memory.c 107 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/export.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/pfn_t.h>
  49. #include <linux/writeback.h>
  50. #include <linux/memcontrol.h>
  51. #include <linux/mmu_notifier.h>
  52. #include <linux/kallsyms.h>
  53. #include <linux/swapops.h>
  54. #include <linux/elf.h>
  55. #include <linux/gfp.h>
  56. #include <linux/migrate.h>
  57. #include <linux/string.h>
  58. #include <linux/dma-debug.h>
  59. #include <linux/debugfs.h>
  60. #include <linux/userfaultfd_k.h>
  61. #include <asm/io.h>
  62. #include <asm/pgalloc.h>
  63. #include <asm/uaccess.h>
  64. #include <asm/tlb.h>
  65. #include <asm/tlbflush.h>
  66. #include <asm/pgtable.h>
  67. #include "internal.h"
  68. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  69. #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  70. #endif
  71. #ifndef CONFIG_NEED_MULTIPLE_NODES
  72. /* use the per-pgdat data instead for discontigmem - mbligh */
  73. unsigned long max_mapnr;
  74. struct page *mem_map;
  75. EXPORT_SYMBOL(max_mapnr);
  76. EXPORT_SYMBOL(mem_map);
  77. #endif
  78. /*
  79. * A number of key systems in x86 including ioremap() rely on the assumption
  80. * that high_memory defines the upper bound on direct map memory, then end
  81. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  82. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  83. * and ZONE_HIGHMEM.
  84. */
  85. void * high_memory;
  86. EXPORT_SYMBOL(high_memory);
  87. /*
  88. * Randomize the address space (stacks, mmaps, brk, etc.).
  89. *
  90. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  91. * as ancient (libc5 based) binaries can segfault. )
  92. */
  93. int randomize_va_space __read_mostly =
  94. #ifdef CONFIG_COMPAT_BRK
  95. 1;
  96. #else
  97. 2;
  98. #endif
  99. static int __init disable_randmaps(char *s)
  100. {
  101. randomize_va_space = 0;
  102. return 1;
  103. }
  104. __setup("norandmaps", disable_randmaps);
  105. unsigned long zero_pfn __read_mostly;
  106. unsigned long highest_memmap_pfn __read_mostly;
  107. EXPORT_SYMBOL(zero_pfn);
  108. /*
  109. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  110. */
  111. static int __init init_zero_pfn(void)
  112. {
  113. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  114. return 0;
  115. }
  116. core_initcall(init_zero_pfn);
  117. #if defined(SPLIT_RSS_COUNTING)
  118. void sync_mm_rss(struct mm_struct *mm)
  119. {
  120. int i;
  121. for (i = 0; i < NR_MM_COUNTERS; i++) {
  122. if (current->rss_stat.count[i]) {
  123. add_mm_counter(mm, i, current->rss_stat.count[i]);
  124. current->rss_stat.count[i] = 0;
  125. }
  126. }
  127. current->rss_stat.events = 0;
  128. }
  129. static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
  130. {
  131. struct task_struct *task = current;
  132. if (likely(task->mm == mm))
  133. task->rss_stat.count[member] += val;
  134. else
  135. add_mm_counter(mm, member, val);
  136. }
  137. #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
  138. #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
  139. /* sync counter once per 64 page faults */
  140. #define TASK_RSS_EVENTS_THRESH (64)
  141. static void check_sync_rss_stat(struct task_struct *task)
  142. {
  143. if (unlikely(task != current))
  144. return;
  145. if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
  146. sync_mm_rss(task->mm);
  147. }
  148. #else /* SPLIT_RSS_COUNTING */
  149. #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
  150. #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
  151. static void check_sync_rss_stat(struct task_struct *task)
  152. {
  153. }
  154. #endif /* SPLIT_RSS_COUNTING */
  155. #ifdef HAVE_GENERIC_MMU_GATHER
  156. static bool tlb_next_batch(struct mmu_gather *tlb)
  157. {
  158. struct mmu_gather_batch *batch;
  159. batch = tlb->active;
  160. if (batch->next) {
  161. tlb->active = batch->next;
  162. return true;
  163. }
  164. if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
  165. return false;
  166. batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
  167. if (!batch)
  168. return false;
  169. tlb->batch_count++;
  170. batch->next = NULL;
  171. batch->nr = 0;
  172. batch->max = MAX_GATHER_BATCH;
  173. tlb->active->next = batch;
  174. tlb->active = batch;
  175. return true;
  176. }
  177. /* tlb_gather_mmu
  178. * Called to initialize an (on-stack) mmu_gather structure for page-table
  179. * tear-down from @mm. The @fullmm argument is used when @mm is without
  180. * users and we're going to destroy the full address space (exit/execve).
  181. */
  182. void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
  183. {
  184. tlb->mm = mm;
  185. /* Is it from 0 to ~0? */
  186. tlb->fullmm = !(start | (end+1));
  187. tlb->need_flush_all = 0;
  188. tlb->local.next = NULL;
  189. tlb->local.nr = 0;
  190. tlb->local.max = ARRAY_SIZE(tlb->__pages);
  191. tlb->active = &tlb->local;
  192. tlb->batch_count = 0;
  193. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  194. tlb->batch = NULL;
  195. #endif
  196. __tlb_reset_range(tlb);
  197. }
  198. static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
  199. {
  200. if (!tlb->end)
  201. return;
  202. tlb_flush(tlb);
  203. mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
  204. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  205. tlb_table_flush(tlb);
  206. #endif
  207. __tlb_reset_range(tlb);
  208. }
  209. static void tlb_flush_mmu_free(struct mmu_gather *tlb)
  210. {
  211. struct mmu_gather_batch *batch;
  212. for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
  213. free_pages_and_swap_cache(batch->pages, batch->nr);
  214. batch->nr = 0;
  215. }
  216. tlb->active = &tlb->local;
  217. }
  218. void tlb_flush_mmu(struct mmu_gather *tlb)
  219. {
  220. tlb_flush_mmu_tlbonly(tlb);
  221. tlb_flush_mmu_free(tlb);
  222. }
  223. /* tlb_finish_mmu
  224. * Called at the end of the shootdown operation to free up any resources
  225. * that were required.
  226. */
  227. void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
  228. {
  229. struct mmu_gather_batch *batch, *next;
  230. tlb_flush_mmu(tlb);
  231. /* keep the page table cache within bounds */
  232. check_pgt_cache();
  233. for (batch = tlb->local.next; batch; batch = next) {
  234. next = batch->next;
  235. free_pages((unsigned long)batch, 0);
  236. }
  237. tlb->local.next = NULL;
  238. }
  239. /* __tlb_remove_page
  240. * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
  241. * handling the additional races in SMP caused by other CPUs caching valid
  242. * mappings in their TLBs. Returns the number of free page slots left.
  243. * When out of page slots we must call tlb_flush_mmu().
  244. */
  245. int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
  246. {
  247. struct mmu_gather_batch *batch;
  248. VM_BUG_ON(!tlb->end);
  249. batch = tlb->active;
  250. batch->pages[batch->nr++] = page;
  251. if (batch->nr == batch->max) {
  252. if (!tlb_next_batch(tlb))
  253. return 0;
  254. batch = tlb->active;
  255. }
  256. VM_BUG_ON_PAGE(batch->nr > batch->max, page);
  257. return batch->max - batch->nr;
  258. }
  259. #endif /* HAVE_GENERIC_MMU_GATHER */
  260. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  261. /*
  262. * See the comment near struct mmu_table_batch.
  263. */
  264. static void tlb_remove_table_smp_sync(void *arg)
  265. {
  266. /* Simply deliver the interrupt */
  267. }
  268. static void tlb_remove_table_one(void *table)
  269. {
  270. /*
  271. * This isn't an RCU grace period and hence the page-tables cannot be
  272. * assumed to be actually RCU-freed.
  273. *
  274. * It is however sufficient for software page-table walkers that rely on
  275. * IRQ disabling. See the comment near struct mmu_table_batch.
  276. */
  277. smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
  278. __tlb_remove_table(table);
  279. }
  280. static void tlb_remove_table_rcu(struct rcu_head *head)
  281. {
  282. struct mmu_table_batch *batch;
  283. int i;
  284. batch = container_of(head, struct mmu_table_batch, rcu);
  285. for (i = 0; i < batch->nr; i++)
  286. __tlb_remove_table(batch->tables[i]);
  287. free_page((unsigned long)batch);
  288. }
  289. void tlb_table_flush(struct mmu_gather *tlb)
  290. {
  291. struct mmu_table_batch **batch = &tlb->batch;
  292. if (*batch) {
  293. call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
  294. *batch = NULL;
  295. }
  296. }
  297. void tlb_remove_table(struct mmu_gather *tlb, void *table)
  298. {
  299. struct mmu_table_batch **batch = &tlb->batch;
  300. /*
  301. * When there's less then two users of this mm there cannot be a
  302. * concurrent page-table walk.
  303. */
  304. if (atomic_read(&tlb->mm->mm_users) < 2) {
  305. __tlb_remove_table(table);
  306. return;
  307. }
  308. if (*batch == NULL) {
  309. *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
  310. if (*batch == NULL) {
  311. tlb_remove_table_one(table);
  312. return;
  313. }
  314. (*batch)->nr = 0;
  315. }
  316. (*batch)->tables[(*batch)->nr++] = table;
  317. if ((*batch)->nr == MAX_TABLE_BATCH)
  318. tlb_table_flush(tlb);
  319. }
  320. #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
  321. /*
  322. * Note: this doesn't free the actual pages themselves. That
  323. * has been handled earlier when unmapping all the memory regions.
  324. */
  325. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  326. unsigned long addr)
  327. {
  328. pgtable_t token = pmd_pgtable(*pmd);
  329. pmd_clear(pmd);
  330. pte_free_tlb(tlb, token, addr);
  331. atomic_long_dec(&tlb->mm->nr_ptes);
  332. }
  333. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  334. unsigned long addr, unsigned long end,
  335. unsigned long floor, unsigned long ceiling)
  336. {
  337. pmd_t *pmd;
  338. unsigned long next;
  339. unsigned long start;
  340. start = addr;
  341. pmd = pmd_offset(pud, addr);
  342. do {
  343. next = pmd_addr_end(addr, end);
  344. if (pmd_none_or_clear_bad(pmd))
  345. continue;
  346. free_pte_range(tlb, pmd, addr);
  347. } while (pmd++, addr = next, addr != end);
  348. start &= PUD_MASK;
  349. if (start < floor)
  350. return;
  351. if (ceiling) {
  352. ceiling &= PUD_MASK;
  353. if (!ceiling)
  354. return;
  355. }
  356. if (end - 1 > ceiling - 1)
  357. return;
  358. pmd = pmd_offset(pud, start);
  359. pud_clear(pud);
  360. pmd_free_tlb(tlb, pmd, start);
  361. mm_dec_nr_pmds(tlb->mm);
  362. }
  363. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  364. unsigned long addr, unsigned long end,
  365. unsigned long floor, unsigned long ceiling)
  366. {
  367. pud_t *pud;
  368. unsigned long next;
  369. unsigned long start;
  370. start = addr;
  371. pud = pud_offset(pgd, addr);
  372. do {
  373. next = pud_addr_end(addr, end);
  374. if (pud_none_or_clear_bad(pud))
  375. continue;
  376. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  377. } while (pud++, addr = next, addr != end);
  378. start &= PGDIR_MASK;
  379. if (start < floor)
  380. return;
  381. if (ceiling) {
  382. ceiling &= PGDIR_MASK;
  383. if (!ceiling)
  384. return;
  385. }
  386. if (end - 1 > ceiling - 1)
  387. return;
  388. pud = pud_offset(pgd, start);
  389. pgd_clear(pgd);
  390. pud_free_tlb(tlb, pud, start);
  391. }
  392. /*
  393. * This function frees user-level page tables of a process.
  394. */
  395. void free_pgd_range(struct mmu_gather *tlb,
  396. unsigned long addr, unsigned long end,
  397. unsigned long floor, unsigned long ceiling)
  398. {
  399. pgd_t *pgd;
  400. unsigned long next;
  401. /*
  402. * The next few lines have given us lots of grief...
  403. *
  404. * Why are we testing PMD* at this top level? Because often
  405. * there will be no work to do at all, and we'd prefer not to
  406. * go all the way down to the bottom just to discover that.
  407. *
  408. * Why all these "- 1"s? Because 0 represents both the bottom
  409. * of the address space and the top of it (using -1 for the
  410. * top wouldn't help much: the masks would do the wrong thing).
  411. * The rule is that addr 0 and floor 0 refer to the bottom of
  412. * the address space, but end 0 and ceiling 0 refer to the top
  413. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  414. * that end 0 case should be mythical).
  415. *
  416. * Wherever addr is brought up or ceiling brought down, we must
  417. * be careful to reject "the opposite 0" before it confuses the
  418. * subsequent tests. But what about where end is brought down
  419. * by PMD_SIZE below? no, end can't go down to 0 there.
  420. *
  421. * Whereas we round start (addr) and ceiling down, by different
  422. * masks at different levels, in order to test whether a table
  423. * now has no other vmas using it, so can be freed, we don't
  424. * bother to round floor or end up - the tests don't need that.
  425. */
  426. addr &= PMD_MASK;
  427. if (addr < floor) {
  428. addr += PMD_SIZE;
  429. if (!addr)
  430. return;
  431. }
  432. if (ceiling) {
  433. ceiling &= PMD_MASK;
  434. if (!ceiling)
  435. return;
  436. }
  437. if (end - 1 > ceiling - 1)
  438. end -= PMD_SIZE;
  439. if (addr > end - 1)
  440. return;
  441. pgd = pgd_offset(tlb->mm, addr);
  442. do {
  443. next = pgd_addr_end(addr, end);
  444. if (pgd_none_or_clear_bad(pgd))
  445. continue;
  446. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  447. } while (pgd++, addr = next, addr != end);
  448. }
  449. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  450. unsigned long floor, unsigned long ceiling)
  451. {
  452. while (vma) {
  453. struct vm_area_struct *next = vma->vm_next;
  454. unsigned long addr = vma->vm_start;
  455. /*
  456. * Hide vma from rmap and truncate_pagecache before freeing
  457. * pgtables
  458. */
  459. unlink_anon_vmas(vma);
  460. unlink_file_vma(vma);
  461. if (is_vm_hugetlb_page(vma)) {
  462. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  463. floor, next? next->vm_start: ceiling);
  464. } else {
  465. /*
  466. * Optimization: gather nearby vmas into one call down
  467. */
  468. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  469. && !is_vm_hugetlb_page(next)) {
  470. vma = next;
  471. next = vma->vm_next;
  472. unlink_anon_vmas(vma);
  473. unlink_file_vma(vma);
  474. }
  475. free_pgd_range(tlb, addr, vma->vm_end,
  476. floor, next? next->vm_start: ceiling);
  477. }
  478. vma = next;
  479. }
  480. }
  481. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
  482. {
  483. spinlock_t *ptl;
  484. pgtable_t new = pte_alloc_one(mm, address);
  485. if (!new)
  486. return -ENOMEM;
  487. /*
  488. * Ensure all pte setup (eg. pte page lock and page clearing) are
  489. * visible before the pte is made visible to other CPUs by being
  490. * put into page tables.
  491. *
  492. * The other side of the story is the pointer chasing in the page
  493. * table walking code (when walking the page table without locking;
  494. * ie. most of the time). Fortunately, these data accesses consist
  495. * of a chain of data-dependent loads, meaning most CPUs (alpha
  496. * being the notable exception) will already guarantee loads are
  497. * seen in-order. See the alpha page table accessors for the
  498. * smp_read_barrier_depends() barriers in page table walking code.
  499. */
  500. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  501. ptl = pmd_lock(mm, pmd);
  502. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  503. atomic_long_inc(&mm->nr_ptes);
  504. pmd_populate(mm, pmd, new);
  505. new = NULL;
  506. }
  507. spin_unlock(ptl);
  508. if (new)
  509. pte_free(mm, new);
  510. return 0;
  511. }
  512. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  513. {
  514. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  515. if (!new)
  516. return -ENOMEM;
  517. smp_wmb(); /* See comment in __pte_alloc */
  518. spin_lock(&init_mm.page_table_lock);
  519. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  520. pmd_populate_kernel(&init_mm, pmd, new);
  521. new = NULL;
  522. }
  523. spin_unlock(&init_mm.page_table_lock);
  524. if (new)
  525. pte_free_kernel(&init_mm, new);
  526. return 0;
  527. }
  528. static inline void init_rss_vec(int *rss)
  529. {
  530. memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
  531. }
  532. static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
  533. {
  534. int i;
  535. if (current->mm == mm)
  536. sync_mm_rss(mm);
  537. for (i = 0; i < NR_MM_COUNTERS; i++)
  538. if (rss[i])
  539. add_mm_counter(mm, i, rss[i]);
  540. }
  541. /*
  542. * This function is called to print an error when a bad pte
  543. * is found. For example, we might have a PFN-mapped pte in
  544. * a region that doesn't allow it.
  545. *
  546. * The calling function must still handle the error.
  547. */
  548. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  549. pte_t pte, struct page *page)
  550. {
  551. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  552. pud_t *pud = pud_offset(pgd, addr);
  553. pmd_t *pmd = pmd_offset(pud, addr);
  554. struct address_space *mapping;
  555. pgoff_t index;
  556. static unsigned long resume;
  557. static unsigned long nr_shown;
  558. static unsigned long nr_unshown;
  559. /*
  560. * Allow a burst of 60 reports, then keep quiet for that minute;
  561. * or allow a steady drip of one report per second.
  562. */
  563. if (nr_shown == 60) {
  564. if (time_before(jiffies, resume)) {
  565. nr_unshown++;
  566. return;
  567. }
  568. if (nr_unshown) {
  569. pr_alert("BUG: Bad page map: %lu messages suppressed\n",
  570. nr_unshown);
  571. nr_unshown = 0;
  572. }
  573. nr_shown = 0;
  574. }
  575. if (nr_shown++ == 0)
  576. resume = jiffies + 60 * HZ;
  577. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  578. index = linear_page_index(vma, addr);
  579. pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  580. current->comm,
  581. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  582. if (page)
  583. dump_page(page, "bad pte");
  584. pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  585. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  586. /*
  587. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  588. */
  589. pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
  590. vma->vm_file,
  591. vma->vm_ops ? vma->vm_ops->fault : NULL,
  592. vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
  593. mapping ? mapping->a_ops->readpage : NULL);
  594. dump_stack();
  595. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  596. }
  597. /*
  598. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  599. *
  600. * "Special" mappings do not wish to be associated with a "struct page" (either
  601. * it doesn't exist, or it exists but they don't want to touch it). In this
  602. * case, NULL is returned here. "Normal" mappings do have a struct page.
  603. *
  604. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  605. * pte bit, in which case this function is trivial. Secondly, an architecture
  606. * may not have a spare pte bit, which requires a more complicated scheme,
  607. * described below.
  608. *
  609. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  610. * special mapping (even if there are underlying and valid "struct pages").
  611. * COWed pages of a VM_PFNMAP are always normal.
  612. *
  613. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  614. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  615. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  616. * mapping will always honor the rule
  617. *
  618. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  619. *
  620. * And for normal mappings this is false.
  621. *
  622. * This restricts such mappings to be a linear translation from virtual address
  623. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  624. * as the vma is not a COW mapping; in that case, we know that all ptes are
  625. * special (because none can have been COWed).
  626. *
  627. *
  628. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  629. *
  630. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  631. * page" backing, however the difference is that _all_ pages with a struct
  632. * page (that is, those where pfn_valid is true) are refcounted and considered
  633. * normal pages by the VM. The disadvantage is that pages are refcounted
  634. * (which can be slower and simply not an option for some PFNMAP users). The
  635. * advantage is that we don't have to follow the strict linearity rule of
  636. * PFNMAP mappings in order to support COWable mappings.
  637. *
  638. */
  639. #ifdef __HAVE_ARCH_PTE_SPECIAL
  640. # define HAVE_PTE_SPECIAL 1
  641. #else
  642. # define HAVE_PTE_SPECIAL 0
  643. #endif
  644. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  645. pte_t pte)
  646. {
  647. unsigned long pfn = pte_pfn(pte);
  648. if (HAVE_PTE_SPECIAL) {
  649. if (likely(!pte_special(pte)))
  650. goto check_pfn;
  651. if (vma->vm_ops && vma->vm_ops->find_special_page)
  652. return vma->vm_ops->find_special_page(vma, addr);
  653. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  654. return NULL;
  655. if (!is_zero_pfn(pfn))
  656. print_bad_pte(vma, addr, pte, NULL);
  657. return NULL;
  658. }
  659. /* !HAVE_PTE_SPECIAL case follows: */
  660. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  661. if (vma->vm_flags & VM_MIXEDMAP) {
  662. if (!pfn_valid(pfn))
  663. return NULL;
  664. goto out;
  665. } else {
  666. unsigned long off;
  667. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  668. if (pfn == vma->vm_pgoff + off)
  669. return NULL;
  670. if (!is_cow_mapping(vma->vm_flags))
  671. return NULL;
  672. }
  673. }
  674. if (is_zero_pfn(pfn))
  675. return NULL;
  676. check_pfn:
  677. if (unlikely(pfn > highest_memmap_pfn)) {
  678. print_bad_pte(vma, addr, pte, NULL);
  679. return NULL;
  680. }
  681. /*
  682. * NOTE! We still have PageReserved() pages in the page tables.
  683. * eg. VDSO mappings can cause them to exist.
  684. */
  685. out:
  686. return pfn_to_page(pfn);
  687. }
  688. /*
  689. * copy one vm_area from one task to the other. Assumes the page tables
  690. * already present in the new task to be cleared in the whole range
  691. * covered by this vma.
  692. */
  693. static inline unsigned long
  694. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  695. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  696. unsigned long addr, int *rss)
  697. {
  698. unsigned long vm_flags = vma->vm_flags;
  699. pte_t pte = *src_pte;
  700. struct page *page;
  701. /* pte contains position in swap or file, so copy. */
  702. if (unlikely(!pte_present(pte))) {
  703. swp_entry_t entry = pte_to_swp_entry(pte);
  704. if (likely(!non_swap_entry(entry))) {
  705. if (swap_duplicate(entry) < 0)
  706. return entry.val;
  707. /* make sure dst_mm is on swapoff's mmlist. */
  708. if (unlikely(list_empty(&dst_mm->mmlist))) {
  709. spin_lock(&mmlist_lock);
  710. if (list_empty(&dst_mm->mmlist))
  711. list_add(&dst_mm->mmlist,
  712. &src_mm->mmlist);
  713. spin_unlock(&mmlist_lock);
  714. }
  715. rss[MM_SWAPENTS]++;
  716. } else if (is_migration_entry(entry)) {
  717. page = migration_entry_to_page(entry);
  718. rss[mm_counter(page)]++;
  719. if (is_write_migration_entry(entry) &&
  720. is_cow_mapping(vm_flags)) {
  721. /*
  722. * COW mappings require pages in both
  723. * parent and child to be set to read.
  724. */
  725. make_migration_entry_read(&entry);
  726. pte = swp_entry_to_pte(entry);
  727. if (pte_swp_soft_dirty(*src_pte))
  728. pte = pte_swp_mksoft_dirty(pte);
  729. set_pte_at(src_mm, addr, src_pte, pte);
  730. }
  731. }
  732. goto out_set_pte;
  733. }
  734. /*
  735. * If it's a COW mapping, write protect it both
  736. * in the parent and the child
  737. */
  738. if (is_cow_mapping(vm_flags)) {
  739. ptep_set_wrprotect(src_mm, addr, src_pte);
  740. pte = pte_wrprotect(pte);
  741. }
  742. /*
  743. * If it's a shared mapping, mark it clean in
  744. * the child
  745. */
  746. if (vm_flags & VM_SHARED)
  747. pte = pte_mkclean(pte);
  748. pte = pte_mkold(pte);
  749. page = vm_normal_page(vma, addr, pte);
  750. if (page) {
  751. get_page(page);
  752. page_dup_rmap(page, false);
  753. rss[mm_counter(page)]++;
  754. }
  755. out_set_pte:
  756. set_pte_at(dst_mm, addr, dst_pte, pte);
  757. return 0;
  758. }
  759. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  760. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  761. unsigned long addr, unsigned long end)
  762. {
  763. pte_t *orig_src_pte, *orig_dst_pte;
  764. pte_t *src_pte, *dst_pte;
  765. spinlock_t *src_ptl, *dst_ptl;
  766. int progress = 0;
  767. int rss[NR_MM_COUNTERS];
  768. swp_entry_t entry = (swp_entry_t){0};
  769. again:
  770. init_rss_vec(rss);
  771. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  772. if (!dst_pte)
  773. return -ENOMEM;
  774. src_pte = pte_offset_map(src_pmd, addr);
  775. src_ptl = pte_lockptr(src_mm, src_pmd);
  776. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  777. orig_src_pte = src_pte;
  778. orig_dst_pte = dst_pte;
  779. arch_enter_lazy_mmu_mode();
  780. do {
  781. /*
  782. * We are holding two locks at this point - either of them
  783. * could generate latencies in another task on another CPU.
  784. */
  785. if (progress >= 32) {
  786. progress = 0;
  787. if (need_resched() ||
  788. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  789. break;
  790. }
  791. if (pte_none(*src_pte)) {
  792. progress++;
  793. continue;
  794. }
  795. entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
  796. vma, addr, rss);
  797. if (entry.val)
  798. break;
  799. progress += 8;
  800. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  801. arch_leave_lazy_mmu_mode();
  802. spin_unlock(src_ptl);
  803. pte_unmap(orig_src_pte);
  804. add_mm_rss_vec(dst_mm, rss);
  805. pte_unmap_unlock(orig_dst_pte, dst_ptl);
  806. cond_resched();
  807. if (entry.val) {
  808. if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
  809. return -ENOMEM;
  810. progress = 0;
  811. }
  812. if (addr != end)
  813. goto again;
  814. return 0;
  815. }
  816. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  817. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  818. unsigned long addr, unsigned long end)
  819. {
  820. pmd_t *src_pmd, *dst_pmd;
  821. unsigned long next;
  822. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  823. if (!dst_pmd)
  824. return -ENOMEM;
  825. src_pmd = pmd_offset(src_pud, addr);
  826. do {
  827. next = pmd_addr_end(addr, end);
  828. if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
  829. int err;
  830. VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
  831. err = copy_huge_pmd(dst_mm, src_mm,
  832. dst_pmd, src_pmd, addr, vma);
  833. if (err == -ENOMEM)
  834. return -ENOMEM;
  835. if (!err)
  836. continue;
  837. /* fall through */
  838. }
  839. if (pmd_none_or_clear_bad(src_pmd))
  840. continue;
  841. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  842. vma, addr, next))
  843. return -ENOMEM;
  844. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  845. return 0;
  846. }
  847. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  848. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  849. unsigned long addr, unsigned long end)
  850. {
  851. pud_t *src_pud, *dst_pud;
  852. unsigned long next;
  853. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  854. if (!dst_pud)
  855. return -ENOMEM;
  856. src_pud = pud_offset(src_pgd, addr);
  857. do {
  858. next = pud_addr_end(addr, end);
  859. if (pud_none_or_clear_bad(src_pud))
  860. continue;
  861. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  862. vma, addr, next))
  863. return -ENOMEM;
  864. } while (dst_pud++, src_pud++, addr = next, addr != end);
  865. return 0;
  866. }
  867. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  868. struct vm_area_struct *vma)
  869. {
  870. pgd_t *src_pgd, *dst_pgd;
  871. unsigned long next;
  872. unsigned long addr = vma->vm_start;
  873. unsigned long end = vma->vm_end;
  874. unsigned long mmun_start; /* For mmu_notifiers */
  875. unsigned long mmun_end; /* For mmu_notifiers */
  876. bool is_cow;
  877. int ret;
  878. /*
  879. * Don't copy ptes where a page fault will fill them correctly.
  880. * Fork becomes much lighter when there are big shared or private
  881. * readonly mappings. The tradeoff is that copy_page_range is more
  882. * efficient than faulting.
  883. */
  884. if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
  885. !vma->anon_vma)
  886. return 0;
  887. if (is_vm_hugetlb_page(vma))
  888. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  889. if (unlikely(vma->vm_flags & VM_PFNMAP)) {
  890. /*
  891. * We do not free on error cases below as remove_vma
  892. * gets called on error from higher level routine
  893. */
  894. ret = track_pfn_copy(vma);
  895. if (ret)
  896. return ret;
  897. }
  898. /*
  899. * We need to invalidate the secondary MMU mappings only when
  900. * there could be a permission downgrade on the ptes of the
  901. * parent mm. And a permission downgrade will only happen if
  902. * is_cow_mapping() returns true.
  903. */
  904. is_cow = is_cow_mapping(vma->vm_flags);
  905. mmun_start = addr;
  906. mmun_end = end;
  907. if (is_cow)
  908. mmu_notifier_invalidate_range_start(src_mm, mmun_start,
  909. mmun_end);
  910. ret = 0;
  911. dst_pgd = pgd_offset(dst_mm, addr);
  912. src_pgd = pgd_offset(src_mm, addr);
  913. do {
  914. next = pgd_addr_end(addr, end);
  915. if (pgd_none_or_clear_bad(src_pgd))
  916. continue;
  917. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  918. vma, addr, next))) {
  919. ret = -ENOMEM;
  920. break;
  921. }
  922. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  923. if (is_cow)
  924. mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
  925. return ret;
  926. }
  927. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  928. struct vm_area_struct *vma, pmd_t *pmd,
  929. unsigned long addr, unsigned long end,
  930. struct zap_details *details)
  931. {
  932. struct mm_struct *mm = tlb->mm;
  933. int force_flush = 0;
  934. int rss[NR_MM_COUNTERS];
  935. spinlock_t *ptl;
  936. pte_t *start_pte;
  937. pte_t *pte;
  938. swp_entry_t entry;
  939. again:
  940. init_rss_vec(rss);
  941. start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  942. pte = start_pte;
  943. arch_enter_lazy_mmu_mode();
  944. do {
  945. pte_t ptent = *pte;
  946. if (pte_none(ptent)) {
  947. continue;
  948. }
  949. if (pte_present(ptent)) {
  950. struct page *page;
  951. page = vm_normal_page(vma, addr, ptent);
  952. if (unlikely(details) && page) {
  953. /*
  954. * unmap_shared_mapping_pages() wants to
  955. * invalidate cache without truncating:
  956. * unmap shared but keep private pages.
  957. */
  958. if (details->check_mapping &&
  959. details->check_mapping != page->mapping)
  960. continue;
  961. }
  962. ptent = ptep_get_and_clear_full(mm, addr, pte,
  963. tlb->fullmm);
  964. tlb_remove_tlb_entry(tlb, pte, addr);
  965. if (unlikely(!page))
  966. continue;
  967. if (!PageAnon(page)) {
  968. if (pte_dirty(ptent)) {
  969. force_flush = 1;
  970. set_page_dirty(page);
  971. }
  972. if (pte_young(ptent) &&
  973. likely(!(vma->vm_flags & VM_SEQ_READ)))
  974. mark_page_accessed(page);
  975. }
  976. rss[mm_counter(page)]--;
  977. page_remove_rmap(page, false);
  978. if (unlikely(page_mapcount(page) < 0))
  979. print_bad_pte(vma, addr, ptent, page);
  980. if (unlikely(!__tlb_remove_page(tlb, page))) {
  981. force_flush = 1;
  982. addr += PAGE_SIZE;
  983. break;
  984. }
  985. continue;
  986. }
  987. /* If details->check_mapping, we leave swap entries. */
  988. if (unlikely(details))
  989. continue;
  990. entry = pte_to_swp_entry(ptent);
  991. if (!non_swap_entry(entry))
  992. rss[MM_SWAPENTS]--;
  993. else if (is_migration_entry(entry)) {
  994. struct page *page;
  995. page = migration_entry_to_page(entry);
  996. rss[mm_counter(page)]--;
  997. }
  998. if (unlikely(!free_swap_and_cache(entry)))
  999. print_bad_pte(vma, addr, ptent, NULL);
  1000. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  1001. } while (pte++, addr += PAGE_SIZE, addr != end);
  1002. add_mm_rss_vec(mm, rss);
  1003. arch_leave_lazy_mmu_mode();
  1004. /* Do the actual TLB flush before dropping ptl */
  1005. if (force_flush)
  1006. tlb_flush_mmu_tlbonly(tlb);
  1007. pte_unmap_unlock(start_pte, ptl);
  1008. /*
  1009. * If we forced a TLB flush (either due to running out of
  1010. * batch buffers or because we needed to flush dirty TLB
  1011. * entries before releasing the ptl), free the batched
  1012. * memory too. Restart if we didn't do everything.
  1013. */
  1014. if (force_flush) {
  1015. force_flush = 0;
  1016. tlb_flush_mmu_free(tlb);
  1017. if (addr != end)
  1018. goto again;
  1019. }
  1020. return addr;
  1021. }
  1022. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  1023. struct vm_area_struct *vma, pud_t *pud,
  1024. unsigned long addr, unsigned long end,
  1025. struct zap_details *details)
  1026. {
  1027. pmd_t *pmd;
  1028. unsigned long next;
  1029. pmd = pmd_offset(pud, addr);
  1030. do {
  1031. next = pmd_addr_end(addr, end);
  1032. if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
  1033. if (next - addr != HPAGE_PMD_SIZE) {
  1034. #ifdef CONFIG_DEBUG_VM
  1035. if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
  1036. pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
  1037. __func__, addr, end,
  1038. vma->vm_start,
  1039. vma->vm_end);
  1040. BUG();
  1041. }
  1042. #endif
  1043. split_huge_pmd(vma, pmd, addr);
  1044. } else if (zap_huge_pmd(tlb, vma, pmd, addr))
  1045. goto next;
  1046. /* fall through */
  1047. }
  1048. /*
  1049. * Here there can be other concurrent MADV_DONTNEED or
  1050. * trans huge page faults running, and if the pmd is
  1051. * none or trans huge it can change under us. This is
  1052. * because MADV_DONTNEED holds the mmap_sem in read
  1053. * mode.
  1054. */
  1055. if (pmd_none_or_trans_huge_or_clear_bad(pmd))
  1056. goto next;
  1057. next = zap_pte_range(tlb, vma, pmd, addr, next, details);
  1058. next:
  1059. cond_resched();
  1060. } while (pmd++, addr = next, addr != end);
  1061. return addr;
  1062. }
  1063. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  1064. struct vm_area_struct *vma, pgd_t *pgd,
  1065. unsigned long addr, unsigned long end,
  1066. struct zap_details *details)
  1067. {
  1068. pud_t *pud;
  1069. unsigned long next;
  1070. pud = pud_offset(pgd, addr);
  1071. do {
  1072. next = pud_addr_end(addr, end);
  1073. if (pud_none_or_clear_bad(pud))
  1074. continue;
  1075. next = zap_pmd_range(tlb, vma, pud, addr, next, details);
  1076. } while (pud++, addr = next, addr != end);
  1077. return addr;
  1078. }
  1079. static void unmap_page_range(struct mmu_gather *tlb,
  1080. struct vm_area_struct *vma,
  1081. unsigned long addr, unsigned long end,
  1082. struct zap_details *details)
  1083. {
  1084. pgd_t *pgd;
  1085. unsigned long next;
  1086. if (details && !details->check_mapping)
  1087. details = NULL;
  1088. BUG_ON(addr >= end);
  1089. tlb_start_vma(tlb, vma);
  1090. pgd = pgd_offset(vma->vm_mm, addr);
  1091. do {
  1092. next = pgd_addr_end(addr, end);
  1093. if (pgd_none_or_clear_bad(pgd))
  1094. continue;
  1095. next = zap_pud_range(tlb, vma, pgd, addr, next, details);
  1096. } while (pgd++, addr = next, addr != end);
  1097. tlb_end_vma(tlb, vma);
  1098. }
  1099. static void unmap_single_vma(struct mmu_gather *tlb,
  1100. struct vm_area_struct *vma, unsigned long start_addr,
  1101. unsigned long end_addr,
  1102. struct zap_details *details)
  1103. {
  1104. unsigned long start = max(vma->vm_start, start_addr);
  1105. unsigned long end;
  1106. if (start >= vma->vm_end)
  1107. return;
  1108. end = min(vma->vm_end, end_addr);
  1109. if (end <= vma->vm_start)
  1110. return;
  1111. if (vma->vm_file)
  1112. uprobe_munmap(vma, start, end);
  1113. if (unlikely(vma->vm_flags & VM_PFNMAP))
  1114. untrack_pfn(vma, 0, 0);
  1115. if (start != end) {
  1116. if (unlikely(is_vm_hugetlb_page(vma))) {
  1117. /*
  1118. * It is undesirable to test vma->vm_file as it
  1119. * should be non-null for valid hugetlb area.
  1120. * However, vm_file will be NULL in the error
  1121. * cleanup path of mmap_region. When
  1122. * hugetlbfs ->mmap method fails,
  1123. * mmap_region() nullifies vma->vm_file
  1124. * before calling this function to clean up.
  1125. * Since no pte has actually been setup, it is
  1126. * safe to do nothing in this case.
  1127. */
  1128. if (vma->vm_file) {
  1129. i_mmap_lock_write(vma->vm_file->f_mapping);
  1130. __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
  1131. i_mmap_unlock_write(vma->vm_file->f_mapping);
  1132. }
  1133. } else
  1134. unmap_page_range(tlb, vma, start, end, details);
  1135. }
  1136. }
  1137. /**
  1138. * unmap_vmas - unmap a range of memory covered by a list of vma's
  1139. * @tlb: address of the caller's struct mmu_gather
  1140. * @vma: the starting vma
  1141. * @start_addr: virtual address at which to start unmapping
  1142. * @end_addr: virtual address at which to end unmapping
  1143. *
  1144. * Unmap all pages in the vma list.
  1145. *
  1146. * Only addresses between `start' and `end' will be unmapped.
  1147. *
  1148. * The VMA list must be sorted in ascending virtual address order.
  1149. *
  1150. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  1151. * range after unmap_vmas() returns. So the only responsibility here is to
  1152. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  1153. * drops the lock and schedules.
  1154. */
  1155. void unmap_vmas(struct mmu_gather *tlb,
  1156. struct vm_area_struct *vma, unsigned long start_addr,
  1157. unsigned long end_addr)
  1158. {
  1159. struct mm_struct *mm = vma->vm_mm;
  1160. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  1161. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
  1162. unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
  1163. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  1164. }
  1165. /**
  1166. * zap_page_range - remove user pages in a given range
  1167. * @vma: vm_area_struct holding the applicable pages
  1168. * @start: starting address of pages to zap
  1169. * @size: number of bytes to zap
  1170. * @details: details of shared cache invalidation
  1171. *
  1172. * Caller must protect the VMA list
  1173. */
  1174. void zap_page_range(struct vm_area_struct *vma, unsigned long start,
  1175. unsigned long size, struct zap_details *details)
  1176. {
  1177. struct mm_struct *mm = vma->vm_mm;
  1178. struct mmu_gather tlb;
  1179. unsigned long end = start + size;
  1180. lru_add_drain();
  1181. tlb_gather_mmu(&tlb, mm, start, end);
  1182. update_hiwater_rss(mm);
  1183. mmu_notifier_invalidate_range_start(mm, start, end);
  1184. for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
  1185. unmap_single_vma(&tlb, vma, start, end, details);
  1186. mmu_notifier_invalidate_range_end(mm, start, end);
  1187. tlb_finish_mmu(&tlb, start, end);
  1188. }
  1189. /**
  1190. * zap_page_range_single - remove user pages in a given range
  1191. * @vma: vm_area_struct holding the applicable pages
  1192. * @address: starting address of pages to zap
  1193. * @size: number of bytes to zap
  1194. * @details: details of shared cache invalidation
  1195. *
  1196. * The range must fit into one VMA.
  1197. */
  1198. static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
  1199. unsigned long size, struct zap_details *details)
  1200. {
  1201. struct mm_struct *mm = vma->vm_mm;
  1202. struct mmu_gather tlb;
  1203. unsigned long end = address + size;
  1204. lru_add_drain();
  1205. tlb_gather_mmu(&tlb, mm, address, end);
  1206. update_hiwater_rss(mm);
  1207. mmu_notifier_invalidate_range_start(mm, address, end);
  1208. unmap_single_vma(&tlb, vma, address, end, details);
  1209. mmu_notifier_invalidate_range_end(mm, address, end);
  1210. tlb_finish_mmu(&tlb, address, end);
  1211. }
  1212. /**
  1213. * zap_vma_ptes - remove ptes mapping the vma
  1214. * @vma: vm_area_struct holding ptes to be zapped
  1215. * @address: starting address of pages to zap
  1216. * @size: number of bytes to zap
  1217. *
  1218. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  1219. *
  1220. * The entire address range must be fully contained within the vma.
  1221. *
  1222. * Returns 0 if successful.
  1223. */
  1224. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1225. unsigned long size)
  1226. {
  1227. if (address < vma->vm_start || address + size > vma->vm_end ||
  1228. !(vma->vm_flags & VM_PFNMAP))
  1229. return -1;
  1230. zap_page_range_single(vma, address, size, NULL);
  1231. return 0;
  1232. }
  1233. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1234. pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1235. spinlock_t **ptl)
  1236. {
  1237. pgd_t * pgd = pgd_offset(mm, addr);
  1238. pud_t * pud = pud_alloc(mm, pgd, addr);
  1239. if (pud) {
  1240. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1241. if (pmd) {
  1242. VM_BUG_ON(pmd_trans_huge(*pmd));
  1243. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1244. }
  1245. }
  1246. return NULL;
  1247. }
  1248. /*
  1249. * This is the old fallback for page remapping.
  1250. *
  1251. * For historical reasons, it only allows reserved pages. Only
  1252. * old drivers should use this, and they needed to mark their
  1253. * pages reserved for the old functions anyway.
  1254. */
  1255. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1256. struct page *page, pgprot_t prot)
  1257. {
  1258. struct mm_struct *mm = vma->vm_mm;
  1259. int retval;
  1260. pte_t *pte;
  1261. spinlock_t *ptl;
  1262. retval = -EINVAL;
  1263. if (PageAnon(page))
  1264. goto out;
  1265. retval = -ENOMEM;
  1266. flush_dcache_page(page);
  1267. pte = get_locked_pte(mm, addr, &ptl);
  1268. if (!pte)
  1269. goto out;
  1270. retval = -EBUSY;
  1271. if (!pte_none(*pte))
  1272. goto out_unlock;
  1273. /* Ok, finally just insert the thing.. */
  1274. get_page(page);
  1275. inc_mm_counter_fast(mm, mm_counter_file(page));
  1276. page_add_file_rmap(page);
  1277. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1278. retval = 0;
  1279. pte_unmap_unlock(pte, ptl);
  1280. return retval;
  1281. out_unlock:
  1282. pte_unmap_unlock(pte, ptl);
  1283. out:
  1284. return retval;
  1285. }
  1286. /**
  1287. * vm_insert_page - insert single page into user vma
  1288. * @vma: user vma to map to
  1289. * @addr: target user address of this page
  1290. * @page: source kernel page
  1291. *
  1292. * This allows drivers to insert individual pages they've allocated
  1293. * into a user vma.
  1294. *
  1295. * The page has to be a nice clean _individual_ kernel allocation.
  1296. * If you allocate a compound page, you need to have marked it as
  1297. * such (__GFP_COMP), or manually just split the page up yourself
  1298. * (see split_page()).
  1299. *
  1300. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1301. * took an arbitrary page protection parameter. This doesn't allow
  1302. * that. Your vma protection will have to be set up correctly, which
  1303. * means that if you want a shared writable mapping, you'd better
  1304. * ask for a shared writable mapping!
  1305. *
  1306. * The page does not need to be reserved.
  1307. *
  1308. * Usually this function is called from f_op->mmap() handler
  1309. * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
  1310. * Caller must set VM_MIXEDMAP on vma if it wants to call this
  1311. * function from other places, for example from page-fault handler.
  1312. */
  1313. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1314. struct page *page)
  1315. {
  1316. if (addr < vma->vm_start || addr >= vma->vm_end)
  1317. return -EFAULT;
  1318. if (!page_count(page))
  1319. return -EINVAL;
  1320. if (!(vma->vm_flags & VM_MIXEDMAP)) {
  1321. BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
  1322. BUG_ON(vma->vm_flags & VM_PFNMAP);
  1323. vma->vm_flags |= VM_MIXEDMAP;
  1324. }
  1325. return insert_page(vma, addr, page, vma->vm_page_prot);
  1326. }
  1327. EXPORT_SYMBOL(vm_insert_page);
  1328. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1329. pfn_t pfn, pgprot_t prot)
  1330. {
  1331. struct mm_struct *mm = vma->vm_mm;
  1332. int retval;
  1333. pte_t *pte, entry;
  1334. spinlock_t *ptl;
  1335. retval = -ENOMEM;
  1336. pte = get_locked_pte(mm, addr, &ptl);
  1337. if (!pte)
  1338. goto out;
  1339. retval = -EBUSY;
  1340. if (!pte_none(*pte))
  1341. goto out_unlock;
  1342. /* Ok, finally just insert the thing.. */
  1343. if (pfn_t_devmap(pfn))
  1344. entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
  1345. else
  1346. entry = pte_mkspecial(pfn_t_pte(pfn, prot));
  1347. set_pte_at(mm, addr, pte, entry);
  1348. update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
  1349. retval = 0;
  1350. out_unlock:
  1351. pte_unmap_unlock(pte, ptl);
  1352. out:
  1353. return retval;
  1354. }
  1355. /**
  1356. * vm_insert_pfn - insert single pfn into user vma
  1357. * @vma: user vma to map to
  1358. * @addr: target user address of this page
  1359. * @pfn: source kernel pfn
  1360. *
  1361. * Similar to vm_insert_page, this allows drivers to insert individual pages
  1362. * they've allocated into a user vma. Same comments apply.
  1363. *
  1364. * This function should only be called from a vm_ops->fault handler, and
  1365. * in that case the handler should return NULL.
  1366. *
  1367. * vma cannot be a COW mapping.
  1368. *
  1369. * As this is called only for pages that do not currently exist, we
  1370. * do not need to flush old virtual caches or the TLB.
  1371. */
  1372. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1373. unsigned long pfn)
  1374. {
  1375. return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
  1376. }
  1377. EXPORT_SYMBOL(vm_insert_pfn);
  1378. /**
  1379. * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
  1380. * @vma: user vma to map to
  1381. * @addr: target user address of this page
  1382. * @pfn: source kernel pfn
  1383. * @pgprot: pgprot flags for the inserted page
  1384. *
  1385. * This is exactly like vm_insert_pfn, except that it allows drivers to
  1386. * to override pgprot on a per-page basis.
  1387. *
  1388. * This only makes sense for IO mappings, and it makes no sense for
  1389. * cow mappings. In general, using multiple vmas is preferable;
  1390. * vm_insert_pfn_prot should only be used if using multiple VMAs is
  1391. * impractical.
  1392. */
  1393. int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
  1394. unsigned long pfn, pgprot_t pgprot)
  1395. {
  1396. int ret;
  1397. /*
  1398. * Technically, architectures with pte_special can avoid all these
  1399. * restrictions (same for remap_pfn_range). However we would like
  1400. * consistency in testing and feature parity among all, so we should
  1401. * try to keep these invariants in place for everybody.
  1402. */
  1403. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1404. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1405. (VM_PFNMAP|VM_MIXEDMAP));
  1406. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1407. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1408. if (addr < vma->vm_start || addr >= vma->vm_end)
  1409. return -EFAULT;
  1410. if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
  1411. return -EINVAL;
  1412. ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
  1413. return ret;
  1414. }
  1415. EXPORT_SYMBOL(vm_insert_pfn_prot);
  1416. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1417. pfn_t pfn)
  1418. {
  1419. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1420. if (addr < vma->vm_start || addr >= vma->vm_end)
  1421. return -EFAULT;
  1422. /*
  1423. * If we don't have pte special, then we have to use the pfn_valid()
  1424. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1425. * refcount the page if pfn_valid is true (hence insert_page rather
  1426. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  1427. * without pte special, it would there be refcounted as a normal page.
  1428. */
  1429. if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
  1430. struct page *page;
  1431. /*
  1432. * At this point we are committed to insert_page()
  1433. * regardless of whether the caller specified flags that
  1434. * result in pfn_t_has_page() == false.
  1435. */
  1436. page = pfn_to_page(pfn_t_to_pfn(pfn));
  1437. return insert_page(vma, addr, page, vma->vm_page_prot);
  1438. }
  1439. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1440. }
  1441. EXPORT_SYMBOL(vm_insert_mixed);
  1442. /*
  1443. * maps a range of physical memory into the requested pages. the old
  1444. * mappings are removed. any references to nonexistent pages results
  1445. * in null mappings (currently treated as "copy-on-access")
  1446. */
  1447. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1448. unsigned long addr, unsigned long end,
  1449. unsigned long pfn, pgprot_t prot)
  1450. {
  1451. pte_t *pte;
  1452. spinlock_t *ptl;
  1453. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1454. if (!pte)
  1455. return -ENOMEM;
  1456. arch_enter_lazy_mmu_mode();
  1457. do {
  1458. BUG_ON(!pte_none(*pte));
  1459. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1460. pfn++;
  1461. } while (pte++, addr += PAGE_SIZE, addr != end);
  1462. arch_leave_lazy_mmu_mode();
  1463. pte_unmap_unlock(pte - 1, ptl);
  1464. return 0;
  1465. }
  1466. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1467. unsigned long addr, unsigned long end,
  1468. unsigned long pfn, pgprot_t prot)
  1469. {
  1470. pmd_t *pmd;
  1471. unsigned long next;
  1472. pfn -= addr >> PAGE_SHIFT;
  1473. pmd = pmd_alloc(mm, pud, addr);
  1474. if (!pmd)
  1475. return -ENOMEM;
  1476. VM_BUG_ON(pmd_trans_huge(*pmd));
  1477. do {
  1478. next = pmd_addr_end(addr, end);
  1479. if (remap_pte_range(mm, pmd, addr, next,
  1480. pfn + (addr >> PAGE_SHIFT), prot))
  1481. return -ENOMEM;
  1482. } while (pmd++, addr = next, addr != end);
  1483. return 0;
  1484. }
  1485. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1486. unsigned long addr, unsigned long end,
  1487. unsigned long pfn, pgprot_t prot)
  1488. {
  1489. pud_t *pud;
  1490. unsigned long next;
  1491. pfn -= addr >> PAGE_SHIFT;
  1492. pud = pud_alloc(mm, pgd, addr);
  1493. if (!pud)
  1494. return -ENOMEM;
  1495. do {
  1496. next = pud_addr_end(addr, end);
  1497. if (remap_pmd_range(mm, pud, addr, next,
  1498. pfn + (addr >> PAGE_SHIFT), prot))
  1499. return -ENOMEM;
  1500. } while (pud++, addr = next, addr != end);
  1501. return 0;
  1502. }
  1503. /**
  1504. * remap_pfn_range - remap kernel memory to userspace
  1505. * @vma: user vma to map to
  1506. * @addr: target user address to start at
  1507. * @pfn: physical address of kernel memory
  1508. * @size: size of map area
  1509. * @prot: page protection flags for this mapping
  1510. *
  1511. * Note: this is only safe if the mm semaphore is held when called.
  1512. */
  1513. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1514. unsigned long pfn, unsigned long size, pgprot_t prot)
  1515. {
  1516. pgd_t *pgd;
  1517. unsigned long next;
  1518. unsigned long end = addr + PAGE_ALIGN(size);
  1519. struct mm_struct *mm = vma->vm_mm;
  1520. int err;
  1521. /*
  1522. * Physically remapped pages are special. Tell the
  1523. * rest of the world about it:
  1524. * VM_IO tells people not to look at these pages
  1525. * (accesses can have side effects).
  1526. * VM_PFNMAP tells the core MM that the base pages are just
  1527. * raw PFN mappings, and do not have a "struct page" associated
  1528. * with them.
  1529. * VM_DONTEXPAND
  1530. * Disable vma merging and expanding with mremap().
  1531. * VM_DONTDUMP
  1532. * Omit vma from core dump, even when VM_IO turned off.
  1533. *
  1534. * There's a horrible special case to handle copy-on-write
  1535. * behaviour that some programs depend on. We mark the "original"
  1536. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1537. * See vm_normal_page() for details.
  1538. */
  1539. if (is_cow_mapping(vma->vm_flags)) {
  1540. if (addr != vma->vm_start || end != vma->vm_end)
  1541. return -EINVAL;
  1542. vma->vm_pgoff = pfn;
  1543. }
  1544. err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
  1545. if (err)
  1546. return -EINVAL;
  1547. vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
  1548. BUG_ON(addr >= end);
  1549. pfn -= addr >> PAGE_SHIFT;
  1550. pgd = pgd_offset(mm, addr);
  1551. flush_cache_range(vma, addr, end);
  1552. do {
  1553. next = pgd_addr_end(addr, end);
  1554. err = remap_pud_range(mm, pgd, addr, next,
  1555. pfn + (addr >> PAGE_SHIFT), prot);
  1556. if (err)
  1557. break;
  1558. } while (pgd++, addr = next, addr != end);
  1559. if (err)
  1560. untrack_pfn(vma, pfn, PAGE_ALIGN(size));
  1561. return err;
  1562. }
  1563. EXPORT_SYMBOL(remap_pfn_range);
  1564. /**
  1565. * vm_iomap_memory - remap memory to userspace
  1566. * @vma: user vma to map to
  1567. * @start: start of area
  1568. * @len: size of area
  1569. *
  1570. * This is a simplified io_remap_pfn_range() for common driver use. The
  1571. * driver just needs to give us the physical memory range to be mapped,
  1572. * we'll figure out the rest from the vma information.
  1573. *
  1574. * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
  1575. * whatever write-combining details or similar.
  1576. */
  1577. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
  1578. {
  1579. unsigned long vm_len, pfn, pages;
  1580. /* Check that the physical memory area passed in looks valid */
  1581. if (start + len < start)
  1582. return -EINVAL;
  1583. /*
  1584. * You *really* shouldn't map things that aren't page-aligned,
  1585. * but we've historically allowed it because IO memory might
  1586. * just have smaller alignment.
  1587. */
  1588. len += start & ~PAGE_MASK;
  1589. pfn = start >> PAGE_SHIFT;
  1590. pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
  1591. if (pfn + pages < pfn)
  1592. return -EINVAL;
  1593. /* We start the mapping 'vm_pgoff' pages into the area */
  1594. if (vma->vm_pgoff > pages)
  1595. return -EINVAL;
  1596. pfn += vma->vm_pgoff;
  1597. pages -= vma->vm_pgoff;
  1598. /* Can we fit all of the mapping? */
  1599. vm_len = vma->vm_end - vma->vm_start;
  1600. if (vm_len >> PAGE_SHIFT > pages)
  1601. return -EINVAL;
  1602. /* Ok, let it rip */
  1603. return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
  1604. }
  1605. EXPORT_SYMBOL(vm_iomap_memory);
  1606. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1607. unsigned long addr, unsigned long end,
  1608. pte_fn_t fn, void *data)
  1609. {
  1610. pte_t *pte;
  1611. int err;
  1612. pgtable_t token;
  1613. spinlock_t *uninitialized_var(ptl);
  1614. pte = (mm == &init_mm) ?
  1615. pte_alloc_kernel(pmd, addr) :
  1616. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1617. if (!pte)
  1618. return -ENOMEM;
  1619. BUG_ON(pmd_huge(*pmd));
  1620. arch_enter_lazy_mmu_mode();
  1621. token = pmd_pgtable(*pmd);
  1622. do {
  1623. err = fn(pte++, token, addr, data);
  1624. if (err)
  1625. break;
  1626. } while (addr += PAGE_SIZE, addr != end);
  1627. arch_leave_lazy_mmu_mode();
  1628. if (mm != &init_mm)
  1629. pte_unmap_unlock(pte-1, ptl);
  1630. return err;
  1631. }
  1632. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1633. unsigned long addr, unsigned long end,
  1634. pte_fn_t fn, void *data)
  1635. {
  1636. pmd_t *pmd;
  1637. unsigned long next;
  1638. int err;
  1639. BUG_ON(pud_huge(*pud));
  1640. pmd = pmd_alloc(mm, pud, addr);
  1641. if (!pmd)
  1642. return -ENOMEM;
  1643. do {
  1644. next = pmd_addr_end(addr, end);
  1645. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1646. if (err)
  1647. break;
  1648. } while (pmd++, addr = next, addr != end);
  1649. return err;
  1650. }
  1651. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1652. unsigned long addr, unsigned long end,
  1653. pte_fn_t fn, void *data)
  1654. {
  1655. pud_t *pud;
  1656. unsigned long next;
  1657. int err;
  1658. pud = pud_alloc(mm, pgd, addr);
  1659. if (!pud)
  1660. return -ENOMEM;
  1661. do {
  1662. next = pud_addr_end(addr, end);
  1663. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1664. if (err)
  1665. break;
  1666. } while (pud++, addr = next, addr != end);
  1667. return err;
  1668. }
  1669. /*
  1670. * Scan a region of virtual memory, filling in page tables as necessary
  1671. * and calling a provided function on each leaf page table.
  1672. */
  1673. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1674. unsigned long size, pte_fn_t fn, void *data)
  1675. {
  1676. pgd_t *pgd;
  1677. unsigned long next;
  1678. unsigned long end = addr + size;
  1679. int err;
  1680. if (WARN_ON(addr >= end))
  1681. return -EINVAL;
  1682. pgd = pgd_offset(mm, addr);
  1683. do {
  1684. next = pgd_addr_end(addr, end);
  1685. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1686. if (err)
  1687. break;
  1688. } while (pgd++, addr = next, addr != end);
  1689. return err;
  1690. }
  1691. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1692. /*
  1693. * handle_pte_fault chooses page fault handler according to an entry which was
  1694. * read non-atomically. Before making any commitment, on those architectures
  1695. * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
  1696. * parts, do_swap_page must check under lock before unmapping the pte and
  1697. * proceeding (but do_wp_page is only called after already making such a check;
  1698. * and do_anonymous_page can safely check later on).
  1699. */
  1700. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1701. pte_t *page_table, pte_t orig_pte)
  1702. {
  1703. int same = 1;
  1704. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1705. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1706. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1707. spin_lock(ptl);
  1708. same = pte_same(*page_table, orig_pte);
  1709. spin_unlock(ptl);
  1710. }
  1711. #endif
  1712. pte_unmap(page_table);
  1713. return same;
  1714. }
  1715. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1716. {
  1717. debug_dma_assert_idle(src);
  1718. /*
  1719. * If the source page was a PFN mapping, we don't have
  1720. * a "struct page" for it. We do a best-effort copy by
  1721. * just copying from the original user address. If that
  1722. * fails, we just zero-fill it. Live with it.
  1723. */
  1724. if (unlikely(!src)) {
  1725. void *kaddr = kmap_atomic(dst);
  1726. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1727. /*
  1728. * This really shouldn't fail, because the page is there
  1729. * in the page tables. But it might just be unreadable,
  1730. * in which case we just give up and fill the result with
  1731. * zeroes.
  1732. */
  1733. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1734. clear_page(kaddr);
  1735. kunmap_atomic(kaddr);
  1736. flush_dcache_page(dst);
  1737. } else
  1738. copy_user_highpage(dst, src, va, vma);
  1739. }
  1740. static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
  1741. {
  1742. struct file *vm_file = vma->vm_file;
  1743. if (vm_file)
  1744. return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
  1745. /*
  1746. * Special mappings (e.g. VDSO) do not have any file so fake
  1747. * a default GFP_KERNEL for them.
  1748. */
  1749. return GFP_KERNEL;
  1750. }
  1751. /*
  1752. * Notify the address space that the page is about to become writable so that
  1753. * it can prohibit this or wait for the page to get into an appropriate state.
  1754. *
  1755. * We do this without the lock held, so that it can sleep if it needs to.
  1756. */
  1757. static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
  1758. unsigned long address)
  1759. {
  1760. struct vm_fault vmf;
  1761. int ret;
  1762. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  1763. vmf.pgoff = page->index;
  1764. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  1765. vmf.gfp_mask = __get_fault_gfp_mask(vma);
  1766. vmf.page = page;
  1767. vmf.cow_page = NULL;
  1768. ret = vma->vm_ops->page_mkwrite(vma, &vmf);
  1769. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
  1770. return ret;
  1771. if (unlikely(!(ret & VM_FAULT_LOCKED))) {
  1772. lock_page(page);
  1773. if (!page->mapping) {
  1774. unlock_page(page);
  1775. return 0; /* retry */
  1776. }
  1777. ret |= VM_FAULT_LOCKED;
  1778. } else
  1779. VM_BUG_ON_PAGE(!PageLocked(page), page);
  1780. return ret;
  1781. }
  1782. /*
  1783. * Handle write page faults for pages that can be reused in the current vma
  1784. *
  1785. * This can happen either due to the mapping being with the VM_SHARED flag,
  1786. * or due to us being the last reference standing to the page. In either
  1787. * case, all we need to do here is to mark the page as writable and update
  1788. * any related book-keeping.
  1789. */
  1790. static inline int wp_page_reuse(struct mm_struct *mm,
  1791. struct vm_area_struct *vma, unsigned long address,
  1792. pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
  1793. struct page *page, int page_mkwrite,
  1794. int dirty_shared)
  1795. __releases(ptl)
  1796. {
  1797. pte_t entry;
  1798. /*
  1799. * Clear the pages cpupid information as the existing
  1800. * information potentially belongs to a now completely
  1801. * unrelated process.
  1802. */
  1803. if (page)
  1804. page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
  1805. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1806. entry = pte_mkyoung(orig_pte);
  1807. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1808. if (ptep_set_access_flags(vma, address, page_table, entry, 1))
  1809. update_mmu_cache(vma, address, page_table);
  1810. pte_unmap_unlock(page_table, ptl);
  1811. if (dirty_shared) {
  1812. struct address_space *mapping;
  1813. int dirtied;
  1814. if (!page_mkwrite)
  1815. lock_page(page);
  1816. dirtied = set_page_dirty(page);
  1817. VM_BUG_ON_PAGE(PageAnon(page), page);
  1818. mapping = page->mapping;
  1819. unlock_page(page);
  1820. page_cache_release(page);
  1821. if ((dirtied || page_mkwrite) && mapping) {
  1822. /*
  1823. * Some device drivers do not set page.mapping
  1824. * but still dirty their pages
  1825. */
  1826. balance_dirty_pages_ratelimited(mapping);
  1827. }
  1828. if (!page_mkwrite)
  1829. file_update_time(vma->vm_file);
  1830. }
  1831. return VM_FAULT_WRITE;
  1832. }
  1833. /*
  1834. * Handle the case of a page which we actually need to copy to a new page.
  1835. *
  1836. * Called with mmap_sem locked and the old page referenced, but
  1837. * without the ptl held.
  1838. *
  1839. * High level logic flow:
  1840. *
  1841. * - Allocate a page, copy the content of the old page to the new one.
  1842. * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
  1843. * - Take the PTL. If the pte changed, bail out and release the allocated page
  1844. * - If the pte is still the way we remember it, update the page table and all
  1845. * relevant references. This includes dropping the reference the page-table
  1846. * held to the old page, as well as updating the rmap.
  1847. * - In any case, unlock the PTL and drop the reference we took to the old page.
  1848. */
  1849. static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
  1850. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1851. pte_t orig_pte, struct page *old_page)
  1852. {
  1853. struct page *new_page = NULL;
  1854. spinlock_t *ptl = NULL;
  1855. pte_t entry;
  1856. int page_copied = 0;
  1857. const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */
  1858. const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */
  1859. struct mem_cgroup *memcg;
  1860. if (unlikely(anon_vma_prepare(vma)))
  1861. goto oom;
  1862. if (is_zero_pfn(pte_pfn(orig_pte))) {
  1863. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  1864. if (!new_page)
  1865. goto oom;
  1866. } else {
  1867. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  1868. if (!new_page)
  1869. goto oom;
  1870. cow_user_page(new_page, old_page, address, vma);
  1871. }
  1872. if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
  1873. goto oom_free_new;
  1874. __SetPageUptodate(new_page);
  1875. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1876. /*
  1877. * Re-check the pte - we dropped the lock
  1878. */
  1879. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1880. if (likely(pte_same(*page_table, orig_pte))) {
  1881. if (old_page) {
  1882. if (!PageAnon(old_page)) {
  1883. dec_mm_counter_fast(mm,
  1884. mm_counter_file(old_page));
  1885. inc_mm_counter_fast(mm, MM_ANONPAGES);
  1886. }
  1887. } else {
  1888. inc_mm_counter_fast(mm, MM_ANONPAGES);
  1889. }
  1890. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1891. entry = mk_pte(new_page, vma->vm_page_prot);
  1892. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1893. /*
  1894. * Clear the pte entry and flush it first, before updating the
  1895. * pte with the new entry. This will avoid a race condition
  1896. * seen in the presence of one thread doing SMC and another
  1897. * thread doing COW.
  1898. */
  1899. ptep_clear_flush_notify(vma, address, page_table);
  1900. page_add_new_anon_rmap(new_page, vma, address, false);
  1901. mem_cgroup_commit_charge(new_page, memcg, false, false);
  1902. lru_cache_add_active_or_unevictable(new_page, vma);
  1903. /*
  1904. * We call the notify macro here because, when using secondary
  1905. * mmu page tables (such as kvm shadow page tables), we want the
  1906. * new page to be mapped directly into the secondary page table.
  1907. */
  1908. set_pte_at_notify(mm, address, page_table, entry);
  1909. update_mmu_cache(vma, address, page_table);
  1910. if (old_page) {
  1911. /*
  1912. * Only after switching the pte to the new page may
  1913. * we remove the mapcount here. Otherwise another
  1914. * process may come and find the rmap count decremented
  1915. * before the pte is switched to the new page, and
  1916. * "reuse" the old page writing into it while our pte
  1917. * here still points into it and can be read by other
  1918. * threads.
  1919. *
  1920. * The critical issue is to order this
  1921. * page_remove_rmap with the ptp_clear_flush above.
  1922. * Those stores are ordered by (if nothing else,)
  1923. * the barrier present in the atomic_add_negative
  1924. * in page_remove_rmap.
  1925. *
  1926. * Then the TLB flush in ptep_clear_flush ensures that
  1927. * no process can access the old page before the
  1928. * decremented mapcount is visible. And the old page
  1929. * cannot be reused until after the decremented
  1930. * mapcount is visible. So transitively, TLBs to
  1931. * old page will be flushed before it can be reused.
  1932. */
  1933. page_remove_rmap(old_page, false);
  1934. }
  1935. /* Free the old page.. */
  1936. new_page = old_page;
  1937. page_copied = 1;
  1938. } else {
  1939. mem_cgroup_cancel_charge(new_page, memcg, false);
  1940. }
  1941. if (new_page)
  1942. page_cache_release(new_page);
  1943. pte_unmap_unlock(page_table, ptl);
  1944. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1945. if (old_page) {
  1946. /*
  1947. * Don't let another task, with possibly unlocked vma,
  1948. * keep the mlocked page.
  1949. */
  1950. if (page_copied && (vma->vm_flags & VM_LOCKED)) {
  1951. lock_page(old_page); /* LRU manipulation */
  1952. if (PageMlocked(old_page))
  1953. munlock_vma_page(old_page);
  1954. unlock_page(old_page);
  1955. }
  1956. page_cache_release(old_page);
  1957. }
  1958. return page_copied ? VM_FAULT_WRITE : 0;
  1959. oom_free_new:
  1960. page_cache_release(new_page);
  1961. oom:
  1962. if (old_page)
  1963. page_cache_release(old_page);
  1964. return VM_FAULT_OOM;
  1965. }
  1966. /*
  1967. * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
  1968. * mapping
  1969. */
  1970. static int wp_pfn_shared(struct mm_struct *mm,
  1971. struct vm_area_struct *vma, unsigned long address,
  1972. pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
  1973. pmd_t *pmd)
  1974. {
  1975. if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
  1976. struct vm_fault vmf = {
  1977. .page = NULL,
  1978. .pgoff = linear_page_index(vma, address),
  1979. .virtual_address = (void __user *)(address & PAGE_MASK),
  1980. .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
  1981. };
  1982. int ret;
  1983. pte_unmap_unlock(page_table, ptl);
  1984. ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
  1985. if (ret & VM_FAULT_ERROR)
  1986. return ret;
  1987. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1988. /*
  1989. * We might have raced with another page fault while we
  1990. * released the pte_offset_map_lock.
  1991. */
  1992. if (!pte_same(*page_table, orig_pte)) {
  1993. pte_unmap_unlock(page_table, ptl);
  1994. return 0;
  1995. }
  1996. }
  1997. return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
  1998. NULL, 0, 0);
  1999. }
  2000. static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
  2001. unsigned long address, pte_t *page_table,
  2002. pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
  2003. struct page *old_page)
  2004. __releases(ptl)
  2005. {
  2006. int page_mkwrite = 0;
  2007. page_cache_get(old_page);
  2008. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  2009. int tmp;
  2010. pte_unmap_unlock(page_table, ptl);
  2011. tmp = do_page_mkwrite(vma, old_page, address);
  2012. if (unlikely(!tmp || (tmp &
  2013. (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
  2014. page_cache_release(old_page);
  2015. return tmp;
  2016. }
  2017. /*
  2018. * Since we dropped the lock we need to revalidate
  2019. * the PTE as someone else may have changed it. If
  2020. * they did, we just return, as we can count on the
  2021. * MMU to tell us if they didn't also make it writable.
  2022. */
  2023. page_table = pte_offset_map_lock(mm, pmd, address,
  2024. &ptl);
  2025. if (!pte_same(*page_table, orig_pte)) {
  2026. unlock_page(old_page);
  2027. pte_unmap_unlock(page_table, ptl);
  2028. page_cache_release(old_page);
  2029. return 0;
  2030. }
  2031. page_mkwrite = 1;
  2032. }
  2033. return wp_page_reuse(mm, vma, address, page_table, ptl,
  2034. orig_pte, old_page, page_mkwrite, 1);
  2035. }
  2036. /*
  2037. * This routine handles present pages, when users try to write
  2038. * to a shared page. It is done by copying the page to a new address
  2039. * and decrementing the shared-page counter for the old page.
  2040. *
  2041. * Note that this routine assumes that the protection checks have been
  2042. * done by the caller (the low-level page fault routine in most cases).
  2043. * Thus we can safely just mark it writable once we've done any necessary
  2044. * COW.
  2045. *
  2046. * We also mark the page dirty at this point even though the page will
  2047. * change only once the write actually happens. This avoids a few races,
  2048. * and potentially makes it more efficient.
  2049. *
  2050. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2051. * but allow concurrent faults), with pte both mapped and locked.
  2052. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2053. */
  2054. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2055. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2056. spinlock_t *ptl, pte_t orig_pte)
  2057. __releases(ptl)
  2058. {
  2059. struct page *old_page;
  2060. old_page = vm_normal_page(vma, address, orig_pte);
  2061. if (!old_page) {
  2062. /*
  2063. * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
  2064. * VM_PFNMAP VMA.
  2065. *
  2066. * We should not cow pages in a shared writeable mapping.
  2067. * Just mark the pages writable and/or call ops->pfn_mkwrite.
  2068. */
  2069. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2070. (VM_WRITE|VM_SHARED))
  2071. return wp_pfn_shared(mm, vma, address, page_table, ptl,
  2072. orig_pte, pmd);
  2073. pte_unmap_unlock(page_table, ptl);
  2074. return wp_page_copy(mm, vma, address, page_table, pmd,
  2075. orig_pte, old_page);
  2076. }
  2077. /*
  2078. * Take out anonymous pages first, anonymous shared vmas are
  2079. * not dirty accountable.
  2080. */
  2081. if (PageAnon(old_page) && !PageKsm(old_page)) {
  2082. if (!trylock_page(old_page)) {
  2083. page_cache_get(old_page);
  2084. pte_unmap_unlock(page_table, ptl);
  2085. lock_page(old_page);
  2086. page_table = pte_offset_map_lock(mm, pmd, address,
  2087. &ptl);
  2088. if (!pte_same(*page_table, orig_pte)) {
  2089. unlock_page(old_page);
  2090. pte_unmap_unlock(page_table, ptl);
  2091. page_cache_release(old_page);
  2092. return 0;
  2093. }
  2094. page_cache_release(old_page);
  2095. }
  2096. if (reuse_swap_page(old_page)) {
  2097. /*
  2098. * The page is all ours. Move it to our anon_vma so
  2099. * the rmap code will not search our parent or siblings.
  2100. * Protected against the rmap code by the page lock.
  2101. */
  2102. page_move_anon_rmap(old_page, vma, address);
  2103. unlock_page(old_page);
  2104. return wp_page_reuse(mm, vma, address, page_table, ptl,
  2105. orig_pte, old_page, 0, 0);
  2106. }
  2107. unlock_page(old_page);
  2108. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2109. (VM_WRITE|VM_SHARED))) {
  2110. return wp_page_shared(mm, vma, address, page_table, pmd,
  2111. ptl, orig_pte, old_page);
  2112. }
  2113. /*
  2114. * Ok, we need to copy. Oh, well..
  2115. */
  2116. page_cache_get(old_page);
  2117. pte_unmap_unlock(page_table, ptl);
  2118. return wp_page_copy(mm, vma, address, page_table, pmd,
  2119. orig_pte, old_page);
  2120. }
  2121. static void unmap_mapping_range_vma(struct vm_area_struct *vma,
  2122. unsigned long start_addr, unsigned long end_addr,
  2123. struct zap_details *details)
  2124. {
  2125. zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
  2126. }
  2127. static inline void unmap_mapping_range_tree(struct rb_root *root,
  2128. struct zap_details *details)
  2129. {
  2130. struct vm_area_struct *vma;
  2131. pgoff_t vba, vea, zba, zea;
  2132. vma_interval_tree_foreach(vma, root,
  2133. details->first_index, details->last_index) {
  2134. vba = vma->vm_pgoff;
  2135. vea = vba + vma_pages(vma) - 1;
  2136. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2137. zba = details->first_index;
  2138. if (zba < vba)
  2139. zba = vba;
  2140. zea = details->last_index;
  2141. if (zea > vea)
  2142. zea = vea;
  2143. unmap_mapping_range_vma(vma,
  2144. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2145. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2146. details);
  2147. }
  2148. }
  2149. /**
  2150. * unmap_mapping_range - unmap the portion of all mmaps in the specified
  2151. * address_space corresponding to the specified page range in the underlying
  2152. * file.
  2153. *
  2154. * @mapping: the address space containing mmaps to be unmapped.
  2155. * @holebegin: byte in first page to unmap, relative to the start of
  2156. * the underlying file. This will be rounded down to a PAGE_SIZE
  2157. * boundary. Note that this is different from truncate_pagecache(), which
  2158. * must keep the partial page. In contrast, we must get rid of
  2159. * partial pages.
  2160. * @holelen: size of prospective hole in bytes. This will be rounded
  2161. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2162. * end of the file.
  2163. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2164. * but 0 when invalidating pagecache, don't throw away private data.
  2165. */
  2166. void unmap_mapping_range(struct address_space *mapping,
  2167. loff_t const holebegin, loff_t const holelen, int even_cows)
  2168. {
  2169. struct zap_details details;
  2170. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2171. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2172. /* Check for overflow. */
  2173. if (sizeof(holelen) > sizeof(hlen)) {
  2174. long long holeend =
  2175. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2176. if (holeend & ~(long long)ULONG_MAX)
  2177. hlen = ULONG_MAX - hba + 1;
  2178. }
  2179. details.check_mapping = even_cows? NULL: mapping;
  2180. details.first_index = hba;
  2181. details.last_index = hba + hlen - 1;
  2182. if (details.last_index < details.first_index)
  2183. details.last_index = ULONG_MAX;
  2184. /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
  2185. i_mmap_lock_write(mapping);
  2186. if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
  2187. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2188. i_mmap_unlock_write(mapping);
  2189. }
  2190. EXPORT_SYMBOL(unmap_mapping_range);
  2191. /*
  2192. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2193. * but allow concurrent faults), and pte mapped but not yet locked.
  2194. * We return with pte unmapped and unlocked.
  2195. *
  2196. * We return with the mmap_sem locked or unlocked in the same cases
  2197. * as does filemap_fault().
  2198. */
  2199. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2200. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2201. unsigned int flags, pte_t orig_pte)
  2202. {
  2203. spinlock_t *ptl;
  2204. struct page *page, *swapcache;
  2205. struct mem_cgroup *memcg;
  2206. swp_entry_t entry;
  2207. pte_t pte;
  2208. int locked;
  2209. int exclusive = 0;
  2210. int ret = 0;
  2211. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2212. goto out;
  2213. entry = pte_to_swp_entry(orig_pte);
  2214. if (unlikely(non_swap_entry(entry))) {
  2215. if (is_migration_entry(entry)) {
  2216. migration_entry_wait(mm, pmd, address);
  2217. } else if (is_hwpoison_entry(entry)) {
  2218. ret = VM_FAULT_HWPOISON;
  2219. } else {
  2220. print_bad_pte(vma, address, orig_pte, NULL);
  2221. ret = VM_FAULT_SIGBUS;
  2222. }
  2223. goto out;
  2224. }
  2225. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2226. page = lookup_swap_cache(entry);
  2227. if (!page) {
  2228. page = swapin_readahead(entry,
  2229. GFP_HIGHUSER_MOVABLE, vma, address);
  2230. if (!page) {
  2231. /*
  2232. * Back out if somebody else faulted in this pte
  2233. * while we released the pte lock.
  2234. */
  2235. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2236. if (likely(pte_same(*page_table, orig_pte)))
  2237. ret = VM_FAULT_OOM;
  2238. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2239. goto unlock;
  2240. }
  2241. /* Had to read the page from swap area: Major fault */
  2242. ret = VM_FAULT_MAJOR;
  2243. count_vm_event(PGMAJFAULT);
  2244. mem_cgroup_count_vm_event(mm, PGMAJFAULT);
  2245. } else if (PageHWPoison(page)) {
  2246. /*
  2247. * hwpoisoned dirty swapcache pages are kept for killing
  2248. * owner processes (which may be unknown at hwpoison time)
  2249. */
  2250. ret = VM_FAULT_HWPOISON;
  2251. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2252. swapcache = page;
  2253. goto out_release;
  2254. }
  2255. swapcache = page;
  2256. locked = lock_page_or_retry(page, mm, flags);
  2257. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2258. if (!locked) {
  2259. ret |= VM_FAULT_RETRY;
  2260. goto out_release;
  2261. }
  2262. /*
  2263. * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
  2264. * release the swapcache from under us. The page pin, and pte_same
  2265. * test below, are not enough to exclude that. Even if it is still
  2266. * swapcache, we need to check that the page's swap has not changed.
  2267. */
  2268. if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
  2269. goto out_page;
  2270. page = ksm_might_need_to_copy(page, vma, address);
  2271. if (unlikely(!page)) {
  2272. ret = VM_FAULT_OOM;
  2273. page = swapcache;
  2274. goto out_page;
  2275. }
  2276. if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
  2277. ret = VM_FAULT_OOM;
  2278. goto out_page;
  2279. }
  2280. /*
  2281. * Back out if somebody else already faulted in this pte.
  2282. */
  2283. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2284. if (unlikely(!pte_same(*page_table, orig_pte)))
  2285. goto out_nomap;
  2286. if (unlikely(!PageUptodate(page))) {
  2287. ret = VM_FAULT_SIGBUS;
  2288. goto out_nomap;
  2289. }
  2290. /*
  2291. * The page isn't present yet, go ahead with the fault.
  2292. *
  2293. * Be careful about the sequence of operations here.
  2294. * To get its accounting right, reuse_swap_page() must be called
  2295. * while the page is counted on swap but not yet in mapcount i.e.
  2296. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2297. * must be called after the swap_free(), or it will never succeed.
  2298. */
  2299. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2300. dec_mm_counter_fast(mm, MM_SWAPENTS);
  2301. pte = mk_pte(page, vma->vm_page_prot);
  2302. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2303. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2304. flags &= ~FAULT_FLAG_WRITE;
  2305. ret |= VM_FAULT_WRITE;
  2306. exclusive = RMAP_EXCLUSIVE;
  2307. }
  2308. flush_icache_page(vma, page);
  2309. if (pte_swp_soft_dirty(orig_pte))
  2310. pte = pte_mksoft_dirty(pte);
  2311. set_pte_at(mm, address, page_table, pte);
  2312. if (page == swapcache) {
  2313. do_page_add_anon_rmap(page, vma, address, exclusive);
  2314. mem_cgroup_commit_charge(page, memcg, true, false);
  2315. } else { /* ksm created a completely new copy */
  2316. page_add_new_anon_rmap(page, vma, address, false);
  2317. mem_cgroup_commit_charge(page, memcg, false, false);
  2318. lru_cache_add_active_or_unevictable(page, vma);
  2319. }
  2320. swap_free(entry);
  2321. if (mem_cgroup_swap_full(page) ||
  2322. (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2323. try_to_free_swap(page);
  2324. unlock_page(page);
  2325. if (page != swapcache) {
  2326. /*
  2327. * Hold the lock to avoid the swap entry to be reused
  2328. * until we take the PT lock for the pte_same() check
  2329. * (to avoid false positives from pte_same). For
  2330. * further safety release the lock after the swap_free
  2331. * so that the swap count won't change under a
  2332. * parallel locked swapcache.
  2333. */
  2334. unlock_page(swapcache);
  2335. page_cache_release(swapcache);
  2336. }
  2337. if (flags & FAULT_FLAG_WRITE) {
  2338. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2339. if (ret & VM_FAULT_ERROR)
  2340. ret &= VM_FAULT_ERROR;
  2341. goto out;
  2342. }
  2343. /* No need to invalidate - it was non-present before */
  2344. update_mmu_cache(vma, address, page_table);
  2345. unlock:
  2346. pte_unmap_unlock(page_table, ptl);
  2347. out:
  2348. return ret;
  2349. out_nomap:
  2350. mem_cgroup_cancel_charge(page, memcg, false);
  2351. pte_unmap_unlock(page_table, ptl);
  2352. out_page:
  2353. unlock_page(page);
  2354. out_release:
  2355. page_cache_release(page);
  2356. if (page != swapcache) {
  2357. unlock_page(swapcache);
  2358. page_cache_release(swapcache);
  2359. }
  2360. return ret;
  2361. }
  2362. /*
  2363. * This is like a special single-page "expand_{down|up}wards()",
  2364. * except we must first make sure that 'address{-|+}PAGE_SIZE'
  2365. * doesn't hit another vma.
  2366. */
  2367. static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
  2368. {
  2369. address &= PAGE_MASK;
  2370. if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
  2371. struct vm_area_struct *prev = vma->vm_prev;
  2372. /*
  2373. * Is there a mapping abutting this one below?
  2374. *
  2375. * That's only ok if it's the same stack mapping
  2376. * that has gotten split..
  2377. */
  2378. if (prev && prev->vm_end == address)
  2379. return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
  2380. return expand_downwards(vma, address - PAGE_SIZE);
  2381. }
  2382. if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
  2383. struct vm_area_struct *next = vma->vm_next;
  2384. /* As VM_GROWSDOWN but s/below/above/ */
  2385. if (next && next->vm_start == address + PAGE_SIZE)
  2386. return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
  2387. return expand_upwards(vma, address + PAGE_SIZE);
  2388. }
  2389. return 0;
  2390. }
  2391. /*
  2392. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2393. * but allow concurrent faults), and pte mapped but not yet locked.
  2394. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2395. */
  2396. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2397. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2398. unsigned int flags)
  2399. {
  2400. struct mem_cgroup *memcg;
  2401. struct page *page;
  2402. spinlock_t *ptl;
  2403. pte_t entry;
  2404. pte_unmap(page_table);
  2405. /* File mapping without ->vm_ops ? */
  2406. if (vma->vm_flags & VM_SHARED)
  2407. return VM_FAULT_SIGBUS;
  2408. /* Check if we need to add a guard page to the stack */
  2409. if (check_stack_guard_page(vma, address) < 0)
  2410. return VM_FAULT_SIGSEGV;
  2411. /* Use the zero-page for reads */
  2412. if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
  2413. entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
  2414. vma->vm_page_prot));
  2415. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2416. if (!pte_none(*page_table))
  2417. goto unlock;
  2418. /* Deliver the page fault to userland, check inside PT lock */
  2419. if (userfaultfd_missing(vma)) {
  2420. pte_unmap_unlock(page_table, ptl);
  2421. return handle_userfault(vma, address, flags,
  2422. VM_UFFD_MISSING);
  2423. }
  2424. goto setpte;
  2425. }
  2426. /* Allocate our own private page. */
  2427. if (unlikely(anon_vma_prepare(vma)))
  2428. goto oom;
  2429. page = alloc_zeroed_user_highpage_movable(vma, address);
  2430. if (!page)
  2431. goto oom;
  2432. if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
  2433. goto oom_free_page;
  2434. /*
  2435. * The memory barrier inside __SetPageUptodate makes sure that
  2436. * preceeding stores to the page contents become visible before
  2437. * the set_pte_at() write.
  2438. */
  2439. __SetPageUptodate(page);
  2440. entry = mk_pte(page, vma->vm_page_prot);
  2441. if (vma->vm_flags & VM_WRITE)
  2442. entry = pte_mkwrite(pte_mkdirty(entry));
  2443. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2444. if (!pte_none(*page_table))
  2445. goto release;
  2446. /* Deliver the page fault to userland, check inside PT lock */
  2447. if (userfaultfd_missing(vma)) {
  2448. pte_unmap_unlock(page_table, ptl);
  2449. mem_cgroup_cancel_charge(page, memcg, false);
  2450. page_cache_release(page);
  2451. return handle_userfault(vma, address, flags,
  2452. VM_UFFD_MISSING);
  2453. }
  2454. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2455. page_add_new_anon_rmap(page, vma, address, false);
  2456. mem_cgroup_commit_charge(page, memcg, false, false);
  2457. lru_cache_add_active_or_unevictable(page, vma);
  2458. setpte:
  2459. set_pte_at(mm, address, page_table, entry);
  2460. /* No need to invalidate - it was non-present before */
  2461. update_mmu_cache(vma, address, page_table);
  2462. unlock:
  2463. pte_unmap_unlock(page_table, ptl);
  2464. return 0;
  2465. release:
  2466. mem_cgroup_cancel_charge(page, memcg, false);
  2467. page_cache_release(page);
  2468. goto unlock;
  2469. oom_free_page:
  2470. page_cache_release(page);
  2471. oom:
  2472. return VM_FAULT_OOM;
  2473. }
  2474. /*
  2475. * The mmap_sem must have been held on entry, and may have been
  2476. * released depending on flags and vma->vm_ops->fault() return value.
  2477. * See filemap_fault() and __lock_page_retry().
  2478. */
  2479. static int __do_fault(struct vm_area_struct *vma, unsigned long address,
  2480. pgoff_t pgoff, unsigned int flags,
  2481. struct page *cow_page, struct page **page)
  2482. {
  2483. struct vm_fault vmf;
  2484. int ret;
  2485. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2486. vmf.pgoff = pgoff;
  2487. vmf.flags = flags;
  2488. vmf.page = NULL;
  2489. vmf.gfp_mask = __get_fault_gfp_mask(vma);
  2490. vmf.cow_page = cow_page;
  2491. ret = vma->vm_ops->fault(vma, &vmf);
  2492. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2493. return ret;
  2494. if (!vmf.page)
  2495. goto out;
  2496. if (unlikely(PageHWPoison(vmf.page))) {
  2497. if (ret & VM_FAULT_LOCKED)
  2498. unlock_page(vmf.page);
  2499. page_cache_release(vmf.page);
  2500. return VM_FAULT_HWPOISON;
  2501. }
  2502. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2503. lock_page(vmf.page);
  2504. else
  2505. VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
  2506. out:
  2507. *page = vmf.page;
  2508. return ret;
  2509. }
  2510. /**
  2511. * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
  2512. *
  2513. * @vma: virtual memory area
  2514. * @address: user virtual address
  2515. * @page: page to map
  2516. * @pte: pointer to target page table entry
  2517. * @write: true, if new entry is writable
  2518. * @anon: true, if it's anonymous page
  2519. *
  2520. * Caller must hold page table lock relevant for @pte.
  2521. *
  2522. * Target users are page handler itself and implementations of
  2523. * vm_ops->map_pages.
  2524. */
  2525. void do_set_pte(struct vm_area_struct *vma, unsigned long address,
  2526. struct page *page, pte_t *pte, bool write, bool anon)
  2527. {
  2528. pte_t entry;
  2529. flush_icache_page(vma, page);
  2530. entry = mk_pte(page, vma->vm_page_prot);
  2531. if (write)
  2532. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2533. if (anon) {
  2534. inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
  2535. page_add_new_anon_rmap(page, vma, address, false);
  2536. } else {
  2537. inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
  2538. page_add_file_rmap(page);
  2539. }
  2540. set_pte_at(vma->vm_mm, address, pte, entry);
  2541. /* no need to invalidate: a not-present page won't be cached */
  2542. update_mmu_cache(vma, address, pte);
  2543. }
  2544. static unsigned long fault_around_bytes __read_mostly =
  2545. rounddown_pow_of_two(65536);
  2546. #ifdef CONFIG_DEBUG_FS
  2547. static int fault_around_bytes_get(void *data, u64 *val)
  2548. {
  2549. *val = fault_around_bytes;
  2550. return 0;
  2551. }
  2552. /*
  2553. * fault_around_pages() and fault_around_mask() expects fault_around_bytes
  2554. * rounded down to nearest page order. It's what do_fault_around() expects to
  2555. * see.
  2556. */
  2557. static int fault_around_bytes_set(void *data, u64 val)
  2558. {
  2559. if (val / PAGE_SIZE > PTRS_PER_PTE)
  2560. return -EINVAL;
  2561. if (val > PAGE_SIZE)
  2562. fault_around_bytes = rounddown_pow_of_two(val);
  2563. else
  2564. fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
  2565. return 0;
  2566. }
  2567. DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
  2568. fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
  2569. static int __init fault_around_debugfs(void)
  2570. {
  2571. void *ret;
  2572. ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
  2573. &fault_around_bytes_fops);
  2574. if (!ret)
  2575. pr_warn("Failed to create fault_around_bytes in debugfs");
  2576. return 0;
  2577. }
  2578. late_initcall(fault_around_debugfs);
  2579. #endif
  2580. /*
  2581. * do_fault_around() tries to map few pages around the fault address. The hope
  2582. * is that the pages will be needed soon and this will lower the number of
  2583. * faults to handle.
  2584. *
  2585. * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
  2586. * not ready to be mapped: not up-to-date, locked, etc.
  2587. *
  2588. * This function is called with the page table lock taken. In the split ptlock
  2589. * case the page table lock only protects only those entries which belong to
  2590. * the page table corresponding to the fault address.
  2591. *
  2592. * This function doesn't cross the VMA boundaries, in order to call map_pages()
  2593. * only once.
  2594. *
  2595. * fault_around_pages() defines how many pages we'll try to map.
  2596. * do_fault_around() expects it to return a power of two less than or equal to
  2597. * PTRS_PER_PTE.
  2598. *
  2599. * The virtual address of the area that we map is naturally aligned to the
  2600. * fault_around_pages() value (and therefore to page order). This way it's
  2601. * easier to guarantee that we don't cross page table boundaries.
  2602. */
  2603. static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
  2604. pte_t *pte, pgoff_t pgoff, unsigned int flags)
  2605. {
  2606. unsigned long start_addr, nr_pages, mask;
  2607. pgoff_t max_pgoff;
  2608. struct vm_fault vmf;
  2609. int off;
  2610. nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
  2611. mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
  2612. start_addr = max(address & mask, vma->vm_start);
  2613. off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
  2614. pte -= off;
  2615. pgoff -= off;
  2616. /*
  2617. * max_pgoff is either end of page table or end of vma
  2618. * or fault_around_pages() from pgoff, depending what is nearest.
  2619. */
  2620. max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
  2621. PTRS_PER_PTE - 1;
  2622. max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
  2623. pgoff + nr_pages - 1);
  2624. /* Check if it makes any sense to call ->map_pages */
  2625. while (!pte_none(*pte)) {
  2626. if (++pgoff > max_pgoff)
  2627. return;
  2628. start_addr += PAGE_SIZE;
  2629. if (start_addr >= vma->vm_end)
  2630. return;
  2631. pte++;
  2632. }
  2633. vmf.virtual_address = (void __user *) start_addr;
  2634. vmf.pte = pte;
  2635. vmf.pgoff = pgoff;
  2636. vmf.max_pgoff = max_pgoff;
  2637. vmf.flags = flags;
  2638. vmf.gfp_mask = __get_fault_gfp_mask(vma);
  2639. vma->vm_ops->map_pages(vma, &vmf);
  2640. }
  2641. static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2642. unsigned long address, pmd_t *pmd,
  2643. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2644. {
  2645. struct page *fault_page;
  2646. spinlock_t *ptl;
  2647. pte_t *pte;
  2648. int ret = 0;
  2649. /*
  2650. * Let's call ->map_pages() first and use ->fault() as fallback
  2651. * if page by the offset is not ready to be mapped (cold cache or
  2652. * something).
  2653. */
  2654. if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
  2655. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2656. do_fault_around(vma, address, pte, pgoff, flags);
  2657. if (!pte_same(*pte, orig_pte))
  2658. goto unlock_out;
  2659. pte_unmap_unlock(pte, ptl);
  2660. }
  2661. ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
  2662. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2663. return ret;
  2664. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2665. if (unlikely(!pte_same(*pte, orig_pte))) {
  2666. pte_unmap_unlock(pte, ptl);
  2667. unlock_page(fault_page);
  2668. page_cache_release(fault_page);
  2669. return ret;
  2670. }
  2671. do_set_pte(vma, address, fault_page, pte, false, false);
  2672. unlock_page(fault_page);
  2673. unlock_out:
  2674. pte_unmap_unlock(pte, ptl);
  2675. return ret;
  2676. }
  2677. static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2678. unsigned long address, pmd_t *pmd,
  2679. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2680. {
  2681. struct page *fault_page, *new_page;
  2682. struct mem_cgroup *memcg;
  2683. spinlock_t *ptl;
  2684. pte_t *pte;
  2685. int ret;
  2686. if (unlikely(anon_vma_prepare(vma)))
  2687. return VM_FAULT_OOM;
  2688. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2689. if (!new_page)
  2690. return VM_FAULT_OOM;
  2691. if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
  2692. page_cache_release(new_page);
  2693. return VM_FAULT_OOM;
  2694. }
  2695. ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
  2696. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2697. goto uncharge_out;
  2698. if (fault_page)
  2699. copy_user_highpage(new_page, fault_page, address, vma);
  2700. __SetPageUptodate(new_page);
  2701. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2702. if (unlikely(!pte_same(*pte, orig_pte))) {
  2703. pte_unmap_unlock(pte, ptl);
  2704. if (fault_page) {
  2705. unlock_page(fault_page);
  2706. page_cache_release(fault_page);
  2707. } else {
  2708. /*
  2709. * The fault handler has no page to lock, so it holds
  2710. * i_mmap_lock for read to protect against truncate.
  2711. */
  2712. i_mmap_unlock_read(vma->vm_file->f_mapping);
  2713. }
  2714. goto uncharge_out;
  2715. }
  2716. do_set_pte(vma, address, new_page, pte, true, true);
  2717. mem_cgroup_commit_charge(new_page, memcg, false, false);
  2718. lru_cache_add_active_or_unevictable(new_page, vma);
  2719. pte_unmap_unlock(pte, ptl);
  2720. if (fault_page) {
  2721. unlock_page(fault_page);
  2722. page_cache_release(fault_page);
  2723. } else {
  2724. /*
  2725. * The fault handler has no page to lock, so it holds
  2726. * i_mmap_lock for read to protect against truncate.
  2727. */
  2728. i_mmap_unlock_read(vma->vm_file->f_mapping);
  2729. }
  2730. return ret;
  2731. uncharge_out:
  2732. mem_cgroup_cancel_charge(new_page, memcg, false);
  2733. page_cache_release(new_page);
  2734. return ret;
  2735. }
  2736. static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2737. unsigned long address, pmd_t *pmd,
  2738. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2739. {
  2740. struct page *fault_page;
  2741. struct address_space *mapping;
  2742. spinlock_t *ptl;
  2743. pte_t *pte;
  2744. int dirtied = 0;
  2745. int ret, tmp;
  2746. ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
  2747. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2748. return ret;
  2749. /*
  2750. * Check if the backing address space wants to know that the page is
  2751. * about to become writable
  2752. */
  2753. if (vma->vm_ops->page_mkwrite) {
  2754. unlock_page(fault_page);
  2755. tmp = do_page_mkwrite(vma, fault_page, address);
  2756. if (unlikely(!tmp ||
  2757. (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
  2758. page_cache_release(fault_page);
  2759. return tmp;
  2760. }
  2761. }
  2762. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2763. if (unlikely(!pte_same(*pte, orig_pte))) {
  2764. pte_unmap_unlock(pte, ptl);
  2765. unlock_page(fault_page);
  2766. page_cache_release(fault_page);
  2767. return ret;
  2768. }
  2769. do_set_pte(vma, address, fault_page, pte, true, false);
  2770. pte_unmap_unlock(pte, ptl);
  2771. if (set_page_dirty(fault_page))
  2772. dirtied = 1;
  2773. /*
  2774. * Take a local copy of the address_space - page.mapping may be zeroed
  2775. * by truncate after unlock_page(). The address_space itself remains
  2776. * pinned by vma->vm_file's reference. We rely on unlock_page()'s
  2777. * release semantics to prevent the compiler from undoing this copying.
  2778. */
  2779. mapping = page_rmapping(fault_page);
  2780. unlock_page(fault_page);
  2781. if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
  2782. /*
  2783. * Some device drivers do not set page.mapping but still
  2784. * dirty their pages
  2785. */
  2786. balance_dirty_pages_ratelimited(mapping);
  2787. }
  2788. if (!vma->vm_ops->page_mkwrite)
  2789. file_update_time(vma->vm_file);
  2790. return ret;
  2791. }
  2792. /*
  2793. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2794. * but allow concurrent faults).
  2795. * The mmap_sem may have been released depending on flags and our
  2796. * return value. See filemap_fault() and __lock_page_or_retry().
  2797. */
  2798. static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2799. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2800. unsigned int flags, pte_t orig_pte)
  2801. {
  2802. pgoff_t pgoff = linear_page_index(vma, address);
  2803. pte_unmap(page_table);
  2804. /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
  2805. if (!vma->vm_ops->fault)
  2806. return VM_FAULT_SIGBUS;
  2807. if (!(flags & FAULT_FLAG_WRITE))
  2808. return do_read_fault(mm, vma, address, pmd, pgoff, flags,
  2809. orig_pte);
  2810. if (!(vma->vm_flags & VM_SHARED))
  2811. return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
  2812. orig_pte);
  2813. return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2814. }
  2815. static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
  2816. unsigned long addr, int page_nid,
  2817. int *flags)
  2818. {
  2819. get_page(page);
  2820. count_vm_numa_event(NUMA_HINT_FAULTS);
  2821. if (page_nid == numa_node_id()) {
  2822. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  2823. *flags |= TNF_FAULT_LOCAL;
  2824. }
  2825. return mpol_misplaced(page, vma, addr);
  2826. }
  2827. static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2828. unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
  2829. {
  2830. struct page *page = NULL;
  2831. spinlock_t *ptl;
  2832. int page_nid = -1;
  2833. int last_cpupid;
  2834. int target_nid;
  2835. bool migrated = false;
  2836. bool was_writable = pte_write(pte);
  2837. int flags = 0;
  2838. /* A PROT_NONE fault should not end up here */
  2839. BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
  2840. /*
  2841. * The "pte" at this point cannot be used safely without
  2842. * validation through pte_unmap_same(). It's of NUMA type but
  2843. * the pfn may be screwed if the read is non atomic.
  2844. *
  2845. * We can safely just do a "set_pte_at()", because the old
  2846. * page table entry is not accessible, so there would be no
  2847. * concurrent hardware modifications to the PTE.
  2848. */
  2849. ptl = pte_lockptr(mm, pmd);
  2850. spin_lock(ptl);
  2851. if (unlikely(!pte_same(*ptep, pte))) {
  2852. pte_unmap_unlock(ptep, ptl);
  2853. goto out;
  2854. }
  2855. /* Make it present again */
  2856. pte = pte_modify(pte, vma->vm_page_prot);
  2857. pte = pte_mkyoung(pte);
  2858. if (was_writable)
  2859. pte = pte_mkwrite(pte);
  2860. set_pte_at(mm, addr, ptep, pte);
  2861. update_mmu_cache(vma, addr, ptep);
  2862. page = vm_normal_page(vma, addr, pte);
  2863. if (!page) {
  2864. pte_unmap_unlock(ptep, ptl);
  2865. return 0;
  2866. }
  2867. /* TODO: handle PTE-mapped THP */
  2868. if (PageCompound(page)) {
  2869. pte_unmap_unlock(ptep, ptl);
  2870. return 0;
  2871. }
  2872. /*
  2873. * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
  2874. * much anyway since they can be in shared cache state. This misses
  2875. * the case where a mapping is writable but the process never writes
  2876. * to it but pte_write gets cleared during protection updates and
  2877. * pte_dirty has unpredictable behaviour between PTE scan updates,
  2878. * background writeback, dirty balancing and application behaviour.
  2879. */
  2880. if (!(vma->vm_flags & VM_WRITE))
  2881. flags |= TNF_NO_GROUP;
  2882. /*
  2883. * Flag if the page is shared between multiple address spaces. This
  2884. * is later used when determining whether to group tasks together
  2885. */
  2886. if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
  2887. flags |= TNF_SHARED;
  2888. last_cpupid = page_cpupid_last(page);
  2889. page_nid = page_to_nid(page);
  2890. target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
  2891. pte_unmap_unlock(ptep, ptl);
  2892. if (target_nid == -1) {
  2893. put_page(page);
  2894. goto out;
  2895. }
  2896. /* Migrate to the requested node */
  2897. migrated = migrate_misplaced_page(page, vma, target_nid);
  2898. if (migrated) {
  2899. page_nid = target_nid;
  2900. flags |= TNF_MIGRATED;
  2901. } else
  2902. flags |= TNF_MIGRATE_FAIL;
  2903. out:
  2904. if (page_nid != -1)
  2905. task_numa_fault(last_cpupid, page_nid, 1, flags);
  2906. return 0;
  2907. }
  2908. static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
  2909. unsigned long address, pmd_t *pmd, unsigned int flags)
  2910. {
  2911. if (vma_is_anonymous(vma))
  2912. return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
  2913. if (vma->vm_ops->pmd_fault)
  2914. return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
  2915. return VM_FAULT_FALLBACK;
  2916. }
  2917. static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
  2918. unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
  2919. unsigned int flags)
  2920. {
  2921. if (vma_is_anonymous(vma))
  2922. return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
  2923. if (vma->vm_ops->pmd_fault)
  2924. return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
  2925. return VM_FAULT_FALLBACK;
  2926. }
  2927. /*
  2928. * These routines also need to handle stuff like marking pages dirty
  2929. * and/or accessed for architectures that don't do it in hardware (most
  2930. * RISC architectures). The early dirtying is also good on the i386.
  2931. *
  2932. * There is also a hook called "update_mmu_cache()" that architectures
  2933. * with external mmu caches can use to update those (ie the Sparc or
  2934. * PowerPC hashed page tables that act as extended TLBs).
  2935. *
  2936. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2937. * but allow concurrent faults), and pte mapped but not yet locked.
  2938. * We return with pte unmapped and unlocked.
  2939. *
  2940. * The mmap_sem may have been released depending on flags and our
  2941. * return value. See filemap_fault() and __lock_page_or_retry().
  2942. */
  2943. static int handle_pte_fault(struct mm_struct *mm,
  2944. struct vm_area_struct *vma, unsigned long address,
  2945. pte_t *pte, pmd_t *pmd, unsigned int flags)
  2946. {
  2947. pte_t entry;
  2948. spinlock_t *ptl;
  2949. /*
  2950. * some architectures can have larger ptes than wordsize,
  2951. * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
  2952. * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
  2953. * The code below just needs a consistent view for the ifs and
  2954. * we later double check anyway with the ptl lock held. So here
  2955. * a barrier will do.
  2956. */
  2957. entry = *pte;
  2958. barrier();
  2959. if (!pte_present(entry)) {
  2960. if (pte_none(entry)) {
  2961. if (vma_is_anonymous(vma))
  2962. return do_anonymous_page(mm, vma, address,
  2963. pte, pmd, flags);
  2964. else
  2965. return do_fault(mm, vma, address, pte, pmd,
  2966. flags, entry);
  2967. }
  2968. return do_swap_page(mm, vma, address,
  2969. pte, pmd, flags, entry);
  2970. }
  2971. if (pte_protnone(entry))
  2972. return do_numa_page(mm, vma, address, entry, pte, pmd);
  2973. ptl = pte_lockptr(mm, pmd);
  2974. spin_lock(ptl);
  2975. if (unlikely(!pte_same(*pte, entry)))
  2976. goto unlock;
  2977. if (flags & FAULT_FLAG_WRITE) {
  2978. if (!pte_write(entry))
  2979. return do_wp_page(mm, vma, address,
  2980. pte, pmd, ptl, entry);
  2981. entry = pte_mkdirty(entry);
  2982. }
  2983. entry = pte_mkyoung(entry);
  2984. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  2985. update_mmu_cache(vma, address, pte);
  2986. } else {
  2987. /*
  2988. * This is needed only for protection faults but the arch code
  2989. * is not yet telling us if this is a protection fault or not.
  2990. * This still avoids useless tlb flushes for .text page faults
  2991. * with threads.
  2992. */
  2993. if (flags & FAULT_FLAG_WRITE)
  2994. flush_tlb_fix_spurious_fault(vma, address);
  2995. }
  2996. unlock:
  2997. pte_unmap_unlock(pte, ptl);
  2998. return 0;
  2999. }
  3000. /*
  3001. * By the time we get here, we already hold the mm semaphore
  3002. *
  3003. * The mmap_sem may have been released depending on flags and our
  3004. * return value. See filemap_fault() and __lock_page_or_retry().
  3005. */
  3006. static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3007. unsigned long address, unsigned int flags)
  3008. {
  3009. pgd_t *pgd;
  3010. pud_t *pud;
  3011. pmd_t *pmd;
  3012. pte_t *pte;
  3013. if (unlikely(is_vm_hugetlb_page(vma)))
  3014. return hugetlb_fault(mm, vma, address, flags);
  3015. pgd = pgd_offset(mm, address);
  3016. pud = pud_alloc(mm, pgd, address);
  3017. if (!pud)
  3018. return VM_FAULT_OOM;
  3019. pmd = pmd_alloc(mm, pud, address);
  3020. if (!pmd)
  3021. return VM_FAULT_OOM;
  3022. if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
  3023. int ret = create_huge_pmd(mm, vma, address, pmd, flags);
  3024. if (!(ret & VM_FAULT_FALLBACK))
  3025. return ret;
  3026. } else {
  3027. pmd_t orig_pmd = *pmd;
  3028. int ret;
  3029. barrier();
  3030. if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
  3031. unsigned int dirty = flags & FAULT_FLAG_WRITE;
  3032. if (pmd_protnone(orig_pmd))
  3033. return do_huge_pmd_numa_page(mm, vma, address,
  3034. orig_pmd, pmd);
  3035. if (dirty && !pmd_write(orig_pmd)) {
  3036. ret = wp_huge_pmd(mm, vma, address, pmd,
  3037. orig_pmd, flags);
  3038. if (!(ret & VM_FAULT_FALLBACK))
  3039. return ret;
  3040. } else {
  3041. huge_pmd_set_accessed(mm, vma, address, pmd,
  3042. orig_pmd, dirty);
  3043. return 0;
  3044. }
  3045. }
  3046. }
  3047. /*
  3048. * Use pte_alloc() instead of pte_alloc_map, because we can't
  3049. * run pte_offset_map on the pmd, if an huge pmd could
  3050. * materialize from under us from a different thread.
  3051. */
  3052. if (unlikely(pte_alloc(mm, pmd, address)))
  3053. return VM_FAULT_OOM;
  3054. /*
  3055. * If a huge pmd materialized under us just retry later. Use
  3056. * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
  3057. * didn't become pmd_trans_huge under us and then back to pmd_none, as
  3058. * a result of MADV_DONTNEED running immediately after a huge pmd fault
  3059. * in a different thread of this mm, in turn leading to a misleading
  3060. * pmd_trans_huge() retval. All we have to ensure is that it is a
  3061. * regular pmd that we can walk with pte_offset_map() and we can do that
  3062. * through an atomic read in C, which is what pmd_trans_unstable()
  3063. * provides.
  3064. */
  3065. if (unlikely(pmd_trans_unstable(pmd) || pmd_devmap(*pmd)))
  3066. return 0;
  3067. /*
  3068. * A regular pmd is established and it can't morph into a huge pmd
  3069. * from under us anymore at this point because we hold the mmap_sem
  3070. * read mode and khugepaged takes it in write mode. So now it's
  3071. * safe to run pte_offset_map().
  3072. */
  3073. pte = pte_offset_map(pmd, address);
  3074. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  3075. }
  3076. /*
  3077. * By the time we get here, we already hold the mm semaphore
  3078. *
  3079. * The mmap_sem may have been released depending on flags and our
  3080. * return value. See filemap_fault() and __lock_page_or_retry().
  3081. */
  3082. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3083. unsigned long address, unsigned int flags)
  3084. {
  3085. int ret;
  3086. __set_current_state(TASK_RUNNING);
  3087. count_vm_event(PGFAULT);
  3088. mem_cgroup_count_vm_event(mm, PGFAULT);
  3089. /* do counter updates before entering really critical section. */
  3090. check_sync_rss_stat(current);
  3091. /*
  3092. * Enable the memcg OOM handling for faults triggered in user
  3093. * space. Kernel faults are handled more gracefully.
  3094. */
  3095. if (flags & FAULT_FLAG_USER)
  3096. mem_cgroup_oom_enable();
  3097. ret = __handle_mm_fault(mm, vma, address, flags);
  3098. if (flags & FAULT_FLAG_USER) {
  3099. mem_cgroup_oom_disable();
  3100. /*
  3101. * The task may have entered a memcg OOM situation but
  3102. * if the allocation error was handled gracefully (no
  3103. * VM_FAULT_OOM), there is no need to kill anything.
  3104. * Just clean up the OOM state peacefully.
  3105. */
  3106. if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
  3107. mem_cgroup_oom_synchronize(false);
  3108. }
  3109. return ret;
  3110. }
  3111. EXPORT_SYMBOL_GPL(handle_mm_fault);
  3112. #ifndef __PAGETABLE_PUD_FOLDED
  3113. /*
  3114. * Allocate page upper directory.
  3115. * We've already handled the fast-path in-line.
  3116. */
  3117. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  3118. {
  3119. pud_t *new = pud_alloc_one(mm, address);
  3120. if (!new)
  3121. return -ENOMEM;
  3122. smp_wmb(); /* See comment in __pte_alloc */
  3123. spin_lock(&mm->page_table_lock);
  3124. if (pgd_present(*pgd)) /* Another has populated it */
  3125. pud_free(mm, new);
  3126. else
  3127. pgd_populate(mm, pgd, new);
  3128. spin_unlock(&mm->page_table_lock);
  3129. return 0;
  3130. }
  3131. #endif /* __PAGETABLE_PUD_FOLDED */
  3132. #ifndef __PAGETABLE_PMD_FOLDED
  3133. /*
  3134. * Allocate page middle directory.
  3135. * We've already handled the fast-path in-line.
  3136. */
  3137. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  3138. {
  3139. pmd_t *new = pmd_alloc_one(mm, address);
  3140. if (!new)
  3141. return -ENOMEM;
  3142. smp_wmb(); /* See comment in __pte_alloc */
  3143. spin_lock(&mm->page_table_lock);
  3144. #ifndef __ARCH_HAS_4LEVEL_HACK
  3145. if (!pud_present(*pud)) {
  3146. mm_inc_nr_pmds(mm);
  3147. pud_populate(mm, pud, new);
  3148. } else /* Another has populated it */
  3149. pmd_free(mm, new);
  3150. #else
  3151. if (!pgd_present(*pud)) {
  3152. mm_inc_nr_pmds(mm);
  3153. pgd_populate(mm, pud, new);
  3154. } else /* Another has populated it */
  3155. pmd_free(mm, new);
  3156. #endif /* __ARCH_HAS_4LEVEL_HACK */
  3157. spin_unlock(&mm->page_table_lock);
  3158. return 0;
  3159. }
  3160. #endif /* __PAGETABLE_PMD_FOLDED */
  3161. static int __follow_pte(struct mm_struct *mm, unsigned long address,
  3162. pte_t **ptepp, spinlock_t **ptlp)
  3163. {
  3164. pgd_t *pgd;
  3165. pud_t *pud;
  3166. pmd_t *pmd;
  3167. pte_t *ptep;
  3168. pgd = pgd_offset(mm, address);
  3169. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  3170. goto out;
  3171. pud = pud_offset(pgd, address);
  3172. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  3173. goto out;
  3174. pmd = pmd_offset(pud, address);
  3175. VM_BUG_ON(pmd_trans_huge(*pmd));
  3176. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  3177. goto out;
  3178. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  3179. if (pmd_huge(*pmd))
  3180. goto out;
  3181. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  3182. if (!ptep)
  3183. goto out;
  3184. if (!pte_present(*ptep))
  3185. goto unlock;
  3186. *ptepp = ptep;
  3187. return 0;
  3188. unlock:
  3189. pte_unmap_unlock(ptep, *ptlp);
  3190. out:
  3191. return -EINVAL;
  3192. }
  3193. static inline int follow_pte(struct mm_struct *mm, unsigned long address,
  3194. pte_t **ptepp, spinlock_t **ptlp)
  3195. {
  3196. int res;
  3197. /* (void) is needed to make gcc happy */
  3198. (void) __cond_lock(*ptlp,
  3199. !(res = __follow_pte(mm, address, ptepp, ptlp)));
  3200. return res;
  3201. }
  3202. /**
  3203. * follow_pfn - look up PFN at a user virtual address
  3204. * @vma: memory mapping
  3205. * @address: user virtual address
  3206. * @pfn: location to store found PFN
  3207. *
  3208. * Only IO mappings and raw PFN mappings are allowed.
  3209. *
  3210. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  3211. */
  3212. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  3213. unsigned long *pfn)
  3214. {
  3215. int ret = -EINVAL;
  3216. spinlock_t *ptl;
  3217. pte_t *ptep;
  3218. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3219. return ret;
  3220. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  3221. if (ret)
  3222. return ret;
  3223. *pfn = pte_pfn(*ptep);
  3224. pte_unmap_unlock(ptep, ptl);
  3225. return 0;
  3226. }
  3227. EXPORT_SYMBOL(follow_pfn);
  3228. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3229. int follow_phys(struct vm_area_struct *vma,
  3230. unsigned long address, unsigned int flags,
  3231. unsigned long *prot, resource_size_t *phys)
  3232. {
  3233. int ret = -EINVAL;
  3234. pte_t *ptep, pte;
  3235. spinlock_t *ptl;
  3236. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3237. goto out;
  3238. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  3239. goto out;
  3240. pte = *ptep;
  3241. if ((flags & FOLL_WRITE) && !pte_write(pte))
  3242. goto unlock;
  3243. *prot = pgprot_val(pte_pgprot(pte));
  3244. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  3245. ret = 0;
  3246. unlock:
  3247. pte_unmap_unlock(ptep, ptl);
  3248. out:
  3249. return ret;
  3250. }
  3251. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  3252. void *buf, int len, int write)
  3253. {
  3254. resource_size_t phys_addr;
  3255. unsigned long prot = 0;
  3256. void __iomem *maddr;
  3257. int offset = addr & (PAGE_SIZE-1);
  3258. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  3259. return -EINVAL;
  3260. maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
  3261. if (write)
  3262. memcpy_toio(maddr + offset, buf, len);
  3263. else
  3264. memcpy_fromio(buf, maddr + offset, len);
  3265. iounmap(maddr);
  3266. return len;
  3267. }
  3268. EXPORT_SYMBOL_GPL(generic_access_phys);
  3269. #endif
  3270. /*
  3271. * Access another process' address space as given in mm. If non-NULL, use the
  3272. * given task for page fault accounting.
  3273. */
  3274. static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  3275. unsigned long addr, void *buf, int len, int write)
  3276. {
  3277. struct vm_area_struct *vma;
  3278. void *old_buf = buf;
  3279. down_read(&mm->mmap_sem);
  3280. /* ignore errors, just check how much was successfully transferred */
  3281. while (len) {
  3282. int bytes, ret, offset;
  3283. void *maddr;
  3284. struct page *page = NULL;
  3285. ret = get_user_pages(tsk, mm, addr, 1,
  3286. write, 1, &page, &vma);
  3287. if (ret <= 0) {
  3288. #ifndef CONFIG_HAVE_IOREMAP_PROT
  3289. break;
  3290. #else
  3291. /*
  3292. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  3293. * we can access using slightly different code.
  3294. */
  3295. vma = find_vma(mm, addr);
  3296. if (!vma || vma->vm_start > addr)
  3297. break;
  3298. if (vma->vm_ops && vma->vm_ops->access)
  3299. ret = vma->vm_ops->access(vma, addr, buf,
  3300. len, write);
  3301. if (ret <= 0)
  3302. break;
  3303. bytes = ret;
  3304. #endif
  3305. } else {
  3306. bytes = len;
  3307. offset = addr & (PAGE_SIZE-1);
  3308. if (bytes > PAGE_SIZE-offset)
  3309. bytes = PAGE_SIZE-offset;
  3310. maddr = kmap(page);
  3311. if (write) {
  3312. copy_to_user_page(vma, page, addr,
  3313. maddr + offset, buf, bytes);
  3314. set_page_dirty_lock(page);
  3315. } else {
  3316. copy_from_user_page(vma, page, addr,
  3317. buf, maddr + offset, bytes);
  3318. }
  3319. kunmap(page);
  3320. page_cache_release(page);
  3321. }
  3322. len -= bytes;
  3323. buf += bytes;
  3324. addr += bytes;
  3325. }
  3326. up_read(&mm->mmap_sem);
  3327. return buf - old_buf;
  3328. }
  3329. /**
  3330. * access_remote_vm - access another process' address space
  3331. * @mm: the mm_struct of the target address space
  3332. * @addr: start address to access
  3333. * @buf: source or destination buffer
  3334. * @len: number of bytes to transfer
  3335. * @write: whether the access is a write
  3336. *
  3337. * The caller must hold a reference on @mm.
  3338. */
  3339. int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  3340. void *buf, int len, int write)
  3341. {
  3342. return __access_remote_vm(NULL, mm, addr, buf, len, write);
  3343. }
  3344. /*
  3345. * Access another process' address space.
  3346. * Source/target buffer must be kernel space,
  3347. * Do not walk the page table directly, use get_user_pages
  3348. */
  3349. int access_process_vm(struct task_struct *tsk, unsigned long addr,
  3350. void *buf, int len, int write)
  3351. {
  3352. struct mm_struct *mm;
  3353. int ret;
  3354. mm = get_task_mm(tsk);
  3355. if (!mm)
  3356. return 0;
  3357. ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
  3358. mmput(mm);
  3359. return ret;
  3360. }
  3361. /*
  3362. * Print the name of a VMA.
  3363. */
  3364. void print_vma_addr(char *prefix, unsigned long ip)
  3365. {
  3366. struct mm_struct *mm = current->mm;
  3367. struct vm_area_struct *vma;
  3368. /*
  3369. * Do not print if we are in atomic
  3370. * contexts (in exception stacks, etc.):
  3371. */
  3372. if (preempt_count())
  3373. return;
  3374. down_read(&mm->mmap_sem);
  3375. vma = find_vma(mm, ip);
  3376. if (vma && vma->vm_file) {
  3377. struct file *f = vma->vm_file;
  3378. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3379. if (buf) {
  3380. char *p;
  3381. p = file_path(f, buf, PAGE_SIZE);
  3382. if (IS_ERR(p))
  3383. p = "?";
  3384. printk("%s%s[%lx+%lx]", prefix, kbasename(p),
  3385. vma->vm_start,
  3386. vma->vm_end - vma->vm_start);
  3387. free_page((unsigned long)buf);
  3388. }
  3389. }
  3390. up_read(&mm->mmap_sem);
  3391. }
  3392. #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
  3393. void __might_fault(const char *file, int line)
  3394. {
  3395. /*
  3396. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3397. * holding the mmap_sem, this is safe because kernel memory doesn't
  3398. * get paged out, therefore we'll never actually fault, and the
  3399. * below annotations will generate false positives.
  3400. */
  3401. if (segment_eq(get_fs(), KERNEL_DS))
  3402. return;
  3403. if (pagefault_disabled())
  3404. return;
  3405. __might_sleep(file, line, 0);
  3406. #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
  3407. if (current->mm)
  3408. might_lock_read(&current->mm->mmap_sem);
  3409. #endif
  3410. }
  3411. EXPORT_SYMBOL(__might_fault);
  3412. #endif
  3413. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  3414. static void clear_gigantic_page(struct page *page,
  3415. unsigned long addr,
  3416. unsigned int pages_per_huge_page)
  3417. {
  3418. int i;
  3419. struct page *p = page;
  3420. might_sleep();
  3421. for (i = 0; i < pages_per_huge_page;
  3422. i++, p = mem_map_next(p, page, i)) {
  3423. cond_resched();
  3424. clear_user_highpage(p, addr + i * PAGE_SIZE);
  3425. }
  3426. }
  3427. void clear_huge_page(struct page *page,
  3428. unsigned long addr, unsigned int pages_per_huge_page)
  3429. {
  3430. int i;
  3431. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3432. clear_gigantic_page(page, addr, pages_per_huge_page);
  3433. return;
  3434. }
  3435. might_sleep();
  3436. for (i = 0; i < pages_per_huge_page; i++) {
  3437. cond_resched();
  3438. clear_user_highpage(page + i, addr + i * PAGE_SIZE);
  3439. }
  3440. }
  3441. static void copy_user_gigantic_page(struct page *dst, struct page *src,
  3442. unsigned long addr,
  3443. struct vm_area_struct *vma,
  3444. unsigned int pages_per_huge_page)
  3445. {
  3446. int i;
  3447. struct page *dst_base = dst;
  3448. struct page *src_base = src;
  3449. for (i = 0; i < pages_per_huge_page; ) {
  3450. cond_resched();
  3451. copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
  3452. i++;
  3453. dst = mem_map_next(dst, dst_base, i);
  3454. src = mem_map_next(src, src_base, i);
  3455. }
  3456. }
  3457. void copy_user_huge_page(struct page *dst, struct page *src,
  3458. unsigned long addr, struct vm_area_struct *vma,
  3459. unsigned int pages_per_huge_page)
  3460. {
  3461. int i;
  3462. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3463. copy_user_gigantic_page(dst, src, addr, vma,
  3464. pages_per_huge_page);
  3465. return;
  3466. }
  3467. might_sleep();
  3468. for (i = 0; i < pages_per_huge_page; i++) {
  3469. cond_resched();
  3470. copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
  3471. }
  3472. }
  3473. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  3474. #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
  3475. static struct kmem_cache *page_ptl_cachep;
  3476. void __init ptlock_cache_init(void)
  3477. {
  3478. page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
  3479. SLAB_PANIC, NULL);
  3480. }
  3481. bool ptlock_alloc(struct page *page)
  3482. {
  3483. spinlock_t *ptl;
  3484. ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
  3485. if (!ptl)
  3486. return false;
  3487. page->ptl = ptl;
  3488. return true;
  3489. }
  3490. void ptlock_free(struct page *page)
  3491. {
  3492. kmem_cache_free(page_ptl_cachep, page->ptl);
  3493. }
  3494. #endif