gmc_v8_0.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include <linux/firmware.h>
  24. #include <drm/drmP.h>
  25. #include <drm/drm_cache.h>
  26. #include "amdgpu.h"
  27. #include "gmc_v8_0.h"
  28. #include "amdgpu_ucode.h"
  29. #include "gmc/gmc_8_1_d.h"
  30. #include "gmc/gmc_8_1_sh_mask.h"
  31. #include "bif/bif_5_0_d.h"
  32. #include "bif/bif_5_0_sh_mask.h"
  33. #include "oss/oss_3_0_d.h"
  34. #include "oss/oss_3_0_sh_mask.h"
  35. #include "dce/dce_10_0_d.h"
  36. #include "dce/dce_10_0_sh_mask.h"
  37. #include "vid.h"
  38. #include "vi.h"
  39. #include "amdgpu_atombios.h"
  40. static void gmc_v8_0_set_gmc_funcs(struct amdgpu_device *adev);
  41. static void gmc_v8_0_set_irq_funcs(struct amdgpu_device *adev);
  42. static int gmc_v8_0_wait_for_idle(void *handle);
  43. MODULE_FIRMWARE("amdgpu/tonga_mc.bin");
  44. MODULE_FIRMWARE("amdgpu/polaris11_mc.bin");
  45. MODULE_FIRMWARE("amdgpu/polaris10_mc.bin");
  46. MODULE_FIRMWARE("amdgpu/polaris12_mc.bin");
  47. static const u32 golden_settings_tonga_a11[] =
  48. {
  49. mmMC_ARB_WTM_GRPWT_RD, 0x00000003, 0x00000000,
  50. mmMC_HUB_RDREQ_DMIF_LIMIT, 0x0000007f, 0x00000028,
  51. mmMC_HUB_WDP_UMC, 0x00007fb6, 0x00000991,
  52. mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  53. mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  54. mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  55. mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  56. };
  57. static const u32 tonga_mgcg_cgcg_init[] =
  58. {
  59. mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
  60. };
  61. static const u32 golden_settings_fiji_a10[] =
  62. {
  63. mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  64. mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  65. mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  66. mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  67. };
  68. static const u32 fiji_mgcg_cgcg_init[] =
  69. {
  70. mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
  71. };
  72. static const u32 golden_settings_polaris11_a11[] =
  73. {
  74. mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  75. mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  76. mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  77. mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff
  78. };
  79. static const u32 golden_settings_polaris10_a11[] =
  80. {
  81. mmMC_ARB_WTM_GRPWT_RD, 0x00000003, 0x00000000,
  82. mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  83. mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  84. mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  85. mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff
  86. };
  87. static const u32 cz_mgcg_cgcg_init[] =
  88. {
  89. mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
  90. };
  91. static const u32 stoney_mgcg_cgcg_init[] =
  92. {
  93. mmATC_MISC_CG, 0xffffffff, 0x000c0200,
  94. mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
  95. };
  96. static const u32 golden_settings_stoney_common[] =
  97. {
  98. mmMC_HUB_RDREQ_UVD, MC_HUB_RDREQ_UVD__PRESCALE_MASK, 0x00000004,
  99. mmMC_RD_GRP_OTH, MC_RD_GRP_OTH__UVD_MASK, 0x00600000
  100. };
  101. static void gmc_v8_0_init_golden_registers(struct amdgpu_device *adev)
  102. {
  103. switch (adev->asic_type) {
  104. case CHIP_FIJI:
  105. amdgpu_device_program_register_sequence(adev,
  106. fiji_mgcg_cgcg_init,
  107. ARRAY_SIZE(fiji_mgcg_cgcg_init));
  108. amdgpu_device_program_register_sequence(adev,
  109. golden_settings_fiji_a10,
  110. ARRAY_SIZE(golden_settings_fiji_a10));
  111. break;
  112. case CHIP_TONGA:
  113. amdgpu_device_program_register_sequence(adev,
  114. tonga_mgcg_cgcg_init,
  115. ARRAY_SIZE(tonga_mgcg_cgcg_init));
  116. amdgpu_device_program_register_sequence(adev,
  117. golden_settings_tonga_a11,
  118. ARRAY_SIZE(golden_settings_tonga_a11));
  119. break;
  120. case CHIP_POLARIS11:
  121. case CHIP_POLARIS12:
  122. amdgpu_device_program_register_sequence(adev,
  123. golden_settings_polaris11_a11,
  124. ARRAY_SIZE(golden_settings_polaris11_a11));
  125. break;
  126. case CHIP_POLARIS10:
  127. amdgpu_device_program_register_sequence(adev,
  128. golden_settings_polaris10_a11,
  129. ARRAY_SIZE(golden_settings_polaris10_a11));
  130. break;
  131. case CHIP_CARRIZO:
  132. amdgpu_device_program_register_sequence(adev,
  133. cz_mgcg_cgcg_init,
  134. ARRAY_SIZE(cz_mgcg_cgcg_init));
  135. break;
  136. case CHIP_STONEY:
  137. amdgpu_device_program_register_sequence(adev,
  138. stoney_mgcg_cgcg_init,
  139. ARRAY_SIZE(stoney_mgcg_cgcg_init));
  140. amdgpu_device_program_register_sequence(adev,
  141. golden_settings_stoney_common,
  142. ARRAY_SIZE(golden_settings_stoney_common));
  143. break;
  144. default:
  145. break;
  146. }
  147. }
  148. static void gmc_v8_0_mc_stop(struct amdgpu_device *adev)
  149. {
  150. u32 blackout;
  151. gmc_v8_0_wait_for_idle(adev);
  152. blackout = RREG32(mmMC_SHARED_BLACKOUT_CNTL);
  153. if (REG_GET_FIELD(blackout, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE) != 1) {
  154. /* Block CPU access */
  155. WREG32(mmBIF_FB_EN, 0);
  156. /* blackout the MC */
  157. blackout = REG_SET_FIELD(blackout,
  158. MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 1);
  159. WREG32(mmMC_SHARED_BLACKOUT_CNTL, blackout);
  160. }
  161. /* wait for the MC to settle */
  162. udelay(100);
  163. }
  164. static void gmc_v8_0_mc_resume(struct amdgpu_device *adev)
  165. {
  166. u32 tmp;
  167. /* unblackout the MC */
  168. tmp = RREG32(mmMC_SHARED_BLACKOUT_CNTL);
  169. tmp = REG_SET_FIELD(tmp, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 0);
  170. WREG32(mmMC_SHARED_BLACKOUT_CNTL, tmp);
  171. /* allow CPU access */
  172. tmp = REG_SET_FIELD(0, BIF_FB_EN, FB_READ_EN, 1);
  173. tmp = REG_SET_FIELD(tmp, BIF_FB_EN, FB_WRITE_EN, 1);
  174. WREG32(mmBIF_FB_EN, tmp);
  175. }
  176. /**
  177. * gmc_v8_0_init_microcode - load ucode images from disk
  178. *
  179. * @adev: amdgpu_device pointer
  180. *
  181. * Use the firmware interface to load the ucode images into
  182. * the driver (not loaded into hw).
  183. * Returns 0 on success, error on failure.
  184. */
  185. static int gmc_v8_0_init_microcode(struct amdgpu_device *adev)
  186. {
  187. const char *chip_name;
  188. char fw_name[30];
  189. int err;
  190. DRM_DEBUG("\n");
  191. switch (adev->asic_type) {
  192. case CHIP_TONGA:
  193. chip_name = "tonga";
  194. break;
  195. case CHIP_POLARIS11:
  196. chip_name = "polaris11";
  197. break;
  198. case CHIP_POLARIS10:
  199. chip_name = "polaris10";
  200. break;
  201. case CHIP_POLARIS12:
  202. chip_name = "polaris12";
  203. break;
  204. case CHIP_FIJI:
  205. case CHIP_CARRIZO:
  206. case CHIP_STONEY:
  207. return 0;
  208. default: BUG();
  209. }
  210. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mc.bin", chip_name);
  211. err = request_firmware(&adev->gmc.fw, fw_name, adev->dev);
  212. if (err)
  213. goto out;
  214. err = amdgpu_ucode_validate(adev->gmc.fw);
  215. out:
  216. if (err) {
  217. pr_err("mc: Failed to load firmware \"%s\"\n", fw_name);
  218. release_firmware(adev->gmc.fw);
  219. adev->gmc.fw = NULL;
  220. }
  221. return err;
  222. }
  223. /**
  224. * gmc_v8_0_tonga_mc_load_microcode - load tonga MC ucode into the hw
  225. *
  226. * @adev: amdgpu_device pointer
  227. *
  228. * Load the GDDR MC ucode into the hw (CIK).
  229. * Returns 0 on success, error on failure.
  230. */
  231. static int gmc_v8_0_tonga_mc_load_microcode(struct amdgpu_device *adev)
  232. {
  233. const struct mc_firmware_header_v1_0 *hdr;
  234. const __le32 *fw_data = NULL;
  235. const __le32 *io_mc_regs = NULL;
  236. u32 running;
  237. int i, ucode_size, regs_size;
  238. /* Skip MC ucode loading on SR-IOV capable boards.
  239. * vbios does this for us in asic_init in that case.
  240. * Skip MC ucode loading on VF, because hypervisor will do that
  241. * for this adaptor.
  242. */
  243. if (amdgpu_sriov_bios(adev))
  244. return 0;
  245. if (!adev->gmc.fw)
  246. return -EINVAL;
  247. hdr = (const struct mc_firmware_header_v1_0 *)adev->gmc.fw->data;
  248. amdgpu_ucode_print_mc_hdr(&hdr->header);
  249. adev->gmc.fw_version = le32_to_cpu(hdr->header.ucode_version);
  250. regs_size = le32_to_cpu(hdr->io_debug_size_bytes) / (4 * 2);
  251. io_mc_regs = (const __le32 *)
  252. (adev->gmc.fw->data + le32_to_cpu(hdr->io_debug_array_offset_bytes));
  253. ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  254. fw_data = (const __le32 *)
  255. (adev->gmc.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  256. running = REG_GET_FIELD(RREG32(mmMC_SEQ_SUP_CNTL), MC_SEQ_SUP_CNTL, RUN);
  257. if (running == 0) {
  258. /* reset the engine and set to writable */
  259. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
  260. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000010);
  261. /* load mc io regs */
  262. for (i = 0; i < regs_size; i++) {
  263. WREG32(mmMC_SEQ_IO_DEBUG_INDEX, le32_to_cpup(io_mc_regs++));
  264. WREG32(mmMC_SEQ_IO_DEBUG_DATA, le32_to_cpup(io_mc_regs++));
  265. }
  266. /* load the MC ucode */
  267. for (i = 0; i < ucode_size; i++)
  268. WREG32(mmMC_SEQ_SUP_PGM, le32_to_cpup(fw_data++));
  269. /* put the engine back into the active state */
  270. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
  271. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000004);
  272. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000001);
  273. /* wait for training to complete */
  274. for (i = 0; i < adev->usec_timeout; i++) {
  275. if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL),
  276. MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D0))
  277. break;
  278. udelay(1);
  279. }
  280. for (i = 0; i < adev->usec_timeout; i++) {
  281. if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL),
  282. MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D1))
  283. break;
  284. udelay(1);
  285. }
  286. }
  287. return 0;
  288. }
  289. static int gmc_v8_0_polaris_mc_load_microcode(struct amdgpu_device *adev)
  290. {
  291. const struct mc_firmware_header_v1_0 *hdr;
  292. const __le32 *fw_data = NULL;
  293. const __le32 *io_mc_regs = NULL;
  294. u32 data, vbios_version;
  295. int i, ucode_size, regs_size;
  296. /* Skip MC ucode loading on SR-IOV capable boards.
  297. * vbios does this for us in asic_init in that case.
  298. * Skip MC ucode loading on VF, because hypervisor will do that
  299. * for this adaptor.
  300. */
  301. if (amdgpu_sriov_bios(adev))
  302. return 0;
  303. WREG32(mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);
  304. data = RREG32(mmMC_SEQ_IO_DEBUG_DATA);
  305. vbios_version = data & 0xf;
  306. if (vbios_version == 0)
  307. return 0;
  308. if (!adev->gmc.fw)
  309. return -EINVAL;
  310. hdr = (const struct mc_firmware_header_v1_0 *)adev->gmc.fw->data;
  311. amdgpu_ucode_print_mc_hdr(&hdr->header);
  312. adev->gmc.fw_version = le32_to_cpu(hdr->header.ucode_version);
  313. regs_size = le32_to_cpu(hdr->io_debug_size_bytes) / (4 * 2);
  314. io_mc_regs = (const __le32 *)
  315. (adev->gmc.fw->data + le32_to_cpu(hdr->io_debug_array_offset_bytes));
  316. ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  317. fw_data = (const __le32 *)
  318. (adev->gmc.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  319. data = RREG32(mmMC_SEQ_MISC0);
  320. data &= ~(0x40);
  321. WREG32(mmMC_SEQ_MISC0, data);
  322. /* load mc io regs */
  323. for (i = 0; i < regs_size; i++) {
  324. WREG32(mmMC_SEQ_IO_DEBUG_INDEX, le32_to_cpup(io_mc_regs++));
  325. WREG32(mmMC_SEQ_IO_DEBUG_DATA, le32_to_cpup(io_mc_regs++));
  326. }
  327. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
  328. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000010);
  329. /* load the MC ucode */
  330. for (i = 0; i < ucode_size; i++)
  331. WREG32(mmMC_SEQ_SUP_PGM, le32_to_cpup(fw_data++));
  332. /* put the engine back into the active state */
  333. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
  334. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000004);
  335. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000001);
  336. /* wait for training to complete */
  337. for (i = 0; i < adev->usec_timeout; i++) {
  338. data = RREG32(mmMC_SEQ_MISC0);
  339. if (data & 0x80)
  340. break;
  341. udelay(1);
  342. }
  343. return 0;
  344. }
  345. static void gmc_v8_0_vram_gtt_location(struct amdgpu_device *adev,
  346. struct amdgpu_gmc *mc)
  347. {
  348. u64 base = 0;
  349. if (!amdgpu_sriov_vf(adev))
  350. base = RREG32(mmMC_VM_FB_LOCATION) & 0xFFFF;
  351. base <<= 24;
  352. amdgpu_device_vram_location(adev, &adev->gmc, base);
  353. amdgpu_device_gart_location(adev, mc);
  354. }
  355. /**
  356. * gmc_v8_0_mc_program - program the GPU memory controller
  357. *
  358. * @adev: amdgpu_device pointer
  359. *
  360. * Set the location of vram, gart, and AGP in the GPU's
  361. * physical address space (CIK).
  362. */
  363. static void gmc_v8_0_mc_program(struct amdgpu_device *adev)
  364. {
  365. u32 tmp;
  366. int i, j;
  367. /* Initialize HDP */
  368. for (i = 0, j = 0; i < 32; i++, j += 0x6) {
  369. WREG32((0xb05 + j), 0x00000000);
  370. WREG32((0xb06 + j), 0x00000000);
  371. WREG32((0xb07 + j), 0x00000000);
  372. WREG32((0xb08 + j), 0x00000000);
  373. WREG32((0xb09 + j), 0x00000000);
  374. }
  375. WREG32(mmHDP_REG_COHERENCY_FLUSH_CNTL, 0);
  376. if (gmc_v8_0_wait_for_idle((void *)adev)) {
  377. dev_warn(adev->dev, "Wait for MC idle timedout !\n");
  378. }
  379. if (adev->mode_info.num_crtc) {
  380. /* Lockout access through VGA aperture*/
  381. tmp = RREG32(mmVGA_HDP_CONTROL);
  382. tmp = REG_SET_FIELD(tmp, VGA_HDP_CONTROL, VGA_MEMORY_DISABLE, 1);
  383. WREG32(mmVGA_HDP_CONTROL, tmp);
  384. /* disable VGA render */
  385. tmp = RREG32(mmVGA_RENDER_CONTROL);
  386. tmp = REG_SET_FIELD(tmp, VGA_RENDER_CONTROL, VGA_VSTATUS_CNTL, 0);
  387. WREG32(mmVGA_RENDER_CONTROL, tmp);
  388. }
  389. /* Update configuration */
  390. WREG32(mmMC_VM_SYSTEM_APERTURE_LOW_ADDR,
  391. adev->gmc.vram_start >> 12);
  392. WREG32(mmMC_VM_SYSTEM_APERTURE_HIGH_ADDR,
  393. adev->gmc.vram_end >> 12);
  394. WREG32(mmMC_VM_SYSTEM_APERTURE_DEFAULT_ADDR,
  395. adev->vram_scratch.gpu_addr >> 12);
  396. if (amdgpu_sriov_vf(adev)) {
  397. tmp = ((adev->gmc.vram_end >> 24) & 0xFFFF) << 16;
  398. tmp |= ((adev->gmc.vram_start >> 24) & 0xFFFF);
  399. WREG32(mmMC_VM_FB_LOCATION, tmp);
  400. /* XXX double check these! */
  401. WREG32(mmHDP_NONSURFACE_BASE, (adev->gmc.vram_start >> 8));
  402. WREG32(mmHDP_NONSURFACE_INFO, (2 << 7) | (1 << 30));
  403. WREG32(mmHDP_NONSURFACE_SIZE, 0x3FFFFFFF);
  404. }
  405. WREG32(mmMC_VM_AGP_BASE, 0);
  406. WREG32(mmMC_VM_AGP_TOP, 0x0FFFFFFF);
  407. WREG32(mmMC_VM_AGP_BOT, 0x0FFFFFFF);
  408. if (gmc_v8_0_wait_for_idle((void *)adev)) {
  409. dev_warn(adev->dev, "Wait for MC idle timedout !\n");
  410. }
  411. WREG32(mmBIF_FB_EN, BIF_FB_EN__FB_READ_EN_MASK | BIF_FB_EN__FB_WRITE_EN_MASK);
  412. tmp = RREG32(mmHDP_MISC_CNTL);
  413. tmp = REG_SET_FIELD(tmp, HDP_MISC_CNTL, FLUSH_INVALIDATE_CACHE, 0);
  414. WREG32(mmHDP_MISC_CNTL, tmp);
  415. tmp = RREG32(mmHDP_HOST_PATH_CNTL);
  416. WREG32(mmHDP_HOST_PATH_CNTL, tmp);
  417. }
  418. /**
  419. * gmc_v8_0_mc_init - initialize the memory controller driver params
  420. *
  421. * @adev: amdgpu_device pointer
  422. *
  423. * Look up the amount of vram, vram width, and decide how to place
  424. * vram and gart within the GPU's physical address space (CIK).
  425. * Returns 0 for success.
  426. */
  427. static int gmc_v8_0_mc_init(struct amdgpu_device *adev)
  428. {
  429. int r;
  430. adev->gmc.vram_width = amdgpu_atombios_get_vram_width(adev);
  431. if (!adev->gmc.vram_width) {
  432. u32 tmp;
  433. int chansize, numchan;
  434. /* Get VRAM informations */
  435. tmp = RREG32(mmMC_ARB_RAMCFG);
  436. if (REG_GET_FIELD(tmp, MC_ARB_RAMCFG, CHANSIZE)) {
  437. chansize = 64;
  438. } else {
  439. chansize = 32;
  440. }
  441. tmp = RREG32(mmMC_SHARED_CHMAP);
  442. switch (REG_GET_FIELD(tmp, MC_SHARED_CHMAP, NOOFCHAN)) {
  443. case 0:
  444. default:
  445. numchan = 1;
  446. break;
  447. case 1:
  448. numchan = 2;
  449. break;
  450. case 2:
  451. numchan = 4;
  452. break;
  453. case 3:
  454. numchan = 8;
  455. break;
  456. case 4:
  457. numchan = 3;
  458. break;
  459. case 5:
  460. numchan = 6;
  461. break;
  462. case 6:
  463. numchan = 10;
  464. break;
  465. case 7:
  466. numchan = 12;
  467. break;
  468. case 8:
  469. numchan = 16;
  470. break;
  471. }
  472. adev->gmc.vram_width = numchan * chansize;
  473. }
  474. /* size in MB on si */
  475. adev->gmc.mc_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL;
  476. adev->gmc.real_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL;
  477. if (!(adev->flags & AMD_IS_APU)) {
  478. r = amdgpu_device_resize_fb_bar(adev);
  479. if (r)
  480. return r;
  481. }
  482. adev->gmc.aper_base = pci_resource_start(adev->pdev, 0);
  483. adev->gmc.aper_size = pci_resource_len(adev->pdev, 0);
  484. #ifdef CONFIG_X86_64
  485. if (adev->flags & AMD_IS_APU) {
  486. adev->gmc.aper_base = ((u64)RREG32(mmMC_VM_FB_OFFSET)) << 22;
  487. adev->gmc.aper_size = adev->gmc.real_vram_size;
  488. }
  489. #endif
  490. /* In case the PCI BAR is larger than the actual amount of vram */
  491. adev->gmc.visible_vram_size = adev->gmc.aper_size;
  492. if (adev->gmc.visible_vram_size > adev->gmc.real_vram_size)
  493. adev->gmc.visible_vram_size = adev->gmc.real_vram_size;
  494. /* set the gart size */
  495. if (amdgpu_gart_size == -1) {
  496. switch (adev->asic_type) {
  497. case CHIP_POLARIS11: /* all engines support GPUVM */
  498. case CHIP_POLARIS10: /* all engines support GPUVM */
  499. case CHIP_POLARIS12: /* all engines support GPUVM */
  500. default:
  501. adev->gmc.gart_size = 256ULL << 20;
  502. break;
  503. case CHIP_TONGA: /* UVD, VCE do not support GPUVM */
  504. case CHIP_FIJI: /* UVD, VCE do not support GPUVM */
  505. case CHIP_CARRIZO: /* UVD, VCE do not support GPUVM, DCE SG support */
  506. case CHIP_STONEY: /* UVD does not support GPUVM, DCE SG support */
  507. adev->gmc.gart_size = 1024ULL << 20;
  508. break;
  509. }
  510. } else {
  511. adev->gmc.gart_size = (u64)amdgpu_gart_size << 20;
  512. }
  513. gmc_v8_0_vram_gtt_location(adev, &adev->gmc);
  514. return 0;
  515. }
  516. /*
  517. * GART
  518. * VMID 0 is the physical GPU addresses as used by the kernel.
  519. * VMIDs 1-15 are used for userspace clients and are handled
  520. * by the amdgpu vm/hsa code.
  521. */
  522. /**
  523. * gmc_v8_0_flush_gpu_tlb - gart tlb flush callback
  524. *
  525. * @adev: amdgpu_device pointer
  526. * @vmid: vm instance to flush
  527. *
  528. * Flush the TLB for the requested page table (CIK).
  529. */
  530. static void gmc_v8_0_flush_gpu_tlb(struct amdgpu_device *adev,
  531. uint32_t vmid)
  532. {
  533. /* bits 0-15 are the VM contexts0-15 */
  534. WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
  535. }
  536. /**
  537. * gmc_v8_0_set_pte_pde - update the page tables using MMIO
  538. *
  539. * @adev: amdgpu_device pointer
  540. * @cpu_pt_addr: cpu address of the page table
  541. * @gpu_page_idx: entry in the page table to update
  542. * @addr: dst addr to write into pte/pde
  543. * @flags: access flags
  544. *
  545. * Update the page tables using the CPU.
  546. */
  547. static int gmc_v8_0_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr,
  548. uint32_t gpu_page_idx, uint64_t addr,
  549. uint64_t flags)
  550. {
  551. void __iomem *ptr = (void *)cpu_pt_addr;
  552. uint64_t value;
  553. /*
  554. * PTE format on VI:
  555. * 63:40 reserved
  556. * 39:12 4k physical page base address
  557. * 11:7 fragment
  558. * 6 write
  559. * 5 read
  560. * 4 exe
  561. * 3 reserved
  562. * 2 snooped
  563. * 1 system
  564. * 0 valid
  565. *
  566. * PDE format on VI:
  567. * 63:59 block fragment size
  568. * 58:40 reserved
  569. * 39:1 physical base address of PTE
  570. * bits 5:1 must be 0.
  571. * 0 valid
  572. */
  573. value = addr & 0x000000FFFFFFF000ULL;
  574. value |= flags;
  575. writeq(value, ptr + (gpu_page_idx * 8));
  576. return 0;
  577. }
  578. static uint64_t gmc_v8_0_get_vm_pte_flags(struct amdgpu_device *adev,
  579. uint32_t flags)
  580. {
  581. uint64_t pte_flag = 0;
  582. if (flags & AMDGPU_VM_PAGE_EXECUTABLE)
  583. pte_flag |= AMDGPU_PTE_EXECUTABLE;
  584. if (flags & AMDGPU_VM_PAGE_READABLE)
  585. pte_flag |= AMDGPU_PTE_READABLE;
  586. if (flags & AMDGPU_VM_PAGE_WRITEABLE)
  587. pte_flag |= AMDGPU_PTE_WRITEABLE;
  588. if (flags & AMDGPU_VM_PAGE_PRT)
  589. pte_flag |= AMDGPU_PTE_PRT;
  590. return pte_flag;
  591. }
  592. static void gmc_v8_0_get_vm_pde(struct amdgpu_device *adev, int level,
  593. uint64_t *addr, uint64_t *flags)
  594. {
  595. BUG_ON(*addr & 0xFFFFFF0000000FFFULL);
  596. }
  597. /**
  598. * gmc_v8_0_set_fault_enable_default - update VM fault handling
  599. *
  600. * @adev: amdgpu_device pointer
  601. * @value: true redirects VM faults to the default page
  602. */
  603. static void gmc_v8_0_set_fault_enable_default(struct amdgpu_device *adev,
  604. bool value)
  605. {
  606. u32 tmp;
  607. tmp = RREG32(mmVM_CONTEXT1_CNTL);
  608. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  609. RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  610. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  611. DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  612. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  613. PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  614. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  615. VALID_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  616. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  617. READ_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  618. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  619. WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  620. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  621. EXECUTE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  622. WREG32(mmVM_CONTEXT1_CNTL, tmp);
  623. }
  624. /**
  625. * gmc_v8_0_set_prt - set PRT VM fault
  626. *
  627. * @adev: amdgpu_device pointer
  628. * @enable: enable/disable VM fault handling for PRT
  629. */
  630. static void gmc_v8_0_set_prt(struct amdgpu_device *adev, bool enable)
  631. {
  632. u32 tmp;
  633. if (enable && !adev->gmc.prt_warning) {
  634. dev_warn(adev->dev, "Disabling VM faults because of PRT request!\n");
  635. adev->gmc.prt_warning = true;
  636. }
  637. tmp = RREG32(mmVM_PRT_CNTL);
  638. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  639. CB_DISABLE_READ_FAULT_ON_UNMAPPED_ACCESS, enable);
  640. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  641. CB_DISABLE_WRITE_FAULT_ON_UNMAPPED_ACCESS, enable);
  642. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  643. TC_DISABLE_READ_FAULT_ON_UNMAPPED_ACCESS, enable);
  644. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  645. TC_DISABLE_WRITE_FAULT_ON_UNMAPPED_ACCESS, enable);
  646. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  647. L2_CACHE_STORE_INVALID_ENTRIES, enable);
  648. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  649. L1_TLB_STORE_INVALID_ENTRIES, enable);
  650. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  651. MASK_PDE0_FAULT, enable);
  652. WREG32(mmVM_PRT_CNTL, tmp);
  653. if (enable) {
  654. uint32_t low = AMDGPU_VA_RESERVED_SIZE >> AMDGPU_GPU_PAGE_SHIFT;
  655. uint32_t high = adev->vm_manager.max_pfn;
  656. WREG32(mmVM_PRT_APERTURE0_LOW_ADDR, low);
  657. WREG32(mmVM_PRT_APERTURE1_LOW_ADDR, low);
  658. WREG32(mmVM_PRT_APERTURE2_LOW_ADDR, low);
  659. WREG32(mmVM_PRT_APERTURE3_LOW_ADDR, low);
  660. WREG32(mmVM_PRT_APERTURE0_HIGH_ADDR, high);
  661. WREG32(mmVM_PRT_APERTURE1_HIGH_ADDR, high);
  662. WREG32(mmVM_PRT_APERTURE2_HIGH_ADDR, high);
  663. WREG32(mmVM_PRT_APERTURE3_HIGH_ADDR, high);
  664. } else {
  665. WREG32(mmVM_PRT_APERTURE0_LOW_ADDR, 0xfffffff);
  666. WREG32(mmVM_PRT_APERTURE1_LOW_ADDR, 0xfffffff);
  667. WREG32(mmVM_PRT_APERTURE2_LOW_ADDR, 0xfffffff);
  668. WREG32(mmVM_PRT_APERTURE3_LOW_ADDR, 0xfffffff);
  669. WREG32(mmVM_PRT_APERTURE0_HIGH_ADDR, 0x0);
  670. WREG32(mmVM_PRT_APERTURE1_HIGH_ADDR, 0x0);
  671. WREG32(mmVM_PRT_APERTURE2_HIGH_ADDR, 0x0);
  672. WREG32(mmVM_PRT_APERTURE3_HIGH_ADDR, 0x0);
  673. }
  674. }
  675. /**
  676. * gmc_v8_0_gart_enable - gart enable
  677. *
  678. * @adev: amdgpu_device pointer
  679. *
  680. * This sets up the TLBs, programs the page tables for VMID0,
  681. * sets up the hw for VMIDs 1-15 which are allocated on
  682. * demand, and sets up the global locations for the LDS, GDS,
  683. * and GPUVM for FSA64 clients (CIK).
  684. * Returns 0 for success, errors for failure.
  685. */
  686. static int gmc_v8_0_gart_enable(struct amdgpu_device *adev)
  687. {
  688. int r, i;
  689. u32 tmp, field;
  690. if (adev->gart.robj == NULL) {
  691. dev_err(adev->dev, "No VRAM object for PCIE GART.\n");
  692. return -EINVAL;
  693. }
  694. r = amdgpu_gart_table_vram_pin(adev);
  695. if (r)
  696. return r;
  697. /* Setup TLB control */
  698. tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL);
  699. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 1);
  700. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 1);
  701. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_ACCESS_MODE, 3);
  702. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 1);
  703. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_APERTURE_UNMAPPED_ACCESS, 0);
  704. WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp);
  705. /* Setup L2 cache */
  706. tmp = RREG32(mmVM_L2_CNTL);
  707. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 1);
  708. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_FRAGMENT_PROCESSING, 1);
  709. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE, 1);
  710. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE, 1);
  711. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, EFFECTIVE_L2_QUEUE_SIZE, 7);
  712. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, CONTEXT1_IDENTITY_ACCESS_MODE, 1);
  713. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_DEFAULT_PAGE_OUT_TO_SYSTEM_MEMORY, 1);
  714. WREG32(mmVM_L2_CNTL, tmp);
  715. tmp = RREG32(mmVM_L2_CNTL2);
  716. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_ALL_L1_TLBS, 1);
  717. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_L2_CACHE, 1);
  718. WREG32(mmVM_L2_CNTL2, tmp);
  719. field = adev->vm_manager.fragment_size;
  720. tmp = RREG32(mmVM_L2_CNTL3);
  721. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY, 1);
  722. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, BANK_SELECT, field);
  723. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_FRAGMENT_SIZE, field);
  724. WREG32(mmVM_L2_CNTL3, tmp);
  725. /* XXX: set to enable PTE/PDE in system memory */
  726. tmp = RREG32(mmVM_L2_CNTL4);
  727. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_PHYSICAL, 0);
  728. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_SHARED, 0);
  729. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_SNOOP, 0);
  730. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_PHYSICAL, 0);
  731. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_SHARED, 0);
  732. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_SNOOP, 0);
  733. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_PHYSICAL, 0);
  734. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_SHARED, 0);
  735. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_SNOOP, 0);
  736. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_PHYSICAL, 0);
  737. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_SHARED, 0);
  738. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_SNOOP, 0);
  739. WREG32(mmVM_L2_CNTL4, tmp);
  740. /* setup context0 */
  741. WREG32(mmVM_CONTEXT0_PAGE_TABLE_START_ADDR, adev->gmc.gart_start >> 12);
  742. WREG32(mmVM_CONTEXT0_PAGE_TABLE_END_ADDR, adev->gmc.gart_end >> 12);
  743. WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR, adev->gart.table_addr >> 12);
  744. WREG32(mmVM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR,
  745. (u32)(adev->dummy_page.addr >> 12));
  746. WREG32(mmVM_CONTEXT0_CNTL2, 0);
  747. tmp = RREG32(mmVM_CONTEXT0_CNTL);
  748. tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, ENABLE_CONTEXT, 1);
  749. tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, PAGE_TABLE_DEPTH, 0);
  750. tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  751. WREG32(mmVM_CONTEXT0_CNTL, tmp);
  752. WREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_LOW_ADDR, 0);
  753. WREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_HIGH_ADDR, 0);
  754. WREG32(mmVM_L2_CONTEXT_IDENTITY_PHYSICAL_OFFSET, 0);
  755. /* empty context1-15 */
  756. /* FIXME start with 4G, once using 2 level pt switch to full
  757. * vm size space
  758. */
  759. /* set vm size, must be a multiple of 4 */
  760. WREG32(mmVM_CONTEXT1_PAGE_TABLE_START_ADDR, 0);
  761. WREG32(mmVM_CONTEXT1_PAGE_TABLE_END_ADDR, adev->vm_manager.max_pfn - 1);
  762. for (i = 1; i < 16; i++) {
  763. if (i < 8)
  764. WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + i,
  765. adev->gart.table_addr >> 12);
  766. else
  767. WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + i - 8,
  768. adev->gart.table_addr >> 12);
  769. }
  770. /* enable context1-15 */
  771. WREG32(mmVM_CONTEXT1_PROTECTION_FAULT_DEFAULT_ADDR,
  772. (u32)(adev->dummy_page.addr >> 12));
  773. WREG32(mmVM_CONTEXT1_CNTL2, 4);
  774. tmp = RREG32(mmVM_CONTEXT1_CNTL);
  775. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, ENABLE_CONTEXT, 1);
  776. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_DEPTH, 1);
  777. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  778. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  779. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  780. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, VALID_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  781. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, READ_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  782. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  783. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, EXECUTE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  784. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_BLOCK_SIZE,
  785. adev->vm_manager.block_size - 9);
  786. WREG32(mmVM_CONTEXT1_CNTL, tmp);
  787. if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_ALWAYS)
  788. gmc_v8_0_set_fault_enable_default(adev, false);
  789. else
  790. gmc_v8_0_set_fault_enable_default(adev, true);
  791. gmc_v8_0_flush_gpu_tlb(adev, 0);
  792. DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n",
  793. (unsigned)(adev->gmc.gart_size >> 20),
  794. (unsigned long long)adev->gart.table_addr);
  795. adev->gart.ready = true;
  796. return 0;
  797. }
  798. static int gmc_v8_0_gart_init(struct amdgpu_device *adev)
  799. {
  800. int r;
  801. if (adev->gart.robj) {
  802. WARN(1, "R600 PCIE GART already initialized\n");
  803. return 0;
  804. }
  805. /* Initialize common gart structure */
  806. r = amdgpu_gart_init(adev);
  807. if (r)
  808. return r;
  809. adev->gart.table_size = adev->gart.num_gpu_pages * 8;
  810. adev->gart.gart_pte_flags = AMDGPU_PTE_EXECUTABLE;
  811. return amdgpu_gart_table_vram_alloc(adev);
  812. }
  813. /**
  814. * gmc_v8_0_gart_disable - gart disable
  815. *
  816. * @adev: amdgpu_device pointer
  817. *
  818. * This disables all VM page table (CIK).
  819. */
  820. static void gmc_v8_0_gart_disable(struct amdgpu_device *adev)
  821. {
  822. u32 tmp;
  823. /* Disable all tables */
  824. WREG32(mmVM_CONTEXT0_CNTL, 0);
  825. WREG32(mmVM_CONTEXT1_CNTL, 0);
  826. /* Setup TLB control */
  827. tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL);
  828. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 0);
  829. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 0);
  830. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 0);
  831. WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp);
  832. /* Setup L2 cache */
  833. tmp = RREG32(mmVM_L2_CNTL);
  834. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 0);
  835. WREG32(mmVM_L2_CNTL, tmp);
  836. WREG32(mmVM_L2_CNTL2, 0);
  837. amdgpu_gart_table_vram_unpin(adev);
  838. }
  839. /**
  840. * gmc_v8_0_gart_fini - vm fini callback
  841. *
  842. * @adev: amdgpu_device pointer
  843. *
  844. * Tears down the driver GART/VM setup (CIK).
  845. */
  846. static void gmc_v8_0_gart_fini(struct amdgpu_device *adev)
  847. {
  848. amdgpu_gart_table_vram_free(adev);
  849. amdgpu_gart_fini(adev);
  850. }
  851. /**
  852. * gmc_v8_0_vm_decode_fault - print human readable fault info
  853. *
  854. * @adev: amdgpu_device pointer
  855. * @status: VM_CONTEXT1_PROTECTION_FAULT_STATUS register value
  856. * @addr: VM_CONTEXT1_PROTECTION_FAULT_ADDR register value
  857. *
  858. * Print human readable fault information (CIK).
  859. */
  860. static void gmc_v8_0_vm_decode_fault(struct amdgpu_device *adev, u32 status,
  861. u32 addr, u32 mc_client, unsigned pasid)
  862. {
  863. u32 vmid = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);
  864. u32 protections = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
  865. PROTECTIONS);
  866. char block[5] = { mc_client >> 24, (mc_client >> 16) & 0xff,
  867. (mc_client >> 8) & 0xff, mc_client & 0xff, 0 };
  868. u32 mc_id;
  869. mc_id = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
  870. MEMORY_CLIENT_ID);
  871. dev_err(adev->dev, "VM fault (0x%02x, vmid %d, pasid %d) at page %u, %s from '%s' (0x%08x) (%d)\n",
  872. protections, vmid, pasid, addr,
  873. REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
  874. MEMORY_CLIENT_RW) ?
  875. "write" : "read", block, mc_client, mc_id);
  876. }
  877. static int gmc_v8_0_convert_vram_type(int mc_seq_vram_type)
  878. {
  879. switch (mc_seq_vram_type) {
  880. case MC_SEQ_MISC0__MT__GDDR1:
  881. return AMDGPU_VRAM_TYPE_GDDR1;
  882. case MC_SEQ_MISC0__MT__DDR2:
  883. return AMDGPU_VRAM_TYPE_DDR2;
  884. case MC_SEQ_MISC0__MT__GDDR3:
  885. return AMDGPU_VRAM_TYPE_GDDR3;
  886. case MC_SEQ_MISC0__MT__GDDR4:
  887. return AMDGPU_VRAM_TYPE_GDDR4;
  888. case MC_SEQ_MISC0__MT__GDDR5:
  889. return AMDGPU_VRAM_TYPE_GDDR5;
  890. case MC_SEQ_MISC0__MT__HBM:
  891. return AMDGPU_VRAM_TYPE_HBM;
  892. case MC_SEQ_MISC0__MT__DDR3:
  893. return AMDGPU_VRAM_TYPE_DDR3;
  894. default:
  895. return AMDGPU_VRAM_TYPE_UNKNOWN;
  896. }
  897. }
  898. static int gmc_v8_0_early_init(void *handle)
  899. {
  900. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  901. gmc_v8_0_set_gmc_funcs(adev);
  902. gmc_v8_0_set_irq_funcs(adev);
  903. adev->gmc.shared_aperture_start = 0x2000000000000000ULL;
  904. adev->gmc.shared_aperture_end =
  905. adev->gmc.shared_aperture_start + (4ULL << 30) - 1;
  906. adev->gmc.private_aperture_start =
  907. adev->gmc.shared_aperture_end + 1;
  908. adev->gmc.private_aperture_end =
  909. adev->gmc.private_aperture_start + (4ULL << 30) - 1;
  910. return 0;
  911. }
  912. static int gmc_v8_0_late_init(void *handle)
  913. {
  914. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  915. if (amdgpu_vm_fault_stop != AMDGPU_VM_FAULT_STOP_ALWAYS)
  916. return amdgpu_irq_get(adev, &adev->gmc.vm_fault, 0);
  917. else
  918. return 0;
  919. }
  920. #define mmMC_SEQ_MISC0_FIJI 0xA71
  921. static int gmc_v8_0_sw_init(void *handle)
  922. {
  923. int r;
  924. int dma_bits;
  925. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  926. if (adev->flags & AMD_IS_APU) {
  927. adev->gmc.vram_type = AMDGPU_VRAM_TYPE_UNKNOWN;
  928. } else {
  929. u32 tmp;
  930. if (adev->asic_type == CHIP_FIJI)
  931. tmp = RREG32(mmMC_SEQ_MISC0_FIJI);
  932. else
  933. tmp = RREG32(mmMC_SEQ_MISC0);
  934. tmp &= MC_SEQ_MISC0__MT__MASK;
  935. adev->gmc.vram_type = gmc_v8_0_convert_vram_type(tmp);
  936. }
  937. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 146, &adev->gmc.vm_fault);
  938. if (r)
  939. return r;
  940. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 147, &adev->gmc.vm_fault);
  941. if (r)
  942. return r;
  943. /* Adjust VM size here.
  944. * Currently set to 4GB ((1 << 20) 4k pages).
  945. * Max GPUVM size for cayman and SI is 40 bits.
  946. */
  947. amdgpu_vm_adjust_size(adev, 64, 9, 1, 40);
  948. /* Set the internal MC address mask
  949. * This is the max address of the GPU's
  950. * internal address space.
  951. */
  952. adev->gmc.mc_mask = 0xffffffffffULL; /* 40 bit MC */
  953. adev->gmc.stolen_size = 256 * 1024;
  954. /* set DMA mask + need_dma32 flags.
  955. * PCIE - can handle 40-bits.
  956. * IGP - can handle 40-bits
  957. * PCI - dma32 for legacy pci gart, 40 bits on newer asics
  958. */
  959. adev->need_dma32 = false;
  960. dma_bits = adev->need_dma32 ? 32 : 40;
  961. adev->need_swiotlb = drm_get_max_iomem() > ((u64)1 << dma_bits);
  962. r = pci_set_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits));
  963. if (r) {
  964. adev->need_dma32 = true;
  965. dma_bits = 32;
  966. pr_warn("amdgpu: No suitable DMA available\n");
  967. }
  968. r = pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits));
  969. if (r) {
  970. pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(32));
  971. pr_warn("amdgpu: No coherent DMA available\n");
  972. }
  973. adev->need_swiotlb = drm_get_max_iomem() > ((u64)1 << dma_bits);
  974. r = gmc_v8_0_init_microcode(adev);
  975. if (r) {
  976. DRM_ERROR("Failed to load mc firmware!\n");
  977. return r;
  978. }
  979. r = gmc_v8_0_mc_init(adev);
  980. if (r)
  981. return r;
  982. /* Memory manager */
  983. r = amdgpu_bo_init(adev);
  984. if (r)
  985. return r;
  986. r = gmc_v8_0_gart_init(adev);
  987. if (r)
  988. return r;
  989. /*
  990. * number of VMs
  991. * VMID 0 is reserved for System
  992. * amdgpu graphics/compute will use VMIDs 1-7
  993. * amdkfd will use VMIDs 8-15
  994. */
  995. adev->vm_manager.id_mgr[0].num_ids = AMDGPU_NUM_OF_VMIDS;
  996. amdgpu_vm_manager_init(adev);
  997. /* base offset of vram pages */
  998. if (adev->flags & AMD_IS_APU) {
  999. u64 tmp = RREG32(mmMC_VM_FB_OFFSET);
  1000. tmp <<= 22;
  1001. adev->vm_manager.vram_base_offset = tmp;
  1002. } else {
  1003. adev->vm_manager.vram_base_offset = 0;
  1004. }
  1005. return 0;
  1006. }
  1007. static int gmc_v8_0_sw_fini(void *handle)
  1008. {
  1009. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1010. amdgpu_gem_force_release(adev);
  1011. amdgpu_vm_manager_fini(adev);
  1012. gmc_v8_0_gart_fini(adev);
  1013. amdgpu_bo_fini(adev);
  1014. release_firmware(adev->gmc.fw);
  1015. adev->gmc.fw = NULL;
  1016. return 0;
  1017. }
  1018. static int gmc_v8_0_hw_init(void *handle)
  1019. {
  1020. int r;
  1021. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1022. gmc_v8_0_init_golden_registers(adev);
  1023. gmc_v8_0_mc_program(adev);
  1024. if (adev->asic_type == CHIP_TONGA) {
  1025. r = gmc_v8_0_tonga_mc_load_microcode(adev);
  1026. if (r) {
  1027. DRM_ERROR("Failed to load MC firmware!\n");
  1028. return r;
  1029. }
  1030. } else if (adev->asic_type == CHIP_POLARIS11 ||
  1031. adev->asic_type == CHIP_POLARIS10 ||
  1032. adev->asic_type == CHIP_POLARIS12) {
  1033. r = gmc_v8_0_polaris_mc_load_microcode(adev);
  1034. if (r) {
  1035. DRM_ERROR("Failed to load MC firmware!\n");
  1036. return r;
  1037. }
  1038. }
  1039. r = gmc_v8_0_gart_enable(adev);
  1040. if (r)
  1041. return r;
  1042. return r;
  1043. }
  1044. static int gmc_v8_0_hw_fini(void *handle)
  1045. {
  1046. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1047. amdgpu_irq_put(adev, &adev->gmc.vm_fault, 0);
  1048. gmc_v8_0_gart_disable(adev);
  1049. return 0;
  1050. }
  1051. static int gmc_v8_0_suspend(void *handle)
  1052. {
  1053. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1054. gmc_v8_0_hw_fini(adev);
  1055. return 0;
  1056. }
  1057. static int gmc_v8_0_resume(void *handle)
  1058. {
  1059. int r;
  1060. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1061. r = gmc_v8_0_hw_init(adev);
  1062. if (r)
  1063. return r;
  1064. amdgpu_vmid_reset_all(adev);
  1065. return 0;
  1066. }
  1067. static bool gmc_v8_0_is_idle(void *handle)
  1068. {
  1069. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1070. u32 tmp = RREG32(mmSRBM_STATUS);
  1071. if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
  1072. SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK | SRBM_STATUS__VMC_BUSY_MASK))
  1073. return false;
  1074. return true;
  1075. }
  1076. static int gmc_v8_0_wait_for_idle(void *handle)
  1077. {
  1078. unsigned i;
  1079. u32 tmp;
  1080. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1081. for (i = 0; i < adev->usec_timeout; i++) {
  1082. /* read MC_STATUS */
  1083. tmp = RREG32(mmSRBM_STATUS) & (SRBM_STATUS__MCB_BUSY_MASK |
  1084. SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
  1085. SRBM_STATUS__MCC_BUSY_MASK |
  1086. SRBM_STATUS__MCD_BUSY_MASK |
  1087. SRBM_STATUS__VMC_BUSY_MASK |
  1088. SRBM_STATUS__VMC1_BUSY_MASK);
  1089. if (!tmp)
  1090. return 0;
  1091. udelay(1);
  1092. }
  1093. return -ETIMEDOUT;
  1094. }
  1095. static bool gmc_v8_0_check_soft_reset(void *handle)
  1096. {
  1097. u32 srbm_soft_reset = 0;
  1098. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1099. u32 tmp = RREG32(mmSRBM_STATUS);
  1100. if (tmp & SRBM_STATUS__VMC_BUSY_MASK)
  1101. srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset,
  1102. SRBM_SOFT_RESET, SOFT_RESET_VMC, 1);
  1103. if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
  1104. SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK)) {
  1105. if (!(adev->flags & AMD_IS_APU))
  1106. srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset,
  1107. SRBM_SOFT_RESET, SOFT_RESET_MC, 1);
  1108. }
  1109. if (srbm_soft_reset) {
  1110. adev->gmc.srbm_soft_reset = srbm_soft_reset;
  1111. return true;
  1112. } else {
  1113. adev->gmc.srbm_soft_reset = 0;
  1114. return false;
  1115. }
  1116. }
  1117. static int gmc_v8_0_pre_soft_reset(void *handle)
  1118. {
  1119. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1120. if (!adev->gmc.srbm_soft_reset)
  1121. return 0;
  1122. gmc_v8_0_mc_stop(adev);
  1123. if (gmc_v8_0_wait_for_idle(adev)) {
  1124. dev_warn(adev->dev, "Wait for GMC idle timed out !\n");
  1125. }
  1126. return 0;
  1127. }
  1128. static int gmc_v8_0_soft_reset(void *handle)
  1129. {
  1130. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1131. u32 srbm_soft_reset;
  1132. if (!adev->gmc.srbm_soft_reset)
  1133. return 0;
  1134. srbm_soft_reset = adev->gmc.srbm_soft_reset;
  1135. if (srbm_soft_reset) {
  1136. u32 tmp;
  1137. tmp = RREG32(mmSRBM_SOFT_RESET);
  1138. tmp |= srbm_soft_reset;
  1139. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  1140. WREG32(mmSRBM_SOFT_RESET, tmp);
  1141. tmp = RREG32(mmSRBM_SOFT_RESET);
  1142. udelay(50);
  1143. tmp &= ~srbm_soft_reset;
  1144. WREG32(mmSRBM_SOFT_RESET, tmp);
  1145. tmp = RREG32(mmSRBM_SOFT_RESET);
  1146. /* Wait a little for things to settle down */
  1147. udelay(50);
  1148. }
  1149. return 0;
  1150. }
  1151. static int gmc_v8_0_post_soft_reset(void *handle)
  1152. {
  1153. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1154. if (!adev->gmc.srbm_soft_reset)
  1155. return 0;
  1156. gmc_v8_0_mc_resume(adev);
  1157. return 0;
  1158. }
  1159. static int gmc_v8_0_vm_fault_interrupt_state(struct amdgpu_device *adev,
  1160. struct amdgpu_irq_src *src,
  1161. unsigned type,
  1162. enum amdgpu_interrupt_state state)
  1163. {
  1164. u32 tmp;
  1165. u32 bits = (VM_CONTEXT1_CNTL__RANGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1166. VM_CONTEXT1_CNTL__DUMMY_PAGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1167. VM_CONTEXT1_CNTL__PDE0_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1168. VM_CONTEXT1_CNTL__VALID_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1169. VM_CONTEXT1_CNTL__READ_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1170. VM_CONTEXT1_CNTL__WRITE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1171. VM_CONTEXT1_CNTL__EXECUTE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK);
  1172. switch (state) {
  1173. case AMDGPU_IRQ_STATE_DISABLE:
  1174. /* system context */
  1175. tmp = RREG32(mmVM_CONTEXT0_CNTL);
  1176. tmp &= ~bits;
  1177. WREG32(mmVM_CONTEXT0_CNTL, tmp);
  1178. /* VMs */
  1179. tmp = RREG32(mmVM_CONTEXT1_CNTL);
  1180. tmp &= ~bits;
  1181. WREG32(mmVM_CONTEXT1_CNTL, tmp);
  1182. break;
  1183. case AMDGPU_IRQ_STATE_ENABLE:
  1184. /* system context */
  1185. tmp = RREG32(mmVM_CONTEXT0_CNTL);
  1186. tmp |= bits;
  1187. WREG32(mmVM_CONTEXT0_CNTL, tmp);
  1188. /* VMs */
  1189. tmp = RREG32(mmVM_CONTEXT1_CNTL);
  1190. tmp |= bits;
  1191. WREG32(mmVM_CONTEXT1_CNTL, tmp);
  1192. break;
  1193. default:
  1194. break;
  1195. }
  1196. return 0;
  1197. }
  1198. static int gmc_v8_0_process_interrupt(struct amdgpu_device *adev,
  1199. struct amdgpu_irq_src *source,
  1200. struct amdgpu_iv_entry *entry)
  1201. {
  1202. u32 addr, status, mc_client;
  1203. if (amdgpu_sriov_vf(adev)) {
  1204. dev_err(adev->dev, "GPU fault detected: %d 0x%08x\n",
  1205. entry->src_id, entry->src_data[0]);
  1206. dev_err(adev->dev, " Can't decode VM fault info here on SRIOV VF\n");
  1207. return 0;
  1208. }
  1209. addr = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_ADDR);
  1210. status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
  1211. mc_client = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_MCCLIENT);
  1212. /* reset addr and status */
  1213. WREG32_P(mmVM_CONTEXT1_CNTL2, 1, ~1);
  1214. if (!addr && !status)
  1215. return 0;
  1216. if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_FIRST)
  1217. gmc_v8_0_set_fault_enable_default(adev, false);
  1218. if (printk_ratelimit()) {
  1219. dev_err(adev->dev, "GPU fault detected: %d 0x%08x\n",
  1220. entry->src_id, entry->src_data[0]);
  1221. dev_err(adev->dev, " VM_CONTEXT1_PROTECTION_FAULT_ADDR 0x%08X\n",
  1222. addr);
  1223. dev_err(adev->dev, " VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n",
  1224. status);
  1225. gmc_v8_0_vm_decode_fault(adev, status, addr, mc_client,
  1226. entry->pasid);
  1227. }
  1228. return 0;
  1229. }
  1230. static void fiji_update_mc_medium_grain_clock_gating(struct amdgpu_device *adev,
  1231. bool enable)
  1232. {
  1233. uint32_t data;
  1234. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_MC_MGCG)) {
  1235. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1236. data |= MC_HUB_MISC_HUB_CG__ENABLE_MASK;
  1237. WREG32(mmMC_HUB_MISC_HUB_CG, data);
  1238. data = RREG32(mmMC_HUB_MISC_SIP_CG);
  1239. data |= MC_HUB_MISC_SIP_CG__ENABLE_MASK;
  1240. WREG32(mmMC_HUB_MISC_SIP_CG, data);
  1241. data = RREG32(mmMC_HUB_MISC_VM_CG);
  1242. data |= MC_HUB_MISC_VM_CG__ENABLE_MASK;
  1243. WREG32(mmMC_HUB_MISC_VM_CG, data);
  1244. data = RREG32(mmMC_XPB_CLK_GAT);
  1245. data |= MC_XPB_CLK_GAT__ENABLE_MASK;
  1246. WREG32(mmMC_XPB_CLK_GAT, data);
  1247. data = RREG32(mmATC_MISC_CG);
  1248. data |= ATC_MISC_CG__ENABLE_MASK;
  1249. WREG32(mmATC_MISC_CG, data);
  1250. data = RREG32(mmMC_CITF_MISC_WR_CG);
  1251. data |= MC_CITF_MISC_WR_CG__ENABLE_MASK;
  1252. WREG32(mmMC_CITF_MISC_WR_CG, data);
  1253. data = RREG32(mmMC_CITF_MISC_RD_CG);
  1254. data |= MC_CITF_MISC_RD_CG__ENABLE_MASK;
  1255. WREG32(mmMC_CITF_MISC_RD_CG, data);
  1256. data = RREG32(mmMC_CITF_MISC_VM_CG);
  1257. data |= MC_CITF_MISC_VM_CG__ENABLE_MASK;
  1258. WREG32(mmMC_CITF_MISC_VM_CG, data);
  1259. data = RREG32(mmVM_L2_CG);
  1260. data |= VM_L2_CG__ENABLE_MASK;
  1261. WREG32(mmVM_L2_CG, data);
  1262. } else {
  1263. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1264. data &= ~MC_HUB_MISC_HUB_CG__ENABLE_MASK;
  1265. WREG32(mmMC_HUB_MISC_HUB_CG, data);
  1266. data = RREG32(mmMC_HUB_MISC_SIP_CG);
  1267. data &= ~MC_HUB_MISC_SIP_CG__ENABLE_MASK;
  1268. WREG32(mmMC_HUB_MISC_SIP_CG, data);
  1269. data = RREG32(mmMC_HUB_MISC_VM_CG);
  1270. data &= ~MC_HUB_MISC_VM_CG__ENABLE_MASK;
  1271. WREG32(mmMC_HUB_MISC_VM_CG, data);
  1272. data = RREG32(mmMC_XPB_CLK_GAT);
  1273. data &= ~MC_XPB_CLK_GAT__ENABLE_MASK;
  1274. WREG32(mmMC_XPB_CLK_GAT, data);
  1275. data = RREG32(mmATC_MISC_CG);
  1276. data &= ~ATC_MISC_CG__ENABLE_MASK;
  1277. WREG32(mmATC_MISC_CG, data);
  1278. data = RREG32(mmMC_CITF_MISC_WR_CG);
  1279. data &= ~MC_CITF_MISC_WR_CG__ENABLE_MASK;
  1280. WREG32(mmMC_CITF_MISC_WR_CG, data);
  1281. data = RREG32(mmMC_CITF_MISC_RD_CG);
  1282. data &= ~MC_CITF_MISC_RD_CG__ENABLE_MASK;
  1283. WREG32(mmMC_CITF_MISC_RD_CG, data);
  1284. data = RREG32(mmMC_CITF_MISC_VM_CG);
  1285. data &= ~MC_CITF_MISC_VM_CG__ENABLE_MASK;
  1286. WREG32(mmMC_CITF_MISC_VM_CG, data);
  1287. data = RREG32(mmVM_L2_CG);
  1288. data &= ~VM_L2_CG__ENABLE_MASK;
  1289. WREG32(mmVM_L2_CG, data);
  1290. }
  1291. }
  1292. static void fiji_update_mc_light_sleep(struct amdgpu_device *adev,
  1293. bool enable)
  1294. {
  1295. uint32_t data;
  1296. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_MC_LS)) {
  1297. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1298. data |= MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK;
  1299. WREG32(mmMC_HUB_MISC_HUB_CG, data);
  1300. data = RREG32(mmMC_HUB_MISC_SIP_CG);
  1301. data |= MC_HUB_MISC_SIP_CG__MEM_LS_ENABLE_MASK;
  1302. WREG32(mmMC_HUB_MISC_SIP_CG, data);
  1303. data = RREG32(mmMC_HUB_MISC_VM_CG);
  1304. data |= MC_HUB_MISC_VM_CG__MEM_LS_ENABLE_MASK;
  1305. WREG32(mmMC_HUB_MISC_VM_CG, data);
  1306. data = RREG32(mmMC_XPB_CLK_GAT);
  1307. data |= MC_XPB_CLK_GAT__MEM_LS_ENABLE_MASK;
  1308. WREG32(mmMC_XPB_CLK_GAT, data);
  1309. data = RREG32(mmATC_MISC_CG);
  1310. data |= ATC_MISC_CG__MEM_LS_ENABLE_MASK;
  1311. WREG32(mmATC_MISC_CG, data);
  1312. data = RREG32(mmMC_CITF_MISC_WR_CG);
  1313. data |= MC_CITF_MISC_WR_CG__MEM_LS_ENABLE_MASK;
  1314. WREG32(mmMC_CITF_MISC_WR_CG, data);
  1315. data = RREG32(mmMC_CITF_MISC_RD_CG);
  1316. data |= MC_CITF_MISC_RD_CG__MEM_LS_ENABLE_MASK;
  1317. WREG32(mmMC_CITF_MISC_RD_CG, data);
  1318. data = RREG32(mmMC_CITF_MISC_VM_CG);
  1319. data |= MC_CITF_MISC_VM_CG__MEM_LS_ENABLE_MASK;
  1320. WREG32(mmMC_CITF_MISC_VM_CG, data);
  1321. data = RREG32(mmVM_L2_CG);
  1322. data |= VM_L2_CG__MEM_LS_ENABLE_MASK;
  1323. WREG32(mmVM_L2_CG, data);
  1324. } else {
  1325. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1326. data &= ~MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK;
  1327. WREG32(mmMC_HUB_MISC_HUB_CG, data);
  1328. data = RREG32(mmMC_HUB_MISC_SIP_CG);
  1329. data &= ~MC_HUB_MISC_SIP_CG__MEM_LS_ENABLE_MASK;
  1330. WREG32(mmMC_HUB_MISC_SIP_CG, data);
  1331. data = RREG32(mmMC_HUB_MISC_VM_CG);
  1332. data &= ~MC_HUB_MISC_VM_CG__MEM_LS_ENABLE_MASK;
  1333. WREG32(mmMC_HUB_MISC_VM_CG, data);
  1334. data = RREG32(mmMC_XPB_CLK_GAT);
  1335. data &= ~MC_XPB_CLK_GAT__MEM_LS_ENABLE_MASK;
  1336. WREG32(mmMC_XPB_CLK_GAT, data);
  1337. data = RREG32(mmATC_MISC_CG);
  1338. data &= ~ATC_MISC_CG__MEM_LS_ENABLE_MASK;
  1339. WREG32(mmATC_MISC_CG, data);
  1340. data = RREG32(mmMC_CITF_MISC_WR_CG);
  1341. data &= ~MC_CITF_MISC_WR_CG__MEM_LS_ENABLE_MASK;
  1342. WREG32(mmMC_CITF_MISC_WR_CG, data);
  1343. data = RREG32(mmMC_CITF_MISC_RD_CG);
  1344. data &= ~MC_CITF_MISC_RD_CG__MEM_LS_ENABLE_MASK;
  1345. WREG32(mmMC_CITF_MISC_RD_CG, data);
  1346. data = RREG32(mmMC_CITF_MISC_VM_CG);
  1347. data &= ~MC_CITF_MISC_VM_CG__MEM_LS_ENABLE_MASK;
  1348. WREG32(mmMC_CITF_MISC_VM_CG, data);
  1349. data = RREG32(mmVM_L2_CG);
  1350. data &= ~VM_L2_CG__MEM_LS_ENABLE_MASK;
  1351. WREG32(mmVM_L2_CG, data);
  1352. }
  1353. }
  1354. static int gmc_v8_0_set_clockgating_state(void *handle,
  1355. enum amd_clockgating_state state)
  1356. {
  1357. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1358. if (amdgpu_sriov_vf(adev))
  1359. return 0;
  1360. switch (adev->asic_type) {
  1361. case CHIP_FIJI:
  1362. fiji_update_mc_medium_grain_clock_gating(adev,
  1363. state == AMD_CG_STATE_GATE);
  1364. fiji_update_mc_light_sleep(adev,
  1365. state == AMD_CG_STATE_GATE);
  1366. break;
  1367. default:
  1368. break;
  1369. }
  1370. return 0;
  1371. }
  1372. static int gmc_v8_0_set_powergating_state(void *handle,
  1373. enum amd_powergating_state state)
  1374. {
  1375. return 0;
  1376. }
  1377. static void gmc_v8_0_get_clockgating_state(void *handle, u32 *flags)
  1378. {
  1379. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1380. int data;
  1381. if (amdgpu_sriov_vf(adev))
  1382. *flags = 0;
  1383. /* AMD_CG_SUPPORT_MC_MGCG */
  1384. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1385. if (data & MC_HUB_MISC_HUB_CG__ENABLE_MASK)
  1386. *flags |= AMD_CG_SUPPORT_MC_MGCG;
  1387. /* AMD_CG_SUPPORT_MC_LS */
  1388. if (data & MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK)
  1389. *flags |= AMD_CG_SUPPORT_MC_LS;
  1390. }
  1391. static const struct amd_ip_funcs gmc_v8_0_ip_funcs = {
  1392. .name = "gmc_v8_0",
  1393. .early_init = gmc_v8_0_early_init,
  1394. .late_init = gmc_v8_0_late_init,
  1395. .sw_init = gmc_v8_0_sw_init,
  1396. .sw_fini = gmc_v8_0_sw_fini,
  1397. .hw_init = gmc_v8_0_hw_init,
  1398. .hw_fini = gmc_v8_0_hw_fini,
  1399. .suspend = gmc_v8_0_suspend,
  1400. .resume = gmc_v8_0_resume,
  1401. .is_idle = gmc_v8_0_is_idle,
  1402. .wait_for_idle = gmc_v8_0_wait_for_idle,
  1403. .check_soft_reset = gmc_v8_0_check_soft_reset,
  1404. .pre_soft_reset = gmc_v8_0_pre_soft_reset,
  1405. .soft_reset = gmc_v8_0_soft_reset,
  1406. .post_soft_reset = gmc_v8_0_post_soft_reset,
  1407. .set_clockgating_state = gmc_v8_0_set_clockgating_state,
  1408. .set_powergating_state = gmc_v8_0_set_powergating_state,
  1409. .get_clockgating_state = gmc_v8_0_get_clockgating_state,
  1410. };
  1411. static const struct amdgpu_gmc_funcs gmc_v8_0_gmc_funcs = {
  1412. .flush_gpu_tlb = gmc_v8_0_flush_gpu_tlb,
  1413. .set_pte_pde = gmc_v8_0_set_pte_pde,
  1414. .set_prt = gmc_v8_0_set_prt,
  1415. .get_vm_pte_flags = gmc_v8_0_get_vm_pte_flags,
  1416. .get_vm_pde = gmc_v8_0_get_vm_pde
  1417. };
  1418. static const struct amdgpu_irq_src_funcs gmc_v8_0_irq_funcs = {
  1419. .set = gmc_v8_0_vm_fault_interrupt_state,
  1420. .process = gmc_v8_0_process_interrupt,
  1421. };
  1422. static void gmc_v8_0_set_gmc_funcs(struct amdgpu_device *adev)
  1423. {
  1424. if (adev->gmc.gmc_funcs == NULL)
  1425. adev->gmc.gmc_funcs = &gmc_v8_0_gmc_funcs;
  1426. }
  1427. static void gmc_v8_0_set_irq_funcs(struct amdgpu_device *adev)
  1428. {
  1429. adev->gmc.vm_fault.num_types = 1;
  1430. adev->gmc.vm_fault.funcs = &gmc_v8_0_irq_funcs;
  1431. }
  1432. const struct amdgpu_ip_block_version gmc_v8_0_ip_block =
  1433. {
  1434. .type = AMD_IP_BLOCK_TYPE_GMC,
  1435. .major = 8,
  1436. .minor = 0,
  1437. .rev = 0,
  1438. .funcs = &gmc_v8_0_ip_funcs,
  1439. };
  1440. const struct amdgpu_ip_block_version gmc_v8_1_ip_block =
  1441. {
  1442. .type = AMD_IP_BLOCK_TYPE_GMC,
  1443. .major = 8,
  1444. .minor = 1,
  1445. .rev = 0,
  1446. .funcs = &gmc_v8_0_ip_funcs,
  1447. };
  1448. const struct amdgpu_ip_block_version gmc_v8_5_ip_block =
  1449. {
  1450. .type = AMD_IP_BLOCK_TYPE_GMC,
  1451. .major = 8,
  1452. .minor = 5,
  1453. .rev = 0,
  1454. .funcs = &gmc_v8_0_ip_funcs,
  1455. };