init.c 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644
  1. /* $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
  2. * arch/sparc64/mm/init.c
  3. *
  4. * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
  5. * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  6. */
  7. #include <linux/config.h>
  8. #include <linux/module.h>
  9. #include <linux/kernel.h>
  10. #include <linux/sched.h>
  11. #include <linux/string.h>
  12. #include <linux/init.h>
  13. #include <linux/bootmem.h>
  14. #include <linux/mm.h>
  15. #include <linux/hugetlb.h>
  16. #include <linux/slab.h>
  17. #include <linux/initrd.h>
  18. #include <linux/swap.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/fs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/kprobes.h>
  23. #include <linux/cache.h>
  24. #include <linux/sort.h>
  25. #include <asm/head.h>
  26. #include <asm/system.h>
  27. #include <asm/page.h>
  28. #include <asm/pgalloc.h>
  29. #include <asm/pgtable.h>
  30. #include <asm/oplib.h>
  31. #include <asm/iommu.h>
  32. #include <asm/io.h>
  33. #include <asm/uaccess.h>
  34. #include <asm/mmu_context.h>
  35. #include <asm/tlbflush.h>
  36. #include <asm/dma.h>
  37. #include <asm/starfire.h>
  38. #include <asm/tlb.h>
  39. #include <asm/spitfire.h>
  40. #include <asm/sections.h>
  41. #include <asm/tsb.h>
  42. #include <asm/hypervisor.h>
  43. extern void device_scan(void);
  44. #define MAX_BANKS 32
  45. static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
  46. static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
  47. static int pavail_ents __initdata;
  48. static int pavail_rescan_ents __initdata;
  49. static int cmp_p64(const void *a, const void *b)
  50. {
  51. const struct linux_prom64_registers *x = a, *y = b;
  52. if (x->phys_addr > y->phys_addr)
  53. return 1;
  54. if (x->phys_addr < y->phys_addr)
  55. return -1;
  56. return 0;
  57. }
  58. static void __init read_obp_memory(const char *property,
  59. struct linux_prom64_registers *regs,
  60. int *num_ents)
  61. {
  62. int node = prom_finddevice("/memory");
  63. int prop_size = prom_getproplen(node, property);
  64. int ents, ret, i;
  65. ents = prop_size / sizeof(struct linux_prom64_registers);
  66. if (ents > MAX_BANKS) {
  67. prom_printf("The machine has more %s property entries than "
  68. "this kernel can support (%d).\n",
  69. property, MAX_BANKS);
  70. prom_halt();
  71. }
  72. ret = prom_getproperty(node, property, (char *) regs, prop_size);
  73. if (ret == -1) {
  74. prom_printf("Couldn't get %s property from /memory.\n");
  75. prom_halt();
  76. }
  77. *num_ents = ents;
  78. /* Sanitize what we got from the firmware, by page aligning
  79. * everything.
  80. */
  81. for (i = 0; i < ents; i++) {
  82. unsigned long base, size;
  83. base = regs[i].phys_addr;
  84. size = regs[i].reg_size;
  85. size &= PAGE_MASK;
  86. if (base & ~PAGE_MASK) {
  87. unsigned long new_base = PAGE_ALIGN(base);
  88. size -= new_base - base;
  89. if ((long) size < 0L)
  90. size = 0UL;
  91. base = new_base;
  92. }
  93. regs[i].phys_addr = base;
  94. regs[i].reg_size = size;
  95. }
  96. sort(regs, ents, sizeof(struct linux_prom64_registers),
  97. cmp_p64, NULL);
  98. }
  99. unsigned long *sparc64_valid_addr_bitmap __read_mostly;
  100. /* Ugly, but necessary... -DaveM */
  101. unsigned long phys_base __read_mostly;
  102. unsigned long kern_base __read_mostly;
  103. unsigned long kern_size __read_mostly;
  104. unsigned long pfn_base __read_mostly;
  105. unsigned long kern_linear_pte_xor __read_mostly;
  106. /* get_new_mmu_context() uses "cache + 1". */
  107. DEFINE_SPINLOCK(ctx_alloc_lock);
  108. unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
  109. #define CTX_BMAP_SLOTS (1UL << (CTX_NR_BITS - 6))
  110. unsigned long mmu_context_bmap[CTX_BMAP_SLOTS];
  111. /* References to special section boundaries */
  112. extern char _start[], _end[];
  113. /* Initial ramdisk setup */
  114. extern unsigned long sparc_ramdisk_image64;
  115. extern unsigned int sparc_ramdisk_image;
  116. extern unsigned int sparc_ramdisk_size;
  117. struct page *mem_map_zero __read_mostly;
  118. unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
  119. unsigned long sparc64_kern_pri_context __read_mostly;
  120. unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
  121. unsigned long sparc64_kern_sec_context __read_mostly;
  122. int bigkernel = 0;
  123. kmem_cache_t *pgtable_cache __read_mostly;
  124. static void zero_ctor(void *addr, kmem_cache_t *cache, unsigned long flags)
  125. {
  126. clear_page(addr);
  127. }
  128. void pgtable_cache_init(void)
  129. {
  130. pgtable_cache = kmem_cache_create("pgtable_cache",
  131. PAGE_SIZE, PAGE_SIZE,
  132. SLAB_HWCACHE_ALIGN |
  133. SLAB_MUST_HWCACHE_ALIGN,
  134. zero_ctor,
  135. NULL);
  136. if (!pgtable_cache) {
  137. prom_printf("pgtable_cache_init(): Could not create!\n");
  138. prom_halt();
  139. }
  140. }
  141. #ifdef CONFIG_DEBUG_DCFLUSH
  142. atomic_t dcpage_flushes = ATOMIC_INIT(0);
  143. #ifdef CONFIG_SMP
  144. atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
  145. #endif
  146. #endif
  147. __inline__ void flush_dcache_page_impl(struct page *page)
  148. {
  149. #ifdef CONFIG_DEBUG_DCFLUSH
  150. atomic_inc(&dcpage_flushes);
  151. #endif
  152. #ifdef DCACHE_ALIASING_POSSIBLE
  153. __flush_dcache_page(page_address(page),
  154. ((tlb_type == spitfire) &&
  155. page_mapping(page) != NULL));
  156. #else
  157. if (page_mapping(page) != NULL &&
  158. tlb_type == spitfire)
  159. __flush_icache_page(__pa(page_address(page)));
  160. #endif
  161. }
  162. #define PG_dcache_dirty PG_arch_1
  163. #define PG_dcache_cpu_shift 24
  164. #define PG_dcache_cpu_mask (256 - 1)
  165. #if NR_CPUS > 256
  166. #error D-cache dirty tracking and thread_info->cpu need fixing for > 256 cpus
  167. #endif
  168. #define dcache_dirty_cpu(page) \
  169. (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
  170. static __inline__ void set_dcache_dirty(struct page *page, int this_cpu)
  171. {
  172. unsigned long mask = this_cpu;
  173. unsigned long non_cpu_bits;
  174. non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
  175. mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
  176. __asm__ __volatile__("1:\n\t"
  177. "ldx [%2], %%g7\n\t"
  178. "and %%g7, %1, %%g1\n\t"
  179. "or %%g1, %0, %%g1\n\t"
  180. "casx [%2], %%g7, %%g1\n\t"
  181. "cmp %%g7, %%g1\n\t"
  182. "membar #StoreLoad | #StoreStore\n\t"
  183. "bne,pn %%xcc, 1b\n\t"
  184. " nop"
  185. : /* no outputs */
  186. : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
  187. : "g1", "g7");
  188. }
  189. static __inline__ void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
  190. {
  191. unsigned long mask = (1UL << PG_dcache_dirty);
  192. __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
  193. "1:\n\t"
  194. "ldx [%2], %%g7\n\t"
  195. "srlx %%g7, %4, %%g1\n\t"
  196. "and %%g1, %3, %%g1\n\t"
  197. "cmp %%g1, %0\n\t"
  198. "bne,pn %%icc, 2f\n\t"
  199. " andn %%g7, %1, %%g1\n\t"
  200. "casx [%2], %%g7, %%g1\n\t"
  201. "cmp %%g7, %%g1\n\t"
  202. "membar #StoreLoad | #StoreStore\n\t"
  203. "bne,pn %%xcc, 1b\n\t"
  204. " nop\n"
  205. "2:"
  206. : /* no outputs */
  207. : "r" (cpu), "r" (mask), "r" (&page->flags),
  208. "i" (PG_dcache_cpu_mask),
  209. "i" (PG_dcache_cpu_shift)
  210. : "g1", "g7");
  211. }
  212. static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
  213. {
  214. unsigned long tsb_addr = (unsigned long) ent;
  215. if (tlb_type == cheetah_plus || tlb_type == hypervisor)
  216. tsb_addr = __pa(tsb_addr);
  217. __tsb_insert(tsb_addr, tag, pte);
  218. }
  219. unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
  220. unsigned long _PAGE_SZBITS __read_mostly;
  221. void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
  222. {
  223. struct mm_struct *mm;
  224. struct page *page;
  225. unsigned long pfn;
  226. unsigned long pg_flags;
  227. pfn = pte_pfn(pte);
  228. if (pfn_valid(pfn) &&
  229. (page = pfn_to_page(pfn), page_mapping(page)) &&
  230. ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
  231. int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
  232. PG_dcache_cpu_mask);
  233. int this_cpu = get_cpu();
  234. /* This is just to optimize away some function calls
  235. * in the SMP case.
  236. */
  237. if (cpu == this_cpu)
  238. flush_dcache_page_impl(page);
  239. else
  240. smp_flush_dcache_page_impl(page, cpu);
  241. clear_dcache_dirty_cpu(page, cpu);
  242. put_cpu();
  243. }
  244. mm = vma->vm_mm;
  245. if ((pte_val(pte) & _PAGE_ALL_SZ_BITS) == _PAGE_SZBITS) {
  246. struct tsb *tsb;
  247. unsigned long tag;
  248. tsb = &mm->context.tsb[(address >> PAGE_SHIFT) &
  249. (mm->context.tsb_nentries - 1UL)];
  250. tag = (address >> 22UL) | CTX_HWBITS(mm->context) << 48UL;
  251. tsb_insert(tsb, tag, pte_val(pte));
  252. }
  253. }
  254. void flush_dcache_page(struct page *page)
  255. {
  256. struct address_space *mapping;
  257. int this_cpu;
  258. /* Do not bother with the expensive D-cache flush if it
  259. * is merely the zero page. The 'bigcore' testcase in GDB
  260. * causes this case to run millions of times.
  261. */
  262. if (page == ZERO_PAGE(0))
  263. return;
  264. this_cpu = get_cpu();
  265. mapping = page_mapping(page);
  266. if (mapping && !mapping_mapped(mapping)) {
  267. int dirty = test_bit(PG_dcache_dirty, &page->flags);
  268. if (dirty) {
  269. int dirty_cpu = dcache_dirty_cpu(page);
  270. if (dirty_cpu == this_cpu)
  271. goto out;
  272. smp_flush_dcache_page_impl(page, dirty_cpu);
  273. }
  274. set_dcache_dirty(page, this_cpu);
  275. } else {
  276. /* We could delay the flush for the !page_mapping
  277. * case too. But that case is for exec env/arg
  278. * pages and those are %99 certainly going to get
  279. * faulted into the tlb (and thus flushed) anyways.
  280. */
  281. flush_dcache_page_impl(page);
  282. }
  283. out:
  284. put_cpu();
  285. }
  286. void __kprobes flush_icache_range(unsigned long start, unsigned long end)
  287. {
  288. /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
  289. if (tlb_type == spitfire) {
  290. unsigned long kaddr;
  291. for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE)
  292. __flush_icache_page(__get_phys(kaddr));
  293. }
  294. }
  295. unsigned long page_to_pfn(struct page *page)
  296. {
  297. return (unsigned long) ((page - mem_map) + pfn_base);
  298. }
  299. struct page *pfn_to_page(unsigned long pfn)
  300. {
  301. return (mem_map + (pfn - pfn_base));
  302. }
  303. void show_mem(void)
  304. {
  305. printk("Mem-info:\n");
  306. show_free_areas();
  307. printk("Free swap: %6ldkB\n",
  308. nr_swap_pages << (PAGE_SHIFT-10));
  309. printk("%ld pages of RAM\n", num_physpages);
  310. printk("%d free pages\n", nr_free_pages());
  311. }
  312. void mmu_info(struct seq_file *m)
  313. {
  314. if (tlb_type == cheetah)
  315. seq_printf(m, "MMU Type\t: Cheetah\n");
  316. else if (tlb_type == cheetah_plus)
  317. seq_printf(m, "MMU Type\t: Cheetah+\n");
  318. else if (tlb_type == spitfire)
  319. seq_printf(m, "MMU Type\t: Spitfire\n");
  320. else if (tlb_type == hypervisor)
  321. seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
  322. else
  323. seq_printf(m, "MMU Type\t: ???\n");
  324. #ifdef CONFIG_DEBUG_DCFLUSH
  325. seq_printf(m, "DCPageFlushes\t: %d\n",
  326. atomic_read(&dcpage_flushes));
  327. #ifdef CONFIG_SMP
  328. seq_printf(m, "DCPageFlushesXC\t: %d\n",
  329. atomic_read(&dcpage_flushes_xcall));
  330. #endif /* CONFIG_SMP */
  331. #endif /* CONFIG_DEBUG_DCFLUSH */
  332. }
  333. struct linux_prom_translation {
  334. unsigned long virt;
  335. unsigned long size;
  336. unsigned long data;
  337. };
  338. /* Exported for kernel TLB miss handling in ktlb.S */
  339. struct linux_prom_translation prom_trans[512] __read_mostly;
  340. unsigned int prom_trans_ents __read_mostly;
  341. /* Exported for SMP bootup purposes. */
  342. unsigned long kern_locked_tte_data;
  343. /* The obp translations are saved based on 8k pagesize, since obp can
  344. * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
  345. * HI_OBP_ADDRESS range are handled in ktlb.S.
  346. */
  347. static inline int in_obp_range(unsigned long vaddr)
  348. {
  349. return (vaddr >= LOW_OBP_ADDRESS &&
  350. vaddr < HI_OBP_ADDRESS);
  351. }
  352. static int cmp_ptrans(const void *a, const void *b)
  353. {
  354. const struct linux_prom_translation *x = a, *y = b;
  355. if (x->virt > y->virt)
  356. return 1;
  357. if (x->virt < y->virt)
  358. return -1;
  359. return 0;
  360. }
  361. /* Read OBP translations property into 'prom_trans[]'. */
  362. static void __init read_obp_translations(void)
  363. {
  364. int n, node, ents, first, last, i;
  365. node = prom_finddevice("/virtual-memory");
  366. n = prom_getproplen(node, "translations");
  367. if (unlikely(n == 0 || n == -1)) {
  368. prom_printf("prom_mappings: Couldn't get size.\n");
  369. prom_halt();
  370. }
  371. if (unlikely(n > sizeof(prom_trans))) {
  372. prom_printf("prom_mappings: Size %Zd is too big.\n", n);
  373. prom_halt();
  374. }
  375. if ((n = prom_getproperty(node, "translations",
  376. (char *)&prom_trans[0],
  377. sizeof(prom_trans))) == -1) {
  378. prom_printf("prom_mappings: Couldn't get property.\n");
  379. prom_halt();
  380. }
  381. n = n / sizeof(struct linux_prom_translation);
  382. ents = n;
  383. sort(prom_trans, ents, sizeof(struct linux_prom_translation),
  384. cmp_ptrans, NULL);
  385. /* Now kick out all the non-OBP entries. */
  386. for (i = 0; i < ents; i++) {
  387. if (in_obp_range(prom_trans[i].virt))
  388. break;
  389. }
  390. first = i;
  391. for (; i < ents; i++) {
  392. if (!in_obp_range(prom_trans[i].virt))
  393. break;
  394. }
  395. last = i;
  396. for (i = 0; i < (last - first); i++) {
  397. struct linux_prom_translation *src = &prom_trans[i + first];
  398. struct linux_prom_translation *dest = &prom_trans[i];
  399. *dest = *src;
  400. }
  401. for (; i < ents; i++) {
  402. struct linux_prom_translation *dest = &prom_trans[i];
  403. dest->virt = dest->size = dest->data = 0x0UL;
  404. }
  405. prom_trans_ents = last - first;
  406. if (tlb_type == spitfire) {
  407. /* Clear diag TTE bits. */
  408. for (i = 0; i < prom_trans_ents; i++)
  409. prom_trans[i].data &= ~0x0003fe0000000000UL;
  410. }
  411. }
  412. static void __init hypervisor_tlb_lock(unsigned long vaddr,
  413. unsigned long pte,
  414. unsigned long mmu)
  415. {
  416. register unsigned long func asm("%o5");
  417. register unsigned long arg0 asm("%o0");
  418. register unsigned long arg1 asm("%o1");
  419. register unsigned long arg2 asm("%o2");
  420. register unsigned long arg3 asm("%o3");
  421. func = HV_FAST_MMU_MAP_PERM_ADDR;
  422. arg0 = vaddr;
  423. arg1 = 0;
  424. arg2 = pte;
  425. arg3 = mmu;
  426. __asm__ __volatile__("ta 0x80"
  427. : "=&r" (func), "=&r" (arg0),
  428. "=&r" (arg1), "=&r" (arg2),
  429. "=&r" (arg3)
  430. : "0" (func), "1" (arg0), "2" (arg1),
  431. "3" (arg2), "4" (arg3));
  432. if (arg0 != 0) {
  433. prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
  434. "errors with %lx\n", vaddr, 0, pte, mmu, arg0);
  435. prom_halt();
  436. }
  437. }
  438. static unsigned long kern_large_tte(unsigned long paddr);
  439. static void __init remap_kernel(void)
  440. {
  441. unsigned long phys_page, tte_vaddr, tte_data;
  442. int tlb_ent = sparc64_highest_locked_tlbent();
  443. tte_vaddr = (unsigned long) KERNBASE;
  444. phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
  445. tte_data = kern_large_tte(phys_page);
  446. kern_locked_tte_data = tte_data;
  447. /* Now lock us into the TLBs via Hypervisor or OBP. */
  448. if (tlb_type == hypervisor) {
  449. hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
  450. hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
  451. if (bigkernel) {
  452. tte_vaddr += 0x400000;
  453. tte_data += 0x400000;
  454. hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
  455. hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
  456. }
  457. } else {
  458. prom_dtlb_load(tlb_ent, tte_data, tte_vaddr);
  459. prom_itlb_load(tlb_ent, tte_data, tte_vaddr);
  460. if (bigkernel) {
  461. tlb_ent -= 1;
  462. prom_dtlb_load(tlb_ent,
  463. tte_data + 0x400000,
  464. tte_vaddr + 0x400000);
  465. prom_itlb_load(tlb_ent,
  466. tte_data + 0x400000,
  467. tte_vaddr + 0x400000);
  468. }
  469. sparc64_highest_unlocked_tlb_ent = tlb_ent - 1;
  470. }
  471. if (tlb_type == cheetah_plus) {
  472. sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
  473. CTX_CHEETAH_PLUS_NUC);
  474. sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
  475. sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
  476. }
  477. }
  478. static void __init inherit_prom_mappings(void)
  479. {
  480. read_obp_translations();
  481. /* Now fixup OBP's idea about where we really are mapped. */
  482. prom_printf("Remapping the kernel... ");
  483. remap_kernel();
  484. prom_printf("done.\n");
  485. }
  486. void prom_world(int enter)
  487. {
  488. if (!enter)
  489. set_fs((mm_segment_t) { get_thread_current_ds() });
  490. __asm__ __volatile__("flushw");
  491. }
  492. #ifdef DCACHE_ALIASING_POSSIBLE
  493. void __flush_dcache_range(unsigned long start, unsigned long end)
  494. {
  495. unsigned long va;
  496. if (tlb_type == spitfire) {
  497. int n = 0;
  498. for (va = start; va < end; va += 32) {
  499. spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
  500. if (++n >= 512)
  501. break;
  502. }
  503. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  504. start = __pa(start);
  505. end = __pa(end);
  506. for (va = start; va < end; va += 32)
  507. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  508. "membar #Sync"
  509. : /* no outputs */
  510. : "r" (va),
  511. "i" (ASI_DCACHE_INVALIDATE));
  512. }
  513. }
  514. #endif /* DCACHE_ALIASING_POSSIBLE */
  515. /* Caller does TLB context flushing on local CPU if necessary.
  516. * The caller also ensures that CTX_VALID(mm->context) is false.
  517. *
  518. * We must be careful about boundary cases so that we never
  519. * let the user have CTX 0 (nucleus) or we ever use a CTX
  520. * version of zero (and thus NO_CONTEXT would not be caught
  521. * by version mis-match tests in mmu_context.h).
  522. */
  523. void get_new_mmu_context(struct mm_struct *mm)
  524. {
  525. unsigned long ctx, new_ctx;
  526. unsigned long orig_pgsz_bits;
  527. spin_lock(&ctx_alloc_lock);
  528. orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
  529. ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
  530. new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
  531. if (new_ctx >= (1 << CTX_NR_BITS)) {
  532. new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
  533. if (new_ctx >= ctx) {
  534. int i;
  535. new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
  536. CTX_FIRST_VERSION;
  537. if (new_ctx == 1)
  538. new_ctx = CTX_FIRST_VERSION;
  539. /* Don't call memset, for 16 entries that's just
  540. * plain silly...
  541. */
  542. mmu_context_bmap[0] = 3;
  543. mmu_context_bmap[1] = 0;
  544. mmu_context_bmap[2] = 0;
  545. mmu_context_bmap[3] = 0;
  546. for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
  547. mmu_context_bmap[i + 0] = 0;
  548. mmu_context_bmap[i + 1] = 0;
  549. mmu_context_bmap[i + 2] = 0;
  550. mmu_context_bmap[i + 3] = 0;
  551. }
  552. goto out;
  553. }
  554. }
  555. mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
  556. new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
  557. out:
  558. tlb_context_cache = new_ctx;
  559. mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
  560. spin_unlock(&ctx_alloc_lock);
  561. }
  562. void sparc_ultra_dump_itlb(void)
  563. {
  564. int slot;
  565. if (tlb_type == spitfire) {
  566. printk ("Contents of itlb: ");
  567. for (slot = 0; slot < 14; slot++) printk (" ");
  568. printk ("%2x:%016lx,%016lx\n",
  569. 0,
  570. spitfire_get_itlb_tag(0), spitfire_get_itlb_data(0));
  571. for (slot = 1; slot < 64; slot+=3) {
  572. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  573. slot,
  574. spitfire_get_itlb_tag(slot), spitfire_get_itlb_data(slot),
  575. slot+1,
  576. spitfire_get_itlb_tag(slot+1), spitfire_get_itlb_data(slot+1),
  577. slot+2,
  578. spitfire_get_itlb_tag(slot+2), spitfire_get_itlb_data(slot+2));
  579. }
  580. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  581. printk ("Contents of itlb0:\n");
  582. for (slot = 0; slot < 16; slot+=2) {
  583. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  584. slot,
  585. cheetah_get_litlb_tag(slot), cheetah_get_litlb_data(slot),
  586. slot+1,
  587. cheetah_get_litlb_tag(slot+1), cheetah_get_litlb_data(slot+1));
  588. }
  589. printk ("Contents of itlb2:\n");
  590. for (slot = 0; slot < 128; slot+=2) {
  591. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  592. slot,
  593. cheetah_get_itlb_tag(slot), cheetah_get_itlb_data(slot),
  594. slot+1,
  595. cheetah_get_itlb_tag(slot+1), cheetah_get_itlb_data(slot+1));
  596. }
  597. }
  598. }
  599. void sparc_ultra_dump_dtlb(void)
  600. {
  601. int slot;
  602. if (tlb_type == spitfire) {
  603. printk ("Contents of dtlb: ");
  604. for (slot = 0; slot < 14; slot++) printk (" ");
  605. printk ("%2x:%016lx,%016lx\n", 0,
  606. spitfire_get_dtlb_tag(0), spitfire_get_dtlb_data(0));
  607. for (slot = 1; slot < 64; slot+=3) {
  608. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  609. slot,
  610. spitfire_get_dtlb_tag(slot), spitfire_get_dtlb_data(slot),
  611. slot+1,
  612. spitfire_get_dtlb_tag(slot+1), spitfire_get_dtlb_data(slot+1),
  613. slot+2,
  614. spitfire_get_dtlb_tag(slot+2), spitfire_get_dtlb_data(slot+2));
  615. }
  616. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  617. printk ("Contents of dtlb0:\n");
  618. for (slot = 0; slot < 16; slot+=2) {
  619. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  620. slot,
  621. cheetah_get_ldtlb_tag(slot), cheetah_get_ldtlb_data(slot),
  622. slot+1,
  623. cheetah_get_ldtlb_tag(slot+1), cheetah_get_ldtlb_data(slot+1));
  624. }
  625. printk ("Contents of dtlb2:\n");
  626. for (slot = 0; slot < 512; slot+=2) {
  627. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  628. slot,
  629. cheetah_get_dtlb_tag(slot, 2), cheetah_get_dtlb_data(slot, 2),
  630. slot+1,
  631. cheetah_get_dtlb_tag(slot+1, 2), cheetah_get_dtlb_data(slot+1, 2));
  632. }
  633. if (tlb_type == cheetah_plus) {
  634. printk ("Contents of dtlb3:\n");
  635. for (slot = 0; slot < 512; slot+=2) {
  636. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  637. slot,
  638. cheetah_get_dtlb_tag(slot, 3), cheetah_get_dtlb_data(slot, 3),
  639. slot+1,
  640. cheetah_get_dtlb_tag(slot+1, 3), cheetah_get_dtlb_data(slot+1, 3));
  641. }
  642. }
  643. }
  644. }
  645. extern unsigned long cmdline_memory_size;
  646. unsigned long __init bootmem_init(unsigned long *pages_avail)
  647. {
  648. unsigned long bootmap_size, start_pfn, end_pfn;
  649. unsigned long end_of_phys_memory = 0UL;
  650. unsigned long bootmap_pfn, bytes_avail, size;
  651. int i;
  652. #ifdef CONFIG_DEBUG_BOOTMEM
  653. prom_printf("bootmem_init: Scan pavail, ");
  654. #endif
  655. bytes_avail = 0UL;
  656. for (i = 0; i < pavail_ents; i++) {
  657. end_of_phys_memory = pavail[i].phys_addr +
  658. pavail[i].reg_size;
  659. bytes_avail += pavail[i].reg_size;
  660. if (cmdline_memory_size) {
  661. if (bytes_avail > cmdline_memory_size) {
  662. unsigned long slack = bytes_avail - cmdline_memory_size;
  663. bytes_avail -= slack;
  664. end_of_phys_memory -= slack;
  665. pavail[i].reg_size -= slack;
  666. if ((long)pavail[i].reg_size <= 0L) {
  667. pavail[i].phys_addr = 0xdeadbeefUL;
  668. pavail[i].reg_size = 0UL;
  669. pavail_ents = i;
  670. } else {
  671. pavail[i+1].reg_size = 0Ul;
  672. pavail[i+1].phys_addr = 0xdeadbeefUL;
  673. pavail_ents = i + 1;
  674. }
  675. break;
  676. }
  677. }
  678. }
  679. *pages_avail = bytes_avail >> PAGE_SHIFT;
  680. /* Start with page aligned address of last symbol in kernel
  681. * image. The kernel is hard mapped below PAGE_OFFSET in a
  682. * 4MB locked TLB translation.
  683. */
  684. start_pfn = PAGE_ALIGN(kern_base + kern_size) >> PAGE_SHIFT;
  685. bootmap_pfn = start_pfn;
  686. end_pfn = end_of_phys_memory >> PAGE_SHIFT;
  687. #ifdef CONFIG_BLK_DEV_INITRD
  688. /* Now have to check initial ramdisk, so that bootmap does not overwrite it */
  689. if (sparc_ramdisk_image || sparc_ramdisk_image64) {
  690. unsigned long ramdisk_image = sparc_ramdisk_image ?
  691. sparc_ramdisk_image : sparc_ramdisk_image64;
  692. if (ramdisk_image >= (unsigned long)_end - 2 * PAGE_SIZE)
  693. ramdisk_image -= KERNBASE;
  694. initrd_start = ramdisk_image + phys_base;
  695. initrd_end = initrd_start + sparc_ramdisk_size;
  696. if (initrd_end > end_of_phys_memory) {
  697. printk(KERN_CRIT "initrd extends beyond end of memory "
  698. "(0x%016lx > 0x%016lx)\ndisabling initrd\n",
  699. initrd_end, end_of_phys_memory);
  700. initrd_start = 0;
  701. }
  702. if (initrd_start) {
  703. if (initrd_start >= (start_pfn << PAGE_SHIFT) &&
  704. initrd_start < (start_pfn << PAGE_SHIFT) + 2 * PAGE_SIZE)
  705. bootmap_pfn = PAGE_ALIGN (initrd_end) >> PAGE_SHIFT;
  706. }
  707. }
  708. #endif
  709. /* Initialize the boot-time allocator. */
  710. max_pfn = max_low_pfn = end_pfn;
  711. min_low_pfn = pfn_base;
  712. #ifdef CONFIG_DEBUG_BOOTMEM
  713. prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n",
  714. min_low_pfn, bootmap_pfn, max_low_pfn);
  715. #endif
  716. bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn, pfn_base, end_pfn);
  717. /* Now register the available physical memory with the
  718. * allocator.
  719. */
  720. for (i = 0; i < pavail_ents; i++) {
  721. #ifdef CONFIG_DEBUG_BOOTMEM
  722. prom_printf("free_bootmem(pavail:%d): base[%lx] size[%lx]\n",
  723. i, pavail[i].phys_addr, pavail[i].reg_size);
  724. #endif
  725. free_bootmem(pavail[i].phys_addr, pavail[i].reg_size);
  726. }
  727. #ifdef CONFIG_BLK_DEV_INITRD
  728. if (initrd_start) {
  729. size = initrd_end - initrd_start;
  730. /* Resert the initrd image area. */
  731. #ifdef CONFIG_DEBUG_BOOTMEM
  732. prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n",
  733. initrd_start, initrd_end);
  734. #endif
  735. reserve_bootmem(initrd_start, size);
  736. *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
  737. initrd_start += PAGE_OFFSET;
  738. initrd_end += PAGE_OFFSET;
  739. }
  740. #endif
  741. /* Reserve the kernel text/data/bss. */
  742. #ifdef CONFIG_DEBUG_BOOTMEM
  743. prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base, kern_size);
  744. #endif
  745. reserve_bootmem(kern_base, kern_size);
  746. *pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
  747. /* Reserve the bootmem map. We do not account for it
  748. * in pages_avail because we will release that memory
  749. * in free_all_bootmem.
  750. */
  751. size = bootmap_size;
  752. #ifdef CONFIG_DEBUG_BOOTMEM
  753. prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n",
  754. (bootmap_pfn << PAGE_SHIFT), size);
  755. #endif
  756. reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size);
  757. *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
  758. return end_pfn;
  759. }
  760. #ifdef CONFIG_DEBUG_PAGEALLOC
  761. static unsigned long kernel_map_range(unsigned long pstart, unsigned long pend, pgprot_t prot)
  762. {
  763. unsigned long vstart = PAGE_OFFSET + pstart;
  764. unsigned long vend = PAGE_OFFSET + pend;
  765. unsigned long alloc_bytes = 0UL;
  766. if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
  767. prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
  768. vstart, vend);
  769. prom_halt();
  770. }
  771. while (vstart < vend) {
  772. unsigned long this_end, paddr = __pa(vstart);
  773. pgd_t *pgd = pgd_offset_k(vstart);
  774. pud_t *pud;
  775. pmd_t *pmd;
  776. pte_t *pte;
  777. pud = pud_offset(pgd, vstart);
  778. if (pud_none(*pud)) {
  779. pmd_t *new;
  780. new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
  781. alloc_bytes += PAGE_SIZE;
  782. pud_populate(&init_mm, pud, new);
  783. }
  784. pmd = pmd_offset(pud, vstart);
  785. if (!pmd_present(*pmd)) {
  786. pte_t *new;
  787. new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
  788. alloc_bytes += PAGE_SIZE;
  789. pmd_populate_kernel(&init_mm, pmd, new);
  790. }
  791. pte = pte_offset_kernel(pmd, vstart);
  792. this_end = (vstart + PMD_SIZE) & PMD_MASK;
  793. if (this_end > vend)
  794. this_end = vend;
  795. while (vstart < this_end) {
  796. pte_val(*pte) = (paddr | pgprot_val(prot));
  797. vstart += PAGE_SIZE;
  798. paddr += PAGE_SIZE;
  799. pte++;
  800. }
  801. }
  802. return alloc_bytes;
  803. }
  804. static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
  805. static int pall_ents __initdata;
  806. extern unsigned int kvmap_linear_patch[1];
  807. static void __init kernel_physical_mapping_init(void)
  808. {
  809. unsigned long i, mem_alloced = 0UL;
  810. read_obp_memory("reg", &pall[0], &pall_ents);
  811. for (i = 0; i < pall_ents; i++) {
  812. unsigned long phys_start, phys_end;
  813. phys_start = pall[i].phys_addr;
  814. phys_end = phys_start + pall[i].reg_size;
  815. mem_alloced += kernel_map_range(phys_start, phys_end,
  816. PAGE_KERNEL);
  817. }
  818. printk("Allocated %ld bytes for kernel page tables.\n",
  819. mem_alloced);
  820. kvmap_linear_patch[0] = 0x01000000; /* nop */
  821. flushi(&kvmap_linear_patch[0]);
  822. __flush_tlb_all();
  823. }
  824. void kernel_map_pages(struct page *page, int numpages, int enable)
  825. {
  826. unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
  827. unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
  828. kernel_map_range(phys_start, phys_end,
  829. (enable ? PAGE_KERNEL : __pgprot(0)));
  830. flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
  831. PAGE_OFFSET + phys_end);
  832. /* we should perform an IPI and flush all tlbs,
  833. * but that can deadlock->flush only current cpu.
  834. */
  835. __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
  836. PAGE_OFFSET + phys_end);
  837. }
  838. #endif
  839. unsigned long __init find_ecache_flush_span(unsigned long size)
  840. {
  841. int i;
  842. for (i = 0; i < pavail_ents; i++) {
  843. if (pavail[i].reg_size >= size)
  844. return pavail[i].phys_addr;
  845. }
  846. return ~0UL;
  847. }
  848. static void __init tsb_phys_patch(void)
  849. {
  850. struct tsb_ldquad_phys_patch_entry *pquad;
  851. struct tsb_phys_patch_entry *p;
  852. pquad = &__tsb_ldquad_phys_patch;
  853. while (pquad < &__tsb_ldquad_phys_patch_end) {
  854. unsigned long addr = pquad->addr;
  855. if (tlb_type == hypervisor)
  856. *(unsigned int *) addr = pquad->sun4v_insn;
  857. else
  858. *(unsigned int *) addr = pquad->sun4u_insn;
  859. wmb();
  860. __asm__ __volatile__("flush %0"
  861. : /* no outputs */
  862. : "r" (addr));
  863. pquad++;
  864. }
  865. p = &__tsb_phys_patch;
  866. while (p < &__tsb_phys_patch_end) {
  867. unsigned long addr = p->addr;
  868. *(unsigned int *) addr = p->insn;
  869. wmb();
  870. __asm__ __volatile__("flush %0"
  871. : /* no outputs */
  872. : "r" (addr));
  873. p++;
  874. }
  875. }
  876. /* Don't mark as init, we give this to the Hypervisor. */
  877. static struct hv_tsb_descr ktsb_descr[2];
  878. extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
  879. static void __init sun4v_ktsb_init(void)
  880. {
  881. unsigned long ktsb_pa;
  882. ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
  883. switch (PAGE_SIZE) {
  884. case 8 * 1024:
  885. default:
  886. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
  887. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
  888. break;
  889. case 64 * 1024:
  890. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
  891. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
  892. break;
  893. case 512 * 1024:
  894. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
  895. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
  896. break;
  897. case 4 * 1024 * 1024:
  898. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
  899. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
  900. break;
  901. };
  902. ktsb_descr[0].assoc = 1;
  903. ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
  904. ktsb_descr[0].ctx_idx = 0;
  905. ktsb_descr[0].tsb_base = ktsb_pa;
  906. ktsb_descr[0].resv = 0;
  907. /* XXX When we have a kernel large page size TSB, describe
  908. * XXX it in ktsb_descr[1] here.
  909. */
  910. }
  911. void __cpuinit sun4v_ktsb_register(void)
  912. {
  913. register unsigned long func asm("%o5");
  914. register unsigned long arg0 asm("%o0");
  915. register unsigned long arg1 asm("%o1");
  916. unsigned long pa;
  917. pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
  918. func = HV_FAST_MMU_TSB_CTX0;
  919. /* XXX set arg0 to 2 when we use ktsb_descr[1], see above XXX */
  920. arg0 = 1;
  921. arg1 = pa;
  922. __asm__ __volatile__("ta %6"
  923. : "=&r" (func), "=&r" (arg0), "=&r" (arg1)
  924. : "0" (func), "1" (arg0), "2" (arg1),
  925. "i" (HV_FAST_TRAP));
  926. }
  927. /* paging_init() sets up the page tables */
  928. extern void cheetah_ecache_flush_init(void);
  929. extern void sun4v_patch_tlb_handlers(void);
  930. static unsigned long last_valid_pfn;
  931. pgd_t swapper_pg_dir[2048];
  932. static void sun4u_pgprot_init(void);
  933. static void sun4v_pgprot_init(void);
  934. void __init paging_init(void)
  935. {
  936. unsigned long end_pfn, pages_avail, shift;
  937. unsigned long real_end, i;
  938. kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
  939. kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
  940. if (tlb_type == hypervisor)
  941. sun4v_pgprot_init();
  942. else
  943. sun4u_pgprot_init();
  944. if (tlb_type == cheetah_plus ||
  945. tlb_type == hypervisor)
  946. tsb_phys_patch();
  947. if (tlb_type == hypervisor) {
  948. sun4v_patch_tlb_handlers();
  949. sun4v_ktsb_init();
  950. }
  951. /* Find available physical memory... */
  952. read_obp_memory("available", &pavail[0], &pavail_ents);
  953. phys_base = 0xffffffffffffffffUL;
  954. for (i = 0; i < pavail_ents; i++)
  955. phys_base = min(phys_base, pavail[i].phys_addr);
  956. pfn_base = phys_base >> PAGE_SHIFT;
  957. set_bit(0, mmu_context_bmap);
  958. shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
  959. real_end = (unsigned long)_end;
  960. if ((real_end > ((unsigned long)KERNBASE + 0x400000)))
  961. bigkernel = 1;
  962. if ((real_end > ((unsigned long)KERNBASE + 0x800000))) {
  963. prom_printf("paging_init: Kernel > 8MB, too large.\n");
  964. prom_halt();
  965. }
  966. /* Set kernel pgd to upper alias so physical page computations
  967. * work.
  968. */
  969. init_mm.pgd += ((shift) / (sizeof(pgd_t)));
  970. memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
  971. /* Now can init the kernel/bad page tables. */
  972. pud_set(pud_offset(&swapper_pg_dir[0], 0),
  973. swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
  974. inherit_prom_mappings();
  975. /* Ok, we can use our TLB miss and window trap handlers safely. */
  976. setup_tba();
  977. __flush_tlb_all();
  978. if (tlb_type == hypervisor)
  979. sun4v_ktsb_register();
  980. /* Setup bootmem... */
  981. pages_avail = 0;
  982. last_valid_pfn = end_pfn = bootmem_init(&pages_avail);
  983. #ifdef CONFIG_DEBUG_PAGEALLOC
  984. kernel_physical_mapping_init();
  985. #endif
  986. {
  987. unsigned long zones_size[MAX_NR_ZONES];
  988. unsigned long zholes_size[MAX_NR_ZONES];
  989. unsigned long npages;
  990. int znum;
  991. for (znum = 0; znum < MAX_NR_ZONES; znum++)
  992. zones_size[znum] = zholes_size[znum] = 0;
  993. npages = end_pfn - pfn_base;
  994. zones_size[ZONE_DMA] = npages;
  995. zholes_size[ZONE_DMA] = npages - pages_avail;
  996. free_area_init_node(0, &contig_page_data, zones_size,
  997. phys_base >> PAGE_SHIFT, zholes_size);
  998. }
  999. device_scan();
  1000. }
  1001. static void __init taint_real_pages(void)
  1002. {
  1003. int i;
  1004. read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
  1005. /* Find changes discovered in the physmem available rescan and
  1006. * reserve the lost portions in the bootmem maps.
  1007. */
  1008. for (i = 0; i < pavail_ents; i++) {
  1009. unsigned long old_start, old_end;
  1010. old_start = pavail[i].phys_addr;
  1011. old_end = old_start +
  1012. pavail[i].reg_size;
  1013. while (old_start < old_end) {
  1014. int n;
  1015. for (n = 0; pavail_rescan_ents; n++) {
  1016. unsigned long new_start, new_end;
  1017. new_start = pavail_rescan[n].phys_addr;
  1018. new_end = new_start +
  1019. pavail_rescan[n].reg_size;
  1020. if (new_start <= old_start &&
  1021. new_end >= (old_start + PAGE_SIZE)) {
  1022. set_bit(old_start >> 22,
  1023. sparc64_valid_addr_bitmap);
  1024. goto do_next_page;
  1025. }
  1026. }
  1027. reserve_bootmem(old_start, PAGE_SIZE);
  1028. do_next_page:
  1029. old_start += PAGE_SIZE;
  1030. }
  1031. }
  1032. }
  1033. void __init mem_init(void)
  1034. {
  1035. unsigned long codepages, datapages, initpages;
  1036. unsigned long addr, last;
  1037. int i;
  1038. i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
  1039. i += 1;
  1040. sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
  1041. if (sparc64_valid_addr_bitmap == NULL) {
  1042. prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
  1043. prom_halt();
  1044. }
  1045. memset(sparc64_valid_addr_bitmap, 0, i << 3);
  1046. addr = PAGE_OFFSET + kern_base;
  1047. last = PAGE_ALIGN(kern_size) + addr;
  1048. while (addr < last) {
  1049. set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
  1050. addr += PAGE_SIZE;
  1051. }
  1052. taint_real_pages();
  1053. max_mapnr = last_valid_pfn - pfn_base;
  1054. high_memory = __va(last_valid_pfn << PAGE_SHIFT);
  1055. #ifdef CONFIG_DEBUG_BOOTMEM
  1056. prom_printf("mem_init: Calling free_all_bootmem().\n");
  1057. #endif
  1058. totalram_pages = num_physpages = free_all_bootmem() - 1;
  1059. /*
  1060. * Set up the zero page, mark it reserved, so that page count
  1061. * is not manipulated when freeing the page from user ptes.
  1062. */
  1063. mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
  1064. if (mem_map_zero == NULL) {
  1065. prom_printf("paging_init: Cannot alloc zero page.\n");
  1066. prom_halt();
  1067. }
  1068. SetPageReserved(mem_map_zero);
  1069. codepages = (((unsigned long) _etext) - ((unsigned long) _start));
  1070. codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
  1071. datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
  1072. datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
  1073. initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
  1074. initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
  1075. printk("Memory: %uk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
  1076. nr_free_pages() << (PAGE_SHIFT-10),
  1077. codepages << (PAGE_SHIFT-10),
  1078. datapages << (PAGE_SHIFT-10),
  1079. initpages << (PAGE_SHIFT-10),
  1080. PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
  1081. if (tlb_type == cheetah || tlb_type == cheetah_plus)
  1082. cheetah_ecache_flush_init();
  1083. }
  1084. void free_initmem(void)
  1085. {
  1086. unsigned long addr, initend;
  1087. /*
  1088. * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
  1089. */
  1090. addr = PAGE_ALIGN((unsigned long)(__init_begin));
  1091. initend = (unsigned long)(__init_end) & PAGE_MASK;
  1092. for (; addr < initend; addr += PAGE_SIZE) {
  1093. unsigned long page;
  1094. struct page *p;
  1095. page = (addr +
  1096. ((unsigned long) __va(kern_base)) -
  1097. ((unsigned long) KERNBASE));
  1098. memset((void *)addr, 0xcc, PAGE_SIZE);
  1099. p = virt_to_page(page);
  1100. ClearPageReserved(p);
  1101. set_page_count(p, 1);
  1102. __free_page(p);
  1103. num_physpages++;
  1104. totalram_pages++;
  1105. }
  1106. }
  1107. #ifdef CONFIG_BLK_DEV_INITRD
  1108. void free_initrd_mem(unsigned long start, unsigned long end)
  1109. {
  1110. if (start < end)
  1111. printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
  1112. for (; start < end; start += PAGE_SIZE) {
  1113. struct page *p = virt_to_page(start);
  1114. ClearPageReserved(p);
  1115. set_page_count(p, 1);
  1116. __free_page(p);
  1117. num_physpages++;
  1118. totalram_pages++;
  1119. }
  1120. }
  1121. #endif
  1122. #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
  1123. #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
  1124. #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
  1125. #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
  1126. #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
  1127. #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
  1128. pgprot_t PAGE_KERNEL __read_mostly;
  1129. EXPORT_SYMBOL(PAGE_KERNEL);
  1130. pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
  1131. pgprot_t PAGE_COPY __read_mostly;
  1132. pgprot_t PAGE_EXEC __read_mostly;
  1133. unsigned long pg_iobits __read_mostly;
  1134. unsigned long _PAGE_IE __read_mostly;
  1135. unsigned long _PAGE_E __read_mostly;
  1136. unsigned long _PAGE_CACHE __read_mostly;
  1137. static void prot_init_common(unsigned long page_none,
  1138. unsigned long page_shared,
  1139. unsigned long page_copy,
  1140. unsigned long page_readonly,
  1141. unsigned long page_exec_bit)
  1142. {
  1143. PAGE_COPY = __pgprot(page_copy);
  1144. protection_map[0x0] = __pgprot(page_none);
  1145. protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
  1146. protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
  1147. protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
  1148. protection_map[0x4] = __pgprot(page_readonly);
  1149. protection_map[0x5] = __pgprot(page_readonly);
  1150. protection_map[0x6] = __pgprot(page_copy);
  1151. protection_map[0x7] = __pgprot(page_copy);
  1152. protection_map[0x8] = __pgprot(page_none);
  1153. protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
  1154. protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
  1155. protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
  1156. protection_map[0xc] = __pgprot(page_readonly);
  1157. protection_map[0xd] = __pgprot(page_readonly);
  1158. protection_map[0xe] = __pgprot(page_shared);
  1159. protection_map[0xf] = __pgprot(page_shared);
  1160. }
  1161. static void __init sun4u_pgprot_init(void)
  1162. {
  1163. unsigned long page_none, page_shared, page_copy, page_readonly;
  1164. unsigned long page_exec_bit;
  1165. PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
  1166. _PAGE_CACHE_4U | _PAGE_P_4U |
  1167. __ACCESS_BITS_4U | __DIRTY_BITS_4U |
  1168. _PAGE_EXEC_4U);
  1169. PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
  1170. _PAGE_CACHE_4U | _PAGE_P_4U |
  1171. __ACCESS_BITS_4U | __DIRTY_BITS_4U |
  1172. _PAGE_EXEC_4U | _PAGE_L_4U);
  1173. PAGE_EXEC = __pgprot(_PAGE_EXEC_4U);
  1174. _PAGE_IE = _PAGE_IE_4U;
  1175. _PAGE_E = _PAGE_E_4U;
  1176. _PAGE_CACHE = _PAGE_CACHE_4U;
  1177. pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
  1178. __ACCESS_BITS_4U | _PAGE_E_4U);
  1179. kern_linear_pte_xor = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
  1180. 0xfffff80000000000;
  1181. kern_linear_pte_xor |= (_PAGE_CP_4U | _PAGE_CV_4U |
  1182. _PAGE_P_4U | _PAGE_W_4U);
  1183. _PAGE_SZBITS = _PAGE_SZBITS_4U;
  1184. _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
  1185. _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
  1186. _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
  1187. page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
  1188. page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
  1189. __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
  1190. page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
  1191. __ACCESS_BITS_4U | _PAGE_EXEC_4U);
  1192. page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
  1193. __ACCESS_BITS_4U | _PAGE_EXEC_4U);
  1194. page_exec_bit = _PAGE_EXEC_4U;
  1195. prot_init_common(page_none, page_shared, page_copy, page_readonly,
  1196. page_exec_bit);
  1197. }
  1198. static void __init sun4v_pgprot_init(void)
  1199. {
  1200. unsigned long page_none, page_shared, page_copy, page_readonly;
  1201. unsigned long page_exec_bit;
  1202. PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
  1203. _PAGE_CACHE_4V | _PAGE_P_4V |
  1204. __ACCESS_BITS_4V | __DIRTY_BITS_4V |
  1205. _PAGE_EXEC_4V);
  1206. PAGE_KERNEL_LOCKED = PAGE_KERNEL;
  1207. PAGE_EXEC = __pgprot(_PAGE_EXEC_4V);
  1208. _PAGE_IE = _PAGE_IE_4V;
  1209. _PAGE_E = _PAGE_E_4V;
  1210. _PAGE_CACHE = _PAGE_CACHE_4V;
  1211. kern_linear_pte_xor = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
  1212. 0xfffff80000000000;
  1213. kern_linear_pte_xor |= (_PAGE_CP_4V | _PAGE_CV_4V |
  1214. _PAGE_P_4V | _PAGE_W_4V);
  1215. pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
  1216. __ACCESS_BITS_4V | _PAGE_E_4V);
  1217. _PAGE_SZBITS = _PAGE_SZBITS_4V;
  1218. _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
  1219. _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
  1220. _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
  1221. _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
  1222. page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
  1223. page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
  1224. __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
  1225. page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
  1226. __ACCESS_BITS_4V | _PAGE_EXEC_4V);
  1227. page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
  1228. __ACCESS_BITS_4V | _PAGE_EXEC_4V);
  1229. page_exec_bit = _PAGE_EXEC_4V;
  1230. prot_init_common(page_none, page_shared, page_copy, page_readonly,
  1231. page_exec_bit);
  1232. }
  1233. unsigned long pte_sz_bits(unsigned long sz)
  1234. {
  1235. if (tlb_type == hypervisor) {
  1236. switch (sz) {
  1237. case 8 * 1024:
  1238. default:
  1239. return _PAGE_SZ8K_4V;
  1240. case 64 * 1024:
  1241. return _PAGE_SZ64K_4V;
  1242. case 512 * 1024:
  1243. return _PAGE_SZ512K_4V;
  1244. case 4 * 1024 * 1024:
  1245. return _PAGE_SZ4MB_4V;
  1246. };
  1247. } else {
  1248. switch (sz) {
  1249. case 8 * 1024:
  1250. default:
  1251. return _PAGE_SZ8K_4U;
  1252. case 64 * 1024:
  1253. return _PAGE_SZ64K_4U;
  1254. case 512 * 1024:
  1255. return _PAGE_SZ512K_4U;
  1256. case 4 * 1024 * 1024:
  1257. return _PAGE_SZ4MB_4U;
  1258. };
  1259. }
  1260. }
  1261. pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
  1262. {
  1263. pte_t pte;
  1264. pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
  1265. pte_val(pte) |= (((unsigned long)space) << 32);
  1266. pte_val(pte) |= pte_sz_bits(page_size);
  1267. return pte;
  1268. }
  1269. static unsigned long kern_large_tte(unsigned long paddr)
  1270. {
  1271. unsigned long val;
  1272. val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
  1273. _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
  1274. _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
  1275. if (tlb_type == hypervisor)
  1276. val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
  1277. _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
  1278. _PAGE_EXEC_4V | _PAGE_W_4V);
  1279. return val | paddr;
  1280. }
  1281. /*
  1282. * Translate PROM's mapping we capture at boot time into physical address.
  1283. * The second parameter is only set from prom_callback() invocations.
  1284. */
  1285. unsigned long prom_virt_to_phys(unsigned long promva, int *error)
  1286. {
  1287. unsigned long mask;
  1288. int i;
  1289. mask = _PAGE_PADDR_4U;
  1290. if (tlb_type == hypervisor)
  1291. mask = _PAGE_PADDR_4V;
  1292. for (i = 0; i < prom_trans_ents; i++) {
  1293. struct linux_prom_translation *p = &prom_trans[i];
  1294. if (promva >= p->virt &&
  1295. promva < (p->virt + p->size)) {
  1296. unsigned long base = p->data & mask;
  1297. if (error)
  1298. *error = 0;
  1299. return base + (promva & (8192 - 1));
  1300. }
  1301. }
  1302. if (error)
  1303. *error = 1;
  1304. return 0UL;
  1305. }
  1306. /* XXX We should kill off this ugly thing at so me point. XXX */
  1307. unsigned long sun4u_get_pte(unsigned long addr)
  1308. {
  1309. pgd_t *pgdp;
  1310. pud_t *pudp;
  1311. pmd_t *pmdp;
  1312. pte_t *ptep;
  1313. unsigned long mask = _PAGE_PADDR_4U;
  1314. if (tlb_type == hypervisor)
  1315. mask = _PAGE_PADDR_4V;
  1316. if (addr >= PAGE_OFFSET)
  1317. return addr & mask;
  1318. if ((addr >= LOW_OBP_ADDRESS) && (addr < HI_OBP_ADDRESS))
  1319. return prom_virt_to_phys(addr, NULL);
  1320. pgdp = pgd_offset_k(addr);
  1321. pudp = pud_offset(pgdp, addr);
  1322. pmdp = pmd_offset(pudp, addr);
  1323. ptep = pte_offset_kernel(pmdp, addr);
  1324. return pte_val(*ptep) & mask;
  1325. }
  1326. /* If not locked, zap it. */
  1327. void __flush_tlb_all(void)
  1328. {
  1329. unsigned long pstate;
  1330. int i;
  1331. __asm__ __volatile__("flushw\n\t"
  1332. "rdpr %%pstate, %0\n\t"
  1333. "wrpr %0, %1, %%pstate"
  1334. : "=r" (pstate)
  1335. : "i" (PSTATE_IE));
  1336. if (tlb_type == spitfire) {
  1337. for (i = 0; i < 64; i++) {
  1338. /* Spitfire Errata #32 workaround */
  1339. /* NOTE: Always runs on spitfire, so no
  1340. * cheetah+ page size encodings.
  1341. */
  1342. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  1343. "flush %%g6"
  1344. : /* No outputs */
  1345. : "r" (0),
  1346. "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
  1347. if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
  1348. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  1349. "membar #Sync"
  1350. : /* no outputs */
  1351. : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
  1352. spitfire_put_dtlb_data(i, 0x0UL);
  1353. }
  1354. /* Spitfire Errata #32 workaround */
  1355. /* NOTE: Always runs on spitfire, so no
  1356. * cheetah+ page size encodings.
  1357. */
  1358. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  1359. "flush %%g6"
  1360. : /* No outputs */
  1361. : "r" (0),
  1362. "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
  1363. if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
  1364. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  1365. "membar #Sync"
  1366. : /* no outputs */
  1367. : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
  1368. spitfire_put_itlb_data(i, 0x0UL);
  1369. }
  1370. }
  1371. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  1372. cheetah_flush_dtlb_all();
  1373. cheetah_flush_itlb_all();
  1374. }
  1375. __asm__ __volatile__("wrpr %0, 0, %%pstate"
  1376. : : "r" (pstate));
  1377. }