slab.h 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624
  1. /*
  2. * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
  3. *
  4. * (C) SGI 2006, Christoph Lameter
  5. * Cleaned up and restructured to ease the addition of alternative
  6. * implementations of SLAB allocators.
  7. * (C) Linux Foundation 2008-2013
  8. * Unified interface for all slab allocators
  9. */
  10. #ifndef _LINUX_SLAB_H
  11. #define _LINUX_SLAB_H
  12. #include <linux/gfp.h>
  13. #include <linux/types.h>
  14. #include <linux/workqueue.h>
  15. /*
  16. * Flags to pass to kmem_cache_create().
  17. * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
  18. */
  19. #define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */
  20. #define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */
  21. #define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */
  22. #define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */
  23. #define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */
  24. #define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */
  25. #define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */
  26. /*
  27. * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
  28. *
  29. * This delays freeing the SLAB page by a grace period, it does _NOT_
  30. * delay object freeing. This means that if you do kmem_cache_free()
  31. * that memory location is free to be reused at any time. Thus it may
  32. * be possible to see another object there in the same RCU grace period.
  33. *
  34. * This feature only ensures the memory location backing the object
  35. * stays valid, the trick to using this is relying on an independent
  36. * object validation pass. Something like:
  37. *
  38. * rcu_read_lock()
  39. * again:
  40. * obj = lockless_lookup(key);
  41. * if (obj) {
  42. * if (!try_get_ref(obj)) // might fail for free objects
  43. * goto again;
  44. *
  45. * if (obj->key != key) { // not the object we expected
  46. * put_ref(obj);
  47. * goto again;
  48. * }
  49. * }
  50. * rcu_read_unlock();
  51. *
  52. * This is useful if we need to approach a kernel structure obliquely,
  53. * from its address obtained without the usual locking. We can lock
  54. * the structure to stabilize it and check it's still at the given address,
  55. * only if we can be sure that the memory has not been meanwhile reused
  56. * for some other kind of object (which our subsystem's lock might corrupt).
  57. *
  58. * rcu_read_lock before reading the address, then rcu_read_unlock after
  59. * taking the spinlock within the structure expected at that address.
  60. */
  61. #define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */
  62. #define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */
  63. #define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */
  64. /* Flag to prevent checks on free */
  65. #ifdef CONFIG_DEBUG_OBJECTS
  66. # define SLAB_DEBUG_OBJECTS 0x00400000UL
  67. #else
  68. # define SLAB_DEBUG_OBJECTS 0x00000000UL
  69. #endif
  70. #define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */
  71. /* Don't track use of uninitialized memory */
  72. #ifdef CONFIG_KMEMCHECK
  73. # define SLAB_NOTRACK 0x01000000UL
  74. #else
  75. # define SLAB_NOTRACK 0x00000000UL
  76. #endif
  77. #ifdef CONFIG_FAILSLAB
  78. # define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */
  79. #else
  80. # define SLAB_FAILSLAB 0x00000000UL
  81. #endif
  82. #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
  83. # define SLAB_ACCOUNT 0x04000000UL /* Account to memcg */
  84. #else
  85. # define SLAB_ACCOUNT 0x00000000UL
  86. #endif
  87. /* The following flags affect the page allocator grouping pages by mobility */
  88. #define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */
  89. #define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
  90. /*
  91. * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
  92. *
  93. * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
  94. *
  95. * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
  96. * Both make kfree a no-op.
  97. */
  98. #define ZERO_SIZE_PTR ((void *)16)
  99. #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
  100. (unsigned long)ZERO_SIZE_PTR)
  101. #include <linux/kmemleak.h>
  102. #include <linux/kasan.h>
  103. struct mem_cgroup;
  104. /*
  105. * struct kmem_cache related prototypes
  106. */
  107. void __init kmem_cache_init(void);
  108. bool slab_is_available(void);
  109. struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
  110. unsigned long,
  111. void (*)(void *));
  112. void kmem_cache_destroy(struct kmem_cache *);
  113. int kmem_cache_shrink(struct kmem_cache *);
  114. void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *);
  115. void memcg_deactivate_kmem_caches(struct mem_cgroup *);
  116. void memcg_destroy_kmem_caches(struct mem_cgroup *);
  117. /*
  118. * Please use this macro to create slab caches. Simply specify the
  119. * name of the structure and maybe some flags that are listed above.
  120. *
  121. * The alignment of the struct determines object alignment. If you
  122. * f.e. add ____cacheline_aligned_in_smp to the struct declaration
  123. * then the objects will be properly aligned in SMP configurations.
  124. */
  125. #define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
  126. sizeof(struct __struct), __alignof__(struct __struct),\
  127. (__flags), NULL)
  128. /*
  129. * Common kmalloc functions provided by all allocators
  130. */
  131. void * __must_check __krealloc(const void *, size_t, gfp_t);
  132. void * __must_check krealloc(const void *, size_t, gfp_t);
  133. void kfree(const void *);
  134. void kzfree(const void *);
  135. size_t ksize(const void *);
  136. /*
  137. * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  138. * alignment larger than the alignment of a 64-bit integer.
  139. * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
  140. */
  141. #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
  142. #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
  143. #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
  144. #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
  145. #else
  146. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  147. #endif
  148. /*
  149. * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
  150. * Intended for arches that get misalignment faults even for 64 bit integer
  151. * aligned buffers.
  152. */
  153. #ifndef ARCH_SLAB_MINALIGN
  154. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  155. #endif
  156. /*
  157. * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned
  158. * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN
  159. * aligned pointers.
  160. */
  161. #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
  162. #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
  163. #define __assume_page_alignment __assume_aligned(PAGE_SIZE)
  164. /*
  165. * Kmalloc array related definitions
  166. */
  167. #ifdef CONFIG_SLAB
  168. /*
  169. * The largest kmalloc size supported by the SLAB allocators is
  170. * 32 megabyte (2^25) or the maximum allocatable page order if that is
  171. * less than 32 MB.
  172. *
  173. * WARNING: Its not easy to increase this value since the allocators have
  174. * to do various tricks to work around compiler limitations in order to
  175. * ensure proper constant folding.
  176. */
  177. #define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
  178. (MAX_ORDER + PAGE_SHIFT - 1) : 25)
  179. #define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH
  180. #ifndef KMALLOC_SHIFT_LOW
  181. #define KMALLOC_SHIFT_LOW 5
  182. #endif
  183. #endif
  184. #ifdef CONFIG_SLUB
  185. /*
  186. * SLUB directly allocates requests fitting in to an order-1 page
  187. * (PAGE_SIZE*2). Larger requests are passed to the page allocator.
  188. */
  189. #define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
  190. #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT)
  191. #ifndef KMALLOC_SHIFT_LOW
  192. #define KMALLOC_SHIFT_LOW 3
  193. #endif
  194. #endif
  195. #ifdef CONFIG_SLOB
  196. /*
  197. * SLOB passes all requests larger than one page to the page allocator.
  198. * No kmalloc array is necessary since objects of different sizes can
  199. * be allocated from the same page.
  200. */
  201. #define KMALLOC_SHIFT_HIGH PAGE_SHIFT
  202. #define KMALLOC_SHIFT_MAX 30
  203. #ifndef KMALLOC_SHIFT_LOW
  204. #define KMALLOC_SHIFT_LOW 3
  205. #endif
  206. #endif
  207. /* Maximum allocatable size */
  208. #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX)
  209. /* Maximum size for which we actually use a slab cache */
  210. #define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH)
  211. /* Maximum order allocatable via the slab allocagtor */
  212. #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
  213. /*
  214. * Kmalloc subsystem.
  215. */
  216. #ifndef KMALLOC_MIN_SIZE
  217. #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
  218. #endif
  219. /*
  220. * This restriction comes from byte sized index implementation.
  221. * Page size is normally 2^12 bytes and, in this case, if we want to use
  222. * byte sized index which can represent 2^8 entries, the size of the object
  223. * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
  224. * If minimum size of kmalloc is less than 16, we use it as minimum object
  225. * size and give up to use byte sized index.
  226. */
  227. #define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \
  228. (KMALLOC_MIN_SIZE) : 16)
  229. #ifndef CONFIG_SLOB
  230. extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
  231. #ifdef CONFIG_ZONE_DMA
  232. extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
  233. #endif
  234. /*
  235. * Figure out which kmalloc slab an allocation of a certain size
  236. * belongs to.
  237. * 0 = zero alloc
  238. * 1 = 65 .. 96 bytes
  239. * 2 = 129 .. 192 bytes
  240. * n = 2^(n-1)+1 .. 2^n
  241. */
  242. static __always_inline int kmalloc_index(size_t size)
  243. {
  244. if (!size)
  245. return 0;
  246. if (size <= KMALLOC_MIN_SIZE)
  247. return KMALLOC_SHIFT_LOW;
  248. if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
  249. return 1;
  250. if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
  251. return 2;
  252. if (size <= 8) return 3;
  253. if (size <= 16) return 4;
  254. if (size <= 32) return 5;
  255. if (size <= 64) return 6;
  256. if (size <= 128) return 7;
  257. if (size <= 256) return 8;
  258. if (size <= 512) return 9;
  259. if (size <= 1024) return 10;
  260. if (size <= 2 * 1024) return 11;
  261. if (size <= 4 * 1024) return 12;
  262. if (size <= 8 * 1024) return 13;
  263. if (size <= 16 * 1024) return 14;
  264. if (size <= 32 * 1024) return 15;
  265. if (size <= 64 * 1024) return 16;
  266. if (size <= 128 * 1024) return 17;
  267. if (size <= 256 * 1024) return 18;
  268. if (size <= 512 * 1024) return 19;
  269. if (size <= 1024 * 1024) return 20;
  270. if (size <= 2 * 1024 * 1024) return 21;
  271. if (size <= 4 * 1024 * 1024) return 22;
  272. if (size <= 8 * 1024 * 1024) return 23;
  273. if (size <= 16 * 1024 * 1024) return 24;
  274. if (size <= 32 * 1024 * 1024) return 25;
  275. if (size <= 64 * 1024 * 1024) return 26;
  276. BUG();
  277. /* Will never be reached. Needed because the compiler may complain */
  278. return -1;
  279. }
  280. #endif /* !CONFIG_SLOB */
  281. void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment;
  282. void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment;
  283. void kmem_cache_free(struct kmem_cache *, void *);
  284. /*
  285. * Bulk allocation and freeing operations. These are accellerated in an
  286. * allocator specific way to avoid taking locks repeatedly or building
  287. * metadata structures unnecessarily.
  288. *
  289. * Note that interrupts must be enabled when calling these functions.
  290. */
  291. void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
  292. int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
  293. #ifdef CONFIG_NUMA
  294. void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment;
  295. void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment;
  296. #else
  297. static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
  298. {
  299. return __kmalloc(size, flags);
  300. }
  301. static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
  302. {
  303. return kmem_cache_alloc(s, flags);
  304. }
  305. #endif
  306. #ifdef CONFIG_TRACING
  307. extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment;
  308. #ifdef CONFIG_NUMA
  309. extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  310. gfp_t gfpflags,
  311. int node, size_t size) __assume_slab_alignment;
  312. #else
  313. static __always_inline void *
  314. kmem_cache_alloc_node_trace(struct kmem_cache *s,
  315. gfp_t gfpflags,
  316. int node, size_t size)
  317. {
  318. return kmem_cache_alloc_trace(s, gfpflags, size);
  319. }
  320. #endif /* CONFIG_NUMA */
  321. #else /* CONFIG_TRACING */
  322. static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
  323. gfp_t flags, size_t size)
  324. {
  325. void *ret = kmem_cache_alloc(s, flags);
  326. kasan_kmalloc(s, ret, size);
  327. return ret;
  328. }
  329. static __always_inline void *
  330. kmem_cache_alloc_node_trace(struct kmem_cache *s,
  331. gfp_t gfpflags,
  332. int node, size_t size)
  333. {
  334. void *ret = kmem_cache_alloc_node(s, gfpflags, node);
  335. kasan_kmalloc(s, ret, size);
  336. return ret;
  337. }
  338. #endif /* CONFIG_TRACING */
  339. extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment;
  340. #ifdef CONFIG_TRACING
  341. extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment;
  342. #else
  343. static __always_inline void *
  344. kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  345. {
  346. return kmalloc_order(size, flags, order);
  347. }
  348. #endif
  349. static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
  350. {
  351. unsigned int order = get_order(size);
  352. return kmalloc_order_trace(size, flags, order);
  353. }
  354. /**
  355. * kmalloc - allocate memory
  356. * @size: how many bytes of memory are required.
  357. * @flags: the type of memory to allocate.
  358. *
  359. * kmalloc is the normal method of allocating memory
  360. * for objects smaller than page size in the kernel.
  361. *
  362. * The @flags argument may be one of:
  363. *
  364. * %GFP_USER - Allocate memory on behalf of user. May sleep.
  365. *
  366. * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
  367. *
  368. * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools.
  369. * For example, use this inside interrupt handlers.
  370. *
  371. * %GFP_HIGHUSER - Allocate pages from high memory.
  372. *
  373. * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
  374. *
  375. * %GFP_NOFS - Do not make any fs calls while trying to get memory.
  376. *
  377. * %GFP_NOWAIT - Allocation will not sleep.
  378. *
  379. * %__GFP_THISNODE - Allocate node-local memory only.
  380. *
  381. * %GFP_DMA - Allocation suitable for DMA.
  382. * Should only be used for kmalloc() caches. Otherwise, use a
  383. * slab created with SLAB_DMA.
  384. *
  385. * Also it is possible to set different flags by OR'ing
  386. * in one or more of the following additional @flags:
  387. *
  388. * %__GFP_COLD - Request cache-cold pages instead of
  389. * trying to return cache-warm pages.
  390. *
  391. * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
  392. *
  393. * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
  394. * (think twice before using).
  395. *
  396. * %__GFP_NORETRY - If memory is not immediately available,
  397. * then give up at once.
  398. *
  399. * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
  400. *
  401. * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
  402. *
  403. * There are other flags available as well, but these are not intended
  404. * for general use, and so are not documented here. For a full list of
  405. * potential flags, always refer to linux/gfp.h.
  406. */
  407. static __always_inline void *kmalloc(size_t size, gfp_t flags)
  408. {
  409. if (__builtin_constant_p(size)) {
  410. if (size > KMALLOC_MAX_CACHE_SIZE)
  411. return kmalloc_large(size, flags);
  412. #ifndef CONFIG_SLOB
  413. if (!(flags & GFP_DMA)) {
  414. int index = kmalloc_index(size);
  415. if (!index)
  416. return ZERO_SIZE_PTR;
  417. return kmem_cache_alloc_trace(kmalloc_caches[index],
  418. flags, size);
  419. }
  420. #endif
  421. }
  422. return __kmalloc(size, flags);
  423. }
  424. /*
  425. * Determine size used for the nth kmalloc cache.
  426. * return size or 0 if a kmalloc cache for that
  427. * size does not exist
  428. */
  429. static __always_inline int kmalloc_size(int n)
  430. {
  431. #ifndef CONFIG_SLOB
  432. if (n > 2)
  433. return 1 << n;
  434. if (n == 1 && KMALLOC_MIN_SIZE <= 32)
  435. return 96;
  436. if (n == 2 && KMALLOC_MIN_SIZE <= 64)
  437. return 192;
  438. #endif
  439. return 0;
  440. }
  441. static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
  442. {
  443. #ifndef CONFIG_SLOB
  444. if (__builtin_constant_p(size) &&
  445. size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) {
  446. int i = kmalloc_index(size);
  447. if (!i)
  448. return ZERO_SIZE_PTR;
  449. return kmem_cache_alloc_node_trace(kmalloc_caches[i],
  450. flags, node, size);
  451. }
  452. #endif
  453. return __kmalloc_node(size, flags, node);
  454. }
  455. struct memcg_cache_array {
  456. struct rcu_head rcu;
  457. struct kmem_cache *entries[0];
  458. };
  459. /*
  460. * This is the main placeholder for memcg-related information in kmem caches.
  461. * Both the root cache and the child caches will have it. For the root cache,
  462. * this will hold a dynamically allocated array large enough to hold
  463. * information about the currently limited memcgs in the system. To allow the
  464. * array to be accessed without taking any locks, on relocation we free the old
  465. * version only after a grace period.
  466. *
  467. * Child caches will hold extra metadata needed for its operation. Fields are:
  468. *
  469. * @memcg: pointer to the memcg this cache belongs to
  470. * @root_cache: pointer to the global, root cache, this cache was derived from
  471. *
  472. * Both root and child caches of the same kind are linked into a list chained
  473. * through @list.
  474. */
  475. struct memcg_cache_params {
  476. bool is_root_cache;
  477. struct list_head list;
  478. union {
  479. struct memcg_cache_array __rcu *memcg_caches;
  480. struct {
  481. struct mem_cgroup *memcg;
  482. struct kmem_cache *root_cache;
  483. };
  484. };
  485. };
  486. int memcg_update_all_caches(int num_memcgs);
  487. /**
  488. * kmalloc_array - allocate memory for an array.
  489. * @n: number of elements.
  490. * @size: element size.
  491. * @flags: the type of memory to allocate (see kmalloc).
  492. */
  493. static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
  494. {
  495. if (size != 0 && n > SIZE_MAX / size)
  496. return NULL;
  497. return __kmalloc(n * size, flags);
  498. }
  499. /**
  500. * kcalloc - allocate memory for an array. The memory is set to zero.
  501. * @n: number of elements.
  502. * @size: element size.
  503. * @flags: the type of memory to allocate (see kmalloc).
  504. */
  505. static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
  506. {
  507. return kmalloc_array(n, size, flags | __GFP_ZERO);
  508. }
  509. /*
  510. * kmalloc_track_caller is a special version of kmalloc that records the
  511. * calling function of the routine calling it for slab leak tracking instead
  512. * of just the calling function (confusing, eh?).
  513. * It's useful when the call to kmalloc comes from a widely-used standard
  514. * allocator where we care about the real place the memory allocation
  515. * request comes from.
  516. */
  517. extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
  518. #define kmalloc_track_caller(size, flags) \
  519. __kmalloc_track_caller(size, flags, _RET_IP_)
  520. #ifdef CONFIG_NUMA
  521. extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
  522. #define kmalloc_node_track_caller(size, flags, node) \
  523. __kmalloc_node_track_caller(size, flags, node, \
  524. _RET_IP_)
  525. #else /* CONFIG_NUMA */
  526. #define kmalloc_node_track_caller(size, flags, node) \
  527. kmalloc_track_caller(size, flags)
  528. #endif /* CONFIG_NUMA */
  529. /*
  530. * Shortcuts
  531. */
  532. static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
  533. {
  534. return kmem_cache_alloc(k, flags | __GFP_ZERO);
  535. }
  536. /**
  537. * kzalloc - allocate memory. The memory is set to zero.
  538. * @size: how many bytes of memory are required.
  539. * @flags: the type of memory to allocate (see kmalloc).
  540. */
  541. static inline void *kzalloc(size_t size, gfp_t flags)
  542. {
  543. return kmalloc(size, flags | __GFP_ZERO);
  544. }
  545. /**
  546. * kzalloc_node - allocate zeroed memory from a particular memory node.
  547. * @size: how many bytes of memory are required.
  548. * @flags: the type of memory to allocate (see kmalloc).
  549. * @node: memory node from which to allocate
  550. */
  551. static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
  552. {
  553. return kmalloc_node(size, flags | __GFP_ZERO, node);
  554. }
  555. unsigned int kmem_cache_size(struct kmem_cache *s);
  556. void __init kmem_cache_init_late(void);
  557. #endif /* _LINUX_SLAB_H */