation(inode_item, 1);
  1237. btrfs_set_stack_inode_size(inode_item, 3);
  1238. btrfs_set_stack_inode_nlink(inode_item, 1);
  1239. btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
  1240. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1241. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1242. WARN_ON(root->log_root);
  1243. root->log_root = log_root;
  1244. root->log_transid = 0;
  1245. root->last_log_commit = 0;
  1246. return 0;
  1247. }
  1248. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1249. struct btrfs_key *key)
  1250. {
  1251. struct btrfs_root *root;
  1252. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1253. struct btrfs_path *path;
  1254. u64 generation;
  1255. u32 blocksize;
  1256. int ret;
  1257. path = btrfs_alloc_path();
  1258. if (!path)
  1259. return ERR_PTR(-ENOMEM);
  1260. root = btrfs_alloc_root(fs_info);
  1261. if (!root) {
  1262. ret = -ENOMEM;
  1263. goto alloc_fail;
  1264. }
  1265. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1266. tree_root->sectorsize, tree_root->stripesize,
  1267. root, fs_info, key->objectid);
  1268. ret = btrfs_find_root(tree_root, key, path,
  1269. &root->root_item, &root->root_key);
  1270. if (ret) {
  1271. if (ret > 0)
  1272. ret = -ENOENT;
  1273. goto find_fail;
  1274. }
  1275. generation = btrfs_root_generation(&root->root_item);
  1276. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1277. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1278. blocksize, generation);
  1279. if (!root->node) {
  1280. ret = -ENOMEM;
  1281. goto find_fail;
  1282. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1283. ret = -EIO;
  1284. goto read_fail;
  1285. }
  1286. root->commit_root = btrfs_root_node(root);
  1287. out:
  1288. btrfs_free_path(path);
  1289. return root;
  1290. read_fail:
  1291. free_extent_buffer(root->node);
  1292. find_fail:
  1293. kfree(root);
  1294. alloc_fail:
  1295. root = ERR_PTR(ret);
  1296. goto out;
  1297. }
  1298. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1299. struct btrfs_key *location)
  1300. {
  1301. struct btrfs_root *root;
  1302. root = btrfs_read_tree_root(tree_root, location);
  1303. if (IS_ERR(root))
  1304. return root;
  1305. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1306. root->ref_cows = 1;
  1307. btrfs_check_and_init_root_item(&root->root_item);
  1308. }
  1309. return root;
  1310. }
  1311. int btrfs_init_fs_root(struct btrfs_root *root)
  1312. {
  1313. int ret;
  1314. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1315. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1316. GFP_NOFS);
  1317. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1318. ret = -ENOMEM;
  1319. goto fail;
  1320. }
  1321. btrfs_init_free_ino_ctl(root);
  1322. mutex_init(&root->fs_commit_mutex);
  1323. spin_lock_init(&root->cache_lock);
  1324. init_waitqueue_head(&root->cache_wait);
  1325. ret = get_anon_bdev(&root->anon_dev);
  1326. if (ret)
  1327. goto fail;
  1328. return 0;
  1329. fail:
  1330. kfree(root->free_ino_ctl);
  1331. kfree(root->free_ino_pinned);
  1332. return ret;
  1333. }
  1334. static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1335. u64 root_id)
  1336. {
  1337. struct btrfs_root *root;
  1338. spin_lock(&fs_info->fs_roots_radix_lock);
  1339. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1340. (unsigned long)root_id);
  1341. spin_unlock(&fs_info->fs_roots_radix_lock);
  1342. return root;
  1343. }
  1344. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1345. struct btrfs_root *root)
  1346. {
  1347. int ret;
  1348. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1349. if (ret)
  1350. return ret;
  1351. spin_lock(&fs_info->fs_roots_radix_lock);
  1352. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1353. (unsigned long)root->root_key.objectid,
  1354. root);
  1355. if (ret == 0)
  1356. root->in_radix = 1;
  1357. spin_unlock(&fs_info->fs_roots_radix_lock);
  1358. radix_tree_preload_end();
  1359. return ret;
  1360. }
  1361. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1362. struct btrfs_key *location)
  1363. {
  1364. struct btrfs_root *root;
  1365. int ret;
  1366. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1367. return fs_info->tree_root;
  1368. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1369. return fs_info->extent_root;
  1370. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1371. return fs_info->chunk_root;
  1372. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1373. return fs_info->dev_root;
  1374. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1375. return fs_info->csum_root;
  1376. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1377. return fs_info->quota_root ? fs_info->quota_root :
  1378. ERR_PTR(-ENOENT);
  1379. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1380. return fs_info->uuid_root ? fs_info->uuid_root :
  1381. ERR_PTR(-ENOENT);
  1382. again:
  1383. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1384. if (root) {
  1385. if (btrfs_root_refs(&root->root_item) == 0)
  1386. return ERR_PTR(-ENOENT);
  1387. return root;
  1388. }
  1389. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1390. if (IS_ERR(root))
  1391. return root;
  1392. if (btrfs_root_refs(&root->root_item) == 0) {
  1393. ret = -ENOENT;
  1394. goto fail;
  1395. }
  1396. ret = btrfs_init_fs_root(root);
  1397. if (ret)
  1398. goto fail;
  1399. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1400. if (ret < 0)
  1401. goto fail;
  1402. if (ret == 0)
  1403. root->orphan_item_inserted = 1;
  1404. ret = btrfs_insert_fs_root(fs_info, root);
  1405. if (ret) {
  1406. if (ret == -EEXIST) {
  1407. free_fs_root(root);
  1408. goto again;
  1409. }
  1410. goto fail;
  1411. }
  1412. return root;
  1413. fail:
  1414. free_fs_root(root);
  1415. return ERR_PTR(ret);
  1416. }
  1417. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1418. {
  1419. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1420. int ret = 0;
  1421. struct btrfs_device *device;
  1422. struct backing_dev_info *bdi;
  1423. rcu_read_lock();
  1424. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1425. if (!device->bdev)
  1426. continue;
  1427. bdi = blk_get_backing_dev_info(device->bdev);
  1428. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1429. ret = 1;
  1430. break;
  1431. }
  1432. }
  1433. rcu_read_unlock();
  1434. return ret;
  1435. }
  1436. /*
  1437. * If this fails, caller must call bdi_destroy() to get rid of the
  1438. * bdi again.
  1439. */
  1440. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1441. {
  1442. int err;
  1443. bdi->capabilities = BDI_CAP_MAP_COPY;
  1444. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1445. if (err)
  1446. return err;
  1447. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1448. bdi->congested_fn = btrfs_congested_fn;
  1449. bdi->congested_data = info;
  1450. return 0;
  1451. }
  1452. /*
  1453. * called by the kthread helper functions to finally call the bio end_io
  1454. * functions. This is where read checksum verification actually happens
  1455. */
  1456. static void end_workqueue_fn(struct btrfs_work *work)
  1457. {
  1458. struct bio *bio;
  1459. struct end_io_wq *end_io_wq;
  1460. struct btrfs_fs_info *fs_info;
  1461. int error;
  1462. end_io_wq = container_of(work, struct end_io_wq, work);
  1463. bio = end_io_wq->bio;
  1464. fs_info = end_io_wq->info;
  1465. error = end_io_wq->error;
  1466. bio->bi_private = end_io_wq->private;
  1467. bio->bi_end_io = end_io_wq->end_io;
  1468. kfree(end_io_wq);
  1469. bio_endio(bio, error);
  1470. }
  1471. static int cleaner_kthread(void *arg)
  1472. {
  1473. struct btrfs_root *root = arg;
  1474. int again;
  1475. do {
  1476. again = 0;
  1477. /* Make the cleaner go to sleep early. */
  1478. if (btrfs_need_cleaner_sleep(root))
  1479. goto sleep;
  1480. if (!mutex_trylock(&root->fs_info->cleaner_mutex))
  1481. goto sleep;
  1482. /*
  1483. * Avoid the problem that we change the status of the fs
  1484. * during the above check and trylock.
  1485. */
  1486. if (btrfs_need_cleaner_sleep(root)) {
  1487. mutex_unlock(&root->fs_info->cleaner_mutex);
  1488. goto sleep;
  1489. }
  1490. btrfs_run_delayed_iputs(root);
  1491. again = btrfs_clean_one_deleted_snapshot(root);
  1492. mutex_unlock(&root->fs_info->cleaner_mutex);
  1493. /*
  1494. * The defragger has dealt with the R/O remount and umount,
  1495. * needn't do anything special here.
  1496. */
  1497. btrfs_run_defrag_inodes(root->fs_info);
  1498. sleep:
  1499. if (!try_to_freeze() && !again) {
  1500. set_current_state(TASK_INTERRUPTIBLE);
  1501. if (!kthread_should_stop())
  1502. schedule();
  1503. __set_current_state(TASK_RUNNING);
  1504. }
  1505. } while (!kthread_should_stop());
  1506. return 0;
  1507. }
  1508. static int transaction_kthread(void *arg)
  1509. {
  1510. struct btrfs_root *root = arg;
  1511. struct btrfs_trans_handle *trans;
  1512. struct btrfs_transaction *cur;
  1513. u64 transid;
  1514. unsigned long now;
  1515. unsigned long delay;
  1516. bool cannot_commit;
  1517. do {
  1518. cannot_commit = false;
  1519. delay = HZ * root->fs_info->commit_interval;
  1520. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1521. spin_lock(&root->fs_info->trans_lock);
  1522. cur = root->fs_info->running_transaction;
  1523. if (!cur) {
  1524. spin_unlock(&root->fs_info->trans_lock);
  1525. goto sleep;
  1526. }
  1527. now = get_seconds();
  1528. if (cur->state < TRANS_STATE_BLOCKED &&
  1529. (now < cur->start_time ||
  1530. now - cur->start_time < root->fs_info->commit_interval)) {
  1531. spin_unlock(&root->fs_info->trans_lock);
  1532. delay = HZ * 5;
  1533. goto sleep;
  1534. }
  1535. transid = cur->transid;
  1536. spin_unlock(&root->fs_info->trans_lock);
  1537. /* If the file system is aborted, this will always fail. */
  1538. trans = btrfs_attach_transaction(root);
  1539. if (IS_ERR(trans)) {
  1540. if (PTR_ERR(trans) != -ENOENT)
  1541. cannot_commit = true;
  1542. goto sleep;
  1543. }
  1544. if (transid == trans->transid) {
  1545. btrfs_commit_transaction(trans, root);
  1546. } else {
  1547. btrfs_end_transaction(trans, root);
  1548. }
  1549. sleep:
  1550. wake_up_process(root->fs_info->cleaner_kthread);
  1551. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1552. if (!try_to_freeze()) {
  1553. set_current_state(TASK_INTERRUPTIBLE);
  1554. if (!kthread_should_stop() &&
  1555. (!btrfs_transaction_blocked(root->fs_info) ||
  1556. cannot_commit))
  1557. schedule_timeout(delay);
  1558. __set_current_state(TASK_RUNNING);
  1559. }
  1560. } while (!kthread_should_stop());
  1561. return 0;
  1562. }
  1563. /*
  1564. * this will find the highest generation in the array of
  1565. * root backups. The index of the highest array is returned,
  1566. * or -1 if we can't find anything.
  1567. *
  1568. * We check to make sure the array is valid by comparing the
  1569. * generation of the latest root in the array with the generation
  1570. * in the super block. If they don't match we pitch it.
  1571. */
  1572. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1573. {
  1574. u64 cur;
  1575. int newest_index = -1;
  1576. struct btrfs_root_backup *root_backup;
  1577. int i;
  1578. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1579. root_backup = info->super_copy->super_roots + i;
  1580. cur = btrfs_backup_tree_root_gen(root_backup);
  1581. if (cur == newest_gen)
  1582. newest_index = i;
  1583. }
  1584. /* check to see if we actually wrapped around */
  1585. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1586. root_backup = info->super_copy->super_roots;
  1587. cur = btrfs_backup_tree_root_gen(root_backup);
  1588. if (cur == newest_gen)
  1589. newest_index = 0;
  1590. }
  1591. return newest_index;
  1592. }
  1593. /*
  1594. * find the oldest backup so we know where to store new entries
  1595. * in the backup array. This will set the backup_root_index
  1596. * field in the fs_info struct
  1597. */
  1598. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1599. u64 newest_gen)
  1600. {
  1601. int newest_index = -1;
  1602. newest_index = find_newest_super_backup(info, newest_gen);
  1603. /* if there was garbage in there, just move along */
  1604. if (newest_index == -1) {
  1605. info->backup_root_index = 0;
  1606. } else {
  1607. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1608. }
  1609. }
  1610. /*
  1611. * copy all the root pointers into the super backup array.
  1612. * this will bump the backup pointer by one when it is
  1613. * done
  1614. */
  1615. static void backup_super_roots(struct btrfs_fs_info *info)
  1616. {
  1617. int next_backup;
  1618. struct btrfs_root_backup *root_backup;
  1619. int last_backup;
  1620. next_backup = info->backup_root_index;
  1621. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1622. BTRFS_NUM_BACKUP_ROOTS;
  1623. /*
  1624. * just overwrite the last backup if we're at the same generation
  1625. * this happens only at umount
  1626. */
  1627. root_backup = info->super_for_commit->super_roots + last_backup;
  1628. if (btrfs_backup_tree_root_gen(root_backup) ==
  1629. btrfs_header_generation(info->tree_root->node))
  1630. next_backup = last_backup;
  1631. root_backup = info->super_for_commit->super_roots + next_backup;
  1632. /*
  1633. * make sure all of our padding and empty slots get zero filled
  1634. * regardless of which ones we use today
  1635. */
  1636. memset(root_backup, 0, sizeof(*root_backup));
  1637. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1638. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1639. btrfs_set_backup_tree_root_gen(root_backup,
  1640. btrfs_header_generation(info->tree_root->node));
  1641. btrfs_set_backup_tree_root_level(root_backup,
  1642. btrfs_header_level(info->tree_root->node));
  1643. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1644. btrfs_set_backup_chunk_root_gen(root_backup,
  1645. btrfs_header_generation(info->chunk_root->node));
  1646. btrfs_set_backup_chunk_root_level(root_backup,
  1647. btrfs_header_level(info->chunk_root->node));
  1648. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1649. btrfs_set_backup_extent_root_gen(root_backup,
  1650. btrfs_header_generation(info->extent_root->node));
  1651. btrfs_set_backup_extent_root_level(root_backup,
  1652. btrfs_header_level(info->extent_root->node));
  1653. /*
  1654. * we might commit during log recovery, which happens before we set
  1655. * the fs_root. Make sure it is valid before we fill it in.
  1656. */
  1657. if (info->fs_root && info->fs_root->node) {
  1658. btrfs_set_backup_fs_root(root_backup,
  1659. info->fs_root->node->start);
  1660. btrfs_set_backup_fs_root_gen(root_backup,
  1661. btrfs_header_generation(info->fs_root->node));
  1662. btrfs_set_backup_fs_root_level(root_backup,
  1663. btrfs_header_level(info->fs_root->node));
  1664. }
  1665. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1666. btrfs_set_backup_dev_root_gen(root_backup,
  1667. btrfs_header_generation(info->dev_root->node));
  1668. btrfs_set_backup_dev_root_level(root_backup,
  1669. btrfs_header_level(info->dev_root->node));
  1670. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1671. btrfs_set_backup_csum_root_gen(root_backup,
  1672. btrfs_header_generation(info->csum_root->node));
  1673. btrfs_set_backup_csum_root_level(root_backup,
  1674. btrfs_header_level(info->csum_root->node));
  1675. btrfs_set_backup_total_bytes(root_backup,
  1676. btrfs_super_total_bytes(info->super_copy));
  1677. btrfs_set_backup_bytes_used(root_backup,
  1678. btrfs_super_bytes_used(info->super_copy));
  1679. btrfs_set_backup_num_devices(root_backup,
  1680. btrfs_super_num_devices(info->super_copy));
  1681. /*
  1682. * if we don't copy this out to the super_copy, it won't get remembered
  1683. * for the next commit
  1684. */
  1685. memcpy(&info->super_copy->super_roots,
  1686. &info->super_for_commit->super_roots,
  1687. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1688. }
  1689. /*
  1690. * this copies info out of the root backup array and back into
  1691. * the in-memory super block. It is meant to help iterate through
  1692. * the array, so you send it the number of backups you've already
  1693. * tried and the last backup index you used.
  1694. *
  1695. * this returns -1 when it has tried all the backups
  1696. */
  1697. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1698. struct btrfs_super_block *super,
  1699. int *num_backups_tried, int *backup_index)
  1700. {
  1701. struct btrfs_root_backup *root_backup;
  1702. int newest = *backup_index;
  1703. if (*num_backups_tried == 0) {
  1704. u64 gen = btrfs_super_generation(super);
  1705. newest = find_newest_super_backup(info, gen);
  1706. if (newest == -1)
  1707. return -1;
  1708. *backup_index = newest;
  1709. *num_backups_tried = 1;
  1710. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1711. /* we've tried all the backups, all done */
  1712. return -1;
  1713. } else {
  1714. /* jump to the next oldest backup */
  1715. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1716. BTRFS_NUM_BACKUP_ROOTS;
  1717. *backup_index = newest;
  1718. *num_backups_tried += 1;
  1719. }
  1720. root_backup = super->super_roots + newest;
  1721. btrfs_set_super_generation(super,
  1722. btrfs_backup_tree_root_gen(root_backup));
  1723. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1724. btrfs_set_super_root_level(super,
  1725. btrfs_backup_tree_root_level(root_backup));
  1726. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1727. /*
  1728. * fixme: the total bytes and num_devices need to match or we should
  1729. * need a fsck
  1730. */
  1731. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1732. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1733. return 0;
  1734. }
  1735. /* helper to cleanup workers */
  1736. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1737. {
  1738. btrfs_stop_workers(&fs_info->generic_worker);
  1739. btrfs_stop_workers(&fs_info->fixup_workers);
  1740. btrfs_stop_workers(&fs_info->delalloc_workers);
  1741. btrfs_stop_workers(&fs_info->workers);
  1742. btrfs_stop_workers(&fs_info->endio_workers);
  1743. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1744. btrfs_stop_workers(&fs_info->endio_raid56_workers);
  1745. btrfs_stop_workers(&fs_info->rmw_workers);
  1746. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1747. btrfs_stop_workers(&fs_info->endio_write_workers);
  1748. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  1749. btrfs_stop_workers(&fs_info->submit_workers);
  1750. btrfs_stop_workers(&fs_info->delayed_workers);
  1751. btrfs_stop_workers(&fs_info->caching_workers);
  1752. btrfs_stop_workers(&fs_info->readahead_workers);
  1753. btrfs_stop_workers(&fs_info->flush_workers);
  1754. btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
  1755. }
  1756. /* helper to cleanup tree roots */
  1757. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1758. {
  1759. free_extent_buffer(info->tree_root->node);
  1760. free_extent_buffer(info->tree_root->commit_root);
  1761. info->tree_root->node = NULL;
  1762. info->tree_root->commit_root = NULL;
  1763. if (info->dev_root) {
  1764. free_extent_buffer(info->dev_root->node);
  1765. free_extent_buffer(info->dev_root->commit_root);
  1766. info->dev_root->node = NULL;
  1767. info->dev_root->commit_root = NULL;
  1768. }
  1769. if (info->extent_root) {
  1770. free_extent_buffer(info->extent_root->node);
  1771. free_extent_buffer(info->extent_root->commit_root);
  1772. info->extent_root->node = NULL;
  1773. info->extent_root->commit_root = NULL;
  1774. }
  1775. if (info->csum_root) {
  1776. free_extent_buffer(info->csum_root->node);
  1777. free_extent_buffer(info->csum_root->commit_root);
  1778. info->csum_root->node = NULL;
  1779. info->csum_root->commit_root = NULL;
  1780. }
  1781. if (info->quota_root) {
  1782. free_extent_buffer(info->quota_root->node);
  1783. free_extent_buffer(info->quota_root->commit_root);
  1784. info->quota_root->node = NULL;
  1785. info->quota_root->commit_root = NULL;
  1786. }
  1787. if (info->uuid_root) {
  1788. free_extent_buffer(info->uuid_root->node);
  1789. free_extent_buffer(info->uuid_root->commit_root);
  1790. info->uuid_root->node = NULL;
  1791. info->uuid_root->commit_root = NULL;
  1792. }
  1793. if (chunk_root) {
  1794. free_extent_buffer(info->chunk_root->node);
  1795. free_extent_buffer(info->chunk_root->commit_root);
  1796. info->chunk_root->node = NULL;
  1797. info->chunk_root->commit_root = NULL;
  1798. }
  1799. }
  1800. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  1801. {
  1802. int ret;
  1803. struct btrfs_root *gang[8];
  1804. int i;
  1805. while (!list_empty(&fs_info->dead_roots)) {
  1806. gang[0] = list_entry(fs_info->dead_roots.next,
  1807. struct btrfs_root, root_list);
  1808. list_del(&gang[0]->root_list);
  1809. if (gang[0]->in_radix) {
  1810. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1811. } else {
  1812. free_extent_buffer(gang[0]->node);
  1813. free_extent_buffer(gang[0]->commit_root);
  1814. btrfs_put_fs_root(gang[0]);
  1815. }
  1816. }
  1817. while (1) {
  1818. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1819. (void **)gang, 0,
  1820. ARRAY_SIZE(gang));
  1821. if (!ret)
  1822. break;
  1823. for (i = 0; i < ret; i++)
  1824. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1825. }
  1826. }
  1827. int open_ctree(struct super_block *sb,
  1828. struct btrfs_fs_devices *fs_devices,
  1829. char *options)
  1830. {
  1831. u32 sectorsize;
  1832. u32 nodesize;
  1833. u32 leafsize;
  1834. u32 blocksize;
  1835. u32 stripesize;
  1836. u64 generation;
  1837. u64 features;
  1838. struct btrfs_key location;
  1839. struct buffer_head *bh;
  1840. struct btrfs_super_block *disk_super;
  1841. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1842. struct btrfs_root *tree_root;
  1843. struct btrfs_root *extent_root;
  1844. struct btrfs_root *csum_root;
  1845. struct btrfs_root *chunk_root;
  1846. struct btrfs_root *dev_root;
  1847. struct btrfs_root *quota_root;
  1848. struct btrfs_root *uuid_root;
  1849. struct btrfs_root *log_tree_root;
  1850. int ret;
  1851. int err = -EINVAL;
  1852. int num_backups_tried = 0;
  1853. int backup_index = 0;
  1854. bool create_uuid_tree;
  1855. bool check_uuid_tree;
  1856. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1857. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1858. if (!tree_root || !chunk_root) {
  1859. err = -ENOMEM;
  1860. goto fail;
  1861. }
  1862. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1863. if (ret) {
  1864. err = ret;
  1865. goto fail;
  1866. }
  1867. ret = setup_bdi(fs_info, &fs_info->bdi);
  1868. if (ret) {
  1869. err = ret;
  1870. goto fail_srcu;
  1871. }
  1872. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
  1873. if (ret) {
  1874. err = ret;
  1875. goto fail_bdi;
  1876. }
  1877. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  1878. (1 + ilog2(nr_cpu_ids));
  1879. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
  1880. if (ret) {
  1881. err = ret;
  1882. goto fail_dirty_metadata_bytes;
  1883. }
  1884. fs_info->btree_inode = new_inode(sb);
  1885. if (!fs_info->btree_inode) {
  1886. err = -ENOMEM;
  1887. goto fail_delalloc_bytes;
  1888. }
  1889. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1890. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1891. INIT_LIST_HEAD(&fs_info->trans_list);
  1892. INIT_LIST_HEAD(&fs_info->dead_roots);
  1893. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1894. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  1895. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1896. spin_lock_init(&fs_info->delalloc_root_lock);
  1897. spin_lock_init(&fs_info->trans_lock);
  1898. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1899. spin_lock_init(&fs_info->delayed_iput_lock);
  1900. spin_lock_init(&fs_info->defrag_inodes_lock);
  1901. spin_lock_init(&fs_info->free_chunk_lock);
  1902. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1903. spin_lock_init(&fs_info->super_lock);
  1904. rwlock_init(&fs_info->tree_mod_log_lock);
  1905. mutex_init(&fs_info->reloc_mutex);
  1906. seqlock_init(&fs_info->profiles_lock);
  1907. init_completion(&fs_info->kobj_unregister);
  1908. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1909. INIT_LIST_HEAD(&fs_info->space_info);
  1910. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1911. btrfs_mapping_init(&fs_info->mapping_tree);
  1912. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1913. BTRFS_BLOCK_RSV_GLOBAL);
  1914. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1915. BTRFS_BLOCK_RSV_DELALLOC);
  1916. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1917. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1918. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1919. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1920. BTRFS_BLOCK_RSV_DELOPS);
  1921. atomic_set(&fs_info->nr_async_submits, 0);
  1922. atomic_set(&fs_info->async_delalloc_pages, 0);
  1923. atomic_set(&fs_info->async_submit_draining, 0);
  1924. atomic_set(&fs_info->nr_async_bios, 0);
  1925. atomic_set(&fs_info->defrag_running, 0);
  1926. atomic64_set(&fs_info->tree_mod_seq, 0);
  1927. fs_info->sb = sb;
  1928. fs_info->max_inline = 8192 * 1024;
  1929. fs_info->metadata_ratio = 0;
  1930. fs_info->defrag_inodes = RB_ROOT;
  1931. fs_info->free_chunk_space = 0;
  1932. fs_info->tree_mod_log = RB_ROOT;
  1933. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  1934. /* readahead state */
  1935. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1936. spin_lock_init(&fs_info->reada_lock);
  1937. fs_info->thread_pool_size = min_t(unsigned long,
  1938. num_online_cpus() + 2, 8);
  1939. INIT_LIST_HEAD(&fs_info->ordered_roots);
  1940. spin_lock_init(&fs_info->ordered_root_lock);
  1941. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1942. GFP_NOFS);
  1943. if (!fs_info->delayed_root) {
  1944. err = -ENOMEM;
  1945. goto fail_iput;
  1946. }
  1947. btrfs_init_delayed_root(fs_info->delayed_root);
  1948. mutex_init(&fs_info->scrub_lock);
  1949. atomic_set(&fs_info->scrubs_running, 0);
  1950. atomic_set(&fs_info->scrub_pause_req, 0);
  1951. atomic_set(&fs_info->scrubs_paused, 0);
  1952. atomic_set(&fs_info->scrub_cancel_req, 0);
  1953. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1954. init_rwsem(&fs_info->scrub_super_lock);
  1955. fs_info->scrub_workers_refcnt = 0;
  1956. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1957. fs_info->check_integrity_print_mask = 0;
  1958. #endif
  1959. spin_lock_init(&fs_info->balance_lock);
  1960. mutex_init(&fs_info->balance_mutex);
  1961. atomic_set(&fs_info->balance_running, 0);
  1962. atomic_set(&fs_info->balance_pause_req, 0);
  1963. atomic_set(&fs_info->balance_cancel_req, 0);
  1964. fs_info->balance_ctl = NULL;
  1965. init_waitqueue_head(&fs_info->balance_wait_q);
  1966. sb->s_blocksize = 4096;
  1967. sb->s_blocksize_bits = blksize_bits(4096);
  1968. sb->s_bdi = &fs_info->bdi;
  1969. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1970. set_nlink(fs_info->btree_inode, 1);
  1971. /*
  1972. * we set the i_size on the btree inode to the max possible int.
  1973. * the real end of the address space is determined by all of
  1974. * the devices in the system
  1975. */
  1976. fs_info->btree_inode->i_size = OFFSET_MAX;
  1977. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1978. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1979. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1980. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1981. fs_info->btree_inode->i_mapping);
  1982. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1983. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1984. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1985. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1986. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1987. sizeof(struct btrfs_key));
  1988. set_bit(BTRFS_INODE_DUMMY,
  1989. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1990. insert_inode_hash(fs_info->btree_inode);
  1991. spin_lock_init(&fs_info->block_group_cache_lock);
  1992. fs_info->block_group_cache_tree = RB_ROOT;
  1993. fs_info->first_logical_byte = (u64)-1;
  1994. extent_io_tree_init(&fs_info->freed_extents[0],
  1995. fs_info->btree_inode->i_mapping);
  1996. extent_io_tree_init(&fs_info->freed_extents[1],
  1997. fs_info->btree_inode->i_mapping);
  1998. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1999. fs_info->do_barriers = 1;
  2000. mutex_init(&fs_info->ordered_operations_mutex);
  2001. mutex_init(&fs_info->ordered_extent_flush_mutex);
  2002. mutex_init(&fs_info->tree_log_mutex);
  2003. mutex_init(&fs_info->chunk_mutex);
  2004. mutex_init(&fs_info->transaction_kthread_mutex);
  2005. mutex_init(&fs_info->cleaner_mutex);
  2006. mutex_init(&fs_info->volume_mutex);
  2007. init_rwsem(&fs_info->extent_commit_sem);
  2008. init_rwsem(&fs_info->cleanup_work_sem);
  2009. init_rwsem(&fs_info->subvol_sem);
  2010. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2011. fs_info->dev_replace.lock_owner = 0;
  2012. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  2013. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  2014. mutex_init(&fs_info->dev_replace.lock_management_lock);
  2015. mutex_init(&fs_info->dev_replace.lock);
  2016. spin_lock_init(&fs_info->qgroup_lock);
  2017. mutex_init(&fs_info->qgroup_ioctl_lock);
  2018. fs_info->qgroup_tree = RB_ROOT;
  2019. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  2020. fs_info->qgroup_seq = 1;
  2021. fs_info->quota_enabled = 0;
  2022. fs_info->pending_quota_state = 0;
  2023. fs_info->qgroup_ulist = NULL;
  2024. mutex_init(&fs_info->qgroup_rescan_lock);
  2025. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2026. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2027. init_waitqueue_head(&fs_info->transaction_throttle);
  2028. init_waitqueue_head(&fs_info->transaction_wait);
  2029. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2030. init_waitqueue_head(&fs_info->async_submit_wait);
  2031. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2032. if (ret) {
  2033. err = ret;
  2034. goto fail_alloc;
  2035. }
  2036. __setup_root(4096, 4096, 4096, 4096, tree_root,
  2037. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2038. invalidate_bdev(fs_devices->latest_bdev);
  2039. /*
  2040. * Read super block and check the signature bytes only
  2041. */
  2042. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2043. if (!bh) {
  2044. err = -EINVAL;
  2045. goto fail_alloc;
  2046. }
  2047. /*
  2048. * We want to check superblock checksum, the type is stored inside.
  2049. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2050. */
  2051. if (btrfs_check_super_csum(bh->b_data)) {
  2052. printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
  2053. err = -EINVAL;
  2054. goto fail_alloc;
  2055. }
  2056. /*
  2057. * super_copy is zeroed at allocation time and we never touch the
  2058. * following bytes up to INFO_SIZE, the checksum is calculated from
  2059. * the whole block of INFO_SIZE
  2060. */
  2061. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2062. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2063. sizeof(*fs_info->super_for_commit));
  2064. brelse(bh);
  2065. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2066. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2067. if (ret) {
  2068. printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
  2069. err = -EINVAL;
  2070. goto fail_alloc;
  2071. }
  2072. disk_super = fs_info->super_copy;
  2073. if (!btrfs_super_root(disk_super))
  2074. goto fail_alloc;
  2075. /* check FS state, whether FS is broken. */
  2076. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2077. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2078. /*
  2079. * run through our array of backup supers and setup
  2080. * our ring pointer to the oldest one
  2081. */
  2082. generation = btrfs_super_generation(disk_super);
  2083. find_oldest_super_backup(fs_info, generation);
  2084. /*
  2085. * In the long term, we'll store the compression type in the super
  2086. * block, and it'll be used for per file compression control.
  2087. */
  2088. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2089. ret = btrfs_parse_options(tree_root, options);
  2090. if (ret) {
  2091. err = ret;
  2092. goto fail_alloc;
  2093. }
  2094. features = btrfs_super_incompat_flags(disk_super) &
  2095. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2096. if (features) {
  2097. printk(KERN_ERR "BTRFS: couldn't mount because of "
  2098. "unsupported optional features (%Lx).\n",
  2099. features);
  2100. err = -EINVAL;
  2101. goto fail_alloc;
  2102. }
  2103. if (btrfs_super_leafsize(disk_super) !=
  2104. btrfs_super_nodesize(disk_super)) {
  2105. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2106. "blocksizes don't match. node %d leaf %d\n",
  2107. btrfs_super_nodesize(disk_super),
  2108. btrfs_super_leafsize(disk_super));
  2109. err = -EINVAL;
  2110. goto fail_alloc;
  2111. }
  2112. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  2113. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2114. "blocksize (%d) was too large\n",
  2115. btrfs_super_leafsize(disk_super));
  2116. err = -EINVAL;
  2117. goto fail_alloc;
  2118. }
  2119. features = btrfs_super_incompat_flags(disk_super);
  2120. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2121. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2122. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2123. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2124. printk(KERN_ERR "btrfs: has skinny extents\n");
  2125. /*
  2126. * flag our filesystem as having big metadata blocks if
  2127. * they are bigger than the page size
  2128. */
  2129. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  2130. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2131. printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
  2132. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2133. }
  2134. nodesize = btrfs_super_nodesize(disk_super);
  2135. leafsize = btrfs_super_leafsize(disk_super);
  2136. sectorsize = btrfs_super_sectorsize(disk_super);
  2137. stripesize = btrfs_super_stripesize(disk_super);
  2138. fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
  2139. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2140. /*
  2141. * mixed block groups end up with duplicate but slightly offset
  2142. * extent buffers for the same range. It leads to corruptions
  2143. */
  2144. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2145. (sectorsize != leafsize)) {
  2146. printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
  2147. "are not allowed for mixed block groups on %s\n",
  2148. sb->s_id);
  2149. goto fail_alloc;
  2150. }
  2151. /*
  2152. * Needn't use the lock because there is no other task which will
  2153. * update the flag.
  2154. */
  2155. btrfs_set_super_incompat_flags(disk_super, features);
  2156. features = btrfs_super_compat_ro_flags(disk_super) &
  2157. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2158. if (!(sb->s_flags & MS_RDONLY) && features) {
  2159. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2160. "unsupported option features (%Lx).\n",
  2161. features);
  2162. err = -EINVAL;
  2163. goto fail_alloc;
  2164. }
  2165. btrfs_init_workers(&fs_info->generic_worker,
  2166. "genwork", 1, NULL);
  2167. btrfs_init_workers(&fs_info->workers, "worker",
  2168. fs_info->thread_pool_size,
  2169. &fs_info->generic_worker);
  2170. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  2171. fs_info->thread_pool_size, NULL);
  2172. btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
  2173. fs_info->thread_pool_size, NULL);
  2174. btrfs_init_workers(&fs_info->submit_workers, "submit",
  2175. min_t(u64, fs_devices->num_devices,
  2176. fs_info->thread_pool_size), NULL);
  2177. btrfs_init_workers(&fs_info->caching_workers, "cache",
  2178. fs_info->thread_pool_size, NULL);
  2179. /* a higher idle thresh on the submit workers makes it much more
  2180. * likely that bios will be send down in a sane order to the
  2181. * devices
  2182. */
  2183. fs_info->submit_workers.idle_thresh = 64;
  2184. fs_info->workers.idle_thresh = 16;
  2185. fs_info->workers.ordered = 1;
  2186. fs_info->delalloc_workers.idle_thresh = 2;
  2187. fs_info->delalloc_workers.ordered = 1;
  2188. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  2189. &fs_info->generic_worker);
  2190. btrfs_init_workers(&fs_info->endio_workers, "endio",
  2191. fs_info->thread_pool_size,
  2192. &fs_info->generic_worker);
  2193. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  2194. fs_info->thread_pool_size,
  2195. &fs_info->generic_worker);
  2196. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  2197. "endio-meta-write", fs_info->thread_pool_size,
  2198. &fs_info->generic_worker);
  2199. btrfs_init_workers(&fs_info->endio_raid56_workers,
  2200. "endio-raid56", fs_info->thread_pool_size,
  2201. &fs_info->generic_worker);
  2202. btrfs_init_workers(&fs_info->rmw_workers,
  2203. "rmw", fs_info->thread_pool_size,
  2204. &fs_info->generic_worker);
  2205. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  2206. fs_info->thread_pool_size,
  2207. &fs_info->generic_worker);
  2208. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  2209. 1, &fs_info->generic_worker);
  2210. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  2211. fs_info->thread_pool_size,
  2212. &fs_info->generic_worker);
  2213. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  2214. fs_info->thread_pool_size,
  2215. &fs_info->generic_worker);
  2216. btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
  2217. &fs_info->generic_worker);
  2218. /*
  2219. * endios are largely parallel and should have a very
  2220. * low idle thresh
  2221. */
  2222. fs_info->endio_workers.idle_thresh = 4;
  2223. fs_info->endio_meta_workers.idle_thresh = 4;
  2224. fs_info->endio_raid56_workers.idle_thresh = 4;
  2225. fs_info->rmw_workers.idle_thresh = 2;
  2226. fs_info->endio_write_workers.idle_thresh = 2;
  2227. fs_info->endio_meta_write_workers.idle_thresh = 2;
  2228. fs_info->readahead_workers.idle_thresh = 2;
  2229. /*
  2230. * btrfs_start_workers can really only fail because of ENOMEM so just
  2231. * return -ENOMEM if any of these fail.
  2232. */
  2233. ret = btrfs_start_workers(&fs_info->workers);
  2234. ret |= btrfs_start_workers(&fs_info->generic_worker);
  2235. ret |= btrfs_start_workers(&fs_info->submit_workers);
  2236. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  2237. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  2238. ret |= btrfs_start_workers(&fs_info->endio_workers);
  2239. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  2240. ret |= btrfs_start_workers(&fs_info->rmw_workers);
  2241. ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
  2242. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  2243. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  2244. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  2245. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  2246. ret |= btrfs_start_workers(&fs_info->caching_workers);
  2247. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  2248. ret |= btrfs_start_workers(&fs_info->flush_workers);
  2249. ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
  2250. if (ret) {
  2251. err = -ENOMEM;
  2252. goto fail_sb_buffer;
  2253. }
  2254. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2255. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2256. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2257. tree_root->nodesize = nodesize;
  2258. tree_root->leafsize = leafsize;
  2259. tree_root->sectorsize = sectorsize;
  2260. tree_root->stripesize = stripesize;
  2261. sb->s_blocksize = sectorsize;
  2262. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2263. if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
  2264. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  2265. goto fail_sb_buffer;
  2266. }
  2267. if (sectorsize != PAGE_SIZE) {
  2268. printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
  2269. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2270. goto fail_sb_buffer;
  2271. }
  2272. mutex_lock(&fs_info->chunk_mutex);
  2273. ret = btrfs_read_sys_array(tree_root);
  2274. mutex_unlock(&fs_info->chunk_mutex);
  2275. if (ret) {
  2276. printk(KERN_WARNING "btrfs: failed to read the system "
  2277. "array on %s\n", sb->s_id);
  2278. goto fail_sb_buffer;
  2279. }
  2280. blocksize = btrfs_level_size(tree_root,
  2281. btrfs_super_chunk_root_level(disk_super));
  2282. generation = btrfs_super_chunk_root_generation(disk_super);
  2283. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2284. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2285. chunk_root->node = read_tree_block(chunk_root,
  2286. btrfs_super_chunk_root(disk_super),
  2287. blocksize, generation);
  2288. if (!chunk_root->node ||
  2289. !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2290. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  2291. sb->s_id);
  2292. goto fail_tree_roots;
  2293. }
  2294. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2295. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2296. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2297. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2298. ret = btrfs_read_chunk_tree(chunk_root);
  2299. if (ret) {
  2300. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  2301. sb->s_id);
  2302. goto fail_tree_roots;
  2303. }
  2304. /*
  2305. * keep the device that is marked to be the target device for the
  2306. * dev_replace procedure
  2307. */
  2308. btrfs_close_extra_devices(fs_info, fs_devices, 0);
  2309. if (!fs_devices->latest_bdev) {
  2310. printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
  2311. sb->s_id);
  2312. goto fail_tree_roots;
  2313. }
  2314. retry_root_backup:
  2315. blocksize = btrfs_level_size(tree_root,
  2316. btrfs_super_root_level(disk_super));
  2317. generation = btrfs_super_generation(disk_super);
  2318. tree_root->node = read_tree_block(tree_root,
  2319. btrfs_super_root(disk_super),
  2320. blocksize, generation);
  2321. if (!tree_root->node ||
  2322. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2323. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  2324. sb->s_id);
  2325. goto recovery_tree_root;
  2326. }
  2327. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2328. tree_root->commit_root = btrfs_root_node(tree_root);
  2329. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2330. location.type = BTRFS_ROOT_ITEM_KEY;
  2331. location.offset = 0;
  2332. extent_root = btrfs_read_tree_root(tree_root, &location);
  2333. if (IS_ERR(extent_root)) {
  2334. ret = PTR_ERR(extent_root);
  2335. goto recovery_tree_root;
  2336. }
  2337. extent_root->track_dirty = 1;
  2338. fs_info->extent_root = extent_root;
  2339. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2340. dev_root = btrfs_read_tree_root(tree_root, &location);
  2341. if (IS_ERR(dev_root)) {
  2342. ret = PTR_ERR(dev_root);
  2343. goto recovery_tree_root;
  2344. }
  2345. dev_root->track_dirty = 1;
  2346. fs_info->dev_root = dev_root;
  2347. btrfs_init_devices_late(fs_info);
  2348. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2349. csum_root = btrfs_read_tree_root(tree_root, &location);
  2350. if (IS_ERR(csum_root)) {
  2351. ret = PTR_ERR(csum_root);
  2352. goto recovery_tree_root;
  2353. }
  2354. csum_root->track_dirty = 1;
  2355. fs_info->csum_root = csum_root;
  2356. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2357. quota_root = btrfs_read_tree_root(tree_root, &location);
  2358. if (!IS_ERR(quota_root)) {
  2359. quota_root->track_dirty = 1;
  2360. fs_info->quota_enabled = 1;
  2361. fs_info->pending_quota_state = 1;
  2362. fs_info->quota_root = quota_root;
  2363. }
  2364. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2365. uuid_root = btrfs_read_tree_root(tree_root, &location);
  2366. if (IS_ERR(uuid_root)) {
  2367. ret = PTR_ERR(uuid_root);
  2368. if (ret != -ENOENT)
  2369. goto recovery_tree_root;
  2370. create_uuid_tree = true;
  2371. check_uuid_tree = false;
  2372. } else {
  2373. uuid_root->track_dirty = 1;
  2374. fs_info->uuid_root = uuid_root;
  2375. create_uuid_tree = false;
  2376. check_uuid_tree =
  2377. generation != btrfs_super_uuid_tree_generation(disk_super);
  2378. }
  2379. fs_info->generation = generation;
  2380. fs_info->last_trans_committed = generation;
  2381. ret = btrfs_recover_balance(fs_info);
  2382. if (ret) {
  2383. printk(KERN_WARNING "btrfs: failed to recover balance\n");
  2384. goto fail_block_groups;
  2385. }
  2386. ret = btrfs_init_dev_stats(fs_info);
  2387. if (ret) {
  2388. printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
  2389. ret);
  2390. goto fail_block_groups;
  2391. }
  2392. ret = btrfs_init_dev_replace(fs_info);
  2393. if (ret) {
  2394. pr_err("btrfs: failed to init dev_replace: %d\n", ret);
  2395. goto fail_block_groups;
  2396. }
  2397. btrfs_close_extra_devices(fs_info, fs_devices, 1);
  2398. ret = btrfs_init_space_info(fs_info);
  2399. if (ret) {
  2400. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2401. goto fail_block_groups;
  2402. }
  2403. ret = btrfs_read_block_groups(extent_root);
  2404. if (ret) {
  2405. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2406. goto fail_block_groups;
  2407. }
  2408. fs_info->num_tolerated_disk_barrier_failures =
  2409. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2410. if (fs_info->fs_devices->missing_devices >
  2411. fs_info->num_tolerated_disk_barrier_failures &&
  2412. !(sb->s_flags & MS_RDONLY)) {
  2413. printk(KERN_WARNING
  2414. "Btrfs: too many missing devices, writeable mount is not allowed\n");
  2415. goto fail_block_groups;
  2416. }
  2417. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2418. "btrfs-cleaner");
  2419. if (IS_ERR(fs_info->cleaner_kthread))
  2420. goto fail_block_groups;
  2421. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2422. tree_root,
  2423. "btrfs-transaction");
  2424. if (IS_ERR(fs_info->transaction_kthread))
  2425. goto fail_cleaner;
  2426. if (!btrfs_test_opt(tree_root, SSD) &&
  2427. !btrfs_test_opt(tree_root, NOSSD) &&
  2428. !fs_info->fs_devices->rotating) {
  2429. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2430. "mode\n");
  2431. btrfs_set_opt(fs_info->mount_opt, SSD);
  2432. }
  2433. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2434. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2435. ret = btrfsic_mount(tree_root, fs_devices,
  2436. btrfs_test_opt(tree_root,
  2437. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2438. 1 : 0,
  2439. fs_info->check_integrity_print_mask);
  2440. if (ret)
  2441. printk(KERN_WARNING "btrfs: failed to initialize"
  2442. " integrity check module %s\n", sb->s_id);
  2443. }
  2444. #endif
  2445. ret = btrfs_read_qgroup_config(fs_info);
  2446. if (ret)
  2447. goto fail_trans_kthread;
  2448. /* do not make disk changes in broken FS */
  2449. if (btrfs_super_log_root(disk_super) != 0) {
  2450. u64 bytenr = btrfs_super_log_root(disk_super);
  2451. if (fs_devices->rw_devices == 0) {
  2452. printk(KERN_WARNING "Btrfs log replay required "
  2453. "on RO media\n");
  2454. err = -EIO;
  2455. goto fail_qgroup;
  2456. }
  2457. blocksize =
  2458. btrfs_level_size(tree_root,
  2459. btrfs_super_log_root_level(disk_super));
  2460. log_tree_root = btrfs_alloc_root(fs_info);
  2461. if (!log_tree_root) {
  2462. err = -ENOMEM;
  2463. goto fail_qgroup;
  2464. }
  2465. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2466. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2467. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2468. blocksize,
  2469. generation + 1);
  2470. if (!log_tree_root->node ||
  2471. !extent_buffer_uptodate(log_tree_root->node)) {
  2472. printk(KERN_ERR "btrfs: failed to read log tree\n");
  2473. free_extent_buffer(log_tree_root->node);
  2474. kfree(log_tree_root);
  2475. goto fail_trans_kthread;
  2476. }
  2477. /* returns with log_tree_root freed on success */
  2478. ret = btrfs_recover_log_trees(log_tree_root);
  2479. if (ret) {
  2480. btrfs_error(tree_root->fs_info, ret,
  2481. "Failed to recover log tree");
  2482. free_extent_buffer(log_tree_root->node);
  2483. kfree(log_tree_root);
  2484. goto fail_trans_kthread;
  2485. }
  2486. if (sb->s_flags & MS_RDONLY) {
  2487. ret = btrfs_commit_super(tree_root);
  2488. if (ret)
  2489. goto fail_trans_kthread;
  2490. }
  2491. }
  2492. ret = btrfs_find_orphan_roots(tree_root);
  2493. if (ret)
  2494. goto fail_trans_kthread;
  2495. if (!(sb->s_flags & MS_RDONLY)) {
  2496. ret = btrfs_cleanup_fs_roots(fs_info);
  2497. if (ret)
  2498. goto fail_trans_kthread;
  2499. ret = btrfs_recover_relocation(tree_root);
  2500. if (ret < 0) {
  2501. printk(KERN_WARNING
  2502. "btrfs: failed to recover relocation\n");
  2503. err = -EINVAL;
  2504. goto fail_qgroup;
  2505. }
  2506. }
  2507. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2508. location.type = BTRFS_ROOT_ITEM_KEY;
  2509. location.offset = 0;
  2510. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2511. if (IS_ERR(fs_info->fs_root)) {
  2512. err = PTR_ERR(fs_info->fs_root);
  2513. goto fail_qgroup;
  2514. }
  2515. if (sb->s_flags & MS_RDONLY)
  2516. return 0;
  2517. down_read(&fs_info->cleanup_work_sem);
  2518. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2519. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2520. up_read(&fs_info->cleanup_work_sem);
  2521. close_ctree(tree_root);
  2522. return ret;
  2523. }
  2524. up_read(&fs_info->cleanup_work_sem);
  2525. ret = btrfs_resume_balance_async(fs_info);
  2526. if (ret) {
  2527. printk(KERN_WARNING "btrfs: failed to resume balance\n");
  2528. close_ctree(tree_root);
  2529. return ret;
  2530. }
  2531. ret = btrfs_resume_dev_replace_async(fs_info);
  2532. if (ret) {
  2533. pr_warn("btrfs: failed to resume dev_replace\n");
  2534. close_ctree(tree_root);
  2535. return ret;
  2536. }
  2537. btrfs_qgroup_rescan_resume(fs_info);
  2538. if (create_uuid_tree) {
  2539. pr_info("btrfs: creating UUID tree\n");
  2540. ret = btrfs_create_uuid_tree(fs_info);
  2541. if (ret) {
  2542. pr_warn("btrfs: failed to create the UUID tree %d\n",
  2543. ret);
  2544. close_ctree(tree_root);
  2545. return ret;
  2546. }
  2547. } else if (check_uuid_tree ||
  2548. btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
  2549. pr_info("btrfs: checking UUID tree\n");
  2550. ret = btrfs_check_uuid_tree(fs_info);
  2551. if (ret) {
  2552. pr_warn("btrfs: failed to check the UUID tree %d\n",
  2553. ret);
  2554. close_ctree(tree_root);
  2555. return ret;
  2556. }
  2557. } else {
  2558. fs_info->update_uuid_tree_gen = 1;
  2559. }
  2560. return 0;
  2561. fail_qgroup:
  2562. btrfs_free_qgroup_config(fs_info);
  2563. fail_trans_kthread:
  2564. kthread_stop(fs_info->transaction_kthread);
  2565. btrfs_cleanup_transaction(fs_info->tree_root);
  2566. del_fs_roots(fs_info);
  2567. fail_cleaner:
  2568. kthread_stop(fs_info->cleaner_kthread);
  2569. /*
  2570. * make sure we're done with the btree inode before we stop our
  2571. * kthreads
  2572. */
  2573. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2574. fail_block_groups:
  2575. btrfs_put_block_group_cache(fs_info);
  2576. btrfs_free_block_groups(fs_info);
  2577. fail_tree_roots:
  2578. free_root_pointers(fs_info, 1);
  2579. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2580. fail_sb_buffer:
  2581. btrfs_stop_all_workers(fs_info);
  2582. fail_alloc:
  2583. fail_iput:
  2584. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2585. iput(fs_info->btree_inode);
  2586. fail_delalloc_bytes:
  2587. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2588. fail_dirty_metadata_bytes:
  2589. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2590. fail_bdi:
  2591. bdi_destroy(&fs_info->bdi);
  2592. fail_srcu:
  2593. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2594. fail:
  2595. btrfs_free_stripe_hash_table(fs_info);
  2596. btrfs_close_devices(fs_info->fs_devices);
  2597. return err;
  2598. recovery_tree_root:
  2599. if (!btrfs_test_opt(tree_root, RECOVERY))
  2600. goto fail_tree_roots;
  2601. free_root_pointers(fs_info, 0);
  2602. /* don't use the log in recovery mode, it won't be valid */
  2603. btrfs_set_super_log_root(disk_super, 0);
  2604. /* we can't trust the free space cache either */
  2605. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2606. ret = next_root_backup(fs_info, fs_info->super_copy,
  2607. &num_backups_tried, &backup_index);
  2608. if (ret == -1)
  2609. goto fail_block_groups;
  2610. goto retry_root_backup;
  2611. }
  2612. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2613. {
  2614. if (uptodate) {
  2615. set_buffer_uptodate(bh);
  2616. } else {
  2617. struct btrfs_device *device = (struct btrfs_device *)
  2618. bh->b_private;
  2619. printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
  2620. "I/O error on %s\n",
  2621. rcu_str_deref(device->name));
  2622. /* note, we dont' set_buffer_write_io_error because we have
  2623. * our own ways of dealing with the IO errors
  2624. */
  2625. clear_buffer_uptodate(bh);
  2626. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2627. }
  2628. unlock_buffer(bh);
  2629. put_bh(bh);
  2630. }
  2631. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2632. {
  2633. struct buffer_head *bh;
  2634. struct buffer_head *latest = NULL;
  2635. struct btrfs_super_block *super;
  2636. int i;
  2637. u64 transid = 0;
  2638. u64 bytenr;
  2639. /* we would like to check all the supers, but that would make
  2640. * a btrfs mount succeed after a mkfs from a different FS.
  2641. * So, we need to add a special mount option to scan for
  2642. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2643. */
  2644. for (i = 0; i < 1; i++) {
  2645. bytenr = btrfs_sb_offset(i);
  2646. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2647. i_size_read(bdev->bd_inode))
  2648. break;
  2649. bh = __bread(bdev, bytenr / 4096,
  2650. BTRFS_SUPER_INFO_SIZE);
  2651. if (!bh)
  2652. continue;
  2653. super = (struct btrfs_super_block *)bh->b_data;
  2654. if (btrfs_super_bytenr(super) != bytenr ||
  2655. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2656. brelse(bh);
  2657. continue;
  2658. }
  2659. if (!latest || btrfs_super_generation(super) > transid) {
  2660. brelse(latest);
  2661. latest = bh;
  2662. transid = btrfs_super_generation(super);
  2663. } else {
  2664. brelse(bh);
  2665. }
  2666. }
  2667. return latest;
  2668. }
  2669. /*
  2670. * this should be called twice, once with wait == 0 and
  2671. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2672. * we write are pinned.
  2673. *
  2674. * They are released when wait == 1 is done.
  2675. * max_mirrors must be the same for both runs, and it indicates how
  2676. * many supers on this one device should be written.
  2677. *
  2678. * max_mirrors == 0 means to write them all.
  2679. */
  2680. static int write_dev_supers(struct btrfs_device *device,
  2681. struct btrfs_super_block *sb,
  2682. int do_barriers, int wait, int max_mirrors)
  2683. {
  2684. struct buffer_head *bh;
  2685. int i;
  2686. int ret;
  2687. int errors = 0;
  2688. u32 crc;
  2689. u64 bytenr;
  2690. if (max_mirrors == 0)
  2691. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2692. for (i = 0; i < max_mirrors; i++) {
  2693. bytenr = btrfs_sb_offset(i);
  2694. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2695. break;
  2696. if (wait) {
  2697. bh = __find_get_block(device->bdev, bytenr / 4096,
  2698. BTRFS_SUPER_INFO_SIZE);
  2699. if (!bh) {
  2700. errors++;
  2701. continue;
  2702. }
  2703. wait_on_buffer(bh);
  2704. if (!buffer_uptodate(bh))
  2705. errors++;
  2706. /* drop our reference */
  2707. brelse(bh);
  2708. /* drop the reference from the wait == 0 run */
  2709. brelse(bh);
  2710. continue;
  2711. } else {
  2712. btrfs_set_super_bytenr(sb, bytenr);
  2713. crc = ~(u32)0;
  2714. crc = btrfs_csum_data((char *)sb +
  2715. BTRFS_CSUM_SIZE, crc,
  2716. BTRFS_SUPER_INFO_SIZE -
  2717. BTRFS_CSUM_SIZE);
  2718. btrfs_csum_final(crc, sb->csum);
  2719. /*
  2720. * one reference for us, and we leave it for the
  2721. * caller
  2722. */
  2723. bh = __getblk(device->bdev, bytenr / 4096,
  2724. BTRFS_SUPER_INFO_SIZE);
  2725. if (!bh) {
  2726. printk(KERN_ERR "btrfs: couldn't get super "
  2727. "buffer head for bytenr %Lu\n", bytenr);
  2728. errors++;
  2729. continue;
  2730. }
  2731. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2732. /* one reference for submit_bh */
  2733. get_bh(bh);
  2734. set_buffer_uptodate(bh);
  2735. lock_buffer(bh);
  2736. bh->b_end_io = btrfs_end_buffer_write_sync;
  2737. bh->b_private = device;
  2738. }
  2739. /*
  2740. * we fua the first super. The others we allow
  2741. * to go down lazy.
  2742. */
  2743. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2744. if (ret)
  2745. errors++;
  2746. }
  2747. return errors < i ? 0 : -1;
  2748. }
  2749. /*
  2750. * endio for the write_dev_flush, this will wake anyone waiting
  2751. * for the barrier when it is done
  2752. */
  2753. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2754. {
  2755. if (err) {
  2756. if (err == -EOPNOTSUPP)
  2757. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2758. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2759. }
  2760. if (bio->bi_private)
  2761. complete(bio->bi_private);
  2762. bio_put(bio);
  2763. }
  2764. /*
  2765. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2766. * sent down. With wait == 1, it waits for the previous flush.
  2767. *
  2768. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2769. * capable
  2770. */
  2771. static int write_dev_flush(struct btrfs_device *device, int wait)
  2772. {
  2773. struct bio *bio;
  2774. int ret = 0;
  2775. if (device->nobarriers)
  2776. return 0;
  2777. if (wait) {
  2778. bio = device->flush_bio;
  2779. if (!bio)
  2780. return 0;
  2781. wait_for_completion(&device->flush_wait);
  2782. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2783. printk_in_rcu("btrfs: disabling barriers on dev %s\n",
  2784. rcu_str_deref(device->name));
  2785. device->nobarriers = 1;
  2786. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2787. ret = -EIO;
  2788. btrfs_dev_stat_inc_and_print(device,
  2789. BTRFS_DEV_STAT_FLUSH_ERRS);
  2790. }
  2791. /* drop the reference from the wait == 0 run */
  2792. bio_put(bio);
  2793. device->flush_bio = NULL;
  2794. return ret;
  2795. }
  2796. /*
  2797. * one reference for us, and we leave it for the
  2798. * caller
  2799. */
  2800. device->flush_bio = NULL;
  2801. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  2802. if (!bio)
  2803. return -ENOMEM;
  2804. bio->bi_end_io = btrfs_end_empty_barrier;
  2805. bio->bi_bdev = device->bdev;
  2806. init_completion(&device->flush_wait);
  2807. bio->bi_private = &device->flush_wait;
  2808. device->flush_bio = bio;
  2809. bio_get(bio);
  2810. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2811. return 0;
  2812. }
  2813. /*
  2814. * send an empty flush down to each device in parallel,
  2815. * then wait for them
  2816. */
  2817. static int barrier_all_devices(struct btrfs_fs_info *info)
  2818. {
  2819. struct list_head *head;
  2820. struct btrfs_device *dev;
  2821. int errors_send = 0;
  2822. int errors_wait = 0;
  2823. int ret;
  2824. /* send down all the barriers */
  2825. head = &info->fs_devices->devices;
  2826. list_for_each_entry_rcu(dev, head, dev_list) {
  2827. if (!dev->bdev) {
  2828. errors_send++;
  2829. continue;
  2830. }
  2831. if (!dev->in_fs_metadata || !dev->writeable)
  2832. continue;
  2833. ret = write_dev_flush(dev, 0);
  2834. if (ret)
  2835. errors_send++;
  2836. }
  2837. /* wait for all the barriers */
  2838. list_for_each_entry_rcu(dev, head, dev_list) {
  2839. if (!dev->bdev) {
  2840. errors_wait++;
  2841. continue;
  2842. }
  2843. if (!dev->in_fs_metadata || !dev->writeable)
  2844. continue;
  2845. ret = write_dev_flush(dev, 1);
  2846. if (ret)
  2847. errors_wait++;
  2848. }
  2849. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2850. errors_wait > info->num_tolerated_disk_barrier_failures)
  2851. return -EIO;
  2852. return 0;
  2853. }
  2854. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2855. struct btrfs_fs_info *fs_info)
  2856. {
  2857. struct btrfs_ioctl_space_info space;
  2858. struct btrfs_space_info *sinfo;
  2859. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2860. BTRFS_BLOCK_GROUP_SYSTEM,
  2861. BTRFS_BLOCK_GROUP_METADATA,
  2862. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2863. int num_types = 4;
  2864. int i;
  2865. int c;
  2866. int num_tolerated_disk_barrier_failures =
  2867. (int)fs_info->fs_devices->num_devices;
  2868. for (i = 0; i < num_types; i++) {
  2869. struct btrfs_space_info *tmp;
  2870. sinfo = NULL;
  2871. rcu_read_lock();
  2872. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2873. if (tmp->flags == types[i]) {
  2874. sinfo = tmp;
  2875. break;
  2876. }
  2877. }
  2878. rcu_read_unlock();
  2879. if (!sinfo)
  2880. continue;
  2881. down_read(&sinfo->groups_sem);
  2882. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2883. if (!list_empty(&sinfo->block_groups[c])) {
  2884. u64 flags;
  2885. btrfs_get_block_group_info(
  2886. &sinfo->block_groups[c], &space);
  2887. if (space.total_bytes == 0 ||
  2888. space.used_bytes == 0)
  2889. continue;
  2890. flags = space.flags;
  2891. /*
  2892. * return
  2893. * 0: if dup, single or RAID0 is configured for
  2894. * any of metadata, system or data, else
  2895. * 1: if RAID5 is configured, or if RAID1 or
  2896. * RAID10 is configured and only two mirrors
  2897. * are used, else
  2898. * 2: if RAID6 is configured, else
  2899. * num_mirrors - 1: if RAID1 or RAID10 is
  2900. * configured and more than
  2901. * 2 mirrors are used.
  2902. */
  2903. if (num_tolerated_disk_barrier_failures > 0 &&
  2904. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2905. BTRFS_BLOCK_GROUP_RAID0)) ||
  2906. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2907. == 0)))
  2908. num_tolerated_disk_barrier_failures = 0;
  2909. else if (num_tolerated_disk_barrier_failures > 1) {
  2910. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2911. BTRFS_BLOCK_GROUP_RAID5 |
  2912. BTRFS_BLOCK_GROUP_RAID10)) {
  2913. num_tolerated_disk_barrier_failures = 1;
  2914. } else if (flags &
  2915. BTRFS_BLOCK_GROUP_RAID6) {
  2916. num_tolerated_disk_barrier_failures = 2;
  2917. }
  2918. }
  2919. }
  2920. }
  2921. up_read(&sinfo->groups_sem);
  2922. }
  2923. return num_tolerated_disk_barrier_failures;
  2924. }
  2925. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2926. {
  2927. struct list_head *head;
  2928. struct btrfs_device *dev;
  2929. struct btrfs_super_block *sb;
  2930. struct btrfs_dev_item *dev_item;
  2931. int ret;
  2932. int do_barriers;
  2933. int max_errors;
  2934. int total_errors = 0;
  2935. u64 flags;
  2936. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2937. backup_super_roots(root->fs_info);
  2938. sb = root->fs_info->super_for_commit;
  2939. dev_item = &sb->dev_item;
  2940. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2941. head = &root->fs_info->fs_devices->devices;
  2942. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2943. if (do_barriers) {
  2944. ret = barrier_all_devices(root->fs_info);
  2945. if (ret) {
  2946. mutex_unlock(
  2947. &root->fs_info->fs_devices->device_list_mutex);
  2948. btrfs_error(root->fs_info, ret,
  2949. "errors while submitting device barriers.");
  2950. return ret;
  2951. }
  2952. }
  2953. list_for_each_entry_rcu(dev, head, dev_list) {
  2954. if (!dev->bdev) {
  2955. total_errors++;
  2956. continue;
  2957. }
  2958. if (!dev->in_fs_metadata || !dev->writeable)
  2959. continue;
  2960. btrfs_set_stack_device_generation(dev_item, 0);
  2961. btrfs_set_stack_device_type(dev_item, dev->type);
  2962. btrfs_set_stack_device_id(dev_item, dev->devid);
  2963. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2964. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2965. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2966. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2967. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2968. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2969. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2970. flags = btrfs_super_flags(sb);
  2971. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2972. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2973. if (ret)
  2974. total_errors++;
  2975. }
  2976. if (total_errors > max_errors) {
  2977. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2978. total_errors);
  2979. /* FUA is masked off if unsupported and can't be the reason */
  2980. btrfs_error(root->fs_info, -EIO,
  2981. "%d errors while writing supers", total_errors);
  2982. return -EIO;
  2983. }
  2984. total_errors = 0;
  2985. list_for_each_entry_rcu(dev, head, dev_list) {
  2986. if (!dev->bdev)
  2987. continue;
  2988. if (!dev->in_fs_metadata || !dev->writeable)
  2989. continue;
  2990. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2991. if (ret)
  2992. total_errors++;
  2993. }
  2994. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2995. if (total_errors > max_errors) {
  2996. btrfs_error(root->fs_info, -EIO,
  2997. "%d errors while writing supers", total_errors);
  2998. return -EIO;
  2999. }
  3000. return 0;
  3001. }
  3002. int write_ctree_super(struct btrfs_trans_handle *trans,
  3003. struct btrfs_root *root, int max_mirrors)
  3004. {
  3005. int ret;
  3006. ret = write_all_supers(root, max_mirrors);
  3007. return ret;
  3008. }
  3009. /* Drop a fs root from the radix tree and free it. */
  3010. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3011. struct btrfs_root *root)
  3012. {
  3013. spin_lock(&fs_info->fs_roots_radix_lock);
  3014. radix_tree_delete(&fs_info->fs_roots_radix,
  3015. (unsigned long)root->root_key.objectid);
  3016. spin_unlock(&fs_info->fs_roots_radix_lock);
  3017. if (btrfs_root_refs(&root->root_item) == 0)
  3018. synchronize_srcu(&fs_info->subvol_srcu);
  3019. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  3020. btrfs_free_log(NULL, root);
  3021. btrfs_free_log_root_tree(NULL, fs_info);
  3022. }
  3023. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3024. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3025. free_fs_root(root);
  3026. }
  3027. static void free_fs_root(struct btrfs_root *root)
  3028. {
  3029. iput(root->cache_inode);
  3030. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3031. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3032. root->orphan_block_rsv = NULL;
  3033. if (root->anon_dev)
  3034. free_anon_bdev(root->anon_dev);
  3035. free_extent_buffer(root->node);
  3036. free_extent_buffer(root->commit_root);
  3037. kfree(root->free_ino_ctl);
  3038. kfree(root->free_ino_pinned);
  3039. kfree(root->name);
  3040. btrfs_put_fs_root(root);
  3041. }
  3042. void btrfs_free_fs_root(struct btrfs_root *root)
  3043. {
  3044. free_fs_root(root);
  3045. }
  3046. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3047. {
  3048. u64 root_objectid = 0;
  3049. struct btrfs_root *gang[8];
  3050. int i;
  3051. int ret;
  3052. while (1) {
  3053. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3054. (void **)gang, root_objectid,
  3055. ARRAY_SIZE(gang));
  3056. if (!ret)
  3057. break;
  3058. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3059. for (i = 0; i < ret; i++) {
  3060. int err;
  3061. root_objectid = gang[i]->root_key.objectid;
  3062. err = btrfs_orphan_cleanup(gang[i]);
  3063. if (err)
  3064. return err;
  3065. }
  3066. root_objectid++;
  3067. }
  3068. return 0;
  3069. }
  3070. int btrfs_commit_super(struct btrfs_root *root)
  3071. {
  3072. struct btrfs_trans_handle *trans;
  3073. int ret;
  3074. mutex_lock(&root->fs_info->cleaner_mutex);
  3075. btrfs_run_delayed_iputs(root);
  3076. mutex_unlock(&root->fs_info->cleaner_mutex);
  3077. wake_up_process(root->fs_info->cleaner_kthread);
  3078. /* wait until ongoing cleanup work done */
  3079. down_write(&root->fs_info->cleanup_work_sem);
  3080. up_write(&root->fs_info->cleanup_work_sem);
  3081. trans = btrfs_join_transaction(root);
  3082. if (IS_ERR(trans))
  3083. return PTR_ERR(trans);
  3084. ret = btrfs_commit_transaction(trans, root);
  3085. if (ret)
  3086. return ret;
  3087. /* run commit again to drop the original snapshot */
  3088. trans = btrfs_join_transaction(root);
  3089. if (IS_ERR(trans))
  3090. return PTR_ERR(trans);
  3091. ret = btrfs_commit_transaction(trans, root);
  3092. if (ret)
  3093. return ret;
  3094. ret = btrfs_write_and_wait_transaction(NULL, root);
  3095. if (ret) {
  3096. btrfs_error(root->fs_info, ret,
  3097. "Failed to sync btree inode to disk.");
  3098. return ret;
  3099. }
  3100. ret = write_ctree_super(NULL, root, 0);
  3101. return ret;
  3102. }
  3103. int close_ctree(struct btrfs_root *root)
  3104. {
  3105. struct btrfs_fs_info *fs_info = root->fs_info;
  3106. int ret;
  3107. fs_info->closing = 1;
  3108. smp_mb();
  3109. /* wait for the uuid_scan task to finish */
  3110. down(&fs_info->uuid_tree_rescan_sem);
  3111. /* avoid complains from lockdep et al., set sem back to initial state */
  3112. up(&fs_info->uuid_tree_rescan_sem);
  3113. /* pause restriper - we want to resume on mount */
  3114. btrfs_pause_balance(fs_info);
  3115. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3116. btrfs_scrub_cancel(fs_info);
  3117. /* wait for any defraggers to finish */
  3118. wait_event(fs_info->transaction_wait,
  3119. (atomic_read(&fs_info->defrag_running) == 0));
  3120. /* clear out the rbtree of defraggable inodes */
  3121. btrfs_cleanup_defrag_inodes(fs_info);
  3122. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3123. ret = btrfs_commit_super(root);
  3124. if (ret)
  3125. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  3126. }
  3127. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3128. btrfs_error_commit_super(root);
  3129. btrfs_put_block_group_cache(fs_info);
  3130. kthread_stop(fs_info->transaction_kthread);
  3131. kthread_stop(fs_info->cleaner_kthread);
  3132. fs_info->closing = 2;
  3133. smp_mb();
  3134. btrfs_free_qgroup_config(root->fs_info);
  3135. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3136. printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
  3137. percpu_counter_sum(&fs_info->delalloc_bytes));
  3138. }
  3139. btrfs_free_block_groups(fs_info);
  3140. btrfs_stop_all_workers(fs_info);
  3141. del_fs_roots(fs_info);
  3142. free_root_pointers(fs_info, 1);
  3143. iput(fs_info->btree_inode);
  3144. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3145. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3146. btrfsic_unmount(root, fs_info->fs_devices);
  3147. #endif
  3148. btrfs_close_devices(fs_info->fs_devices);
  3149. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3150. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3151. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3152. bdi_destroy(&fs_info->bdi);
  3153. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3154. btrfs_free_stripe_hash_table(fs_info);
  3155. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3156. root->orphan_block_rsv = NULL;
  3157. return 0;
  3158. }
  3159. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3160. int atomic)
  3161. {
  3162. int ret;
  3163. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3164. ret = extent_buffer_uptodate(buf);
  3165. if (!ret)
  3166. return ret;
  3167. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3168. parent_transid, atomic);
  3169. if (ret == -EAGAIN)
  3170. return ret;
  3171. return !ret;
  3172. }
  3173. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  3174. {
  3175. return set_extent_buffer_uptodate(buf);
  3176. }
  3177. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3178. {
  3179. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3180. u64 transid = btrfs_header_generation(buf);
  3181. int was_dirty;
  3182. btrfs_assert_tree_locked(buf);
  3183. if (transid != root->fs_info->generation)
  3184. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3185. "found %llu running %llu\n",
  3186. buf->start, transid, root->fs_info->generation);
  3187. was_dirty = set_extent_buffer_dirty(buf);
  3188. if (!was_dirty)
  3189. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3190. buf->len,
  3191. root->fs_info->dirty_metadata_batch);
  3192. }
  3193. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3194. int flush_delayed)
  3195. {
  3196. /*
  3197. * looks as though older kernels can get into trouble with
  3198. * this code, they end up stuck in balance_dirty_pages forever
  3199. */
  3200. int ret;
  3201. if (current->flags & PF_MEMALLOC)
  3202. return;
  3203. if (flush_delayed)
  3204. btrfs_balance_delayed_items(root);
  3205. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3206. BTRFS_DIRTY_METADATA_THRESH);
  3207. if (ret > 0) {
  3208. balance_dirty_pages_ratelimited(
  3209. root->fs_info->btree_inode->i_mapping);
  3210. }
  3211. return;
  3212. }
  3213. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3214. {
  3215. __btrfs_btree_balance_dirty(root, 1);
  3216. }
  3217. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3218. {
  3219. __btrfs_btree_balance_dirty(root, 0);
  3220. }
  3221. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3222. {
  3223. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3224. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3225. }
  3226. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3227. int read_only)
  3228. {
  3229. /*
  3230. * Placeholder for checks
  3231. */
  3232. return 0;
  3233. }
  3234. static void btrfs_error_commit_super(struct btrfs_root *root)
  3235. {
  3236. mutex_lock(&root->fs_info->cleaner_mutex);
  3237. btrfs_run_delayed_iputs(root);
  3238. mutex_unlock(&root->fs_info->cleaner_mutex);
  3239. down_write(&root->fs_info->cleanup_work_sem);
  3240. up_write(&root->fs_info->cleanup_work_sem);
  3241. /* cleanup FS via transaction */
  3242. btrfs_cleanup_transaction(root);
  3243. }
  3244. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  3245. struct btrfs_root *root)
  3246. {
  3247. struct btrfs_inode *btrfs_inode;
  3248. struct list_head splice;
  3249. INIT_LIST_HEAD(&splice);
  3250. mutex_lock(&root->fs_info->ordered_operations_mutex);
  3251. spin_lock(&root->fs_info->ordered_root_lock);
  3252. list_splice_init(&t->ordered_operations, &splice);
  3253. while (!list_empty(&splice)) {
  3254. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3255. ordered_operations);
  3256. list_del_init(&btrfs_inode->ordered_operations);
  3257. spin_unlock(&root->fs_info->ordered_root_lock);
  3258. btrfs_invalidate_inodes(btrfs_inode->root);
  3259. spin_lock(&root->fs_info->ordered_root_lock);
  3260. }
  3261. spin_unlock(&root->fs_info->ordered_root_lock);
  3262. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  3263. }
  3264. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3265. {
  3266. struct btrfs_ordered_extent *ordered;
  3267. spin_lock(&root->ordered_extent_lock);
  3268. /*
  3269. * This will just short circuit the ordered completion stuff which will
  3270. * make sure the ordered extent gets properly cleaned up.
  3271. */
  3272. list_for_each_entry(ordered, &root->ordered_extents,
  3273. root_extent_list)
  3274. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3275. spin_unlock(&root->ordered_extent_lock);
  3276. }
  3277. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3278. {
  3279. struct btrfs_root *root;
  3280. struct list_head splice;
  3281. INIT_LIST_HEAD(&splice);
  3282. spin_lock(&fs_info->ordered_root_lock);
  3283. list_splice_init(&fs_info->ordered_roots, &splice);
  3284. while (!list_empty(&splice)) {
  3285. root = list_first_entry(&splice, struct btrfs_root,
  3286. ordered_root);
  3287. list_del_init(&root->ordered_root);
  3288. btrfs_destroy_ordered_extents(root);
  3289. cond_resched_lock(&fs_info->ordered_root_lock);
  3290. }
  3291. spin_unlock(&fs_info->ordered_root_lock);
  3292. }
  3293. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3294. struct btrfs_root *root)
  3295. {
  3296. struct rb_node *node;
  3297. struct btrfs_delayed_ref_root *delayed_refs;
  3298. struct btrfs_delayed_ref_node *ref;
  3299. int ret = 0;
  3300. delayed_refs = &trans->delayed_refs;
  3301. spin_lock(&delayed_refs->lock);
  3302. if (delayed_refs->num_entries == 0) {
  3303. spin_unlock(&delayed_refs->lock);
  3304. printk(KERN_INFO "delayed_refs has NO entry\n");
  3305. return ret;
  3306. }
  3307. while ((node = rb_first(&delayed_refs->root)) != NULL) {
  3308. struct btrfs_delayed_ref_head *head = NULL;
  3309. bool pin_bytes = false;
  3310. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  3311. atomic_set(&ref->refs, 1);
  3312. if (btrfs_delayed_ref_is_head(ref)) {
  3313. head = btrfs_delayed_node_to_head(ref);
  3314. if (!mutex_trylock(&head->mutex)) {
  3315. atomic_inc(&ref->refs);
  3316. spin_unlock(&delayed_refs->lock);
  3317. /* Need to wait for the delayed ref to run */
  3318. mutex_lock(&head->mutex);
  3319. mutex_unlock(&head->mutex);
  3320. btrfs_put_delayed_ref(ref);
  3321. spin_lock(&delayed_refs->lock);
  3322. continue;
  3323. }
  3324. if (head->must_insert_reserved)
  3325. pin_bytes = true;
  3326. btrfs_free_delayed_extent_op(head->extent_op);
  3327. delayed_refs->num_heads--;
  3328. if (list_empty(&head->cluster))
  3329. delayed_refs->num_heads_ready--;
  3330. list_del_init(&head->cluster);
  3331. }
  3332. ref->in_tree = 0;
  3333. rb_erase(&ref->rb_node, &delayed_refs->root);
  3334. delayed_refs->num_entries--;
  3335. spin_unlock(&delayed_refs->lock);
  3336. if (head) {
  3337. if (pin_bytes)
  3338. btrfs_pin_extent(root, ref->bytenr,
  3339. ref->num_bytes, 1);
  3340. mutex_unlock(&head->mutex);
  3341. }
  3342. btrfs_put_delayed_ref(ref);
  3343. cond_resched();
  3344. spin_lock(&delayed_refs->lock);
  3345. }
  3346. spin_unlock(&delayed_refs->lock);
  3347. return ret;
  3348. }
  3349. static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
  3350. {
  3351. struct btrfs_pending_snapshot *snapshot;
  3352. struct list_head splice;
  3353. INIT_LIST_HEAD(&splice);
  3354. list_splice_init(&t->pending_snapshots, &splice);
  3355. while (!list_empty(&splice)) {
  3356. snapshot = list_entry(splice.next,
  3357. struct btrfs_pending_snapshot,
  3358. list);
  3359. snapshot->error = -ECANCELED;
  3360. list_del_init(&snapshot->list);
  3361. }
  3362. }
  3363. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3364. {
  3365. struct btrfs_inode *btrfs_inode;
  3366. struct list_head splice;
  3367. INIT_LIST_HEAD(&splice);
  3368. spin_lock(&root->delalloc_lock);
  3369. list_splice_init(&root->delalloc_inodes, &splice);
  3370. while (!list_empty(&splice)) {
  3371. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3372. delalloc_inodes);
  3373. list_del_init(&btrfs_inode->delalloc_inodes);
  3374. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3375. &btrfs_inode->runtime_flags);
  3376. spin_unlock(&root->delalloc_lock);
  3377. btrfs_invalidate_inodes(btrfs_inode->root);
  3378. spin_lock(&root->delalloc_lock);
  3379. }
  3380. spin_unlock(&root->delalloc_lock);
  3381. }
  3382. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3383. {
  3384. struct btrfs_root *root;
  3385. struct list_head splice;
  3386. INIT_LIST_HEAD(&splice);
  3387. spin_lock(&fs_info->delalloc_root_lock);
  3388. list_splice_init(&fs_info->delalloc_roots, &splice);
  3389. while (!list_empty(&splice)) {
  3390. root = list_first_entry(&splice, struct btrfs_root,
  3391. delalloc_root);
  3392. list_del_init(&root->delalloc_root);
  3393. root = btrfs_grab_fs_root(root);
  3394. BUG_ON(!root);
  3395. spin_unlock(&fs_info->delalloc_root_lock);
  3396. btrfs_destroy_delalloc_inodes(root);
  3397. btrfs_put_fs_root(root);
  3398. spin_lock(&fs_info->delalloc_root_lock);
  3399. }
  3400. spin_unlock(&fs_info->delalloc_root_lock);
  3401. }
  3402. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3403. struct extent_io_tree *dirty_pages,
  3404. int mark)
  3405. {
  3406. int ret;
  3407. struct extent_buffer *eb;
  3408. u64 start = 0;
  3409. u64 end;
  3410. while (1) {
  3411. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3412. mark, NULL);
  3413. if (ret)
  3414. break;
  3415. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3416. while (start <= end) {
  3417. eb = btrfs_find_tree_block(root, start,
  3418. root->leafsize);
  3419. start += root->leafsize;
  3420. if (!eb)
  3421. continue;
  3422. wait_on_extent_buffer_writeback(eb);
  3423. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3424. &eb->bflags))
  3425. clear_extent_buffer_dirty(eb);
  3426. free_extent_buffer_stale(eb);
  3427. }
  3428. }
  3429. return ret;
  3430. }
  3431. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3432. struct extent_io_tree *pinned_extents)
  3433. {
  3434. struct extent_io_tree *unpin;
  3435. u64 start;
  3436. u64 end;
  3437. int ret;
  3438. bool loop = true;
  3439. unpin = pinned_extents;
  3440. again:
  3441. while (1) {
  3442. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3443. EXTENT_DIRTY, NULL);
  3444. if (ret)
  3445. break;
  3446. /* opt_discard */
  3447. if (btrfs_test_opt(root, DISCARD))
  3448. ret = btrfs_error_discard_extent(root, start,
  3449. end + 1 - start,
  3450. NULL);
  3451. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3452. btrfs_error_unpin_extent_range(root, start, end);
  3453. cond_resched();
  3454. }
  3455. if (loop) {
  3456. if (unpin == &root->fs_info->freed_extents[0])
  3457. unpin = &root->fs_info->freed_extents[1];
  3458. else
  3459. unpin = &root->fs_info->freed_extents[0];
  3460. loop = false;
  3461. goto again;
  3462. }
  3463. return 0;
  3464. }
  3465. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3466. struct btrfs_root *root)
  3467. {
  3468. btrfs_destroy_delayed_refs(cur_trans, root);
  3469. btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
  3470. cur_trans->dirty_pages.dirty_bytes);
  3471. cur_trans->state = TRANS_STATE_COMMIT_START;
  3472. wake_up(&root->fs_info->transaction_blocked_wait);
  3473. btrfs_evict_pending_snapshots(cur_trans);
  3474. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3475. wake_up(&root->fs_info->transaction_wait);
  3476. btrfs_destroy_delayed_inodes(root);
  3477. btrfs_assert_delayed_root_empty(root);
  3478. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3479. EXTENT_DIRTY);
  3480. btrfs_destroy_pinned_extent(root,
  3481. root->fs_info->pinned_extents);
  3482. cur_trans->state =TRANS_STATE_COMPLETED;
  3483. wake_up(&cur_trans->commit_wait);
  3484. /*
  3485. memset(cur_trans, 0, sizeof(*cur_trans));
  3486. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3487. */
  3488. }
  3489. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3490. {
  3491. struct btrfs_transaction *t;
  3492. LIST_HEAD(list);
  3493. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3494. spin_lock(&root->fs_info->trans_lock);
  3495. list_splice_init(&root->fs_info->trans_list, &list);
  3496. root->fs_info->running_transaction = NULL;
  3497. spin_unlock(&root->fs_info->trans_lock);
  3498. while (!list_empty(&list)) {
  3499. t = list_entry(list.next, struct btrfs_transaction, list);
  3500. btrfs_destroy_ordered_operations(t, root);
  3501. btrfs_destroy_all_ordered_extents(root->fs_info);
  3502. btrfs_destroy_delayed_refs(t, root);
  3503. /*
  3504. * FIXME: cleanup wait for commit
  3505. * We needn't acquire the lock here, because we are during
  3506. * the umount, there is no other task which will change it.
  3507. */
  3508. t->state = TRANS_STATE_COMMIT_START;
  3509. smp_mb();
  3510. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3511. wake_up(&root->fs_info->transaction_blocked_wait);
  3512. btrfs_evict_pending_snapshots(t);
  3513. t->state = TRANS_STATE_UNBLOCKED;
  3514. smp_mb();
  3515. if (waitqueue_active(&root->fs_info->transaction_wait))
  3516. wake_up(&root->fs_info->transaction_wait);
  3517. btrfs_destroy_delayed_inodes(root);
  3518. btrfs_assert_delayed_root_empty(root);
  3519. btrfs_destroy_all_delalloc_inodes(root->fs_info);
  3520. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  3521. EXTENT_DIRTY);
  3522. btrfs_destroy_pinned_extent(root,
  3523. root->fs_info->pinned_extents);
  3524. t->state = TRANS_STATE_COMPLETED;
  3525. smp_mb();
  3526. if (waitqueue_active(&t->commit_wait))
  3527. wake_up(&t->commit_wait);
  3528. atomic_set(&t->use_count, 0);
  3529. list_del_init(&t->list);
  3530. memset(t, 0, sizeof(*t));
  3531. kmem_cache_free(btrfs_transaction_cachep, t);
  3532. }
  3533. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3534. return 0;
  3535. }
  3536. static struct extent_io_ops btree_extent_io_ops = {
  3537. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3538. .readpage_io_failed_hook = btree_io_failed_hook,
  3539. .submit_bio_hook = btree_submit_bio_hook,
  3540. /* note we're sharing with inode.c for the merge bio hook */
  3541. .merge_bio_hook = btrfs_merge_bio_hook,
  3542. };