pci.c 64 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535
  1. /*
  2. * NVM Express device driver
  3. * Copyright (c) 2011-2014, Intel Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. */
  14. #include <linux/aer.h>
  15. #include <linux/bitops.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/blk-mq.h>
  18. #include <linux/blk-mq-pci.h>
  19. #include <linux/dmi.h>
  20. #include <linux/init.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/io.h>
  23. #include <linux/mm.h>
  24. #include <linux/module.h>
  25. #include <linux/mutex.h>
  26. #include <linux/pci.h>
  27. #include <linux/poison.h>
  28. #include <linux/t10-pi.h>
  29. #include <linux/timer.h>
  30. #include <linux/types.h>
  31. #include <linux/io-64-nonatomic-lo-hi.h>
  32. #include <asm/unaligned.h>
  33. #include <linux/sed-opal.h>
  34. #include "nvme.h"
  35. #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
  36. #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
  37. /*
  38. * We handle AEN commands ourselves and don't even let the
  39. * block layer know about them.
  40. */
  41. #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
  42. static int use_threaded_interrupts;
  43. module_param(use_threaded_interrupts, int, 0);
  44. static bool use_cmb_sqes = true;
  45. module_param(use_cmb_sqes, bool, 0644);
  46. MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
  47. static unsigned int max_host_mem_size_mb = 128;
  48. module_param(max_host_mem_size_mb, uint, 0444);
  49. MODULE_PARM_DESC(max_host_mem_size_mb,
  50. "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
  51. static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
  52. static const struct kernel_param_ops io_queue_depth_ops = {
  53. .set = io_queue_depth_set,
  54. .get = param_get_int,
  55. };
  56. static int io_queue_depth = 1024;
  57. module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
  58. MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
  59. struct nvme_dev;
  60. struct nvme_queue;
  61. static void nvme_process_cq(struct nvme_queue *nvmeq);
  62. static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
  63. /*
  64. * Represents an NVM Express device. Each nvme_dev is a PCI function.
  65. */
  66. struct nvme_dev {
  67. struct nvme_queue **queues;
  68. struct blk_mq_tag_set tagset;
  69. struct blk_mq_tag_set admin_tagset;
  70. u32 __iomem *dbs;
  71. struct device *dev;
  72. struct dma_pool *prp_page_pool;
  73. struct dma_pool *prp_small_pool;
  74. unsigned online_queues;
  75. unsigned max_qid;
  76. int q_depth;
  77. u32 db_stride;
  78. void __iomem *bar;
  79. unsigned long bar_mapped_size;
  80. struct work_struct remove_work;
  81. struct mutex shutdown_lock;
  82. bool subsystem;
  83. void __iomem *cmb;
  84. dma_addr_t cmb_dma_addr;
  85. u64 cmb_size;
  86. u32 cmbsz;
  87. u32 cmbloc;
  88. struct nvme_ctrl ctrl;
  89. struct completion ioq_wait;
  90. /* shadow doorbell buffer support: */
  91. u32 *dbbuf_dbs;
  92. dma_addr_t dbbuf_dbs_dma_addr;
  93. u32 *dbbuf_eis;
  94. dma_addr_t dbbuf_eis_dma_addr;
  95. /* host memory buffer support: */
  96. u64 host_mem_size;
  97. u32 nr_host_mem_descs;
  98. dma_addr_t host_mem_descs_dma;
  99. struct nvme_host_mem_buf_desc *host_mem_descs;
  100. void **host_mem_desc_bufs;
  101. };
  102. static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
  103. {
  104. int n = 0, ret;
  105. ret = kstrtoint(val, 10, &n);
  106. if (ret != 0 || n < 2)
  107. return -EINVAL;
  108. return param_set_int(val, kp);
  109. }
  110. static inline unsigned int sq_idx(unsigned int qid, u32 stride)
  111. {
  112. return qid * 2 * stride;
  113. }
  114. static inline unsigned int cq_idx(unsigned int qid, u32 stride)
  115. {
  116. return (qid * 2 + 1) * stride;
  117. }
  118. static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
  119. {
  120. return container_of(ctrl, struct nvme_dev, ctrl);
  121. }
  122. /*
  123. * An NVM Express queue. Each device has at least two (one for admin
  124. * commands and one for I/O commands).
  125. */
  126. struct nvme_queue {
  127. struct device *q_dmadev;
  128. struct nvme_dev *dev;
  129. spinlock_t q_lock;
  130. struct nvme_command *sq_cmds;
  131. struct nvme_command __iomem *sq_cmds_io;
  132. volatile struct nvme_completion *cqes;
  133. struct blk_mq_tags **tags;
  134. dma_addr_t sq_dma_addr;
  135. dma_addr_t cq_dma_addr;
  136. u32 __iomem *q_db;
  137. u16 q_depth;
  138. s16 cq_vector;
  139. u16 sq_tail;
  140. u16 cq_head;
  141. u16 qid;
  142. u8 cq_phase;
  143. u8 cqe_seen;
  144. u32 *dbbuf_sq_db;
  145. u32 *dbbuf_cq_db;
  146. u32 *dbbuf_sq_ei;
  147. u32 *dbbuf_cq_ei;
  148. };
  149. /*
  150. * The nvme_iod describes the data in an I/O, including the list of PRP
  151. * entries. You can't see it in this data structure because C doesn't let
  152. * me express that. Use nvme_init_iod to ensure there's enough space
  153. * allocated to store the PRP list.
  154. */
  155. struct nvme_iod {
  156. struct nvme_request req;
  157. struct nvme_queue *nvmeq;
  158. int aborted;
  159. int npages; /* In the PRP list. 0 means small pool in use */
  160. int nents; /* Used in scatterlist */
  161. int length; /* Of data, in bytes */
  162. dma_addr_t first_dma;
  163. struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
  164. struct scatterlist *sg;
  165. struct scatterlist inline_sg[0];
  166. };
  167. /*
  168. * Check we didin't inadvertently grow the command struct
  169. */
  170. static inline void _nvme_check_size(void)
  171. {
  172. BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
  173. BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
  174. BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
  175. BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
  176. BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
  177. BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
  178. BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
  179. BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
  180. BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
  181. BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
  182. BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
  183. BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
  184. BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
  185. }
  186. static inline unsigned int nvme_dbbuf_size(u32 stride)
  187. {
  188. return ((num_possible_cpus() + 1) * 8 * stride);
  189. }
  190. static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
  191. {
  192. unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
  193. if (dev->dbbuf_dbs)
  194. return 0;
  195. dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
  196. &dev->dbbuf_dbs_dma_addr,
  197. GFP_KERNEL);
  198. if (!dev->dbbuf_dbs)
  199. return -ENOMEM;
  200. dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
  201. &dev->dbbuf_eis_dma_addr,
  202. GFP_KERNEL);
  203. if (!dev->dbbuf_eis) {
  204. dma_free_coherent(dev->dev, mem_size,
  205. dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
  206. dev->dbbuf_dbs = NULL;
  207. return -ENOMEM;
  208. }
  209. return 0;
  210. }
  211. static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
  212. {
  213. unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
  214. if (dev->dbbuf_dbs) {
  215. dma_free_coherent(dev->dev, mem_size,
  216. dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
  217. dev->dbbuf_dbs = NULL;
  218. }
  219. if (dev->dbbuf_eis) {
  220. dma_free_coherent(dev->dev, mem_size,
  221. dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
  222. dev->dbbuf_eis = NULL;
  223. }
  224. }
  225. static void nvme_dbbuf_init(struct nvme_dev *dev,
  226. struct nvme_queue *nvmeq, int qid)
  227. {
  228. if (!dev->dbbuf_dbs || !qid)
  229. return;
  230. nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
  231. nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
  232. nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
  233. nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
  234. }
  235. static void nvme_dbbuf_set(struct nvme_dev *dev)
  236. {
  237. struct nvme_command c;
  238. if (!dev->dbbuf_dbs)
  239. return;
  240. memset(&c, 0, sizeof(c));
  241. c.dbbuf.opcode = nvme_admin_dbbuf;
  242. c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
  243. c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
  244. if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
  245. dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
  246. /* Free memory and continue on */
  247. nvme_dbbuf_dma_free(dev);
  248. }
  249. }
  250. static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
  251. {
  252. return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
  253. }
  254. /* Update dbbuf and return true if an MMIO is required */
  255. static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
  256. volatile u32 *dbbuf_ei)
  257. {
  258. if (dbbuf_db) {
  259. u16 old_value;
  260. /*
  261. * Ensure that the queue is written before updating
  262. * the doorbell in memory
  263. */
  264. wmb();
  265. old_value = *dbbuf_db;
  266. *dbbuf_db = value;
  267. if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
  268. return false;
  269. }
  270. return true;
  271. }
  272. /*
  273. * Max size of iod being embedded in the request payload
  274. */
  275. #define NVME_INT_PAGES 2
  276. #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
  277. /*
  278. * Will slightly overestimate the number of pages needed. This is OK
  279. * as it only leads to a small amount of wasted memory for the lifetime of
  280. * the I/O.
  281. */
  282. static int nvme_npages(unsigned size, struct nvme_dev *dev)
  283. {
  284. unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
  285. dev->ctrl.page_size);
  286. return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
  287. }
  288. static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
  289. unsigned int size, unsigned int nseg)
  290. {
  291. return sizeof(__le64 *) * nvme_npages(size, dev) +
  292. sizeof(struct scatterlist) * nseg;
  293. }
  294. static unsigned int nvme_cmd_size(struct nvme_dev *dev)
  295. {
  296. return sizeof(struct nvme_iod) +
  297. nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
  298. }
  299. static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  300. unsigned int hctx_idx)
  301. {
  302. struct nvme_dev *dev = data;
  303. struct nvme_queue *nvmeq = dev->queues[0];
  304. WARN_ON(hctx_idx != 0);
  305. WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
  306. WARN_ON(nvmeq->tags);
  307. hctx->driver_data = nvmeq;
  308. nvmeq->tags = &dev->admin_tagset.tags[0];
  309. return 0;
  310. }
  311. static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
  312. {
  313. struct nvme_queue *nvmeq = hctx->driver_data;
  314. nvmeq->tags = NULL;
  315. }
  316. static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  317. unsigned int hctx_idx)
  318. {
  319. struct nvme_dev *dev = data;
  320. struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
  321. if (!nvmeq->tags)
  322. nvmeq->tags = &dev->tagset.tags[hctx_idx];
  323. WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
  324. hctx->driver_data = nvmeq;
  325. return 0;
  326. }
  327. static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
  328. unsigned int hctx_idx, unsigned int numa_node)
  329. {
  330. struct nvme_dev *dev = set->driver_data;
  331. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  332. int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
  333. struct nvme_queue *nvmeq = dev->queues[queue_idx];
  334. BUG_ON(!nvmeq);
  335. iod->nvmeq = nvmeq;
  336. return 0;
  337. }
  338. static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
  339. {
  340. struct nvme_dev *dev = set->driver_data;
  341. return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
  342. }
  343. /**
  344. * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
  345. * @nvmeq: The queue to use
  346. * @cmd: The command to send
  347. *
  348. * Safe to use from interrupt context
  349. */
  350. static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
  351. struct nvme_command *cmd)
  352. {
  353. u16 tail = nvmeq->sq_tail;
  354. if (nvmeq->sq_cmds_io)
  355. memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
  356. else
  357. memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
  358. if (++tail == nvmeq->q_depth)
  359. tail = 0;
  360. if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
  361. nvmeq->dbbuf_sq_ei))
  362. writel(tail, nvmeq->q_db);
  363. nvmeq->sq_tail = tail;
  364. }
  365. static __le64 **iod_list(struct request *req)
  366. {
  367. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  368. return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
  369. }
  370. static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
  371. {
  372. struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
  373. int nseg = blk_rq_nr_phys_segments(rq);
  374. unsigned int size = blk_rq_payload_bytes(rq);
  375. if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
  376. iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
  377. if (!iod->sg)
  378. return BLK_STS_RESOURCE;
  379. } else {
  380. iod->sg = iod->inline_sg;
  381. }
  382. iod->aborted = 0;
  383. iod->npages = -1;
  384. iod->nents = 0;
  385. iod->length = size;
  386. return BLK_STS_OK;
  387. }
  388. static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
  389. {
  390. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  391. const int last_prp = dev->ctrl.page_size / 8 - 1;
  392. int i;
  393. __le64 **list = iod_list(req);
  394. dma_addr_t prp_dma = iod->first_dma;
  395. if (iod->npages == 0)
  396. dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
  397. for (i = 0; i < iod->npages; i++) {
  398. __le64 *prp_list = list[i];
  399. dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
  400. dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
  401. prp_dma = next_prp_dma;
  402. }
  403. if (iod->sg != iod->inline_sg)
  404. kfree(iod->sg);
  405. }
  406. #ifdef CONFIG_BLK_DEV_INTEGRITY
  407. static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
  408. {
  409. if (be32_to_cpu(pi->ref_tag) == v)
  410. pi->ref_tag = cpu_to_be32(p);
  411. }
  412. static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
  413. {
  414. if (be32_to_cpu(pi->ref_tag) == p)
  415. pi->ref_tag = cpu_to_be32(v);
  416. }
  417. /**
  418. * nvme_dif_remap - remaps ref tags to bip seed and physical lba
  419. *
  420. * The virtual start sector is the one that was originally submitted by the
  421. * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
  422. * start sector may be different. Remap protection information to match the
  423. * physical LBA on writes, and back to the original seed on reads.
  424. *
  425. * Type 0 and 3 do not have a ref tag, so no remapping required.
  426. */
  427. static void nvme_dif_remap(struct request *req,
  428. void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
  429. {
  430. struct nvme_ns *ns = req->rq_disk->private_data;
  431. struct bio_integrity_payload *bip;
  432. struct t10_pi_tuple *pi;
  433. void *p, *pmap;
  434. u32 i, nlb, ts, phys, virt;
  435. if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
  436. return;
  437. bip = bio_integrity(req->bio);
  438. if (!bip)
  439. return;
  440. pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
  441. p = pmap;
  442. virt = bip_get_seed(bip);
  443. phys = nvme_block_nr(ns, blk_rq_pos(req));
  444. nlb = (blk_rq_bytes(req) >> ns->lba_shift);
  445. ts = ns->disk->queue->integrity.tuple_size;
  446. for (i = 0; i < nlb; i++, virt++, phys++) {
  447. pi = (struct t10_pi_tuple *)p;
  448. dif_swap(phys, virt, pi);
  449. p += ts;
  450. }
  451. kunmap_atomic(pmap);
  452. }
  453. #else /* CONFIG_BLK_DEV_INTEGRITY */
  454. static void nvme_dif_remap(struct request *req,
  455. void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
  456. {
  457. }
  458. static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
  459. {
  460. }
  461. static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
  462. {
  463. }
  464. #endif
  465. static blk_status_t nvme_setup_prps(struct nvme_dev *dev, struct request *req)
  466. {
  467. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  468. struct dma_pool *pool;
  469. int length = blk_rq_payload_bytes(req);
  470. struct scatterlist *sg = iod->sg;
  471. int dma_len = sg_dma_len(sg);
  472. u64 dma_addr = sg_dma_address(sg);
  473. u32 page_size = dev->ctrl.page_size;
  474. int offset = dma_addr & (page_size - 1);
  475. __le64 *prp_list;
  476. __le64 **list = iod_list(req);
  477. dma_addr_t prp_dma;
  478. int nprps, i;
  479. length -= (page_size - offset);
  480. if (length <= 0) {
  481. iod->first_dma = 0;
  482. return BLK_STS_OK;
  483. }
  484. dma_len -= (page_size - offset);
  485. if (dma_len) {
  486. dma_addr += (page_size - offset);
  487. } else {
  488. sg = sg_next(sg);
  489. dma_addr = sg_dma_address(sg);
  490. dma_len = sg_dma_len(sg);
  491. }
  492. if (length <= page_size) {
  493. iod->first_dma = dma_addr;
  494. return BLK_STS_OK;
  495. }
  496. nprps = DIV_ROUND_UP(length, page_size);
  497. if (nprps <= (256 / 8)) {
  498. pool = dev->prp_small_pool;
  499. iod->npages = 0;
  500. } else {
  501. pool = dev->prp_page_pool;
  502. iod->npages = 1;
  503. }
  504. prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
  505. if (!prp_list) {
  506. iod->first_dma = dma_addr;
  507. iod->npages = -1;
  508. return BLK_STS_RESOURCE;
  509. }
  510. list[0] = prp_list;
  511. iod->first_dma = prp_dma;
  512. i = 0;
  513. for (;;) {
  514. if (i == page_size >> 3) {
  515. __le64 *old_prp_list = prp_list;
  516. prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
  517. if (!prp_list)
  518. return BLK_STS_RESOURCE;
  519. list[iod->npages++] = prp_list;
  520. prp_list[0] = old_prp_list[i - 1];
  521. old_prp_list[i - 1] = cpu_to_le64(prp_dma);
  522. i = 1;
  523. }
  524. prp_list[i++] = cpu_to_le64(dma_addr);
  525. dma_len -= page_size;
  526. dma_addr += page_size;
  527. length -= page_size;
  528. if (length <= 0)
  529. break;
  530. if (dma_len > 0)
  531. continue;
  532. if (unlikely(dma_len < 0))
  533. goto bad_sgl;
  534. sg = sg_next(sg);
  535. dma_addr = sg_dma_address(sg);
  536. dma_len = sg_dma_len(sg);
  537. }
  538. return BLK_STS_OK;
  539. bad_sgl:
  540. if (WARN_ONCE(1, "Invalid SGL for payload:%d nents:%d\n",
  541. blk_rq_payload_bytes(req), iod->nents)) {
  542. for_each_sg(iod->sg, sg, iod->nents, i) {
  543. dma_addr_t phys = sg_phys(sg);
  544. pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
  545. "dma_address:%pad dma_length:%d\n", i, &phys,
  546. sg->offset, sg->length,
  547. &sg_dma_address(sg),
  548. sg_dma_len(sg));
  549. }
  550. }
  551. return BLK_STS_IOERR;
  552. }
  553. static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
  554. struct nvme_command *cmnd)
  555. {
  556. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  557. struct request_queue *q = req->q;
  558. enum dma_data_direction dma_dir = rq_data_dir(req) ?
  559. DMA_TO_DEVICE : DMA_FROM_DEVICE;
  560. blk_status_t ret = BLK_STS_IOERR;
  561. sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
  562. iod->nents = blk_rq_map_sg(q, req, iod->sg);
  563. if (!iod->nents)
  564. goto out;
  565. ret = BLK_STS_RESOURCE;
  566. if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
  567. DMA_ATTR_NO_WARN))
  568. goto out;
  569. ret = nvme_setup_prps(dev, req);
  570. if (ret != BLK_STS_OK)
  571. goto out_unmap;
  572. ret = BLK_STS_IOERR;
  573. if (blk_integrity_rq(req)) {
  574. if (blk_rq_count_integrity_sg(q, req->bio) != 1)
  575. goto out_unmap;
  576. sg_init_table(&iod->meta_sg, 1);
  577. if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
  578. goto out_unmap;
  579. if (req_op(req) == REQ_OP_WRITE)
  580. nvme_dif_remap(req, nvme_dif_prep);
  581. if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
  582. goto out_unmap;
  583. }
  584. cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
  585. cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
  586. if (blk_integrity_rq(req))
  587. cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
  588. return BLK_STS_OK;
  589. out_unmap:
  590. dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
  591. out:
  592. return ret;
  593. }
  594. static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
  595. {
  596. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  597. enum dma_data_direction dma_dir = rq_data_dir(req) ?
  598. DMA_TO_DEVICE : DMA_FROM_DEVICE;
  599. if (iod->nents) {
  600. dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
  601. if (blk_integrity_rq(req)) {
  602. if (req_op(req) == REQ_OP_READ)
  603. nvme_dif_remap(req, nvme_dif_complete);
  604. dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
  605. }
  606. }
  607. nvme_cleanup_cmd(req);
  608. nvme_free_iod(dev, req);
  609. }
  610. /*
  611. * NOTE: ns is NULL when called on the admin queue.
  612. */
  613. static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
  614. const struct blk_mq_queue_data *bd)
  615. {
  616. struct nvme_ns *ns = hctx->queue->queuedata;
  617. struct nvme_queue *nvmeq = hctx->driver_data;
  618. struct nvme_dev *dev = nvmeq->dev;
  619. struct request *req = bd->rq;
  620. struct nvme_command cmnd;
  621. blk_status_t ret;
  622. ret = nvme_setup_cmd(ns, req, &cmnd);
  623. if (ret)
  624. return ret;
  625. ret = nvme_init_iod(req, dev);
  626. if (ret)
  627. goto out_free_cmd;
  628. if (blk_rq_nr_phys_segments(req)) {
  629. ret = nvme_map_data(dev, req, &cmnd);
  630. if (ret)
  631. goto out_cleanup_iod;
  632. }
  633. blk_mq_start_request(req);
  634. spin_lock_irq(&nvmeq->q_lock);
  635. if (unlikely(nvmeq->cq_vector < 0)) {
  636. ret = BLK_STS_IOERR;
  637. spin_unlock_irq(&nvmeq->q_lock);
  638. goto out_cleanup_iod;
  639. }
  640. __nvme_submit_cmd(nvmeq, &cmnd);
  641. nvme_process_cq(nvmeq);
  642. spin_unlock_irq(&nvmeq->q_lock);
  643. return BLK_STS_OK;
  644. out_cleanup_iod:
  645. nvme_free_iod(dev, req);
  646. out_free_cmd:
  647. nvme_cleanup_cmd(req);
  648. return ret;
  649. }
  650. static void nvme_pci_complete_rq(struct request *req)
  651. {
  652. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  653. nvme_unmap_data(iod->nvmeq->dev, req);
  654. nvme_complete_rq(req);
  655. }
  656. /* We read the CQE phase first to check if the rest of the entry is valid */
  657. static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
  658. u16 phase)
  659. {
  660. return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
  661. }
  662. static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
  663. {
  664. u16 head = nvmeq->cq_head;
  665. if (likely(nvmeq->cq_vector >= 0)) {
  666. if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
  667. nvmeq->dbbuf_cq_ei))
  668. writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
  669. }
  670. }
  671. static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
  672. struct nvme_completion *cqe)
  673. {
  674. struct request *req;
  675. if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
  676. dev_warn(nvmeq->dev->ctrl.device,
  677. "invalid id %d completed on queue %d\n",
  678. cqe->command_id, le16_to_cpu(cqe->sq_id));
  679. return;
  680. }
  681. /*
  682. * AEN requests are special as they don't time out and can
  683. * survive any kind of queue freeze and often don't respond to
  684. * aborts. We don't even bother to allocate a struct request
  685. * for them but rather special case them here.
  686. */
  687. if (unlikely(nvmeq->qid == 0 &&
  688. cqe->command_id >= NVME_AQ_BLKMQ_DEPTH)) {
  689. nvme_complete_async_event(&nvmeq->dev->ctrl,
  690. cqe->status, &cqe->result);
  691. return;
  692. }
  693. nvmeq->cqe_seen = 1;
  694. req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
  695. nvme_end_request(req, cqe->status, cqe->result);
  696. }
  697. static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
  698. struct nvme_completion *cqe)
  699. {
  700. if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
  701. *cqe = nvmeq->cqes[nvmeq->cq_head];
  702. if (++nvmeq->cq_head == nvmeq->q_depth) {
  703. nvmeq->cq_head = 0;
  704. nvmeq->cq_phase = !nvmeq->cq_phase;
  705. }
  706. return true;
  707. }
  708. return false;
  709. }
  710. static void nvme_process_cq(struct nvme_queue *nvmeq)
  711. {
  712. struct nvme_completion cqe;
  713. int consumed = 0;
  714. while (nvme_read_cqe(nvmeq, &cqe)) {
  715. nvme_handle_cqe(nvmeq, &cqe);
  716. consumed++;
  717. }
  718. if (consumed)
  719. nvme_ring_cq_doorbell(nvmeq);
  720. }
  721. static irqreturn_t nvme_irq(int irq, void *data)
  722. {
  723. irqreturn_t result;
  724. struct nvme_queue *nvmeq = data;
  725. spin_lock(&nvmeq->q_lock);
  726. nvme_process_cq(nvmeq);
  727. result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
  728. nvmeq->cqe_seen = 0;
  729. spin_unlock(&nvmeq->q_lock);
  730. return result;
  731. }
  732. static irqreturn_t nvme_irq_check(int irq, void *data)
  733. {
  734. struct nvme_queue *nvmeq = data;
  735. if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
  736. return IRQ_WAKE_THREAD;
  737. return IRQ_NONE;
  738. }
  739. static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
  740. {
  741. struct nvme_completion cqe;
  742. int found = 0, consumed = 0;
  743. if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
  744. return 0;
  745. spin_lock_irq(&nvmeq->q_lock);
  746. while (nvme_read_cqe(nvmeq, &cqe)) {
  747. nvme_handle_cqe(nvmeq, &cqe);
  748. consumed++;
  749. if (tag == cqe.command_id) {
  750. found = 1;
  751. break;
  752. }
  753. }
  754. if (consumed)
  755. nvme_ring_cq_doorbell(nvmeq);
  756. spin_unlock_irq(&nvmeq->q_lock);
  757. return found;
  758. }
  759. static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
  760. {
  761. struct nvme_queue *nvmeq = hctx->driver_data;
  762. return __nvme_poll(nvmeq, tag);
  763. }
  764. static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
  765. {
  766. struct nvme_dev *dev = to_nvme_dev(ctrl);
  767. struct nvme_queue *nvmeq = dev->queues[0];
  768. struct nvme_command c;
  769. memset(&c, 0, sizeof(c));
  770. c.common.opcode = nvme_admin_async_event;
  771. c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
  772. spin_lock_irq(&nvmeq->q_lock);
  773. __nvme_submit_cmd(nvmeq, &c);
  774. spin_unlock_irq(&nvmeq->q_lock);
  775. }
  776. static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
  777. {
  778. struct nvme_command c;
  779. memset(&c, 0, sizeof(c));
  780. c.delete_queue.opcode = opcode;
  781. c.delete_queue.qid = cpu_to_le16(id);
  782. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  783. }
  784. static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
  785. struct nvme_queue *nvmeq)
  786. {
  787. struct nvme_command c;
  788. int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
  789. /*
  790. * Note: we (ab)use the fact the the prp fields survive if no data
  791. * is attached to the request.
  792. */
  793. memset(&c, 0, sizeof(c));
  794. c.create_cq.opcode = nvme_admin_create_cq;
  795. c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
  796. c.create_cq.cqid = cpu_to_le16(qid);
  797. c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  798. c.create_cq.cq_flags = cpu_to_le16(flags);
  799. c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
  800. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  801. }
  802. static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
  803. struct nvme_queue *nvmeq)
  804. {
  805. struct nvme_command c;
  806. int flags = NVME_QUEUE_PHYS_CONTIG;
  807. /*
  808. * Note: we (ab)use the fact the the prp fields survive if no data
  809. * is attached to the request.
  810. */
  811. memset(&c, 0, sizeof(c));
  812. c.create_sq.opcode = nvme_admin_create_sq;
  813. c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
  814. c.create_sq.sqid = cpu_to_le16(qid);
  815. c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  816. c.create_sq.sq_flags = cpu_to_le16(flags);
  817. c.create_sq.cqid = cpu_to_le16(qid);
  818. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  819. }
  820. static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
  821. {
  822. return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
  823. }
  824. static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
  825. {
  826. return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
  827. }
  828. static void abort_endio(struct request *req, blk_status_t error)
  829. {
  830. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  831. struct nvme_queue *nvmeq = iod->nvmeq;
  832. dev_warn(nvmeq->dev->ctrl.device,
  833. "Abort status: 0x%x", nvme_req(req)->status);
  834. atomic_inc(&nvmeq->dev->ctrl.abort_limit);
  835. blk_mq_free_request(req);
  836. }
  837. static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
  838. {
  839. /* If true, indicates loss of adapter communication, possibly by a
  840. * NVMe Subsystem reset.
  841. */
  842. bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
  843. /* If there is a reset ongoing, we shouldn't reset again. */
  844. if (dev->ctrl.state == NVME_CTRL_RESETTING)
  845. return false;
  846. /* We shouldn't reset unless the controller is on fatal error state
  847. * _or_ if we lost the communication with it.
  848. */
  849. if (!(csts & NVME_CSTS_CFS) && !nssro)
  850. return false;
  851. /* If PCI error recovery process is happening, we cannot reset or
  852. * the recovery mechanism will surely fail.
  853. */
  854. if (pci_channel_offline(to_pci_dev(dev->dev)))
  855. return false;
  856. return true;
  857. }
  858. static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
  859. {
  860. /* Read a config register to help see what died. */
  861. u16 pci_status;
  862. int result;
  863. result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
  864. &pci_status);
  865. if (result == PCIBIOS_SUCCESSFUL)
  866. dev_warn(dev->ctrl.device,
  867. "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
  868. csts, pci_status);
  869. else
  870. dev_warn(dev->ctrl.device,
  871. "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
  872. csts, result);
  873. }
  874. static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
  875. {
  876. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  877. struct nvme_queue *nvmeq = iod->nvmeq;
  878. struct nvme_dev *dev = nvmeq->dev;
  879. struct request *abort_req;
  880. struct nvme_command cmd;
  881. u32 csts = readl(dev->bar + NVME_REG_CSTS);
  882. /*
  883. * Reset immediately if the controller is failed
  884. */
  885. if (nvme_should_reset(dev, csts)) {
  886. nvme_warn_reset(dev, csts);
  887. nvme_dev_disable(dev, false);
  888. nvme_reset_ctrl(&dev->ctrl);
  889. return BLK_EH_HANDLED;
  890. }
  891. /*
  892. * Did we miss an interrupt?
  893. */
  894. if (__nvme_poll(nvmeq, req->tag)) {
  895. dev_warn(dev->ctrl.device,
  896. "I/O %d QID %d timeout, completion polled\n",
  897. req->tag, nvmeq->qid);
  898. return BLK_EH_HANDLED;
  899. }
  900. /*
  901. * Shutdown immediately if controller times out while starting. The
  902. * reset work will see the pci device disabled when it gets the forced
  903. * cancellation error. All outstanding requests are completed on
  904. * shutdown, so we return BLK_EH_HANDLED.
  905. */
  906. if (dev->ctrl.state == NVME_CTRL_RESETTING) {
  907. dev_warn(dev->ctrl.device,
  908. "I/O %d QID %d timeout, disable controller\n",
  909. req->tag, nvmeq->qid);
  910. nvme_dev_disable(dev, false);
  911. nvme_req(req)->flags |= NVME_REQ_CANCELLED;
  912. return BLK_EH_HANDLED;
  913. }
  914. /*
  915. * Shutdown the controller immediately and schedule a reset if the
  916. * command was already aborted once before and still hasn't been
  917. * returned to the driver, or if this is the admin queue.
  918. */
  919. if (!nvmeq->qid || iod->aborted) {
  920. dev_warn(dev->ctrl.device,
  921. "I/O %d QID %d timeout, reset controller\n",
  922. req->tag, nvmeq->qid);
  923. nvme_dev_disable(dev, false);
  924. nvme_reset_ctrl(&dev->ctrl);
  925. /*
  926. * Mark the request as handled, since the inline shutdown
  927. * forces all outstanding requests to complete.
  928. */
  929. nvme_req(req)->flags |= NVME_REQ_CANCELLED;
  930. return BLK_EH_HANDLED;
  931. }
  932. if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
  933. atomic_inc(&dev->ctrl.abort_limit);
  934. return BLK_EH_RESET_TIMER;
  935. }
  936. iod->aborted = 1;
  937. memset(&cmd, 0, sizeof(cmd));
  938. cmd.abort.opcode = nvme_admin_abort_cmd;
  939. cmd.abort.cid = req->tag;
  940. cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
  941. dev_warn(nvmeq->dev->ctrl.device,
  942. "I/O %d QID %d timeout, aborting\n",
  943. req->tag, nvmeq->qid);
  944. abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
  945. BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
  946. if (IS_ERR(abort_req)) {
  947. atomic_inc(&dev->ctrl.abort_limit);
  948. return BLK_EH_RESET_TIMER;
  949. }
  950. abort_req->timeout = ADMIN_TIMEOUT;
  951. abort_req->end_io_data = NULL;
  952. blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
  953. /*
  954. * The aborted req will be completed on receiving the abort req.
  955. * We enable the timer again. If hit twice, it'll cause a device reset,
  956. * as the device then is in a faulty state.
  957. */
  958. return BLK_EH_RESET_TIMER;
  959. }
  960. static void nvme_free_queue(struct nvme_queue *nvmeq)
  961. {
  962. dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
  963. (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
  964. if (nvmeq->sq_cmds)
  965. dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
  966. nvmeq->sq_cmds, nvmeq->sq_dma_addr);
  967. kfree(nvmeq);
  968. }
  969. static void nvme_free_queues(struct nvme_dev *dev, int lowest)
  970. {
  971. int i;
  972. for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
  973. struct nvme_queue *nvmeq = dev->queues[i];
  974. dev->ctrl.queue_count--;
  975. dev->queues[i] = NULL;
  976. nvme_free_queue(nvmeq);
  977. }
  978. }
  979. /**
  980. * nvme_suspend_queue - put queue into suspended state
  981. * @nvmeq - queue to suspend
  982. */
  983. static int nvme_suspend_queue(struct nvme_queue *nvmeq)
  984. {
  985. int vector;
  986. spin_lock_irq(&nvmeq->q_lock);
  987. if (nvmeq->cq_vector == -1) {
  988. spin_unlock_irq(&nvmeq->q_lock);
  989. return 1;
  990. }
  991. vector = nvmeq->cq_vector;
  992. nvmeq->dev->online_queues--;
  993. nvmeq->cq_vector = -1;
  994. spin_unlock_irq(&nvmeq->q_lock);
  995. if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
  996. blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
  997. pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
  998. return 0;
  999. }
  1000. static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
  1001. {
  1002. struct nvme_queue *nvmeq = dev->queues[0];
  1003. if (!nvmeq)
  1004. return;
  1005. if (nvme_suspend_queue(nvmeq))
  1006. return;
  1007. if (shutdown)
  1008. nvme_shutdown_ctrl(&dev->ctrl);
  1009. else
  1010. nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
  1011. spin_lock_irq(&nvmeq->q_lock);
  1012. nvme_process_cq(nvmeq);
  1013. spin_unlock_irq(&nvmeq->q_lock);
  1014. }
  1015. static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
  1016. int entry_size)
  1017. {
  1018. int q_depth = dev->q_depth;
  1019. unsigned q_size_aligned = roundup(q_depth * entry_size,
  1020. dev->ctrl.page_size);
  1021. if (q_size_aligned * nr_io_queues > dev->cmb_size) {
  1022. u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
  1023. mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
  1024. q_depth = div_u64(mem_per_q, entry_size);
  1025. /*
  1026. * Ensure the reduced q_depth is above some threshold where it
  1027. * would be better to map queues in system memory with the
  1028. * original depth
  1029. */
  1030. if (q_depth < 64)
  1031. return -ENOMEM;
  1032. }
  1033. return q_depth;
  1034. }
  1035. static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
  1036. int qid, int depth)
  1037. {
  1038. if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
  1039. unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
  1040. dev->ctrl.page_size);
  1041. nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
  1042. nvmeq->sq_cmds_io = dev->cmb + offset;
  1043. } else {
  1044. nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
  1045. &nvmeq->sq_dma_addr, GFP_KERNEL);
  1046. if (!nvmeq->sq_cmds)
  1047. return -ENOMEM;
  1048. }
  1049. return 0;
  1050. }
  1051. static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
  1052. int depth, int node)
  1053. {
  1054. struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
  1055. node);
  1056. if (!nvmeq)
  1057. return NULL;
  1058. nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
  1059. &nvmeq->cq_dma_addr, GFP_KERNEL);
  1060. if (!nvmeq->cqes)
  1061. goto free_nvmeq;
  1062. if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
  1063. goto free_cqdma;
  1064. nvmeq->q_dmadev = dev->dev;
  1065. nvmeq->dev = dev;
  1066. spin_lock_init(&nvmeq->q_lock);
  1067. nvmeq->cq_head = 0;
  1068. nvmeq->cq_phase = 1;
  1069. nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
  1070. nvmeq->q_depth = depth;
  1071. nvmeq->qid = qid;
  1072. nvmeq->cq_vector = -1;
  1073. dev->queues[qid] = nvmeq;
  1074. dev->ctrl.queue_count++;
  1075. return nvmeq;
  1076. free_cqdma:
  1077. dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
  1078. nvmeq->cq_dma_addr);
  1079. free_nvmeq:
  1080. kfree(nvmeq);
  1081. return NULL;
  1082. }
  1083. static int queue_request_irq(struct nvme_queue *nvmeq)
  1084. {
  1085. struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
  1086. int nr = nvmeq->dev->ctrl.instance;
  1087. if (use_threaded_interrupts) {
  1088. return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
  1089. nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
  1090. } else {
  1091. return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
  1092. NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
  1093. }
  1094. }
  1095. static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
  1096. {
  1097. struct nvme_dev *dev = nvmeq->dev;
  1098. spin_lock_irq(&nvmeq->q_lock);
  1099. nvmeq->sq_tail = 0;
  1100. nvmeq->cq_head = 0;
  1101. nvmeq->cq_phase = 1;
  1102. nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
  1103. memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
  1104. nvme_dbbuf_init(dev, nvmeq, qid);
  1105. dev->online_queues++;
  1106. spin_unlock_irq(&nvmeq->q_lock);
  1107. }
  1108. static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
  1109. {
  1110. struct nvme_dev *dev = nvmeq->dev;
  1111. int result;
  1112. nvmeq->cq_vector = qid - 1;
  1113. result = adapter_alloc_cq(dev, qid, nvmeq);
  1114. if (result < 0)
  1115. return result;
  1116. result = adapter_alloc_sq(dev, qid, nvmeq);
  1117. if (result < 0)
  1118. goto release_cq;
  1119. result = queue_request_irq(nvmeq);
  1120. if (result < 0)
  1121. goto release_sq;
  1122. nvme_init_queue(nvmeq, qid);
  1123. return result;
  1124. release_sq:
  1125. adapter_delete_sq(dev, qid);
  1126. release_cq:
  1127. adapter_delete_cq(dev, qid);
  1128. return result;
  1129. }
  1130. static const struct blk_mq_ops nvme_mq_admin_ops = {
  1131. .queue_rq = nvme_queue_rq,
  1132. .complete = nvme_pci_complete_rq,
  1133. .init_hctx = nvme_admin_init_hctx,
  1134. .exit_hctx = nvme_admin_exit_hctx,
  1135. .init_request = nvme_init_request,
  1136. .timeout = nvme_timeout,
  1137. };
  1138. static const struct blk_mq_ops nvme_mq_ops = {
  1139. .queue_rq = nvme_queue_rq,
  1140. .complete = nvme_pci_complete_rq,
  1141. .init_hctx = nvme_init_hctx,
  1142. .init_request = nvme_init_request,
  1143. .map_queues = nvme_pci_map_queues,
  1144. .timeout = nvme_timeout,
  1145. .poll = nvme_poll,
  1146. };
  1147. static void nvme_dev_remove_admin(struct nvme_dev *dev)
  1148. {
  1149. if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
  1150. /*
  1151. * If the controller was reset during removal, it's possible
  1152. * user requests may be waiting on a stopped queue. Start the
  1153. * queue to flush these to completion.
  1154. */
  1155. blk_mq_unquiesce_queue(dev->ctrl.admin_q);
  1156. blk_cleanup_queue(dev->ctrl.admin_q);
  1157. blk_mq_free_tag_set(&dev->admin_tagset);
  1158. }
  1159. }
  1160. static int nvme_alloc_admin_tags(struct nvme_dev *dev)
  1161. {
  1162. if (!dev->ctrl.admin_q) {
  1163. dev->admin_tagset.ops = &nvme_mq_admin_ops;
  1164. dev->admin_tagset.nr_hw_queues = 1;
  1165. /*
  1166. * Subtract one to leave an empty queue entry for 'Full Queue'
  1167. * condition. See NVM-Express 1.2 specification, section 4.1.2.
  1168. */
  1169. dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
  1170. dev->admin_tagset.timeout = ADMIN_TIMEOUT;
  1171. dev->admin_tagset.numa_node = dev_to_node(dev->dev);
  1172. dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
  1173. dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
  1174. dev->admin_tagset.driver_data = dev;
  1175. if (blk_mq_alloc_tag_set(&dev->admin_tagset))
  1176. return -ENOMEM;
  1177. dev->ctrl.admin_tagset = &dev->admin_tagset;
  1178. dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
  1179. if (IS_ERR(dev->ctrl.admin_q)) {
  1180. blk_mq_free_tag_set(&dev->admin_tagset);
  1181. return -ENOMEM;
  1182. }
  1183. if (!blk_get_queue(dev->ctrl.admin_q)) {
  1184. nvme_dev_remove_admin(dev);
  1185. dev->ctrl.admin_q = NULL;
  1186. return -ENODEV;
  1187. }
  1188. } else
  1189. blk_mq_unquiesce_queue(dev->ctrl.admin_q);
  1190. return 0;
  1191. }
  1192. static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
  1193. {
  1194. return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
  1195. }
  1196. static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
  1197. {
  1198. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1199. if (size <= dev->bar_mapped_size)
  1200. return 0;
  1201. if (size > pci_resource_len(pdev, 0))
  1202. return -ENOMEM;
  1203. if (dev->bar)
  1204. iounmap(dev->bar);
  1205. dev->bar = ioremap(pci_resource_start(pdev, 0), size);
  1206. if (!dev->bar) {
  1207. dev->bar_mapped_size = 0;
  1208. return -ENOMEM;
  1209. }
  1210. dev->bar_mapped_size = size;
  1211. dev->dbs = dev->bar + NVME_REG_DBS;
  1212. return 0;
  1213. }
  1214. static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
  1215. {
  1216. int result;
  1217. u32 aqa;
  1218. struct nvme_queue *nvmeq;
  1219. result = nvme_remap_bar(dev, db_bar_size(dev, 0));
  1220. if (result < 0)
  1221. return result;
  1222. dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
  1223. NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
  1224. if (dev->subsystem &&
  1225. (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
  1226. writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
  1227. result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
  1228. if (result < 0)
  1229. return result;
  1230. nvmeq = dev->queues[0];
  1231. if (!nvmeq) {
  1232. nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
  1233. dev_to_node(dev->dev));
  1234. if (!nvmeq)
  1235. return -ENOMEM;
  1236. }
  1237. aqa = nvmeq->q_depth - 1;
  1238. aqa |= aqa << 16;
  1239. writel(aqa, dev->bar + NVME_REG_AQA);
  1240. lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
  1241. lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
  1242. result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
  1243. if (result)
  1244. return result;
  1245. nvmeq->cq_vector = 0;
  1246. result = queue_request_irq(nvmeq);
  1247. if (result) {
  1248. nvmeq->cq_vector = -1;
  1249. return result;
  1250. }
  1251. return result;
  1252. }
  1253. static int nvme_create_io_queues(struct nvme_dev *dev)
  1254. {
  1255. unsigned i, max;
  1256. int ret = 0;
  1257. for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
  1258. /* vector == qid - 1, match nvme_create_queue */
  1259. if (!nvme_alloc_queue(dev, i, dev->q_depth,
  1260. pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
  1261. ret = -ENOMEM;
  1262. break;
  1263. }
  1264. }
  1265. max = min(dev->max_qid, dev->ctrl.queue_count - 1);
  1266. for (i = dev->online_queues; i <= max; i++) {
  1267. ret = nvme_create_queue(dev->queues[i], i);
  1268. if (ret)
  1269. break;
  1270. }
  1271. /*
  1272. * Ignore failing Create SQ/CQ commands, we can continue with less
  1273. * than the desired aount of queues, and even a controller without
  1274. * I/O queues an still be used to issue admin commands. This might
  1275. * be useful to upgrade a buggy firmware for example.
  1276. */
  1277. return ret >= 0 ? 0 : ret;
  1278. }
  1279. static ssize_t nvme_cmb_show(struct device *dev,
  1280. struct device_attribute *attr,
  1281. char *buf)
  1282. {
  1283. struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
  1284. return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
  1285. ndev->cmbloc, ndev->cmbsz);
  1286. }
  1287. static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
  1288. static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
  1289. {
  1290. u64 szu, size, offset;
  1291. resource_size_t bar_size;
  1292. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1293. void __iomem *cmb;
  1294. dma_addr_t dma_addr;
  1295. dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
  1296. if (!(NVME_CMB_SZ(dev->cmbsz)))
  1297. return NULL;
  1298. dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
  1299. if (!use_cmb_sqes)
  1300. return NULL;
  1301. szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
  1302. size = szu * NVME_CMB_SZ(dev->cmbsz);
  1303. offset = szu * NVME_CMB_OFST(dev->cmbloc);
  1304. bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
  1305. if (offset > bar_size)
  1306. return NULL;
  1307. /*
  1308. * Controllers may support a CMB size larger than their BAR,
  1309. * for example, due to being behind a bridge. Reduce the CMB to
  1310. * the reported size of the BAR
  1311. */
  1312. if (size > bar_size - offset)
  1313. size = bar_size - offset;
  1314. dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
  1315. cmb = ioremap_wc(dma_addr, size);
  1316. if (!cmb)
  1317. return NULL;
  1318. dev->cmb_dma_addr = dma_addr;
  1319. dev->cmb_size = size;
  1320. return cmb;
  1321. }
  1322. static inline void nvme_release_cmb(struct nvme_dev *dev)
  1323. {
  1324. if (dev->cmb) {
  1325. iounmap(dev->cmb);
  1326. dev->cmb = NULL;
  1327. sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
  1328. &dev_attr_cmb.attr, NULL);
  1329. dev->cmbsz = 0;
  1330. }
  1331. }
  1332. static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
  1333. {
  1334. u64 dma_addr = dev->host_mem_descs_dma;
  1335. struct nvme_command c;
  1336. int ret;
  1337. memset(&c, 0, sizeof(c));
  1338. c.features.opcode = nvme_admin_set_features;
  1339. c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
  1340. c.features.dword11 = cpu_to_le32(bits);
  1341. c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
  1342. ilog2(dev->ctrl.page_size));
  1343. c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
  1344. c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
  1345. c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
  1346. ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  1347. if (ret) {
  1348. dev_warn(dev->ctrl.device,
  1349. "failed to set host mem (err %d, flags %#x).\n",
  1350. ret, bits);
  1351. }
  1352. return ret;
  1353. }
  1354. static void nvme_free_host_mem(struct nvme_dev *dev)
  1355. {
  1356. int i;
  1357. for (i = 0; i < dev->nr_host_mem_descs; i++) {
  1358. struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
  1359. size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
  1360. dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
  1361. le64_to_cpu(desc->addr));
  1362. }
  1363. kfree(dev->host_mem_desc_bufs);
  1364. dev->host_mem_desc_bufs = NULL;
  1365. dma_free_coherent(dev->dev,
  1366. dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
  1367. dev->host_mem_descs, dev->host_mem_descs_dma);
  1368. dev->host_mem_descs = NULL;
  1369. }
  1370. static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
  1371. {
  1372. struct nvme_host_mem_buf_desc *descs;
  1373. u32 chunk_size, max_entries, len;
  1374. dma_addr_t descs_dma;
  1375. int i = 0;
  1376. void **bufs;
  1377. u64 size = 0, tmp;
  1378. /* start big and work our way down */
  1379. chunk_size = min(preferred, (u64)PAGE_SIZE << MAX_ORDER);
  1380. retry:
  1381. tmp = (preferred + chunk_size - 1);
  1382. do_div(tmp, chunk_size);
  1383. max_entries = tmp;
  1384. descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
  1385. &descs_dma, GFP_KERNEL);
  1386. if (!descs)
  1387. goto out;
  1388. bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
  1389. if (!bufs)
  1390. goto out_free_descs;
  1391. for (size = 0; size < preferred; size += len) {
  1392. dma_addr_t dma_addr;
  1393. len = min_t(u64, chunk_size, preferred - size);
  1394. bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
  1395. DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
  1396. if (!bufs[i])
  1397. break;
  1398. descs[i].addr = cpu_to_le64(dma_addr);
  1399. descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
  1400. i++;
  1401. }
  1402. if (!size || (min && size < min)) {
  1403. dev_warn(dev->ctrl.device,
  1404. "failed to allocate host memory buffer.\n");
  1405. goto out_free_bufs;
  1406. }
  1407. dev_info(dev->ctrl.device,
  1408. "allocated %lld MiB host memory buffer.\n",
  1409. size >> ilog2(SZ_1M));
  1410. dev->nr_host_mem_descs = i;
  1411. dev->host_mem_size = size;
  1412. dev->host_mem_descs = descs;
  1413. dev->host_mem_descs_dma = descs_dma;
  1414. dev->host_mem_desc_bufs = bufs;
  1415. return 0;
  1416. out_free_bufs:
  1417. while (--i >= 0) {
  1418. size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
  1419. dma_free_coherent(dev->dev, size, bufs[i],
  1420. le64_to_cpu(descs[i].addr));
  1421. }
  1422. kfree(bufs);
  1423. out_free_descs:
  1424. dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
  1425. descs_dma);
  1426. out:
  1427. /* try a smaller chunk size if we failed early */
  1428. if (chunk_size >= PAGE_SIZE * 2 && (i == 0 || size < min)) {
  1429. chunk_size /= 2;
  1430. goto retry;
  1431. }
  1432. dev->host_mem_descs = NULL;
  1433. return -ENOMEM;
  1434. }
  1435. static void nvme_setup_host_mem(struct nvme_dev *dev)
  1436. {
  1437. u64 max = (u64)max_host_mem_size_mb * SZ_1M;
  1438. u64 preferred = (u64)dev->ctrl.hmpre * 4096;
  1439. u64 min = (u64)dev->ctrl.hmmin * 4096;
  1440. u32 enable_bits = NVME_HOST_MEM_ENABLE;
  1441. preferred = min(preferred, max);
  1442. if (min > max) {
  1443. dev_warn(dev->ctrl.device,
  1444. "min host memory (%lld MiB) above limit (%d MiB).\n",
  1445. min >> ilog2(SZ_1M), max_host_mem_size_mb);
  1446. nvme_free_host_mem(dev);
  1447. return;
  1448. }
  1449. /*
  1450. * If we already have a buffer allocated check if we can reuse it.
  1451. */
  1452. if (dev->host_mem_descs) {
  1453. if (dev->host_mem_size >= min)
  1454. enable_bits |= NVME_HOST_MEM_RETURN;
  1455. else
  1456. nvme_free_host_mem(dev);
  1457. }
  1458. if (!dev->host_mem_descs) {
  1459. if (nvme_alloc_host_mem(dev, min, preferred))
  1460. return;
  1461. }
  1462. if (nvme_set_host_mem(dev, enable_bits))
  1463. nvme_free_host_mem(dev);
  1464. }
  1465. static int nvme_setup_io_queues(struct nvme_dev *dev)
  1466. {
  1467. struct nvme_queue *adminq = dev->queues[0];
  1468. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1469. int result, nr_io_queues;
  1470. unsigned long size;
  1471. nr_io_queues = num_present_cpus();
  1472. result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
  1473. if (result < 0)
  1474. return result;
  1475. if (nr_io_queues == 0)
  1476. return 0;
  1477. if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
  1478. result = nvme_cmb_qdepth(dev, nr_io_queues,
  1479. sizeof(struct nvme_command));
  1480. if (result > 0)
  1481. dev->q_depth = result;
  1482. else
  1483. nvme_release_cmb(dev);
  1484. }
  1485. do {
  1486. size = db_bar_size(dev, nr_io_queues);
  1487. result = nvme_remap_bar(dev, size);
  1488. if (!result)
  1489. break;
  1490. if (!--nr_io_queues)
  1491. return -ENOMEM;
  1492. } while (1);
  1493. adminq->q_db = dev->dbs;
  1494. /* Deregister the admin queue's interrupt */
  1495. pci_free_irq(pdev, 0, adminq);
  1496. /*
  1497. * If we enable msix early due to not intx, disable it again before
  1498. * setting up the full range we need.
  1499. */
  1500. pci_free_irq_vectors(pdev);
  1501. nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
  1502. PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
  1503. if (nr_io_queues <= 0)
  1504. return -EIO;
  1505. dev->max_qid = nr_io_queues;
  1506. /*
  1507. * Should investigate if there's a performance win from allocating
  1508. * more queues than interrupt vectors; it might allow the submission
  1509. * path to scale better, even if the receive path is limited by the
  1510. * number of interrupts.
  1511. */
  1512. result = queue_request_irq(adminq);
  1513. if (result) {
  1514. adminq->cq_vector = -1;
  1515. return result;
  1516. }
  1517. return nvme_create_io_queues(dev);
  1518. }
  1519. static void nvme_del_queue_end(struct request *req, blk_status_t error)
  1520. {
  1521. struct nvme_queue *nvmeq = req->end_io_data;
  1522. blk_mq_free_request(req);
  1523. complete(&nvmeq->dev->ioq_wait);
  1524. }
  1525. static void nvme_del_cq_end(struct request *req, blk_status_t error)
  1526. {
  1527. struct nvme_queue *nvmeq = req->end_io_data;
  1528. if (!error) {
  1529. unsigned long flags;
  1530. /*
  1531. * We might be called with the AQ q_lock held
  1532. * and the I/O queue q_lock should always
  1533. * nest inside the AQ one.
  1534. */
  1535. spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
  1536. SINGLE_DEPTH_NESTING);
  1537. nvme_process_cq(nvmeq);
  1538. spin_unlock_irqrestore(&nvmeq->q_lock, flags);
  1539. }
  1540. nvme_del_queue_end(req, error);
  1541. }
  1542. static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
  1543. {
  1544. struct request_queue *q = nvmeq->dev->ctrl.admin_q;
  1545. struct request *req;
  1546. struct nvme_command cmd;
  1547. memset(&cmd, 0, sizeof(cmd));
  1548. cmd.delete_queue.opcode = opcode;
  1549. cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
  1550. req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
  1551. if (IS_ERR(req))
  1552. return PTR_ERR(req);
  1553. req->timeout = ADMIN_TIMEOUT;
  1554. req->end_io_data = nvmeq;
  1555. blk_execute_rq_nowait(q, NULL, req, false,
  1556. opcode == nvme_admin_delete_cq ?
  1557. nvme_del_cq_end : nvme_del_queue_end);
  1558. return 0;
  1559. }
  1560. static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
  1561. {
  1562. int pass;
  1563. unsigned long timeout;
  1564. u8 opcode = nvme_admin_delete_sq;
  1565. for (pass = 0; pass < 2; pass++) {
  1566. int sent = 0, i = queues;
  1567. reinit_completion(&dev->ioq_wait);
  1568. retry:
  1569. timeout = ADMIN_TIMEOUT;
  1570. for (; i > 0; i--, sent++)
  1571. if (nvme_delete_queue(dev->queues[i], opcode))
  1572. break;
  1573. while (sent--) {
  1574. timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
  1575. if (timeout == 0)
  1576. return;
  1577. if (i)
  1578. goto retry;
  1579. }
  1580. opcode = nvme_admin_delete_cq;
  1581. }
  1582. }
  1583. /*
  1584. * Return: error value if an error occurred setting up the queues or calling
  1585. * Identify Device. 0 if these succeeded, even if adding some of the
  1586. * namespaces failed. At the moment, these failures are silent. TBD which
  1587. * failures should be reported.
  1588. */
  1589. static int nvme_dev_add(struct nvme_dev *dev)
  1590. {
  1591. if (!dev->ctrl.tagset) {
  1592. dev->tagset.ops = &nvme_mq_ops;
  1593. dev->tagset.nr_hw_queues = dev->online_queues - 1;
  1594. dev->tagset.timeout = NVME_IO_TIMEOUT;
  1595. dev->tagset.numa_node = dev_to_node(dev->dev);
  1596. dev->tagset.queue_depth =
  1597. min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
  1598. dev->tagset.cmd_size = nvme_cmd_size(dev);
  1599. dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
  1600. dev->tagset.driver_data = dev;
  1601. if (blk_mq_alloc_tag_set(&dev->tagset))
  1602. return 0;
  1603. dev->ctrl.tagset = &dev->tagset;
  1604. nvme_dbbuf_set(dev);
  1605. } else {
  1606. blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
  1607. /* Free previously allocated queues that are no longer usable */
  1608. nvme_free_queues(dev, dev->online_queues);
  1609. }
  1610. return 0;
  1611. }
  1612. static int nvme_pci_enable(struct nvme_dev *dev)
  1613. {
  1614. int result = -ENOMEM;
  1615. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1616. if (pci_enable_device_mem(pdev))
  1617. return result;
  1618. pci_set_master(pdev);
  1619. if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
  1620. dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
  1621. goto disable;
  1622. if (readl(dev->bar + NVME_REG_CSTS) == -1) {
  1623. result = -ENODEV;
  1624. goto disable;
  1625. }
  1626. /*
  1627. * Some devices and/or platforms don't advertise or work with INTx
  1628. * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
  1629. * adjust this later.
  1630. */
  1631. result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
  1632. if (result < 0)
  1633. return result;
  1634. dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
  1635. dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
  1636. io_queue_depth);
  1637. dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
  1638. dev->dbs = dev->bar + 4096;
  1639. /*
  1640. * Temporary fix for the Apple controller found in the MacBook8,1 and
  1641. * some MacBook7,1 to avoid controller resets and data loss.
  1642. */
  1643. if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
  1644. dev->q_depth = 2;
  1645. dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
  1646. "set queue depth=%u to work around controller resets\n",
  1647. dev->q_depth);
  1648. } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
  1649. (pdev->device == 0xa821 || pdev->device == 0xa822) &&
  1650. NVME_CAP_MQES(dev->ctrl.cap) == 0) {
  1651. dev->q_depth = 64;
  1652. dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
  1653. "set queue depth=%u\n", dev->q_depth);
  1654. }
  1655. /*
  1656. * CMBs can currently only exist on >=1.2 PCIe devices. We only
  1657. * populate sysfs if a CMB is implemented. Since nvme_dev_attrs_group
  1658. * has no name we can pass NULL as final argument to
  1659. * sysfs_add_file_to_group.
  1660. */
  1661. if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
  1662. dev->cmb = nvme_map_cmb(dev);
  1663. if (dev->cmb) {
  1664. if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
  1665. &dev_attr_cmb.attr, NULL))
  1666. dev_warn(dev->ctrl.device,
  1667. "failed to add sysfs attribute for CMB\n");
  1668. }
  1669. }
  1670. pci_enable_pcie_error_reporting(pdev);
  1671. pci_save_state(pdev);
  1672. return 0;
  1673. disable:
  1674. pci_disable_device(pdev);
  1675. return result;
  1676. }
  1677. static void nvme_dev_unmap(struct nvme_dev *dev)
  1678. {
  1679. if (dev->bar)
  1680. iounmap(dev->bar);
  1681. pci_release_mem_regions(to_pci_dev(dev->dev));
  1682. }
  1683. static void nvme_pci_disable(struct nvme_dev *dev)
  1684. {
  1685. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1686. nvme_release_cmb(dev);
  1687. pci_free_irq_vectors(pdev);
  1688. if (pci_is_enabled(pdev)) {
  1689. pci_disable_pcie_error_reporting(pdev);
  1690. pci_disable_device(pdev);
  1691. }
  1692. }
  1693. static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
  1694. {
  1695. int i, queues;
  1696. bool dead = true;
  1697. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1698. mutex_lock(&dev->shutdown_lock);
  1699. if (pci_is_enabled(pdev)) {
  1700. u32 csts = readl(dev->bar + NVME_REG_CSTS);
  1701. if (dev->ctrl.state == NVME_CTRL_LIVE ||
  1702. dev->ctrl.state == NVME_CTRL_RESETTING)
  1703. nvme_start_freeze(&dev->ctrl);
  1704. dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
  1705. pdev->error_state != pci_channel_io_normal);
  1706. }
  1707. /*
  1708. * Give the controller a chance to complete all entered requests if
  1709. * doing a safe shutdown.
  1710. */
  1711. if (!dead) {
  1712. if (shutdown)
  1713. nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
  1714. /*
  1715. * If the controller is still alive tell it to stop using the
  1716. * host memory buffer. In theory the shutdown / reset should
  1717. * make sure that it doesn't access the host memoery anymore,
  1718. * but I'd rather be safe than sorry..
  1719. */
  1720. if (dev->host_mem_descs)
  1721. nvme_set_host_mem(dev, 0);
  1722. }
  1723. nvme_stop_queues(&dev->ctrl);
  1724. queues = dev->online_queues - 1;
  1725. for (i = dev->ctrl.queue_count - 1; i > 0; i--)
  1726. nvme_suspend_queue(dev->queues[i]);
  1727. if (dead) {
  1728. /* A device might become IO incapable very soon during
  1729. * probe, before the admin queue is configured. Thus,
  1730. * queue_count can be 0 here.
  1731. */
  1732. if (dev->ctrl.queue_count)
  1733. nvme_suspend_queue(dev->queues[0]);
  1734. } else {
  1735. nvme_disable_io_queues(dev, queues);
  1736. nvme_disable_admin_queue(dev, shutdown);
  1737. }
  1738. nvme_pci_disable(dev);
  1739. blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
  1740. blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
  1741. /*
  1742. * The driver will not be starting up queues again if shutting down so
  1743. * must flush all entered requests to their failed completion to avoid
  1744. * deadlocking blk-mq hot-cpu notifier.
  1745. */
  1746. if (shutdown)
  1747. nvme_start_queues(&dev->ctrl);
  1748. mutex_unlock(&dev->shutdown_lock);
  1749. }
  1750. static int nvme_setup_prp_pools(struct nvme_dev *dev)
  1751. {
  1752. dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
  1753. PAGE_SIZE, PAGE_SIZE, 0);
  1754. if (!dev->prp_page_pool)
  1755. return -ENOMEM;
  1756. /* Optimisation for I/Os between 4k and 128k */
  1757. dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
  1758. 256, 256, 0);
  1759. if (!dev->prp_small_pool) {
  1760. dma_pool_destroy(dev->prp_page_pool);
  1761. return -ENOMEM;
  1762. }
  1763. return 0;
  1764. }
  1765. static void nvme_release_prp_pools(struct nvme_dev *dev)
  1766. {
  1767. dma_pool_destroy(dev->prp_page_pool);
  1768. dma_pool_destroy(dev->prp_small_pool);
  1769. }
  1770. static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
  1771. {
  1772. struct nvme_dev *dev = to_nvme_dev(ctrl);
  1773. nvme_dbbuf_dma_free(dev);
  1774. put_device(dev->dev);
  1775. if (dev->tagset.tags)
  1776. blk_mq_free_tag_set(&dev->tagset);
  1777. if (dev->ctrl.admin_q)
  1778. blk_put_queue(dev->ctrl.admin_q);
  1779. kfree(dev->queues);
  1780. free_opal_dev(dev->ctrl.opal_dev);
  1781. kfree(dev);
  1782. }
  1783. static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
  1784. {
  1785. dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
  1786. kref_get(&dev->ctrl.kref);
  1787. nvme_dev_disable(dev, false);
  1788. if (!schedule_work(&dev->remove_work))
  1789. nvme_put_ctrl(&dev->ctrl);
  1790. }
  1791. static void nvme_reset_work(struct work_struct *work)
  1792. {
  1793. struct nvme_dev *dev =
  1794. container_of(work, struct nvme_dev, ctrl.reset_work);
  1795. bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
  1796. int result = -ENODEV;
  1797. if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
  1798. goto out;
  1799. /*
  1800. * If we're called to reset a live controller first shut it down before
  1801. * moving on.
  1802. */
  1803. if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
  1804. nvme_dev_disable(dev, false);
  1805. result = nvme_pci_enable(dev);
  1806. if (result)
  1807. goto out;
  1808. result = nvme_pci_configure_admin_queue(dev);
  1809. if (result)
  1810. goto out;
  1811. nvme_init_queue(dev->queues[0], 0);
  1812. result = nvme_alloc_admin_tags(dev);
  1813. if (result)
  1814. goto out;
  1815. result = nvme_init_identify(&dev->ctrl);
  1816. if (result)
  1817. goto out;
  1818. if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
  1819. if (!dev->ctrl.opal_dev)
  1820. dev->ctrl.opal_dev =
  1821. init_opal_dev(&dev->ctrl, &nvme_sec_submit);
  1822. else if (was_suspend)
  1823. opal_unlock_from_suspend(dev->ctrl.opal_dev);
  1824. } else {
  1825. free_opal_dev(dev->ctrl.opal_dev);
  1826. dev->ctrl.opal_dev = NULL;
  1827. }
  1828. if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
  1829. result = nvme_dbbuf_dma_alloc(dev);
  1830. if (result)
  1831. dev_warn(dev->dev,
  1832. "unable to allocate dma for dbbuf\n");
  1833. }
  1834. if (dev->ctrl.hmpre)
  1835. nvme_setup_host_mem(dev);
  1836. result = nvme_setup_io_queues(dev);
  1837. if (result)
  1838. goto out;
  1839. /*
  1840. * Keep the controller around but remove all namespaces if we don't have
  1841. * any working I/O queue.
  1842. */
  1843. if (dev->online_queues < 2) {
  1844. dev_warn(dev->ctrl.device, "IO queues not created\n");
  1845. nvme_kill_queues(&dev->ctrl);
  1846. nvme_remove_namespaces(&dev->ctrl);
  1847. } else {
  1848. nvme_start_queues(&dev->ctrl);
  1849. nvme_wait_freeze(&dev->ctrl);
  1850. nvme_dev_add(dev);
  1851. nvme_unfreeze(&dev->ctrl);
  1852. }
  1853. if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
  1854. dev_warn(dev->ctrl.device, "failed to mark controller live\n");
  1855. goto out;
  1856. }
  1857. nvme_start_ctrl(&dev->ctrl);
  1858. return;
  1859. out:
  1860. nvme_remove_dead_ctrl(dev, result);
  1861. }
  1862. static void nvme_remove_dead_ctrl_work(struct work_struct *work)
  1863. {
  1864. struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
  1865. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1866. nvme_kill_queues(&dev->ctrl);
  1867. if (pci_get_drvdata(pdev))
  1868. device_release_driver(&pdev->dev);
  1869. nvme_put_ctrl(&dev->ctrl);
  1870. }
  1871. static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
  1872. {
  1873. *val = readl(to_nvme_dev(ctrl)->bar + off);
  1874. return 0;
  1875. }
  1876. static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
  1877. {
  1878. writel(val, to_nvme_dev(ctrl)->bar + off);
  1879. return 0;
  1880. }
  1881. static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
  1882. {
  1883. *val = readq(to_nvme_dev(ctrl)->bar + off);
  1884. return 0;
  1885. }
  1886. static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
  1887. .name = "pcie",
  1888. .module = THIS_MODULE,
  1889. .flags = NVME_F_METADATA_SUPPORTED,
  1890. .reg_read32 = nvme_pci_reg_read32,
  1891. .reg_write32 = nvme_pci_reg_write32,
  1892. .reg_read64 = nvme_pci_reg_read64,
  1893. .free_ctrl = nvme_pci_free_ctrl,
  1894. .submit_async_event = nvme_pci_submit_async_event,
  1895. };
  1896. static int nvme_dev_map(struct nvme_dev *dev)
  1897. {
  1898. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1899. if (pci_request_mem_regions(pdev, "nvme"))
  1900. return -ENODEV;
  1901. if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
  1902. goto release;
  1903. return 0;
  1904. release:
  1905. pci_release_mem_regions(pdev);
  1906. return -ENODEV;
  1907. }
  1908. static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
  1909. {
  1910. if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
  1911. /*
  1912. * Several Samsung devices seem to drop off the PCIe bus
  1913. * randomly when APST is on and uses the deepest sleep state.
  1914. * This has been observed on a Samsung "SM951 NVMe SAMSUNG
  1915. * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
  1916. * 950 PRO 256GB", but it seems to be restricted to two Dell
  1917. * laptops.
  1918. */
  1919. if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
  1920. (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
  1921. dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
  1922. return NVME_QUIRK_NO_DEEPEST_PS;
  1923. }
  1924. return 0;
  1925. }
  1926. static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
  1927. {
  1928. int node, result = -ENOMEM;
  1929. struct nvme_dev *dev;
  1930. unsigned long quirks = id->driver_data;
  1931. node = dev_to_node(&pdev->dev);
  1932. if (node == NUMA_NO_NODE)
  1933. set_dev_node(&pdev->dev, first_memory_node);
  1934. dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
  1935. if (!dev)
  1936. return -ENOMEM;
  1937. dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
  1938. GFP_KERNEL, node);
  1939. if (!dev->queues)
  1940. goto free;
  1941. dev->dev = get_device(&pdev->dev);
  1942. pci_set_drvdata(pdev, dev);
  1943. result = nvme_dev_map(dev);
  1944. if (result)
  1945. goto put_pci;
  1946. INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
  1947. INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
  1948. mutex_init(&dev->shutdown_lock);
  1949. init_completion(&dev->ioq_wait);
  1950. result = nvme_setup_prp_pools(dev);
  1951. if (result)
  1952. goto unmap;
  1953. quirks |= check_dell_samsung_bug(pdev);
  1954. result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
  1955. quirks);
  1956. if (result)
  1957. goto release_pools;
  1958. nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING);
  1959. dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
  1960. queue_work(nvme_wq, &dev->ctrl.reset_work);
  1961. return 0;
  1962. release_pools:
  1963. nvme_release_prp_pools(dev);
  1964. unmap:
  1965. nvme_dev_unmap(dev);
  1966. put_pci:
  1967. put_device(dev->dev);
  1968. free:
  1969. kfree(dev->queues);
  1970. kfree(dev);
  1971. return result;
  1972. }
  1973. static void nvme_reset_prepare(struct pci_dev *pdev)
  1974. {
  1975. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1976. nvme_dev_disable(dev, false);
  1977. }
  1978. static void nvme_reset_done(struct pci_dev *pdev)
  1979. {
  1980. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1981. nvme_reset_ctrl(&dev->ctrl);
  1982. }
  1983. static void nvme_shutdown(struct pci_dev *pdev)
  1984. {
  1985. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1986. nvme_dev_disable(dev, true);
  1987. }
  1988. /*
  1989. * The driver's remove may be called on a device in a partially initialized
  1990. * state. This function must not have any dependencies on the device state in
  1991. * order to proceed.
  1992. */
  1993. static void nvme_remove(struct pci_dev *pdev)
  1994. {
  1995. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1996. nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
  1997. cancel_work_sync(&dev->ctrl.reset_work);
  1998. pci_set_drvdata(pdev, NULL);
  1999. if (!pci_device_is_present(pdev)) {
  2000. nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
  2001. nvme_dev_disable(dev, false);
  2002. }
  2003. flush_work(&dev->ctrl.reset_work);
  2004. nvme_stop_ctrl(&dev->ctrl);
  2005. nvme_remove_namespaces(&dev->ctrl);
  2006. nvme_dev_disable(dev, true);
  2007. nvme_free_host_mem(dev);
  2008. nvme_dev_remove_admin(dev);
  2009. nvme_free_queues(dev, 0);
  2010. nvme_uninit_ctrl(&dev->ctrl);
  2011. nvme_release_prp_pools(dev);
  2012. nvme_dev_unmap(dev);
  2013. nvme_put_ctrl(&dev->ctrl);
  2014. }
  2015. static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
  2016. {
  2017. int ret = 0;
  2018. if (numvfs == 0) {
  2019. if (pci_vfs_assigned(pdev)) {
  2020. dev_warn(&pdev->dev,
  2021. "Cannot disable SR-IOV VFs while assigned\n");
  2022. return -EPERM;
  2023. }
  2024. pci_disable_sriov(pdev);
  2025. return 0;
  2026. }
  2027. ret = pci_enable_sriov(pdev, numvfs);
  2028. return ret ? ret : numvfs;
  2029. }
  2030. #ifdef CONFIG_PM_SLEEP
  2031. static int nvme_suspend(struct device *dev)
  2032. {
  2033. struct pci_dev *pdev = to_pci_dev(dev);
  2034. struct nvme_dev *ndev = pci_get_drvdata(pdev);
  2035. nvme_dev_disable(ndev, true);
  2036. return 0;
  2037. }
  2038. static int nvme_resume(struct device *dev)
  2039. {
  2040. struct pci_dev *pdev = to_pci_dev(dev);
  2041. struct nvme_dev *ndev = pci_get_drvdata(pdev);
  2042. nvme_reset_ctrl(&ndev->ctrl);
  2043. return 0;
  2044. }
  2045. #endif
  2046. static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
  2047. static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
  2048. pci_channel_state_t state)
  2049. {
  2050. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2051. /*
  2052. * A frozen channel requires a reset. When detected, this method will
  2053. * shutdown the controller to quiesce. The controller will be restarted
  2054. * after the slot reset through driver's slot_reset callback.
  2055. */
  2056. switch (state) {
  2057. case pci_channel_io_normal:
  2058. return PCI_ERS_RESULT_CAN_RECOVER;
  2059. case pci_channel_io_frozen:
  2060. dev_warn(dev->ctrl.device,
  2061. "frozen state error detected, reset controller\n");
  2062. nvme_dev_disable(dev, false);
  2063. return PCI_ERS_RESULT_NEED_RESET;
  2064. case pci_channel_io_perm_failure:
  2065. dev_warn(dev->ctrl.device,
  2066. "failure state error detected, request disconnect\n");
  2067. return PCI_ERS_RESULT_DISCONNECT;
  2068. }
  2069. return PCI_ERS_RESULT_NEED_RESET;
  2070. }
  2071. static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
  2072. {
  2073. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2074. dev_info(dev->ctrl.device, "restart after slot reset\n");
  2075. pci_restore_state(pdev);
  2076. nvme_reset_ctrl(&dev->ctrl);
  2077. return PCI_ERS_RESULT_RECOVERED;
  2078. }
  2079. static void nvme_error_resume(struct pci_dev *pdev)
  2080. {
  2081. pci_cleanup_aer_uncorrect_error_status(pdev);
  2082. }
  2083. static const struct pci_error_handlers nvme_err_handler = {
  2084. .error_detected = nvme_error_detected,
  2085. .slot_reset = nvme_slot_reset,
  2086. .resume = nvme_error_resume,
  2087. .reset_prepare = nvme_reset_prepare,
  2088. .reset_done = nvme_reset_done,
  2089. };
  2090. static const struct pci_device_id nvme_id_table[] = {
  2091. { PCI_VDEVICE(INTEL, 0x0953),
  2092. .driver_data = NVME_QUIRK_STRIPE_SIZE |
  2093. NVME_QUIRK_DEALLOCATE_ZEROES, },
  2094. { PCI_VDEVICE(INTEL, 0x0a53),
  2095. .driver_data = NVME_QUIRK_STRIPE_SIZE |
  2096. NVME_QUIRK_DEALLOCATE_ZEROES, },
  2097. { PCI_VDEVICE(INTEL, 0x0a54),
  2098. .driver_data = NVME_QUIRK_STRIPE_SIZE |
  2099. NVME_QUIRK_DEALLOCATE_ZEROES, },
  2100. { PCI_VDEVICE(INTEL, 0x0a55),
  2101. .driver_data = NVME_QUIRK_STRIPE_SIZE |
  2102. NVME_QUIRK_DEALLOCATE_ZEROES, },
  2103. { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
  2104. .driver_data = NVME_QUIRK_NO_DEEPEST_PS },
  2105. { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
  2106. .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
  2107. { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
  2108. .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
  2109. { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
  2110. .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
  2111. { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
  2112. .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
  2113. { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
  2114. .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
  2115. { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
  2116. { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
  2117. { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
  2118. { 0, }
  2119. };
  2120. MODULE_DEVICE_TABLE(pci, nvme_id_table);
  2121. static struct pci_driver nvme_driver = {
  2122. .name = "nvme",
  2123. .id_table = nvme_id_table,
  2124. .probe = nvme_probe,
  2125. .remove = nvme_remove,
  2126. .shutdown = nvme_shutdown,
  2127. .driver = {
  2128. .pm = &nvme_dev_pm_ops,
  2129. },
  2130. .sriov_configure = nvme_pci_sriov_configure,
  2131. .err_handler = &nvme_err_handler,
  2132. };
  2133. static int __init nvme_init(void)
  2134. {
  2135. return pci_register_driver(&nvme_driver);
  2136. }
  2137. static void __exit nvme_exit(void)
  2138. {
  2139. pci_unregister_driver(&nvme_driver);
  2140. _nvme_check_size();
  2141. }
  2142. MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
  2143. MODULE_LICENSE("GPL");
  2144. MODULE_VERSION("1.0");
  2145. module_init(nvme_init);
  2146. module_exit(nvme_exit);