rrpc.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480
  1. /*
  2. * Copyright (C) 2015 IT University of Copenhagen
  3. * Initial release: Matias Bjorling <m@bjorling.me>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License version
  7. * 2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but
  10. * WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * Implementation of a Round-robin page-based Hybrid FTL for Open-channel SSDs.
  15. */
  16. #include "rrpc.h"
  17. static struct kmem_cache *rrpc_gcb_cache, *rrpc_rq_cache;
  18. static DECLARE_RWSEM(rrpc_lock);
  19. static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
  20. struct nvm_rq *rqd, unsigned long flags);
  21. #define rrpc_for_each_lun(rrpc, rlun, i) \
  22. for ((i) = 0, rlun = &(rrpc)->luns[0]; \
  23. (i) < (rrpc)->nr_luns; (i)++, rlun = &(rrpc)->luns[(i)])
  24. static void rrpc_page_invalidate(struct rrpc *rrpc, struct rrpc_addr *a)
  25. {
  26. struct rrpc_block *rblk = a->rblk;
  27. unsigned int pg_offset;
  28. lockdep_assert_held(&rrpc->rev_lock);
  29. if (a->addr == ADDR_EMPTY || !rblk)
  30. return;
  31. spin_lock(&rblk->lock);
  32. div_u64_rem(a->addr, rrpc->dev->sec_per_blk, &pg_offset);
  33. WARN_ON(test_and_set_bit(pg_offset, rblk->invalid_pages));
  34. rblk->nr_invalid_pages++;
  35. spin_unlock(&rblk->lock);
  36. rrpc->rev_trans_map[a->addr - rrpc->poffset].addr = ADDR_EMPTY;
  37. }
  38. static void rrpc_invalidate_range(struct rrpc *rrpc, sector_t slba,
  39. unsigned len)
  40. {
  41. sector_t i;
  42. spin_lock(&rrpc->rev_lock);
  43. for (i = slba; i < slba + len; i++) {
  44. struct rrpc_addr *gp = &rrpc->trans_map[i];
  45. rrpc_page_invalidate(rrpc, gp);
  46. gp->rblk = NULL;
  47. }
  48. spin_unlock(&rrpc->rev_lock);
  49. }
  50. static struct nvm_rq *rrpc_inflight_laddr_acquire(struct rrpc *rrpc,
  51. sector_t laddr, unsigned int pages)
  52. {
  53. struct nvm_rq *rqd;
  54. struct rrpc_inflight_rq *inf;
  55. rqd = mempool_alloc(rrpc->rq_pool, GFP_ATOMIC);
  56. if (!rqd)
  57. return ERR_PTR(-ENOMEM);
  58. inf = rrpc_get_inflight_rq(rqd);
  59. if (rrpc_lock_laddr(rrpc, laddr, pages, inf)) {
  60. mempool_free(rqd, rrpc->rq_pool);
  61. return NULL;
  62. }
  63. return rqd;
  64. }
  65. static void rrpc_inflight_laddr_release(struct rrpc *rrpc, struct nvm_rq *rqd)
  66. {
  67. struct rrpc_inflight_rq *inf = rrpc_get_inflight_rq(rqd);
  68. rrpc_unlock_laddr(rrpc, inf);
  69. mempool_free(rqd, rrpc->rq_pool);
  70. }
  71. static void rrpc_discard(struct rrpc *rrpc, struct bio *bio)
  72. {
  73. sector_t slba = bio->bi_iter.bi_sector / NR_PHY_IN_LOG;
  74. sector_t len = bio->bi_iter.bi_size / RRPC_EXPOSED_PAGE_SIZE;
  75. struct nvm_rq *rqd;
  76. do {
  77. rqd = rrpc_inflight_laddr_acquire(rrpc, slba, len);
  78. schedule();
  79. } while (!rqd);
  80. if (IS_ERR(rqd)) {
  81. pr_err("rrpc: unable to acquire inflight IO\n");
  82. bio_io_error(bio);
  83. return;
  84. }
  85. rrpc_invalidate_range(rrpc, slba, len);
  86. rrpc_inflight_laddr_release(rrpc, rqd);
  87. }
  88. static int block_is_full(struct rrpc *rrpc, struct rrpc_block *rblk)
  89. {
  90. return (rblk->next_page == rrpc->dev->sec_per_blk);
  91. }
  92. /* Calculate relative addr for the given block, considering instantiated LUNs */
  93. static u64 block_to_rel_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
  94. {
  95. struct nvm_block *blk = rblk->parent;
  96. int lun_blk = blk->id % (rrpc->dev->blks_per_lun * rrpc->nr_luns);
  97. return lun_blk * rrpc->dev->sec_per_blk;
  98. }
  99. /* Calculate global addr for the given block */
  100. static u64 block_to_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
  101. {
  102. struct nvm_block *blk = rblk->parent;
  103. return blk->id * rrpc->dev->sec_per_blk;
  104. }
  105. static struct ppa_addr linear_to_generic_addr(struct nvm_dev *dev,
  106. struct ppa_addr r)
  107. {
  108. struct ppa_addr l;
  109. int secs, pgs, blks, luns;
  110. sector_t ppa = r.ppa;
  111. l.ppa = 0;
  112. div_u64_rem(ppa, dev->sec_per_pg, &secs);
  113. l.g.sec = secs;
  114. sector_div(ppa, dev->sec_per_pg);
  115. div_u64_rem(ppa, dev->pgs_per_blk, &pgs);
  116. l.g.pg = pgs;
  117. sector_div(ppa, dev->pgs_per_blk);
  118. div_u64_rem(ppa, dev->blks_per_lun, &blks);
  119. l.g.blk = blks;
  120. sector_div(ppa, dev->blks_per_lun);
  121. div_u64_rem(ppa, dev->luns_per_chnl, &luns);
  122. l.g.lun = luns;
  123. sector_div(ppa, dev->luns_per_chnl);
  124. l.g.ch = ppa;
  125. return l;
  126. }
  127. static struct ppa_addr rrpc_ppa_to_gaddr(struct nvm_dev *dev, u64 addr)
  128. {
  129. struct ppa_addr paddr;
  130. paddr.ppa = addr;
  131. return linear_to_generic_addr(dev, paddr);
  132. }
  133. /* requires lun->lock taken */
  134. static void rrpc_set_lun_cur(struct rrpc_lun *rlun, struct rrpc_block *rblk)
  135. {
  136. struct rrpc *rrpc = rlun->rrpc;
  137. BUG_ON(!rblk);
  138. if (rlun->cur) {
  139. spin_lock(&rlun->cur->lock);
  140. WARN_ON(!block_is_full(rrpc, rlun->cur));
  141. spin_unlock(&rlun->cur->lock);
  142. }
  143. rlun->cur = rblk;
  144. }
  145. static struct rrpc_block *rrpc_get_blk(struct rrpc *rrpc, struct rrpc_lun *rlun,
  146. unsigned long flags)
  147. {
  148. struct nvm_lun *lun = rlun->parent;
  149. struct nvm_block *blk;
  150. struct rrpc_block *rblk;
  151. spin_lock(&lun->lock);
  152. blk = nvm_get_blk_unlocked(rrpc->dev, rlun->parent, flags);
  153. if (!blk) {
  154. pr_err("nvm: rrpc: cannot get new block from media manager\n");
  155. spin_unlock(&lun->lock);
  156. return NULL;
  157. }
  158. rblk = rrpc_get_rblk(rlun, blk->id);
  159. list_add_tail(&rblk->list, &rlun->open_list);
  160. spin_unlock(&lun->lock);
  161. blk->priv = rblk;
  162. bitmap_zero(rblk->invalid_pages, rrpc->dev->sec_per_blk);
  163. rblk->next_page = 0;
  164. rblk->nr_invalid_pages = 0;
  165. atomic_set(&rblk->data_cmnt_size, 0);
  166. return rblk;
  167. }
  168. static void rrpc_put_blk(struct rrpc *rrpc, struct rrpc_block *rblk)
  169. {
  170. struct rrpc_lun *rlun = rblk->rlun;
  171. struct nvm_lun *lun = rlun->parent;
  172. spin_lock(&lun->lock);
  173. nvm_put_blk_unlocked(rrpc->dev, rblk->parent);
  174. list_del(&rblk->list);
  175. spin_unlock(&lun->lock);
  176. }
  177. static void rrpc_put_blks(struct rrpc *rrpc)
  178. {
  179. struct rrpc_lun *rlun;
  180. int i;
  181. for (i = 0; i < rrpc->nr_luns; i++) {
  182. rlun = &rrpc->luns[i];
  183. if (rlun->cur)
  184. rrpc_put_blk(rrpc, rlun->cur);
  185. if (rlun->gc_cur)
  186. rrpc_put_blk(rrpc, rlun->gc_cur);
  187. }
  188. }
  189. static struct rrpc_lun *get_next_lun(struct rrpc *rrpc)
  190. {
  191. int next = atomic_inc_return(&rrpc->next_lun);
  192. return &rrpc->luns[next % rrpc->nr_luns];
  193. }
  194. static void rrpc_gc_kick(struct rrpc *rrpc)
  195. {
  196. struct rrpc_lun *rlun;
  197. unsigned int i;
  198. for (i = 0; i < rrpc->nr_luns; i++) {
  199. rlun = &rrpc->luns[i];
  200. queue_work(rrpc->krqd_wq, &rlun->ws_gc);
  201. }
  202. }
  203. /*
  204. * timed GC every interval.
  205. */
  206. static void rrpc_gc_timer(unsigned long data)
  207. {
  208. struct rrpc *rrpc = (struct rrpc *)data;
  209. rrpc_gc_kick(rrpc);
  210. mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
  211. }
  212. static void rrpc_end_sync_bio(struct bio *bio)
  213. {
  214. struct completion *waiting = bio->bi_private;
  215. if (bio->bi_error)
  216. pr_err("nvm: gc request failed (%u).\n", bio->bi_error);
  217. complete(waiting);
  218. }
  219. /*
  220. * rrpc_move_valid_pages -- migrate live data off the block
  221. * @rrpc: the 'rrpc' structure
  222. * @block: the block from which to migrate live pages
  223. *
  224. * Description:
  225. * GC algorithms may call this function to migrate remaining live
  226. * pages off the block prior to erasing it. This function blocks
  227. * further execution until the operation is complete.
  228. */
  229. static int rrpc_move_valid_pages(struct rrpc *rrpc, struct rrpc_block *rblk)
  230. {
  231. struct request_queue *q = rrpc->dev->q;
  232. struct rrpc_rev_addr *rev;
  233. struct nvm_rq *rqd;
  234. struct bio *bio;
  235. struct page *page;
  236. int slot;
  237. int nr_sec_per_blk = rrpc->dev->sec_per_blk;
  238. u64 phys_addr;
  239. DECLARE_COMPLETION_ONSTACK(wait);
  240. if (bitmap_full(rblk->invalid_pages, nr_sec_per_blk))
  241. return 0;
  242. bio = bio_alloc(GFP_NOIO, 1);
  243. if (!bio) {
  244. pr_err("nvm: could not alloc bio to gc\n");
  245. return -ENOMEM;
  246. }
  247. page = mempool_alloc(rrpc->page_pool, GFP_NOIO);
  248. if (!page) {
  249. bio_put(bio);
  250. return -ENOMEM;
  251. }
  252. while ((slot = find_first_zero_bit(rblk->invalid_pages,
  253. nr_sec_per_blk)) < nr_sec_per_blk) {
  254. /* Lock laddr */
  255. phys_addr = rblk->parent->id * nr_sec_per_blk + slot;
  256. try:
  257. spin_lock(&rrpc->rev_lock);
  258. /* Get logical address from physical to logical table */
  259. rev = &rrpc->rev_trans_map[phys_addr - rrpc->poffset];
  260. /* already updated by previous regular write */
  261. if (rev->addr == ADDR_EMPTY) {
  262. spin_unlock(&rrpc->rev_lock);
  263. continue;
  264. }
  265. rqd = rrpc_inflight_laddr_acquire(rrpc, rev->addr, 1);
  266. if (IS_ERR_OR_NULL(rqd)) {
  267. spin_unlock(&rrpc->rev_lock);
  268. schedule();
  269. goto try;
  270. }
  271. spin_unlock(&rrpc->rev_lock);
  272. /* Perform read to do GC */
  273. bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
  274. bio->bi_rw = READ;
  275. bio->bi_private = &wait;
  276. bio->bi_end_io = rrpc_end_sync_bio;
  277. /* TODO: may fail when EXP_PG_SIZE > PAGE_SIZE */
  278. bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
  279. if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
  280. pr_err("rrpc: gc read failed.\n");
  281. rrpc_inflight_laddr_release(rrpc, rqd);
  282. goto finished;
  283. }
  284. wait_for_completion_io(&wait);
  285. if (bio->bi_error) {
  286. rrpc_inflight_laddr_release(rrpc, rqd);
  287. goto finished;
  288. }
  289. bio_reset(bio);
  290. reinit_completion(&wait);
  291. bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
  292. bio->bi_rw = WRITE;
  293. bio->bi_private = &wait;
  294. bio->bi_end_io = rrpc_end_sync_bio;
  295. bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
  296. /* turn the command around and write the data back to a new
  297. * address
  298. */
  299. if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
  300. pr_err("rrpc: gc write failed.\n");
  301. rrpc_inflight_laddr_release(rrpc, rqd);
  302. goto finished;
  303. }
  304. wait_for_completion_io(&wait);
  305. rrpc_inflight_laddr_release(rrpc, rqd);
  306. if (bio->bi_error)
  307. goto finished;
  308. bio_reset(bio);
  309. }
  310. finished:
  311. mempool_free(page, rrpc->page_pool);
  312. bio_put(bio);
  313. if (!bitmap_full(rblk->invalid_pages, nr_sec_per_blk)) {
  314. pr_err("nvm: failed to garbage collect block\n");
  315. return -EIO;
  316. }
  317. return 0;
  318. }
  319. static void rrpc_block_gc(struct work_struct *work)
  320. {
  321. struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
  322. ws_gc);
  323. struct rrpc *rrpc = gcb->rrpc;
  324. struct rrpc_block *rblk = gcb->rblk;
  325. struct rrpc_lun *rlun = rblk->rlun;
  326. struct nvm_dev *dev = rrpc->dev;
  327. mempool_free(gcb, rrpc->gcb_pool);
  328. pr_debug("nvm: block '%lu' being reclaimed\n", rblk->parent->id);
  329. if (rrpc_move_valid_pages(rrpc, rblk))
  330. goto put_back;
  331. if (nvm_erase_blk(dev, rblk->parent))
  332. goto put_back;
  333. rrpc_put_blk(rrpc, rblk);
  334. return;
  335. put_back:
  336. spin_lock(&rlun->lock);
  337. list_add_tail(&rblk->prio, &rlun->prio_list);
  338. spin_unlock(&rlun->lock);
  339. }
  340. /* the block with highest number of invalid pages, will be in the beginning
  341. * of the list
  342. */
  343. static struct rrpc_block *rblock_max_invalid(struct rrpc_block *ra,
  344. struct rrpc_block *rb)
  345. {
  346. if (ra->nr_invalid_pages == rb->nr_invalid_pages)
  347. return ra;
  348. return (ra->nr_invalid_pages < rb->nr_invalid_pages) ? rb : ra;
  349. }
  350. /* linearly find the block with highest number of invalid pages
  351. * requires lun->lock
  352. */
  353. static struct rrpc_block *block_prio_find_max(struct rrpc_lun *rlun)
  354. {
  355. struct list_head *prio_list = &rlun->prio_list;
  356. struct rrpc_block *rblock, *max;
  357. BUG_ON(list_empty(prio_list));
  358. max = list_first_entry(prio_list, struct rrpc_block, prio);
  359. list_for_each_entry(rblock, prio_list, prio)
  360. max = rblock_max_invalid(max, rblock);
  361. return max;
  362. }
  363. static void rrpc_lun_gc(struct work_struct *work)
  364. {
  365. struct rrpc_lun *rlun = container_of(work, struct rrpc_lun, ws_gc);
  366. struct rrpc *rrpc = rlun->rrpc;
  367. struct nvm_lun *lun = rlun->parent;
  368. struct rrpc_block_gc *gcb;
  369. unsigned int nr_blocks_need;
  370. nr_blocks_need = rrpc->dev->blks_per_lun / GC_LIMIT_INVERSE;
  371. if (nr_blocks_need < rrpc->nr_luns)
  372. nr_blocks_need = rrpc->nr_luns;
  373. spin_lock(&rlun->lock);
  374. while (nr_blocks_need > lun->nr_free_blocks &&
  375. !list_empty(&rlun->prio_list)) {
  376. struct rrpc_block *rblock = block_prio_find_max(rlun);
  377. struct nvm_block *block = rblock->parent;
  378. if (!rblock->nr_invalid_pages)
  379. break;
  380. gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
  381. if (!gcb)
  382. break;
  383. list_del_init(&rblock->prio);
  384. BUG_ON(!block_is_full(rrpc, rblock));
  385. pr_debug("rrpc: selected block '%lu' for GC\n", block->id);
  386. gcb->rrpc = rrpc;
  387. gcb->rblk = rblock;
  388. INIT_WORK(&gcb->ws_gc, rrpc_block_gc);
  389. queue_work(rrpc->kgc_wq, &gcb->ws_gc);
  390. nr_blocks_need--;
  391. }
  392. spin_unlock(&rlun->lock);
  393. /* TODO: Hint that request queue can be started again */
  394. }
  395. static void rrpc_gc_queue(struct work_struct *work)
  396. {
  397. struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
  398. ws_gc);
  399. struct rrpc *rrpc = gcb->rrpc;
  400. struct rrpc_block *rblk = gcb->rblk;
  401. struct rrpc_lun *rlun = rblk->rlun;
  402. struct nvm_lun *lun = rblk->parent->lun;
  403. struct nvm_block *blk = rblk->parent;
  404. spin_lock(&rlun->lock);
  405. list_add_tail(&rblk->prio, &rlun->prio_list);
  406. spin_unlock(&rlun->lock);
  407. spin_lock(&lun->lock);
  408. lun->nr_open_blocks--;
  409. lun->nr_closed_blocks++;
  410. blk->state &= ~NVM_BLK_ST_OPEN;
  411. blk->state |= NVM_BLK_ST_CLOSED;
  412. list_move_tail(&rblk->list, &rlun->closed_list);
  413. spin_unlock(&lun->lock);
  414. mempool_free(gcb, rrpc->gcb_pool);
  415. pr_debug("nvm: block '%lu' is full, allow GC (sched)\n",
  416. rblk->parent->id);
  417. }
  418. static const struct block_device_operations rrpc_fops = {
  419. .owner = THIS_MODULE,
  420. };
  421. static struct rrpc_lun *rrpc_get_lun_rr(struct rrpc *rrpc, int is_gc)
  422. {
  423. unsigned int i;
  424. struct rrpc_lun *rlun, *max_free;
  425. if (!is_gc)
  426. return get_next_lun(rrpc);
  427. /* during GC, we don't care about RR, instead we want to make
  428. * sure that we maintain evenness between the block luns.
  429. */
  430. max_free = &rrpc->luns[0];
  431. /* prevent GC-ing lun from devouring pages of a lun with
  432. * little free blocks. We don't take the lock as we only need an
  433. * estimate.
  434. */
  435. rrpc_for_each_lun(rrpc, rlun, i) {
  436. if (rlun->parent->nr_free_blocks >
  437. max_free->parent->nr_free_blocks)
  438. max_free = rlun;
  439. }
  440. return max_free;
  441. }
  442. static struct rrpc_addr *rrpc_update_map(struct rrpc *rrpc, sector_t laddr,
  443. struct rrpc_block *rblk, u64 paddr)
  444. {
  445. struct rrpc_addr *gp;
  446. struct rrpc_rev_addr *rev;
  447. BUG_ON(laddr >= rrpc->nr_sects);
  448. gp = &rrpc->trans_map[laddr];
  449. spin_lock(&rrpc->rev_lock);
  450. if (gp->rblk)
  451. rrpc_page_invalidate(rrpc, gp);
  452. gp->addr = paddr;
  453. gp->rblk = rblk;
  454. rev = &rrpc->rev_trans_map[gp->addr - rrpc->poffset];
  455. rev->addr = laddr;
  456. spin_unlock(&rrpc->rev_lock);
  457. return gp;
  458. }
  459. static u64 rrpc_alloc_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
  460. {
  461. u64 addr = ADDR_EMPTY;
  462. spin_lock(&rblk->lock);
  463. if (block_is_full(rrpc, rblk))
  464. goto out;
  465. addr = block_to_addr(rrpc, rblk) + rblk->next_page;
  466. rblk->next_page++;
  467. out:
  468. spin_unlock(&rblk->lock);
  469. return addr;
  470. }
  471. /* Simple round-robin Logical to physical address translation.
  472. *
  473. * Retrieve the mapping using the active append point. Then update the ap for
  474. * the next write to the disk.
  475. *
  476. * Returns rrpc_addr with the physical address and block. Remember to return to
  477. * rrpc->addr_cache when request is finished.
  478. */
  479. static struct rrpc_addr *rrpc_map_page(struct rrpc *rrpc, sector_t laddr,
  480. int is_gc)
  481. {
  482. struct rrpc_lun *rlun;
  483. struct rrpc_block *rblk;
  484. struct nvm_lun *lun;
  485. u64 paddr;
  486. rlun = rrpc_get_lun_rr(rrpc, is_gc);
  487. lun = rlun->parent;
  488. if (!is_gc && lun->nr_free_blocks < rrpc->nr_luns * 4)
  489. return NULL;
  490. spin_lock(&rlun->lock);
  491. rblk = rlun->cur;
  492. retry:
  493. paddr = rrpc_alloc_addr(rrpc, rblk);
  494. if (paddr == ADDR_EMPTY) {
  495. rblk = rrpc_get_blk(rrpc, rlun, 0);
  496. if (rblk) {
  497. rrpc_set_lun_cur(rlun, rblk);
  498. goto retry;
  499. }
  500. if (is_gc) {
  501. /* retry from emergency gc block */
  502. paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
  503. if (paddr == ADDR_EMPTY) {
  504. rblk = rrpc_get_blk(rrpc, rlun, 1);
  505. if (!rblk) {
  506. pr_err("rrpc: no more blocks");
  507. goto err;
  508. }
  509. rlun->gc_cur = rblk;
  510. paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
  511. }
  512. rblk = rlun->gc_cur;
  513. }
  514. }
  515. spin_unlock(&rlun->lock);
  516. return rrpc_update_map(rrpc, laddr, rblk, paddr);
  517. err:
  518. spin_unlock(&rlun->lock);
  519. return NULL;
  520. }
  521. static void rrpc_run_gc(struct rrpc *rrpc, struct rrpc_block *rblk)
  522. {
  523. struct rrpc_block_gc *gcb;
  524. gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
  525. if (!gcb) {
  526. pr_err("rrpc: unable to queue block for gc.");
  527. return;
  528. }
  529. gcb->rrpc = rrpc;
  530. gcb->rblk = rblk;
  531. INIT_WORK(&gcb->ws_gc, rrpc_gc_queue);
  532. queue_work(rrpc->kgc_wq, &gcb->ws_gc);
  533. }
  534. static void rrpc_end_io_write(struct rrpc *rrpc, struct rrpc_rq *rrqd,
  535. sector_t laddr, uint8_t npages)
  536. {
  537. struct rrpc_addr *p;
  538. struct rrpc_block *rblk;
  539. struct nvm_lun *lun;
  540. int cmnt_size, i;
  541. for (i = 0; i < npages; i++) {
  542. p = &rrpc->trans_map[laddr + i];
  543. rblk = p->rblk;
  544. lun = rblk->parent->lun;
  545. cmnt_size = atomic_inc_return(&rblk->data_cmnt_size);
  546. if (unlikely(cmnt_size == rrpc->dev->sec_per_blk))
  547. rrpc_run_gc(rrpc, rblk);
  548. }
  549. }
  550. static void rrpc_end_io(struct nvm_rq *rqd)
  551. {
  552. struct rrpc *rrpc = container_of(rqd->ins, struct rrpc, instance);
  553. struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
  554. uint8_t npages = rqd->nr_ppas;
  555. sector_t laddr = rrpc_get_laddr(rqd->bio) - npages;
  556. if (bio_data_dir(rqd->bio) == WRITE)
  557. rrpc_end_io_write(rrpc, rrqd, laddr, npages);
  558. bio_put(rqd->bio);
  559. if (rrqd->flags & NVM_IOTYPE_GC)
  560. return;
  561. rrpc_unlock_rq(rrpc, rqd);
  562. if (npages > 1)
  563. nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
  564. mempool_free(rqd, rrpc->rq_pool);
  565. }
  566. static int rrpc_read_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
  567. struct nvm_rq *rqd, unsigned long flags, int npages)
  568. {
  569. struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
  570. struct rrpc_addr *gp;
  571. sector_t laddr = rrpc_get_laddr(bio);
  572. int is_gc = flags & NVM_IOTYPE_GC;
  573. int i;
  574. if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
  575. nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
  576. return NVM_IO_REQUEUE;
  577. }
  578. for (i = 0; i < npages; i++) {
  579. /* We assume that mapping occurs at 4KB granularity */
  580. BUG_ON(!(laddr + i >= 0 && laddr + i < rrpc->nr_sects));
  581. gp = &rrpc->trans_map[laddr + i];
  582. if (gp->rblk) {
  583. rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
  584. gp->addr);
  585. } else {
  586. BUG_ON(is_gc);
  587. rrpc_unlock_laddr(rrpc, r);
  588. nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
  589. rqd->dma_ppa_list);
  590. return NVM_IO_DONE;
  591. }
  592. }
  593. rqd->opcode = NVM_OP_HBREAD;
  594. return NVM_IO_OK;
  595. }
  596. static int rrpc_read_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd,
  597. unsigned long flags)
  598. {
  599. struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
  600. int is_gc = flags & NVM_IOTYPE_GC;
  601. sector_t laddr = rrpc_get_laddr(bio);
  602. struct rrpc_addr *gp;
  603. if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
  604. return NVM_IO_REQUEUE;
  605. BUG_ON(!(laddr >= 0 && laddr < rrpc->nr_sects));
  606. gp = &rrpc->trans_map[laddr];
  607. if (gp->rblk) {
  608. rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, gp->addr);
  609. } else {
  610. BUG_ON(is_gc);
  611. rrpc_unlock_rq(rrpc, rqd);
  612. return NVM_IO_DONE;
  613. }
  614. rqd->opcode = NVM_OP_HBREAD;
  615. rrqd->addr = gp;
  616. return NVM_IO_OK;
  617. }
  618. static int rrpc_write_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
  619. struct nvm_rq *rqd, unsigned long flags, int npages)
  620. {
  621. struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
  622. struct rrpc_addr *p;
  623. sector_t laddr = rrpc_get_laddr(bio);
  624. int is_gc = flags & NVM_IOTYPE_GC;
  625. int i;
  626. if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
  627. nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
  628. return NVM_IO_REQUEUE;
  629. }
  630. for (i = 0; i < npages; i++) {
  631. /* We assume that mapping occurs at 4KB granularity */
  632. p = rrpc_map_page(rrpc, laddr + i, is_gc);
  633. if (!p) {
  634. BUG_ON(is_gc);
  635. rrpc_unlock_laddr(rrpc, r);
  636. nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
  637. rqd->dma_ppa_list);
  638. rrpc_gc_kick(rrpc);
  639. return NVM_IO_REQUEUE;
  640. }
  641. rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
  642. p->addr);
  643. }
  644. rqd->opcode = NVM_OP_HBWRITE;
  645. return NVM_IO_OK;
  646. }
  647. static int rrpc_write_rq(struct rrpc *rrpc, struct bio *bio,
  648. struct nvm_rq *rqd, unsigned long flags)
  649. {
  650. struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
  651. struct rrpc_addr *p;
  652. int is_gc = flags & NVM_IOTYPE_GC;
  653. sector_t laddr = rrpc_get_laddr(bio);
  654. if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
  655. return NVM_IO_REQUEUE;
  656. p = rrpc_map_page(rrpc, laddr, is_gc);
  657. if (!p) {
  658. BUG_ON(is_gc);
  659. rrpc_unlock_rq(rrpc, rqd);
  660. rrpc_gc_kick(rrpc);
  661. return NVM_IO_REQUEUE;
  662. }
  663. rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, p->addr);
  664. rqd->opcode = NVM_OP_HBWRITE;
  665. rrqd->addr = p;
  666. return NVM_IO_OK;
  667. }
  668. static int rrpc_setup_rq(struct rrpc *rrpc, struct bio *bio,
  669. struct nvm_rq *rqd, unsigned long flags, uint8_t npages)
  670. {
  671. if (npages > 1) {
  672. rqd->ppa_list = nvm_dev_dma_alloc(rrpc->dev, GFP_KERNEL,
  673. &rqd->dma_ppa_list);
  674. if (!rqd->ppa_list) {
  675. pr_err("rrpc: not able to allocate ppa list\n");
  676. return NVM_IO_ERR;
  677. }
  678. if (bio_rw(bio) == WRITE)
  679. return rrpc_write_ppalist_rq(rrpc, bio, rqd, flags,
  680. npages);
  681. return rrpc_read_ppalist_rq(rrpc, bio, rqd, flags, npages);
  682. }
  683. if (bio_rw(bio) == WRITE)
  684. return rrpc_write_rq(rrpc, bio, rqd, flags);
  685. return rrpc_read_rq(rrpc, bio, rqd, flags);
  686. }
  687. static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
  688. struct nvm_rq *rqd, unsigned long flags)
  689. {
  690. int err;
  691. struct rrpc_rq *rrq = nvm_rq_to_pdu(rqd);
  692. uint8_t nr_pages = rrpc_get_pages(bio);
  693. int bio_size = bio_sectors(bio) << 9;
  694. if (bio_size < rrpc->dev->sec_size)
  695. return NVM_IO_ERR;
  696. else if (bio_size > rrpc->dev->max_rq_size)
  697. return NVM_IO_ERR;
  698. err = rrpc_setup_rq(rrpc, bio, rqd, flags, nr_pages);
  699. if (err)
  700. return err;
  701. bio_get(bio);
  702. rqd->bio = bio;
  703. rqd->ins = &rrpc->instance;
  704. rqd->nr_ppas = nr_pages;
  705. rrq->flags = flags;
  706. err = nvm_submit_io(rrpc->dev, rqd);
  707. if (err) {
  708. pr_err("rrpc: I/O submission failed: %d\n", err);
  709. bio_put(bio);
  710. if (!(flags & NVM_IOTYPE_GC)) {
  711. rrpc_unlock_rq(rrpc, rqd);
  712. if (rqd->nr_ppas > 1)
  713. nvm_dev_dma_free(rrpc->dev,
  714. rqd->ppa_list, rqd->dma_ppa_list);
  715. }
  716. return NVM_IO_ERR;
  717. }
  718. return NVM_IO_OK;
  719. }
  720. static blk_qc_t rrpc_make_rq(struct request_queue *q, struct bio *bio)
  721. {
  722. struct rrpc *rrpc = q->queuedata;
  723. struct nvm_rq *rqd;
  724. int err;
  725. if (bio->bi_rw & REQ_DISCARD) {
  726. rrpc_discard(rrpc, bio);
  727. return BLK_QC_T_NONE;
  728. }
  729. rqd = mempool_alloc(rrpc->rq_pool, GFP_KERNEL);
  730. if (!rqd) {
  731. pr_err_ratelimited("rrpc: not able to queue bio.");
  732. bio_io_error(bio);
  733. return BLK_QC_T_NONE;
  734. }
  735. memset(rqd, 0, sizeof(struct nvm_rq));
  736. err = rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_NONE);
  737. switch (err) {
  738. case NVM_IO_OK:
  739. return BLK_QC_T_NONE;
  740. case NVM_IO_ERR:
  741. bio_io_error(bio);
  742. break;
  743. case NVM_IO_DONE:
  744. bio_endio(bio);
  745. break;
  746. case NVM_IO_REQUEUE:
  747. spin_lock(&rrpc->bio_lock);
  748. bio_list_add(&rrpc->requeue_bios, bio);
  749. spin_unlock(&rrpc->bio_lock);
  750. queue_work(rrpc->kgc_wq, &rrpc->ws_requeue);
  751. break;
  752. }
  753. mempool_free(rqd, rrpc->rq_pool);
  754. return BLK_QC_T_NONE;
  755. }
  756. static void rrpc_requeue(struct work_struct *work)
  757. {
  758. struct rrpc *rrpc = container_of(work, struct rrpc, ws_requeue);
  759. struct bio_list bios;
  760. struct bio *bio;
  761. bio_list_init(&bios);
  762. spin_lock(&rrpc->bio_lock);
  763. bio_list_merge(&bios, &rrpc->requeue_bios);
  764. bio_list_init(&rrpc->requeue_bios);
  765. spin_unlock(&rrpc->bio_lock);
  766. while ((bio = bio_list_pop(&bios)))
  767. rrpc_make_rq(rrpc->disk->queue, bio);
  768. }
  769. static void rrpc_gc_free(struct rrpc *rrpc)
  770. {
  771. if (rrpc->krqd_wq)
  772. destroy_workqueue(rrpc->krqd_wq);
  773. if (rrpc->kgc_wq)
  774. destroy_workqueue(rrpc->kgc_wq);
  775. }
  776. static int rrpc_gc_init(struct rrpc *rrpc)
  777. {
  778. rrpc->krqd_wq = alloc_workqueue("rrpc-lun", WQ_MEM_RECLAIM|WQ_UNBOUND,
  779. rrpc->nr_luns);
  780. if (!rrpc->krqd_wq)
  781. return -ENOMEM;
  782. rrpc->kgc_wq = alloc_workqueue("rrpc-bg", WQ_MEM_RECLAIM, 1);
  783. if (!rrpc->kgc_wq)
  784. return -ENOMEM;
  785. setup_timer(&rrpc->gc_timer, rrpc_gc_timer, (unsigned long)rrpc);
  786. return 0;
  787. }
  788. static void rrpc_map_free(struct rrpc *rrpc)
  789. {
  790. vfree(rrpc->rev_trans_map);
  791. vfree(rrpc->trans_map);
  792. }
  793. static int rrpc_l2p_update(u64 slba, u32 nlb, __le64 *entries, void *private)
  794. {
  795. struct rrpc *rrpc = (struct rrpc *)private;
  796. struct nvm_dev *dev = rrpc->dev;
  797. struct rrpc_addr *addr = rrpc->trans_map + slba;
  798. struct rrpc_rev_addr *raddr = rrpc->rev_trans_map;
  799. u64 elba = slba + nlb;
  800. u64 i;
  801. if (unlikely(elba > dev->total_secs)) {
  802. pr_err("nvm: L2P data from device is out of bounds!\n");
  803. return -EINVAL;
  804. }
  805. for (i = 0; i < nlb; i++) {
  806. u64 pba = le64_to_cpu(entries[i]);
  807. unsigned int mod;
  808. /* LNVM treats address-spaces as silos, LBA and PBA are
  809. * equally large and zero-indexed.
  810. */
  811. if (unlikely(pba >= dev->total_secs && pba != U64_MAX)) {
  812. pr_err("nvm: L2P data entry is out of bounds!\n");
  813. return -EINVAL;
  814. }
  815. /* Address zero is a special one. The first page on a disk is
  816. * protected. As it often holds internal device boot
  817. * information.
  818. */
  819. if (!pba)
  820. continue;
  821. div_u64_rem(pba, rrpc->nr_sects, &mod);
  822. addr[i].addr = pba;
  823. raddr[mod].addr = slba + i;
  824. }
  825. return 0;
  826. }
  827. static int rrpc_map_init(struct rrpc *rrpc)
  828. {
  829. struct nvm_dev *dev = rrpc->dev;
  830. sector_t i;
  831. int ret;
  832. rrpc->trans_map = vzalloc(sizeof(struct rrpc_addr) * rrpc->nr_sects);
  833. if (!rrpc->trans_map)
  834. return -ENOMEM;
  835. rrpc->rev_trans_map = vmalloc(sizeof(struct rrpc_rev_addr)
  836. * rrpc->nr_sects);
  837. if (!rrpc->rev_trans_map)
  838. return -ENOMEM;
  839. for (i = 0; i < rrpc->nr_sects; i++) {
  840. struct rrpc_addr *p = &rrpc->trans_map[i];
  841. struct rrpc_rev_addr *r = &rrpc->rev_trans_map[i];
  842. p->addr = ADDR_EMPTY;
  843. r->addr = ADDR_EMPTY;
  844. }
  845. if (!dev->ops->get_l2p_tbl)
  846. return 0;
  847. /* Bring up the mapping table from device */
  848. ret = dev->ops->get_l2p_tbl(dev, rrpc->soffset, rrpc->nr_sects,
  849. rrpc_l2p_update, rrpc);
  850. if (ret) {
  851. pr_err("nvm: rrpc: could not read L2P table.\n");
  852. return -EINVAL;
  853. }
  854. return 0;
  855. }
  856. /* Minimum pages needed within a lun */
  857. #define PAGE_POOL_SIZE 16
  858. #define ADDR_POOL_SIZE 64
  859. static int rrpc_core_init(struct rrpc *rrpc)
  860. {
  861. down_write(&rrpc_lock);
  862. if (!rrpc_gcb_cache) {
  863. rrpc_gcb_cache = kmem_cache_create("rrpc_gcb",
  864. sizeof(struct rrpc_block_gc), 0, 0, NULL);
  865. if (!rrpc_gcb_cache) {
  866. up_write(&rrpc_lock);
  867. return -ENOMEM;
  868. }
  869. rrpc_rq_cache = kmem_cache_create("rrpc_rq",
  870. sizeof(struct nvm_rq) + sizeof(struct rrpc_rq),
  871. 0, 0, NULL);
  872. if (!rrpc_rq_cache) {
  873. kmem_cache_destroy(rrpc_gcb_cache);
  874. up_write(&rrpc_lock);
  875. return -ENOMEM;
  876. }
  877. }
  878. up_write(&rrpc_lock);
  879. rrpc->page_pool = mempool_create_page_pool(PAGE_POOL_SIZE, 0);
  880. if (!rrpc->page_pool)
  881. return -ENOMEM;
  882. rrpc->gcb_pool = mempool_create_slab_pool(rrpc->dev->nr_luns,
  883. rrpc_gcb_cache);
  884. if (!rrpc->gcb_pool)
  885. return -ENOMEM;
  886. rrpc->rq_pool = mempool_create_slab_pool(64, rrpc_rq_cache);
  887. if (!rrpc->rq_pool)
  888. return -ENOMEM;
  889. spin_lock_init(&rrpc->inflights.lock);
  890. INIT_LIST_HEAD(&rrpc->inflights.reqs);
  891. return 0;
  892. }
  893. static void rrpc_core_free(struct rrpc *rrpc)
  894. {
  895. mempool_destroy(rrpc->page_pool);
  896. mempool_destroy(rrpc->gcb_pool);
  897. mempool_destroy(rrpc->rq_pool);
  898. }
  899. static void rrpc_luns_free(struct rrpc *rrpc)
  900. {
  901. struct nvm_dev *dev = rrpc->dev;
  902. struct nvm_lun *lun;
  903. struct rrpc_lun *rlun;
  904. int i;
  905. if (!rrpc->luns)
  906. return;
  907. for (i = 0; i < rrpc->nr_luns; i++) {
  908. rlun = &rrpc->luns[i];
  909. lun = rlun->parent;
  910. if (!lun)
  911. break;
  912. dev->mt->release_lun(dev, lun->id);
  913. vfree(rlun->blocks);
  914. }
  915. kfree(rrpc->luns);
  916. }
  917. static int rrpc_luns_init(struct rrpc *rrpc, int lun_begin, int lun_end)
  918. {
  919. struct nvm_dev *dev = rrpc->dev;
  920. struct rrpc_lun *rlun;
  921. int i, j, ret = -EINVAL;
  922. if (dev->sec_per_blk > MAX_INVALID_PAGES_STORAGE * BITS_PER_LONG) {
  923. pr_err("rrpc: number of pages per block too high.");
  924. return -EINVAL;
  925. }
  926. spin_lock_init(&rrpc->rev_lock);
  927. rrpc->luns = kcalloc(rrpc->nr_luns, sizeof(struct rrpc_lun),
  928. GFP_KERNEL);
  929. if (!rrpc->luns)
  930. return -ENOMEM;
  931. /* 1:1 mapping */
  932. for (i = 0; i < rrpc->nr_luns; i++) {
  933. int lunid = lun_begin + i;
  934. struct nvm_lun *lun;
  935. if (dev->mt->reserve_lun(dev, lunid)) {
  936. pr_err("rrpc: lun %u is already allocated\n", lunid);
  937. goto err;
  938. }
  939. lun = dev->mt->get_lun(dev, lunid);
  940. if (!lun)
  941. goto err;
  942. rlun = &rrpc->luns[i];
  943. rlun->parent = lun;
  944. rlun->blocks = vzalloc(sizeof(struct rrpc_block) *
  945. rrpc->dev->blks_per_lun);
  946. if (!rlun->blocks) {
  947. ret = -ENOMEM;
  948. goto err;
  949. }
  950. for (j = 0; j < rrpc->dev->blks_per_lun; j++) {
  951. struct rrpc_block *rblk = &rlun->blocks[j];
  952. struct nvm_block *blk = &lun->blocks[j];
  953. rblk->parent = blk;
  954. rblk->rlun = rlun;
  955. INIT_LIST_HEAD(&rblk->prio);
  956. spin_lock_init(&rblk->lock);
  957. }
  958. rlun->rrpc = rrpc;
  959. INIT_LIST_HEAD(&rlun->prio_list);
  960. INIT_LIST_HEAD(&rlun->open_list);
  961. INIT_LIST_HEAD(&rlun->closed_list);
  962. INIT_WORK(&rlun->ws_gc, rrpc_lun_gc);
  963. spin_lock_init(&rlun->lock);
  964. }
  965. return 0;
  966. err:
  967. return ret;
  968. }
  969. /* returns 0 on success and stores the beginning address in *begin */
  970. static int rrpc_area_init(struct rrpc *rrpc, sector_t *begin)
  971. {
  972. struct nvm_dev *dev = rrpc->dev;
  973. struct nvmm_type *mt = dev->mt;
  974. sector_t size = rrpc->nr_sects * dev->sec_size;
  975. int ret;
  976. size >>= 9;
  977. ret = mt->get_area(dev, begin, size);
  978. if (!ret)
  979. *begin >>= (ilog2(dev->sec_size) - 9);
  980. return ret;
  981. }
  982. static void rrpc_area_free(struct rrpc *rrpc)
  983. {
  984. struct nvm_dev *dev = rrpc->dev;
  985. struct nvmm_type *mt = dev->mt;
  986. sector_t begin = rrpc->soffset << (ilog2(dev->sec_size) - 9);
  987. mt->put_area(dev, begin);
  988. }
  989. static void rrpc_free(struct rrpc *rrpc)
  990. {
  991. rrpc_gc_free(rrpc);
  992. rrpc_map_free(rrpc);
  993. rrpc_core_free(rrpc);
  994. rrpc_luns_free(rrpc);
  995. rrpc_area_free(rrpc);
  996. kfree(rrpc);
  997. }
  998. static void rrpc_exit(void *private)
  999. {
  1000. struct rrpc *rrpc = private;
  1001. del_timer(&rrpc->gc_timer);
  1002. flush_workqueue(rrpc->krqd_wq);
  1003. flush_workqueue(rrpc->kgc_wq);
  1004. rrpc_free(rrpc);
  1005. }
  1006. static sector_t rrpc_capacity(void *private)
  1007. {
  1008. struct rrpc *rrpc = private;
  1009. struct nvm_dev *dev = rrpc->dev;
  1010. sector_t reserved, provisioned;
  1011. /* cur, gc, and two emergency blocks for each lun */
  1012. reserved = rrpc->nr_luns * dev->sec_per_blk * 4;
  1013. provisioned = rrpc->nr_sects - reserved;
  1014. if (reserved > rrpc->nr_sects) {
  1015. pr_err("rrpc: not enough space available to expose storage.\n");
  1016. return 0;
  1017. }
  1018. sector_div(provisioned, 10);
  1019. return provisioned * 9 * NR_PHY_IN_LOG;
  1020. }
  1021. /*
  1022. * Looks up the logical address from reverse trans map and check if its valid by
  1023. * comparing the logical to physical address with the physical address.
  1024. * Returns 0 on free, otherwise 1 if in use
  1025. */
  1026. static void rrpc_block_map_update(struct rrpc *rrpc, struct rrpc_block *rblk)
  1027. {
  1028. struct nvm_dev *dev = rrpc->dev;
  1029. int offset;
  1030. struct rrpc_addr *laddr;
  1031. u64 bpaddr, paddr, pladdr;
  1032. bpaddr = block_to_rel_addr(rrpc, rblk);
  1033. for (offset = 0; offset < dev->sec_per_blk; offset++) {
  1034. paddr = bpaddr + offset;
  1035. pladdr = rrpc->rev_trans_map[paddr].addr;
  1036. if (pladdr == ADDR_EMPTY)
  1037. continue;
  1038. laddr = &rrpc->trans_map[pladdr];
  1039. if (paddr == laddr->addr) {
  1040. laddr->rblk = rblk;
  1041. } else {
  1042. set_bit(offset, rblk->invalid_pages);
  1043. rblk->nr_invalid_pages++;
  1044. }
  1045. }
  1046. }
  1047. static int rrpc_blocks_init(struct rrpc *rrpc)
  1048. {
  1049. struct rrpc_lun *rlun;
  1050. struct rrpc_block *rblk;
  1051. int lun_iter, blk_iter;
  1052. for (lun_iter = 0; lun_iter < rrpc->nr_luns; lun_iter++) {
  1053. rlun = &rrpc->luns[lun_iter];
  1054. for (blk_iter = 0; blk_iter < rrpc->dev->blks_per_lun;
  1055. blk_iter++) {
  1056. rblk = &rlun->blocks[blk_iter];
  1057. rrpc_block_map_update(rrpc, rblk);
  1058. }
  1059. }
  1060. return 0;
  1061. }
  1062. static int rrpc_luns_configure(struct rrpc *rrpc)
  1063. {
  1064. struct rrpc_lun *rlun;
  1065. struct rrpc_block *rblk;
  1066. int i;
  1067. for (i = 0; i < rrpc->nr_luns; i++) {
  1068. rlun = &rrpc->luns[i];
  1069. rblk = rrpc_get_blk(rrpc, rlun, 0);
  1070. if (!rblk)
  1071. goto err;
  1072. rrpc_set_lun_cur(rlun, rblk);
  1073. /* Emergency gc block */
  1074. rblk = rrpc_get_blk(rrpc, rlun, 1);
  1075. if (!rblk)
  1076. goto err;
  1077. rlun->gc_cur = rblk;
  1078. }
  1079. return 0;
  1080. err:
  1081. rrpc_put_blks(rrpc);
  1082. return -EINVAL;
  1083. }
  1084. static struct nvm_tgt_type tt_rrpc;
  1085. static void *rrpc_init(struct nvm_dev *dev, struct gendisk *tdisk,
  1086. int lun_begin, int lun_end)
  1087. {
  1088. struct request_queue *bqueue = dev->q;
  1089. struct request_queue *tqueue = tdisk->queue;
  1090. struct rrpc *rrpc;
  1091. sector_t soffset;
  1092. int ret;
  1093. if (!(dev->identity.dom & NVM_RSP_L2P)) {
  1094. pr_err("nvm: rrpc: device does not support l2p (%x)\n",
  1095. dev->identity.dom);
  1096. return ERR_PTR(-EINVAL);
  1097. }
  1098. rrpc = kzalloc(sizeof(struct rrpc), GFP_KERNEL);
  1099. if (!rrpc)
  1100. return ERR_PTR(-ENOMEM);
  1101. rrpc->instance.tt = &tt_rrpc;
  1102. rrpc->dev = dev;
  1103. rrpc->disk = tdisk;
  1104. bio_list_init(&rrpc->requeue_bios);
  1105. spin_lock_init(&rrpc->bio_lock);
  1106. INIT_WORK(&rrpc->ws_requeue, rrpc_requeue);
  1107. rrpc->nr_luns = lun_end - lun_begin + 1;
  1108. rrpc->total_blocks = (unsigned long)dev->blks_per_lun * rrpc->nr_luns;
  1109. rrpc->nr_sects = (unsigned long long)dev->sec_per_lun * rrpc->nr_luns;
  1110. /* simple round-robin strategy */
  1111. atomic_set(&rrpc->next_lun, -1);
  1112. ret = rrpc_area_init(rrpc, &soffset);
  1113. if (ret < 0) {
  1114. pr_err("nvm: rrpc: could not initialize area\n");
  1115. return ERR_PTR(ret);
  1116. }
  1117. rrpc->soffset = soffset;
  1118. ret = rrpc_luns_init(rrpc, lun_begin, lun_end);
  1119. if (ret) {
  1120. pr_err("nvm: rrpc: could not initialize luns\n");
  1121. goto err;
  1122. }
  1123. rrpc->poffset = dev->sec_per_lun * lun_begin;
  1124. rrpc->lun_offset = lun_begin;
  1125. ret = rrpc_core_init(rrpc);
  1126. if (ret) {
  1127. pr_err("nvm: rrpc: could not initialize core\n");
  1128. goto err;
  1129. }
  1130. ret = rrpc_map_init(rrpc);
  1131. if (ret) {
  1132. pr_err("nvm: rrpc: could not initialize maps\n");
  1133. goto err;
  1134. }
  1135. ret = rrpc_blocks_init(rrpc);
  1136. if (ret) {
  1137. pr_err("nvm: rrpc: could not initialize state for blocks\n");
  1138. goto err;
  1139. }
  1140. ret = rrpc_luns_configure(rrpc);
  1141. if (ret) {
  1142. pr_err("nvm: rrpc: not enough blocks available in LUNs.\n");
  1143. goto err;
  1144. }
  1145. ret = rrpc_gc_init(rrpc);
  1146. if (ret) {
  1147. pr_err("nvm: rrpc: could not initialize gc\n");
  1148. goto err;
  1149. }
  1150. /* inherit the size from the underlying device */
  1151. blk_queue_logical_block_size(tqueue, queue_physical_block_size(bqueue));
  1152. blk_queue_max_hw_sectors(tqueue, queue_max_hw_sectors(bqueue));
  1153. pr_info("nvm: rrpc initialized with %u luns and %llu pages.\n",
  1154. rrpc->nr_luns, (unsigned long long)rrpc->nr_sects);
  1155. mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
  1156. return rrpc;
  1157. err:
  1158. rrpc_free(rrpc);
  1159. return ERR_PTR(ret);
  1160. }
  1161. /* round robin, page-based FTL, and cost-based GC */
  1162. static struct nvm_tgt_type tt_rrpc = {
  1163. .name = "rrpc",
  1164. .version = {1, 0, 0},
  1165. .make_rq = rrpc_make_rq,
  1166. .capacity = rrpc_capacity,
  1167. .end_io = rrpc_end_io,
  1168. .init = rrpc_init,
  1169. .exit = rrpc_exit,
  1170. };
  1171. static int __init rrpc_module_init(void)
  1172. {
  1173. return nvm_register_tgt_type(&tt_rrpc);
  1174. }
  1175. static void rrpc_module_exit(void)
  1176. {
  1177. nvm_unregister_tgt_type(&tt_rrpc);
  1178. }
  1179. module_init(rrpc_module_init);
  1180. module_exit(rrpc_module_exit);
  1181. MODULE_LICENSE("GPL v2");
  1182. MODULE_DESCRIPTION("Block-Device Target for Open-Channel SSDs");