spi-rspi.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190
  1. /*
  2. * SH RSPI driver
  3. *
  4. * Copyright (C) 2012, 2013 Renesas Solutions Corp.
  5. * Copyright (C) 2014 Glider bvba
  6. *
  7. * Based on spi-sh.c:
  8. * Copyright (C) 2011 Renesas Solutions Corp.
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; version 2 of the License.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  22. *
  23. */
  24. #include <linux/module.h>
  25. #include <linux/kernel.h>
  26. #include <linux/sched.h>
  27. #include <linux/errno.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/platform_device.h>
  30. #include <linux/io.h>
  31. #include <linux/clk.h>
  32. #include <linux/dmaengine.h>
  33. #include <linux/dma-mapping.h>
  34. #include <linux/of_device.h>
  35. #include <linux/pm_runtime.h>
  36. #include <linux/sh_dma.h>
  37. #include <linux/spi/spi.h>
  38. #include <linux/spi/rspi.h>
  39. #define RSPI_SPCR 0x00 /* Control Register */
  40. #define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
  41. #define RSPI_SPPCR 0x02 /* Pin Control Register */
  42. #define RSPI_SPSR 0x03 /* Status Register */
  43. #define RSPI_SPDR 0x04 /* Data Register */
  44. #define RSPI_SPSCR 0x08 /* Sequence Control Register */
  45. #define RSPI_SPSSR 0x09 /* Sequence Status Register */
  46. #define RSPI_SPBR 0x0a /* Bit Rate Register */
  47. #define RSPI_SPDCR 0x0b /* Data Control Register */
  48. #define RSPI_SPCKD 0x0c /* Clock Delay Register */
  49. #define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
  50. #define RSPI_SPND 0x0e /* Next-Access Delay Register */
  51. #define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */
  52. #define RSPI_SPCMD0 0x10 /* Command Register 0 */
  53. #define RSPI_SPCMD1 0x12 /* Command Register 1 */
  54. #define RSPI_SPCMD2 0x14 /* Command Register 2 */
  55. #define RSPI_SPCMD3 0x16 /* Command Register 3 */
  56. #define RSPI_SPCMD4 0x18 /* Command Register 4 */
  57. #define RSPI_SPCMD5 0x1a /* Command Register 5 */
  58. #define RSPI_SPCMD6 0x1c /* Command Register 6 */
  59. #define RSPI_SPCMD7 0x1e /* Command Register 7 */
  60. #define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2)
  61. #define RSPI_NUM_SPCMD 8
  62. #define RSPI_RZ_NUM_SPCMD 4
  63. #define QSPI_NUM_SPCMD 4
  64. /* RSPI on RZ only */
  65. #define RSPI_SPBFCR 0x20 /* Buffer Control Register */
  66. #define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
  67. /* QSPI only */
  68. #define QSPI_SPBFCR 0x18 /* Buffer Control Register */
  69. #define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
  70. #define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
  71. #define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
  72. #define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
  73. #define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
  74. #define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4)
  75. /* SPCR - Control Register */
  76. #define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
  77. #define SPCR_SPE 0x40 /* Function Enable */
  78. #define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
  79. #define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
  80. #define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
  81. #define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
  82. /* RSPI on SH only */
  83. #define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
  84. #define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
  85. /* QSPI on R-Car M2 only */
  86. #define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
  87. #define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
  88. /* SSLP - Slave Select Polarity Register */
  89. #define SSLP_SSL1P 0x02 /* SSL1 Signal Polarity Setting */
  90. #define SSLP_SSL0P 0x01 /* SSL0 Signal Polarity Setting */
  91. /* SPPCR - Pin Control Register */
  92. #define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
  93. #define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
  94. #define SPPCR_SPOM 0x04
  95. #define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
  96. #define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
  97. #define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
  98. #define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
  99. /* SPSR - Status Register */
  100. #define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
  101. #define SPSR_TEND 0x40 /* Transmit End */
  102. #define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
  103. #define SPSR_PERF 0x08 /* Parity Error Flag */
  104. #define SPSR_MODF 0x04 /* Mode Fault Error Flag */
  105. #define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
  106. #define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */
  107. /* SPSCR - Sequence Control Register */
  108. #define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
  109. /* SPSSR - Sequence Status Register */
  110. #define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
  111. #define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
  112. /* SPDCR - Data Control Register */
  113. #define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
  114. #define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
  115. #define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
  116. #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
  117. #define SPDCR_SPLWORD SPDCR_SPLW1
  118. #define SPDCR_SPLBYTE SPDCR_SPLW0
  119. #define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
  120. #define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */
  121. #define SPDCR_SLSEL1 0x08
  122. #define SPDCR_SLSEL0 0x04
  123. #define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */
  124. #define SPDCR_SPFC1 0x02
  125. #define SPDCR_SPFC0 0x01
  126. #define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */
  127. /* SPCKD - Clock Delay Register */
  128. #define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
  129. /* SSLND - Slave Select Negation Delay Register */
  130. #define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
  131. /* SPND - Next-Access Delay Register */
  132. #define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
  133. /* SPCR2 - Control Register 2 */
  134. #define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
  135. #define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
  136. #define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
  137. #define SPCR2_SPPE 0x01 /* Parity Enable */
  138. /* SPCMDn - Command Registers */
  139. #define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
  140. #define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
  141. #define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
  142. #define SPCMD_LSBF 0x1000 /* LSB First */
  143. #define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
  144. #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
  145. #define SPCMD_SPB_8BIT 0x0000 /* QSPI only */
  146. #define SPCMD_SPB_16BIT 0x0100
  147. #define SPCMD_SPB_20BIT 0x0000
  148. #define SPCMD_SPB_24BIT 0x0100
  149. #define SPCMD_SPB_32BIT 0x0200
  150. #define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
  151. #define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
  152. #define SPCMD_SPIMOD1 0x0040
  153. #define SPCMD_SPIMOD0 0x0020
  154. #define SPCMD_SPIMOD_SINGLE 0
  155. #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
  156. #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
  157. #define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
  158. #define SPCMD_SSLA_MASK 0x0030 /* SSL Assert Signal Setting (RSPI) */
  159. #define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
  160. #define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
  161. #define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
  162. /* SPBFCR - Buffer Control Register */
  163. #define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */
  164. #define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */
  165. #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
  166. #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
  167. struct rspi_data {
  168. void __iomem *addr;
  169. u32 max_speed_hz;
  170. struct spi_master *master;
  171. wait_queue_head_t wait;
  172. struct clk *clk;
  173. u16 spcmd;
  174. u8 spsr;
  175. u8 sppcr;
  176. int rx_irq, tx_irq;
  177. const struct spi_ops *ops;
  178. unsigned dma_callbacked:1;
  179. unsigned byte_access:1;
  180. };
  181. static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
  182. {
  183. iowrite8(data, rspi->addr + offset);
  184. }
  185. static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
  186. {
  187. iowrite16(data, rspi->addr + offset);
  188. }
  189. static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
  190. {
  191. iowrite32(data, rspi->addr + offset);
  192. }
  193. static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
  194. {
  195. return ioread8(rspi->addr + offset);
  196. }
  197. static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
  198. {
  199. return ioread16(rspi->addr + offset);
  200. }
  201. static void rspi_write_data(const struct rspi_data *rspi, u16 data)
  202. {
  203. if (rspi->byte_access)
  204. rspi_write8(rspi, data, RSPI_SPDR);
  205. else /* 16 bit */
  206. rspi_write16(rspi, data, RSPI_SPDR);
  207. }
  208. static u16 rspi_read_data(const struct rspi_data *rspi)
  209. {
  210. if (rspi->byte_access)
  211. return rspi_read8(rspi, RSPI_SPDR);
  212. else /* 16 bit */
  213. return rspi_read16(rspi, RSPI_SPDR);
  214. }
  215. /* optional functions */
  216. struct spi_ops {
  217. int (*set_config_register)(struct rspi_data *rspi, int access_size);
  218. int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
  219. struct spi_transfer *xfer);
  220. u16 mode_bits;
  221. u16 flags;
  222. u16 fifo_size;
  223. };
  224. /*
  225. * functions for RSPI on legacy SH
  226. */
  227. static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
  228. {
  229. int spbr;
  230. /* Sets output mode, MOSI signal, and (optionally) loopback */
  231. rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
  232. /* Sets transfer bit rate */
  233. spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
  234. 2 * rspi->max_speed_hz) - 1;
  235. rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
  236. /* Disable dummy transmission, set 16-bit word access, 1 frame */
  237. rspi_write8(rspi, 0, RSPI_SPDCR);
  238. rspi->byte_access = 0;
  239. /* Sets RSPCK, SSL, next-access delay value */
  240. rspi_write8(rspi, 0x00, RSPI_SPCKD);
  241. rspi_write8(rspi, 0x00, RSPI_SSLND);
  242. rspi_write8(rspi, 0x00, RSPI_SPND);
  243. /* Sets parity, interrupt mask */
  244. rspi_write8(rspi, 0x00, RSPI_SPCR2);
  245. /* Sets SPCMD */
  246. rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
  247. rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
  248. /* Sets RSPI mode */
  249. rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
  250. return 0;
  251. }
  252. /*
  253. * functions for RSPI on RZ
  254. */
  255. static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
  256. {
  257. int spbr;
  258. /* Sets output mode, MOSI signal, and (optionally) loopback */
  259. rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
  260. /* Sets transfer bit rate */
  261. spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
  262. 2 * rspi->max_speed_hz) - 1;
  263. rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
  264. /* Disable dummy transmission, set byte access */
  265. rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
  266. rspi->byte_access = 1;
  267. /* Sets RSPCK, SSL, next-access delay value */
  268. rspi_write8(rspi, 0x00, RSPI_SPCKD);
  269. rspi_write8(rspi, 0x00, RSPI_SSLND);
  270. rspi_write8(rspi, 0x00, RSPI_SPND);
  271. /* Sets SPCMD */
  272. rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
  273. rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
  274. /* Sets RSPI mode */
  275. rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
  276. return 0;
  277. }
  278. /*
  279. * functions for QSPI
  280. */
  281. static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
  282. {
  283. int spbr;
  284. /* Sets output mode, MOSI signal, and (optionally) loopback */
  285. rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
  286. /* Sets transfer bit rate */
  287. spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz);
  288. rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
  289. /* Disable dummy transmission, set byte access */
  290. rspi_write8(rspi, 0, RSPI_SPDCR);
  291. rspi->byte_access = 1;
  292. /* Sets RSPCK, SSL, next-access delay value */
  293. rspi_write8(rspi, 0x00, RSPI_SPCKD);
  294. rspi_write8(rspi, 0x00, RSPI_SSLND);
  295. rspi_write8(rspi, 0x00, RSPI_SPND);
  296. /* Data Length Setting */
  297. if (access_size == 8)
  298. rspi->spcmd |= SPCMD_SPB_8BIT;
  299. else if (access_size == 16)
  300. rspi->spcmd |= SPCMD_SPB_16BIT;
  301. else
  302. rspi->spcmd |= SPCMD_SPB_32BIT;
  303. rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
  304. /* Resets transfer data length */
  305. rspi_write32(rspi, 0, QSPI_SPBMUL0);
  306. /* Resets transmit and receive buffer */
  307. rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
  308. /* Sets buffer to allow normal operation */
  309. rspi_write8(rspi, 0x00, QSPI_SPBFCR);
  310. /* Sets SPCMD */
  311. rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
  312. /* Enables SPI function in master mode */
  313. rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR);
  314. return 0;
  315. }
  316. #define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
  317. static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
  318. {
  319. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
  320. }
  321. static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
  322. {
  323. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
  324. }
  325. static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
  326. u8 enable_bit)
  327. {
  328. int ret;
  329. rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
  330. if (rspi->spsr & wait_mask)
  331. return 0;
  332. rspi_enable_irq(rspi, enable_bit);
  333. ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
  334. if (ret == 0 && !(rspi->spsr & wait_mask))
  335. return -ETIMEDOUT;
  336. return 0;
  337. }
  338. static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
  339. {
  340. return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
  341. }
  342. static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
  343. {
  344. return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
  345. }
  346. static int rspi_data_out(struct rspi_data *rspi, u8 data)
  347. {
  348. int error = rspi_wait_for_tx_empty(rspi);
  349. if (error < 0) {
  350. dev_err(&rspi->master->dev, "transmit timeout\n");
  351. return error;
  352. }
  353. rspi_write_data(rspi, data);
  354. return 0;
  355. }
  356. static int rspi_data_in(struct rspi_data *rspi)
  357. {
  358. int error;
  359. u8 data;
  360. error = rspi_wait_for_rx_full(rspi);
  361. if (error < 0) {
  362. dev_err(&rspi->master->dev, "receive timeout\n");
  363. return error;
  364. }
  365. data = rspi_read_data(rspi);
  366. return data;
  367. }
  368. static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
  369. unsigned int n)
  370. {
  371. while (n-- > 0) {
  372. if (tx) {
  373. int ret = rspi_data_out(rspi, *tx++);
  374. if (ret < 0)
  375. return ret;
  376. }
  377. if (rx) {
  378. int ret = rspi_data_in(rspi);
  379. if (ret < 0)
  380. return ret;
  381. *rx++ = ret;
  382. }
  383. }
  384. return 0;
  385. }
  386. static void rspi_dma_complete(void *arg)
  387. {
  388. struct rspi_data *rspi = arg;
  389. rspi->dma_callbacked = 1;
  390. wake_up_interruptible(&rspi->wait);
  391. }
  392. static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
  393. struct sg_table *rx)
  394. {
  395. struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
  396. u8 irq_mask = 0;
  397. unsigned int other_irq = 0;
  398. dma_cookie_t cookie;
  399. int ret;
  400. if (tx) {
  401. desc_tx = dmaengine_prep_slave_sg(rspi->master->dma_tx,
  402. tx->sgl, tx->nents, DMA_TO_DEVICE,
  403. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  404. if (!desc_tx)
  405. goto no_dma;
  406. irq_mask |= SPCR_SPTIE;
  407. }
  408. if (rx) {
  409. desc_rx = dmaengine_prep_slave_sg(rspi->master->dma_rx,
  410. rx->sgl, rx->nents, DMA_FROM_DEVICE,
  411. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  412. if (!desc_rx)
  413. goto no_dma;
  414. irq_mask |= SPCR_SPRIE;
  415. }
  416. /*
  417. * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
  418. * called. So, this driver disables the IRQ while DMA transfer.
  419. */
  420. if (tx)
  421. disable_irq(other_irq = rspi->tx_irq);
  422. if (rx && rspi->rx_irq != other_irq)
  423. disable_irq(rspi->rx_irq);
  424. rspi_enable_irq(rspi, irq_mask);
  425. rspi->dma_callbacked = 0;
  426. if (rx) {
  427. desc_rx->callback = rspi_dma_complete;
  428. desc_rx->callback_param = rspi;
  429. cookie = dmaengine_submit(desc_rx);
  430. if (dma_submit_error(cookie))
  431. return cookie;
  432. dma_async_issue_pending(rspi->master->dma_rx);
  433. }
  434. if (tx) {
  435. if (rx) {
  436. /* No callback */
  437. desc_tx->callback = NULL;
  438. } else {
  439. desc_tx->callback = rspi_dma_complete;
  440. desc_tx->callback_param = rspi;
  441. }
  442. cookie = dmaengine_submit(desc_tx);
  443. if (dma_submit_error(cookie))
  444. return cookie;
  445. dma_async_issue_pending(rspi->master->dma_tx);
  446. }
  447. ret = wait_event_interruptible_timeout(rspi->wait,
  448. rspi->dma_callbacked, HZ);
  449. if (ret > 0 && rspi->dma_callbacked)
  450. ret = 0;
  451. else if (!ret)
  452. ret = -ETIMEDOUT;
  453. rspi_disable_irq(rspi, irq_mask);
  454. if (tx)
  455. enable_irq(rspi->tx_irq);
  456. if (rx && rspi->rx_irq != other_irq)
  457. enable_irq(rspi->rx_irq);
  458. return ret;
  459. no_dma:
  460. pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
  461. dev_driver_string(&rspi->master->dev),
  462. dev_name(&rspi->master->dev));
  463. return -EAGAIN;
  464. }
  465. static void rspi_receive_init(const struct rspi_data *rspi)
  466. {
  467. u8 spsr;
  468. spsr = rspi_read8(rspi, RSPI_SPSR);
  469. if (spsr & SPSR_SPRF)
  470. rspi_read_data(rspi); /* dummy read */
  471. if (spsr & SPSR_OVRF)
  472. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
  473. RSPI_SPSR);
  474. }
  475. static void rspi_rz_receive_init(const struct rspi_data *rspi)
  476. {
  477. rspi_receive_init(rspi);
  478. rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
  479. rspi_write8(rspi, 0, RSPI_SPBFCR);
  480. }
  481. static void qspi_receive_init(const struct rspi_data *rspi)
  482. {
  483. u8 spsr;
  484. spsr = rspi_read8(rspi, RSPI_SPSR);
  485. if (spsr & SPSR_SPRF)
  486. rspi_read_data(rspi); /* dummy read */
  487. rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
  488. rspi_write8(rspi, 0, QSPI_SPBFCR);
  489. }
  490. static bool __rspi_can_dma(const struct rspi_data *rspi,
  491. const struct spi_transfer *xfer)
  492. {
  493. return xfer->len > rspi->ops->fifo_size;
  494. }
  495. static bool rspi_can_dma(struct spi_master *master, struct spi_device *spi,
  496. struct spi_transfer *xfer)
  497. {
  498. struct rspi_data *rspi = spi_master_get_devdata(master);
  499. return __rspi_can_dma(rspi, xfer);
  500. }
  501. static int rspi_common_transfer(struct rspi_data *rspi,
  502. struct spi_transfer *xfer)
  503. {
  504. int ret;
  505. if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
  506. /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
  507. ret = rspi_dma_transfer(rspi, &xfer->tx_sg,
  508. xfer->rx_buf ? &xfer->rx_sg : NULL);
  509. if (ret != -EAGAIN)
  510. return ret;
  511. }
  512. ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
  513. if (ret < 0)
  514. return ret;
  515. /* Wait for the last transmission */
  516. rspi_wait_for_tx_empty(rspi);
  517. return 0;
  518. }
  519. static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi,
  520. struct spi_transfer *xfer)
  521. {
  522. struct rspi_data *rspi = spi_master_get_devdata(master);
  523. u8 spcr;
  524. spcr = rspi_read8(rspi, RSPI_SPCR);
  525. if (xfer->rx_buf) {
  526. rspi_receive_init(rspi);
  527. spcr &= ~SPCR_TXMD;
  528. } else {
  529. spcr |= SPCR_TXMD;
  530. }
  531. rspi_write8(rspi, spcr, RSPI_SPCR);
  532. return rspi_common_transfer(rspi, xfer);
  533. }
  534. static int rspi_rz_transfer_one(struct spi_master *master,
  535. struct spi_device *spi,
  536. struct spi_transfer *xfer)
  537. {
  538. struct rspi_data *rspi = spi_master_get_devdata(master);
  539. rspi_rz_receive_init(rspi);
  540. return rspi_common_transfer(rspi, xfer);
  541. }
  542. static int qspi_transfer_out_in(struct rspi_data *rspi,
  543. struct spi_transfer *xfer)
  544. {
  545. qspi_receive_init(rspi);
  546. return rspi_common_transfer(rspi, xfer);
  547. }
  548. static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
  549. {
  550. int ret;
  551. if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
  552. ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
  553. if (ret != -EAGAIN)
  554. return ret;
  555. }
  556. ret = rspi_pio_transfer(rspi, xfer->tx_buf, NULL, xfer->len);
  557. if (ret < 0)
  558. return ret;
  559. /* Wait for the last transmission */
  560. rspi_wait_for_tx_empty(rspi);
  561. return 0;
  562. }
  563. static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
  564. {
  565. if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
  566. int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
  567. if (ret != -EAGAIN)
  568. return ret;
  569. }
  570. return rspi_pio_transfer(rspi, NULL, xfer->rx_buf, xfer->len);
  571. }
  572. static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
  573. struct spi_transfer *xfer)
  574. {
  575. struct rspi_data *rspi = spi_master_get_devdata(master);
  576. if (spi->mode & SPI_LOOP) {
  577. return qspi_transfer_out_in(rspi, xfer);
  578. } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
  579. /* Quad or Dual SPI Write */
  580. return qspi_transfer_out(rspi, xfer);
  581. } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
  582. /* Quad or Dual SPI Read */
  583. return qspi_transfer_in(rspi, xfer);
  584. } else {
  585. /* Single SPI Transfer */
  586. return qspi_transfer_out_in(rspi, xfer);
  587. }
  588. }
  589. static int rspi_setup(struct spi_device *spi)
  590. {
  591. struct rspi_data *rspi = spi_master_get_devdata(spi->master);
  592. rspi->max_speed_hz = spi->max_speed_hz;
  593. rspi->spcmd = SPCMD_SSLKP;
  594. if (spi->mode & SPI_CPOL)
  595. rspi->spcmd |= SPCMD_CPOL;
  596. if (spi->mode & SPI_CPHA)
  597. rspi->spcmd |= SPCMD_CPHA;
  598. /* CMOS output mode and MOSI signal from previous transfer */
  599. rspi->sppcr = 0;
  600. if (spi->mode & SPI_LOOP)
  601. rspi->sppcr |= SPPCR_SPLP;
  602. set_config_register(rspi, 8);
  603. return 0;
  604. }
  605. static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
  606. {
  607. if (xfer->tx_buf)
  608. switch (xfer->tx_nbits) {
  609. case SPI_NBITS_QUAD:
  610. return SPCMD_SPIMOD_QUAD;
  611. case SPI_NBITS_DUAL:
  612. return SPCMD_SPIMOD_DUAL;
  613. default:
  614. return 0;
  615. }
  616. if (xfer->rx_buf)
  617. switch (xfer->rx_nbits) {
  618. case SPI_NBITS_QUAD:
  619. return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
  620. case SPI_NBITS_DUAL:
  621. return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
  622. default:
  623. return 0;
  624. }
  625. return 0;
  626. }
  627. static int qspi_setup_sequencer(struct rspi_data *rspi,
  628. const struct spi_message *msg)
  629. {
  630. const struct spi_transfer *xfer;
  631. unsigned int i = 0, len = 0;
  632. u16 current_mode = 0xffff, mode;
  633. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  634. mode = qspi_transfer_mode(xfer);
  635. if (mode == current_mode) {
  636. len += xfer->len;
  637. continue;
  638. }
  639. /* Transfer mode change */
  640. if (i) {
  641. /* Set transfer data length of previous transfer */
  642. rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
  643. }
  644. if (i >= QSPI_NUM_SPCMD) {
  645. dev_err(&msg->spi->dev,
  646. "Too many different transfer modes");
  647. return -EINVAL;
  648. }
  649. /* Program transfer mode for this transfer */
  650. rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
  651. current_mode = mode;
  652. len = xfer->len;
  653. i++;
  654. }
  655. if (i) {
  656. /* Set final transfer data length and sequence length */
  657. rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
  658. rspi_write8(rspi, i - 1, RSPI_SPSCR);
  659. }
  660. return 0;
  661. }
  662. static int rspi_prepare_message(struct spi_master *master,
  663. struct spi_message *msg)
  664. {
  665. struct rspi_data *rspi = spi_master_get_devdata(master);
  666. int ret;
  667. if (msg->spi->mode &
  668. (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
  669. /* Setup sequencer for messages with multiple transfer modes */
  670. ret = qspi_setup_sequencer(rspi, msg);
  671. if (ret < 0)
  672. return ret;
  673. }
  674. /* Enable SPI function in master mode */
  675. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
  676. return 0;
  677. }
  678. static int rspi_unprepare_message(struct spi_master *master,
  679. struct spi_message *msg)
  680. {
  681. struct rspi_data *rspi = spi_master_get_devdata(master);
  682. /* Disable SPI function */
  683. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
  684. /* Reset sequencer for Single SPI Transfers */
  685. rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
  686. rspi_write8(rspi, 0, RSPI_SPSCR);
  687. return 0;
  688. }
  689. static irqreturn_t rspi_irq_mux(int irq, void *_sr)
  690. {
  691. struct rspi_data *rspi = _sr;
  692. u8 spsr;
  693. irqreturn_t ret = IRQ_NONE;
  694. u8 disable_irq = 0;
  695. rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
  696. if (spsr & SPSR_SPRF)
  697. disable_irq |= SPCR_SPRIE;
  698. if (spsr & SPSR_SPTEF)
  699. disable_irq |= SPCR_SPTIE;
  700. if (disable_irq) {
  701. ret = IRQ_HANDLED;
  702. rspi_disable_irq(rspi, disable_irq);
  703. wake_up(&rspi->wait);
  704. }
  705. return ret;
  706. }
  707. static irqreturn_t rspi_irq_rx(int irq, void *_sr)
  708. {
  709. struct rspi_data *rspi = _sr;
  710. u8 spsr;
  711. rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
  712. if (spsr & SPSR_SPRF) {
  713. rspi_disable_irq(rspi, SPCR_SPRIE);
  714. wake_up(&rspi->wait);
  715. return IRQ_HANDLED;
  716. }
  717. return 0;
  718. }
  719. static irqreturn_t rspi_irq_tx(int irq, void *_sr)
  720. {
  721. struct rspi_data *rspi = _sr;
  722. u8 spsr;
  723. rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
  724. if (spsr & SPSR_SPTEF) {
  725. rspi_disable_irq(rspi, SPCR_SPTIE);
  726. wake_up(&rspi->wait);
  727. return IRQ_HANDLED;
  728. }
  729. return 0;
  730. }
  731. static struct dma_chan *rspi_request_dma_chan(struct device *dev,
  732. enum dma_transfer_direction dir,
  733. unsigned int id,
  734. dma_addr_t port_addr)
  735. {
  736. dma_cap_mask_t mask;
  737. struct dma_chan *chan;
  738. struct dma_slave_config cfg;
  739. int ret;
  740. dma_cap_zero(mask);
  741. dma_cap_set(DMA_SLAVE, mask);
  742. chan = dma_request_channel(mask, shdma_chan_filter,
  743. (void *)(unsigned long)id);
  744. if (!chan) {
  745. dev_warn(dev, "dma_request_channel failed\n");
  746. return NULL;
  747. }
  748. memset(&cfg, 0, sizeof(cfg));
  749. cfg.slave_id = id;
  750. cfg.direction = dir;
  751. if (dir == DMA_MEM_TO_DEV)
  752. cfg.dst_addr = port_addr;
  753. else
  754. cfg.src_addr = port_addr;
  755. ret = dmaengine_slave_config(chan, &cfg);
  756. if (ret) {
  757. dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
  758. dma_release_channel(chan);
  759. return NULL;
  760. }
  761. return chan;
  762. }
  763. static int rspi_request_dma(struct device *dev, struct spi_master *master,
  764. const struct resource *res)
  765. {
  766. const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
  767. if (!rspi_pd || !rspi_pd->dma_rx_id || !rspi_pd->dma_tx_id)
  768. return 0; /* The driver assumes no error. */
  769. master->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM,
  770. rspi_pd->dma_rx_id,
  771. res->start + RSPI_SPDR);
  772. if (!master->dma_rx)
  773. return -ENODEV;
  774. master->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV,
  775. rspi_pd->dma_tx_id,
  776. res->start + RSPI_SPDR);
  777. if (!master->dma_tx) {
  778. dma_release_channel(master->dma_rx);
  779. master->dma_rx = NULL;
  780. return -ENODEV;
  781. }
  782. master->can_dma = rspi_can_dma;
  783. dev_info(dev, "DMA available");
  784. return 0;
  785. }
  786. static void rspi_release_dma(struct spi_master *master)
  787. {
  788. if (master->dma_tx)
  789. dma_release_channel(master->dma_tx);
  790. if (master->dma_rx)
  791. dma_release_channel(master->dma_rx);
  792. }
  793. static int rspi_remove(struct platform_device *pdev)
  794. {
  795. struct rspi_data *rspi = platform_get_drvdata(pdev);
  796. rspi_release_dma(rspi->master);
  797. pm_runtime_disable(&pdev->dev);
  798. return 0;
  799. }
  800. static const struct spi_ops rspi_ops = {
  801. .set_config_register = rspi_set_config_register,
  802. .transfer_one = rspi_transfer_one,
  803. .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
  804. .flags = SPI_MASTER_MUST_TX,
  805. .fifo_size = 8,
  806. };
  807. static const struct spi_ops rspi_rz_ops = {
  808. .set_config_register = rspi_rz_set_config_register,
  809. .transfer_one = rspi_rz_transfer_one,
  810. .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
  811. .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
  812. .fifo_size = 8, /* 8 for TX, 32 for RX */
  813. };
  814. static const struct spi_ops qspi_ops = {
  815. .set_config_register = qspi_set_config_register,
  816. .transfer_one = qspi_transfer_one,
  817. .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP |
  818. SPI_TX_DUAL | SPI_TX_QUAD |
  819. SPI_RX_DUAL | SPI_RX_QUAD,
  820. .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
  821. .fifo_size = 32,
  822. };
  823. #ifdef CONFIG_OF
  824. static const struct of_device_id rspi_of_match[] = {
  825. /* RSPI on legacy SH */
  826. { .compatible = "renesas,rspi", .data = &rspi_ops },
  827. /* RSPI on RZ/A1H */
  828. { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
  829. /* QSPI on R-Car Gen2 */
  830. { .compatible = "renesas,qspi", .data = &qspi_ops },
  831. { /* sentinel */ }
  832. };
  833. MODULE_DEVICE_TABLE(of, rspi_of_match);
  834. static int rspi_parse_dt(struct device *dev, struct spi_master *master)
  835. {
  836. u32 num_cs;
  837. int error;
  838. /* Parse DT properties */
  839. error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
  840. if (error) {
  841. dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
  842. return error;
  843. }
  844. master->num_chipselect = num_cs;
  845. return 0;
  846. }
  847. #else
  848. #define rspi_of_match NULL
  849. static inline int rspi_parse_dt(struct device *dev, struct spi_master *master)
  850. {
  851. return -EINVAL;
  852. }
  853. #endif /* CONFIG_OF */
  854. static int rspi_request_irq(struct device *dev, unsigned int irq,
  855. irq_handler_t handler, const char *suffix,
  856. void *dev_id)
  857. {
  858. const char *base = dev_name(dev);
  859. size_t len = strlen(base) + strlen(suffix) + 2;
  860. char *name = devm_kzalloc(dev, len, GFP_KERNEL);
  861. if (!name)
  862. return -ENOMEM;
  863. snprintf(name, len, "%s:%s", base, suffix);
  864. return devm_request_irq(dev, irq, handler, 0, name, dev_id);
  865. }
  866. static int rspi_probe(struct platform_device *pdev)
  867. {
  868. struct resource *res;
  869. struct spi_master *master;
  870. struct rspi_data *rspi;
  871. int ret;
  872. const struct of_device_id *of_id;
  873. const struct rspi_plat_data *rspi_pd;
  874. const struct spi_ops *ops;
  875. master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
  876. if (master == NULL) {
  877. dev_err(&pdev->dev, "spi_alloc_master error.\n");
  878. return -ENOMEM;
  879. }
  880. of_id = of_match_device(rspi_of_match, &pdev->dev);
  881. if (of_id) {
  882. ops = of_id->data;
  883. ret = rspi_parse_dt(&pdev->dev, master);
  884. if (ret)
  885. goto error1;
  886. } else {
  887. ops = (struct spi_ops *)pdev->id_entry->driver_data;
  888. rspi_pd = dev_get_platdata(&pdev->dev);
  889. if (rspi_pd && rspi_pd->num_chipselect)
  890. master->num_chipselect = rspi_pd->num_chipselect;
  891. else
  892. master->num_chipselect = 2; /* default */
  893. };
  894. /* ops parameter check */
  895. if (!ops->set_config_register) {
  896. dev_err(&pdev->dev, "there is no set_config_register\n");
  897. ret = -ENODEV;
  898. goto error1;
  899. }
  900. rspi = spi_master_get_devdata(master);
  901. platform_set_drvdata(pdev, rspi);
  902. rspi->ops = ops;
  903. rspi->master = master;
  904. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  905. rspi->addr = devm_ioremap_resource(&pdev->dev, res);
  906. if (IS_ERR(rspi->addr)) {
  907. ret = PTR_ERR(rspi->addr);
  908. goto error1;
  909. }
  910. rspi->clk = devm_clk_get(&pdev->dev, NULL);
  911. if (IS_ERR(rspi->clk)) {
  912. dev_err(&pdev->dev, "cannot get clock\n");
  913. ret = PTR_ERR(rspi->clk);
  914. goto error1;
  915. }
  916. pm_runtime_enable(&pdev->dev);
  917. init_waitqueue_head(&rspi->wait);
  918. master->bus_num = pdev->id;
  919. master->setup = rspi_setup;
  920. master->auto_runtime_pm = true;
  921. master->transfer_one = ops->transfer_one;
  922. master->prepare_message = rspi_prepare_message;
  923. master->unprepare_message = rspi_unprepare_message;
  924. master->mode_bits = ops->mode_bits;
  925. master->flags = ops->flags;
  926. master->dev.of_node = pdev->dev.of_node;
  927. ret = platform_get_irq_byname(pdev, "rx");
  928. if (ret < 0) {
  929. ret = platform_get_irq_byname(pdev, "mux");
  930. if (ret < 0)
  931. ret = platform_get_irq(pdev, 0);
  932. if (ret >= 0)
  933. rspi->rx_irq = rspi->tx_irq = ret;
  934. } else {
  935. rspi->rx_irq = ret;
  936. ret = platform_get_irq_byname(pdev, "tx");
  937. if (ret >= 0)
  938. rspi->tx_irq = ret;
  939. }
  940. if (ret < 0) {
  941. dev_err(&pdev->dev, "platform_get_irq error\n");
  942. goto error2;
  943. }
  944. if (rspi->rx_irq == rspi->tx_irq) {
  945. /* Single multiplexed interrupt */
  946. ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
  947. "mux", rspi);
  948. } else {
  949. /* Multi-interrupt mode, only SPRI and SPTI are used */
  950. ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
  951. "rx", rspi);
  952. if (!ret)
  953. ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
  954. rspi_irq_tx, "tx", rspi);
  955. }
  956. if (ret < 0) {
  957. dev_err(&pdev->dev, "request_irq error\n");
  958. goto error2;
  959. }
  960. ret = rspi_request_dma(&pdev->dev, master, res);
  961. if (ret < 0)
  962. dev_warn(&pdev->dev, "DMA not available, using PIO\n");
  963. ret = devm_spi_register_master(&pdev->dev, master);
  964. if (ret < 0) {
  965. dev_err(&pdev->dev, "spi_register_master error.\n");
  966. goto error3;
  967. }
  968. dev_info(&pdev->dev, "probed\n");
  969. return 0;
  970. error3:
  971. rspi_release_dma(master);
  972. error2:
  973. pm_runtime_disable(&pdev->dev);
  974. error1:
  975. spi_master_put(master);
  976. return ret;
  977. }
  978. static struct platform_device_id spi_driver_ids[] = {
  979. { "rspi", (kernel_ulong_t)&rspi_ops },
  980. { "rspi-rz", (kernel_ulong_t)&rspi_rz_ops },
  981. { "qspi", (kernel_ulong_t)&qspi_ops },
  982. {},
  983. };
  984. MODULE_DEVICE_TABLE(platform, spi_driver_ids);
  985. static struct platform_driver rspi_driver = {
  986. .probe = rspi_probe,
  987. .remove = rspi_remove,
  988. .id_table = spi_driver_ids,
  989. .driver = {
  990. .name = "renesas_spi",
  991. .owner = THIS_MODULE,
  992. .of_match_table = of_match_ptr(rspi_of_match),
  993. },
  994. };
  995. module_platform_driver(rspi_driver);
  996. MODULE_DESCRIPTION("Renesas RSPI bus driver");
  997. MODULE_LICENSE("GPL v2");
  998. MODULE_AUTHOR("Yoshihiro Shimoda");
  999. MODULE_ALIAS("platform:rspi");