inode.c 155 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380
  1. /*
  2. * linux/fs/ext4/inode.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/inode.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * Goal-directed block allocation by Stephen Tweedie
  16. * (sct@redhat.com), 1993, 1998
  17. * Big-endian to little-endian byte-swapping/bitmaps by
  18. * David S. Miller (davem@caip.rutgers.edu), 1995
  19. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  20. * (jj@sunsite.ms.mff.cuni.cz)
  21. *
  22. * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  23. */
  24. #include <linux/module.h>
  25. #include <linux/fs.h>
  26. #include <linux/time.h>
  27. #include <linux/jbd2.h>
  28. #include <linux/highuid.h>
  29. #include <linux/pagemap.h>
  30. #include <linux/quotaops.h>
  31. #include <linux/string.h>
  32. #include <linux/buffer_head.h>
  33. #include <linux/writeback.h>
  34. #include <linux/pagevec.h>
  35. #include <linux/mpage.h>
  36. #include <linux/namei.h>
  37. #include <linux/uio.h>
  38. #include <linux/bio.h>
  39. #include "ext4_jbd2.h"
  40. #include "xattr.h"
  41. #include "acl.h"
  42. #include "ext4_extents.h"
  43. #define MPAGE_DA_EXTENT_TAIL 0x01
  44. static inline int ext4_begin_ordered_truncate(struct inode *inode,
  45. loff_t new_size)
  46. {
  47. return jbd2_journal_begin_ordered_truncate(
  48. EXT4_SB(inode->i_sb)->s_journal,
  49. &EXT4_I(inode)->jinode,
  50. new_size);
  51. }
  52. static void ext4_invalidatepage(struct page *page, unsigned long offset);
  53. /*
  54. * Test whether an inode is a fast symlink.
  55. */
  56. static int ext4_inode_is_fast_symlink(struct inode *inode)
  57. {
  58. int ea_blocks = EXT4_I(inode)->i_file_acl ?
  59. (inode->i_sb->s_blocksize >> 9) : 0;
  60. return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  61. }
  62. /*
  63. * The ext4 forget function must perform a revoke if we are freeing data
  64. * which has been journaled. Metadata (eg. indirect blocks) must be
  65. * revoked in all cases.
  66. *
  67. * "bh" may be NULL: a metadata block may have been freed from memory
  68. * but there may still be a record of it in the journal, and that record
  69. * still needs to be revoked.
  70. *
  71. * If the handle isn't valid we're not journaling so there's nothing to do.
  72. */
  73. int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
  74. struct buffer_head *bh, ext4_fsblk_t blocknr)
  75. {
  76. int err;
  77. if (!ext4_handle_valid(handle))
  78. return 0;
  79. might_sleep();
  80. BUFFER_TRACE(bh, "enter");
  81. jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  82. "data mode %lx\n",
  83. bh, is_metadata, inode->i_mode,
  84. test_opt(inode->i_sb, DATA_FLAGS));
  85. /* Never use the revoke function if we are doing full data
  86. * journaling: there is no need to, and a V1 superblock won't
  87. * support it. Otherwise, only skip the revoke on un-journaled
  88. * data blocks. */
  89. if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
  90. (!is_metadata && !ext4_should_journal_data(inode))) {
  91. if (bh) {
  92. BUFFER_TRACE(bh, "call jbd2_journal_forget");
  93. return ext4_journal_forget(handle, bh);
  94. }
  95. return 0;
  96. }
  97. /*
  98. * data!=journal && (is_metadata || should_journal_data(inode))
  99. */
  100. BUFFER_TRACE(bh, "call ext4_journal_revoke");
  101. err = ext4_journal_revoke(handle, blocknr, bh);
  102. if (err)
  103. ext4_abort(inode->i_sb, __func__,
  104. "error %d when attempting revoke", err);
  105. BUFFER_TRACE(bh, "exit");
  106. return err;
  107. }
  108. /*
  109. * Work out how many blocks we need to proceed with the next chunk of a
  110. * truncate transaction.
  111. */
  112. static unsigned long blocks_for_truncate(struct inode *inode)
  113. {
  114. ext4_lblk_t needed;
  115. needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
  116. /* Give ourselves just enough room to cope with inodes in which
  117. * i_blocks is corrupt: we've seen disk corruptions in the past
  118. * which resulted in random data in an inode which looked enough
  119. * like a regular file for ext4 to try to delete it. Things
  120. * will go a bit crazy if that happens, but at least we should
  121. * try not to panic the whole kernel. */
  122. if (needed < 2)
  123. needed = 2;
  124. /* But we need to bound the transaction so we don't overflow the
  125. * journal. */
  126. if (needed > EXT4_MAX_TRANS_DATA)
  127. needed = EXT4_MAX_TRANS_DATA;
  128. return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
  129. }
  130. /*
  131. * Truncate transactions can be complex and absolutely huge. So we need to
  132. * be able to restart the transaction at a conventient checkpoint to make
  133. * sure we don't overflow the journal.
  134. *
  135. * start_transaction gets us a new handle for a truncate transaction,
  136. * and extend_transaction tries to extend the existing one a bit. If
  137. * extend fails, we need to propagate the failure up and restart the
  138. * transaction in the top-level truncate loop. --sct
  139. */
  140. static handle_t *start_transaction(struct inode *inode)
  141. {
  142. handle_t *result;
  143. result = ext4_journal_start(inode, blocks_for_truncate(inode));
  144. if (!IS_ERR(result))
  145. return result;
  146. ext4_std_error(inode->i_sb, PTR_ERR(result));
  147. return result;
  148. }
  149. /*
  150. * Try to extend this transaction for the purposes of truncation.
  151. *
  152. * Returns 0 if we managed to create more room. If we can't create more
  153. * room, and the transaction must be restarted we return 1.
  154. */
  155. static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
  156. {
  157. if (!ext4_handle_valid(handle))
  158. return 0;
  159. if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
  160. return 0;
  161. if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
  162. return 0;
  163. return 1;
  164. }
  165. /*
  166. * Restart the transaction associated with *handle. This does a commit,
  167. * so before we call here everything must be consistently dirtied against
  168. * this transaction.
  169. */
  170. static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
  171. {
  172. BUG_ON(EXT4_JOURNAL(inode) == NULL);
  173. jbd_debug(2, "restarting handle %p\n", handle);
  174. return ext4_journal_restart(handle, blocks_for_truncate(inode));
  175. }
  176. /*
  177. * Called at the last iput() if i_nlink is zero.
  178. */
  179. void ext4_delete_inode(struct inode *inode)
  180. {
  181. handle_t *handle;
  182. int err;
  183. if (ext4_should_order_data(inode))
  184. ext4_begin_ordered_truncate(inode, 0);
  185. truncate_inode_pages(&inode->i_data, 0);
  186. if (is_bad_inode(inode))
  187. goto no_delete;
  188. handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
  189. if (IS_ERR(handle)) {
  190. ext4_std_error(inode->i_sb, PTR_ERR(handle));
  191. /*
  192. * If we're going to skip the normal cleanup, we still need to
  193. * make sure that the in-core orphan linked list is properly
  194. * cleaned up.
  195. */
  196. ext4_orphan_del(NULL, inode);
  197. goto no_delete;
  198. }
  199. if (IS_SYNC(inode))
  200. ext4_handle_sync(handle);
  201. inode->i_size = 0;
  202. err = ext4_mark_inode_dirty(handle, inode);
  203. if (err) {
  204. ext4_warning(inode->i_sb, __func__,
  205. "couldn't mark inode dirty (err %d)", err);
  206. goto stop_handle;
  207. }
  208. if (inode->i_blocks)
  209. ext4_truncate(inode);
  210. /*
  211. * ext4_ext_truncate() doesn't reserve any slop when it
  212. * restarts journal transactions; therefore there may not be
  213. * enough credits left in the handle to remove the inode from
  214. * the orphan list and set the dtime field.
  215. */
  216. if (!ext4_handle_has_enough_credits(handle, 3)) {
  217. err = ext4_journal_extend(handle, 3);
  218. if (err > 0)
  219. err = ext4_journal_restart(handle, 3);
  220. if (err != 0) {
  221. ext4_warning(inode->i_sb, __func__,
  222. "couldn't extend journal (err %d)", err);
  223. stop_handle:
  224. ext4_journal_stop(handle);
  225. goto no_delete;
  226. }
  227. }
  228. /*
  229. * Kill off the orphan record which ext4_truncate created.
  230. * AKPM: I think this can be inside the above `if'.
  231. * Note that ext4_orphan_del() has to be able to cope with the
  232. * deletion of a non-existent orphan - this is because we don't
  233. * know if ext4_truncate() actually created an orphan record.
  234. * (Well, we could do this if we need to, but heck - it works)
  235. */
  236. ext4_orphan_del(handle, inode);
  237. EXT4_I(inode)->i_dtime = get_seconds();
  238. /*
  239. * One subtle ordering requirement: if anything has gone wrong
  240. * (transaction abort, IO errors, whatever), then we can still
  241. * do these next steps (the fs will already have been marked as
  242. * having errors), but we can't free the inode if the mark_dirty
  243. * fails.
  244. */
  245. if (ext4_mark_inode_dirty(handle, inode))
  246. /* If that failed, just do the required in-core inode clear. */
  247. clear_inode(inode);
  248. else
  249. ext4_free_inode(handle, inode);
  250. ext4_journal_stop(handle);
  251. return;
  252. no_delete:
  253. clear_inode(inode); /* We must guarantee clearing of inode... */
  254. }
  255. typedef struct {
  256. __le32 *p;
  257. __le32 key;
  258. struct buffer_head *bh;
  259. } Indirect;
  260. static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  261. {
  262. p->key = *(p->p = v);
  263. p->bh = bh;
  264. }
  265. /**
  266. * ext4_block_to_path - parse the block number into array of offsets
  267. * @inode: inode in question (we are only interested in its superblock)
  268. * @i_block: block number to be parsed
  269. * @offsets: array to store the offsets in
  270. * @boundary: set this non-zero if the referred-to block is likely to be
  271. * followed (on disk) by an indirect block.
  272. *
  273. * To store the locations of file's data ext4 uses a data structure common
  274. * for UNIX filesystems - tree of pointers anchored in the inode, with
  275. * data blocks at leaves and indirect blocks in intermediate nodes.
  276. * This function translates the block number into path in that tree -
  277. * return value is the path length and @offsets[n] is the offset of
  278. * pointer to (n+1)th node in the nth one. If @block is out of range
  279. * (negative or too large) warning is printed and zero returned.
  280. *
  281. * Note: function doesn't find node addresses, so no IO is needed. All
  282. * we need to know is the capacity of indirect blocks (taken from the
  283. * inode->i_sb).
  284. */
  285. /*
  286. * Portability note: the last comparison (check that we fit into triple
  287. * indirect block) is spelled differently, because otherwise on an
  288. * architecture with 32-bit longs and 8Kb pages we might get into trouble
  289. * if our filesystem had 8Kb blocks. We might use long long, but that would
  290. * kill us on x86. Oh, well, at least the sign propagation does not matter -
  291. * i_block would have to be negative in the very beginning, so we would not
  292. * get there at all.
  293. */
  294. static int ext4_block_to_path(struct inode *inode,
  295. ext4_lblk_t i_block,
  296. ext4_lblk_t offsets[4], int *boundary)
  297. {
  298. int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  299. int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
  300. const long direct_blocks = EXT4_NDIR_BLOCKS,
  301. indirect_blocks = ptrs,
  302. double_blocks = (1 << (ptrs_bits * 2));
  303. int n = 0;
  304. int final = 0;
  305. if (i_block < 0) {
  306. ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
  307. } else if (i_block < direct_blocks) {
  308. offsets[n++] = i_block;
  309. final = direct_blocks;
  310. } else if ((i_block -= direct_blocks) < indirect_blocks) {
  311. offsets[n++] = EXT4_IND_BLOCK;
  312. offsets[n++] = i_block;
  313. final = ptrs;
  314. } else if ((i_block -= indirect_blocks) < double_blocks) {
  315. offsets[n++] = EXT4_DIND_BLOCK;
  316. offsets[n++] = i_block >> ptrs_bits;
  317. offsets[n++] = i_block & (ptrs - 1);
  318. final = ptrs;
  319. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  320. offsets[n++] = EXT4_TIND_BLOCK;
  321. offsets[n++] = i_block >> (ptrs_bits * 2);
  322. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  323. offsets[n++] = i_block & (ptrs - 1);
  324. final = ptrs;
  325. } else {
  326. ext4_warning(inode->i_sb, "ext4_block_to_path",
  327. "block %lu > max in inode %lu",
  328. i_block + direct_blocks +
  329. indirect_blocks + double_blocks, inode->i_ino);
  330. }
  331. if (boundary)
  332. *boundary = final - 1 - (i_block & (ptrs - 1));
  333. return n;
  334. }
  335. static int __ext4_check_blockref(const char *function, struct inode *inode,
  336. __le32 *p, unsigned int max) {
  337. unsigned int maxblocks = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es);
  338. __le32 *bref = p;
  339. while (bref < p+max) {
  340. if (unlikely(le32_to_cpu(*bref) >= maxblocks)) {
  341. ext4_error(inode->i_sb, function,
  342. "block reference %u >= max (%u) "
  343. "in inode #%lu, offset=%d",
  344. le32_to_cpu(*bref), maxblocks,
  345. inode->i_ino, (int)(bref-p));
  346. return -EIO;
  347. }
  348. bref++;
  349. }
  350. return 0;
  351. }
  352. #define ext4_check_indirect_blockref(inode, bh) \
  353. __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
  354. EXT4_ADDR_PER_BLOCK((inode)->i_sb))
  355. #define ext4_check_inode_blockref(inode) \
  356. __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
  357. EXT4_NDIR_BLOCKS)
  358. /**
  359. * ext4_get_branch - read the chain of indirect blocks leading to data
  360. * @inode: inode in question
  361. * @depth: depth of the chain (1 - direct pointer, etc.)
  362. * @offsets: offsets of pointers in inode/indirect blocks
  363. * @chain: place to store the result
  364. * @err: here we store the error value
  365. *
  366. * Function fills the array of triples <key, p, bh> and returns %NULL
  367. * if everything went OK or the pointer to the last filled triple
  368. * (incomplete one) otherwise. Upon the return chain[i].key contains
  369. * the number of (i+1)-th block in the chain (as it is stored in memory,
  370. * i.e. little-endian 32-bit), chain[i].p contains the address of that
  371. * number (it points into struct inode for i==0 and into the bh->b_data
  372. * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
  373. * block for i>0 and NULL for i==0. In other words, it holds the block
  374. * numbers of the chain, addresses they were taken from (and where we can
  375. * verify that chain did not change) and buffer_heads hosting these
  376. * numbers.
  377. *
  378. * Function stops when it stumbles upon zero pointer (absent block)
  379. * (pointer to last triple returned, *@err == 0)
  380. * or when it gets an IO error reading an indirect block
  381. * (ditto, *@err == -EIO)
  382. * or when it reads all @depth-1 indirect blocks successfully and finds
  383. * the whole chain, all way to the data (returns %NULL, *err == 0).
  384. *
  385. * Need to be called with
  386. * down_read(&EXT4_I(inode)->i_data_sem)
  387. */
  388. static Indirect *ext4_get_branch(struct inode *inode, int depth,
  389. ext4_lblk_t *offsets,
  390. Indirect chain[4], int *err)
  391. {
  392. struct super_block *sb = inode->i_sb;
  393. Indirect *p = chain;
  394. struct buffer_head *bh;
  395. *err = 0;
  396. /* i_data is not going away, no lock needed */
  397. add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
  398. if (!p->key)
  399. goto no_block;
  400. while (--depth) {
  401. bh = sb_getblk(sb, le32_to_cpu(p->key));
  402. if (unlikely(!bh))
  403. goto failure;
  404. if (!bh_uptodate_or_lock(bh)) {
  405. if (bh_submit_read(bh) < 0) {
  406. put_bh(bh);
  407. goto failure;
  408. }
  409. /* validate block references */
  410. if (ext4_check_indirect_blockref(inode, bh)) {
  411. put_bh(bh);
  412. goto failure;
  413. }
  414. }
  415. add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
  416. /* Reader: end */
  417. if (!p->key)
  418. goto no_block;
  419. }
  420. return NULL;
  421. failure:
  422. *err = -EIO;
  423. no_block:
  424. return p;
  425. }
  426. /**
  427. * ext4_find_near - find a place for allocation with sufficient locality
  428. * @inode: owner
  429. * @ind: descriptor of indirect block.
  430. *
  431. * This function returns the preferred place for block allocation.
  432. * It is used when heuristic for sequential allocation fails.
  433. * Rules are:
  434. * + if there is a block to the left of our position - allocate near it.
  435. * + if pointer will live in indirect block - allocate near that block.
  436. * + if pointer will live in inode - allocate in the same
  437. * cylinder group.
  438. *
  439. * In the latter case we colour the starting block by the callers PID to
  440. * prevent it from clashing with concurrent allocations for a different inode
  441. * in the same block group. The PID is used here so that functionally related
  442. * files will be close-by on-disk.
  443. *
  444. * Caller must make sure that @ind is valid and will stay that way.
  445. */
  446. static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
  447. {
  448. struct ext4_inode_info *ei = EXT4_I(inode);
  449. __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
  450. __le32 *p;
  451. ext4_fsblk_t bg_start;
  452. ext4_fsblk_t last_block;
  453. ext4_grpblk_t colour;
  454. ext4_group_t block_group;
  455. int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
  456. /* Try to find previous block */
  457. for (p = ind->p - 1; p >= start; p--) {
  458. if (*p)
  459. return le32_to_cpu(*p);
  460. }
  461. /* No such thing, so let's try location of indirect block */
  462. if (ind->bh)
  463. return ind->bh->b_blocknr;
  464. /*
  465. * It is going to be referred to from the inode itself? OK, just put it
  466. * into the same cylinder group then.
  467. */
  468. block_group = ei->i_block_group;
  469. if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
  470. block_group &= ~(flex_size-1);
  471. if (S_ISREG(inode->i_mode))
  472. block_group++;
  473. }
  474. bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
  475. last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
  476. /*
  477. * If we are doing delayed allocation, we don't need take
  478. * colour into account.
  479. */
  480. if (test_opt(inode->i_sb, DELALLOC))
  481. return bg_start;
  482. if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
  483. colour = (current->pid % 16) *
  484. (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
  485. else
  486. colour = (current->pid % 16) * ((last_block - bg_start) / 16);
  487. return bg_start + colour;
  488. }
  489. /**
  490. * ext4_find_goal - find a preferred place for allocation.
  491. * @inode: owner
  492. * @block: block we want
  493. * @partial: pointer to the last triple within a chain
  494. *
  495. * Normally this function find the preferred place for block allocation,
  496. * returns it.
  497. */
  498. static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
  499. Indirect *partial)
  500. {
  501. /*
  502. * XXX need to get goal block from mballoc's data structures
  503. */
  504. return ext4_find_near(inode, partial);
  505. }
  506. /**
  507. * ext4_blks_to_allocate: Look up the block map and count the number
  508. * of direct blocks need to be allocated for the given branch.
  509. *
  510. * @branch: chain of indirect blocks
  511. * @k: number of blocks need for indirect blocks
  512. * @blks: number of data blocks to be mapped.
  513. * @blocks_to_boundary: the offset in the indirect block
  514. *
  515. * return the total number of blocks to be allocate, including the
  516. * direct and indirect blocks.
  517. */
  518. static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
  519. int blocks_to_boundary)
  520. {
  521. unsigned int count = 0;
  522. /*
  523. * Simple case, [t,d]Indirect block(s) has not allocated yet
  524. * then it's clear blocks on that path have not allocated
  525. */
  526. if (k > 0) {
  527. /* right now we don't handle cross boundary allocation */
  528. if (blks < blocks_to_boundary + 1)
  529. count += blks;
  530. else
  531. count += blocks_to_boundary + 1;
  532. return count;
  533. }
  534. count++;
  535. while (count < blks && count <= blocks_to_boundary &&
  536. le32_to_cpu(*(branch[0].p + count)) == 0) {
  537. count++;
  538. }
  539. return count;
  540. }
  541. /**
  542. * ext4_alloc_blocks: multiple allocate blocks needed for a branch
  543. * @indirect_blks: the number of blocks need to allocate for indirect
  544. * blocks
  545. *
  546. * @new_blocks: on return it will store the new block numbers for
  547. * the indirect blocks(if needed) and the first direct block,
  548. * @blks: on return it will store the total number of allocated
  549. * direct blocks
  550. */
  551. static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
  552. ext4_lblk_t iblock, ext4_fsblk_t goal,
  553. int indirect_blks, int blks,
  554. ext4_fsblk_t new_blocks[4], int *err)
  555. {
  556. struct ext4_allocation_request ar;
  557. int target, i;
  558. unsigned long count = 0, blk_allocated = 0;
  559. int index = 0;
  560. ext4_fsblk_t current_block = 0;
  561. int ret = 0;
  562. /*
  563. * Here we try to allocate the requested multiple blocks at once,
  564. * on a best-effort basis.
  565. * To build a branch, we should allocate blocks for
  566. * the indirect blocks(if not allocated yet), and at least
  567. * the first direct block of this branch. That's the
  568. * minimum number of blocks need to allocate(required)
  569. */
  570. /* first we try to allocate the indirect blocks */
  571. target = indirect_blks;
  572. while (target > 0) {
  573. count = target;
  574. /* allocating blocks for indirect blocks and direct blocks */
  575. current_block = ext4_new_meta_blocks(handle, inode,
  576. goal, &count, err);
  577. if (*err)
  578. goto failed_out;
  579. target -= count;
  580. /* allocate blocks for indirect blocks */
  581. while (index < indirect_blks && count) {
  582. new_blocks[index++] = current_block++;
  583. count--;
  584. }
  585. if (count > 0) {
  586. /*
  587. * save the new block number
  588. * for the first direct block
  589. */
  590. new_blocks[index] = current_block;
  591. printk(KERN_INFO "%s returned more blocks than "
  592. "requested\n", __func__);
  593. WARN_ON(1);
  594. break;
  595. }
  596. }
  597. target = blks - count ;
  598. blk_allocated = count;
  599. if (!target)
  600. goto allocated;
  601. /* Now allocate data blocks */
  602. memset(&ar, 0, sizeof(ar));
  603. ar.inode = inode;
  604. ar.goal = goal;
  605. ar.len = target;
  606. ar.logical = iblock;
  607. if (S_ISREG(inode->i_mode))
  608. /* enable in-core preallocation only for regular files */
  609. ar.flags = EXT4_MB_HINT_DATA;
  610. current_block = ext4_mb_new_blocks(handle, &ar, err);
  611. if (*err && (target == blks)) {
  612. /*
  613. * if the allocation failed and we didn't allocate
  614. * any blocks before
  615. */
  616. goto failed_out;
  617. }
  618. if (!*err) {
  619. if (target == blks) {
  620. /*
  621. * save the new block number
  622. * for the first direct block
  623. */
  624. new_blocks[index] = current_block;
  625. }
  626. blk_allocated += ar.len;
  627. }
  628. allocated:
  629. /* total number of blocks allocated for direct blocks */
  630. ret = blk_allocated;
  631. *err = 0;
  632. return ret;
  633. failed_out:
  634. for (i = 0; i < index; i++)
  635. ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
  636. return ret;
  637. }
  638. /**
  639. * ext4_alloc_branch - allocate and set up a chain of blocks.
  640. * @inode: owner
  641. * @indirect_blks: number of allocated indirect blocks
  642. * @blks: number of allocated direct blocks
  643. * @offsets: offsets (in the blocks) to store the pointers to next.
  644. * @branch: place to store the chain in.
  645. *
  646. * This function allocates blocks, zeroes out all but the last one,
  647. * links them into chain and (if we are synchronous) writes them to disk.
  648. * In other words, it prepares a branch that can be spliced onto the
  649. * inode. It stores the information about that chain in the branch[], in
  650. * the same format as ext4_get_branch() would do. We are calling it after
  651. * we had read the existing part of chain and partial points to the last
  652. * triple of that (one with zero ->key). Upon the exit we have the same
  653. * picture as after the successful ext4_get_block(), except that in one
  654. * place chain is disconnected - *branch->p is still zero (we did not
  655. * set the last link), but branch->key contains the number that should
  656. * be placed into *branch->p to fill that gap.
  657. *
  658. * If allocation fails we free all blocks we've allocated (and forget
  659. * their buffer_heads) and return the error value the from failed
  660. * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
  661. * as described above and return 0.
  662. */
  663. static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
  664. ext4_lblk_t iblock, int indirect_blks,
  665. int *blks, ext4_fsblk_t goal,
  666. ext4_lblk_t *offsets, Indirect *branch)
  667. {
  668. int blocksize = inode->i_sb->s_blocksize;
  669. int i, n = 0;
  670. int err = 0;
  671. struct buffer_head *bh;
  672. int num;
  673. ext4_fsblk_t new_blocks[4];
  674. ext4_fsblk_t current_block;
  675. num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
  676. *blks, new_blocks, &err);
  677. if (err)
  678. return err;
  679. branch[0].key = cpu_to_le32(new_blocks[0]);
  680. /*
  681. * metadata blocks and data blocks are allocated.
  682. */
  683. for (n = 1; n <= indirect_blks; n++) {
  684. /*
  685. * Get buffer_head for parent block, zero it out
  686. * and set the pointer to new one, then send
  687. * parent to disk.
  688. */
  689. bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
  690. branch[n].bh = bh;
  691. lock_buffer(bh);
  692. BUFFER_TRACE(bh, "call get_create_access");
  693. err = ext4_journal_get_create_access(handle, bh);
  694. if (err) {
  695. unlock_buffer(bh);
  696. brelse(bh);
  697. goto failed;
  698. }
  699. memset(bh->b_data, 0, blocksize);
  700. branch[n].p = (__le32 *) bh->b_data + offsets[n];
  701. branch[n].key = cpu_to_le32(new_blocks[n]);
  702. *branch[n].p = branch[n].key;
  703. if (n == indirect_blks) {
  704. current_block = new_blocks[n];
  705. /*
  706. * End of chain, update the last new metablock of
  707. * the chain to point to the new allocated
  708. * data blocks numbers
  709. */
  710. for (i=1; i < num; i++)
  711. *(branch[n].p + i) = cpu_to_le32(++current_block);
  712. }
  713. BUFFER_TRACE(bh, "marking uptodate");
  714. set_buffer_uptodate(bh);
  715. unlock_buffer(bh);
  716. BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
  717. err = ext4_handle_dirty_metadata(handle, inode, bh);
  718. if (err)
  719. goto failed;
  720. }
  721. *blks = num;
  722. return err;
  723. failed:
  724. /* Allocation failed, free what we already allocated */
  725. for (i = 1; i <= n ; i++) {
  726. BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
  727. ext4_journal_forget(handle, branch[i].bh);
  728. }
  729. for (i = 0; i < indirect_blks; i++)
  730. ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
  731. ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
  732. return err;
  733. }
  734. /**
  735. * ext4_splice_branch - splice the allocated branch onto inode.
  736. * @inode: owner
  737. * @block: (logical) number of block we are adding
  738. * @chain: chain of indirect blocks (with a missing link - see
  739. * ext4_alloc_branch)
  740. * @where: location of missing link
  741. * @num: number of indirect blocks we are adding
  742. * @blks: number of direct blocks we are adding
  743. *
  744. * This function fills the missing link and does all housekeeping needed in
  745. * inode (->i_blocks, etc.). In case of success we end up with the full
  746. * chain to new block and return 0.
  747. */
  748. static int ext4_splice_branch(handle_t *handle, struct inode *inode,
  749. ext4_lblk_t block, Indirect *where, int num, int blks)
  750. {
  751. int i;
  752. int err = 0;
  753. ext4_fsblk_t current_block;
  754. /*
  755. * If we're splicing into a [td]indirect block (as opposed to the
  756. * inode) then we need to get write access to the [td]indirect block
  757. * before the splice.
  758. */
  759. if (where->bh) {
  760. BUFFER_TRACE(where->bh, "get_write_access");
  761. err = ext4_journal_get_write_access(handle, where->bh);
  762. if (err)
  763. goto err_out;
  764. }
  765. /* That's it */
  766. *where->p = where->key;
  767. /*
  768. * Update the host buffer_head or inode to point to more just allocated
  769. * direct blocks blocks
  770. */
  771. if (num == 0 && blks > 1) {
  772. current_block = le32_to_cpu(where->key) + 1;
  773. for (i = 1; i < blks; i++)
  774. *(where->p + i) = cpu_to_le32(current_block++);
  775. }
  776. /* We are done with atomic stuff, now do the rest of housekeeping */
  777. inode->i_ctime = ext4_current_time(inode);
  778. ext4_mark_inode_dirty(handle, inode);
  779. /* had we spliced it onto indirect block? */
  780. if (where->bh) {
  781. /*
  782. * If we spliced it onto an indirect block, we haven't
  783. * altered the inode. Note however that if it is being spliced
  784. * onto an indirect block at the very end of the file (the
  785. * file is growing) then we *will* alter the inode to reflect
  786. * the new i_size. But that is not done here - it is done in
  787. * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
  788. */
  789. jbd_debug(5, "splicing indirect only\n");
  790. BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
  791. err = ext4_handle_dirty_metadata(handle, inode, where->bh);
  792. if (err)
  793. goto err_out;
  794. } else {
  795. /*
  796. * OK, we spliced it into the inode itself on a direct block.
  797. * Inode was dirtied above.
  798. */
  799. jbd_debug(5, "splicing direct\n");
  800. }
  801. return err;
  802. err_out:
  803. for (i = 1; i <= num; i++) {
  804. BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
  805. ext4_journal_forget(handle, where[i].bh);
  806. ext4_free_blocks(handle, inode,
  807. le32_to_cpu(where[i-1].key), 1, 0);
  808. }
  809. ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
  810. return err;
  811. }
  812. /*
  813. * Allocation strategy is simple: if we have to allocate something, we will
  814. * have to go the whole way to leaf. So let's do it before attaching anything
  815. * to tree, set linkage between the newborn blocks, write them if sync is
  816. * required, recheck the path, free and repeat if check fails, otherwise
  817. * set the last missing link (that will protect us from any truncate-generated
  818. * removals - all blocks on the path are immune now) and possibly force the
  819. * write on the parent block.
  820. * That has a nice additional property: no special recovery from the failed
  821. * allocations is needed - we simply release blocks and do not touch anything
  822. * reachable from inode.
  823. *
  824. * `handle' can be NULL if create == 0.
  825. *
  826. * return > 0, # of blocks mapped or allocated.
  827. * return = 0, if plain lookup failed.
  828. * return < 0, error case.
  829. *
  830. *
  831. * Need to be called with
  832. * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
  833. * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
  834. */
  835. static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
  836. ext4_lblk_t iblock, unsigned int maxblocks,
  837. struct buffer_head *bh_result,
  838. int create, int extend_disksize)
  839. {
  840. int err = -EIO;
  841. ext4_lblk_t offsets[4];
  842. Indirect chain[4];
  843. Indirect *partial;
  844. ext4_fsblk_t goal;
  845. int indirect_blks;
  846. int blocks_to_boundary = 0;
  847. int depth;
  848. struct ext4_inode_info *ei = EXT4_I(inode);
  849. int count = 0;
  850. ext4_fsblk_t first_block = 0;
  851. loff_t disksize;
  852. J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
  853. J_ASSERT(handle != NULL || create == 0);
  854. depth = ext4_block_to_path(inode, iblock, offsets,
  855. &blocks_to_boundary);
  856. if (depth == 0)
  857. goto out;
  858. partial = ext4_get_branch(inode, depth, offsets, chain, &err);
  859. /* Simplest case - block found, no allocation needed */
  860. if (!partial) {
  861. first_block = le32_to_cpu(chain[depth - 1].key);
  862. clear_buffer_new(bh_result);
  863. count++;
  864. /*map more blocks*/
  865. while (count < maxblocks && count <= blocks_to_boundary) {
  866. ext4_fsblk_t blk;
  867. blk = le32_to_cpu(*(chain[depth-1].p + count));
  868. if (blk == first_block + count)
  869. count++;
  870. else
  871. break;
  872. }
  873. goto got_it;
  874. }
  875. /* Next simple case - plain lookup or failed read of indirect block */
  876. if (!create || err == -EIO)
  877. goto cleanup;
  878. /*
  879. * Okay, we need to do block allocation.
  880. */
  881. goal = ext4_find_goal(inode, iblock, partial);
  882. /* the number of blocks need to allocate for [d,t]indirect blocks */
  883. indirect_blks = (chain + depth) - partial - 1;
  884. /*
  885. * Next look up the indirect map to count the totoal number of
  886. * direct blocks to allocate for this branch.
  887. */
  888. count = ext4_blks_to_allocate(partial, indirect_blks,
  889. maxblocks, blocks_to_boundary);
  890. /*
  891. * Block out ext4_truncate while we alter the tree
  892. */
  893. err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
  894. &count, goal,
  895. offsets + (partial - chain), partial);
  896. /*
  897. * The ext4_splice_branch call will free and forget any buffers
  898. * on the new chain if there is a failure, but that risks using
  899. * up transaction credits, especially for bitmaps where the
  900. * credits cannot be returned. Can we handle this somehow? We
  901. * may need to return -EAGAIN upwards in the worst case. --sct
  902. */
  903. if (!err)
  904. err = ext4_splice_branch(handle, inode, iblock,
  905. partial, indirect_blks, count);
  906. /*
  907. * i_disksize growing is protected by i_data_sem. Don't forget to
  908. * protect it if you're about to implement concurrent
  909. * ext4_get_block() -bzzz
  910. */
  911. if (!err && extend_disksize) {
  912. disksize = ((loff_t) iblock + count) << inode->i_blkbits;
  913. if (disksize > i_size_read(inode))
  914. disksize = i_size_read(inode);
  915. if (disksize > ei->i_disksize)
  916. ei->i_disksize = disksize;
  917. }
  918. if (err)
  919. goto cleanup;
  920. set_buffer_new(bh_result);
  921. got_it:
  922. map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
  923. if (count > blocks_to_boundary)
  924. set_buffer_boundary(bh_result);
  925. err = count;
  926. /* Clean up and exit */
  927. partial = chain + depth - 1; /* the whole chain */
  928. cleanup:
  929. while (partial > chain) {
  930. BUFFER_TRACE(partial->bh, "call brelse");
  931. brelse(partial->bh);
  932. partial--;
  933. }
  934. BUFFER_TRACE(bh_result, "returned");
  935. out:
  936. return err;
  937. }
  938. qsize_t ext4_get_reserved_space(struct inode *inode)
  939. {
  940. unsigned long long total;
  941. spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
  942. total = EXT4_I(inode)->i_reserved_data_blocks +
  943. EXT4_I(inode)->i_reserved_meta_blocks;
  944. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  945. return total;
  946. }
  947. /*
  948. * Calculate the number of metadata blocks need to reserve
  949. * to allocate @blocks for non extent file based file
  950. */
  951. static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
  952. {
  953. int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  954. int ind_blks, dind_blks, tind_blks;
  955. /* number of new indirect blocks needed */
  956. ind_blks = (blocks + icap - 1) / icap;
  957. dind_blks = (ind_blks + icap - 1) / icap;
  958. tind_blks = 1;
  959. return ind_blks + dind_blks + tind_blks;
  960. }
  961. /*
  962. * Calculate the number of metadata blocks need to reserve
  963. * to allocate given number of blocks
  964. */
  965. static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
  966. {
  967. if (!blocks)
  968. return 0;
  969. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
  970. return ext4_ext_calc_metadata_amount(inode, blocks);
  971. return ext4_indirect_calc_metadata_amount(inode, blocks);
  972. }
  973. static void ext4_da_update_reserve_space(struct inode *inode, int used)
  974. {
  975. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  976. int total, mdb, mdb_free;
  977. spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
  978. /* recalculate the number of metablocks still need to be reserved */
  979. total = EXT4_I(inode)->i_reserved_data_blocks - used;
  980. mdb = ext4_calc_metadata_amount(inode, total);
  981. /* figure out how many metablocks to release */
  982. BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
  983. mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
  984. if (mdb_free) {
  985. /* Account for allocated meta_blocks */
  986. mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
  987. /* update fs dirty blocks counter */
  988. percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
  989. EXT4_I(inode)->i_allocated_meta_blocks = 0;
  990. EXT4_I(inode)->i_reserved_meta_blocks = mdb;
  991. }
  992. /* update per-inode reservations */
  993. BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
  994. EXT4_I(inode)->i_reserved_data_blocks -= used;
  995. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  996. /*
  997. * free those over-booking quota for metadata blocks
  998. */
  999. if (mdb_free)
  1000. vfs_dq_release_reservation_block(inode, mdb_free);
  1001. /*
  1002. * If we have done all the pending block allocations and if
  1003. * there aren't any writers on the inode, we can discard the
  1004. * inode's preallocations.
  1005. */
  1006. if (!total && (atomic_read(&inode->i_writecount) == 0))
  1007. ext4_discard_preallocations(inode);
  1008. }
  1009. /*
  1010. * The ext4_get_blocks() function tries to look up the requested blocks,
  1011. * and returns if the blocks are already mapped.
  1012. *
  1013. * Otherwise it takes the write lock of the i_data_sem and allocate blocks
  1014. * and store the allocated blocks in the result buffer head and mark it
  1015. * mapped.
  1016. *
  1017. * If file type is extents based, it will call ext4_ext_get_blocks(),
  1018. * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
  1019. * based files
  1020. *
  1021. * On success, it returns the number of blocks being mapped or allocate.
  1022. * if create==0 and the blocks are pre-allocated and uninitialized block,
  1023. * the result buffer head is unmapped. If the create ==1, it will make sure
  1024. * the buffer head is mapped.
  1025. *
  1026. * It returns 0 if plain look up failed (blocks have not been allocated), in
  1027. * that casem, buffer head is unmapped
  1028. *
  1029. * It returns the error in case of allocation failure.
  1030. */
  1031. int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
  1032. unsigned int max_blocks, struct buffer_head *bh,
  1033. int create, int extend_disksize, int flag)
  1034. {
  1035. int retval;
  1036. clear_buffer_mapped(bh);
  1037. clear_buffer_unwritten(bh);
  1038. /*
  1039. * Try to see if we can get the block without requesting
  1040. * for new file system block.
  1041. */
  1042. down_read((&EXT4_I(inode)->i_data_sem));
  1043. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
  1044. retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
  1045. bh, 0, 0);
  1046. } else {
  1047. retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
  1048. bh, 0, 0);
  1049. }
  1050. up_read((&EXT4_I(inode)->i_data_sem));
  1051. /* If it is only a block(s) look up */
  1052. if (!create)
  1053. return retval;
  1054. /*
  1055. * Returns if the blocks have already allocated
  1056. *
  1057. * Note that if blocks have been preallocated
  1058. * ext4_ext_get_block() returns th create = 0
  1059. * with buffer head unmapped.
  1060. */
  1061. if (retval > 0 && buffer_mapped(bh))
  1062. return retval;
  1063. /*
  1064. * When we call get_blocks without the create flag, the
  1065. * BH_Unwritten flag could have gotten set if the blocks
  1066. * requested were part of a uninitialized extent. We need to
  1067. * clear this flag now that we are committed to convert all or
  1068. * part of the uninitialized extent to be an initialized
  1069. * extent. This is because we need to avoid the combination
  1070. * of BH_Unwritten and BH_Mapped flags being simultaneously
  1071. * set on the buffer_head.
  1072. */
  1073. clear_buffer_unwritten(bh);
  1074. /*
  1075. * New blocks allocate and/or writing to uninitialized extent
  1076. * will possibly result in updating i_data, so we take
  1077. * the write lock of i_data_sem, and call get_blocks()
  1078. * with create == 1 flag.
  1079. */
  1080. down_write((&EXT4_I(inode)->i_data_sem));
  1081. /*
  1082. * if the caller is from delayed allocation writeout path
  1083. * we have already reserved fs blocks for allocation
  1084. * let the underlying get_block() function know to
  1085. * avoid double accounting
  1086. */
  1087. if (flag)
  1088. EXT4_I(inode)->i_delalloc_reserved_flag = 1;
  1089. /*
  1090. * We need to check for EXT4 here because migrate
  1091. * could have changed the inode type in between
  1092. */
  1093. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
  1094. retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
  1095. bh, create, extend_disksize);
  1096. } else {
  1097. retval = ext4_ind_get_blocks(handle, inode, block,
  1098. max_blocks, bh, create, extend_disksize);
  1099. if (retval > 0 && buffer_new(bh)) {
  1100. /*
  1101. * We allocated new blocks which will result in
  1102. * i_data's format changing. Force the migrate
  1103. * to fail by clearing migrate flags
  1104. */
  1105. EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
  1106. ~EXT4_EXT_MIGRATE;
  1107. }
  1108. }
  1109. if (flag) {
  1110. EXT4_I(inode)->i_delalloc_reserved_flag = 0;
  1111. /*
  1112. * Update reserved blocks/metadata blocks
  1113. * after successful block allocation
  1114. * which were deferred till now
  1115. */
  1116. if ((retval > 0) && buffer_delay(bh))
  1117. ext4_da_update_reserve_space(inode, retval);
  1118. }
  1119. up_write((&EXT4_I(inode)->i_data_sem));
  1120. return retval;
  1121. }
  1122. /* Maximum number of blocks we map for direct IO at once. */
  1123. #define DIO_MAX_BLOCKS 4096
  1124. int ext4_get_block(struct inode *inode, sector_t iblock,
  1125. struct buffer_head *bh_result, int create)
  1126. {
  1127. handle_t *handle = ext4_journal_current_handle();
  1128. int ret = 0, started = 0;
  1129. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  1130. int dio_credits;
  1131. if (create && !handle) {
  1132. /* Direct IO write... */
  1133. if (max_blocks > DIO_MAX_BLOCKS)
  1134. max_blocks = DIO_MAX_BLOCKS;
  1135. dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
  1136. handle = ext4_journal_start(inode, dio_credits);
  1137. if (IS_ERR(handle)) {
  1138. ret = PTR_ERR(handle);
  1139. goto out;
  1140. }
  1141. started = 1;
  1142. }
  1143. ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
  1144. create, 0, 0);
  1145. if (ret > 0) {
  1146. bh_result->b_size = (ret << inode->i_blkbits);
  1147. ret = 0;
  1148. }
  1149. if (started)
  1150. ext4_journal_stop(handle);
  1151. out:
  1152. return ret;
  1153. }
  1154. /*
  1155. * `handle' can be NULL if create is zero
  1156. */
  1157. struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
  1158. ext4_lblk_t block, int create, int *errp)
  1159. {
  1160. struct buffer_head dummy;
  1161. int fatal = 0, err;
  1162. J_ASSERT(handle != NULL || create == 0);
  1163. dummy.b_state = 0;
  1164. dummy.b_blocknr = -1000;
  1165. buffer_trace_init(&dummy.b_history);
  1166. err = ext4_get_blocks(handle, inode, block, 1, &dummy, create, 1, 0);
  1167. /*
  1168. * ext4_get_blocks() returns number of blocks
  1169. * mapped. 0 in case of a HOLE.
  1170. */
  1171. if (err > 0) {
  1172. if (err > 1)
  1173. WARN_ON(1);
  1174. err = 0;
  1175. }
  1176. *errp = err;
  1177. if (!err && buffer_mapped(&dummy)) {
  1178. struct buffer_head *bh;
  1179. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  1180. if (!bh) {
  1181. *errp = -EIO;
  1182. goto err;
  1183. }
  1184. if (buffer_new(&dummy)) {
  1185. J_ASSERT(create != 0);
  1186. J_ASSERT(handle != NULL);
  1187. /*
  1188. * Now that we do not always journal data, we should
  1189. * keep in mind whether this should always journal the
  1190. * new buffer as metadata. For now, regular file
  1191. * writes use ext4_get_block instead, so it's not a
  1192. * problem.
  1193. */
  1194. lock_buffer(bh);
  1195. BUFFER_TRACE(bh, "call get_create_access");
  1196. fatal = ext4_journal_get_create_access(handle, bh);
  1197. if (!fatal && !buffer_uptodate(bh)) {
  1198. memset(bh->b_data, 0, inode->i_sb->s_blocksize);
  1199. set_buffer_uptodate(bh);
  1200. }
  1201. unlock_buffer(bh);
  1202. BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
  1203. err = ext4_handle_dirty_metadata(handle, inode, bh);
  1204. if (!fatal)
  1205. fatal = err;
  1206. } else {
  1207. BUFFER_TRACE(bh, "not a new buffer");
  1208. }
  1209. if (fatal) {
  1210. *errp = fatal;
  1211. brelse(bh);
  1212. bh = NULL;
  1213. }
  1214. return bh;
  1215. }
  1216. err:
  1217. return NULL;
  1218. }
  1219. struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
  1220. ext4_lblk_t block, int create, int *err)
  1221. {
  1222. struct buffer_head *bh;
  1223. bh = ext4_getblk(handle, inode, block, create, err);
  1224. if (!bh)
  1225. return bh;
  1226. if (buffer_uptodate(bh))
  1227. return bh;
  1228. ll_rw_block(READ_META, 1, &bh);
  1229. wait_on_buffer(bh);
  1230. if (buffer_uptodate(bh))
  1231. return bh;
  1232. put_bh(bh);
  1233. *err = -EIO;
  1234. return NULL;
  1235. }
  1236. static int walk_page_buffers(handle_t *handle,
  1237. struct buffer_head *head,
  1238. unsigned from,
  1239. unsigned to,
  1240. int *partial,
  1241. int (*fn)(handle_t *handle,
  1242. struct buffer_head *bh))
  1243. {
  1244. struct buffer_head *bh;
  1245. unsigned block_start, block_end;
  1246. unsigned blocksize = head->b_size;
  1247. int err, ret = 0;
  1248. struct buffer_head *next;
  1249. for (bh = head, block_start = 0;
  1250. ret == 0 && (bh != head || !block_start);
  1251. block_start = block_end, bh = next)
  1252. {
  1253. next = bh->b_this_page;
  1254. block_end = block_start + blocksize;
  1255. if (block_end <= from || block_start >= to) {
  1256. if (partial && !buffer_uptodate(bh))
  1257. *partial = 1;
  1258. continue;
  1259. }
  1260. err = (*fn)(handle, bh);
  1261. if (!ret)
  1262. ret = err;
  1263. }
  1264. return ret;
  1265. }
  1266. /*
  1267. * To preserve ordering, it is essential that the hole instantiation and
  1268. * the data write be encapsulated in a single transaction. We cannot
  1269. * close off a transaction and start a new one between the ext4_get_block()
  1270. * and the commit_write(). So doing the jbd2_journal_start at the start of
  1271. * prepare_write() is the right place.
  1272. *
  1273. * Also, this function can nest inside ext4_writepage() ->
  1274. * block_write_full_page(). In that case, we *know* that ext4_writepage()
  1275. * has generated enough buffer credits to do the whole page. So we won't
  1276. * block on the journal in that case, which is good, because the caller may
  1277. * be PF_MEMALLOC.
  1278. *
  1279. * By accident, ext4 can be reentered when a transaction is open via
  1280. * quota file writes. If we were to commit the transaction while thus
  1281. * reentered, there can be a deadlock - we would be holding a quota
  1282. * lock, and the commit would never complete if another thread had a
  1283. * transaction open and was blocking on the quota lock - a ranking
  1284. * violation.
  1285. *
  1286. * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
  1287. * will _not_ run commit under these circumstances because handle->h_ref
  1288. * is elevated. We'll still have enough credits for the tiny quotafile
  1289. * write.
  1290. */
  1291. static int do_journal_get_write_access(handle_t *handle,
  1292. struct buffer_head *bh)
  1293. {
  1294. if (!buffer_mapped(bh) || buffer_freed(bh))
  1295. return 0;
  1296. return ext4_journal_get_write_access(handle, bh);
  1297. }
  1298. static int ext4_write_begin(struct file *file, struct address_space *mapping,
  1299. loff_t pos, unsigned len, unsigned flags,
  1300. struct page **pagep, void **fsdata)
  1301. {
  1302. struct inode *inode = mapping->host;
  1303. int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
  1304. handle_t *handle;
  1305. int retries = 0;
  1306. struct page *page;
  1307. pgoff_t index;
  1308. unsigned from, to;
  1309. trace_mark(ext4_write_begin,
  1310. "dev %s ino %lu pos %llu len %u flags %u",
  1311. inode->i_sb->s_id, inode->i_ino,
  1312. (unsigned long long) pos, len, flags);
  1313. index = pos >> PAGE_CACHE_SHIFT;
  1314. from = pos & (PAGE_CACHE_SIZE - 1);
  1315. to = from + len;
  1316. retry:
  1317. handle = ext4_journal_start(inode, needed_blocks);
  1318. if (IS_ERR(handle)) {
  1319. ret = PTR_ERR(handle);
  1320. goto out;
  1321. }
  1322. /* We cannot recurse into the filesystem as the transaction is already
  1323. * started */
  1324. flags |= AOP_FLAG_NOFS;
  1325. page = grab_cache_page_write_begin(mapping, index, flags);
  1326. if (!page) {
  1327. ext4_journal_stop(handle);
  1328. ret = -ENOMEM;
  1329. goto out;
  1330. }
  1331. *pagep = page;
  1332. ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
  1333. ext4_get_block);
  1334. if (!ret && ext4_should_journal_data(inode)) {
  1335. ret = walk_page_buffers(handle, page_buffers(page),
  1336. from, to, NULL, do_journal_get_write_access);
  1337. }
  1338. if (ret) {
  1339. unlock_page(page);
  1340. ext4_journal_stop(handle);
  1341. page_cache_release(page);
  1342. /*
  1343. * block_write_begin may have instantiated a few blocks
  1344. * outside i_size. Trim these off again. Don't need
  1345. * i_size_read because we hold i_mutex.
  1346. */
  1347. if (pos + len > inode->i_size)
  1348. vmtruncate(inode, inode->i_size);
  1349. }
  1350. if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
  1351. goto retry;
  1352. out:
  1353. return ret;
  1354. }
  1355. /* For write_end() in data=journal mode */
  1356. static int write_end_fn(handle_t *handle, struct buffer_head *bh)
  1357. {
  1358. if (!buffer_mapped(bh) || buffer_freed(bh))
  1359. return 0;
  1360. set_buffer_uptodate(bh);
  1361. return ext4_handle_dirty_metadata(handle, NULL, bh);
  1362. }
  1363. /*
  1364. * We need to pick up the new inode size which generic_commit_write gave us
  1365. * `file' can be NULL - eg, when called from page_symlink().
  1366. *
  1367. * ext4 never places buffers on inode->i_mapping->private_list. metadata
  1368. * buffers are managed internally.
  1369. */
  1370. static int ext4_ordered_write_end(struct file *file,
  1371. struct address_space *mapping,
  1372. loff_t pos, unsigned len, unsigned copied,
  1373. struct page *page, void *fsdata)
  1374. {
  1375. handle_t *handle = ext4_journal_current_handle();
  1376. struct inode *inode = mapping->host;
  1377. int ret = 0, ret2;
  1378. trace_mark(ext4_ordered_write_end,
  1379. "dev %s ino %lu pos %llu len %u copied %u",
  1380. inode->i_sb->s_id, inode->i_ino,
  1381. (unsigned long long) pos, len, copied);
  1382. ret = ext4_jbd2_file_inode(handle, inode);
  1383. if (ret == 0) {
  1384. loff_t new_i_size;
  1385. new_i_size = pos + copied;
  1386. if (new_i_size > EXT4_I(inode)->i_disksize) {
  1387. ext4_update_i_disksize(inode, new_i_size);
  1388. /* We need to mark inode dirty even if
  1389. * new_i_size is less that inode->i_size
  1390. * bu greater than i_disksize.(hint delalloc)
  1391. */
  1392. ext4_mark_inode_dirty(handle, inode);
  1393. }
  1394. ret2 = generic_write_end(file, mapping, pos, len, copied,
  1395. page, fsdata);
  1396. copied = ret2;
  1397. if (ret2 < 0)
  1398. ret = ret2;
  1399. }
  1400. ret2 = ext4_journal_stop(handle);
  1401. if (!ret)
  1402. ret = ret2;
  1403. return ret ? ret : copied;
  1404. }
  1405. static int ext4_writeback_write_end(struct file *file,
  1406. struct address_space *mapping,
  1407. loff_t pos, unsigned len, unsigned copied,
  1408. struct page *page, void *fsdata)
  1409. {
  1410. handle_t *handle = ext4_journal_current_handle();
  1411. struct inode *inode = mapping->host;
  1412. int ret = 0, ret2;
  1413. loff_t new_i_size;
  1414. trace_mark(ext4_writeback_write_end,
  1415. "dev %s ino %lu pos %llu len %u copied %u",
  1416. inode->i_sb->s_id, inode->i_ino,
  1417. (unsigned long long) pos, len, copied);
  1418. new_i_size = pos + copied;
  1419. if (new_i_size > EXT4_I(inode)->i_disksize) {
  1420. ext4_update_i_disksize(inode, new_i_size);
  1421. /* We need to mark inode dirty even if
  1422. * new_i_size is less that inode->i_size
  1423. * bu greater than i_disksize.(hint delalloc)
  1424. */
  1425. ext4_mark_inode_dirty(handle, inode);
  1426. }
  1427. ret2 = generic_write_end(file, mapping, pos, len, copied,
  1428. page, fsdata);
  1429. copied = ret2;
  1430. if (ret2 < 0)
  1431. ret = ret2;
  1432. ret2 = ext4_journal_stop(handle);
  1433. if (!ret)
  1434. ret = ret2;
  1435. return ret ? ret : copied;
  1436. }
  1437. static int ext4_journalled_write_end(struct file *file,
  1438. struct address_space *mapping,
  1439. loff_t pos, unsigned len, unsigned copied,
  1440. struct page *page, void *fsdata)
  1441. {
  1442. handle_t *handle = ext4_journal_current_handle();
  1443. struct inode *inode = mapping->host;
  1444. int ret = 0, ret2;
  1445. int partial = 0;
  1446. unsigned from, to;
  1447. loff_t new_i_size;
  1448. trace_mark(ext4_journalled_write_end,
  1449. "dev %s ino %lu pos %llu len %u copied %u",
  1450. inode->i_sb->s_id, inode->i_ino,
  1451. (unsigned long long) pos, len, copied);
  1452. from = pos & (PAGE_CACHE_SIZE - 1);
  1453. to = from + len;
  1454. if (copied < len) {
  1455. if (!PageUptodate(page))
  1456. copied = 0;
  1457. page_zero_new_buffers(page, from+copied, to);
  1458. }
  1459. ret = walk_page_buffers(handle, page_buffers(page), from,
  1460. to, &partial, write_end_fn);
  1461. if (!partial)
  1462. SetPageUptodate(page);
  1463. new_i_size = pos + copied;
  1464. if (new_i_size > inode->i_size)
  1465. i_size_write(inode, pos+copied);
  1466. EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
  1467. if (new_i_size > EXT4_I(inode)->i_disksize) {
  1468. ext4_update_i_disksize(inode, new_i_size);
  1469. ret2 = ext4_mark_inode_dirty(handle, inode);
  1470. if (!ret)
  1471. ret = ret2;
  1472. }
  1473. unlock_page(page);
  1474. ret2 = ext4_journal_stop(handle);
  1475. if (!ret)
  1476. ret = ret2;
  1477. page_cache_release(page);
  1478. return ret ? ret : copied;
  1479. }
  1480. static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
  1481. {
  1482. int retries = 0;
  1483. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  1484. unsigned long md_needed, mdblocks, total = 0;
  1485. /*
  1486. * recalculate the amount of metadata blocks to reserve
  1487. * in order to allocate nrblocks
  1488. * worse case is one extent per block
  1489. */
  1490. repeat:
  1491. spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
  1492. total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
  1493. mdblocks = ext4_calc_metadata_amount(inode, total);
  1494. BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
  1495. md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
  1496. total = md_needed + nrblocks;
  1497. /*
  1498. * Make quota reservation here to prevent quota overflow
  1499. * later. Real quota accounting is done at pages writeout
  1500. * time.
  1501. */
  1502. if (vfs_dq_reserve_block(inode, total)) {
  1503. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  1504. return -EDQUOT;
  1505. }
  1506. if (ext4_claim_free_blocks(sbi, total)) {
  1507. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  1508. if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
  1509. yield();
  1510. goto repeat;
  1511. }
  1512. vfs_dq_release_reservation_block(inode, total);
  1513. return -ENOSPC;
  1514. }
  1515. EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
  1516. EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
  1517. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  1518. return 0; /* success */
  1519. }
  1520. static void ext4_da_release_space(struct inode *inode, int to_free)
  1521. {
  1522. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  1523. int total, mdb, mdb_free, release;
  1524. if (!to_free)
  1525. return; /* Nothing to release, exit */
  1526. spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
  1527. if (!EXT4_I(inode)->i_reserved_data_blocks) {
  1528. /*
  1529. * if there is no reserved blocks, but we try to free some
  1530. * then the counter is messed up somewhere.
  1531. * but since this function is called from invalidate
  1532. * page, it's harmless to return without any action
  1533. */
  1534. printk(KERN_INFO "ext4 delalloc try to release %d reserved "
  1535. "blocks for inode %lu, but there is no reserved "
  1536. "data blocks\n", to_free, inode->i_ino);
  1537. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  1538. return;
  1539. }
  1540. /* recalculate the number of metablocks still need to be reserved */
  1541. total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
  1542. mdb = ext4_calc_metadata_amount(inode, total);
  1543. /* figure out how many metablocks to release */
  1544. BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
  1545. mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
  1546. release = to_free + mdb_free;
  1547. /* update fs dirty blocks counter for truncate case */
  1548. percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
  1549. /* update per-inode reservations */
  1550. BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
  1551. EXT4_I(inode)->i_reserved_data_blocks -= to_free;
  1552. BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
  1553. EXT4_I(inode)->i_reserved_meta_blocks = mdb;
  1554. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  1555. vfs_dq_release_reservation_block(inode, release);
  1556. }
  1557. static void ext4_da_page_release_reservation(struct page *page,
  1558. unsigned long offset)
  1559. {
  1560. int to_release = 0;
  1561. struct buffer_head *head, *bh;
  1562. unsigned int curr_off = 0;
  1563. head = page_buffers(page);
  1564. bh = head;
  1565. do {
  1566. unsigned int next_off = curr_off + bh->b_size;
  1567. if ((offset <= curr_off) && (buffer_delay(bh))) {
  1568. to_release++;
  1569. clear_buffer_delay(bh);
  1570. }
  1571. curr_off = next_off;
  1572. } while ((bh = bh->b_this_page) != head);
  1573. ext4_da_release_space(page->mapping->host, to_release);
  1574. }
  1575. /*
  1576. * Delayed allocation stuff
  1577. */
  1578. struct mpage_da_data {
  1579. struct inode *inode;
  1580. sector_t b_blocknr; /* start block number of extent */
  1581. size_t b_size; /* size of extent */
  1582. unsigned long b_state; /* state of the extent */
  1583. unsigned long first_page, next_page; /* extent of pages */
  1584. struct writeback_control *wbc;
  1585. int io_done;
  1586. int pages_written;
  1587. int retval;
  1588. };
  1589. /*
  1590. * mpage_da_submit_io - walks through extent of pages and try to write
  1591. * them with writepage() call back
  1592. *
  1593. * @mpd->inode: inode
  1594. * @mpd->first_page: first page of the extent
  1595. * @mpd->next_page: page after the last page of the extent
  1596. *
  1597. * By the time mpage_da_submit_io() is called we expect all blocks
  1598. * to be allocated. this may be wrong if allocation failed.
  1599. *
  1600. * As pages are already locked by write_cache_pages(), we can't use it
  1601. */
  1602. static int mpage_da_submit_io(struct mpage_da_data *mpd)
  1603. {
  1604. long pages_skipped;
  1605. struct pagevec pvec;
  1606. unsigned long index, end;
  1607. int ret = 0, err, nr_pages, i;
  1608. struct inode *inode = mpd->inode;
  1609. struct address_space *mapping = inode->i_mapping;
  1610. BUG_ON(mpd->next_page <= mpd->first_page);
  1611. /*
  1612. * We need to start from the first_page to the next_page - 1
  1613. * to make sure we also write the mapped dirty buffer_heads.
  1614. * If we look at mpd->b_blocknr we would only be looking
  1615. * at the currently mapped buffer_heads.
  1616. */
  1617. index = mpd->first_page;
  1618. end = mpd->next_page - 1;
  1619. pagevec_init(&pvec, 0);
  1620. while (index <= end) {
  1621. nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
  1622. if (nr_pages == 0)
  1623. break;
  1624. for (i = 0; i < nr_pages; i++) {
  1625. struct page *page = pvec.pages[i];
  1626. index = page->index;
  1627. if (index > end)
  1628. break;
  1629. index++;
  1630. BUG_ON(!PageLocked(page));
  1631. BUG_ON(PageWriteback(page));
  1632. pages_skipped = mpd->wbc->pages_skipped;
  1633. err = mapping->a_ops->writepage(page, mpd->wbc);
  1634. if (!err && (pages_skipped == mpd->wbc->pages_skipped))
  1635. /*
  1636. * have successfully written the page
  1637. * without skipping the same
  1638. */
  1639. mpd->pages_written++;
  1640. /*
  1641. * In error case, we have to continue because
  1642. * remaining pages are still locked
  1643. * XXX: unlock and re-dirty them?
  1644. */
  1645. if (ret == 0)
  1646. ret = err;
  1647. }
  1648. pagevec_release(&pvec);
  1649. }
  1650. return ret;
  1651. }
  1652. /*
  1653. * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
  1654. *
  1655. * @mpd->inode - inode to walk through
  1656. * @exbh->b_blocknr - first block on a disk
  1657. * @exbh->b_size - amount of space in bytes
  1658. * @logical - first logical block to start assignment with
  1659. *
  1660. * the function goes through all passed space and put actual disk
  1661. * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
  1662. */
  1663. static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
  1664. struct buffer_head *exbh)
  1665. {
  1666. struct inode *inode = mpd->inode;
  1667. struct address_space *mapping = inode->i_mapping;
  1668. int blocks = exbh->b_size >> inode->i_blkbits;
  1669. sector_t pblock = exbh->b_blocknr, cur_logical;
  1670. struct buffer_head *head, *bh;
  1671. pgoff_t index, end;
  1672. struct pagevec pvec;
  1673. int nr_pages, i;
  1674. index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1675. end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1676. cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1677. pagevec_init(&pvec, 0);
  1678. while (index <= end) {
  1679. /* XXX: optimize tail */
  1680. nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
  1681. if (nr_pages == 0)
  1682. break;
  1683. for (i = 0; i < nr_pages; i++) {
  1684. struct page *page = pvec.pages[i];
  1685. index = page->index;
  1686. if (index > end)
  1687. break;
  1688. index++;
  1689. BUG_ON(!PageLocked(page));
  1690. BUG_ON(PageWriteback(page));
  1691. BUG_ON(!page_has_buffers(page));
  1692. bh = page_buffers(page);
  1693. head = bh;
  1694. /* skip blocks out of the range */
  1695. do {
  1696. if (cur_logical >= logical)
  1697. break;
  1698. cur_logical++;
  1699. } while ((bh = bh->b_this_page) != head);
  1700. do {
  1701. if (cur_logical >= logical + blocks)
  1702. break;
  1703. if (buffer_delay(bh) ||
  1704. buffer_unwritten(bh)) {
  1705. BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
  1706. if (buffer_delay(bh)) {
  1707. clear_buffer_delay(bh);
  1708. bh->b_blocknr = pblock;
  1709. } else {
  1710. /*
  1711. * unwritten already should have
  1712. * blocknr assigned. Verify that
  1713. */
  1714. clear_buffer_unwritten(bh);
  1715. BUG_ON(bh->b_blocknr != pblock);
  1716. }
  1717. } else if (buffer_mapped(bh))
  1718. BUG_ON(bh->b_blocknr != pblock);
  1719. cur_logical++;
  1720. pblock++;
  1721. } while ((bh = bh->b_this_page) != head);
  1722. }
  1723. pagevec_release(&pvec);
  1724. }
  1725. }
  1726. /*
  1727. * __unmap_underlying_blocks - just a helper function to unmap
  1728. * set of blocks described by @bh
  1729. */
  1730. static inline void __unmap_underlying_blocks(struct inode *inode,
  1731. struct buffer_head *bh)
  1732. {
  1733. struct block_device *bdev = inode->i_sb->s_bdev;
  1734. int blocks, i;
  1735. blocks = bh->b_size >> inode->i_blkbits;
  1736. for (i = 0; i < blocks; i++)
  1737. unmap_underlying_metadata(bdev, bh->b_blocknr + i);
  1738. }
  1739. static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
  1740. sector_t logical, long blk_cnt)
  1741. {
  1742. int nr_pages, i;
  1743. pgoff_t index, end;
  1744. struct pagevec pvec;
  1745. struct inode *inode = mpd->inode;
  1746. struct address_space *mapping = inode->i_mapping;
  1747. index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1748. end = (logical + blk_cnt - 1) >>
  1749. (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1750. while (index <= end) {
  1751. nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
  1752. if (nr_pages == 0)
  1753. break;
  1754. for (i = 0; i < nr_pages; i++) {
  1755. struct page *page = pvec.pages[i];
  1756. index = page->index;
  1757. if (index > end)
  1758. break;
  1759. index++;
  1760. BUG_ON(!PageLocked(page));
  1761. BUG_ON(PageWriteback(page));
  1762. block_invalidatepage(page, 0);
  1763. ClearPageUptodate(page);
  1764. unlock_page(page);
  1765. }
  1766. }
  1767. return;
  1768. }
  1769. static void ext4_print_free_blocks(struct inode *inode)
  1770. {
  1771. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  1772. printk(KERN_EMERG "Total free blocks count %lld\n",
  1773. ext4_count_free_blocks(inode->i_sb));
  1774. printk(KERN_EMERG "Free/Dirty block details\n");
  1775. printk(KERN_EMERG "free_blocks=%lld\n",
  1776. (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
  1777. printk(KERN_EMERG "dirty_blocks=%lld\n",
  1778. (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
  1779. printk(KERN_EMERG "Block reservation details\n");
  1780. printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
  1781. EXT4_I(inode)->i_reserved_data_blocks);
  1782. printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
  1783. EXT4_I(inode)->i_reserved_meta_blocks);
  1784. return;
  1785. }
  1786. #define EXT4_DELALLOC_RSVED 1
  1787. static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
  1788. struct buffer_head *bh_result)
  1789. {
  1790. int ret;
  1791. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  1792. loff_t disksize = EXT4_I(inode)->i_disksize;
  1793. handle_t *handle = NULL;
  1794. handle = ext4_journal_current_handle();
  1795. BUG_ON(!handle);
  1796. ret = ext4_get_blocks(handle, inode, iblock, max_blocks,
  1797. bh_result, 1, 0, EXT4_DELALLOC_RSVED);
  1798. if (ret <= 0)
  1799. return ret;
  1800. bh_result->b_size = (ret << inode->i_blkbits);
  1801. if (ext4_should_order_data(inode)) {
  1802. int retval;
  1803. retval = ext4_jbd2_file_inode(handle, inode);
  1804. if (retval)
  1805. /*
  1806. * Failed to add inode for ordered mode. Don't
  1807. * update file size
  1808. */
  1809. return retval;
  1810. }
  1811. /*
  1812. * Update on-disk size along with block allocation we don't
  1813. * use 'extend_disksize' as size may change within already
  1814. * allocated block -bzzz
  1815. */
  1816. disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
  1817. if (disksize > i_size_read(inode))
  1818. disksize = i_size_read(inode);
  1819. if (disksize > EXT4_I(inode)->i_disksize) {
  1820. ext4_update_i_disksize(inode, disksize);
  1821. ret = ext4_mark_inode_dirty(handle, inode);
  1822. return ret;
  1823. }
  1824. return 0;
  1825. }
  1826. /*
  1827. * mpage_da_map_blocks - go through given space
  1828. *
  1829. * @mpd - bh describing space
  1830. *
  1831. * The function skips space we know is already mapped to disk blocks.
  1832. *
  1833. */
  1834. static int mpage_da_map_blocks(struct mpage_da_data *mpd)
  1835. {
  1836. int err = 0;
  1837. struct buffer_head new;
  1838. sector_t next;
  1839. /*
  1840. * We consider only non-mapped and non-allocated blocks
  1841. */
  1842. if ((mpd->b_state & (1 << BH_Mapped)) &&
  1843. !(mpd->b_state & (1 << BH_Delay)) &&
  1844. !(mpd->b_state & (1 << BH_Unwritten)))
  1845. return 0;
  1846. /*
  1847. * We need to make sure the BH_Delay flag is passed down to
  1848. * ext4_da_get_block_write(), since it calls
  1849. * ext4_get_blocks() with the EXT4_DELALLOC_RSVED flag.
  1850. * This flag causes ext4_get_blocks() to call
  1851. * ext4_da_update_reserve_space() if the passed buffer head
  1852. * has the BH_Delay flag set. In the future, once we clean up
  1853. * the interfaces to ext4_get_blocks(), we should pass in
  1854. * a separate flag which requests that the delayed allocation
  1855. * statistics should be updated, instead of depending on the
  1856. * state information getting passed down via the map_bh's
  1857. * state bitmasks plus the magic EXT4_DELALLOC_RSVED flag.
  1858. */
  1859. new.b_state = mpd->b_state & (1 << BH_Delay);
  1860. new.b_blocknr = 0;
  1861. new.b_size = mpd->b_size;
  1862. next = mpd->b_blocknr;
  1863. /*
  1864. * If we didn't accumulate anything
  1865. * to write simply return
  1866. */
  1867. if (!new.b_size)
  1868. return 0;
  1869. err = ext4_da_get_block_write(mpd->inode, next, &new);
  1870. if (err) {
  1871. /*
  1872. * If get block returns with error we simply
  1873. * return. Later writepage will redirty the page and
  1874. * writepages will find the dirty page again
  1875. */
  1876. if (err == -EAGAIN)
  1877. return 0;
  1878. if (err == -ENOSPC &&
  1879. ext4_count_free_blocks(mpd->inode->i_sb)) {
  1880. mpd->retval = err;
  1881. return 0;
  1882. }
  1883. /*
  1884. * get block failure will cause us to loop in
  1885. * writepages, because a_ops->writepage won't be able
  1886. * to make progress. The page will be redirtied by
  1887. * writepage and writepages will again try to write
  1888. * the same.
  1889. */
  1890. printk(KERN_EMERG "%s block allocation failed for inode %lu "
  1891. "at logical offset %llu with max blocks "
  1892. "%zd with error %d\n",
  1893. __func__, mpd->inode->i_ino,
  1894. (unsigned long long)next,
  1895. mpd->b_size >> mpd->inode->i_blkbits, err);
  1896. printk(KERN_EMERG "This should not happen.!! "
  1897. "Data will be lost\n");
  1898. if (err == -ENOSPC) {
  1899. ext4_print_free_blocks(mpd->inode);
  1900. }
  1901. /* invlaidate all the pages */
  1902. ext4_da_block_invalidatepages(mpd, next,
  1903. mpd->b_size >> mpd->inode->i_blkbits);
  1904. return err;
  1905. }
  1906. BUG_ON(new.b_size == 0);
  1907. if (buffer_new(&new))
  1908. __unmap_underlying_blocks(mpd->inode, &new);
  1909. /*
  1910. * If blocks are delayed marked, we need to
  1911. * put actual blocknr and drop delayed bit
  1912. */
  1913. if ((mpd->b_state & (1 << BH_Delay)) ||
  1914. (mpd->b_state & (1 << BH_Unwritten)))
  1915. mpage_put_bnr_to_bhs(mpd, next, &new);
  1916. return 0;
  1917. }
  1918. #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
  1919. (1 << BH_Delay) | (1 << BH_Unwritten))
  1920. /*
  1921. * mpage_add_bh_to_extent - try to add one more block to extent of blocks
  1922. *
  1923. * @mpd->lbh - extent of blocks
  1924. * @logical - logical number of the block in the file
  1925. * @bh - bh of the block (used to access block's state)
  1926. *
  1927. * the function is used to collect contig. blocks in same state
  1928. */
  1929. static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
  1930. sector_t logical, size_t b_size,
  1931. unsigned long b_state)
  1932. {
  1933. sector_t next;
  1934. int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
  1935. /* check if thereserved journal credits might overflow */
  1936. if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
  1937. if (nrblocks >= EXT4_MAX_TRANS_DATA) {
  1938. /*
  1939. * With non-extent format we are limited by the journal
  1940. * credit available. Total credit needed to insert
  1941. * nrblocks contiguous blocks is dependent on the
  1942. * nrblocks. So limit nrblocks.
  1943. */
  1944. goto flush_it;
  1945. } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
  1946. EXT4_MAX_TRANS_DATA) {
  1947. /*
  1948. * Adding the new buffer_head would make it cross the
  1949. * allowed limit for which we have journal credit
  1950. * reserved. So limit the new bh->b_size
  1951. */
  1952. b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
  1953. mpd->inode->i_blkbits;
  1954. /* we will do mpage_da_submit_io in the next loop */
  1955. }
  1956. }
  1957. /*
  1958. * First block in the extent
  1959. */
  1960. if (mpd->b_size == 0) {
  1961. mpd->b_blocknr = logical;
  1962. mpd->b_size = b_size;
  1963. mpd->b_state = b_state & BH_FLAGS;
  1964. return;
  1965. }
  1966. next = mpd->b_blocknr + nrblocks;
  1967. /*
  1968. * Can we merge the block to our big extent?
  1969. */
  1970. if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
  1971. mpd->b_size += b_size;
  1972. return;
  1973. }
  1974. flush_it:
  1975. /*
  1976. * We couldn't merge the block to our extent, so we
  1977. * need to flush current extent and start new one
  1978. */
  1979. if (mpage_da_map_blocks(mpd) == 0)
  1980. mpage_da_submit_io(mpd);
  1981. mpd->io_done = 1;
  1982. return;
  1983. }
  1984. static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
  1985. {
  1986. /*
  1987. * unmapped buffer is possible for holes.
  1988. * delay buffer is possible with delayed allocation.
  1989. * We also need to consider unwritten buffer as unmapped.
  1990. */
  1991. return (!buffer_mapped(bh) || buffer_delay(bh) ||
  1992. buffer_unwritten(bh)) && buffer_dirty(bh);
  1993. }
  1994. /*
  1995. * __mpage_da_writepage - finds extent of pages and blocks
  1996. *
  1997. * @page: page to consider
  1998. * @wbc: not used, we just follow rules
  1999. * @data: context
  2000. *
  2001. * The function finds extents of pages and scan them for all blocks.
  2002. */
  2003. static int __mpage_da_writepage(struct page *page,
  2004. struct writeback_control *wbc, void *data)
  2005. {
  2006. struct mpage_da_data *mpd = data;
  2007. struct inode *inode = mpd->inode;
  2008. struct buffer_head *bh, *head;
  2009. sector_t logical;
  2010. if (mpd->io_done) {
  2011. /*
  2012. * Rest of the page in the page_vec
  2013. * redirty then and skip then. We will
  2014. * try to to write them again after
  2015. * starting a new transaction
  2016. */
  2017. redirty_page_for_writepage(wbc, page);
  2018. unlock_page(page);
  2019. return MPAGE_DA_EXTENT_TAIL;
  2020. }
  2021. /*
  2022. * Can we merge this page to current extent?
  2023. */
  2024. if (mpd->next_page != page->index) {
  2025. /*
  2026. * Nope, we can't. So, we map non-allocated blocks
  2027. * and start IO on them using writepage()
  2028. */
  2029. if (mpd->next_page != mpd->first_page) {
  2030. if (mpage_da_map_blocks(mpd) == 0)
  2031. mpage_da_submit_io(mpd);
  2032. /*
  2033. * skip rest of the page in the page_vec
  2034. */
  2035. mpd->io_done = 1;
  2036. redirty_page_for_writepage(wbc, page);
  2037. unlock_page(page);
  2038. return MPAGE_DA_EXTENT_TAIL;
  2039. }
  2040. /*
  2041. * Start next extent of pages ...
  2042. */
  2043. mpd->first_page = page->index;
  2044. /*
  2045. * ... and blocks
  2046. */
  2047. mpd->b_size = 0;
  2048. mpd->b_state = 0;
  2049. mpd->b_blocknr = 0;
  2050. }
  2051. mpd->next_page = page->index + 1;
  2052. logical = (sector_t) page->index <<
  2053. (PAGE_CACHE_SHIFT - inode->i_blkbits);
  2054. if (!page_has_buffers(page)) {
  2055. mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
  2056. (1 << BH_Dirty) | (1 << BH_Uptodate));
  2057. if (mpd->io_done)
  2058. return MPAGE_DA_EXTENT_TAIL;
  2059. } else {
  2060. /*
  2061. * Page with regular buffer heads, just add all dirty ones
  2062. */
  2063. head = page_buffers(page);
  2064. bh = head;
  2065. do {
  2066. BUG_ON(buffer_locked(bh));
  2067. /*
  2068. * We need to try to allocate
  2069. * unmapped blocks in the same page.
  2070. * Otherwise we won't make progress
  2071. * with the page in ext4_da_writepage
  2072. */
  2073. if (ext4_bh_unmapped_or_delay(NULL, bh)) {
  2074. mpage_add_bh_to_extent(mpd, logical,
  2075. bh->b_size,
  2076. bh->b_state);
  2077. if (mpd->io_done)
  2078. return MPAGE_DA_EXTENT_TAIL;
  2079. } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
  2080. /*
  2081. * mapped dirty buffer. We need to update
  2082. * the b_state because we look at
  2083. * b_state in mpage_da_map_blocks. We don't
  2084. * update b_size because if we find an
  2085. * unmapped buffer_head later we need to
  2086. * use the b_state flag of that buffer_head.
  2087. */
  2088. if (mpd->b_size == 0)
  2089. mpd->b_state = bh->b_state & BH_FLAGS;
  2090. }
  2091. logical++;
  2092. } while ((bh = bh->b_this_page) != head);
  2093. }
  2094. return 0;
  2095. }
  2096. /*
  2097. * this is a special callback for ->write_begin() only
  2098. * it's intention is to return mapped block or reserve space
  2099. *
  2100. * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
  2101. * We also have b_blocknr = -1 and b_bdev initialized properly
  2102. *
  2103. * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
  2104. * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
  2105. * initialized properly.
  2106. *
  2107. */
  2108. static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
  2109. struct buffer_head *bh_result, int create)
  2110. {
  2111. int ret = 0;
  2112. sector_t invalid_block = ~((sector_t) 0xffff);
  2113. if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
  2114. invalid_block = ~0;
  2115. BUG_ON(create == 0);
  2116. BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
  2117. /*
  2118. * first, we need to know whether the block is allocated already
  2119. * preallocated blocks are unmapped but should treated
  2120. * the same as allocated blocks.
  2121. */
  2122. ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0, 0, 0);
  2123. if ((ret == 0) && !buffer_delay(bh_result)) {
  2124. /* the block isn't (pre)allocated yet, let's reserve space */
  2125. /*
  2126. * XXX: __block_prepare_write() unmaps passed block,
  2127. * is it OK?
  2128. */
  2129. ret = ext4_da_reserve_space(inode, 1);
  2130. if (ret)
  2131. /* not enough space to reserve */
  2132. return ret;
  2133. map_bh(bh_result, inode->i_sb, invalid_block);
  2134. set_buffer_new(bh_result);
  2135. set_buffer_delay(bh_result);
  2136. } else if (ret > 0) {
  2137. bh_result->b_size = (ret << inode->i_blkbits);
  2138. if (buffer_unwritten(bh_result)) {
  2139. /* A delayed write to unwritten bh should
  2140. * be marked new and mapped. Mapped ensures
  2141. * that we don't do get_block multiple times
  2142. * when we write to the same offset and new
  2143. * ensures that we do proper zero out for
  2144. * partial write.
  2145. */
  2146. set_buffer_new(bh_result);
  2147. set_buffer_mapped(bh_result);
  2148. }
  2149. ret = 0;
  2150. }
  2151. return ret;
  2152. }
  2153. static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
  2154. struct buffer_head *bh_result, int create)
  2155. {
  2156. int ret = 0;
  2157. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  2158. /*
  2159. * we don't want to do block allocation in writepage
  2160. * so call get_block_wrap with create = 0
  2161. */
  2162. ret = ext4_get_blocks(NULL, inode, iblock, max_blocks,
  2163. bh_result, 0, 0, 0);
  2164. if (ret > 0) {
  2165. bh_result->b_size = (ret << inode->i_blkbits);
  2166. ret = 0;
  2167. }
  2168. return ret;
  2169. }
  2170. /*
  2171. * get called vi ext4_da_writepages after taking page lock (have journal handle)
  2172. * get called via journal_submit_inode_data_buffers (no journal handle)
  2173. * get called via shrink_page_list via pdflush (no journal handle)
  2174. * or grab_page_cache when doing write_begin (have journal handle)
  2175. */
  2176. static int ext4_da_writepage(struct page *page,
  2177. struct writeback_control *wbc)
  2178. {
  2179. int ret = 0;
  2180. loff_t size;
  2181. unsigned int len;
  2182. struct buffer_head *page_bufs;
  2183. struct inode *inode = page->mapping->host;
  2184. trace_mark(ext4_da_writepage,
  2185. "dev %s ino %lu page_index %lu",
  2186. inode->i_sb->s_id, inode->i_ino, page->index);
  2187. size = i_size_read(inode);
  2188. if (page->index == size >> PAGE_CACHE_SHIFT)
  2189. len = size & ~PAGE_CACHE_MASK;
  2190. else
  2191. len = PAGE_CACHE_SIZE;
  2192. if (page_has_buffers(page)) {
  2193. page_bufs = page_buffers(page);
  2194. if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
  2195. ext4_bh_unmapped_or_delay)) {
  2196. /*
  2197. * We don't want to do block allocation
  2198. * So redirty the page and return
  2199. * We may reach here when we do a journal commit
  2200. * via journal_submit_inode_data_buffers.
  2201. * If we don't have mapping block we just ignore
  2202. * them. We can also reach here via shrink_page_list
  2203. */
  2204. redirty_page_for_writepage(wbc, page);
  2205. unlock_page(page);
  2206. return 0;
  2207. }
  2208. } else {
  2209. /*
  2210. * The test for page_has_buffers() is subtle:
  2211. * We know the page is dirty but it lost buffers. That means
  2212. * that at some moment in time after write_begin()/write_end()
  2213. * has been called all buffers have been clean and thus they
  2214. * must have been written at least once. So they are all
  2215. * mapped and we can happily proceed with mapping them
  2216. * and writing the page.
  2217. *
  2218. * Try to initialize the buffer_heads and check whether
  2219. * all are mapped and non delay. We don't want to
  2220. * do block allocation here.
  2221. */
  2222. ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
  2223. ext4_normal_get_block_write);
  2224. if (!ret) {
  2225. page_bufs = page_buffers(page);
  2226. /* check whether all are mapped and non delay */
  2227. if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
  2228. ext4_bh_unmapped_or_delay)) {
  2229. redirty_page_for_writepage(wbc, page);
  2230. unlock_page(page);
  2231. return 0;
  2232. }
  2233. } else {
  2234. /*
  2235. * We can't do block allocation here
  2236. * so just redity the page and unlock
  2237. * and return
  2238. */
  2239. redirty_page_for_writepage(wbc, page);
  2240. unlock_page(page);
  2241. return 0;
  2242. }
  2243. /* now mark the buffer_heads as dirty and uptodate */
  2244. block_commit_write(page, 0, PAGE_CACHE_SIZE);
  2245. }
  2246. if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
  2247. ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
  2248. else
  2249. ret = block_write_full_page(page,
  2250. ext4_normal_get_block_write,
  2251. wbc);
  2252. return ret;
  2253. }
  2254. /*
  2255. * This is called via ext4_da_writepages() to
  2256. * calulate the total number of credits to reserve to fit
  2257. * a single extent allocation into a single transaction,
  2258. * ext4_da_writpeages() will loop calling this before
  2259. * the block allocation.
  2260. */
  2261. static int ext4_da_writepages_trans_blocks(struct inode *inode)
  2262. {
  2263. int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
  2264. /*
  2265. * With non-extent format the journal credit needed to
  2266. * insert nrblocks contiguous block is dependent on
  2267. * number of contiguous block. So we will limit
  2268. * number of contiguous block to a sane value
  2269. */
  2270. if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
  2271. (max_blocks > EXT4_MAX_TRANS_DATA))
  2272. max_blocks = EXT4_MAX_TRANS_DATA;
  2273. return ext4_chunk_trans_blocks(inode, max_blocks);
  2274. }
  2275. static int ext4_da_writepages(struct address_space *mapping,
  2276. struct writeback_control *wbc)
  2277. {
  2278. pgoff_t index;
  2279. int range_whole = 0;
  2280. handle_t *handle = NULL;
  2281. struct mpage_da_data mpd;
  2282. struct inode *inode = mapping->host;
  2283. int no_nrwrite_index_update;
  2284. int pages_written = 0;
  2285. long pages_skipped;
  2286. int range_cyclic, cycled = 1, io_done = 0;
  2287. int needed_blocks, ret = 0, nr_to_writebump = 0;
  2288. struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
  2289. trace_mark(ext4_da_writepages,
  2290. "dev %s ino %lu nr_t_write %ld "
  2291. "pages_skipped %ld range_start %llu "
  2292. "range_end %llu nonblocking %d "
  2293. "for_kupdate %d for_reclaim %d "
  2294. "for_writepages %d range_cyclic %d",
  2295. inode->i_sb->s_id, inode->i_ino,
  2296. wbc->nr_to_write, wbc->pages_skipped,
  2297. (unsigned long long) wbc->range_start,
  2298. (unsigned long long) wbc->range_end,
  2299. wbc->nonblocking, wbc->for_kupdate,
  2300. wbc->for_reclaim, wbc->for_writepages,
  2301. wbc->range_cyclic);
  2302. /*
  2303. * No pages to write? This is mainly a kludge to avoid starting
  2304. * a transaction for special inodes like journal inode on last iput()
  2305. * because that could violate lock ordering on umount
  2306. */
  2307. if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
  2308. return 0;
  2309. /*
  2310. * If the filesystem has aborted, it is read-only, so return
  2311. * right away instead of dumping stack traces later on that
  2312. * will obscure the real source of the problem. We test
  2313. * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
  2314. * the latter could be true if the filesystem is mounted
  2315. * read-only, and in that case, ext4_da_writepages should
  2316. * *never* be called, so if that ever happens, we would want
  2317. * the stack trace.
  2318. */
  2319. if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
  2320. return -EROFS;
  2321. /*
  2322. * Make sure nr_to_write is >= sbi->s_mb_stream_request
  2323. * This make sure small files blocks are allocated in
  2324. * single attempt. This ensure that small files
  2325. * get less fragmented.
  2326. */
  2327. if (wbc->nr_to_write < sbi->s_mb_stream_request) {
  2328. nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
  2329. wbc->nr_to_write = sbi->s_mb_stream_request;
  2330. }
  2331. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  2332. range_whole = 1;
  2333. range_cyclic = wbc->range_cyclic;
  2334. if (wbc->range_cyclic) {
  2335. index = mapping->writeback_index;
  2336. if (index)
  2337. cycled = 0;
  2338. wbc->range_start = index << PAGE_CACHE_SHIFT;
  2339. wbc->range_end = LLONG_MAX;
  2340. wbc->range_cyclic = 0;
  2341. } else
  2342. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  2343. mpd.wbc = wbc;
  2344. mpd.inode = mapping->host;
  2345. /*
  2346. * we don't want write_cache_pages to update
  2347. * nr_to_write and writeback_index
  2348. */
  2349. no_nrwrite_index_update = wbc->no_nrwrite_index_update;
  2350. wbc->no_nrwrite_index_update = 1;
  2351. pages_skipped = wbc->pages_skipped;
  2352. retry:
  2353. while (!ret && wbc->nr_to_write > 0) {
  2354. /*
  2355. * we insert one extent at a time. So we need
  2356. * credit needed for single extent allocation.
  2357. * journalled mode is currently not supported
  2358. * by delalloc
  2359. */
  2360. BUG_ON(ext4_should_journal_data(inode));
  2361. needed_blocks = ext4_da_writepages_trans_blocks(inode);
  2362. /* start a new transaction*/
  2363. handle = ext4_journal_start(inode, needed_blocks);
  2364. if (IS_ERR(handle)) {
  2365. ret = PTR_ERR(handle);
  2366. printk(KERN_CRIT "%s: jbd2_start: "
  2367. "%ld pages, ino %lu; err %d\n", __func__,
  2368. wbc->nr_to_write, inode->i_ino, ret);
  2369. dump_stack();
  2370. goto out_writepages;
  2371. }
  2372. /*
  2373. * Now call __mpage_da_writepage to find the next
  2374. * contiguous region of logical blocks that need
  2375. * blocks to be allocated by ext4. We don't actually
  2376. * submit the blocks for I/O here, even though
  2377. * write_cache_pages thinks it will, and will set the
  2378. * pages as clean for write before calling
  2379. * __mpage_da_writepage().
  2380. */
  2381. mpd.b_size = 0;
  2382. mpd.b_state = 0;
  2383. mpd.b_blocknr = 0;
  2384. mpd.first_page = 0;
  2385. mpd.next_page = 0;
  2386. mpd.io_done = 0;
  2387. mpd.pages_written = 0;
  2388. mpd.retval = 0;
  2389. ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
  2390. &mpd);
  2391. /*
  2392. * If we have a contigous extent of pages and we
  2393. * haven't done the I/O yet, map the blocks and submit
  2394. * them for I/O.
  2395. */
  2396. if (!mpd.io_done && mpd.next_page != mpd.first_page) {
  2397. if (mpage_da_map_blocks(&mpd) == 0)
  2398. mpage_da_submit_io(&mpd);
  2399. mpd.io_done = 1;
  2400. ret = MPAGE_DA_EXTENT_TAIL;
  2401. }
  2402. wbc->nr_to_write -= mpd.pages_written;
  2403. ext4_journal_stop(handle);
  2404. if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
  2405. /* commit the transaction which would
  2406. * free blocks released in the transaction
  2407. * and try again
  2408. */
  2409. jbd2_journal_force_commit_nested(sbi->s_journal);
  2410. wbc->pages_skipped = pages_skipped;
  2411. ret = 0;
  2412. } else if (ret == MPAGE_DA_EXTENT_TAIL) {
  2413. /*
  2414. * got one extent now try with
  2415. * rest of the pages
  2416. */
  2417. pages_written += mpd.pages_written;
  2418. wbc->pages_skipped = pages_skipped;
  2419. ret = 0;
  2420. io_done = 1;
  2421. } else if (wbc->nr_to_write)
  2422. /*
  2423. * There is no more writeout needed
  2424. * or we requested for a noblocking writeout
  2425. * and we found the device congested
  2426. */
  2427. break;
  2428. }
  2429. if (!io_done && !cycled) {
  2430. cycled = 1;
  2431. index = 0;
  2432. wbc->range_start = index << PAGE_CACHE_SHIFT;
  2433. wbc->range_end = mapping->writeback_index - 1;
  2434. goto retry;
  2435. }
  2436. if (pages_skipped != wbc->pages_skipped)
  2437. printk(KERN_EMERG "This should not happen leaving %s "
  2438. "with nr_to_write = %ld ret = %d\n",
  2439. __func__, wbc->nr_to_write, ret);
  2440. /* Update index */
  2441. index += pages_written;
  2442. wbc->range_cyclic = range_cyclic;
  2443. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  2444. /*
  2445. * set the writeback_index so that range_cyclic
  2446. * mode will write it back later
  2447. */
  2448. mapping->writeback_index = index;
  2449. out_writepages:
  2450. if (!no_nrwrite_index_update)
  2451. wbc->no_nrwrite_index_update = 0;
  2452. wbc->nr_to_write -= nr_to_writebump;
  2453. trace_mark(ext4_da_writepage_result,
  2454. "dev %s ino %lu ret %d pages_written %d "
  2455. "pages_skipped %ld congestion %d "
  2456. "more_io %d no_nrwrite_index_update %d",
  2457. inode->i_sb->s_id, inode->i_ino, ret,
  2458. pages_written, wbc->pages_skipped,
  2459. wbc->encountered_congestion, wbc->more_io,
  2460. wbc->no_nrwrite_index_update);
  2461. return ret;
  2462. }
  2463. #define FALL_BACK_TO_NONDELALLOC 1
  2464. static int ext4_nonda_switch(struct super_block *sb)
  2465. {
  2466. s64 free_blocks, dirty_blocks;
  2467. struct ext4_sb_info *sbi = EXT4_SB(sb);
  2468. /*
  2469. * switch to non delalloc mode if we are running low
  2470. * on free block. The free block accounting via percpu
  2471. * counters can get slightly wrong with percpu_counter_batch getting
  2472. * accumulated on each CPU without updating global counters
  2473. * Delalloc need an accurate free block accounting. So switch
  2474. * to non delalloc when we are near to error range.
  2475. */
  2476. free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
  2477. dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
  2478. if (2 * free_blocks < 3 * dirty_blocks ||
  2479. free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
  2480. /*
  2481. * free block count is less that 150% of dirty blocks
  2482. * or free blocks is less that watermark
  2483. */
  2484. return 1;
  2485. }
  2486. return 0;
  2487. }
  2488. static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
  2489. loff_t pos, unsigned len, unsigned flags,
  2490. struct page **pagep, void **fsdata)
  2491. {
  2492. int ret, retries = 0;
  2493. struct page *page;
  2494. pgoff_t index;
  2495. unsigned from, to;
  2496. struct inode *inode = mapping->host;
  2497. handle_t *handle;
  2498. index = pos >> PAGE_CACHE_SHIFT;
  2499. from = pos & (PAGE_CACHE_SIZE - 1);
  2500. to = from + len;
  2501. if (ext4_nonda_switch(inode->i_sb)) {
  2502. *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
  2503. return ext4_write_begin(file, mapping, pos,
  2504. len, flags, pagep, fsdata);
  2505. }
  2506. *fsdata = (void *)0;
  2507. trace_mark(ext4_da_write_begin,
  2508. "dev %s ino %lu pos %llu len %u flags %u",
  2509. inode->i_sb->s_id, inode->i_ino,
  2510. (unsigned long long) pos, len, flags);
  2511. retry:
  2512. /*
  2513. * With delayed allocation, we don't log the i_disksize update
  2514. * if there is delayed block allocation. But we still need
  2515. * to journalling the i_disksize update if writes to the end
  2516. * of file which has an already mapped buffer.
  2517. */
  2518. handle = ext4_journal_start(inode, 1);
  2519. if (IS_ERR(handle)) {
  2520. ret = PTR_ERR(handle);
  2521. goto out;
  2522. }
  2523. /* We cannot recurse into the filesystem as the transaction is already
  2524. * started */
  2525. flags |= AOP_FLAG_NOFS;
  2526. page = grab_cache_page_write_begin(mapping, index, flags);
  2527. if (!page) {
  2528. ext4_journal_stop(handle);
  2529. ret = -ENOMEM;
  2530. goto out;
  2531. }
  2532. *pagep = page;
  2533. ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
  2534. ext4_da_get_block_prep);
  2535. if (ret < 0) {
  2536. unlock_page(page);
  2537. ext4_journal_stop(handle);
  2538. page_cache_release(page);
  2539. /*
  2540. * block_write_begin may have instantiated a few blocks
  2541. * outside i_size. Trim these off again. Don't need
  2542. * i_size_read because we hold i_mutex.
  2543. */
  2544. if (pos + len > inode->i_size)
  2545. vmtruncate(inode, inode->i_size);
  2546. }
  2547. if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
  2548. goto retry;
  2549. out:
  2550. return ret;
  2551. }
  2552. /*
  2553. * Check if we should update i_disksize
  2554. * when write to the end of file but not require block allocation
  2555. */
  2556. static int ext4_da_should_update_i_disksize(struct page *page,
  2557. unsigned long offset)
  2558. {
  2559. struct buffer_head *bh;
  2560. struct inode *inode = page->mapping->host;
  2561. unsigned int idx;
  2562. int i;
  2563. bh = page_buffers(page);
  2564. idx = offset >> inode->i_blkbits;
  2565. for (i = 0; i < idx; i++)
  2566. bh = bh->b_this_page;
  2567. if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
  2568. return 0;
  2569. return 1;
  2570. }
  2571. static int ext4_da_write_end(struct file *file,
  2572. struct address_space *mapping,
  2573. loff_t pos, unsigned len, unsigned copied,
  2574. struct page *page, void *fsdata)
  2575. {
  2576. struct inode *inode = mapping->host;
  2577. int ret = 0, ret2;
  2578. handle_t *handle = ext4_journal_current_handle();
  2579. loff_t new_i_size;
  2580. unsigned long start, end;
  2581. int write_mode = (int)(unsigned long)fsdata;
  2582. if (write_mode == FALL_BACK_TO_NONDELALLOC) {
  2583. if (ext4_should_order_data(inode)) {
  2584. return ext4_ordered_write_end(file, mapping, pos,
  2585. len, copied, page, fsdata);
  2586. } else if (ext4_should_writeback_data(inode)) {
  2587. return ext4_writeback_write_end(file, mapping, pos,
  2588. len, copied, page, fsdata);
  2589. } else {
  2590. BUG();
  2591. }
  2592. }
  2593. trace_mark(ext4_da_write_end,
  2594. "dev %s ino %lu pos %llu len %u copied %u",
  2595. inode->i_sb->s_id, inode->i_ino,
  2596. (unsigned long long) pos, len, copied);
  2597. start = pos & (PAGE_CACHE_SIZE - 1);
  2598. end = start + copied - 1;
  2599. /*
  2600. * generic_write_end() will run mark_inode_dirty() if i_size
  2601. * changes. So let's piggyback the i_disksize mark_inode_dirty
  2602. * into that.
  2603. */
  2604. new_i_size = pos + copied;
  2605. if (new_i_size > EXT4_I(inode)->i_disksize) {
  2606. if (ext4_da_should_update_i_disksize(page, end)) {
  2607. down_write(&EXT4_I(inode)->i_data_sem);
  2608. if (new_i_size > EXT4_I(inode)->i_disksize) {
  2609. /*
  2610. * Updating i_disksize when extending file
  2611. * without needing block allocation
  2612. */
  2613. if (ext4_should_order_data(inode))
  2614. ret = ext4_jbd2_file_inode(handle,
  2615. inode);
  2616. EXT4_I(inode)->i_disksize = new_i_size;
  2617. }
  2618. up_write(&EXT4_I(inode)->i_data_sem);
  2619. /* We need to mark inode dirty even if
  2620. * new_i_size is less that inode->i_size
  2621. * bu greater than i_disksize.(hint delalloc)
  2622. */
  2623. ext4_mark_inode_dirty(handle, inode);
  2624. }
  2625. }
  2626. ret2 = generic_write_end(file, mapping, pos, len, copied,
  2627. page, fsdata);
  2628. copied = ret2;
  2629. if (ret2 < 0)
  2630. ret = ret2;
  2631. ret2 = ext4_journal_stop(handle);
  2632. if (!ret)
  2633. ret = ret2;
  2634. return ret ? ret : copied;
  2635. }
  2636. static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
  2637. {
  2638. /*
  2639. * Drop reserved blocks
  2640. */
  2641. BUG_ON(!PageLocked(page));
  2642. if (!page_has_buffers(page))
  2643. goto out;
  2644. ext4_da_page_release_reservation(page, offset);
  2645. out:
  2646. ext4_invalidatepage(page, offset);
  2647. return;
  2648. }
  2649. /*
  2650. * Force all delayed allocation blocks to be allocated for a given inode.
  2651. */
  2652. int ext4_alloc_da_blocks(struct inode *inode)
  2653. {
  2654. if (!EXT4_I(inode)->i_reserved_data_blocks &&
  2655. !EXT4_I(inode)->i_reserved_meta_blocks)
  2656. return 0;
  2657. /*
  2658. * We do something simple for now. The filemap_flush() will
  2659. * also start triggering a write of the data blocks, which is
  2660. * not strictly speaking necessary (and for users of
  2661. * laptop_mode, not even desirable). However, to do otherwise
  2662. * would require replicating code paths in:
  2663. *
  2664. * ext4_da_writepages() ->
  2665. * write_cache_pages() ---> (via passed in callback function)
  2666. * __mpage_da_writepage() -->
  2667. * mpage_add_bh_to_extent()
  2668. * mpage_da_map_blocks()
  2669. *
  2670. * The problem is that write_cache_pages(), located in
  2671. * mm/page-writeback.c, marks pages clean in preparation for
  2672. * doing I/O, which is not desirable if we're not planning on
  2673. * doing I/O at all.
  2674. *
  2675. * We could call write_cache_pages(), and then redirty all of
  2676. * the pages by calling redirty_page_for_writeback() but that
  2677. * would be ugly in the extreme. So instead we would need to
  2678. * replicate parts of the code in the above functions,
  2679. * simplifying them becuase we wouldn't actually intend to
  2680. * write out the pages, but rather only collect contiguous
  2681. * logical block extents, call the multi-block allocator, and
  2682. * then update the buffer heads with the block allocations.
  2683. *
  2684. * For now, though, we'll cheat by calling filemap_flush(),
  2685. * which will map the blocks, and start the I/O, but not
  2686. * actually wait for the I/O to complete.
  2687. */
  2688. return filemap_flush(inode->i_mapping);
  2689. }
  2690. /*
  2691. * bmap() is special. It gets used by applications such as lilo and by
  2692. * the swapper to find the on-disk block of a specific piece of data.
  2693. *
  2694. * Naturally, this is dangerous if the block concerned is still in the
  2695. * journal. If somebody makes a swapfile on an ext4 data-journaling
  2696. * filesystem and enables swap, then they may get a nasty shock when the
  2697. * data getting swapped to that swapfile suddenly gets overwritten by
  2698. * the original zero's written out previously to the journal and
  2699. * awaiting writeback in the kernel's buffer cache.
  2700. *
  2701. * So, if we see any bmap calls here on a modified, data-journaled file,
  2702. * take extra steps to flush any blocks which might be in the cache.
  2703. */
  2704. static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
  2705. {
  2706. struct inode *inode = mapping->host;
  2707. journal_t *journal;
  2708. int err;
  2709. if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
  2710. test_opt(inode->i_sb, DELALLOC)) {
  2711. /*
  2712. * With delalloc we want to sync the file
  2713. * so that we can make sure we allocate
  2714. * blocks for file
  2715. */
  2716. filemap_write_and_wait(mapping);
  2717. }
  2718. if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
  2719. /*
  2720. * This is a REALLY heavyweight approach, but the use of
  2721. * bmap on dirty files is expected to be extremely rare:
  2722. * only if we run lilo or swapon on a freshly made file
  2723. * do we expect this to happen.
  2724. *
  2725. * (bmap requires CAP_SYS_RAWIO so this does not
  2726. * represent an unprivileged user DOS attack --- we'd be
  2727. * in trouble if mortal users could trigger this path at
  2728. * will.)
  2729. *
  2730. * NB. EXT4_STATE_JDATA is not set on files other than
  2731. * regular files. If somebody wants to bmap a directory
  2732. * or symlink and gets confused because the buffer
  2733. * hasn't yet been flushed to disk, they deserve
  2734. * everything they get.
  2735. */
  2736. EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
  2737. journal = EXT4_JOURNAL(inode);
  2738. jbd2_journal_lock_updates(journal);
  2739. err = jbd2_journal_flush(journal);
  2740. jbd2_journal_unlock_updates(journal);
  2741. if (err)
  2742. return 0;
  2743. }
  2744. return generic_block_bmap(mapping, block, ext4_get_block);
  2745. }
  2746. static int bget_one(handle_t *handle, struct buffer_head *bh)
  2747. {
  2748. get_bh(bh);
  2749. return 0;
  2750. }
  2751. static int bput_one(handle_t *handle, struct buffer_head *bh)
  2752. {
  2753. put_bh(bh);
  2754. return 0;
  2755. }
  2756. /*
  2757. * Note that we don't need to start a transaction unless we're journaling data
  2758. * because we should have holes filled from ext4_page_mkwrite(). We even don't
  2759. * need to file the inode to the transaction's list in ordered mode because if
  2760. * we are writing back data added by write(), the inode is already there and if
  2761. * we are writing back data modified via mmap(), noone guarantees in which
  2762. * transaction the data will hit the disk. In case we are journaling data, we
  2763. * cannot start transaction directly because transaction start ranks above page
  2764. * lock so we have to do some magic.
  2765. *
  2766. * In all journaling modes block_write_full_page() will start the I/O.
  2767. *
  2768. * Problem:
  2769. *
  2770. * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
  2771. * ext4_writepage()
  2772. *
  2773. * Similar for:
  2774. *
  2775. * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
  2776. *
  2777. * Same applies to ext4_get_block(). We will deadlock on various things like
  2778. * lock_journal and i_data_sem
  2779. *
  2780. * Setting PF_MEMALLOC here doesn't work - too many internal memory
  2781. * allocations fail.
  2782. *
  2783. * 16May01: If we're reentered then journal_current_handle() will be
  2784. * non-zero. We simply *return*.
  2785. *
  2786. * 1 July 2001: @@@ FIXME:
  2787. * In journalled data mode, a data buffer may be metadata against the
  2788. * current transaction. But the same file is part of a shared mapping
  2789. * and someone does a writepage() on it.
  2790. *
  2791. * We will move the buffer onto the async_data list, but *after* it has
  2792. * been dirtied. So there's a small window where we have dirty data on
  2793. * BJ_Metadata.
  2794. *
  2795. * Note that this only applies to the last partial page in the file. The
  2796. * bit which block_write_full_page() uses prepare/commit for. (That's
  2797. * broken code anyway: it's wrong for msync()).
  2798. *
  2799. * It's a rare case: affects the final partial page, for journalled data
  2800. * where the file is subject to bith write() and writepage() in the same
  2801. * transction. To fix it we'll need a custom block_write_full_page().
  2802. * We'll probably need that anyway for journalling writepage() output.
  2803. *
  2804. * We don't honour synchronous mounts for writepage(). That would be
  2805. * disastrous. Any write() or metadata operation will sync the fs for
  2806. * us.
  2807. *
  2808. */
  2809. static int __ext4_normal_writepage(struct page *page,
  2810. struct writeback_control *wbc)
  2811. {
  2812. struct inode *inode = page->mapping->host;
  2813. if (test_opt(inode->i_sb, NOBH))
  2814. return nobh_writepage(page,
  2815. ext4_normal_get_block_write, wbc);
  2816. else
  2817. return block_write_full_page(page,
  2818. ext4_normal_get_block_write,
  2819. wbc);
  2820. }
  2821. static int ext4_normal_writepage(struct page *page,
  2822. struct writeback_control *wbc)
  2823. {
  2824. struct inode *inode = page->mapping->host;
  2825. loff_t size = i_size_read(inode);
  2826. loff_t len;
  2827. trace_mark(ext4_normal_writepage,
  2828. "dev %s ino %lu page_index %lu",
  2829. inode->i_sb->s_id, inode->i_ino, page->index);
  2830. J_ASSERT(PageLocked(page));
  2831. if (page->index == size >> PAGE_CACHE_SHIFT)
  2832. len = size & ~PAGE_CACHE_MASK;
  2833. else
  2834. len = PAGE_CACHE_SIZE;
  2835. if (page_has_buffers(page)) {
  2836. /* if page has buffers it should all be mapped
  2837. * and allocated. If there are not buffers attached
  2838. * to the page we know the page is dirty but it lost
  2839. * buffers. That means that at some moment in time
  2840. * after write_begin() / write_end() has been called
  2841. * all buffers have been clean and thus they must have been
  2842. * written at least once. So they are all mapped and we can
  2843. * happily proceed with mapping them and writing the page.
  2844. */
  2845. BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
  2846. ext4_bh_unmapped_or_delay));
  2847. }
  2848. if (!ext4_journal_current_handle())
  2849. return __ext4_normal_writepage(page, wbc);
  2850. redirty_page_for_writepage(wbc, page);
  2851. unlock_page(page);
  2852. return 0;
  2853. }
  2854. static int __ext4_journalled_writepage(struct page *page,
  2855. struct writeback_control *wbc)
  2856. {
  2857. struct address_space *mapping = page->mapping;
  2858. struct inode *inode = mapping->host;
  2859. struct buffer_head *page_bufs;
  2860. handle_t *handle = NULL;
  2861. int ret = 0;
  2862. int err;
  2863. ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
  2864. ext4_normal_get_block_write);
  2865. if (ret != 0)
  2866. goto out_unlock;
  2867. page_bufs = page_buffers(page);
  2868. walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
  2869. bget_one);
  2870. /* As soon as we unlock the page, it can go away, but we have
  2871. * references to buffers so we are safe */
  2872. unlock_page(page);
  2873. handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
  2874. if (IS_ERR(handle)) {
  2875. ret = PTR_ERR(handle);
  2876. goto out;
  2877. }
  2878. ret = walk_page_buffers(handle, page_bufs, 0,
  2879. PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
  2880. err = walk_page_buffers(handle, page_bufs, 0,
  2881. PAGE_CACHE_SIZE, NULL, write_end_fn);
  2882. if (ret == 0)
  2883. ret = err;
  2884. err = ext4_journal_stop(handle);
  2885. if (!ret)
  2886. ret = err;
  2887. walk_page_buffers(handle, page_bufs, 0,
  2888. PAGE_CACHE_SIZE, NULL, bput_one);
  2889. EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
  2890. goto out;
  2891. out_unlock:
  2892. unlock_page(page);
  2893. out:
  2894. return ret;
  2895. }
  2896. static int ext4_journalled_writepage(struct page *page,
  2897. struct writeback_control *wbc)
  2898. {
  2899. struct inode *inode = page->mapping->host;
  2900. loff_t size = i_size_read(inode);
  2901. loff_t len;
  2902. trace_mark(ext4_journalled_writepage,
  2903. "dev %s ino %lu page_index %lu",
  2904. inode->i_sb->s_id, inode->i_ino, page->index);
  2905. J_ASSERT(PageLocked(page));
  2906. if (page->index == size >> PAGE_CACHE_SHIFT)
  2907. len = size & ~PAGE_CACHE_MASK;
  2908. else
  2909. len = PAGE_CACHE_SIZE;
  2910. if (page_has_buffers(page)) {
  2911. /* if page has buffers it should all be mapped
  2912. * and allocated. If there are not buffers attached
  2913. * to the page we know the page is dirty but it lost
  2914. * buffers. That means that at some moment in time
  2915. * after write_begin() / write_end() has been called
  2916. * all buffers have been clean and thus they must have been
  2917. * written at least once. So they are all mapped and we can
  2918. * happily proceed with mapping them and writing the page.
  2919. */
  2920. BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
  2921. ext4_bh_unmapped_or_delay));
  2922. }
  2923. if (ext4_journal_current_handle())
  2924. goto no_write;
  2925. if (PageChecked(page)) {
  2926. /*
  2927. * It's mmapped pagecache. Add buffers and journal it. There
  2928. * doesn't seem much point in redirtying the page here.
  2929. */
  2930. ClearPageChecked(page);
  2931. return __ext4_journalled_writepage(page, wbc);
  2932. } else {
  2933. /*
  2934. * It may be a page full of checkpoint-mode buffers. We don't
  2935. * really know unless we go poke around in the buffer_heads.
  2936. * But block_write_full_page will do the right thing.
  2937. */
  2938. return block_write_full_page(page,
  2939. ext4_normal_get_block_write,
  2940. wbc);
  2941. }
  2942. no_write:
  2943. redirty_page_for_writepage(wbc, page);
  2944. unlock_page(page);
  2945. return 0;
  2946. }
  2947. static int ext4_readpage(struct file *file, struct page *page)
  2948. {
  2949. return mpage_readpage(page, ext4_get_block);
  2950. }
  2951. static int
  2952. ext4_readpages(struct file *file, struct address_space *mapping,
  2953. struct list_head *pages, unsigned nr_pages)
  2954. {
  2955. return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
  2956. }
  2957. static void ext4_invalidatepage(struct page *page, unsigned long offset)
  2958. {
  2959. journal_t *journal = EXT4_JOURNAL(page->mapping->host);
  2960. /*
  2961. * If it's a full truncate we just forget about the pending dirtying
  2962. */
  2963. if (offset == 0)
  2964. ClearPageChecked(page);
  2965. if (journal)
  2966. jbd2_journal_invalidatepage(journal, page, offset);
  2967. else
  2968. block_invalidatepage(page, offset);
  2969. }
  2970. static int ext4_releasepage(struct page *page, gfp_t wait)
  2971. {
  2972. journal_t *journal = EXT4_JOURNAL(page->mapping->host);
  2973. WARN_ON(PageChecked(page));
  2974. if (!page_has_buffers(page))
  2975. return 0;
  2976. if (journal)
  2977. return jbd2_journal_try_to_free_buffers(journal, page, wait);
  2978. else
  2979. return try_to_free_buffers(page);
  2980. }
  2981. /*
  2982. * If the O_DIRECT write will extend the file then add this inode to the
  2983. * orphan list. So recovery will truncate it back to the original size
  2984. * if the machine crashes during the write.
  2985. *
  2986. * If the O_DIRECT write is intantiating holes inside i_size and the machine
  2987. * crashes then stale disk data _may_ be exposed inside the file. But current
  2988. * VFS code falls back into buffered path in that case so we are safe.
  2989. */
  2990. static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
  2991. const struct iovec *iov, loff_t offset,
  2992. unsigned long nr_segs)
  2993. {
  2994. struct file *file = iocb->ki_filp;
  2995. struct inode *inode = file->f_mapping->host;
  2996. struct ext4_inode_info *ei = EXT4_I(inode);
  2997. handle_t *handle;
  2998. ssize_t ret;
  2999. int orphan = 0;
  3000. size_t count = iov_length(iov, nr_segs);
  3001. if (rw == WRITE) {
  3002. loff_t final_size = offset + count;
  3003. if (final_size > inode->i_size) {
  3004. /* Credits for sb + inode write */
  3005. handle = ext4_journal_start(inode, 2);
  3006. if (IS_ERR(handle)) {
  3007. ret = PTR_ERR(handle);
  3008. goto out;
  3009. }
  3010. ret = ext4_orphan_add(handle, inode);
  3011. if (ret) {
  3012. ext4_journal_stop(handle);
  3013. goto out;
  3014. }
  3015. orphan = 1;
  3016. ei->i_disksize = inode->i_size;
  3017. ext4_journal_stop(handle);
  3018. }
  3019. }
  3020. ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
  3021. offset, nr_segs,
  3022. ext4_get_block, NULL);
  3023. if (orphan) {
  3024. int err;
  3025. /* Credits for sb + inode write */
  3026. handle = ext4_journal_start(inode, 2);
  3027. if (IS_ERR(handle)) {
  3028. /* This is really bad luck. We've written the data
  3029. * but cannot extend i_size. Bail out and pretend
  3030. * the write failed... */
  3031. ret = PTR_ERR(handle);
  3032. goto out;
  3033. }
  3034. if (inode->i_nlink)
  3035. ext4_orphan_del(handle, inode);
  3036. if (ret > 0) {
  3037. loff_t end = offset + ret;
  3038. if (end > inode->i_size) {
  3039. ei->i_disksize = end;
  3040. i_size_write(inode, end);
  3041. /*
  3042. * We're going to return a positive `ret'
  3043. * here due to non-zero-length I/O, so there's
  3044. * no way of reporting error returns from
  3045. * ext4_mark_inode_dirty() to userspace. So
  3046. * ignore it.
  3047. */
  3048. ext4_mark_inode_dirty(handle, inode);
  3049. }
  3050. }
  3051. err = ext4_journal_stop(handle);
  3052. if (ret == 0)
  3053. ret = err;
  3054. }
  3055. out:
  3056. return ret;
  3057. }
  3058. /*
  3059. * Pages can be marked dirty completely asynchronously from ext4's journalling
  3060. * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
  3061. * much here because ->set_page_dirty is called under VFS locks. The page is
  3062. * not necessarily locked.
  3063. *
  3064. * We cannot just dirty the page and leave attached buffers clean, because the
  3065. * buffers' dirty state is "definitive". We cannot just set the buffers dirty
  3066. * or jbddirty because all the journalling code will explode.
  3067. *
  3068. * So what we do is to mark the page "pending dirty" and next time writepage
  3069. * is called, propagate that into the buffers appropriately.
  3070. */
  3071. static int ext4_journalled_set_page_dirty(struct page *page)
  3072. {
  3073. SetPageChecked(page);
  3074. return __set_page_dirty_nobuffers(page);
  3075. }
  3076. static const struct address_space_operations ext4_ordered_aops = {
  3077. .readpage = ext4_readpage,
  3078. .readpages = ext4_readpages,
  3079. .writepage = ext4_normal_writepage,
  3080. .sync_page = block_sync_page,
  3081. .write_begin = ext4_write_begin,
  3082. .write_end = ext4_ordered_write_end,
  3083. .bmap = ext4_bmap,
  3084. .invalidatepage = ext4_invalidatepage,
  3085. .releasepage = ext4_releasepage,
  3086. .direct_IO = ext4_direct_IO,
  3087. .migratepage = buffer_migrate_page,
  3088. .is_partially_uptodate = block_is_partially_uptodate,
  3089. };
  3090. static const struct address_space_operations ext4_writeback_aops = {
  3091. .readpage = ext4_readpage,
  3092. .readpages = ext4_readpages,
  3093. .writepage = ext4_normal_writepage,
  3094. .sync_page = block_sync_page,
  3095. .write_begin = ext4_write_begin,
  3096. .write_end = ext4_writeback_write_end,
  3097. .bmap = ext4_bmap,
  3098. .invalidatepage = ext4_invalidatepage,
  3099. .releasepage = ext4_releasepage,
  3100. .direct_IO = ext4_direct_IO,
  3101. .migratepage = buffer_migrate_page,
  3102. .is_partially_uptodate = block_is_partially_uptodate,
  3103. };
  3104. static const struct address_space_operations ext4_journalled_aops = {
  3105. .readpage = ext4_readpage,
  3106. .readpages = ext4_readpages,
  3107. .writepage = ext4_journalled_writepage,
  3108. .sync_page = block_sync_page,
  3109. .write_begin = ext4_write_begin,
  3110. .write_end = ext4_journalled_write_end,
  3111. .set_page_dirty = ext4_journalled_set_page_dirty,
  3112. .bmap = ext4_bmap,
  3113. .invalidatepage = ext4_invalidatepage,
  3114. .releasepage = ext4_releasepage,
  3115. .is_partially_uptodate = block_is_partially_uptodate,
  3116. };
  3117. static const struct address_space_operations ext4_da_aops = {
  3118. .readpage = ext4_readpage,
  3119. .readpages = ext4_readpages,
  3120. .writepage = ext4_da_writepage,
  3121. .writepages = ext4_da_writepages,
  3122. .sync_page = block_sync_page,
  3123. .write_begin = ext4_da_write_begin,
  3124. .write_end = ext4_da_write_end,
  3125. .bmap = ext4_bmap,
  3126. .invalidatepage = ext4_da_invalidatepage,
  3127. .releasepage = ext4_releasepage,
  3128. .direct_IO = ext4_direct_IO,
  3129. .migratepage = buffer_migrate_page,
  3130. .is_partially_uptodate = block_is_partially_uptodate,
  3131. };
  3132. void ext4_set_aops(struct inode *inode)
  3133. {
  3134. if (ext4_should_order_data(inode) &&
  3135. test_opt(inode->i_sb, DELALLOC))
  3136. inode->i_mapping->a_ops = &ext4_da_aops;
  3137. else if (ext4_should_order_data(inode))
  3138. inode->i_mapping->a_ops = &ext4_ordered_aops;
  3139. else if (ext4_should_writeback_data(inode) &&
  3140. test_opt(inode->i_sb, DELALLOC))
  3141. inode->i_mapping->a_ops = &ext4_da_aops;
  3142. else if (ext4_should_writeback_data(inode))
  3143. inode->i_mapping->a_ops = &ext4_writeback_aops;
  3144. else
  3145. inode->i_mapping->a_ops = &ext4_journalled_aops;
  3146. }
  3147. /*
  3148. * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
  3149. * up to the end of the block which corresponds to `from'.
  3150. * This required during truncate. We need to physically zero the tail end
  3151. * of that block so it doesn't yield old data if the file is later grown.
  3152. */
  3153. int ext4_block_truncate_page(handle_t *handle,
  3154. struct address_space *mapping, loff_t from)
  3155. {
  3156. ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  3157. unsigned offset = from & (PAGE_CACHE_SIZE-1);
  3158. unsigned blocksize, length, pos;
  3159. ext4_lblk_t iblock;
  3160. struct inode *inode = mapping->host;
  3161. struct buffer_head *bh;
  3162. struct page *page;
  3163. int err = 0;
  3164. page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
  3165. if (!page)
  3166. return -EINVAL;
  3167. blocksize = inode->i_sb->s_blocksize;
  3168. length = blocksize - (offset & (blocksize - 1));
  3169. iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  3170. /*
  3171. * For "nobh" option, we can only work if we don't need to
  3172. * read-in the page - otherwise we create buffers to do the IO.
  3173. */
  3174. if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
  3175. ext4_should_writeback_data(inode) && PageUptodate(page)) {
  3176. zero_user(page, offset, length);
  3177. set_page_dirty(page);
  3178. goto unlock;
  3179. }
  3180. if (!page_has_buffers(page))
  3181. create_empty_buffers(page, blocksize, 0);
  3182. /* Find the buffer that contains "offset" */
  3183. bh = page_buffers(page);
  3184. pos = blocksize;
  3185. while (offset >= pos) {
  3186. bh = bh->b_this_page;
  3187. iblock++;
  3188. pos += blocksize;
  3189. }
  3190. err = 0;
  3191. if (buffer_freed(bh)) {
  3192. BUFFER_TRACE(bh, "freed: skip");
  3193. goto unlock;
  3194. }
  3195. if (!buffer_mapped(bh)) {
  3196. BUFFER_TRACE(bh, "unmapped");
  3197. ext4_get_block(inode, iblock, bh, 0);
  3198. /* unmapped? It's a hole - nothing to do */
  3199. if (!buffer_mapped(bh)) {
  3200. BUFFER_TRACE(bh, "still unmapped");
  3201. goto unlock;
  3202. }
  3203. }
  3204. /* Ok, it's mapped. Make sure it's up-to-date */
  3205. if (PageUptodate(page))
  3206. set_buffer_uptodate(bh);
  3207. if (!buffer_uptodate(bh)) {
  3208. err = -EIO;
  3209. ll_rw_block(READ, 1, &bh);
  3210. wait_on_buffer(bh);
  3211. /* Uhhuh. Read error. Complain and punt. */
  3212. if (!buffer_uptodate(bh))
  3213. goto unlock;
  3214. }
  3215. if (ext4_should_journal_data(inode)) {
  3216. BUFFER_TRACE(bh, "get write access");
  3217. err = ext4_journal_get_write_access(handle, bh);
  3218. if (err)
  3219. goto unlock;
  3220. }
  3221. zero_user(page, offset, length);
  3222. BUFFER_TRACE(bh, "zeroed end of block");
  3223. err = 0;
  3224. if (ext4_should_journal_data(inode)) {
  3225. err = ext4_handle_dirty_metadata(handle, inode, bh);
  3226. } else {
  3227. if (ext4_should_order_data(inode))
  3228. err = ext4_jbd2_file_inode(handle, inode);
  3229. mark_buffer_dirty(bh);
  3230. }
  3231. unlock:
  3232. unlock_page(page);
  3233. page_cache_release(page);
  3234. return err;
  3235. }
  3236. /*
  3237. * Probably it should be a library function... search for first non-zero word
  3238. * or memcmp with zero_page, whatever is better for particular architecture.
  3239. * Linus?
  3240. */
  3241. static inline int all_zeroes(__le32 *p, __le32 *q)
  3242. {
  3243. while (p < q)
  3244. if (*p++)
  3245. return 0;
  3246. return 1;
  3247. }
  3248. /**
  3249. * ext4_find_shared - find the indirect blocks for partial truncation.
  3250. * @inode: inode in question
  3251. * @depth: depth of the affected branch
  3252. * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
  3253. * @chain: place to store the pointers to partial indirect blocks
  3254. * @top: place to the (detached) top of branch
  3255. *
  3256. * This is a helper function used by ext4_truncate().
  3257. *
  3258. * When we do truncate() we may have to clean the ends of several
  3259. * indirect blocks but leave the blocks themselves alive. Block is
  3260. * partially truncated if some data below the new i_size is refered
  3261. * from it (and it is on the path to the first completely truncated
  3262. * data block, indeed). We have to free the top of that path along
  3263. * with everything to the right of the path. Since no allocation
  3264. * past the truncation point is possible until ext4_truncate()
  3265. * finishes, we may safely do the latter, but top of branch may
  3266. * require special attention - pageout below the truncation point
  3267. * might try to populate it.
  3268. *
  3269. * We atomically detach the top of branch from the tree, store the
  3270. * block number of its root in *@top, pointers to buffer_heads of
  3271. * partially truncated blocks - in @chain[].bh and pointers to
  3272. * their last elements that should not be removed - in
  3273. * @chain[].p. Return value is the pointer to last filled element
  3274. * of @chain.
  3275. *
  3276. * The work left to caller to do the actual freeing of subtrees:
  3277. * a) free the subtree starting from *@top
  3278. * b) free the subtrees whose roots are stored in
  3279. * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
  3280. * c) free the subtrees growing from the inode past the @chain[0].
  3281. * (no partially truncated stuff there). */
  3282. static Indirect *ext4_find_shared(struct inode *inode, int depth,
  3283. ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
  3284. {
  3285. Indirect *partial, *p;
  3286. int k, err;
  3287. *top = 0;
  3288. /* Make k index the deepest non-null offest + 1 */
  3289. for (k = depth; k > 1 && !offsets[k-1]; k--)
  3290. ;
  3291. partial = ext4_get_branch(inode, k, offsets, chain, &err);
  3292. /* Writer: pointers */
  3293. if (!partial)
  3294. partial = chain + k-1;
  3295. /*
  3296. * If the branch acquired continuation since we've looked at it -
  3297. * fine, it should all survive and (new) top doesn't belong to us.
  3298. */
  3299. if (!partial->key && *partial->p)
  3300. /* Writer: end */
  3301. goto no_top;
  3302. for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
  3303. ;
  3304. /*
  3305. * OK, we've found the last block that must survive. The rest of our
  3306. * branch should be detached before unlocking. However, if that rest
  3307. * of branch is all ours and does not grow immediately from the inode
  3308. * it's easier to cheat and just decrement partial->p.
  3309. */
  3310. if (p == chain + k - 1 && p > chain) {
  3311. p->p--;
  3312. } else {
  3313. *top = *p->p;
  3314. /* Nope, don't do this in ext4. Must leave the tree intact */
  3315. #if 0
  3316. *p->p = 0;
  3317. #endif
  3318. }
  3319. /* Writer: end */
  3320. while (partial > p) {
  3321. brelse(partial->bh);
  3322. partial--;
  3323. }
  3324. no_top:
  3325. return partial;
  3326. }
  3327. /*
  3328. * Zero a number of block pointers in either an inode or an indirect block.
  3329. * If we restart the transaction we must again get write access to the
  3330. * indirect block for further modification.
  3331. *
  3332. * We release `count' blocks on disk, but (last - first) may be greater
  3333. * than `count' because there can be holes in there.
  3334. */
  3335. static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
  3336. struct buffer_head *bh, ext4_fsblk_t block_to_free,
  3337. unsigned long count, __le32 *first, __le32 *last)
  3338. {
  3339. __le32 *p;
  3340. if (try_to_extend_transaction(handle, inode)) {
  3341. if (bh) {
  3342. BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
  3343. ext4_handle_dirty_metadata(handle, inode, bh);
  3344. }
  3345. ext4_mark_inode_dirty(handle, inode);
  3346. ext4_journal_test_restart(handle, inode);
  3347. if (bh) {
  3348. BUFFER_TRACE(bh, "retaking write access");
  3349. ext4_journal_get_write_access(handle, bh);
  3350. }
  3351. }
  3352. /*
  3353. * Any buffers which are on the journal will be in memory. We find
  3354. * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
  3355. * on them. We've already detached each block from the file, so
  3356. * bforget() in jbd2_journal_forget() should be safe.
  3357. *
  3358. * AKPM: turn on bforget in jbd2_journal_forget()!!!
  3359. */
  3360. for (p = first; p < last; p++) {
  3361. u32 nr = le32_to_cpu(*p);
  3362. if (nr) {
  3363. struct buffer_head *tbh;
  3364. *p = 0;
  3365. tbh = sb_find_get_block(inode->i_sb, nr);
  3366. ext4_forget(handle, 0, inode, tbh, nr);
  3367. }
  3368. }
  3369. ext4_free_blocks(handle, inode, block_to_free, count, 0);
  3370. }
  3371. /**
  3372. * ext4_free_data - free a list of data blocks
  3373. * @handle: handle for this transaction
  3374. * @inode: inode we are dealing with
  3375. * @this_bh: indirect buffer_head which contains *@first and *@last
  3376. * @first: array of block numbers
  3377. * @last: points immediately past the end of array
  3378. *
  3379. * We are freeing all blocks refered from that array (numbers are stored as
  3380. * little-endian 32-bit) and updating @inode->i_blocks appropriately.
  3381. *
  3382. * We accumulate contiguous runs of blocks to free. Conveniently, if these
  3383. * blocks are contiguous then releasing them at one time will only affect one
  3384. * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
  3385. * actually use a lot of journal space.
  3386. *
  3387. * @this_bh will be %NULL if @first and @last point into the inode's direct
  3388. * block pointers.
  3389. */
  3390. static void ext4_free_data(handle_t *handle, struct inode *inode,
  3391. struct buffer_head *this_bh,
  3392. __le32 *first, __le32 *last)
  3393. {
  3394. ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
  3395. unsigned long count = 0; /* Number of blocks in the run */
  3396. __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
  3397. corresponding to
  3398. block_to_free */
  3399. ext4_fsblk_t nr; /* Current block # */
  3400. __le32 *p; /* Pointer into inode/ind
  3401. for current block */
  3402. int err;
  3403. if (this_bh) { /* For indirect block */
  3404. BUFFER_TRACE(this_bh, "get_write_access");
  3405. err = ext4_journal_get_write_access(handle, this_bh);
  3406. /* Important: if we can't update the indirect pointers
  3407. * to the blocks, we can't free them. */
  3408. if (err)
  3409. return;
  3410. }
  3411. for (p = first; p < last; p++) {
  3412. nr = le32_to_cpu(*p);
  3413. if (nr) {
  3414. /* accumulate blocks to free if they're contiguous */
  3415. if (count == 0) {
  3416. block_to_free = nr;
  3417. block_to_free_p = p;
  3418. count = 1;
  3419. } else if (nr == block_to_free + count) {
  3420. count++;
  3421. } else {
  3422. ext4_clear_blocks(handle, inode, this_bh,
  3423. block_to_free,
  3424. count, block_to_free_p, p);
  3425. block_to_free = nr;
  3426. block_to_free_p = p;
  3427. count = 1;
  3428. }
  3429. }
  3430. }
  3431. if (count > 0)
  3432. ext4_clear_blocks(handle, inode, this_bh, block_to_free,
  3433. count, block_to_free_p, p);
  3434. if (this_bh) {
  3435. BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
  3436. /*
  3437. * The buffer head should have an attached journal head at this
  3438. * point. However, if the data is corrupted and an indirect
  3439. * block pointed to itself, it would have been detached when
  3440. * the block was cleared. Check for this instead of OOPSing.
  3441. */
  3442. if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
  3443. ext4_handle_dirty_metadata(handle, inode, this_bh);
  3444. else
  3445. ext4_error(inode->i_sb, __func__,
  3446. "circular indirect block detected, "
  3447. "inode=%lu, block=%llu",
  3448. inode->i_ino,
  3449. (unsigned long long) this_bh->b_blocknr);
  3450. }
  3451. }
  3452. /**
  3453. * ext4_free_branches - free an array of branches
  3454. * @handle: JBD handle for this transaction
  3455. * @inode: inode we are dealing with
  3456. * @parent_bh: the buffer_head which contains *@first and *@last
  3457. * @first: array of block numbers
  3458. * @last: pointer immediately past the end of array
  3459. * @depth: depth of the branches to free
  3460. *
  3461. * We are freeing all blocks refered from these branches (numbers are
  3462. * stored as little-endian 32-bit) and updating @inode->i_blocks
  3463. * appropriately.
  3464. */
  3465. static void ext4_free_branches(handle_t *handle, struct inode *inode,
  3466. struct buffer_head *parent_bh,
  3467. __le32 *first, __le32 *last, int depth)
  3468. {
  3469. ext4_fsblk_t nr;
  3470. __le32 *p;
  3471. if (ext4_handle_is_aborted(handle))
  3472. return;
  3473. if (depth--) {
  3474. struct buffer_head *bh;
  3475. int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  3476. p = last;
  3477. while (--p >= first) {
  3478. nr = le32_to_cpu(*p);
  3479. if (!nr)
  3480. continue; /* A hole */
  3481. /* Go read the buffer for the next level down */
  3482. bh = sb_bread(inode->i_sb, nr);
  3483. /*
  3484. * A read failure? Report error and clear slot
  3485. * (should be rare).
  3486. */
  3487. if (!bh) {
  3488. ext4_error(inode->i_sb, "ext4_free_branches",
  3489. "Read failure, inode=%lu, block=%llu",
  3490. inode->i_ino, nr);
  3491. continue;
  3492. }
  3493. /* This zaps the entire block. Bottom up. */
  3494. BUFFER_TRACE(bh, "free child branches");
  3495. ext4_free_branches(handle, inode, bh,
  3496. (__le32 *) bh->b_data,
  3497. (__le32 *) bh->b_data + addr_per_block,
  3498. depth);
  3499. /*
  3500. * We've probably journalled the indirect block several
  3501. * times during the truncate. But it's no longer
  3502. * needed and we now drop it from the transaction via
  3503. * jbd2_journal_revoke().
  3504. *
  3505. * That's easy if it's exclusively part of this
  3506. * transaction. But if it's part of the committing
  3507. * transaction then jbd2_journal_forget() will simply
  3508. * brelse() it. That means that if the underlying
  3509. * block is reallocated in ext4_get_block(),
  3510. * unmap_underlying_metadata() will find this block
  3511. * and will try to get rid of it. damn, damn.
  3512. *
  3513. * If this block has already been committed to the
  3514. * journal, a revoke record will be written. And
  3515. * revoke records must be emitted *before* clearing
  3516. * this block's bit in the bitmaps.
  3517. */
  3518. ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
  3519. /*
  3520. * Everything below this this pointer has been
  3521. * released. Now let this top-of-subtree go.
  3522. *
  3523. * We want the freeing of this indirect block to be
  3524. * atomic in the journal with the updating of the
  3525. * bitmap block which owns it. So make some room in
  3526. * the journal.
  3527. *
  3528. * We zero the parent pointer *after* freeing its
  3529. * pointee in the bitmaps, so if extend_transaction()
  3530. * for some reason fails to put the bitmap changes and
  3531. * the release into the same transaction, recovery
  3532. * will merely complain about releasing a free block,
  3533. * rather than leaking blocks.
  3534. */
  3535. if (ext4_handle_is_aborted(handle))
  3536. return;
  3537. if (try_to_extend_transaction(handle, inode)) {
  3538. ext4_mark_inode_dirty(handle, inode);
  3539. ext4_journal_test_restart(handle, inode);
  3540. }
  3541. ext4_free_blocks(handle, inode, nr, 1, 1);
  3542. if (parent_bh) {
  3543. /*
  3544. * The block which we have just freed is
  3545. * pointed to by an indirect block: journal it
  3546. */
  3547. BUFFER_TRACE(parent_bh, "get_write_access");
  3548. if (!ext4_journal_get_write_access(handle,
  3549. parent_bh)){
  3550. *p = 0;
  3551. BUFFER_TRACE(parent_bh,
  3552. "call ext4_handle_dirty_metadata");
  3553. ext4_handle_dirty_metadata(handle,
  3554. inode,
  3555. parent_bh);
  3556. }
  3557. }
  3558. }
  3559. } else {
  3560. /* We have reached the bottom of the tree. */
  3561. BUFFER_TRACE(parent_bh, "free data blocks");
  3562. ext4_free_data(handle, inode, parent_bh, first, last);
  3563. }
  3564. }
  3565. int ext4_can_truncate(struct inode *inode)
  3566. {
  3567. if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
  3568. return 0;
  3569. if (S_ISREG(inode->i_mode))
  3570. return 1;
  3571. if (S_ISDIR(inode->i_mode))
  3572. return 1;
  3573. if (S_ISLNK(inode->i_mode))
  3574. return !ext4_inode_is_fast_symlink(inode);
  3575. return 0;
  3576. }
  3577. /*
  3578. * ext4_truncate()
  3579. *
  3580. * We block out ext4_get_block() block instantiations across the entire
  3581. * transaction, and VFS/VM ensures that ext4_truncate() cannot run
  3582. * simultaneously on behalf of the same inode.
  3583. *
  3584. * As we work through the truncate and commmit bits of it to the journal there
  3585. * is one core, guiding principle: the file's tree must always be consistent on
  3586. * disk. We must be able to restart the truncate after a crash.
  3587. *
  3588. * The file's tree may be transiently inconsistent in memory (although it
  3589. * probably isn't), but whenever we close off and commit a journal transaction,
  3590. * the contents of (the filesystem + the journal) must be consistent and
  3591. * restartable. It's pretty simple, really: bottom up, right to left (although
  3592. * left-to-right works OK too).
  3593. *
  3594. * Note that at recovery time, journal replay occurs *before* the restart of
  3595. * truncate against the orphan inode list.
  3596. *
  3597. * The committed inode has the new, desired i_size (which is the same as
  3598. * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
  3599. * that this inode's truncate did not complete and it will again call
  3600. * ext4_truncate() to have another go. So there will be instantiated blocks
  3601. * to the right of the truncation point in a crashed ext4 filesystem. But
  3602. * that's fine - as long as they are linked from the inode, the post-crash
  3603. * ext4_truncate() run will find them and release them.
  3604. */
  3605. void ext4_truncate(struct inode *inode)
  3606. {
  3607. handle_t *handle;
  3608. struct ext4_inode_info *ei = EXT4_I(inode);
  3609. __le32 *i_data = ei->i_data;
  3610. int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  3611. struct address_space *mapping = inode->i_mapping;
  3612. ext4_lblk_t offsets[4];
  3613. Indirect chain[4];
  3614. Indirect *partial;
  3615. __le32 nr = 0;
  3616. int n;
  3617. ext4_lblk_t last_block;
  3618. unsigned blocksize = inode->i_sb->s_blocksize;
  3619. if (!ext4_can_truncate(inode))
  3620. return;
  3621. if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
  3622. ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
  3623. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
  3624. ext4_ext_truncate(inode);
  3625. return;
  3626. }
  3627. handle = start_transaction(inode);
  3628. if (IS_ERR(handle))
  3629. return; /* AKPM: return what? */
  3630. last_block = (inode->i_size + blocksize-1)
  3631. >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
  3632. if (inode->i_size & (blocksize - 1))
  3633. if (ext4_block_truncate_page(handle, mapping, inode->i_size))
  3634. goto out_stop;
  3635. n = ext4_block_to_path(inode, last_block, offsets, NULL);
  3636. if (n == 0)
  3637. goto out_stop; /* error */
  3638. /*
  3639. * OK. This truncate is going to happen. We add the inode to the
  3640. * orphan list, so that if this truncate spans multiple transactions,
  3641. * and we crash, we will resume the truncate when the filesystem
  3642. * recovers. It also marks the inode dirty, to catch the new size.
  3643. *
  3644. * Implication: the file must always be in a sane, consistent
  3645. * truncatable state while each transaction commits.
  3646. */
  3647. if (ext4_orphan_add(handle, inode))
  3648. goto out_stop;
  3649. /*
  3650. * From here we block out all ext4_get_block() callers who want to
  3651. * modify the block allocation tree.
  3652. */
  3653. down_write(&ei->i_data_sem);
  3654. ext4_discard_preallocations(inode);
  3655. /*
  3656. * The orphan list entry will now protect us from any crash which
  3657. * occurs before the truncate completes, so it is now safe to propagate
  3658. * the new, shorter inode size (held for now in i_size) into the
  3659. * on-disk inode. We do this via i_disksize, which is the value which
  3660. * ext4 *really* writes onto the disk inode.
  3661. */
  3662. ei->i_disksize = inode->i_size;
  3663. if (n == 1) { /* direct blocks */
  3664. ext4_free_data(handle, inode, NULL, i_data+offsets[0],
  3665. i_data + EXT4_NDIR_BLOCKS);
  3666. goto do_indirects;
  3667. }
  3668. partial = ext4_find_shared(inode, n, offsets, chain, &nr);
  3669. /* Kill the top of shared branch (not detached) */
  3670. if (nr) {
  3671. if (partial == chain) {
  3672. /* Shared branch grows from the inode */
  3673. ext4_free_branches(handle, inode, NULL,
  3674. &nr, &nr+1, (chain+n-1) - partial);
  3675. *partial->p = 0;
  3676. /*
  3677. * We mark the inode dirty prior to restart,
  3678. * and prior to stop. No need for it here.
  3679. */
  3680. } else {
  3681. /* Shared branch grows from an indirect block */
  3682. BUFFER_TRACE(partial->bh, "get_write_access");
  3683. ext4_free_branches(handle, inode, partial->bh,
  3684. partial->p,
  3685. partial->p+1, (chain+n-1) - partial);
  3686. }
  3687. }
  3688. /* Clear the ends of indirect blocks on the shared branch */
  3689. while (partial > chain) {
  3690. ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
  3691. (__le32*)partial->bh->b_data+addr_per_block,
  3692. (chain+n-1) - partial);
  3693. BUFFER_TRACE(partial->bh, "call brelse");
  3694. brelse (partial->bh);
  3695. partial--;
  3696. }
  3697. do_indirects:
  3698. /* Kill the remaining (whole) subtrees */
  3699. switch (offsets[0]) {
  3700. default:
  3701. nr = i_data[EXT4_IND_BLOCK];
  3702. if (nr) {
  3703. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
  3704. i_data[EXT4_IND_BLOCK] = 0;
  3705. }
  3706. case EXT4_IND_BLOCK:
  3707. nr = i_data[EXT4_DIND_BLOCK];
  3708. if (nr) {
  3709. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
  3710. i_data[EXT4_DIND_BLOCK] = 0;
  3711. }
  3712. case EXT4_DIND_BLOCK:
  3713. nr = i_data[EXT4_TIND_BLOCK];
  3714. if (nr) {
  3715. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
  3716. i_data[EXT4_TIND_BLOCK] = 0;
  3717. }
  3718. case EXT4_TIND_BLOCK:
  3719. ;
  3720. }
  3721. up_write(&ei->i_data_sem);
  3722. inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
  3723. ext4_mark_inode_dirty(handle, inode);
  3724. /*
  3725. * In a multi-transaction truncate, we only make the final transaction
  3726. * synchronous
  3727. */
  3728. if (IS_SYNC(inode))
  3729. ext4_handle_sync(handle);
  3730. out_stop:
  3731. /*
  3732. * If this was a simple ftruncate(), and the file will remain alive
  3733. * then we need to clear up the orphan record which we created above.
  3734. * However, if this was a real unlink then we were called by
  3735. * ext4_delete_inode(), and we allow that function to clean up the
  3736. * orphan info for us.
  3737. */
  3738. if (inode->i_nlink)
  3739. ext4_orphan_del(handle, inode);
  3740. ext4_journal_stop(handle);
  3741. }
  3742. /*
  3743. * ext4_get_inode_loc returns with an extra refcount against the inode's
  3744. * underlying buffer_head on success. If 'in_mem' is true, we have all
  3745. * data in memory that is needed to recreate the on-disk version of this
  3746. * inode.
  3747. */
  3748. static int __ext4_get_inode_loc(struct inode *inode,
  3749. struct ext4_iloc *iloc, int in_mem)
  3750. {
  3751. struct ext4_group_desc *gdp;
  3752. struct buffer_head *bh;
  3753. struct super_block *sb = inode->i_sb;
  3754. ext4_fsblk_t block;
  3755. int inodes_per_block, inode_offset;
  3756. iloc->bh = NULL;
  3757. if (!ext4_valid_inum(sb, inode->i_ino))
  3758. return -EIO;
  3759. iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
  3760. gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
  3761. if (!gdp)
  3762. return -EIO;
  3763. /*
  3764. * Figure out the offset within the block group inode table
  3765. */
  3766. inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
  3767. inode_offset = ((inode->i_ino - 1) %
  3768. EXT4_INODES_PER_GROUP(sb));
  3769. block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
  3770. iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
  3771. bh = sb_getblk(sb, block);
  3772. if (!bh) {
  3773. ext4_error(sb, "ext4_get_inode_loc", "unable to read "
  3774. "inode block - inode=%lu, block=%llu",
  3775. inode->i_ino, block);
  3776. return -EIO;
  3777. }
  3778. if (!buffer_uptodate(bh)) {
  3779. lock_buffer(bh);
  3780. /*
  3781. * If the buffer has the write error flag, we have failed
  3782. * to write out another inode in the same block. In this
  3783. * case, we don't have to read the block because we may
  3784. * read the old inode data successfully.
  3785. */
  3786. if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
  3787. set_buffer_uptodate(bh);
  3788. if (buffer_uptodate(bh)) {
  3789. /* someone brought it uptodate while we waited */
  3790. unlock_buffer(bh);
  3791. goto has_buffer;
  3792. }
  3793. /*
  3794. * If we have all information of the inode in memory and this
  3795. * is the only valid inode in the block, we need not read the
  3796. * block.
  3797. */
  3798. if (in_mem) {
  3799. struct buffer_head *bitmap_bh;
  3800. int i, start;
  3801. start = inode_offset & ~(inodes_per_block - 1);
  3802. /* Is the inode bitmap in cache? */
  3803. bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
  3804. if (!bitmap_bh)
  3805. goto make_io;
  3806. /*
  3807. * If the inode bitmap isn't in cache then the
  3808. * optimisation may end up performing two reads instead
  3809. * of one, so skip it.
  3810. */
  3811. if (!buffer_uptodate(bitmap_bh)) {
  3812. brelse(bitmap_bh);
  3813. goto make_io;
  3814. }
  3815. for (i = start; i < start + inodes_per_block; i++) {
  3816. if (i == inode_offset)
  3817. continue;
  3818. if (ext4_test_bit(i, bitmap_bh->b_data))
  3819. break;
  3820. }
  3821. brelse(bitmap_bh);
  3822. if (i == start + inodes_per_block) {
  3823. /* all other inodes are free, so skip I/O */
  3824. memset(bh->b_data, 0, bh->b_size);
  3825. set_buffer_uptodate(bh);
  3826. unlock_buffer(bh);
  3827. goto has_buffer;
  3828. }
  3829. }
  3830. make_io:
  3831. /*
  3832. * If we need to do any I/O, try to pre-readahead extra
  3833. * blocks from the inode table.
  3834. */
  3835. if (EXT4_SB(sb)->s_inode_readahead_blks) {
  3836. ext4_fsblk_t b, end, table;
  3837. unsigned num;
  3838. table = ext4_inode_table(sb, gdp);
  3839. /* s_inode_readahead_blks is always a power of 2 */
  3840. b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
  3841. if (table > b)
  3842. b = table;
  3843. end = b + EXT4_SB(sb)->s_inode_readahead_blks;
  3844. num = EXT4_INODES_PER_GROUP(sb);
  3845. if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
  3846. EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
  3847. num -= ext4_itable_unused_count(sb, gdp);
  3848. table += num / inodes_per_block;
  3849. if (end > table)
  3850. end = table;
  3851. while (b <= end)
  3852. sb_breadahead(sb, b++);
  3853. }
  3854. /*
  3855. * There are other valid inodes in the buffer, this inode
  3856. * has in-inode xattrs, or we don't have this inode in memory.
  3857. * Read the block from disk.
  3858. */
  3859. get_bh(bh);
  3860. bh->b_end_io = end_buffer_read_sync;
  3861. submit_bh(READ_META, bh);
  3862. wait_on_buffer(bh);
  3863. if (!buffer_uptodate(bh)) {
  3864. ext4_error(sb, __func__,
  3865. "unable to read inode block - inode=%lu, "
  3866. "block=%llu", inode->i_ino, block);
  3867. brelse(bh);
  3868. return -EIO;
  3869. }
  3870. }
  3871. has_buffer:
  3872. iloc->bh = bh;
  3873. return 0;
  3874. }
  3875. int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
  3876. {
  3877. /* We have all inode data except xattrs in memory here. */
  3878. return __ext4_get_inode_loc(inode, iloc,
  3879. !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
  3880. }
  3881. void ext4_set_inode_flags(struct inode *inode)
  3882. {
  3883. unsigned int flags = EXT4_I(inode)->i_flags;
  3884. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  3885. if (flags & EXT4_SYNC_FL)
  3886. inode->i_flags |= S_SYNC;
  3887. if (flags & EXT4_APPEND_FL)
  3888. inode->i_flags |= S_APPEND;
  3889. if (flags & EXT4_IMMUTABLE_FL)
  3890. inode->i_flags |= S_IMMUTABLE;
  3891. if (flags & EXT4_NOATIME_FL)
  3892. inode->i_flags |= S_NOATIME;
  3893. if (flags & EXT4_DIRSYNC_FL)
  3894. inode->i_flags |= S_DIRSYNC;
  3895. }
  3896. /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
  3897. void ext4_get_inode_flags(struct ext4_inode_info *ei)
  3898. {
  3899. unsigned int flags = ei->vfs_inode.i_flags;
  3900. ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
  3901. EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
  3902. if (flags & S_SYNC)
  3903. ei->i_flags |= EXT4_SYNC_FL;
  3904. if (flags & S_APPEND)
  3905. ei->i_flags |= EXT4_APPEND_FL;
  3906. if (flags & S_IMMUTABLE)
  3907. ei->i_flags |= EXT4_IMMUTABLE_FL;
  3908. if (flags & S_NOATIME)
  3909. ei->i_flags |= EXT4_NOATIME_FL;
  3910. if (flags & S_DIRSYNC)
  3911. ei->i_flags |= EXT4_DIRSYNC_FL;
  3912. }
  3913. static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
  3914. struct ext4_inode_info *ei)
  3915. {
  3916. blkcnt_t i_blocks ;
  3917. struct inode *inode = &(ei->vfs_inode);
  3918. struct super_block *sb = inode->i_sb;
  3919. if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
  3920. EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
  3921. /* we are using combined 48 bit field */
  3922. i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
  3923. le32_to_cpu(raw_inode->i_blocks_lo);
  3924. if (ei->i_flags & EXT4_HUGE_FILE_FL) {
  3925. /* i_blocks represent file system block size */
  3926. return i_blocks << (inode->i_blkbits - 9);
  3927. } else {
  3928. return i_blocks;
  3929. }
  3930. } else {
  3931. return le32_to_cpu(raw_inode->i_blocks_lo);
  3932. }
  3933. }
  3934. struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
  3935. {
  3936. struct ext4_iloc iloc;
  3937. struct ext4_inode *raw_inode;
  3938. struct ext4_inode_info *ei;
  3939. struct buffer_head *bh;
  3940. struct inode *inode;
  3941. long ret;
  3942. int block;
  3943. inode = iget_locked(sb, ino);
  3944. if (!inode)
  3945. return ERR_PTR(-ENOMEM);
  3946. if (!(inode->i_state & I_NEW))
  3947. return inode;
  3948. ei = EXT4_I(inode);
  3949. #ifdef CONFIG_EXT4_FS_POSIX_ACL
  3950. ei->i_acl = EXT4_ACL_NOT_CACHED;
  3951. ei->i_default_acl = EXT4_ACL_NOT_CACHED;
  3952. #endif
  3953. ret = __ext4_get_inode_loc(inode, &iloc, 0);
  3954. if (ret < 0)
  3955. goto bad_inode;
  3956. bh = iloc.bh;
  3957. raw_inode = ext4_raw_inode(&iloc);
  3958. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  3959. inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  3960. inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  3961. if (!(test_opt(inode->i_sb, NO_UID32))) {
  3962. inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  3963. inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  3964. }
  3965. inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
  3966. ei->i_state = 0;
  3967. ei->i_dir_start_lookup = 0;
  3968. ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  3969. /* We now have enough fields to check if the inode was active or not.
  3970. * This is needed because nfsd might try to access dead inodes
  3971. * the test is that same one that e2fsck uses
  3972. * NeilBrown 1999oct15
  3973. */
  3974. if (inode->i_nlink == 0) {
  3975. if (inode->i_mode == 0 ||
  3976. !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
  3977. /* this inode is deleted */
  3978. brelse(bh);
  3979. ret = -ESTALE;
  3980. goto bad_inode;
  3981. }
  3982. /* The only unlinked inodes we let through here have
  3983. * valid i_mode and are being read by the orphan
  3984. * recovery code: that's fine, we're about to complete
  3985. * the process of deleting those. */
  3986. }
  3987. ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  3988. inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
  3989. ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
  3990. if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
  3991. ei->i_file_acl |=
  3992. ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
  3993. inode->i_size = ext4_isize(raw_inode);
  3994. ei->i_disksize = inode->i_size;
  3995. inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  3996. ei->i_block_group = iloc.block_group;
  3997. ei->i_last_alloc_group = ~0;
  3998. /*
  3999. * NOTE! The in-memory inode i_data array is in little-endian order
  4000. * even on big-endian machines: we do NOT byteswap the block numbers!
  4001. */
  4002. for (block = 0; block < EXT4_N_BLOCKS; block++)
  4003. ei->i_data[block] = raw_inode->i_block[block];
  4004. INIT_LIST_HEAD(&ei->i_orphan);
  4005. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  4006. ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  4007. if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  4008. EXT4_INODE_SIZE(inode->i_sb)) {
  4009. brelse(bh);
  4010. ret = -EIO;
  4011. goto bad_inode;
  4012. }
  4013. if (ei->i_extra_isize == 0) {
  4014. /* The extra space is currently unused. Use it. */
  4015. ei->i_extra_isize = sizeof(struct ext4_inode) -
  4016. EXT4_GOOD_OLD_INODE_SIZE;
  4017. } else {
  4018. __le32 *magic = (void *)raw_inode +
  4019. EXT4_GOOD_OLD_INODE_SIZE +
  4020. ei->i_extra_isize;
  4021. if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
  4022. ei->i_state |= EXT4_STATE_XATTR;
  4023. }
  4024. } else
  4025. ei->i_extra_isize = 0;
  4026. EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
  4027. EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
  4028. EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
  4029. EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
  4030. inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
  4031. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  4032. if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
  4033. inode->i_version |=
  4034. (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
  4035. }
  4036. ret = 0;
  4037. if (ei->i_file_acl &&
  4038. ((ei->i_file_acl <
  4039. (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
  4040. EXT4_SB(sb)->s_gdb_count)) ||
  4041. (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
  4042. ext4_error(sb, __func__,
  4043. "bad extended attribute block %llu in inode #%lu",
  4044. ei->i_file_acl, inode->i_ino);
  4045. ret = -EIO;
  4046. goto bad_inode;
  4047. } else if (ei->i_flags & EXT4_EXTENTS_FL) {
  4048. if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  4049. (S_ISLNK(inode->i_mode) &&
  4050. !ext4_inode_is_fast_symlink(inode)))
  4051. /* Validate extent which is part of inode */
  4052. ret = ext4_ext_check_inode(inode);
  4053. } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  4054. (S_ISLNK(inode->i_mode) &&
  4055. !ext4_inode_is_fast_symlink(inode))) {
  4056. /* Validate block references which are part of inode */
  4057. ret = ext4_check_inode_blockref(inode);
  4058. }
  4059. if (ret) {
  4060. brelse(bh);
  4061. goto bad_inode;
  4062. }
  4063. if (S_ISREG(inode->i_mode)) {
  4064. inode->i_op = &ext4_file_inode_operations;
  4065. inode->i_fop = &ext4_file_operations;
  4066. ext4_set_aops(inode);
  4067. } else if (S_ISDIR(inode->i_mode)) {
  4068. inode->i_op = &ext4_dir_inode_operations;
  4069. inode->i_fop = &ext4_dir_operations;
  4070. } else if (S_ISLNK(inode->i_mode)) {
  4071. if (ext4_inode_is_fast_symlink(inode)) {
  4072. inode->i_op = &ext4_fast_symlink_inode_operations;
  4073. nd_terminate_link(ei->i_data, inode->i_size,
  4074. sizeof(ei->i_data) - 1);
  4075. } else {
  4076. inode->i_op = &ext4_symlink_inode_operations;
  4077. ext4_set_aops(inode);
  4078. }
  4079. } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
  4080. S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
  4081. inode->i_op = &ext4_special_inode_operations;
  4082. if (raw_inode->i_block[0])
  4083. init_special_inode(inode, inode->i_mode,
  4084. old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  4085. else
  4086. init_special_inode(inode, inode->i_mode,
  4087. new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  4088. } else {
  4089. brelse(bh);
  4090. ret = -EIO;
  4091. ext4_error(inode->i_sb, __func__,
  4092. "bogus i_mode (%o) for inode=%lu",
  4093. inode->i_mode, inode->i_ino);
  4094. goto bad_inode;
  4095. }
  4096. brelse(iloc.bh);
  4097. ext4_set_inode_flags(inode);
  4098. unlock_new_inode(inode);
  4099. return inode;
  4100. bad_inode:
  4101. iget_failed(inode);
  4102. return ERR_PTR(ret);
  4103. }
  4104. static int ext4_inode_blocks_set(handle_t *handle,
  4105. struct ext4_inode *raw_inode,
  4106. struct ext4_inode_info *ei)
  4107. {
  4108. struct inode *inode = &(ei->vfs_inode);
  4109. u64 i_blocks = inode->i_blocks;
  4110. struct super_block *sb = inode->i_sb;
  4111. if (i_blocks <= ~0U) {
  4112. /*
  4113. * i_blocks can be represnted in a 32 bit variable
  4114. * as multiple of 512 bytes
  4115. */
  4116. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  4117. raw_inode->i_blocks_high = 0;
  4118. ei->i_flags &= ~EXT4_HUGE_FILE_FL;
  4119. return 0;
  4120. }
  4121. if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
  4122. return -EFBIG;
  4123. if (i_blocks <= 0xffffffffffffULL) {
  4124. /*
  4125. * i_blocks can be represented in a 48 bit variable
  4126. * as multiple of 512 bytes
  4127. */
  4128. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  4129. raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
  4130. ei->i_flags &= ~EXT4_HUGE_FILE_FL;
  4131. } else {
  4132. ei->i_flags |= EXT4_HUGE_FILE_FL;
  4133. /* i_block is stored in file system block size */
  4134. i_blocks = i_blocks >> (inode->i_blkbits - 9);
  4135. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  4136. raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
  4137. }
  4138. return 0;
  4139. }
  4140. /*
  4141. * Post the struct inode info into an on-disk inode location in the
  4142. * buffer-cache. This gobbles the caller's reference to the
  4143. * buffer_head in the inode location struct.
  4144. *
  4145. * The caller must have write access to iloc->bh.
  4146. */
  4147. static int ext4_do_update_inode(handle_t *handle,
  4148. struct inode *inode,
  4149. struct ext4_iloc *iloc)
  4150. {
  4151. struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
  4152. struct ext4_inode_info *ei = EXT4_I(inode);
  4153. struct buffer_head *bh = iloc->bh;
  4154. int err = 0, rc, block;
  4155. /* For fields not not tracking in the in-memory inode,
  4156. * initialise them to zero for new inodes. */
  4157. if (ei->i_state & EXT4_STATE_NEW)
  4158. memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
  4159. ext4_get_inode_flags(ei);
  4160. raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  4161. if (!(test_opt(inode->i_sb, NO_UID32))) {
  4162. raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
  4163. raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
  4164. /*
  4165. * Fix up interoperability with old kernels. Otherwise, old inodes get
  4166. * re-used with the upper 16 bits of the uid/gid intact
  4167. */
  4168. if (!ei->i_dtime) {
  4169. raw_inode->i_uid_high =
  4170. cpu_to_le16(high_16_bits(inode->i_uid));
  4171. raw_inode->i_gid_high =
  4172. cpu_to_le16(high_16_bits(inode->i_gid));
  4173. } else {
  4174. raw_inode->i_uid_high = 0;
  4175. raw_inode->i_gid_high = 0;
  4176. }
  4177. } else {
  4178. raw_inode->i_uid_low =
  4179. cpu_to_le16(fs_high2lowuid(inode->i_uid));
  4180. raw_inode->i_gid_low =
  4181. cpu_to_le16(fs_high2lowgid(inode->i_gid));
  4182. raw_inode->i_uid_high = 0;
  4183. raw_inode->i_gid_high = 0;
  4184. }
  4185. raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  4186. EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
  4187. EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
  4188. EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
  4189. EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
  4190. if (ext4_inode_blocks_set(handle, raw_inode, ei))
  4191. goto out_brelse;
  4192. raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  4193. /* clear the migrate flag in the raw_inode */
  4194. raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
  4195. if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  4196. cpu_to_le32(EXT4_OS_HURD))
  4197. raw_inode->i_file_acl_high =
  4198. cpu_to_le16(ei->i_file_acl >> 32);
  4199. raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
  4200. ext4_isize_set(raw_inode, ei->i_disksize);
  4201. if (ei->i_disksize > 0x7fffffffULL) {
  4202. struct super_block *sb = inode->i_sb;
  4203. if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
  4204. EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
  4205. EXT4_SB(sb)->s_es->s_rev_level ==
  4206. cpu_to_le32(EXT4_GOOD_OLD_REV)) {
  4207. /* If this is the first large file
  4208. * created, add a flag to the superblock.
  4209. */
  4210. err = ext4_journal_get_write_access(handle,
  4211. EXT4_SB(sb)->s_sbh);
  4212. if (err)
  4213. goto out_brelse;
  4214. ext4_update_dynamic_rev(sb);
  4215. EXT4_SET_RO_COMPAT_FEATURE(sb,
  4216. EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
  4217. sb->s_dirt = 1;
  4218. ext4_handle_sync(handle);
  4219. err = ext4_handle_dirty_metadata(handle, inode,
  4220. EXT4_SB(sb)->s_sbh);
  4221. }
  4222. }
  4223. raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  4224. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  4225. if (old_valid_dev(inode->i_rdev)) {
  4226. raw_inode->i_block[0] =
  4227. cpu_to_le32(old_encode_dev(inode->i_rdev));
  4228. raw_inode->i_block[1] = 0;
  4229. } else {
  4230. raw_inode->i_block[0] = 0;
  4231. raw_inode->i_block[1] =
  4232. cpu_to_le32(new_encode_dev(inode->i_rdev));
  4233. raw_inode->i_block[2] = 0;
  4234. }
  4235. } else for (block = 0; block < EXT4_N_BLOCKS; block++)
  4236. raw_inode->i_block[block] = ei->i_data[block];
  4237. raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
  4238. if (ei->i_extra_isize) {
  4239. if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
  4240. raw_inode->i_version_hi =
  4241. cpu_to_le32(inode->i_version >> 32);
  4242. raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  4243. }
  4244. BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
  4245. rc = ext4_handle_dirty_metadata(handle, inode, bh);
  4246. if (!err)
  4247. err = rc;
  4248. ei->i_state &= ~EXT4_STATE_NEW;
  4249. out_brelse:
  4250. brelse(bh);
  4251. ext4_std_error(inode->i_sb, err);
  4252. return err;
  4253. }
  4254. /*
  4255. * ext4_write_inode()
  4256. *
  4257. * We are called from a few places:
  4258. *
  4259. * - Within generic_file_write() for O_SYNC files.
  4260. * Here, there will be no transaction running. We wait for any running
  4261. * trasnaction to commit.
  4262. *
  4263. * - Within sys_sync(), kupdate and such.
  4264. * We wait on commit, if tol to.
  4265. *
  4266. * - Within prune_icache() (PF_MEMALLOC == true)
  4267. * Here we simply return. We can't afford to block kswapd on the
  4268. * journal commit.
  4269. *
  4270. * In all cases it is actually safe for us to return without doing anything,
  4271. * because the inode has been copied into a raw inode buffer in
  4272. * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
  4273. * knfsd.
  4274. *
  4275. * Note that we are absolutely dependent upon all inode dirtiers doing the
  4276. * right thing: they *must* call mark_inode_dirty() after dirtying info in
  4277. * which we are interested.
  4278. *
  4279. * It would be a bug for them to not do this. The code:
  4280. *
  4281. * mark_inode_dirty(inode)
  4282. * stuff();
  4283. * inode->i_size = expr;
  4284. *
  4285. * is in error because a kswapd-driven write_inode() could occur while
  4286. * `stuff()' is running, and the new i_size will be lost. Plus the inode
  4287. * will no longer be on the superblock's dirty inode list.
  4288. */
  4289. int ext4_write_inode(struct inode *inode, int wait)
  4290. {
  4291. if (current->flags & PF_MEMALLOC)
  4292. return 0;
  4293. if (ext4_journal_current_handle()) {
  4294. jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
  4295. dump_stack();
  4296. return -EIO;
  4297. }
  4298. if (!wait)
  4299. return 0;
  4300. return ext4_force_commit(inode->i_sb);
  4301. }
  4302. int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
  4303. {
  4304. int err = 0;
  4305. mark_buffer_dirty(bh);
  4306. if (inode && inode_needs_sync(inode)) {
  4307. sync_dirty_buffer(bh);
  4308. if (buffer_req(bh) && !buffer_uptodate(bh)) {
  4309. ext4_error(inode->i_sb, __func__,
  4310. "IO error syncing inode, "
  4311. "inode=%lu, block=%llu",
  4312. inode->i_ino,
  4313. (unsigned long long)bh->b_blocknr);
  4314. err = -EIO;
  4315. }
  4316. }
  4317. return err;
  4318. }
  4319. /*
  4320. * ext4_setattr()
  4321. *
  4322. * Called from notify_change.
  4323. *
  4324. * We want to trap VFS attempts to truncate the file as soon as
  4325. * possible. In particular, we want to make sure that when the VFS
  4326. * shrinks i_size, we put the inode on the orphan list and modify
  4327. * i_disksize immediately, so that during the subsequent flushing of
  4328. * dirty pages and freeing of disk blocks, we can guarantee that any
  4329. * commit will leave the blocks being flushed in an unused state on
  4330. * disk. (On recovery, the inode will get truncated and the blocks will
  4331. * be freed, so we have a strong guarantee that no future commit will
  4332. * leave these blocks visible to the user.)
  4333. *
  4334. * Another thing we have to assure is that if we are in ordered mode
  4335. * and inode is still attached to the committing transaction, we must
  4336. * we start writeout of all the dirty pages which are being truncated.
  4337. * This way we are sure that all the data written in the previous
  4338. * transaction are already on disk (truncate waits for pages under
  4339. * writeback).
  4340. *
  4341. * Called with inode->i_mutex down.
  4342. */
  4343. int ext4_setattr(struct dentry *dentry, struct iattr *attr)
  4344. {
  4345. struct inode *inode = dentry->d_inode;
  4346. int error, rc = 0;
  4347. const unsigned int ia_valid = attr->ia_valid;
  4348. error = inode_change_ok(inode, attr);
  4349. if (error)
  4350. return error;
  4351. if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
  4352. (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
  4353. handle_t *handle;
  4354. /* (user+group)*(old+new) structure, inode write (sb,
  4355. * inode block, ? - but truncate inode update has it) */
  4356. handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
  4357. EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
  4358. if (IS_ERR(handle)) {
  4359. error = PTR_ERR(handle);
  4360. goto err_out;
  4361. }
  4362. error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
  4363. if (error) {
  4364. ext4_journal_stop(handle);
  4365. return error;
  4366. }
  4367. /* Update corresponding info in inode so that everything is in
  4368. * one transaction */
  4369. if (attr->ia_valid & ATTR_UID)
  4370. inode->i_uid = attr->ia_uid;
  4371. if (attr->ia_valid & ATTR_GID)
  4372. inode->i_gid = attr->ia_gid;
  4373. error = ext4_mark_inode_dirty(handle, inode);
  4374. ext4_journal_stop(handle);
  4375. }
  4376. if (attr->ia_valid & ATTR_SIZE) {
  4377. if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
  4378. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  4379. if (attr->ia_size > sbi->s_bitmap_maxbytes) {
  4380. error = -EFBIG;
  4381. goto err_out;
  4382. }
  4383. }
  4384. }
  4385. if (S_ISREG(inode->i_mode) &&
  4386. attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
  4387. handle_t *handle;
  4388. handle = ext4_journal_start(inode, 3);
  4389. if (IS_ERR(handle)) {
  4390. error = PTR_ERR(handle);
  4391. goto err_out;
  4392. }
  4393. error = ext4_orphan_add(handle, inode);
  4394. EXT4_I(inode)->i_disksize = attr->ia_size;
  4395. rc = ext4_mark_inode_dirty(handle, inode);
  4396. if (!error)
  4397. error = rc;
  4398. ext4_journal_stop(handle);
  4399. if (ext4_should_order_data(inode)) {
  4400. error = ext4_begin_ordered_truncate(inode,
  4401. attr->ia_size);
  4402. if (error) {
  4403. /* Do as much error cleanup as possible */
  4404. handle = ext4_journal_start(inode, 3);
  4405. if (IS_ERR(handle)) {
  4406. ext4_orphan_del(NULL, inode);
  4407. goto err_out;
  4408. }
  4409. ext4_orphan_del(handle, inode);
  4410. ext4_journal_stop(handle);
  4411. goto err_out;
  4412. }
  4413. }
  4414. }
  4415. rc = inode_setattr(inode, attr);
  4416. /* If inode_setattr's call to ext4_truncate failed to get a
  4417. * transaction handle at all, we need to clean up the in-core
  4418. * orphan list manually. */
  4419. if (inode->i_nlink)
  4420. ext4_orphan_del(NULL, inode);
  4421. if (!rc && (ia_valid & ATTR_MODE))
  4422. rc = ext4_acl_chmod(inode);
  4423. err_out:
  4424. ext4_std_error(inode->i_sb, error);
  4425. if (!error)
  4426. error = rc;
  4427. return error;
  4428. }
  4429. int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
  4430. struct kstat *stat)
  4431. {
  4432. struct inode *inode;
  4433. unsigned long delalloc_blocks;
  4434. inode = dentry->d_inode;
  4435. generic_fillattr(inode, stat);
  4436. /*
  4437. * We can't update i_blocks if the block allocation is delayed
  4438. * otherwise in the case of system crash before the real block
  4439. * allocation is done, we will have i_blocks inconsistent with
  4440. * on-disk file blocks.
  4441. * We always keep i_blocks updated together with real
  4442. * allocation. But to not confuse with user, stat
  4443. * will return the blocks that include the delayed allocation
  4444. * blocks for this file.
  4445. */
  4446. spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
  4447. delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
  4448. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  4449. stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
  4450. return 0;
  4451. }
  4452. static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
  4453. int chunk)
  4454. {
  4455. int indirects;
  4456. /* if nrblocks are contiguous */
  4457. if (chunk) {
  4458. /*
  4459. * With N contiguous data blocks, it need at most
  4460. * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
  4461. * 2 dindirect blocks
  4462. * 1 tindirect block
  4463. */
  4464. indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
  4465. return indirects + 3;
  4466. }
  4467. /*
  4468. * if nrblocks are not contiguous, worse case, each block touch
  4469. * a indirect block, and each indirect block touch a double indirect
  4470. * block, plus a triple indirect block
  4471. */
  4472. indirects = nrblocks * 2 + 1;
  4473. return indirects;
  4474. }
  4475. static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
  4476. {
  4477. if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
  4478. return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
  4479. return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
  4480. }
  4481. /*
  4482. * Account for index blocks, block groups bitmaps and block group
  4483. * descriptor blocks if modify datablocks and index blocks
  4484. * worse case, the indexs blocks spread over different block groups
  4485. *
  4486. * If datablocks are discontiguous, they are possible to spread over
  4487. * different block groups too. If they are contiugous, with flexbg,
  4488. * they could still across block group boundary.
  4489. *
  4490. * Also account for superblock, inode, quota and xattr blocks
  4491. */
  4492. int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
  4493. {
  4494. ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
  4495. int gdpblocks;
  4496. int idxblocks;
  4497. int ret = 0;
  4498. /*
  4499. * How many index blocks need to touch to modify nrblocks?
  4500. * The "Chunk" flag indicating whether the nrblocks is
  4501. * physically contiguous on disk
  4502. *
  4503. * For Direct IO and fallocate, they calls get_block to allocate
  4504. * one single extent at a time, so they could set the "Chunk" flag
  4505. */
  4506. idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
  4507. ret = idxblocks;
  4508. /*
  4509. * Now let's see how many group bitmaps and group descriptors need
  4510. * to account
  4511. */
  4512. groups = idxblocks;
  4513. if (chunk)
  4514. groups += 1;
  4515. else
  4516. groups += nrblocks;
  4517. gdpblocks = groups;
  4518. if (groups > ngroups)
  4519. groups = ngroups;
  4520. if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
  4521. gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
  4522. /* bitmaps and block group descriptor blocks */
  4523. ret += groups + gdpblocks;
  4524. /* Blocks for super block, inode, quota and xattr blocks */
  4525. ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
  4526. return ret;
  4527. }
  4528. /*
  4529. * Calulate the total number of credits to reserve to fit
  4530. * the modification of a single pages into a single transaction,
  4531. * which may include multiple chunks of block allocations.
  4532. *
  4533. * This could be called via ext4_write_begin()
  4534. *
  4535. * We need to consider the worse case, when
  4536. * one new block per extent.
  4537. */
  4538. int ext4_writepage_trans_blocks(struct inode *inode)
  4539. {
  4540. int bpp = ext4_journal_blocks_per_page(inode);
  4541. int ret;
  4542. ret = ext4_meta_trans_blocks(inode, bpp, 0);
  4543. /* Account for data blocks for journalled mode */
  4544. if (ext4_should_journal_data(inode))
  4545. ret += bpp;
  4546. return ret;
  4547. }
  4548. /*
  4549. * Calculate the journal credits for a chunk of data modification.
  4550. *
  4551. * This is called from DIO, fallocate or whoever calling
  4552. * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
  4553. *
  4554. * journal buffers for data blocks are not included here, as DIO
  4555. * and fallocate do no need to journal data buffers.
  4556. */
  4557. int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
  4558. {
  4559. return ext4_meta_trans_blocks(inode, nrblocks, 1);
  4560. }
  4561. /*
  4562. * The caller must have previously called ext4_reserve_inode_write().
  4563. * Give this, we know that the caller already has write access to iloc->bh.
  4564. */
  4565. int ext4_mark_iloc_dirty(handle_t *handle,
  4566. struct inode *inode, struct ext4_iloc *iloc)
  4567. {
  4568. int err = 0;
  4569. if (test_opt(inode->i_sb, I_VERSION))
  4570. inode_inc_iversion(inode);
  4571. /* the do_update_inode consumes one bh->b_count */
  4572. get_bh(iloc->bh);
  4573. /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
  4574. err = ext4_do_update_inode(handle, inode, iloc);
  4575. put_bh(iloc->bh);
  4576. return err;
  4577. }
  4578. /*
  4579. * On success, We end up with an outstanding reference count against
  4580. * iloc->bh. This _must_ be cleaned up later.
  4581. */
  4582. int
  4583. ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
  4584. struct ext4_iloc *iloc)
  4585. {
  4586. int err;
  4587. err = ext4_get_inode_loc(inode, iloc);
  4588. if (!err) {
  4589. BUFFER_TRACE(iloc->bh, "get_write_access");
  4590. err = ext4_journal_get_write_access(handle, iloc->bh);
  4591. if (err) {
  4592. brelse(iloc->bh);
  4593. iloc->bh = NULL;
  4594. }
  4595. }
  4596. ext4_std_error(inode->i_sb, err);
  4597. return err;
  4598. }
  4599. /*
  4600. * Expand an inode by new_extra_isize bytes.
  4601. * Returns 0 on success or negative error number on failure.
  4602. */
  4603. static int ext4_expand_extra_isize(struct inode *inode,
  4604. unsigned int new_extra_isize,
  4605. struct ext4_iloc iloc,
  4606. handle_t *handle)
  4607. {
  4608. struct ext4_inode *raw_inode;
  4609. struct ext4_xattr_ibody_header *header;
  4610. struct ext4_xattr_entry *entry;
  4611. if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
  4612. return 0;
  4613. raw_inode = ext4_raw_inode(&iloc);
  4614. header = IHDR(inode, raw_inode);
  4615. entry = IFIRST(header);
  4616. /* No extended attributes present */
  4617. if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
  4618. header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
  4619. memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
  4620. new_extra_isize);
  4621. EXT4_I(inode)->i_extra_isize = new_extra_isize;
  4622. return 0;
  4623. }
  4624. /* try to expand with EAs present */
  4625. return ext4_expand_extra_isize_ea(inode, new_extra_isize,
  4626. raw_inode, handle);
  4627. }
  4628. /*
  4629. * What we do here is to mark the in-core inode as clean with respect to inode
  4630. * dirtiness (it may still be data-dirty).
  4631. * This means that the in-core inode may be reaped by prune_icache
  4632. * without having to perform any I/O. This is a very good thing,
  4633. * because *any* task may call prune_icache - even ones which
  4634. * have a transaction open against a different journal.
  4635. *
  4636. * Is this cheating? Not really. Sure, we haven't written the
  4637. * inode out, but prune_icache isn't a user-visible syncing function.
  4638. * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
  4639. * we start and wait on commits.
  4640. *
  4641. * Is this efficient/effective? Well, we're being nice to the system
  4642. * by cleaning up our inodes proactively so they can be reaped
  4643. * without I/O. But we are potentially leaving up to five seconds'
  4644. * worth of inodes floating about which prune_icache wants us to
  4645. * write out. One way to fix that would be to get prune_icache()
  4646. * to do a write_super() to free up some memory. It has the desired
  4647. * effect.
  4648. */
  4649. int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
  4650. {
  4651. struct ext4_iloc iloc;
  4652. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  4653. static unsigned int mnt_count;
  4654. int err, ret;
  4655. might_sleep();
  4656. err = ext4_reserve_inode_write(handle, inode, &iloc);
  4657. if (ext4_handle_valid(handle) &&
  4658. EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
  4659. !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
  4660. /*
  4661. * We need extra buffer credits since we may write into EA block
  4662. * with this same handle. If journal_extend fails, then it will
  4663. * only result in a minor loss of functionality for that inode.
  4664. * If this is felt to be critical, then e2fsck should be run to
  4665. * force a large enough s_min_extra_isize.
  4666. */
  4667. if ((jbd2_journal_extend(handle,
  4668. EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
  4669. ret = ext4_expand_extra_isize(inode,
  4670. sbi->s_want_extra_isize,
  4671. iloc, handle);
  4672. if (ret) {
  4673. EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
  4674. if (mnt_count !=
  4675. le16_to_cpu(sbi->s_es->s_mnt_count)) {
  4676. ext4_warning(inode->i_sb, __func__,
  4677. "Unable to expand inode %lu. Delete"
  4678. " some EAs or run e2fsck.",
  4679. inode->i_ino);
  4680. mnt_count =
  4681. le16_to_cpu(sbi->s_es->s_mnt_count);
  4682. }
  4683. }
  4684. }
  4685. }
  4686. if (!err)
  4687. err = ext4_mark_iloc_dirty(handle, inode, &iloc);
  4688. return err;
  4689. }
  4690. /*
  4691. * ext4_dirty_inode() is called from __mark_inode_dirty()
  4692. *
  4693. * We're really interested in the case where a file is being extended.
  4694. * i_size has been changed by generic_commit_write() and we thus need
  4695. * to include the updated inode in the current transaction.
  4696. *
  4697. * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
  4698. * are allocated to the file.
  4699. *
  4700. * If the inode is marked synchronous, we don't honour that here - doing
  4701. * so would cause a commit on atime updates, which we don't bother doing.
  4702. * We handle synchronous inodes at the highest possible level.
  4703. */
  4704. void ext4_dirty_inode(struct inode *inode)
  4705. {
  4706. handle_t *current_handle = ext4_journal_current_handle();
  4707. handle_t *handle;
  4708. if (!ext4_handle_valid(current_handle)) {
  4709. ext4_mark_inode_dirty(current_handle, inode);
  4710. return;
  4711. }
  4712. handle = ext4_journal_start(inode, 2);
  4713. if (IS_ERR(handle))
  4714. goto out;
  4715. if (current_handle &&
  4716. current_handle->h_transaction != handle->h_transaction) {
  4717. /* This task has a transaction open against a different fs */
  4718. printk(KERN_EMERG "%s: transactions do not match!\n",
  4719. __func__);
  4720. } else {
  4721. jbd_debug(5, "marking dirty. outer handle=%p\n",
  4722. current_handle);
  4723. ext4_mark_inode_dirty(handle, inode);
  4724. }
  4725. ext4_journal_stop(handle);
  4726. out:
  4727. return;
  4728. }
  4729. #if 0
  4730. /*
  4731. * Bind an inode's backing buffer_head into this transaction, to prevent
  4732. * it from being flushed to disk early. Unlike
  4733. * ext4_reserve_inode_write, this leaves behind no bh reference and
  4734. * returns no iloc structure, so the caller needs to repeat the iloc
  4735. * lookup to mark the inode dirty later.
  4736. */
  4737. static int ext4_pin_inode(handle_t *handle, struct inode *inode)
  4738. {
  4739. struct ext4_iloc iloc;
  4740. int err = 0;
  4741. if (handle) {
  4742. err = ext4_get_inode_loc(inode, &iloc);
  4743. if (!err) {
  4744. BUFFER_TRACE(iloc.bh, "get_write_access");
  4745. err = jbd2_journal_get_write_access(handle, iloc.bh);
  4746. if (!err)
  4747. err = ext4_handle_dirty_metadata(handle,
  4748. inode,
  4749. iloc.bh);
  4750. brelse(iloc.bh);
  4751. }
  4752. }
  4753. ext4_std_error(inode->i_sb, err);
  4754. return err;
  4755. }
  4756. #endif
  4757. int ext4_change_inode_journal_flag(struct inode *inode, int val)
  4758. {
  4759. journal_t *journal;
  4760. handle_t *handle;
  4761. int err;
  4762. /*
  4763. * We have to be very careful here: changing a data block's
  4764. * journaling status dynamically is dangerous. If we write a
  4765. * data block to the journal, change the status and then delete
  4766. * that block, we risk forgetting to revoke the old log record
  4767. * from the journal and so a subsequent replay can corrupt data.
  4768. * So, first we make sure that the journal is empty and that
  4769. * nobody is changing anything.
  4770. */
  4771. journal = EXT4_JOURNAL(inode);
  4772. if (!journal)
  4773. return 0;
  4774. if (is_journal_aborted(journal))
  4775. return -EROFS;
  4776. jbd2_journal_lock_updates(journal);
  4777. jbd2_journal_flush(journal);
  4778. /*
  4779. * OK, there are no updates running now, and all cached data is
  4780. * synced to disk. We are now in a completely consistent state
  4781. * which doesn't have anything in the journal, and we know that
  4782. * no filesystem updates are running, so it is safe to modify
  4783. * the inode's in-core data-journaling state flag now.
  4784. */
  4785. if (val)
  4786. EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
  4787. else
  4788. EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
  4789. ext4_set_aops(inode);
  4790. jbd2_journal_unlock_updates(journal);
  4791. /* Finally we can mark the inode as dirty. */
  4792. handle = ext4_journal_start(inode, 1);
  4793. if (IS_ERR(handle))
  4794. return PTR_ERR(handle);
  4795. err = ext4_mark_inode_dirty(handle, inode);
  4796. ext4_handle_sync(handle);
  4797. ext4_journal_stop(handle);
  4798. ext4_std_error(inode->i_sb, err);
  4799. return err;
  4800. }
  4801. static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
  4802. {
  4803. return !buffer_mapped(bh);
  4804. }
  4805. int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
  4806. {
  4807. struct page *page = vmf->page;
  4808. loff_t size;
  4809. unsigned long len;
  4810. int ret = -EINVAL;
  4811. void *fsdata;
  4812. struct file *file = vma->vm_file;
  4813. struct inode *inode = file->f_path.dentry->d_inode;
  4814. struct address_space *mapping = inode->i_mapping;
  4815. /*
  4816. * Get i_alloc_sem to stop truncates messing with the inode. We cannot
  4817. * get i_mutex because we are already holding mmap_sem.
  4818. */
  4819. down_read(&inode->i_alloc_sem);
  4820. size = i_size_read(inode);
  4821. if (page->mapping != mapping || size <= page_offset(page)
  4822. || !PageUptodate(page)) {
  4823. /* page got truncated from under us? */
  4824. goto out_unlock;
  4825. }
  4826. ret = 0;
  4827. if (PageMappedToDisk(page))
  4828. goto out_unlock;
  4829. if (page->index == size >> PAGE_CACHE_SHIFT)
  4830. len = size & ~PAGE_CACHE_MASK;
  4831. else
  4832. len = PAGE_CACHE_SIZE;
  4833. if (page_has_buffers(page)) {
  4834. /* return if we have all the buffers mapped */
  4835. if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
  4836. ext4_bh_unmapped))
  4837. goto out_unlock;
  4838. }
  4839. /*
  4840. * OK, we need to fill the hole... Do write_begin write_end
  4841. * to do block allocation/reservation.We are not holding
  4842. * inode.i__mutex here. That allow * parallel write_begin,
  4843. * write_end call. lock_page prevent this from happening
  4844. * on the same page though
  4845. */
  4846. ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
  4847. len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
  4848. if (ret < 0)
  4849. goto out_unlock;
  4850. ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
  4851. len, len, page, fsdata);
  4852. if (ret < 0)
  4853. goto out_unlock;
  4854. ret = 0;
  4855. out_unlock:
  4856. if (ret)
  4857. ret = VM_FAULT_SIGBUS;
  4858. up_read(&inode->i_alloc_sem);
  4859. return ret;
  4860. }