intel_ddi.c 92 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include "i915_drv.h"
  28. #include "intel_drv.h"
  29. struct ddi_buf_trans {
  30. u32 trans1; /* balance leg enable, de-emph level */
  31. u32 trans2; /* vref sel, vswing */
  32. u8 i_boost; /* SKL: I_boost; valid: 0x0, 0x1, 0x3, 0x7 */
  33. };
  34. /* HDMI/DVI modes ignore everything but the last 2 items. So we share
  35. * them for both DP and FDI transports, allowing those ports to
  36. * automatically adapt to HDMI connections as well
  37. */
  38. static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
  39. { 0x00FFFFFF, 0x0006000E, 0x0 },
  40. { 0x00D75FFF, 0x0005000A, 0x0 },
  41. { 0x00C30FFF, 0x00040006, 0x0 },
  42. { 0x80AAAFFF, 0x000B0000, 0x0 },
  43. { 0x00FFFFFF, 0x0005000A, 0x0 },
  44. { 0x00D75FFF, 0x000C0004, 0x0 },
  45. { 0x80C30FFF, 0x000B0000, 0x0 },
  46. { 0x00FFFFFF, 0x00040006, 0x0 },
  47. { 0x80D75FFF, 0x000B0000, 0x0 },
  48. };
  49. static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
  50. { 0x00FFFFFF, 0x0007000E, 0x0 },
  51. { 0x00D75FFF, 0x000F000A, 0x0 },
  52. { 0x00C30FFF, 0x00060006, 0x0 },
  53. { 0x00AAAFFF, 0x001E0000, 0x0 },
  54. { 0x00FFFFFF, 0x000F000A, 0x0 },
  55. { 0x00D75FFF, 0x00160004, 0x0 },
  56. { 0x00C30FFF, 0x001E0000, 0x0 },
  57. { 0x00FFFFFF, 0x00060006, 0x0 },
  58. { 0x00D75FFF, 0x001E0000, 0x0 },
  59. };
  60. static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
  61. /* Idx NT mV d T mV d db */
  62. { 0x00FFFFFF, 0x0006000E, 0x0 },/* 0: 400 400 0 */
  63. { 0x00E79FFF, 0x000E000C, 0x0 },/* 1: 400 500 2 */
  64. { 0x00D75FFF, 0x0005000A, 0x0 },/* 2: 400 600 3.5 */
  65. { 0x00FFFFFF, 0x0005000A, 0x0 },/* 3: 600 600 0 */
  66. { 0x00E79FFF, 0x001D0007, 0x0 },/* 4: 600 750 2 */
  67. { 0x00D75FFF, 0x000C0004, 0x0 },/* 5: 600 900 3.5 */
  68. { 0x00FFFFFF, 0x00040006, 0x0 },/* 6: 800 800 0 */
  69. { 0x80E79FFF, 0x00030002, 0x0 },/* 7: 800 1000 2 */
  70. { 0x00FFFFFF, 0x00140005, 0x0 },/* 8: 850 850 0 */
  71. { 0x00FFFFFF, 0x000C0004, 0x0 },/* 9: 900 900 0 */
  72. { 0x00FFFFFF, 0x001C0003, 0x0 },/* 10: 950 950 0 */
  73. { 0x80FFFFFF, 0x00030002, 0x0 },/* 11: 1000 1000 0 */
  74. };
  75. static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
  76. { 0x00FFFFFF, 0x00000012, 0x0 },
  77. { 0x00EBAFFF, 0x00020011, 0x0 },
  78. { 0x00C71FFF, 0x0006000F, 0x0 },
  79. { 0x00AAAFFF, 0x000E000A, 0x0 },
  80. { 0x00FFFFFF, 0x00020011, 0x0 },
  81. { 0x00DB6FFF, 0x0005000F, 0x0 },
  82. { 0x00BEEFFF, 0x000A000C, 0x0 },
  83. { 0x00FFFFFF, 0x0005000F, 0x0 },
  84. { 0x00DB6FFF, 0x000A000C, 0x0 },
  85. };
  86. static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
  87. { 0x00FFFFFF, 0x0007000E, 0x0 },
  88. { 0x00D75FFF, 0x000E000A, 0x0 },
  89. { 0x00BEFFFF, 0x00140006, 0x0 },
  90. { 0x80B2CFFF, 0x001B0002, 0x0 },
  91. { 0x00FFFFFF, 0x000E000A, 0x0 },
  92. { 0x00DB6FFF, 0x00160005, 0x0 },
  93. { 0x80C71FFF, 0x001A0002, 0x0 },
  94. { 0x00F7DFFF, 0x00180004, 0x0 },
  95. { 0x80D75FFF, 0x001B0002, 0x0 },
  96. };
  97. static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
  98. { 0x00FFFFFF, 0x0001000E, 0x0 },
  99. { 0x00D75FFF, 0x0004000A, 0x0 },
  100. { 0x00C30FFF, 0x00070006, 0x0 },
  101. { 0x00AAAFFF, 0x000C0000, 0x0 },
  102. { 0x00FFFFFF, 0x0004000A, 0x0 },
  103. { 0x00D75FFF, 0x00090004, 0x0 },
  104. { 0x00C30FFF, 0x000C0000, 0x0 },
  105. { 0x00FFFFFF, 0x00070006, 0x0 },
  106. { 0x00D75FFF, 0x000C0000, 0x0 },
  107. };
  108. static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
  109. /* Idx NT mV d T mV df db */
  110. { 0x00FFFFFF, 0x0007000E, 0x0 },/* 0: 400 400 0 */
  111. { 0x00D75FFF, 0x000E000A, 0x0 },/* 1: 400 600 3.5 */
  112. { 0x00BEFFFF, 0x00140006, 0x0 },/* 2: 400 800 6 */
  113. { 0x00FFFFFF, 0x0009000D, 0x0 },/* 3: 450 450 0 */
  114. { 0x00FFFFFF, 0x000E000A, 0x0 },/* 4: 600 600 0 */
  115. { 0x00D7FFFF, 0x00140006, 0x0 },/* 5: 600 800 2.5 */
  116. { 0x80CB2FFF, 0x001B0002, 0x0 },/* 6: 600 1000 4.5 */
  117. { 0x00FFFFFF, 0x00140006, 0x0 },/* 7: 800 800 0 */
  118. { 0x80E79FFF, 0x001B0002, 0x0 },/* 8: 800 1000 2 */
  119. { 0x80FFFFFF, 0x001B0002, 0x0 },/* 9: 1000 1000 0 */
  120. };
  121. /* Skylake H and S */
  122. static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
  123. { 0x00002016, 0x000000A0, 0x0 },
  124. { 0x00005012, 0x0000009B, 0x0 },
  125. { 0x00007011, 0x00000088, 0x0 },
  126. { 0x80009010, 0x000000C0, 0x1 }, /* Uses I_boost level 0x1 */
  127. { 0x00002016, 0x0000009B, 0x0 },
  128. { 0x00005012, 0x00000088, 0x0 },
  129. { 0x80007011, 0x000000C0, 0x1 }, /* Uses I_boost level 0x1 */
  130. { 0x00002016, 0x000000DF, 0x0 },
  131. { 0x80005012, 0x000000C0, 0x1 }, /* Uses I_boost level 0x1 */
  132. };
  133. /* Skylake U */
  134. static const struct ddi_buf_trans skl_u_ddi_translations_dp[] = {
  135. { 0x0000201B, 0x000000A2, 0x0 },
  136. { 0x00005012, 0x00000088, 0x0 },
  137. { 0x00007011, 0x00000087, 0x0 },
  138. { 0x80009010, 0x000000C0, 0x1 }, /* Uses I_boost level 0x1 */
  139. { 0x0000201B, 0x0000009D, 0x0 },
  140. { 0x80005012, 0x000000C0, 0x1 }, /* Uses I_boost level 0x1 */
  141. { 0x80007011, 0x000000C0, 0x1 }, /* Uses I_boost level 0x1 */
  142. { 0x00002016, 0x00000088, 0x0 },
  143. { 0x80005012, 0x000000C0, 0x1 }, /* Uses I_boost level 0x1 */
  144. };
  145. /* Skylake Y */
  146. static const struct ddi_buf_trans skl_y_ddi_translations_dp[] = {
  147. { 0x00000018, 0x000000A2, 0x0 },
  148. { 0x00005012, 0x00000088, 0x0 },
  149. { 0x00007011, 0x00000087, 0x0 },
  150. { 0x80009010, 0x000000C0, 0x3 }, /* Uses I_boost level 0x3 */
  151. { 0x00000018, 0x0000009D, 0x0 },
  152. { 0x80005012, 0x000000C0, 0x3 }, /* Uses I_boost level 0x3 */
  153. { 0x80007011, 0x000000C0, 0x3 }, /* Uses I_boost level 0x3 */
  154. { 0x00000018, 0x00000088, 0x0 },
  155. { 0x80005012, 0x000000C0, 0x3 }, /* Uses I_boost level 0x3 */
  156. };
  157. /*
  158. * Skylake H and S
  159. * eDP 1.4 low vswing translation parameters
  160. */
  161. static const struct ddi_buf_trans skl_ddi_translations_edp[] = {
  162. { 0x00000018, 0x000000A8, 0x0 },
  163. { 0x00004013, 0x000000A9, 0x0 },
  164. { 0x00007011, 0x000000A2, 0x0 },
  165. { 0x00009010, 0x0000009C, 0x0 },
  166. { 0x00000018, 0x000000A9, 0x0 },
  167. { 0x00006013, 0x000000A2, 0x0 },
  168. { 0x00007011, 0x000000A6, 0x0 },
  169. { 0x00000018, 0x000000AB, 0x0 },
  170. { 0x00007013, 0x0000009F, 0x0 },
  171. { 0x00000018, 0x000000DF, 0x0 },
  172. };
  173. /*
  174. * Skylake U
  175. * eDP 1.4 low vswing translation parameters
  176. */
  177. static const struct ddi_buf_trans skl_u_ddi_translations_edp[] = {
  178. { 0x00000018, 0x000000A8, 0x0 },
  179. { 0x00004013, 0x000000A9, 0x0 },
  180. { 0x00007011, 0x000000A2, 0x0 },
  181. { 0x00009010, 0x0000009C, 0x0 },
  182. { 0x00000018, 0x000000A9, 0x0 },
  183. { 0x00006013, 0x000000A2, 0x0 },
  184. { 0x00007011, 0x000000A6, 0x0 },
  185. { 0x00002016, 0x000000AB, 0x0 },
  186. { 0x00005013, 0x0000009F, 0x0 },
  187. { 0x00000018, 0x000000DF, 0x0 },
  188. };
  189. /*
  190. * Skylake Y
  191. * eDP 1.4 low vswing translation parameters
  192. */
  193. static const struct ddi_buf_trans skl_y_ddi_translations_edp[] = {
  194. { 0x00000018, 0x000000A8, 0x0 },
  195. { 0x00004013, 0x000000AB, 0x0 },
  196. { 0x00007011, 0x000000A4, 0x0 },
  197. { 0x00009010, 0x000000DF, 0x0 },
  198. { 0x00000018, 0x000000AA, 0x0 },
  199. { 0x00006013, 0x000000A4, 0x0 },
  200. { 0x00007011, 0x0000009D, 0x0 },
  201. { 0x00000018, 0x000000A0, 0x0 },
  202. { 0x00006012, 0x000000DF, 0x0 },
  203. { 0x00000018, 0x0000008A, 0x0 },
  204. };
  205. /* Skylake U, H and S */
  206. static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
  207. { 0x00000018, 0x000000AC, 0x0 },
  208. { 0x00005012, 0x0000009D, 0x0 },
  209. { 0x00007011, 0x00000088, 0x0 },
  210. { 0x00000018, 0x000000A1, 0x0 },
  211. { 0x00000018, 0x00000098, 0x0 },
  212. { 0x00004013, 0x00000088, 0x0 },
  213. { 0x00006012, 0x00000087, 0x0 },
  214. { 0x00000018, 0x000000DF, 0x0 },
  215. { 0x00003015, 0x00000087, 0x0 }, /* Default */
  216. { 0x00003015, 0x000000C7, 0x0 },
  217. { 0x00000018, 0x000000C7, 0x0 },
  218. };
  219. /* Skylake Y */
  220. static const struct ddi_buf_trans skl_y_ddi_translations_hdmi[] = {
  221. { 0x00000018, 0x000000A1, 0x0 },
  222. { 0x00005012, 0x000000DF, 0x0 },
  223. { 0x00007011, 0x00000084, 0x0 },
  224. { 0x00000018, 0x000000A4, 0x0 },
  225. { 0x00000018, 0x0000009D, 0x0 },
  226. { 0x00004013, 0x00000080, 0x0 },
  227. { 0x00006013, 0x000000C7, 0x0 },
  228. { 0x00000018, 0x0000008A, 0x0 },
  229. { 0x00003015, 0x000000C7, 0x0 }, /* Default */
  230. { 0x80003015, 0x000000C7, 0x7 }, /* Uses I_boost level 0x7 */
  231. { 0x00000018, 0x000000C7, 0x0 },
  232. };
  233. struct bxt_ddi_buf_trans {
  234. u32 margin; /* swing value */
  235. u32 scale; /* scale value */
  236. u32 enable; /* scale enable */
  237. u32 deemphasis;
  238. bool default_index; /* true if the entry represents default value */
  239. };
  240. static const struct bxt_ddi_buf_trans bxt_ddi_translations_dp[] = {
  241. /* Idx NT mV diff db */
  242. { 52, 0x9A, 0, 128, true }, /* 0: 400 0 */
  243. { 78, 0x9A, 0, 85, false }, /* 1: 400 3.5 */
  244. { 104, 0x9A, 0, 64, false }, /* 2: 400 6 */
  245. { 154, 0x9A, 0, 43, false }, /* 3: 400 9.5 */
  246. { 77, 0x9A, 0, 128, false }, /* 4: 600 0 */
  247. { 116, 0x9A, 0, 85, false }, /* 5: 600 3.5 */
  248. { 154, 0x9A, 0, 64, false }, /* 6: 600 6 */
  249. { 102, 0x9A, 0, 128, false }, /* 7: 800 0 */
  250. { 154, 0x9A, 0, 85, false }, /* 8: 800 3.5 */
  251. { 154, 0x9A, 1, 128, false }, /* 9: 1200 0 */
  252. };
  253. static const struct bxt_ddi_buf_trans bxt_ddi_translations_edp[] = {
  254. /* Idx NT mV diff db */
  255. { 26, 0, 0, 128, false }, /* 0: 200 0 */
  256. { 38, 0, 0, 112, false }, /* 1: 200 1.5 */
  257. { 48, 0, 0, 96, false }, /* 2: 200 4 */
  258. { 54, 0, 0, 69, false }, /* 3: 200 6 */
  259. { 32, 0, 0, 128, false }, /* 4: 250 0 */
  260. { 48, 0, 0, 104, false }, /* 5: 250 1.5 */
  261. { 54, 0, 0, 85, false }, /* 6: 250 4 */
  262. { 43, 0, 0, 128, false }, /* 7: 300 0 */
  263. { 54, 0, 0, 101, false }, /* 8: 300 1.5 */
  264. { 48, 0, 0, 128, false }, /* 9: 300 0 */
  265. };
  266. /* BSpec has 2 recommended values - entries 0 and 8.
  267. * Using the entry with higher vswing.
  268. */
  269. static const struct bxt_ddi_buf_trans bxt_ddi_translations_hdmi[] = {
  270. /* Idx NT mV diff db */
  271. { 52, 0x9A, 0, 128, false }, /* 0: 400 0 */
  272. { 52, 0x9A, 0, 85, false }, /* 1: 400 3.5 */
  273. { 52, 0x9A, 0, 64, false }, /* 2: 400 6 */
  274. { 42, 0x9A, 0, 43, false }, /* 3: 400 9.5 */
  275. { 77, 0x9A, 0, 128, false }, /* 4: 600 0 */
  276. { 77, 0x9A, 0, 85, false }, /* 5: 600 3.5 */
  277. { 77, 0x9A, 0, 64, false }, /* 6: 600 6 */
  278. { 102, 0x9A, 0, 128, false }, /* 7: 800 0 */
  279. { 102, 0x9A, 0, 85, false }, /* 8: 800 3.5 */
  280. { 154, 0x9A, 1, 128, true }, /* 9: 1200 0 */
  281. };
  282. static void bxt_ddi_vswing_sequence(struct drm_device *dev, u32 level,
  283. enum port port, int type);
  284. static void ddi_get_encoder_port(struct intel_encoder *intel_encoder,
  285. struct intel_digital_port **dig_port,
  286. enum port *port)
  287. {
  288. struct drm_encoder *encoder = &intel_encoder->base;
  289. switch (intel_encoder->type) {
  290. case INTEL_OUTPUT_DP_MST:
  291. *dig_port = enc_to_mst(encoder)->primary;
  292. *port = (*dig_port)->port;
  293. break;
  294. case INTEL_OUTPUT_DISPLAYPORT:
  295. case INTEL_OUTPUT_EDP:
  296. case INTEL_OUTPUT_HDMI:
  297. case INTEL_OUTPUT_UNKNOWN:
  298. *dig_port = enc_to_dig_port(encoder);
  299. *port = (*dig_port)->port;
  300. break;
  301. case INTEL_OUTPUT_ANALOG:
  302. *dig_port = NULL;
  303. *port = PORT_E;
  304. break;
  305. default:
  306. WARN(1, "Invalid DDI encoder type %d\n", intel_encoder->type);
  307. break;
  308. }
  309. }
  310. enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
  311. {
  312. struct intel_digital_port *dig_port;
  313. enum port port;
  314. ddi_get_encoder_port(intel_encoder, &dig_port, &port);
  315. return port;
  316. }
  317. static bool
  318. intel_dig_port_supports_hdmi(const struct intel_digital_port *intel_dig_port)
  319. {
  320. return i915_mmio_reg_valid(intel_dig_port->hdmi.hdmi_reg);
  321. }
  322. static const struct ddi_buf_trans *skl_get_buf_trans_dp(struct drm_device *dev,
  323. int *n_entries)
  324. {
  325. const struct ddi_buf_trans *ddi_translations;
  326. if (IS_SKL_ULX(dev)) {
  327. ddi_translations = skl_y_ddi_translations_dp;
  328. *n_entries = ARRAY_SIZE(skl_y_ddi_translations_dp);
  329. } else if (IS_SKL_ULT(dev)) {
  330. ddi_translations = skl_u_ddi_translations_dp;
  331. *n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
  332. } else {
  333. ddi_translations = skl_ddi_translations_dp;
  334. *n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
  335. }
  336. return ddi_translations;
  337. }
  338. static const struct ddi_buf_trans *skl_get_buf_trans_edp(struct drm_device *dev,
  339. int *n_entries)
  340. {
  341. struct drm_i915_private *dev_priv = dev->dev_private;
  342. const struct ddi_buf_trans *ddi_translations;
  343. if (IS_SKL_ULX(dev)) {
  344. if (dev_priv->edp_low_vswing) {
  345. ddi_translations = skl_y_ddi_translations_edp;
  346. *n_entries = ARRAY_SIZE(skl_y_ddi_translations_edp);
  347. } else {
  348. ddi_translations = skl_y_ddi_translations_dp;
  349. *n_entries = ARRAY_SIZE(skl_y_ddi_translations_dp);
  350. }
  351. } else if (IS_SKL_ULT(dev)) {
  352. if (dev_priv->edp_low_vswing) {
  353. ddi_translations = skl_u_ddi_translations_edp;
  354. *n_entries = ARRAY_SIZE(skl_u_ddi_translations_edp);
  355. } else {
  356. ddi_translations = skl_u_ddi_translations_dp;
  357. *n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
  358. }
  359. } else {
  360. if (dev_priv->edp_low_vswing) {
  361. ddi_translations = skl_ddi_translations_edp;
  362. *n_entries = ARRAY_SIZE(skl_ddi_translations_edp);
  363. } else {
  364. ddi_translations = skl_ddi_translations_dp;
  365. *n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
  366. }
  367. }
  368. return ddi_translations;
  369. }
  370. static const struct ddi_buf_trans *
  371. skl_get_buf_trans_hdmi(struct drm_device *dev,
  372. int *n_entries)
  373. {
  374. const struct ddi_buf_trans *ddi_translations;
  375. if (IS_SKL_ULX(dev)) {
  376. ddi_translations = skl_y_ddi_translations_hdmi;
  377. *n_entries = ARRAY_SIZE(skl_y_ddi_translations_hdmi);
  378. } else {
  379. ddi_translations = skl_ddi_translations_hdmi;
  380. *n_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
  381. }
  382. return ddi_translations;
  383. }
  384. /*
  385. * Starting with Haswell, DDI port buffers must be programmed with correct
  386. * values in advance. The buffer values are different for FDI and DP modes,
  387. * but the HDMI/DVI fields are shared among those. So we program the DDI
  388. * in either FDI or DP modes only, as HDMI connections will work with both
  389. * of those
  390. */
  391. static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port,
  392. bool supports_hdmi)
  393. {
  394. struct drm_i915_private *dev_priv = dev->dev_private;
  395. u32 iboost_bit = 0;
  396. int i, n_hdmi_entries, n_dp_entries, n_edp_entries, hdmi_default_entry,
  397. size;
  398. int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
  399. const struct ddi_buf_trans *ddi_translations_fdi;
  400. const struct ddi_buf_trans *ddi_translations_dp;
  401. const struct ddi_buf_trans *ddi_translations_edp;
  402. const struct ddi_buf_trans *ddi_translations_hdmi;
  403. const struct ddi_buf_trans *ddi_translations;
  404. if (IS_BROXTON(dev)) {
  405. if (!supports_hdmi)
  406. return;
  407. /* Vswing programming for HDMI */
  408. bxt_ddi_vswing_sequence(dev, hdmi_level, port,
  409. INTEL_OUTPUT_HDMI);
  410. return;
  411. } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
  412. ddi_translations_fdi = NULL;
  413. ddi_translations_dp =
  414. skl_get_buf_trans_dp(dev, &n_dp_entries);
  415. ddi_translations_edp =
  416. skl_get_buf_trans_edp(dev, &n_edp_entries);
  417. ddi_translations_hdmi =
  418. skl_get_buf_trans_hdmi(dev, &n_hdmi_entries);
  419. hdmi_default_entry = 8;
  420. /* If we're boosting the current, set bit 31 of trans1 */
  421. if (dev_priv->vbt.ddi_port_info[port].hdmi_boost_level ||
  422. dev_priv->vbt.ddi_port_info[port].dp_boost_level)
  423. iboost_bit = 1<<31;
  424. } else if (IS_BROADWELL(dev)) {
  425. ddi_translations_fdi = bdw_ddi_translations_fdi;
  426. ddi_translations_dp = bdw_ddi_translations_dp;
  427. ddi_translations_edp = bdw_ddi_translations_edp;
  428. ddi_translations_hdmi = bdw_ddi_translations_hdmi;
  429. n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
  430. n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
  431. n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
  432. hdmi_default_entry = 7;
  433. } else if (IS_HASWELL(dev)) {
  434. ddi_translations_fdi = hsw_ddi_translations_fdi;
  435. ddi_translations_dp = hsw_ddi_translations_dp;
  436. ddi_translations_edp = hsw_ddi_translations_dp;
  437. ddi_translations_hdmi = hsw_ddi_translations_hdmi;
  438. n_dp_entries = n_edp_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
  439. n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
  440. hdmi_default_entry = 6;
  441. } else {
  442. WARN(1, "ddi translation table missing\n");
  443. ddi_translations_edp = bdw_ddi_translations_dp;
  444. ddi_translations_fdi = bdw_ddi_translations_fdi;
  445. ddi_translations_dp = bdw_ddi_translations_dp;
  446. ddi_translations_hdmi = bdw_ddi_translations_hdmi;
  447. n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
  448. n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
  449. n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
  450. hdmi_default_entry = 7;
  451. }
  452. switch (port) {
  453. case PORT_A:
  454. ddi_translations = ddi_translations_edp;
  455. size = n_edp_entries;
  456. break;
  457. case PORT_B:
  458. case PORT_C:
  459. ddi_translations = ddi_translations_dp;
  460. size = n_dp_entries;
  461. break;
  462. case PORT_D:
  463. if (intel_dp_is_edp(dev, PORT_D)) {
  464. ddi_translations = ddi_translations_edp;
  465. size = n_edp_entries;
  466. } else {
  467. ddi_translations = ddi_translations_dp;
  468. size = n_dp_entries;
  469. }
  470. break;
  471. case PORT_E:
  472. if (ddi_translations_fdi)
  473. ddi_translations = ddi_translations_fdi;
  474. else
  475. ddi_translations = ddi_translations_dp;
  476. size = n_dp_entries;
  477. break;
  478. default:
  479. BUG();
  480. }
  481. for (i = 0; i < size; i++) {
  482. I915_WRITE(DDI_BUF_TRANS_LO(port, i),
  483. ddi_translations[i].trans1 | iboost_bit);
  484. I915_WRITE(DDI_BUF_TRANS_HI(port, i),
  485. ddi_translations[i].trans2);
  486. }
  487. if (!supports_hdmi)
  488. return;
  489. /* Choose a good default if VBT is badly populated */
  490. if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
  491. hdmi_level >= n_hdmi_entries)
  492. hdmi_level = hdmi_default_entry;
  493. /* Entry 9 is for HDMI: */
  494. I915_WRITE(DDI_BUF_TRANS_LO(port, i),
  495. ddi_translations_hdmi[hdmi_level].trans1 | iboost_bit);
  496. I915_WRITE(DDI_BUF_TRANS_HI(port, i),
  497. ddi_translations_hdmi[hdmi_level].trans2);
  498. }
  499. /* Program DDI buffers translations for DP. By default, program ports A-D in DP
  500. * mode and port E for FDI.
  501. */
  502. void intel_prepare_ddi(struct drm_device *dev)
  503. {
  504. struct intel_encoder *intel_encoder;
  505. bool visited[I915_MAX_PORTS] = { 0, };
  506. if (!HAS_DDI(dev))
  507. return;
  508. for_each_intel_encoder(dev, intel_encoder) {
  509. struct intel_digital_port *intel_dig_port;
  510. enum port port;
  511. bool supports_hdmi;
  512. if (intel_encoder->type == INTEL_OUTPUT_DSI)
  513. continue;
  514. ddi_get_encoder_port(intel_encoder, &intel_dig_port, &port);
  515. if (visited[port])
  516. continue;
  517. supports_hdmi = intel_dig_port &&
  518. intel_dig_port_supports_hdmi(intel_dig_port);
  519. intel_prepare_ddi_buffers(dev, port, supports_hdmi);
  520. visited[port] = true;
  521. }
  522. }
  523. static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
  524. enum port port)
  525. {
  526. i915_reg_t reg = DDI_BUF_CTL(port);
  527. int i;
  528. for (i = 0; i < 16; i++) {
  529. udelay(1);
  530. if (I915_READ(reg) & DDI_BUF_IS_IDLE)
  531. return;
  532. }
  533. DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
  534. }
  535. /* Starting with Haswell, different DDI ports can work in FDI mode for
  536. * connection to the PCH-located connectors. For this, it is necessary to train
  537. * both the DDI port and PCH receiver for the desired DDI buffer settings.
  538. *
  539. * The recommended port to work in FDI mode is DDI E, which we use here. Also,
  540. * please note that when FDI mode is active on DDI E, it shares 2 lines with
  541. * DDI A (which is used for eDP)
  542. */
  543. void hsw_fdi_link_train(struct drm_crtc *crtc)
  544. {
  545. struct drm_device *dev = crtc->dev;
  546. struct drm_i915_private *dev_priv = dev->dev_private;
  547. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  548. u32 temp, i, rx_ctl_val;
  549. /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
  550. * mode set "sequence for CRT port" document:
  551. * - TP1 to TP2 time with the default value
  552. * - FDI delay to 90h
  553. *
  554. * WaFDIAutoLinkSetTimingOverrride:hsw
  555. */
  556. I915_WRITE(FDI_RX_MISC(PIPE_A), FDI_RX_PWRDN_LANE1_VAL(2) |
  557. FDI_RX_PWRDN_LANE0_VAL(2) |
  558. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  559. /* Enable the PCH Receiver FDI PLL */
  560. rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
  561. FDI_RX_PLL_ENABLE |
  562. FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
  563. I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
  564. POSTING_READ(FDI_RX_CTL(PIPE_A));
  565. udelay(220);
  566. /* Switch from Rawclk to PCDclk */
  567. rx_ctl_val |= FDI_PCDCLK;
  568. I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
  569. /* Configure Port Clock Select */
  570. I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config->ddi_pll_sel);
  571. WARN_ON(intel_crtc->config->ddi_pll_sel != PORT_CLK_SEL_SPLL);
  572. /* Start the training iterating through available voltages and emphasis,
  573. * testing each value twice. */
  574. for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
  575. /* Configure DP_TP_CTL with auto-training */
  576. I915_WRITE(DP_TP_CTL(PORT_E),
  577. DP_TP_CTL_FDI_AUTOTRAIN |
  578. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  579. DP_TP_CTL_LINK_TRAIN_PAT1 |
  580. DP_TP_CTL_ENABLE);
  581. /* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
  582. * DDI E does not support port reversal, the functionality is
  583. * achieved on the PCH side in FDI_RX_CTL, so no need to set the
  584. * port reversal bit */
  585. I915_WRITE(DDI_BUF_CTL(PORT_E),
  586. DDI_BUF_CTL_ENABLE |
  587. ((intel_crtc->config->fdi_lanes - 1) << 1) |
  588. DDI_BUF_TRANS_SELECT(i / 2));
  589. POSTING_READ(DDI_BUF_CTL(PORT_E));
  590. udelay(600);
  591. /* Program PCH FDI Receiver TU */
  592. I915_WRITE(FDI_RX_TUSIZE1(PIPE_A), TU_SIZE(64));
  593. /* Enable PCH FDI Receiver with auto-training */
  594. rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
  595. I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
  596. POSTING_READ(FDI_RX_CTL(PIPE_A));
  597. /* Wait for FDI receiver lane calibration */
  598. udelay(30);
  599. /* Unset FDI_RX_MISC pwrdn lanes */
  600. temp = I915_READ(FDI_RX_MISC(PIPE_A));
  601. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  602. I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
  603. POSTING_READ(FDI_RX_MISC(PIPE_A));
  604. /* Wait for FDI auto training time */
  605. udelay(5);
  606. temp = I915_READ(DP_TP_STATUS(PORT_E));
  607. if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
  608. DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
  609. /* Enable normal pixel sending for FDI */
  610. I915_WRITE(DP_TP_CTL(PORT_E),
  611. DP_TP_CTL_FDI_AUTOTRAIN |
  612. DP_TP_CTL_LINK_TRAIN_NORMAL |
  613. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  614. DP_TP_CTL_ENABLE);
  615. return;
  616. }
  617. temp = I915_READ(DDI_BUF_CTL(PORT_E));
  618. temp &= ~DDI_BUF_CTL_ENABLE;
  619. I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
  620. POSTING_READ(DDI_BUF_CTL(PORT_E));
  621. /* Disable DP_TP_CTL and FDI_RX_CTL and retry */
  622. temp = I915_READ(DP_TP_CTL(PORT_E));
  623. temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  624. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  625. I915_WRITE(DP_TP_CTL(PORT_E), temp);
  626. POSTING_READ(DP_TP_CTL(PORT_E));
  627. intel_wait_ddi_buf_idle(dev_priv, PORT_E);
  628. rx_ctl_val &= ~FDI_RX_ENABLE;
  629. I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
  630. POSTING_READ(FDI_RX_CTL(PIPE_A));
  631. /* Reset FDI_RX_MISC pwrdn lanes */
  632. temp = I915_READ(FDI_RX_MISC(PIPE_A));
  633. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  634. temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  635. I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
  636. POSTING_READ(FDI_RX_MISC(PIPE_A));
  637. }
  638. DRM_ERROR("FDI link training failed!\n");
  639. }
  640. void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
  641. {
  642. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  643. struct intel_digital_port *intel_dig_port =
  644. enc_to_dig_port(&encoder->base);
  645. intel_dp->DP = intel_dig_port->saved_port_bits |
  646. DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
  647. intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
  648. }
  649. static struct intel_encoder *
  650. intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
  651. {
  652. struct drm_device *dev = crtc->dev;
  653. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  654. struct intel_encoder *intel_encoder, *ret = NULL;
  655. int num_encoders = 0;
  656. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  657. ret = intel_encoder;
  658. num_encoders++;
  659. }
  660. if (num_encoders != 1)
  661. WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
  662. pipe_name(intel_crtc->pipe));
  663. BUG_ON(ret == NULL);
  664. return ret;
  665. }
  666. struct intel_encoder *
  667. intel_ddi_get_crtc_new_encoder(struct intel_crtc_state *crtc_state)
  668. {
  669. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  670. struct intel_encoder *ret = NULL;
  671. struct drm_atomic_state *state;
  672. struct drm_connector *connector;
  673. struct drm_connector_state *connector_state;
  674. int num_encoders = 0;
  675. int i;
  676. state = crtc_state->base.state;
  677. for_each_connector_in_state(state, connector, connector_state, i) {
  678. if (connector_state->crtc != crtc_state->base.crtc)
  679. continue;
  680. ret = to_intel_encoder(connector_state->best_encoder);
  681. num_encoders++;
  682. }
  683. WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
  684. pipe_name(crtc->pipe));
  685. BUG_ON(ret == NULL);
  686. return ret;
  687. }
  688. #define LC_FREQ 2700
  689. #define LC_FREQ_2K U64_C(LC_FREQ * 2000)
  690. #define P_MIN 2
  691. #define P_MAX 64
  692. #define P_INC 2
  693. /* Constraints for PLL good behavior */
  694. #define REF_MIN 48
  695. #define REF_MAX 400
  696. #define VCO_MIN 2400
  697. #define VCO_MAX 4800
  698. #define abs_diff(a, b) ({ \
  699. typeof(a) __a = (a); \
  700. typeof(b) __b = (b); \
  701. (void) (&__a == &__b); \
  702. __a > __b ? (__a - __b) : (__b - __a); })
  703. struct hsw_wrpll_rnp {
  704. unsigned p, n2, r2;
  705. };
  706. static unsigned hsw_wrpll_get_budget_for_freq(int clock)
  707. {
  708. unsigned budget;
  709. switch (clock) {
  710. case 25175000:
  711. case 25200000:
  712. case 27000000:
  713. case 27027000:
  714. case 37762500:
  715. case 37800000:
  716. case 40500000:
  717. case 40541000:
  718. case 54000000:
  719. case 54054000:
  720. case 59341000:
  721. case 59400000:
  722. case 72000000:
  723. case 74176000:
  724. case 74250000:
  725. case 81000000:
  726. case 81081000:
  727. case 89012000:
  728. case 89100000:
  729. case 108000000:
  730. case 108108000:
  731. case 111264000:
  732. case 111375000:
  733. case 148352000:
  734. case 148500000:
  735. case 162000000:
  736. case 162162000:
  737. case 222525000:
  738. case 222750000:
  739. case 296703000:
  740. case 297000000:
  741. budget = 0;
  742. break;
  743. case 233500000:
  744. case 245250000:
  745. case 247750000:
  746. case 253250000:
  747. case 298000000:
  748. budget = 1500;
  749. break;
  750. case 169128000:
  751. case 169500000:
  752. case 179500000:
  753. case 202000000:
  754. budget = 2000;
  755. break;
  756. case 256250000:
  757. case 262500000:
  758. case 270000000:
  759. case 272500000:
  760. case 273750000:
  761. case 280750000:
  762. case 281250000:
  763. case 286000000:
  764. case 291750000:
  765. budget = 4000;
  766. break;
  767. case 267250000:
  768. case 268500000:
  769. budget = 5000;
  770. break;
  771. default:
  772. budget = 1000;
  773. break;
  774. }
  775. return budget;
  776. }
  777. static void hsw_wrpll_update_rnp(uint64_t freq2k, unsigned budget,
  778. unsigned r2, unsigned n2, unsigned p,
  779. struct hsw_wrpll_rnp *best)
  780. {
  781. uint64_t a, b, c, d, diff, diff_best;
  782. /* No best (r,n,p) yet */
  783. if (best->p == 0) {
  784. best->p = p;
  785. best->n2 = n2;
  786. best->r2 = r2;
  787. return;
  788. }
  789. /*
  790. * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
  791. * freq2k.
  792. *
  793. * delta = 1e6 *
  794. * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
  795. * freq2k;
  796. *
  797. * and we would like delta <= budget.
  798. *
  799. * If the discrepancy is above the PPM-based budget, always prefer to
  800. * improve upon the previous solution. However, if you're within the
  801. * budget, try to maximize Ref * VCO, that is N / (P * R^2).
  802. */
  803. a = freq2k * budget * p * r2;
  804. b = freq2k * budget * best->p * best->r2;
  805. diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
  806. diff_best = abs_diff(freq2k * best->p * best->r2,
  807. LC_FREQ_2K * best->n2);
  808. c = 1000000 * diff;
  809. d = 1000000 * diff_best;
  810. if (a < c && b < d) {
  811. /* If both are above the budget, pick the closer */
  812. if (best->p * best->r2 * diff < p * r2 * diff_best) {
  813. best->p = p;
  814. best->n2 = n2;
  815. best->r2 = r2;
  816. }
  817. } else if (a >= c && b < d) {
  818. /* If A is below the threshold but B is above it? Update. */
  819. best->p = p;
  820. best->n2 = n2;
  821. best->r2 = r2;
  822. } else if (a >= c && b >= d) {
  823. /* Both are below the limit, so pick the higher n2/(r2*r2) */
  824. if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
  825. best->p = p;
  826. best->n2 = n2;
  827. best->r2 = r2;
  828. }
  829. }
  830. /* Otherwise a < c && b >= d, do nothing */
  831. }
  832. static int hsw_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
  833. i915_reg_t reg)
  834. {
  835. int refclk = LC_FREQ;
  836. int n, p, r;
  837. u32 wrpll;
  838. wrpll = I915_READ(reg);
  839. switch (wrpll & WRPLL_PLL_REF_MASK) {
  840. case WRPLL_PLL_SSC:
  841. case WRPLL_PLL_NON_SSC:
  842. /*
  843. * We could calculate spread here, but our checking
  844. * code only cares about 5% accuracy, and spread is a max of
  845. * 0.5% downspread.
  846. */
  847. refclk = 135;
  848. break;
  849. case WRPLL_PLL_LCPLL:
  850. refclk = LC_FREQ;
  851. break;
  852. default:
  853. WARN(1, "bad wrpll refclk\n");
  854. return 0;
  855. }
  856. r = wrpll & WRPLL_DIVIDER_REF_MASK;
  857. p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
  858. n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
  859. /* Convert to KHz, p & r have a fixed point portion */
  860. return (refclk * n * 100) / (p * r);
  861. }
  862. static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
  863. uint32_t dpll)
  864. {
  865. i915_reg_t cfgcr1_reg, cfgcr2_reg;
  866. uint32_t cfgcr1_val, cfgcr2_val;
  867. uint32_t p0, p1, p2, dco_freq;
  868. cfgcr1_reg = DPLL_CFGCR1(dpll);
  869. cfgcr2_reg = DPLL_CFGCR2(dpll);
  870. cfgcr1_val = I915_READ(cfgcr1_reg);
  871. cfgcr2_val = I915_READ(cfgcr2_reg);
  872. p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
  873. p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;
  874. if (cfgcr2_val & DPLL_CFGCR2_QDIV_MODE(1))
  875. p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
  876. else
  877. p1 = 1;
  878. switch (p0) {
  879. case DPLL_CFGCR2_PDIV_1:
  880. p0 = 1;
  881. break;
  882. case DPLL_CFGCR2_PDIV_2:
  883. p0 = 2;
  884. break;
  885. case DPLL_CFGCR2_PDIV_3:
  886. p0 = 3;
  887. break;
  888. case DPLL_CFGCR2_PDIV_7:
  889. p0 = 7;
  890. break;
  891. }
  892. switch (p2) {
  893. case DPLL_CFGCR2_KDIV_5:
  894. p2 = 5;
  895. break;
  896. case DPLL_CFGCR2_KDIV_2:
  897. p2 = 2;
  898. break;
  899. case DPLL_CFGCR2_KDIV_3:
  900. p2 = 3;
  901. break;
  902. case DPLL_CFGCR2_KDIV_1:
  903. p2 = 1;
  904. break;
  905. }
  906. dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;
  907. dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
  908. 1000) / 0x8000;
  909. return dco_freq / (p0 * p1 * p2 * 5);
  910. }
  911. static void ddi_dotclock_get(struct intel_crtc_state *pipe_config)
  912. {
  913. int dotclock;
  914. if (pipe_config->has_pch_encoder)
  915. dotclock = intel_dotclock_calculate(pipe_config->port_clock,
  916. &pipe_config->fdi_m_n);
  917. else if (pipe_config->has_dp_encoder)
  918. dotclock = intel_dotclock_calculate(pipe_config->port_clock,
  919. &pipe_config->dp_m_n);
  920. else if (pipe_config->has_hdmi_sink && pipe_config->pipe_bpp == 36)
  921. dotclock = pipe_config->port_clock * 2 / 3;
  922. else
  923. dotclock = pipe_config->port_clock;
  924. if (pipe_config->pixel_multiplier)
  925. dotclock /= pipe_config->pixel_multiplier;
  926. pipe_config->base.adjusted_mode.crtc_clock = dotclock;
  927. }
  928. static void skl_ddi_clock_get(struct intel_encoder *encoder,
  929. struct intel_crtc_state *pipe_config)
  930. {
  931. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  932. int link_clock = 0;
  933. uint32_t dpll_ctl1, dpll;
  934. dpll = pipe_config->ddi_pll_sel;
  935. dpll_ctl1 = I915_READ(DPLL_CTRL1);
  936. if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
  937. link_clock = skl_calc_wrpll_link(dev_priv, dpll);
  938. } else {
  939. link_clock = dpll_ctl1 & DPLL_CTRL1_LINK_RATE_MASK(dpll);
  940. link_clock >>= DPLL_CTRL1_LINK_RATE_SHIFT(dpll);
  941. switch (link_clock) {
  942. case DPLL_CTRL1_LINK_RATE_810:
  943. link_clock = 81000;
  944. break;
  945. case DPLL_CTRL1_LINK_RATE_1080:
  946. link_clock = 108000;
  947. break;
  948. case DPLL_CTRL1_LINK_RATE_1350:
  949. link_clock = 135000;
  950. break;
  951. case DPLL_CTRL1_LINK_RATE_1620:
  952. link_clock = 162000;
  953. break;
  954. case DPLL_CTRL1_LINK_RATE_2160:
  955. link_clock = 216000;
  956. break;
  957. case DPLL_CTRL1_LINK_RATE_2700:
  958. link_clock = 270000;
  959. break;
  960. default:
  961. WARN(1, "Unsupported link rate\n");
  962. break;
  963. }
  964. link_clock *= 2;
  965. }
  966. pipe_config->port_clock = link_clock;
  967. ddi_dotclock_get(pipe_config);
  968. }
  969. static void hsw_ddi_clock_get(struct intel_encoder *encoder,
  970. struct intel_crtc_state *pipe_config)
  971. {
  972. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  973. int link_clock = 0;
  974. u32 val, pll;
  975. val = pipe_config->ddi_pll_sel;
  976. switch (val & PORT_CLK_SEL_MASK) {
  977. case PORT_CLK_SEL_LCPLL_810:
  978. link_clock = 81000;
  979. break;
  980. case PORT_CLK_SEL_LCPLL_1350:
  981. link_clock = 135000;
  982. break;
  983. case PORT_CLK_SEL_LCPLL_2700:
  984. link_clock = 270000;
  985. break;
  986. case PORT_CLK_SEL_WRPLL1:
  987. link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(0));
  988. break;
  989. case PORT_CLK_SEL_WRPLL2:
  990. link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(1));
  991. break;
  992. case PORT_CLK_SEL_SPLL:
  993. pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
  994. if (pll == SPLL_PLL_FREQ_810MHz)
  995. link_clock = 81000;
  996. else if (pll == SPLL_PLL_FREQ_1350MHz)
  997. link_clock = 135000;
  998. else if (pll == SPLL_PLL_FREQ_2700MHz)
  999. link_clock = 270000;
  1000. else {
  1001. WARN(1, "bad spll freq\n");
  1002. return;
  1003. }
  1004. break;
  1005. default:
  1006. WARN(1, "bad port clock sel\n");
  1007. return;
  1008. }
  1009. pipe_config->port_clock = link_clock * 2;
  1010. ddi_dotclock_get(pipe_config);
  1011. }
  1012. static int bxt_calc_pll_link(struct drm_i915_private *dev_priv,
  1013. enum intel_dpll_id dpll)
  1014. {
  1015. struct intel_shared_dpll *pll;
  1016. struct intel_dpll_hw_state *state;
  1017. intel_clock_t clock;
  1018. /* For DDI ports we always use a shared PLL. */
  1019. if (WARN_ON(dpll == DPLL_ID_PRIVATE))
  1020. return 0;
  1021. pll = &dev_priv->shared_dplls[dpll];
  1022. state = &pll->config.hw_state;
  1023. clock.m1 = 2;
  1024. clock.m2 = (state->pll0 & PORT_PLL_M2_MASK) << 22;
  1025. if (state->pll3 & PORT_PLL_M2_FRAC_ENABLE)
  1026. clock.m2 |= state->pll2 & PORT_PLL_M2_FRAC_MASK;
  1027. clock.n = (state->pll1 & PORT_PLL_N_MASK) >> PORT_PLL_N_SHIFT;
  1028. clock.p1 = (state->ebb0 & PORT_PLL_P1_MASK) >> PORT_PLL_P1_SHIFT;
  1029. clock.p2 = (state->ebb0 & PORT_PLL_P2_MASK) >> PORT_PLL_P2_SHIFT;
  1030. return chv_calc_dpll_params(100000, &clock);
  1031. }
  1032. static void bxt_ddi_clock_get(struct intel_encoder *encoder,
  1033. struct intel_crtc_state *pipe_config)
  1034. {
  1035. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  1036. enum port port = intel_ddi_get_encoder_port(encoder);
  1037. uint32_t dpll = port;
  1038. pipe_config->port_clock = bxt_calc_pll_link(dev_priv, dpll);
  1039. ddi_dotclock_get(pipe_config);
  1040. }
  1041. void intel_ddi_clock_get(struct intel_encoder *encoder,
  1042. struct intel_crtc_state *pipe_config)
  1043. {
  1044. struct drm_device *dev = encoder->base.dev;
  1045. if (INTEL_INFO(dev)->gen <= 8)
  1046. hsw_ddi_clock_get(encoder, pipe_config);
  1047. else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  1048. skl_ddi_clock_get(encoder, pipe_config);
  1049. else if (IS_BROXTON(dev))
  1050. bxt_ddi_clock_get(encoder, pipe_config);
  1051. }
  1052. static void
  1053. hsw_ddi_calculate_wrpll(int clock /* in Hz */,
  1054. unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
  1055. {
  1056. uint64_t freq2k;
  1057. unsigned p, n2, r2;
  1058. struct hsw_wrpll_rnp best = { 0, 0, 0 };
  1059. unsigned budget;
  1060. freq2k = clock / 100;
  1061. budget = hsw_wrpll_get_budget_for_freq(clock);
  1062. /* Special case handling for 540 pixel clock: bypass WR PLL entirely
  1063. * and directly pass the LC PLL to it. */
  1064. if (freq2k == 5400000) {
  1065. *n2_out = 2;
  1066. *p_out = 1;
  1067. *r2_out = 2;
  1068. return;
  1069. }
  1070. /*
  1071. * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
  1072. * the WR PLL.
  1073. *
  1074. * We want R so that REF_MIN <= Ref <= REF_MAX.
  1075. * Injecting R2 = 2 * R gives:
  1076. * REF_MAX * r2 > LC_FREQ * 2 and
  1077. * REF_MIN * r2 < LC_FREQ * 2
  1078. *
  1079. * Which means the desired boundaries for r2 are:
  1080. * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
  1081. *
  1082. */
  1083. for (r2 = LC_FREQ * 2 / REF_MAX + 1;
  1084. r2 <= LC_FREQ * 2 / REF_MIN;
  1085. r2++) {
  1086. /*
  1087. * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
  1088. *
  1089. * Once again we want VCO_MIN <= VCO <= VCO_MAX.
  1090. * Injecting R2 = 2 * R and N2 = 2 * N, we get:
  1091. * VCO_MAX * r2 > n2 * LC_FREQ and
  1092. * VCO_MIN * r2 < n2 * LC_FREQ)
  1093. *
  1094. * Which means the desired boundaries for n2 are:
  1095. * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
  1096. */
  1097. for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
  1098. n2 <= VCO_MAX * r2 / LC_FREQ;
  1099. n2++) {
  1100. for (p = P_MIN; p <= P_MAX; p += P_INC)
  1101. hsw_wrpll_update_rnp(freq2k, budget,
  1102. r2, n2, p, &best);
  1103. }
  1104. }
  1105. *n2_out = best.n2;
  1106. *p_out = best.p;
  1107. *r2_out = best.r2;
  1108. }
  1109. static bool
  1110. hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
  1111. struct intel_crtc_state *crtc_state,
  1112. struct intel_encoder *intel_encoder)
  1113. {
  1114. int clock = crtc_state->port_clock;
  1115. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  1116. struct intel_shared_dpll *pll;
  1117. uint32_t val;
  1118. unsigned p, n2, r2;
  1119. hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
  1120. val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
  1121. WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
  1122. WRPLL_DIVIDER_POST(p);
  1123. memset(&crtc_state->dpll_hw_state, 0,
  1124. sizeof(crtc_state->dpll_hw_state));
  1125. crtc_state->dpll_hw_state.wrpll = val;
  1126. pll = intel_get_shared_dpll(intel_crtc, crtc_state);
  1127. if (pll == NULL) {
  1128. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  1129. pipe_name(intel_crtc->pipe));
  1130. return false;
  1131. }
  1132. crtc_state->ddi_pll_sel = PORT_CLK_SEL_WRPLL(pll->id);
  1133. } else if (crtc_state->ddi_pll_sel == PORT_CLK_SEL_SPLL) {
  1134. struct drm_atomic_state *state = crtc_state->base.state;
  1135. struct intel_shared_dpll_config *spll =
  1136. &intel_atomic_get_shared_dpll_state(state)[DPLL_ID_SPLL];
  1137. if (spll->crtc_mask &&
  1138. WARN_ON(spll->hw_state.spll != crtc_state->dpll_hw_state.spll))
  1139. return false;
  1140. crtc_state->shared_dpll = DPLL_ID_SPLL;
  1141. spll->hw_state.spll = crtc_state->dpll_hw_state.spll;
  1142. spll->crtc_mask |= 1 << intel_crtc->pipe;
  1143. }
  1144. return true;
  1145. }
  1146. struct skl_wrpll_context {
  1147. uint64_t min_deviation; /* current minimal deviation */
  1148. uint64_t central_freq; /* chosen central freq */
  1149. uint64_t dco_freq; /* chosen dco freq */
  1150. unsigned int p; /* chosen divider */
  1151. };
  1152. static void skl_wrpll_context_init(struct skl_wrpll_context *ctx)
  1153. {
  1154. memset(ctx, 0, sizeof(*ctx));
  1155. ctx->min_deviation = U64_MAX;
  1156. }
  1157. /* DCO freq must be within +1%/-6% of the DCO central freq */
  1158. #define SKL_DCO_MAX_PDEVIATION 100
  1159. #define SKL_DCO_MAX_NDEVIATION 600
  1160. static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx,
  1161. uint64_t central_freq,
  1162. uint64_t dco_freq,
  1163. unsigned int divider)
  1164. {
  1165. uint64_t deviation;
  1166. deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq),
  1167. central_freq);
  1168. /* positive deviation */
  1169. if (dco_freq >= central_freq) {
  1170. if (deviation < SKL_DCO_MAX_PDEVIATION &&
  1171. deviation < ctx->min_deviation) {
  1172. ctx->min_deviation = deviation;
  1173. ctx->central_freq = central_freq;
  1174. ctx->dco_freq = dco_freq;
  1175. ctx->p = divider;
  1176. }
  1177. /* negative deviation */
  1178. } else if (deviation < SKL_DCO_MAX_NDEVIATION &&
  1179. deviation < ctx->min_deviation) {
  1180. ctx->min_deviation = deviation;
  1181. ctx->central_freq = central_freq;
  1182. ctx->dco_freq = dco_freq;
  1183. ctx->p = divider;
  1184. }
  1185. }
  1186. static void skl_wrpll_get_multipliers(unsigned int p,
  1187. unsigned int *p0 /* out */,
  1188. unsigned int *p1 /* out */,
  1189. unsigned int *p2 /* out */)
  1190. {
  1191. /* even dividers */
  1192. if (p % 2 == 0) {
  1193. unsigned int half = p / 2;
  1194. if (half == 1 || half == 2 || half == 3 || half == 5) {
  1195. *p0 = 2;
  1196. *p1 = 1;
  1197. *p2 = half;
  1198. } else if (half % 2 == 0) {
  1199. *p0 = 2;
  1200. *p1 = half / 2;
  1201. *p2 = 2;
  1202. } else if (half % 3 == 0) {
  1203. *p0 = 3;
  1204. *p1 = half / 3;
  1205. *p2 = 2;
  1206. } else if (half % 7 == 0) {
  1207. *p0 = 7;
  1208. *p1 = half / 7;
  1209. *p2 = 2;
  1210. }
  1211. } else if (p == 3 || p == 9) { /* 3, 5, 7, 9, 15, 21, 35 */
  1212. *p0 = 3;
  1213. *p1 = 1;
  1214. *p2 = p / 3;
  1215. } else if (p == 5 || p == 7) {
  1216. *p0 = p;
  1217. *p1 = 1;
  1218. *p2 = 1;
  1219. } else if (p == 15) {
  1220. *p0 = 3;
  1221. *p1 = 1;
  1222. *p2 = 5;
  1223. } else if (p == 21) {
  1224. *p0 = 7;
  1225. *p1 = 1;
  1226. *p2 = 3;
  1227. } else if (p == 35) {
  1228. *p0 = 7;
  1229. *p1 = 1;
  1230. *p2 = 5;
  1231. }
  1232. }
  1233. struct skl_wrpll_params {
  1234. uint32_t dco_fraction;
  1235. uint32_t dco_integer;
  1236. uint32_t qdiv_ratio;
  1237. uint32_t qdiv_mode;
  1238. uint32_t kdiv;
  1239. uint32_t pdiv;
  1240. uint32_t central_freq;
  1241. };
  1242. static void skl_wrpll_params_populate(struct skl_wrpll_params *params,
  1243. uint64_t afe_clock,
  1244. uint64_t central_freq,
  1245. uint32_t p0, uint32_t p1, uint32_t p2)
  1246. {
  1247. uint64_t dco_freq;
  1248. switch (central_freq) {
  1249. case 9600000000ULL:
  1250. params->central_freq = 0;
  1251. break;
  1252. case 9000000000ULL:
  1253. params->central_freq = 1;
  1254. break;
  1255. case 8400000000ULL:
  1256. params->central_freq = 3;
  1257. }
  1258. switch (p0) {
  1259. case 1:
  1260. params->pdiv = 0;
  1261. break;
  1262. case 2:
  1263. params->pdiv = 1;
  1264. break;
  1265. case 3:
  1266. params->pdiv = 2;
  1267. break;
  1268. case 7:
  1269. params->pdiv = 4;
  1270. break;
  1271. default:
  1272. WARN(1, "Incorrect PDiv\n");
  1273. }
  1274. switch (p2) {
  1275. case 5:
  1276. params->kdiv = 0;
  1277. break;
  1278. case 2:
  1279. params->kdiv = 1;
  1280. break;
  1281. case 3:
  1282. params->kdiv = 2;
  1283. break;
  1284. case 1:
  1285. params->kdiv = 3;
  1286. break;
  1287. default:
  1288. WARN(1, "Incorrect KDiv\n");
  1289. }
  1290. params->qdiv_ratio = p1;
  1291. params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1;
  1292. dco_freq = p0 * p1 * p2 * afe_clock;
  1293. /*
  1294. * Intermediate values are in Hz.
  1295. * Divide by MHz to match bsepc
  1296. */
  1297. params->dco_integer = div_u64(dco_freq, 24 * MHz(1));
  1298. params->dco_fraction =
  1299. div_u64((div_u64(dco_freq, 24) -
  1300. params->dco_integer * MHz(1)) * 0x8000, MHz(1));
  1301. }
  1302. static bool
  1303. skl_ddi_calculate_wrpll(int clock /* in Hz */,
  1304. struct skl_wrpll_params *wrpll_params)
  1305. {
  1306. uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
  1307. uint64_t dco_central_freq[3] = {8400000000ULL,
  1308. 9000000000ULL,
  1309. 9600000000ULL};
  1310. static const int even_dividers[] = { 4, 6, 8, 10, 12, 14, 16, 18, 20,
  1311. 24, 28, 30, 32, 36, 40, 42, 44,
  1312. 48, 52, 54, 56, 60, 64, 66, 68,
  1313. 70, 72, 76, 78, 80, 84, 88, 90,
  1314. 92, 96, 98 };
  1315. static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 };
  1316. static const struct {
  1317. const int *list;
  1318. int n_dividers;
  1319. } dividers[] = {
  1320. { even_dividers, ARRAY_SIZE(even_dividers) },
  1321. { odd_dividers, ARRAY_SIZE(odd_dividers) },
  1322. };
  1323. struct skl_wrpll_context ctx;
  1324. unsigned int dco, d, i;
  1325. unsigned int p0, p1, p2;
  1326. skl_wrpll_context_init(&ctx);
  1327. for (d = 0; d < ARRAY_SIZE(dividers); d++) {
  1328. for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) {
  1329. for (i = 0; i < dividers[d].n_dividers; i++) {
  1330. unsigned int p = dividers[d].list[i];
  1331. uint64_t dco_freq = p * afe_clock;
  1332. skl_wrpll_try_divider(&ctx,
  1333. dco_central_freq[dco],
  1334. dco_freq,
  1335. p);
  1336. /*
  1337. * Skip the remaining dividers if we're sure to
  1338. * have found the definitive divider, we can't
  1339. * improve a 0 deviation.
  1340. */
  1341. if (ctx.min_deviation == 0)
  1342. goto skip_remaining_dividers;
  1343. }
  1344. }
  1345. skip_remaining_dividers:
  1346. /*
  1347. * If a solution is found with an even divider, prefer
  1348. * this one.
  1349. */
  1350. if (d == 0 && ctx.p)
  1351. break;
  1352. }
  1353. if (!ctx.p) {
  1354. DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock);
  1355. return false;
  1356. }
  1357. /*
  1358. * gcc incorrectly analyses that these can be used without being
  1359. * initialized. To be fair, it's hard to guess.
  1360. */
  1361. p0 = p1 = p2 = 0;
  1362. skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2);
  1363. skl_wrpll_params_populate(wrpll_params, afe_clock, ctx.central_freq,
  1364. p0, p1, p2);
  1365. return true;
  1366. }
  1367. static bool
  1368. skl_ddi_pll_select(struct intel_crtc *intel_crtc,
  1369. struct intel_crtc_state *crtc_state,
  1370. struct intel_encoder *intel_encoder)
  1371. {
  1372. struct intel_shared_dpll *pll;
  1373. uint32_t ctrl1, cfgcr1, cfgcr2;
  1374. int clock = crtc_state->port_clock;
  1375. /*
  1376. * See comment in intel_dpll_hw_state to understand why we always use 0
  1377. * as the DPLL id in this function.
  1378. */
  1379. ctrl1 = DPLL_CTRL1_OVERRIDE(0);
  1380. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  1381. struct skl_wrpll_params wrpll_params = { 0, };
  1382. ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
  1383. if (!skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params))
  1384. return false;
  1385. cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
  1386. DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
  1387. wrpll_params.dco_integer;
  1388. cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
  1389. DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
  1390. DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
  1391. DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
  1392. wrpll_params.central_freq;
  1393. } else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
  1394. switch (crtc_state->port_clock / 2) {
  1395. case 81000:
  1396. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
  1397. break;
  1398. case 135000:
  1399. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
  1400. break;
  1401. case 270000:
  1402. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
  1403. break;
  1404. }
  1405. cfgcr1 = cfgcr2 = 0;
  1406. } else /* eDP */
  1407. return true;
  1408. memset(&crtc_state->dpll_hw_state, 0,
  1409. sizeof(crtc_state->dpll_hw_state));
  1410. crtc_state->dpll_hw_state.ctrl1 = ctrl1;
  1411. crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
  1412. crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
  1413. pll = intel_get_shared_dpll(intel_crtc, crtc_state);
  1414. if (pll == NULL) {
  1415. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  1416. pipe_name(intel_crtc->pipe));
  1417. return false;
  1418. }
  1419. /* shared DPLL id 0 is DPLL 1 */
  1420. crtc_state->ddi_pll_sel = pll->id + 1;
  1421. return true;
  1422. }
  1423. /* bxt clock parameters */
  1424. struct bxt_clk_div {
  1425. int clock;
  1426. uint32_t p1;
  1427. uint32_t p2;
  1428. uint32_t m2_int;
  1429. uint32_t m2_frac;
  1430. bool m2_frac_en;
  1431. uint32_t n;
  1432. };
  1433. /* pre-calculated values for DP linkrates */
  1434. static const struct bxt_clk_div bxt_dp_clk_val[] = {
  1435. {162000, 4, 2, 32, 1677722, 1, 1},
  1436. {270000, 4, 1, 27, 0, 0, 1},
  1437. {540000, 2, 1, 27, 0, 0, 1},
  1438. {216000, 3, 2, 32, 1677722, 1, 1},
  1439. {243000, 4, 1, 24, 1258291, 1, 1},
  1440. {324000, 4, 1, 32, 1677722, 1, 1},
  1441. {432000, 3, 1, 32, 1677722, 1, 1}
  1442. };
  1443. static bool
  1444. bxt_ddi_pll_select(struct intel_crtc *intel_crtc,
  1445. struct intel_crtc_state *crtc_state,
  1446. struct intel_encoder *intel_encoder)
  1447. {
  1448. struct intel_shared_dpll *pll;
  1449. struct bxt_clk_div clk_div = {0};
  1450. int vco = 0;
  1451. uint32_t prop_coef, int_coef, gain_ctl, targ_cnt;
  1452. uint32_t lanestagger;
  1453. int clock = crtc_state->port_clock;
  1454. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  1455. intel_clock_t best_clock;
  1456. /* Calculate HDMI div */
  1457. /*
  1458. * FIXME: tie the following calculation into
  1459. * i9xx_crtc_compute_clock
  1460. */
  1461. if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) {
  1462. DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
  1463. clock, pipe_name(intel_crtc->pipe));
  1464. return false;
  1465. }
  1466. clk_div.p1 = best_clock.p1;
  1467. clk_div.p2 = best_clock.p2;
  1468. WARN_ON(best_clock.m1 != 2);
  1469. clk_div.n = best_clock.n;
  1470. clk_div.m2_int = best_clock.m2 >> 22;
  1471. clk_div.m2_frac = best_clock.m2 & ((1 << 22) - 1);
  1472. clk_div.m2_frac_en = clk_div.m2_frac != 0;
  1473. vco = best_clock.vco;
  1474. } else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  1475. intel_encoder->type == INTEL_OUTPUT_EDP) {
  1476. int i;
  1477. clk_div = bxt_dp_clk_val[0];
  1478. for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) {
  1479. if (bxt_dp_clk_val[i].clock == clock) {
  1480. clk_div = bxt_dp_clk_val[i];
  1481. break;
  1482. }
  1483. }
  1484. vco = clock * 10 / 2 * clk_div.p1 * clk_div.p2;
  1485. }
  1486. if (vco >= 6200000 && vco <= 6700000) {
  1487. prop_coef = 4;
  1488. int_coef = 9;
  1489. gain_ctl = 3;
  1490. targ_cnt = 8;
  1491. } else if ((vco > 5400000 && vco < 6200000) ||
  1492. (vco >= 4800000 && vco < 5400000)) {
  1493. prop_coef = 5;
  1494. int_coef = 11;
  1495. gain_ctl = 3;
  1496. targ_cnt = 9;
  1497. } else if (vco == 5400000) {
  1498. prop_coef = 3;
  1499. int_coef = 8;
  1500. gain_ctl = 1;
  1501. targ_cnt = 9;
  1502. } else {
  1503. DRM_ERROR("Invalid VCO\n");
  1504. return false;
  1505. }
  1506. memset(&crtc_state->dpll_hw_state, 0,
  1507. sizeof(crtc_state->dpll_hw_state));
  1508. if (clock > 270000)
  1509. lanestagger = 0x18;
  1510. else if (clock > 135000)
  1511. lanestagger = 0x0d;
  1512. else if (clock > 67000)
  1513. lanestagger = 0x07;
  1514. else if (clock > 33000)
  1515. lanestagger = 0x04;
  1516. else
  1517. lanestagger = 0x02;
  1518. crtc_state->dpll_hw_state.ebb0 =
  1519. PORT_PLL_P1(clk_div.p1) | PORT_PLL_P2(clk_div.p2);
  1520. crtc_state->dpll_hw_state.pll0 = clk_div.m2_int;
  1521. crtc_state->dpll_hw_state.pll1 = PORT_PLL_N(clk_div.n);
  1522. crtc_state->dpll_hw_state.pll2 = clk_div.m2_frac;
  1523. if (clk_div.m2_frac_en)
  1524. crtc_state->dpll_hw_state.pll3 =
  1525. PORT_PLL_M2_FRAC_ENABLE;
  1526. crtc_state->dpll_hw_state.pll6 =
  1527. prop_coef | PORT_PLL_INT_COEFF(int_coef);
  1528. crtc_state->dpll_hw_state.pll6 |=
  1529. PORT_PLL_GAIN_CTL(gain_ctl);
  1530. crtc_state->dpll_hw_state.pll8 = targ_cnt;
  1531. crtc_state->dpll_hw_state.pll9 = 5 << PORT_PLL_LOCK_THRESHOLD_SHIFT;
  1532. crtc_state->dpll_hw_state.pll10 =
  1533. PORT_PLL_DCO_AMP(PORT_PLL_DCO_AMP_DEFAULT)
  1534. | PORT_PLL_DCO_AMP_OVR_EN_H;
  1535. crtc_state->dpll_hw_state.ebb4 = PORT_PLL_10BIT_CLK_ENABLE;
  1536. crtc_state->dpll_hw_state.pcsdw12 =
  1537. LANESTAGGER_STRAP_OVRD | lanestagger;
  1538. pll = intel_get_shared_dpll(intel_crtc, crtc_state);
  1539. if (pll == NULL) {
  1540. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  1541. pipe_name(intel_crtc->pipe));
  1542. return false;
  1543. }
  1544. /* shared DPLL id 0 is DPLL A */
  1545. crtc_state->ddi_pll_sel = pll->id;
  1546. return true;
  1547. }
  1548. /*
  1549. * Tries to find a *shared* PLL for the CRTC and store it in
  1550. * intel_crtc->ddi_pll_sel.
  1551. *
  1552. * For private DPLLs, compute_config() should do the selection for us. This
  1553. * function should be folded into compute_config() eventually.
  1554. */
  1555. bool intel_ddi_pll_select(struct intel_crtc *intel_crtc,
  1556. struct intel_crtc_state *crtc_state)
  1557. {
  1558. struct drm_device *dev = intel_crtc->base.dev;
  1559. struct intel_encoder *intel_encoder =
  1560. intel_ddi_get_crtc_new_encoder(crtc_state);
  1561. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  1562. return skl_ddi_pll_select(intel_crtc, crtc_state,
  1563. intel_encoder);
  1564. else if (IS_BROXTON(dev))
  1565. return bxt_ddi_pll_select(intel_crtc, crtc_state,
  1566. intel_encoder);
  1567. else
  1568. return hsw_ddi_pll_select(intel_crtc, crtc_state,
  1569. intel_encoder);
  1570. }
  1571. void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
  1572. {
  1573. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  1574. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1575. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  1576. enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  1577. int type = intel_encoder->type;
  1578. uint32_t temp;
  1579. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
  1580. temp = TRANS_MSA_SYNC_CLK;
  1581. switch (intel_crtc->config->pipe_bpp) {
  1582. case 18:
  1583. temp |= TRANS_MSA_6_BPC;
  1584. break;
  1585. case 24:
  1586. temp |= TRANS_MSA_8_BPC;
  1587. break;
  1588. case 30:
  1589. temp |= TRANS_MSA_10_BPC;
  1590. break;
  1591. case 36:
  1592. temp |= TRANS_MSA_12_BPC;
  1593. break;
  1594. default:
  1595. BUG();
  1596. }
  1597. I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
  1598. }
  1599. }
  1600. void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
  1601. {
  1602. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1603. struct drm_device *dev = crtc->dev;
  1604. struct drm_i915_private *dev_priv = dev->dev_private;
  1605. enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  1606. uint32_t temp;
  1607. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1608. if (state == true)
  1609. temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
  1610. else
  1611. temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
  1612. I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
  1613. }
  1614. void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
  1615. {
  1616. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1617. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  1618. struct drm_encoder *encoder = &intel_encoder->base;
  1619. struct drm_device *dev = crtc->dev;
  1620. struct drm_i915_private *dev_priv = dev->dev_private;
  1621. enum pipe pipe = intel_crtc->pipe;
  1622. enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  1623. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1624. int type = intel_encoder->type;
  1625. uint32_t temp;
  1626. /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
  1627. temp = TRANS_DDI_FUNC_ENABLE;
  1628. temp |= TRANS_DDI_SELECT_PORT(port);
  1629. switch (intel_crtc->config->pipe_bpp) {
  1630. case 18:
  1631. temp |= TRANS_DDI_BPC_6;
  1632. break;
  1633. case 24:
  1634. temp |= TRANS_DDI_BPC_8;
  1635. break;
  1636. case 30:
  1637. temp |= TRANS_DDI_BPC_10;
  1638. break;
  1639. case 36:
  1640. temp |= TRANS_DDI_BPC_12;
  1641. break;
  1642. default:
  1643. BUG();
  1644. }
  1645. if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
  1646. temp |= TRANS_DDI_PVSYNC;
  1647. if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
  1648. temp |= TRANS_DDI_PHSYNC;
  1649. if (cpu_transcoder == TRANSCODER_EDP) {
  1650. switch (pipe) {
  1651. case PIPE_A:
  1652. /* On Haswell, can only use the always-on power well for
  1653. * eDP when not using the panel fitter, and when not
  1654. * using motion blur mitigation (which we don't
  1655. * support). */
  1656. if (IS_HASWELL(dev) &&
  1657. (intel_crtc->config->pch_pfit.enabled ||
  1658. intel_crtc->config->pch_pfit.force_thru))
  1659. temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
  1660. else
  1661. temp |= TRANS_DDI_EDP_INPUT_A_ON;
  1662. break;
  1663. case PIPE_B:
  1664. temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
  1665. break;
  1666. case PIPE_C:
  1667. temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
  1668. break;
  1669. default:
  1670. BUG();
  1671. break;
  1672. }
  1673. }
  1674. if (type == INTEL_OUTPUT_HDMI) {
  1675. if (intel_crtc->config->has_hdmi_sink)
  1676. temp |= TRANS_DDI_MODE_SELECT_HDMI;
  1677. else
  1678. temp |= TRANS_DDI_MODE_SELECT_DVI;
  1679. } else if (type == INTEL_OUTPUT_ANALOG) {
  1680. temp |= TRANS_DDI_MODE_SELECT_FDI;
  1681. temp |= (intel_crtc->config->fdi_lanes - 1) << 1;
  1682. } else if (type == INTEL_OUTPUT_DISPLAYPORT ||
  1683. type == INTEL_OUTPUT_EDP) {
  1684. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1685. if (intel_dp->is_mst) {
  1686. temp |= TRANS_DDI_MODE_SELECT_DP_MST;
  1687. } else
  1688. temp |= TRANS_DDI_MODE_SELECT_DP_SST;
  1689. temp |= DDI_PORT_WIDTH(intel_crtc->config->lane_count);
  1690. } else if (type == INTEL_OUTPUT_DP_MST) {
  1691. struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;
  1692. if (intel_dp->is_mst) {
  1693. temp |= TRANS_DDI_MODE_SELECT_DP_MST;
  1694. } else
  1695. temp |= TRANS_DDI_MODE_SELECT_DP_SST;
  1696. temp |= DDI_PORT_WIDTH(intel_crtc->config->lane_count);
  1697. } else {
  1698. WARN(1, "Invalid encoder type %d for pipe %c\n",
  1699. intel_encoder->type, pipe_name(pipe));
  1700. }
  1701. I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
  1702. }
  1703. void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
  1704. enum transcoder cpu_transcoder)
  1705. {
  1706. i915_reg_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  1707. uint32_t val = I915_READ(reg);
  1708. val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
  1709. val |= TRANS_DDI_PORT_NONE;
  1710. I915_WRITE(reg, val);
  1711. }
  1712. bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
  1713. {
  1714. struct drm_device *dev = intel_connector->base.dev;
  1715. struct drm_i915_private *dev_priv = dev->dev_private;
  1716. struct intel_encoder *intel_encoder = intel_connector->encoder;
  1717. int type = intel_connector->base.connector_type;
  1718. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1719. enum pipe pipe = 0;
  1720. enum transcoder cpu_transcoder;
  1721. enum intel_display_power_domain power_domain;
  1722. uint32_t tmp;
  1723. power_domain = intel_display_port_power_domain(intel_encoder);
  1724. if (!intel_display_power_is_enabled(dev_priv, power_domain))
  1725. return false;
  1726. if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
  1727. return false;
  1728. if (port == PORT_A)
  1729. cpu_transcoder = TRANSCODER_EDP;
  1730. else
  1731. cpu_transcoder = (enum transcoder) pipe;
  1732. tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1733. switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
  1734. case TRANS_DDI_MODE_SELECT_HDMI:
  1735. case TRANS_DDI_MODE_SELECT_DVI:
  1736. return (type == DRM_MODE_CONNECTOR_HDMIA);
  1737. case TRANS_DDI_MODE_SELECT_DP_SST:
  1738. if (type == DRM_MODE_CONNECTOR_eDP)
  1739. return true;
  1740. return (type == DRM_MODE_CONNECTOR_DisplayPort);
  1741. case TRANS_DDI_MODE_SELECT_DP_MST:
  1742. /* if the transcoder is in MST state then
  1743. * connector isn't connected */
  1744. return false;
  1745. case TRANS_DDI_MODE_SELECT_FDI:
  1746. return (type == DRM_MODE_CONNECTOR_VGA);
  1747. default:
  1748. return false;
  1749. }
  1750. }
  1751. bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
  1752. enum pipe *pipe)
  1753. {
  1754. struct drm_device *dev = encoder->base.dev;
  1755. struct drm_i915_private *dev_priv = dev->dev_private;
  1756. enum port port = intel_ddi_get_encoder_port(encoder);
  1757. enum intel_display_power_domain power_domain;
  1758. u32 tmp;
  1759. int i;
  1760. power_domain = intel_display_port_power_domain(encoder);
  1761. if (!intel_display_power_is_enabled(dev_priv, power_domain))
  1762. return false;
  1763. tmp = I915_READ(DDI_BUF_CTL(port));
  1764. if (!(tmp & DDI_BUF_CTL_ENABLE))
  1765. return false;
  1766. if (port == PORT_A) {
  1767. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  1768. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  1769. case TRANS_DDI_EDP_INPUT_A_ON:
  1770. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  1771. *pipe = PIPE_A;
  1772. break;
  1773. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  1774. *pipe = PIPE_B;
  1775. break;
  1776. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  1777. *pipe = PIPE_C;
  1778. break;
  1779. }
  1780. return true;
  1781. } else {
  1782. for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
  1783. tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
  1784. if ((tmp & TRANS_DDI_PORT_MASK)
  1785. == TRANS_DDI_SELECT_PORT(port)) {
  1786. if ((tmp & TRANS_DDI_MODE_SELECT_MASK) == TRANS_DDI_MODE_SELECT_DP_MST)
  1787. return false;
  1788. *pipe = i;
  1789. return true;
  1790. }
  1791. }
  1792. }
  1793. DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
  1794. return false;
  1795. }
  1796. void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
  1797. {
  1798. struct drm_crtc *crtc = &intel_crtc->base;
  1799. struct drm_device *dev = crtc->dev;
  1800. struct drm_i915_private *dev_priv = dev->dev_private;
  1801. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  1802. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1803. enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  1804. if (cpu_transcoder != TRANSCODER_EDP)
  1805. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  1806. TRANS_CLK_SEL_PORT(port));
  1807. }
  1808. void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
  1809. {
  1810. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1811. enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  1812. if (cpu_transcoder != TRANSCODER_EDP)
  1813. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  1814. TRANS_CLK_SEL_DISABLED);
  1815. }
  1816. static void skl_ddi_set_iboost(struct drm_device *dev, u32 level,
  1817. enum port port, int type)
  1818. {
  1819. struct drm_i915_private *dev_priv = dev->dev_private;
  1820. const struct ddi_buf_trans *ddi_translations;
  1821. uint8_t iboost;
  1822. uint8_t dp_iboost, hdmi_iboost;
  1823. int n_entries;
  1824. u32 reg;
  1825. /* VBT may override standard boost values */
  1826. dp_iboost = dev_priv->vbt.ddi_port_info[port].dp_boost_level;
  1827. hdmi_iboost = dev_priv->vbt.ddi_port_info[port].hdmi_boost_level;
  1828. if (type == INTEL_OUTPUT_DISPLAYPORT) {
  1829. if (dp_iboost) {
  1830. iboost = dp_iboost;
  1831. } else {
  1832. ddi_translations = skl_get_buf_trans_dp(dev, &n_entries);
  1833. iboost = ddi_translations[level].i_boost;
  1834. }
  1835. } else if (type == INTEL_OUTPUT_EDP) {
  1836. if (dp_iboost) {
  1837. iboost = dp_iboost;
  1838. } else {
  1839. ddi_translations = skl_get_buf_trans_edp(dev, &n_entries);
  1840. iboost = ddi_translations[level].i_boost;
  1841. }
  1842. } else if (type == INTEL_OUTPUT_HDMI) {
  1843. if (hdmi_iboost) {
  1844. iboost = hdmi_iboost;
  1845. } else {
  1846. ddi_translations = skl_get_buf_trans_hdmi(dev, &n_entries);
  1847. iboost = ddi_translations[level].i_boost;
  1848. }
  1849. } else {
  1850. return;
  1851. }
  1852. /* Make sure that the requested I_boost is valid */
  1853. if (iboost && iboost != 0x1 && iboost != 0x3 && iboost != 0x7) {
  1854. DRM_ERROR("Invalid I_boost value %u\n", iboost);
  1855. return;
  1856. }
  1857. reg = I915_READ(DISPIO_CR_TX_BMU_CR0);
  1858. reg &= ~BALANCE_LEG_MASK(port);
  1859. reg &= ~(1 << (BALANCE_LEG_DISABLE_SHIFT + port));
  1860. if (iboost)
  1861. reg |= iboost << BALANCE_LEG_SHIFT(port);
  1862. else
  1863. reg |= 1 << (BALANCE_LEG_DISABLE_SHIFT + port);
  1864. I915_WRITE(DISPIO_CR_TX_BMU_CR0, reg);
  1865. }
  1866. static void bxt_ddi_vswing_sequence(struct drm_device *dev, u32 level,
  1867. enum port port, int type)
  1868. {
  1869. struct drm_i915_private *dev_priv = dev->dev_private;
  1870. const struct bxt_ddi_buf_trans *ddi_translations;
  1871. u32 n_entries, i;
  1872. uint32_t val;
  1873. if (type == INTEL_OUTPUT_EDP && dev_priv->edp_low_vswing) {
  1874. n_entries = ARRAY_SIZE(bxt_ddi_translations_edp);
  1875. ddi_translations = bxt_ddi_translations_edp;
  1876. } else if (type == INTEL_OUTPUT_DISPLAYPORT
  1877. || type == INTEL_OUTPUT_EDP) {
  1878. n_entries = ARRAY_SIZE(bxt_ddi_translations_dp);
  1879. ddi_translations = bxt_ddi_translations_dp;
  1880. } else if (type == INTEL_OUTPUT_HDMI) {
  1881. n_entries = ARRAY_SIZE(bxt_ddi_translations_hdmi);
  1882. ddi_translations = bxt_ddi_translations_hdmi;
  1883. } else {
  1884. DRM_DEBUG_KMS("Vswing programming not done for encoder %d\n",
  1885. type);
  1886. return;
  1887. }
  1888. /* Check if default value has to be used */
  1889. if (level >= n_entries ||
  1890. (type == INTEL_OUTPUT_HDMI && level == HDMI_LEVEL_SHIFT_UNKNOWN)) {
  1891. for (i = 0; i < n_entries; i++) {
  1892. if (ddi_translations[i].default_index) {
  1893. level = i;
  1894. break;
  1895. }
  1896. }
  1897. }
  1898. /*
  1899. * While we write to the group register to program all lanes at once we
  1900. * can read only lane registers and we pick lanes 0/1 for that.
  1901. */
  1902. val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
  1903. val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
  1904. I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
  1905. val = I915_READ(BXT_PORT_TX_DW2_LN0(port));
  1906. val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
  1907. val |= ddi_translations[level].margin << MARGIN_000_SHIFT |
  1908. ddi_translations[level].scale << UNIQ_TRANS_SCALE_SHIFT;
  1909. I915_WRITE(BXT_PORT_TX_DW2_GRP(port), val);
  1910. val = I915_READ(BXT_PORT_TX_DW3_LN0(port));
  1911. val &= ~SCALE_DCOMP_METHOD;
  1912. if (ddi_translations[level].enable)
  1913. val |= SCALE_DCOMP_METHOD;
  1914. if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
  1915. DRM_ERROR("Disabled scaling while ouniqetrangenmethod was set");
  1916. I915_WRITE(BXT_PORT_TX_DW3_GRP(port), val);
  1917. val = I915_READ(BXT_PORT_TX_DW4_LN0(port));
  1918. val &= ~DE_EMPHASIS;
  1919. val |= ddi_translations[level].deemphasis << DEEMPH_SHIFT;
  1920. I915_WRITE(BXT_PORT_TX_DW4_GRP(port), val);
  1921. val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
  1922. val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
  1923. I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
  1924. }
  1925. static uint32_t translate_signal_level(int signal_levels)
  1926. {
  1927. uint32_t level;
  1928. switch (signal_levels) {
  1929. default:
  1930. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level: 0x%x\n",
  1931. signal_levels);
  1932. case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
  1933. level = 0;
  1934. break;
  1935. case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
  1936. level = 1;
  1937. break;
  1938. case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
  1939. level = 2;
  1940. break;
  1941. case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
  1942. level = 3;
  1943. break;
  1944. case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
  1945. level = 4;
  1946. break;
  1947. case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
  1948. level = 5;
  1949. break;
  1950. case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
  1951. level = 6;
  1952. break;
  1953. case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
  1954. level = 7;
  1955. break;
  1956. case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
  1957. level = 8;
  1958. break;
  1959. case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
  1960. level = 9;
  1961. break;
  1962. }
  1963. return level;
  1964. }
  1965. uint32_t ddi_signal_levels(struct intel_dp *intel_dp)
  1966. {
  1967. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1968. struct drm_device *dev = dport->base.base.dev;
  1969. struct intel_encoder *encoder = &dport->base;
  1970. uint8_t train_set = intel_dp->train_set[0];
  1971. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1972. DP_TRAIN_PRE_EMPHASIS_MASK);
  1973. enum port port = dport->port;
  1974. uint32_t level;
  1975. level = translate_signal_level(signal_levels);
  1976. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  1977. skl_ddi_set_iboost(dev, level, port, encoder->type);
  1978. else if (IS_BROXTON(dev))
  1979. bxt_ddi_vswing_sequence(dev, level, port, encoder->type);
  1980. return DDI_BUF_TRANS_SELECT(level);
  1981. }
  1982. void intel_ddi_clk_select(struct intel_encoder *encoder,
  1983. const struct intel_crtc_state *pipe_config)
  1984. {
  1985. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1986. enum port port = intel_ddi_get_encoder_port(encoder);
  1987. if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
  1988. uint32_t dpll = pipe_config->ddi_pll_sel;
  1989. uint32_t val;
  1990. /*
  1991. * DPLL0 is used for eDP and is the only "private" DPLL (as
  1992. * opposed to shared) on SKL
  1993. */
  1994. if (encoder->type == INTEL_OUTPUT_EDP) {
  1995. WARN_ON(dpll != SKL_DPLL0);
  1996. val = I915_READ(DPLL_CTRL1);
  1997. val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) |
  1998. DPLL_CTRL1_SSC(dpll) |
  1999. DPLL_CTRL1_LINK_RATE_MASK(dpll));
  2000. val |= pipe_config->dpll_hw_state.ctrl1 << (dpll * 6);
  2001. I915_WRITE(DPLL_CTRL1, val);
  2002. POSTING_READ(DPLL_CTRL1);
  2003. }
  2004. /* DDI -> PLL mapping */
  2005. val = I915_READ(DPLL_CTRL2);
  2006. val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
  2007. DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
  2008. val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) |
  2009. DPLL_CTRL2_DDI_SEL_OVERRIDE(port));
  2010. I915_WRITE(DPLL_CTRL2, val);
  2011. } else if (INTEL_INFO(dev_priv)->gen < 9) {
  2012. WARN_ON(pipe_config->ddi_pll_sel == PORT_CLK_SEL_NONE);
  2013. I915_WRITE(PORT_CLK_SEL(port), pipe_config->ddi_pll_sel);
  2014. }
  2015. }
  2016. static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
  2017. {
  2018. struct drm_encoder *encoder = &intel_encoder->base;
  2019. struct drm_device *dev = encoder->dev;
  2020. struct drm_i915_private *dev_priv = dev->dev_private;
  2021. struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
  2022. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  2023. int type = intel_encoder->type;
  2024. int hdmi_level;
  2025. if (type == INTEL_OUTPUT_EDP) {
  2026. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  2027. intel_edp_panel_on(intel_dp);
  2028. }
  2029. intel_ddi_clk_select(intel_encoder, crtc->config);
  2030. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  2031. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  2032. intel_dp_set_link_params(intel_dp, crtc->config);
  2033. intel_ddi_init_dp_buf_reg(intel_encoder);
  2034. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  2035. intel_dp_start_link_train(intel_dp);
  2036. if (port != PORT_A || INTEL_INFO(dev)->gen >= 9)
  2037. intel_dp_stop_link_train(intel_dp);
  2038. } else if (type == INTEL_OUTPUT_HDMI) {
  2039. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  2040. if (IS_BROXTON(dev)) {
  2041. hdmi_level = dev_priv->vbt.
  2042. ddi_port_info[port].hdmi_level_shift;
  2043. bxt_ddi_vswing_sequence(dev, hdmi_level, port,
  2044. INTEL_OUTPUT_HDMI);
  2045. }
  2046. intel_hdmi->set_infoframes(encoder,
  2047. crtc->config->has_hdmi_sink,
  2048. &crtc->config->base.adjusted_mode);
  2049. }
  2050. }
  2051. static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
  2052. {
  2053. struct drm_encoder *encoder = &intel_encoder->base;
  2054. struct drm_device *dev = encoder->dev;
  2055. struct drm_i915_private *dev_priv = dev->dev_private;
  2056. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  2057. int type = intel_encoder->type;
  2058. uint32_t val;
  2059. bool wait = false;
  2060. val = I915_READ(DDI_BUF_CTL(port));
  2061. if (val & DDI_BUF_CTL_ENABLE) {
  2062. val &= ~DDI_BUF_CTL_ENABLE;
  2063. I915_WRITE(DDI_BUF_CTL(port), val);
  2064. wait = true;
  2065. }
  2066. val = I915_READ(DP_TP_CTL(port));
  2067. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  2068. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  2069. I915_WRITE(DP_TP_CTL(port), val);
  2070. if (wait)
  2071. intel_wait_ddi_buf_idle(dev_priv, port);
  2072. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  2073. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  2074. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
  2075. intel_edp_panel_vdd_on(intel_dp);
  2076. intel_edp_panel_off(intel_dp);
  2077. }
  2078. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  2079. I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
  2080. DPLL_CTRL2_DDI_CLK_OFF(port)));
  2081. else if (INTEL_INFO(dev)->gen < 9)
  2082. I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
  2083. }
  2084. static void intel_enable_ddi(struct intel_encoder *intel_encoder)
  2085. {
  2086. struct drm_encoder *encoder = &intel_encoder->base;
  2087. struct drm_crtc *crtc = encoder->crtc;
  2088. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2089. struct drm_device *dev = encoder->dev;
  2090. struct drm_i915_private *dev_priv = dev->dev_private;
  2091. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  2092. int type = intel_encoder->type;
  2093. if (type == INTEL_OUTPUT_HDMI) {
  2094. struct intel_digital_port *intel_dig_port =
  2095. enc_to_dig_port(encoder);
  2096. /* In HDMI/DVI mode, the port width, and swing/emphasis values
  2097. * are ignored so nothing special needs to be done besides
  2098. * enabling the port.
  2099. */
  2100. I915_WRITE(DDI_BUF_CTL(port),
  2101. intel_dig_port->saved_port_bits |
  2102. DDI_BUF_CTL_ENABLE);
  2103. } else if (type == INTEL_OUTPUT_EDP) {
  2104. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  2105. if (port == PORT_A && INTEL_INFO(dev)->gen < 9)
  2106. intel_dp_stop_link_train(intel_dp);
  2107. intel_edp_backlight_on(intel_dp);
  2108. intel_psr_enable(intel_dp);
  2109. intel_edp_drrs_enable(intel_dp);
  2110. }
  2111. if (intel_crtc->config->has_audio) {
  2112. intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
  2113. intel_audio_codec_enable(intel_encoder);
  2114. }
  2115. }
  2116. static void intel_disable_ddi(struct intel_encoder *intel_encoder)
  2117. {
  2118. struct drm_encoder *encoder = &intel_encoder->base;
  2119. struct drm_crtc *crtc = encoder->crtc;
  2120. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2121. int type = intel_encoder->type;
  2122. struct drm_device *dev = encoder->dev;
  2123. struct drm_i915_private *dev_priv = dev->dev_private;
  2124. if (intel_crtc->config->has_audio) {
  2125. intel_audio_codec_disable(intel_encoder);
  2126. intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
  2127. }
  2128. if (type == INTEL_OUTPUT_EDP) {
  2129. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  2130. intel_edp_drrs_disable(intel_dp);
  2131. intel_psr_disable(intel_dp);
  2132. intel_edp_backlight_off(intel_dp);
  2133. }
  2134. }
  2135. static void hsw_ddi_wrpll_enable(struct drm_i915_private *dev_priv,
  2136. struct intel_shared_dpll *pll)
  2137. {
  2138. I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
  2139. POSTING_READ(WRPLL_CTL(pll->id));
  2140. udelay(20);
  2141. }
  2142. static void hsw_ddi_spll_enable(struct drm_i915_private *dev_priv,
  2143. struct intel_shared_dpll *pll)
  2144. {
  2145. I915_WRITE(SPLL_CTL, pll->config.hw_state.spll);
  2146. POSTING_READ(SPLL_CTL);
  2147. udelay(20);
  2148. }
  2149. static void hsw_ddi_wrpll_disable(struct drm_i915_private *dev_priv,
  2150. struct intel_shared_dpll *pll)
  2151. {
  2152. uint32_t val;
  2153. val = I915_READ(WRPLL_CTL(pll->id));
  2154. I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
  2155. POSTING_READ(WRPLL_CTL(pll->id));
  2156. }
  2157. static void hsw_ddi_spll_disable(struct drm_i915_private *dev_priv,
  2158. struct intel_shared_dpll *pll)
  2159. {
  2160. uint32_t val;
  2161. val = I915_READ(SPLL_CTL);
  2162. I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE);
  2163. POSTING_READ(SPLL_CTL);
  2164. }
  2165. static bool hsw_ddi_wrpll_get_hw_state(struct drm_i915_private *dev_priv,
  2166. struct intel_shared_dpll *pll,
  2167. struct intel_dpll_hw_state *hw_state)
  2168. {
  2169. uint32_t val;
  2170. if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
  2171. return false;
  2172. val = I915_READ(WRPLL_CTL(pll->id));
  2173. hw_state->wrpll = val;
  2174. return val & WRPLL_PLL_ENABLE;
  2175. }
  2176. static bool hsw_ddi_spll_get_hw_state(struct drm_i915_private *dev_priv,
  2177. struct intel_shared_dpll *pll,
  2178. struct intel_dpll_hw_state *hw_state)
  2179. {
  2180. uint32_t val;
  2181. if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
  2182. return false;
  2183. val = I915_READ(SPLL_CTL);
  2184. hw_state->spll = val;
  2185. return val & SPLL_PLL_ENABLE;
  2186. }
  2187. static const char * const hsw_ddi_pll_names[] = {
  2188. "WRPLL 1",
  2189. "WRPLL 2",
  2190. "SPLL"
  2191. };
  2192. static void hsw_shared_dplls_init(struct drm_i915_private *dev_priv)
  2193. {
  2194. int i;
  2195. dev_priv->num_shared_dpll = 3;
  2196. for (i = 0; i < 2; i++) {
  2197. dev_priv->shared_dplls[i].id = i;
  2198. dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
  2199. dev_priv->shared_dplls[i].disable = hsw_ddi_wrpll_disable;
  2200. dev_priv->shared_dplls[i].enable = hsw_ddi_wrpll_enable;
  2201. dev_priv->shared_dplls[i].get_hw_state =
  2202. hsw_ddi_wrpll_get_hw_state;
  2203. }
  2204. /* SPLL is special, but needs to be initialized anyway.. */
  2205. dev_priv->shared_dplls[i].id = i;
  2206. dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
  2207. dev_priv->shared_dplls[i].disable = hsw_ddi_spll_disable;
  2208. dev_priv->shared_dplls[i].enable = hsw_ddi_spll_enable;
  2209. dev_priv->shared_dplls[i].get_hw_state = hsw_ddi_spll_get_hw_state;
  2210. }
  2211. static const char * const skl_ddi_pll_names[] = {
  2212. "DPLL 1",
  2213. "DPLL 2",
  2214. "DPLL 3",
  2215. };
  2216. struct skl_dpll_regs {
  2217. i915_reg_t ctl, cfgcr1, cfgcr2;
  2218. };
  2219. /* this array is indexed by the *shared* pll id */
  2220. static const struct skl_dpll_regs skl_dpll_regs[3] = {
  2221. {
  2222. /* DPLL 1 */
  2223. .ctl = LCPLL2_CTL,
  2224. .cfgcr1 = DPLL_CFGCR1(SKL_DPLL1),
  2225. .cfgcr2 = DPLL_CFGCR2(SKL_DPLL1),
  2226. },
  2227. {
  2228. /* DPLL 2 */
  2229. .ctl = WRPLL_CTL(0),
  2230. .cfgcr1 = DPLL_CFGCR1(SKL_DPLL2),
  2231. .cfgcr2 = DPLL_CFGCR2(SKL_DPLL2),
  2232. },
  2233. {
  2234. /* DPLL 3 */
  2235. .ctl = WRPLL_CTL(1),
  2236. .cfgcr1 = DPLL_CFGCR1(SKL_DPLL3),
  2237. .cfgcr2 = DPLL_CFGCR2(SKL_DPLL3),
  2238. },
  2239. };
  2240. static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
  2241. struct intel_shared_dpll *pll)
  2242. {
  2243. uint32_t val;
  2244. unsigned int dpll;
  2245. const struct skl_dpll_regs *regs = skl_dpll_regs;
  2246. /* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
  2247. dpll = pll->id + 1;
  2248. val = I915_READ(DPLL_CTRL1);
  2249. val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) | DPLL_CTRL1_SSC(dpll) |
  2250. DPLL_CTRL1_LINK_RATE_MASK(dpll));
  2251. val |= pll->config.hw_state.ctrl1 << (dpll * 6);
  2252. I915_WRITE(DPLL_CTRL1, val);
  2253. POSTING_READ(DPLL_CTRL1);
  2254. I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
  2255. I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
  2256. POSTING_READ(regs[pll->id].cfgcr1);
  2257. POSTING_READ(regs[pll->id].cfgcr2);
  2258. /* the enable bit is always bit 31 */
  2259. I915_WRITE(regs[pll->id].ctl,
  2260. I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);
  2261. if (wait_for(I915_READ(DPLL_STATUS) & DPLL_LOCK(dpll), 5))
  2262. DRM_ERROR("DPLL %d not locked\n", dpll);
  2263. }
  2264. static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
  2265. struct intel_shared_dpll *pll)
  2266. {
  2267. const struct skl_dpll_regs *regs = skl_dpll_regs;
  2268. /* the enable bit is always bit 31 */
  2269. I915_WRITE(regs[pll->id].ctl,
  2270. I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
  2271. POSTING_READ(regs[pll->id].ctl);
  2272. }
  2273. static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
  2274. struct intel_shared_dpll *pll,
  2275. struct intel_dpll_hw_state *hw_state)
  2276. {
  2277. uint32_t val;
  2278. unsigned int dpll;
  2279. const struct skl_dpll_regs *regs = skl_dpll_regs;
  2280. if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
  2281. return false;
  2282. /* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
  2283. dpll = pll->id + 1;
  2284. val = I915_READ(regs[pll->id].ctl);
  2285. if (!(val & LCPLL_PLL_ENABLE))
  2286. return false;
  2287. val = I915_READ(DPLL_CTRL1);
  2288. hw_state->ctrl1 = (val >> (dpll * 6)) & 0x3f;
  2289. /* avoid reading back stale values if HDMI mode is not enabled */
  2290. if (val & DPLL_CTRL1_HDMI_MODE(dpll)) {
  2291. hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
  2292. hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
  2293. }
  2294. return true;
  2295. }
  2296. static void skl_shared_dplls_init(struct drm_i915_private *dev_priv)
  2297. {
  2298. int i;
  2299. dev_priv->num_shared_dpll = 3;
  2300. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2301. dev_priv->shared_dplls[i].id = i;
  2302. dev_priv->shared_dplls[i].name = skl_ddi_pll_names[i];
  2303. dev_priv->shared_dplls[i].disable = skl_ddi_pll_disable;
  2304. dev_priv->shared_dplls[i].enable = skl_ddi_pll_enable;
  2305. dev_priv->shared_dplls[i].get_hw_state =
  2306. skl_ddi_pll_get_hw_state;
  2307. }
  2308. }
  2309. static void broxton_phy_init(struct drm_i915_private *dev_priv,
  2310. enum dpio_phy phy)
  2311. {
  2312. enum port port;
  2313. uint32_t val;
  2314. val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
  2315. val |= GT_DISPLAY_POWER_ON(phy);
  2316. I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
  2317. /* Considering 10ms timeout until BSpec is updated */
  2318. if (wait_for(I915_READ(BXT_PORT_CL1CM_DW0(phy)) & PHY_POWER_GOOD, 10))
  2319. DRM_ERROR("timeout during PHY%d power on\n", phy);
  2320. for (port = (phy == DPIO_PHY0 ? PORT_B : PORT_A);
  2321. port <= (phy == DPIO_PHY0 ? PORT_C : PORT_A); port++) {
  2322. int lane;
  2323. for (lane = 0; lane < 4; lane++) {
  2324. val = I915_READ(BXT_PORT_TX_DW14_LN(port, lane));
  2325. /*
  2326. * Note that on CHV this flag is called UPAR, but has
  2327. * the same function.
  2328. */
  2329. val &= ~LATENCY_OPTIM;
  2330. if (lane != 1)
  2331. val |= LATENCY_OPTIM;
  2332. I915_WRITE(BXT_PORT_TX_DW14_LN(port, lane), val);
  2333. }
  2334. }
  2335. /* Program PLL Rcomp code offset */
  2336. val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
  2337. val &= ~IREF0RC_OFFSET_MASK;
  2338. val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
  2339. I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);
  2340. val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
  2341. val &= ~IREF1RC_OFFSET_MASK;
  2342. val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
  2343. I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);
  2344. /* Program power gating */
  2345. val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
  2346. val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
  2347. SUS_CLK_CONFIG;
  2348. I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);
  2349. if (phy == DPIO_PHY0) {
  2350. val = I915_READ(BXT_PORT_CL2CM_DW6_BC);
  2351. val |= DW6_OLDO_DYN_PWR_DOWN_EN;
  2352. I915_WRITE(BXT_PORT_CL2CM_DW6_BC, val);
  2353. }
  2354. val = I915_READ(BXT_PORT_CL1CM_DW30(phy));
  2355. val &= ~OCL2_LDOFUSE_PWR_DIS;
  2356. /*
  2357. * On PHY1 disable power on the second channel, since no port is
  2358. * connected there. On PHY0 both channels have a port, so leave it
  2359. * enabled.
  2360. * TODO: port C is only connected on BXT-P, so on BXT0/1 we should
  2361. * power down the second channel on PHY0 as well.
  2362. */
  2363. if (phy == DPIO_PHY1)
  2364. val |= OCL2_LDOFUSE_PWR_DIS;
  2365. I915_WRITE(BXT_PORT_CL1CM_DW30(phy), val);
  2366. if (phy == DPIO_PHY0) {
  2367. uint32_t grc_code;
  2368. /*
  2369. * PHY0 isn't connected to an RCOMP resistor so copy over
  2370. * the corresponding calibrated value from PHY1, and disable
  2371. * the automatic calibration on PHY0.
  2372. */
  2373. if (wait_for(I915_READ(BXT_PORT_REF_DW3(DPIO_PHY1)) & GRC_DONE,
  2374. 10))
  2375. DRM_ERROR("timeout waiting for PHY1 GRC\n");
  2376. val = I915_READ(BXT_PORT_REF_DW6(DPIO_PHY1));
  2377. val = (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
  2378. grc_code = val << GRC_CODE_FAST_SHIFT |
  2379. val << GRC_CODE_SLOW_SHIFT |
  2380. val;
  2381. I915_WRITE(BXT_PORT_REF_DW6(DPIO_PHY0), grc_code);
  2382. val = I915_READ(BXT_PORT_REF_DW8(DPIO_PHY0));
  2383. val |= GRC_DIS | GRC_RDY_OVRD;
  2384. I915_WRITE(BXT_PORT_REF_DW8(DPIO_PHY0), val);
  2385. }
  2386. val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
  2387. val |= COMMON_RESET_DIS;
  2388. I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
  2389. }
  2390. void broxton_ddi_phy_init(struct drm_device *dev)
  2391. {
  2392. /* Enable PHY1 first since it provides Rcomp for PHY0 */
  2393. broxton_phy_init(dev->dev_private, DPIO_PHY1);
  2394. broxton_phy_init(dev->dev_private, DPIO_PHY0);
  2395. }
  2396. static void broxton_phy_uninit(struct drm_i915_private *dev_priv,
  2397. enum dpio_phy phy)
  2398. {
  2399. uint32_t val;
  2400. val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
  2401. val &= ~COMMON_RESET_DIS;
  2402. I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
  2403. }
  2404. void broxton_ddi_phy_uninit(struct drm_device *dev)
  2405. {
  2406. struct drm_i915_private *dev_priv = dev->dev_private;
  2407. broxton_phy_uninit(dev_priv, DPIO_PHY1);
  2408. broxton_phy_uninit(dev_priv, DPIO_PHY0);
  2409. /* FIXME: do this in broxton_phy_uninit per phy */
  2410. I915_WRITE(BXT_P_CR_GT_DISP_PWRON, 0);
  2411. }
  2412. static const char * const bxt_ddi_pll_names[] = {
  2413. "PORT PLL A",
  2414. "PORT PLL B",
  2415. "PORT PLL C",
  2416. };
  2417. static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
  2418. struct intel_shared_dpll *pll)
  2419. {
  2420. uint32_t temp;
  2421. enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
  2422. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  2423. temp &= ~PORT_PLL_REF_SEL;
  2424. /* Non-SSC reference */
  2425. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  2426. /* Disable 10 bit clock */
  2427. temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
  2428. temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
  2429. I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
  2430. /* Write P1 & P2 */
  2431. temp = I915_READ(BXT_PORT_PLL_EBB_0(port));
  2432. temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
  2433. temp |= pll->config.hw_state.ebb0;
  2434. I915_WRITE(BXT_PORT_PLL_EBB_0(port), temp);
  2435. /* Write M2 integer */
  2436. temp = I915_READ(BXT_PORT_PLL(port, 0));
  2437. temp &= ~PORT_PLL_M2_MASK;
  2438. temp |= pll->config.hw_state.pll0;
  2439. I915_WRITE(BXT_PORT_PLL(port, 0), temp);
  2440. /* Write N */
  2441. temp = I915_READ(BXT_PORT_PLL(port, 1));
  2442. temp &= ~PORT_PLL_N_MASK;
  2443. temp |= pll->config.hw_state.pll1;
  2444. I915_WRITE(BXT_PORT_PLL(port, 1), temp);
  2445. /* Write M2 fraction */
  2446. temp = I915_READ(BXT_PORT_PLL(port, 2));
  2447. temp &= ~PORT_PLL_M2_FRAC_MASK;
  2448. temp |= pll->config.hw_state.pll2;
  2449. I915_WRITE(BXT_PORT_PLL(port, 2), temp);
  2450. /* Write M2 fraction enable */
  2451. temp = I915_READ(BXT_PORT_PLL(port, 3));
  2452. temp &= ~PORT_PLL_M2_FRAC_ENABLE;
  2453. temp |= pll->config.hw_state.pll3;
  2454. I915_WRITE(BXT_PORT_PLL(port, 3), temp);
  2455. /* Write coeff */
  2456. temp = I915_READ(BXT_PORT_PLL(port, 6));
  2457. temp &= ~PORT_PLL_PROP_COEFF_MASK;
  2458. temp &= ~PORT_PLL_INT_COEFF_MASK;
  2459. temp &= ~PORT_PLL_GAIN_CTL_MASK;
  2460. temp |= pll->config.hw_state.pll6;
  2461. I915_WRITE(BXT_PORT_PLL(port, 6), temp);
  2462. /* Write calibration val */
  2463. temp = I915_READ(BXT_PORT_PLL(port, 8));
  2464. temp &= ~PORT_PLL_TARGET_CNT_MASK;
  2465. temp |= pll->config.hw_state.pll8;
  2466. I915_WRITE(BXT_PORT_PLL(port, 8), temp);
  2467. temp = I915_READ(BXT_PORT_PLL(port, 9));
  2468. temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK;
  2469. temp |= pll->config.hw_state.pll9;
  2470. I915_WRITE(BXT_PORT_PLL(port, 9), temp);
  2471. temp = I915_READ(BXT_PORT_PLL(port, 10));
  2472. temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H;
  2473. temp &= ~PORT_PLL_DCO_AMP_MASK;
  2474. temp |= pll->config.hw_state.pll10;
  2475. I915_WRITE(BXT_PORT_PLL(port, 10), temp);
  2476. /* Recalibrate with new settings */
  2477. temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
  2478. temp |= PORT_PLL_RECALIBRATE;
  2479. I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
  2480. temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
  2481. temp |= pll->config.hw_state.ebb4;
  2482. I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
  2483. /* Enable PLL */
  2484. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  2485. temp |= PORT_PLL_ENABLE;
  2486. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  2487. POSTING_READ(BXT_PORT_PLL_ENABLE(port));
  2488. if (wait_for_atomic_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) &
  2489. PORT_PLL_LOCK), 200))
  2490. DRM_ERROR("PLL %d not locked\n", port);
  2491. /*
  2492. * While we write to the group register to program all lanes at once we
  2493. * can read only lane registers and we pick lanes 0/1 for that.
  2494. */
  2495. temp = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
  2496. temp &= ~LANE_STAGGER_MASK;
  2497. temp &= ~LANESTAGGER_STRAP_OVRD;
  2498. temp |= pll->config.hw_state.pcsdw12;
  2499. I915_WRITE(BXT_PORT_PCS_DW12_GRP(port), temp);
  2500. }
  2501. static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
  2502. struct intel_shared_dpll *pll)
  2503. {
  2504. enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
  2505. uint32_t temp;
  2506. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  2507. temp &= ~PORT_PLL_ENABLE;
  2508. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  2509. POSTING_READ(BXT_PORT_PLL_ENABLE(port));
  2510. }
  2511. static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
  2512. struct intel_shared_dpll *pll,
  2513. struct intel_dpll_hw_state *hw_state)
  2514. {
  2515. enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
  2516. uint32_t val;
  2517. if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
  2518. return false;
  2519. val = I915_READ(BXT_PORT_PLL_ENABLE(port));
  2520. if (!(val & PORT_PLL_ENABLE))
  2521. return false;
  2522. hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(port));
  2523. hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK;
  2524. hw_state->ebb4 = I915_READ(BXT_PORT_PLL_EBB_4(port));
  2525. hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE;
  2526. hw_state->pll0 = I915_READ(BXT_PORT_PLL(port, 0));
  2527. hw_state->pll0 &= PORT_PLL_M2_MASK;
  2528. hw_state->pll1 = I915_READ(BXT_PORT_PLL(port, 1));
  2529. hw_state->pll1 &= PORT_PLL_N_MASK;
  2530. hw_state->pll2 = I915_READ(BXT_PORT_PLL(port, 2));
  2531. hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK;
  2532. hw_state->pll3 = I915_READ(BXT_PORT_PLL(port, 3));
  2533. hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE;
  2534. hw_state->pll6 = I915_READ(BXT_PORT_PLL(port, 6));
  2535. hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK |
  2536. PORT_PLL_INT_COEFF_MASK |
  2537. PORT_PLL_GAIN_CTL_MASK;
  2538. hw_state->pll8 = I915_READ(BXT_PORT_PLL(port, 8));
  2539. hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK;
  2540. hw_state->pll9 = I915_READ(BXT_PORT_PLL(port, 9));
  2541. hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK;
  2542. hw_state->pll10 = I915_READ(BXT_PORT_PLL(port, 10));
  2543. hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H |
  2544. PORT_PLL_DCO_AMP_MASK;
  2545. /*
  2546. * While we write to the group register to program all lanes at once we
  2547. * can read only lane registers. We configure all lanes the same way, so
  2548. * here just read out lanes 0/1 and output a note if lanes 2/3 differ.
  2549. */
  2550. hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
  2551. if (I915_READ(BXT_PORT_PCS_DW12_LN23(port)) != hw_state->pcsdw12)
  2552. DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
  2553. hw_state->pcsdw12,
  2554. I915_READ(BXT_PORT_PCS_DW12_LN23(port)));
  2555. hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD;
  2556. return true;
  2557. }
  2558. static void bxt_shared_dplls_init(struct drm_i915_private *dev_priv)
  2559. {
  2560. int i;
  2561. dev_priv->num_shared_dpll = 3;
  2562. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2563. dev_priv->shared_dplls[i].id = i;
  2564. dev_priv->shared_dplls[i].name = bxt_ddi_pll_names[i];
  2565. dev_priv->shared_dplls[i].disable = bxt_ddi_pll_disable;
  2566. dev_priv->shared_dplls[i].enable = bxt_ddi_pll_enable;
  2567. dev_priv->shared_dplls[i].get_hw_state =
  2568. bxt_ddi_pll_get_hw_state;
  2569. }
  2570. }
  2571. void intel_ddi_pll_init(struct drm_device *dev)
  2572. {
  2573. struct drm_i915_private *dev_priv = dev->dev_private;
  2574. uint32_t val = I915_READ(LCPLL_CTL);
  2575. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  2576. skl_shared_dplls_init(dev_priv);
  2577. else if (IS_BROXTON(dev))
  2578. bxt_shared_dplls_init(dev_priv);
  2579. else
  2580. hsw_shared_dplls_init(dev_priv);
  2581. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
  2582. int cdclk_freq;
  2583. cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
  2584. dev_priv->skl_boot_cdclk = cdclk_freq;
  2585. if (skl_sanitize_cdclk(dev_priv))
  2586. DRM_DEBUG_KMS("Sanitized cdclk programmed by pre-os\n");
  2587. if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE))
  2588. DRM_ERROR("LCPLL1 is disabled\n");
  2589. } else if (IS_BROXTON(dev)) {
  2590. broxton_init_cdclk(dev);
  2591. broxton_ddi_phy_init(dev);
  2592. } else {
  2593. /*
  2594. * The LCPLL register should be turned on by the BIOS. For now
  2595. * let's just check its state and print errors in case
  2596. * something is wrong. Don't even try to turn it on.
  2597. */
  2598. if (val & LCPLL_CD_SOURCE_FCLK)
  2599. DRM_ERROR("CDCLK source is not LCPLL\n");
  2600. if (val & LCPLL_PLL_DISABLE)
  2601. DRM_ERROR("LCPLL is disabled\n");
  2602. }
  2603. }
  2604. void intel_ddi_prepare_link_retrain(struct intel_dp *intel_dp)
  2605. {
  2606. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2607. struct drm_i915_private *dev_priv =
  2608. to_i915(intel_dig_port->base.base.dev);
  2609. enum port port = intel_dig_port->port;
  2610. uint32_t val;
  2611. bool wait = false;
  2612. if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
  2613. val = I915_READ(DDI_BUF_CTL(port));
  2614. if (val & DDI_BUF_CTL_ENABLE) {
  2615. val &= ~DDI_BUF_CTL_ENABLE;
  2616. I915_WRITE(DDI_BUF_CTL(port), val);
  2617. wait = true;
  2618. }
  2619. val = I915_READ(DP_TP_CTL(port));
  2620. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  2621. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  2622. I915_WRITE(DP_TP_CTL(port), val);
  2623. POSTING_READ(DP_TP_CTL(port));
  2624. if (wait)
  2625. intel_wait_ddi_buf_idle(dev_priv, port);
  2626. }
  2627. val = DP_TP_CTL_ENABLE |
  2628. DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
  2629. if (intel_dp->is_mst)
  2630. val |= DP_TP_CTL_MODE_MST;
  2631. else {
  2632. val |= DP_TP_CTL_MODE_SST;
  2633. if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
  2634. val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
  2635. }
  2636. I915_WRITE(DP_TP_CTL(port), val);
  2637. POSTING_READ(DP_TP_CTL(port));
  2638. intel_dp->DP |= DDI_BUF_CTL_ENABLE;
  2639. I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
  2640. POSTING_READ(DDI_BUF_CTL(port));
  2641. udelay(600);
  2642. }
  2643. void intel_ddi_fdi_disable(struct drm_crtc *crtc)
  2644. {
  2645. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  2646. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  2647. uint32_t val;
  2648. intel_ddi_post_disable(intel_encoder);
  2649. val = I915_READ(FDI_RX_CTL(PIPE_A));
  2650. val &= ~FDI_RX_ENABLE;
  2651. I915_WRITE(FDI_RX_CTL(PIPE_A), val);
  2652. val = I915_READ(FDI_RX_MISC(PIPE_A));
  2653. val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  2654. val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  2655. I915_WRITE(FDI_RX_MISC(PIPE_A), val);
  2656. val = I915_READ(FDI_RX_CTL(PIPE_A));
  2657. val &= ~FDI_PCDCLK;
  2658. I915_WRITE(FDI_RX_CTL(PIPE_A), val);
  2659. val = I915_READ(FDI_RX_CTL(PIPE_A));
  2660. val &= ~FDI_RX_PLL_ENABLE;
  2661. I915_WRITE(FDI_RX_CTL(PIPE_A), val);
  2662. }
  2663. void intel_ddi_get_config(struct intel_encoder *encoder,
  2664. struct intel_crtc_state *pipe_config)
  2665. {
  2666. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  2667. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  2668. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  2669. struct intel_hdmi *intel_hdmi;
  2670. u32 temp, flags = 0;
  2671. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  2672. if (temp & TRANS_DDI_PHSYNC)
  2673. flags |= DRM_MODE_FLAG_PHSYNC;
  2674. else
  2675. flags |= DRM_MODE_FLAG_NHSYNC;
  2676. if (temp & TRANS_DDI_PVSYNC)
  2677. flags |= DRM_MODE_FLAG_PVSYNC;
  2678. else
  2679. flags |= DRM_MODE_FLAG_NVSYNC;
  2680. pipe_config->base.adjusted_mode.flags |= flags;
  2681. switch (temp & TRANS_DDI_BPC_MASK) {
  2682. case TRANS_DDI_BPC_6:
  2683. pipe_config->pipe_bpp = 18;
  2684. break;
  2685. case TRANS_DDI_BPC_8:
  2686. pipe_config->pipe_bpp = 24;
  2687. break;
  2688. case TRANS_DDI_BPC_10:
  2689. pipe_config->pipe_bpp = 30;
  2690. break;
  2691. case TRANS_DDI_BPC_12:
  2692. pipe_config->pipe_bpp = 36;
  2693. break;
  2694. default:
  2695. break;
  2696. }
  2697. switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
  2698. case TRANS_DDI_MODE_SELECT_HDMI:
  2699. pipe_config->has_hdmi_sink = true;
  2700. intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  2701. if (intel_hdmi->infoframe_enabled(&encoder->base))
  2702. pipe_config->has_infoframe = true;
  2703. break;
  2704. case TRANS_DDI_MODE_SELECT_DVI:
  2705. case TRANS_DDI_MODE_SELECT_FDI:
  2706. break;
  2707. case TRANS_DDI_MODE_SELECT_DP_SST:
  2708. case TRANS_DDI_MODE_SELECT_DP_MST:
  2709. pipe_config->has_dp_encoder = true;
  2710. pipe_config->lane_count =
  2711. ((temp & DDI_PORT_WIDTH_MASK) >> DDI_PORT_WIDTH_SHIFT) + 1;
  2712. intel_dp_get_m_n(intel_crtc, pipe_config);
  2713. break;
  2714. default:
  2715. break;
  2716. }
  2717. if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
  2718. temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
  2719. if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
  2720. pipe_config->has_audio = true;
  2721. }
  2722. if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp &&
  2723. pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
  2724. /*
  2725. * This is a big fat ugly hack.
  2726. *
  2727. * Some machines in UEFI boot mode provide us a VBT that has 18
  2728. * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
  2729. * unknown we fail to light up. Yet the same BIOS boots up with
  2730. * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
  2731. * max, not what it tells us to use.
  2732. *
  2733. * Note: This will still be broken if the eDP panel is not lit
  2734. * up by the BIOS, and thus we can't get the mode at module
  2735. * load.
  2736. */
  2737. DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
  2738. pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
  2739. dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
  2740. }
  2741. intel_ddi_clock_get(encoder, pipe_config);
  2742. }
  2743. static void intel_ddi_destroy(struct drm_encoder *encoder)
  2744. {
  2745. /* HDMI has nothing special to destroy, so we can go with this. */
  2746. intel_dp_encoder_destroy(encoder);
  2747. }
  2748. static bool intel_ddi_compute_config(struct intel_encoder *encoder,
  2749. struct intel_crtc_state *pipe_config)
  2750. {
  2751. int type = encoder->type;
  2752. int port = intel_ddi_get_encoder_port(encoder);
  2753. WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
  2754. if (port == PORT_A)
  2755. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  2756. if (type == INTEL_OUTPUT_HDMI)
  2757. return intel_hdmi_compute_config(encoder, pipe_config);
  2758. else
  2759. return intel_dp_compute_config(encoder, pipe_config);
  2760. }
  2761. static const struct drm_encoder_funcs intel_ddi_funcs = {
  2762. .destroy = intel_ddi_destroy,
  2763. };
  2764. static struct intel_connector *
  2765. intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
  2766. {
  2767. struct intel_connector *connector;
  2768. enum port port = intel_dig_port->port;
  2769. connector = intel_connector_alloc();
  2770. if (!connector)
  2771. return NULL;
  2772. intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
  2773. if (!intel_dp_init_connector(intel_dig_port, connector)) {
  2774. kfree(connector);
  2775. return NULL;
  2776. }
  2777. return connector;
  2778. }
  2779. static struct intel_connector *
  2780. intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
  2781. {
  2782. struct intel_connector *connector;
  2783. enum port port = intel_dig_port->port;
  2784. connector = intel_connector_alloc();
  2785. if (!connector)
  2786. return NULL;
  2787. intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
  2788. intel_hdmi_init_connector(intel_dig_port, connector);
  2789. return connector;
  2790. }
  2791. void intel_ddi_init(struct drm_device *dev, enum port port)
  2792. {
  2793. struct drm_i915_private *dev_priv = dev->dev_private;
  2794. struct intel_digital_port *intel_dig_port;
  2795. struct intel_encoder *intel_encoder;
  2796. struct drm_encoder *encoder;
  2797. bool init_hdmi, init_dp;
  2798. init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
  2799. dev_priv->vbt.ddi_port_info[port].supports_hdmi);
  2800. init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
  2801. if (!init_dp && !init_hdmi) {
  2802. DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, respect it\n",
  2803. port_name(port));
  2804. return;
  2805. }
  2806. intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
  2807. if (!intel_dig_port)
  2808. return;
  2809. intel_encoder = &intel_dig_port->base;
  2810. encoder = &intel_encoder->base;
  2811. drm_encoder_init(dev, encoder, &intel_ddi_funcs,
  2812. DRM_MODE_ENCODER_TMDS, NULL);
  2813. intel_encoder->compute_config = intel_ddi_compute_config;
  2814. intel_encoder->enable = intel_enable_ddi;
  2815. intel_encoder->pre_enable = intel_ddi_pre_enable;
  2816. intel_encoder->disable = intel_disable_ddi;
  2817. intel_encoder->post_disable = intel_ddi_post_disable;
  2818. intel_encoder->get_hw_state = intel_ddi_get_hw_state;
  2819. intel_encoder->get_config = intel_ddi_get_config;
  2820. intel_dig_port->port = port;
  2821. intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
  2822. (DDI_BUF_PORT_REVERSAL |
  2823. DDI_A_4_LANES);
  2824. /*
  2825. * Bspec says that DDI_A_4_LANES is the only supported configuration
  2826. * for Broxton. Yet some BIOS fail to set this bit on port A if eDP
  2827. * wasn't lit up at boot. Force this bit on in our internal
  2828. * configuration so that we use the proper lane count for our
  2829. * calculations.
  2830. */
  2831. if (IS_BROXTON(dev) && port == PORT_A) {
  2832. if (!(intel_dig_port->saved_port_bits & DDI_A_4_LANES)) {
  2833. DRM_DEBUG_KMS("BXT BIOS forgot to set DDI_A_4_LANES for port A; fixing\n");
  2834. intel_dig_port->saved_port_bits |= DDI_A_4_LANES;
  2835. }
  2836. }
  2837. intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
  2838. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  2839. intel_encoder->cloneable = 0;
  2840. if (init_dp) {
  2841. if (!intel_ddi_init_dp_connector(intel_dig_port))
  2842. goto err;
  2843. intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
  2844. /*
  2845. * On BXT A0/A1, sw needs to activate DDIA HPD logic and
  2846. * interrupts to check the external panel connection.
  2847. */
  2848. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1) && port == PORT_B)
  2849. dev_priv->hotplug.irq_port[PORT_A] = intel_dig_port;
  2850. else
  2851. dev_priv->hotplug.irq_port[port] = intel_dig_port;
  2852. }
  2853. /* In theory we don't need the encoder->type check, but leave it just in
  2854. * case we have some really bad VBTs... */
  2855. if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
  2856. if (!intel_ddi_init_hdmi_connector(intel_dig_port))
  2857. goto err;
  2858. }
  2859. return;
  2860. err:
  2861. drm_encoder_cleanup(encoder);
  2862. kfree(intel_dig_port);
  2863. }