checkpoint.c 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145
  1. /*
  2. * fs/f2fs/checkpoint.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/bio.h>
  13. #include <linux/mpage.h>
  14. #include <linux/writeback.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/f2fs_fs.h>
  17. #include <linux/pagevec.h>
  18. #include <linux/swap.h>
  19. #include "f2fs.h"
  20. #include "node.h"
  21. #include "segment.h"
  22. #include "trace.h"
  23. #include <trace/events/f2fs.h>
  24. static struct kmem_cache *ino_entry_slab;
  25. struct kmem_cache *inode_entry_slab;
  26. /*
  27. * We guarantee no failure on the returned page.
  28. */
  29. struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  30. {
  31. struct address_space *mapping = META_MAPPING(sbi);
  32. struct page *page = NULL;
  33. repeat:
  34. page = grab_cache_page(mapping, index);
  35. if (!page) {
  36. cond_resched();
  37. goto repeat;
  38. }
  39. f2fs_wait_on_page_writeback(page, META);
  40. SetPageUptodate(page);
  41. return page;
  42. }
  43. /*
  44. * We guarantee no failure on the returned page.
  45. */
  46. struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  47. {
  48. struct address_space *mapping = META_MAPPING(sbi);
  49. struct page *page;
  50. struct f2fs_io_info fio = {
  51. .type = META,
  52. .rw = READ_SYNC | REQ_META | REQ_PRIO,
  53. .blk_addr = index,
  54. };
  55. repeat:
  56. page = grab_cache_page(mapping, index);
  57. if (!page) {
  58. cond_resched();
  59. goto repeat;
  60. }
  61. if (PageUptodate(page))
  62. goto out;
  63. if (f2fs_submit_page_bio(sbi, page, &fio))
  64. goto repeat;
  65. lock_page(page);
  66. if (unlikely(page->mapping != mapping)) {
  67. f2fs_put_page(page, 1);
  68. goto repeat;
  69. }
  70. out:
  71. return page;
  72. }
  73. static inline bool is_valid_blkaddr(struct f2fs_sb_info *sbi,
  74. block_t blkaddr, int type)
  75. {
  76. switch (type) {
  77. case META_NAT:
  78. break;
  79. case META_SIT:
  80. if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
  81. return false;
  82. break;
  83. case META_SSA:
  84. if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
  85. blkaddr < SM_I(sbi)->ssa_blkaddr))
  86. return false;
  87. break;
  88. case META_CP:
  89. if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
  90. blkaddr < __start_cp_addr(sbi)))
  91. return false;
  92. break;
  93. case META_POR:
  94. if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
  95. blkaddr < MAIN_BLKADDR(sbi)))
  96. return false;
  97. break;
  98. default:
  99. BUG();
  100. }
  101. return true;
  102. }
  103. /*
  104. * Readahead CP/NAT/SIT/SSA pages
  105. */
  106. int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type)
  107. {
  108. block_t prev_blk_addr = 0;
  109. struct page *page;
  110. block_t blkno = start;
  111. struct f2fs_io_info fio = {
  112. .type = META,
  113. .rw = READ_SYNC | REQ_META | REQ_PRIO
  114. };
  115. for (; nrpages-- > 0; blkno++) {
  116. if (!is_valid_blkaddr(sbi, blkno, type))
  117. goto out;
  118. switch (type) {
  119. case META_NAT:
  120. if (unlikely(blkno >=
  121. NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
  122. blkno = 0;
  123. /* get nat block addr */
  124. fio.blk_addr = current_nat_addr(sbi,
  125. blkno * NAT_ENTRY_PER_BLOCK);
  126. break;
  127. case META_SIT:
  128. /* get sit block addr */
  129. fio.blk_addr = current_sit_addr(sbi,
  130. blkno * SIT_ENTRY_PER_BLOCK);
  131. if (blkno != start && prev_blk_addr + 1 != fio.blk_addr)
  132. goto out;
  133. prev_blk_addr = fio.blk_addr;
  134. break;
  135. case META_SSA:
  136. case META_CP:
  137. case META_POR:
  138. fio.blk_addr = blkno;
  139. break;
  140. default:
  141. BUG();
  142. }
  143. page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr);
  144. if (!page)
  145. continue;
  146. if (PageUptodate(page)) {
  147. f2fs_put_page(page, 1);
  148. continue;
  149. }
  150. f2fs_submit_page_mbio(sbi, page, &fio);
  151. f2fs_put_page(page, 0);
  152. }
  153. out:
  154. f2fs_submit_merged_bio(sbi, META, READ);
  155. return blkno - start;
  156. }
  157. void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
  158. {
  159. struct page *page;
  160. bool readahead = false;
  161. page = find_get_page(META_MAPPING(sbi), index);
  162. if (!page || (page && !PageUptodate(page)))
  163. readahead = true;
  164. f2fs_put_page(page, 0);
  165. if (readahead)
  166. ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR);
  167. }
  168. static int f2fs_write_meta_page(struct page *page,
  169. struct writeback_control *wbc)
  170. {
  171. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  172. trace_f2fs_writepage(page, META);
  173. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  174. goto redirty_out;
  175. if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
  176. goto redirty_out;
  177. if (unlikely(f2fs_cp_error(sbi)))
  178. goto redirty_out;
  179. f2fs_wait_on_page_writeback(page, META);
  180. write_meta_page(sbi, page);
  181. dec_page_count(sbi, F2FS_DIRTY_META);
  182. unlock_page(page);
  183. if (wbc->for_reclaim)
  184. f2fs_submit_merged_bio(sbi, META, WRITE);
  185. return 0;
  186. redirty_out:
  187. redirty_page_for_writepage(wbc, page);
  188. return AOP_WRITEPAGE_ACTIVATE;
  189. }
  190. static int f2fs_write_meta_pages(struct address_space *mapping,
  191. struct writeback_control *wbc)
  192. {
  193. struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
  194. long diff, written;
  195. trace_f2fs_writepages(mapping->host, wbc, META);
  196. /* collect a number of dirty meta pages and write together */
  197. if (wbc->for_kupdate ||
  198. get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
  199. goto skip_write;
  200. /* if mounting is failed, skip writing node pages */
  201. mutex_lock(&sbi->cp_mutex);
  202. diff = nr_pages_to_write(sbi, META, wbc);
  203. written = sync_meta_pages(sbi, META, wbc->nr_to_write);
  204. mutex_unlock(&sbi->cp_mutex);
  205. wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
  206. return 0;
  207. skip_write:
  208. wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
  209. return 0;
  210. }
  211. long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
  212. long nr_to_write)
  213. {
  214. struct address_space *mapping = META_MAPPING(sbi);
  215. pgoff_t index = 0, end = LONG_MAX;
  216. struct pagevec pvec;
  217. long nwritten = 0;
  218. struct writeback_control wbc = {
  219. .for_reclaim = 0,
  220. };
  221. pagevec_init(&pvec, 0);
  222. while (index <= end) {
  223. int i, nr_pages;
  224. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  225. PAGECACHE_TAG_DIRTY,
  226. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  227. if (unlikely(nr_pages == 0))
  228. break;
  229. for (i = 0; i < nr_pages; i++) {
  230. struct page *page = pvec.pages[i];
  231. lock_page(page);
  232. if (unlikely(page->mapping != mapping)) {
  233. continue_unlock:
  234. unlock_page(page);
  235. continue;
  236. }
  237. if (!PageDirty(page)) {
  238. /* someone wrote it for us */
  239. goto continue_unlock;
  240. }
  241. if (!clear_page_dirty_for_io(page))
  242. goto continue_unlock;
  243. if (f2fs_write_meta_page(page, &wbc)) {
  244. unlock_page(page);
  245. break;
  246. }
  247. nwritten++;
  248. if (unlikely(nwritten >= nr_to_write))
  249. break;
  250. }
  251. pagevec_release(&pvec);
  252. cond_resched();
  253. }
  254. if (nwritten)
  255. f2fs_submit_merged_bio(sbi, type, WRITE);
  256. return nwritten;
  257. }
  258. static int f2fs_set_meta_page_dirty(struct page *page)
  259. {
  260. trace_f2fs_set_page_dirty(page, META);
  261. SetPageUptodate(page);
  262. if (!PageDirty(page)) {
  263. __set_page_dirty_nobuffers(page);
  264. inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
  265. SetPagePrivate(page);
  266. f2fs_trace_pid(page);
  267. return 1;
  268. }
  269. return 0;
  270. }
  271. static void f2fs_invalidate_meta_page(struct page *page, unsigned int offset,
  272. unsigned int length)
  273. {
  274. struct inode *inode = page->mapping->host;
  275. if (PageDirty(page))
  276. dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_META);
  277. ClearPagePrivate(page);
  278. }
  279. static int f2fs_release_meta_page(struct page *page, gfp_t wait)
  280. {
  281. ClearPagePrivate(page);
  282. return 1;
  283. }
  284. const struct address_space_operations f2fs_meta_aops = {
  285. .writepage = f2fs_write_meta_page,
  286. .writepages = f2fs_write_meta_pages,
  287. .set_page_dirty = f2fs_set_meta_page_dirty,
  288. .invalidatepage = f2fs_invalidate_meta_page,
  289. .releasepage = f2fs_release_meta_page,
  290. };
  291. static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  292. {
  293. struct inode_management *im = &sbi->im[type];
  294. struct ino_entry *e;
  295. retry:
  296. if (radix_tree_preload(GFP_NOFS)) {
  297. cond_resched();
  298. goto retry;
  299. }
  300. spin_lock(&im->ino_lock);
  301. e = radix_tree_lookup(&im->ino_root, ino);
  302. if (!e) {
  303. e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
  304. if (!e) {
  305. spin_unlock(&im->ino_lock);
  306. radix_tree_preload_end();
  307. goto retry;
  308. }
  309. if (radix_tree_insert(&im->ino_root, ino, e)) {
  310. spin_unlock(&im->ino_lock);
  311. kmem_cache_free(ino_entry_slab, e);
  312. radix_tree_preload_end();
  313. goto retry;
  314. }
  315. memset(e, 0, sizeof(struct ino_entry));
  316. e->ino = ino;
  317. list_add_tail(&e->list, &im->ino_list);
  318. if (type != ORPHAN_INO)
  319. im->ino_num++;
  320. }
  321. spin_unlock(&im->ino_lock);
  322. radix_tree_preload_end();
  323. }
  324. static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  325. {
  326. struct inode_management *im = &sbi->im[type];
  327. struct ino_entry *e;
  328. spin_lock(&im->ino_lock);
  329. e = radix_tree_lookup(&im->ino_root, ino);
  330. if (e) {
  331. list_del(&e->list);
  332. radix_tree_delete(&im->ino_root, ino);
  333. im->ino_num--;
  334. spin_unlock(&im->ino_lock);
  335. kmem_cache_free(ino_entry_slab, e);
  336. return;
  337. }
  338. spin_unlock(&im->ino_lock);
  339. }
  340. void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
  341. {
  342. /* add new dirty ino entry into list */
  343. __add_ino_entry(sbi, ino, type);
  344. }
  345. void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
  346. {
  347. /* remove dirty ino entry from list */
  348. __remove_ino_entry(sbi, ino, type);
  349. }
  350. /* mode should be APPEND_INO or UPDATE_INO */
  351. bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
  352. {
  353. struct inode_management *im = &sbi->im[mode];
  354. struct ino_entry *e;
  355. spin_lock(&im->ino_lock);
  356. e = radix_tree_lookup(&im->ino_root, ino);
  357. spin_unlock(&im->ino_lock);
  358. return e ? true : false;
  359. }
  360. void release_dirty_inode(struct f2fs_sb_info *sbi)
  361. {
  362. struct ino_entry *e, *tmp;
  363. int i;
  364. for (i = APPEND_INO; i <= UPDATE_INO; i++) {
  365. struct inode_management *im = &sbi->im[i];
  366. spin_lock(&im->ino_lock);
  367. list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
  368. list_del(&e->list);
  369. radix_tree_delete(&im->ino_root, e->ino);
  370. kmem_cache_free(ino_entry_slab, e);
  371. im->ino_num--;
  372. }
  373. spin_unlock(&im->ino_lock);
  374. }
  375. }
  376. int acquire_orphan_inode(struct f2fs_sb_info *sbi)
  377. {
  378. struct inode_management *im = &sbi->im[ORPHAN_INO];
  379. int err = 0;
  380. spin_lock(&im->ino_lock);
  381. if (unlikely(im->ino_num >= sbi->max_orphans))
  382. err = -ENOSPC;
  383. else
  384. im->ino_num++;
  385. spin_unlock(&im->ino_lock);
  386. return err;
  387. }
  388. void release_orphan_inode(struct f2fs_sb_info *sbi)
  389. {
  390. struct inode_management *im = &sbi->im[ORPHAN_INO];
  391. spin_lock(&im->ino_lock);
  392. f2fs_bug_on(sbi, im->ino_num == 0);
  393. im->ino_num--;
  394. spin_unlock(&im->ino_lock);
  395. }
  396. void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  397. {
  398. /* add new orphan ino entry into list */
  399. __add_ino_entry(sbi, ino, ORPHAN_INO);
  400. }
  401. void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  402. {
  403. /* remove orphan entry from orphan list */
  404. __remove_ino_entry(sbi, ino, ORPHAN_INO);
  405. }
  406. static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  407. {
  408. struct inode *inode = f2fs_iget(sbi->sb, ino);
  409. f2fs_bug_on(sbi, IS_ERR(inode));
  410. clear_nlink(inode);
  411. /* truncate all the data during iput */
  412. iput(inode);
  413. }
  414. void recover_orphan_inodes(struct f2fs_sb_info *sbi)
  415. {
  416. block_t start_blk, orphan_blkaddr, i, j;
  417. if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
  418. return;
  419. set_sbi_flag(sbi, SBI_POR_DOING);
  420. start_blk = __start_cp_addr(sbi) + 1 +
  421. le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
  422. orphan_blkaddr = __start_sum_addr(sbi) - 1;
  423. ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
  424. for (i = 0; i < orphan_blkaddr; i++) {
  425. struct page *page = get_meta_page(sbi, start_blk + i);
  426. struct f2fs_orphan_block *orphan_blk;
  427. orphan_blk = (struct f2fs_orphan_block *)page_address(page);
  428. for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
  429. nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
  430. recover_orphan_inode(sbi, ino);
  431. }
  432. f2fs_put_page(page, 1);
  433. }
  434. /* clear Orphan Flag */
  435. clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
  436. clear_sbi_flag(sbi, SBI_POR_DOING);
  437. return;
  438. }
  439. static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
  440. {
  441. struct list_head *head;
  442. struct f2fs_orphan_block *orphan_blk = NULL;
  443. unsigned int nentries = 0;
  444. unsigned short index;
  445. unsigned short orphan_blocks;
  446. struct page *page = NULL;
  447. struct ino_entry *orphan = NULL;
  448. struct inode_management *im = &sbi->im[ORPHAN_INO];
  449. orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
  450. for (index = 0; index < orphan_blocks; index++)
  451. grab_meta_page(sbi, start_blk + index);
  452. index = 1;
  453. spin_lock(&im->ino_lock);
  454. head = &im->ino_list;
  455. /* loop for each orphan inode entry and write them in Jornal block */
  456. list_for_each_entry(orphan, head, list) {
  457. if (!page) {
  458. page = find_get_page(META_MAPPING(sbi), start_blk++);
  459. f2fs_bug_on(sbi, !page);
  460. orphan_blk =
  461. (struct f2fs_orphan_block *)page_address(page);
  462. memset(orphan_blk, 0, sizeof(*orphan_blk));
  463. f2fs_put_page(page, 0);
  464. }
  465. orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
  466. if (nentries == F2FS_ORPHANS_PER_BLOCK) {
  467. /*
  468. * an orphan block is full of 1020 entries,
  469. * then we need to flush current orphan blocks
  470. * and bring another one in memory
  471. */
  472. orphan_blk->blk_addr = cpu_to_le16(index);
  473. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  474. orphan_blk->entry_count = cpu_to_le32(nentries);
  475. set_page_dirty(page);
  476. f2fs_put_page(page, 1);
  477. index++;
  478. nentries = 0;
  479. page = NULL;
  480. }
  481. }
  482. if (page) {
  483. orphan_blk->blk_addr = cpu_to_le16(index);
  484. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  485. orphan_blk->entry_count = cpu_to_le32(nentries);
  486. set_page_dirty(page);
  487. f2fs_put_page(page, 1);
  488. }
  489. spin_unlock(&im->ino_lock);
  490. }
  491. static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
  492. block_t cp_addr, unsigned long long *version)
  493. {
  494. struct page *cp_page_1, *cp_page_2 = NULL;
  495. unsigned long blk_size = sbi->blocksize;
  496. struct f2fs_checkpoint *cp_block;
  497. unsigned long long cur_version = 0, pre_version = 0;
  498. size_t crc_offset;
  499. __u32 crc = 0;
  500. /* Read the 1st cp block in this CP pack */
  501. cp_page_1 = get_meta_page(sbi, cp_addr);
  502. /* get the version number */
  503. cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
  504. crc_offset = le32_to_cpu(cp_block->checksum_offset);
  505. if (crc_offset >= blk_size)
  506. goto invalid_cp1;
  507. crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
  508. if (!f2fs_crc_valid(crc, cp_block, crc_offset))
  509. goto invalid_cp1;
  510. pre_version = cur_cp_version(cp_block);
  511. /* Read the 2nd cp block in this CP pack */
  512. cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
  513. cp_page_2 = get_meta_page(sbi, cp_addr);
  514. cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
  515. crc_offset = le32_to_cpu(cp_block->checksum_offset);
  516. if (crc_offset >= blk_size)
  517. goto invalid_cp2;
  518. crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
  519. if (!f2fs_crc_valid(crc, cp_block, crc_offset))
  520. goto invalid_cp2;
  521. cur_version = cur_cp_version(cp_block);
  522. if (cur_version == pre_version) {
  523. *version = cur_version;
  524. f2fs_put_page(cp_page_2, 1);
  525. return cp_page_1;
  526. }
  527. invalid_cp2:
  528. f2fs_put_page(cp_page_2, 1);
  529. invalid_cp1:
  530. f2fs_put_page(cp_page_1, 1);
  531. return NULL;
  532. }
  533. int get_valid_checkpoint(struct f2fs_sb_info *sbi)
  534. {
  535. struct f2fs_checkpoint *cp_block;
  536. struct f2fs_super_block *fsb = sbi->raw_super;
  537. struct page *cp1, *cp2, *cur_page;
  538. unsigned long blk_size = sbi->blocksize;
  539. unsigned long long cp1_version = 0, cp2_version = 0;
  540. unsigned long long cp_start_blk_no;
  541. unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
  542. block_t cp_blk_no;
  543. int i;
  544. sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
  545. if (!sbi->ckpt)
  546. return -ENOMEM;
  547. /*
  548. * Finding out valid cp block involves read both
  549. * sets( cp pack1 and cp pack 2)
  550. */
  551. cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  552. cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
  553. /* The second checkpoint pack should start at the next segment */
  554. cp_start_blk_no += ((unsigned long long)1) <<
  555. le32_to_cpu(fsb->log_blocks_per_seg);
  556. cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
  557. if (cp1 && cp2) {
  558. if (ver_after(cp2_version, cp1_version))
  559. cur_page = cp2;
  560. else
  561. cur_page = cp1;
  562. } else if (cp1) {
  563. cur_page = cp1;
  564. } else if (cp2) {
  565. cur_page = cp2;
  566. } else {
  567. goto fail_no_cp;
  568. }
  569. cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
  570. memcpy(sbi->ckpt, cp_block, blk_size);
  571. if (cp_blks <= 1)
  572. goto done;
  573. cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  574. if (cur_page == cp2)
  575. cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
  576. for (i = 1; i < cp_blks; i++) {
  577. void *sit_bitmap_ptr;
  578. unsigned char *ckpt = (unsigned char *)sbi->ckpt;
  579. cur_page = get_meta_page(sbi, cp_blk_no + i);
  580. sit_bitmap_ptr = page_address(cur_page);
  581. memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
  582. f2fs_put_page(cur_page, 1);
  583. }
  584. done:
  585. f2fs_put_page(cp1, 1);
  586. f2fs_put_page(cp2, 1);
  587. return 0;
  588. fail_no_cp:
  589. kfree(sbi->ckpt);
  590. return -EINVAL;
  591. }
  592. static int __add_dirty_inode(struct inode *inode, struct inode_entry *new)
  593. {
  594. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  595. if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
  596. return -EEXIST;
  597. set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
  598. F2FS_I(inode)->dirty_dir = new;
  599. list_add_tail(&new->list, &sbi->dir_inode_list);
  600. stat_inc_dirty_dir(sbi);
  601. return 0;
  602. }
  603. void update_dirty_page(struct inode *inode, struct page *page)
  604. {
  605. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  606. struct inode_entry *new;
  607. int ret = 0;
  608. if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
  609. return;
  610. if (!S_ISDIR(inode->i_mode)) {
  611. inode_inc_dirty_pages(inode);
  612. goto out;
  613. }
  614. new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
  615. new->inode = inode;
  616. INIT_LIST_HEAD(&new->list);
  617. spin_lock(&sbi->dir_inode_lock);
  618. ret = __add_dirty_inode(inode, new);
  619. inode_inc_dirty_pages(inode);
  620. spin_unlock(&sbi->dir_inode_lock);
  621. if (ret)
  622. kmem_cache_free(inode_entry_slab, new);
  623. out:
  624. SetPagePrivate(page);
  625. f2fs_trace_pid(page);
  626. }
  627. void add_dirty_dir_inode(struct inode *inode)
  628. {
  629. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  630. struct inode_entry *new =
  631. f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
  632. int ret = 0;
  633. new->inode = inode;
  634. INIT_LIST_HEAD(&new->list);
  635. spin_lock(&sbi->dir_inode_lock);
  636. ret = __add_dirty_inode(inode, new);
  637. spin_unlock(&sbi->dir_inode_lock);
  638. if (ret)
  639. kmem_cache_free(inode_entry_slab, new);
  640. }
  641. void remove_dirty_dir_inode(struct inode *inode)
  642. {
  643. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  644. struct inode_entry *entry;
  645. if (!S_ISDIR(inode->i_mode))
  646. return;
  647. spin_lock(&sbi->dir_inode_lock);
  648. if (get_dirty_pages(inode) ||
  649. !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
  650. spin_unlock(&sbi->dir_inode_lock);
  651. return;
  652. }
  653. entry = F2FS_I(inode)->dirty_dir;
  654. list_del(&entry->list);
  655. F2FS_I(inode)->dirty_dir = NULL;
  656. clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
  657. stat_dec_dirty_dir(sbi);
  658. spin_unlock(&sbi->dir_inode_lock);
  659. kmem_cache_free(inode_entry_slab, entry);
  660. /* Only from the recovery routine */
  661. if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
  662. clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
  663. iput(inode);
  664. }
  665. }
  666. void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
  667. {
  668. struct list_head *head;
  669. struct inode_entry *entry;
  670. struct inode *inode;
  671. retry:
  672. if (unlikely(f2fs_cp_error(sbi)))
  673. return;
  674. spin_lock(&sbi->dir_inode_lock);
  675. head = &sbi->dir_inode_list;
  676. if (list_empty(head)) {
  677. spin_unlock(&sbi->dir_inode_lock);
  678. return;
  679. }
  680. entry = list_entry(head->next, struct inode_entry, list);
  681. inode = igrab(entry->inode);
  682. spin_unlock(&sbi->dir_inode_lock);
  683. if (inode) {
  684. filemap_fdatawrite(inode->i_mapping);
  685. iput(inode);
  686. } else {
  687. /*
  688. * We should submit bio, since it exists several
  689. * wribacking dentry pages in the freeing inode.
  690. */
  691. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  692. }
  693. goto retry;
  694. }
  695. /*
  696. * Freeze all the FS-operations for checkpoint.
  697. */
  698. static int block_operations(struct f2fs_sb_info *sbi)
  699. {
  700. struct writeback_control wbc = {
  701. .sync_mode = WB_SYNC_ALL,
  702. .nr_to_write = LONG_MAX,
  703. .for_reclaim = 0,
  704. };
  705. struct blk_plug plug;
  706. int err = 0;
  707. blk_start_plug(&plug);
  708. retry_flush_dents:
  709. f2fs_lock_all(sbi);
  710. /* write all the dirty dentry pages */
  711. if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
  712. f2fs_unlock_all(sbi);
  713. sync_dirty_dir_inodes(sbi);
  714. if (unlikely(f2fs_cp_error(sbi))) {
  715. err = -EIO;
  716. goto out;
  717. }
  718. goto retry_flush_dents;
  719. }
  720. /*
  721. * POR: we should ensure that there are no dirty node pages
  722. * until finishing nat/sit flush.
  723. */
  724. retry_flush_nodes:
  725. down_write(&sbi->node_write);
  726. if (get_pages(sbi, F2FS_DIRTY_NODES)) {
  727. up_write(&sbi->node_write);
  728. sync_node_pages(sbi, 0, &wbc);
  729. if (unlikely(f2fs_cp_error(sbi))) {
  730. f2fs_unlock_all(sbi);
  731. err = -EIO;
  732. goto out;
  733. }
  734. goto retry_flush_nodes;
  735. }
  736. out:
  737. blk_finish_plug(&plug);
  738. return err;
  739. }
  740. static void unblock_operations(struct f2fs_sb_info *sbi)
  741. {
  742. up_write(&sbi->node_write);
  743. f2fs_unlock_all(sbi);
  744. }
  745. static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
  746. {
  747. DEFINE_WAIT(wait);
  748. for (;;) {
  749. prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
  750. if (!get_pages(sbi, F2FS_WRITEBACK))
  751. break;
  752. io_schedule();
  753. }
  754. finish_wait(&sbi->cp_wait, &wait);
  755. }
  756. static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  757. {
  758. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  759. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
  760. struct f2fs_nm_info *nm_i = NM_I(sbi);
  761. unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
  762. nid_t last_nid = nm_i->next_scan_nid;
  763. block_t start_blk;
  764. struct page *cp_page;
  765. unsigned int data_sum_blocks, orphan_blocks;
  766. __u32 crc32 = 0;
  767. void *kaddr;
  768. int i;
  769. int cp_payload_blks = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
  770. /*
  771. * This avoids to conduct wrong roll-forward operations and uses
  772. * metapages, so should be called prior to sync_meta_pages below.
  773. */
  774. discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg));
  775. /* Flush all the NAT/SIT pages */
  776. while (get_pages(sbi, F2FS_DIRTY_META)) {
  777. sync_meta_pages(sbi, META, LONG_MAX);
  778. if (unlikely(f2fs_cp_error(sbi)))
  779. return;
  780. }
  781. next_free_nid(sbi, &last_nid);
  782. /*
  783. * modify checkpoint
  784. * version number is already updated
  785. */
  786. ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
  787. ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
  788. ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
  789. for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
  790. ckpt->cur_node_segno[i] =
  791. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
  792. ckpt->cur_node_blkoff[i] =
  793. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
  794. ckpt->alloc_type[i + CURSEG_HOT_NODE] =
  795. curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
  796. }
  797. for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
  798. ckpt->cur_data_segno[i] =
  799. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
  800. ckpt->cur_data_blkoff[i] =
  801. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
  802. ckpt->alloc_type[i + CURSEG_HOT_DATA] =
  803. curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
  804. }
  805. ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
  806. ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
  807. ckpt->next_free_nid = cpu_to_le32(last_nid);
  808. /* 2 cp + n data seg summary + orphan inode blocks */
  809. data_sum_blocks = npages_for_summary_flush(sbi, false);
  810. if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
  811. set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  812. else
  813. clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  814. orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
  815. ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
  816. orphan_blocks);
  817. if (cpc->reason == CP_UMOUNT) {
  818. set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  819. ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
  820. cp_payload_blks + data_sum_blocks +
  821. orphan_blocks + NR_CURSEG_NODE_TYPE);
  822. } else {
  823. clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  824. ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
  825. cp_payload_blks + data_sum_blocks +
  826. orphan_blocks);
  827. }
  828. if (orphan_num)
  829. set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  830. else
  831. clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  832. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
  833. set_ckpt_flags(ckpt, CP_FSCK_FLAG);
  834. /* update SIT/NAT bitmap */
  835. get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
  836. get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
  837. crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
  838. *((__le32 *)((unsigned char *)ckpt +
  839. le32_to_cpu(ckpt->checksum_offset)))
  840. = cpu_to_le32(crc32);
  841. start_blk = __start_cp_addr(sbi);
  842. /* write out checkpoint buffer at block 0 */
  843. cp_page = grab_meta_page(sbi, start_blk++);
  844. kaddr = page_address(cp_page);
  845. memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
  846. set_page_dirty(cp_page);
  847. f2fs_put_page(cp_page, 1);
  848. for (i = 1; i < 1 + cp_payload_blks; i++) {
  849. cp_page = grab_meta_page(sbi, start_blk++);
  850. kaddr = page_address(cp_page);
  851. memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE,
  852. (1 << sbi->log_blocksize));
  853. set_page_dirty(cp_page);
  854. f2fs_put_page(cp_page, 1);
  855. }
  856. if (orphan_num) {
  857. write_orphan_inodes(sbi, start_blk);
  858. start_blk += orphan_blocks;
  859. }
  860. write_data_summaries(sbi, start_blk);
  861. start_blk += data_sum_blocks;
  862. if (cpc->reason == CP_UMOUNT) {
  863. write_node_summaries(sbi, start_blk);
  864. start_blk += NR_CURSEG_NODE_TYPE;
  865. }
  866. /* writeout checkpoint block */
  867. cp_page = grab_meta_page(sbi, start_blk);
  868. kaddr = page_address(cp_page);
  869. memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
  870. set_page_dirty(cp_page);
  871. f2fs_put_page(cp_page, 1);
  872. /* wait for previous submitted node/meta pages writeback */
  873. wait_on_all_pages_writeback(sbi);
  874. if (unlikely(f2fs_cp_error(sbi)))
  875. return;
  876. filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
  877. filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
  878. /* update user_block_counts */
  879. sbi->last_valid_block_count = sbi->total_valid_block_count;
  880. sbi->alloc_valid_block_count = 0;
  881. /* Here, we only have one bio having CP pack */
  882. sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
  883. /* wait for previous submitted meta pages writeback */
  884. wait_on_all_pages_writeback(sbi);
  885. release_dirty_inode(sbi);
  886. if (unlikely(f2fs_cp_error(sbi)))
  887. return;
  888. clear_prefree_segments(sbi);
  889. clear_sbi_flag(sbi, SBI_IS_DIRTY);
  890. }
  891. /*
  892. * We guarantee that this checkpoint procedure will not fail.
  893. */
  894. void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  895. {
  896. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  897. unsigned long long ckpt_ver;
  898. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
  899. mutex_lock(&sbi->cp_mutex);
  900. if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
  901. cpc->reason != CP_DISCARD && cpc->reason != CP_UMOUNT)
  902. goto out;
  903. if (unlikely(f2fs_cp_error(sbi)))
  904. goto out;
  905. if (f2fs_readonly(sbi->sb))
  906. goto out;
  907. if (block_operations(sbi))
  908. goto out;
  909. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
  910. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  911. f2fs_submit_merged_bio(sbi, NODE, WRITE);
  912. f2fs_submit_merged_bio(sbi, META, WRITE);
  913. /*
  914. * update checkpoint pack index
  915. * Increase the version number so that
  916. * SIT entries and seg summaries are written at correct place
  917. */
  918. ckpt_ver = cur_cp_version(ckpt);
  919. ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
  920. /* write cached NAT/SIT entries to NAT/SIT area */
  921. flush_nat_entries(sbi);
  922. flush_sit_entries(sbi, cpc);
  923. /* unlock all the fs_lock[] in do_checkpoint() */
  924. do_checkpoint(sbi, cpc);
  925. unblock_operations(sbi);
  926. stat_inc_cp_count(sbi->stat_info);
  927. out:
  928. mutex_unlock(&sbi->cp_mutex);
  929. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
  930. }
  931. void init_ino_entry_info(struct f2fs_sb_info *sbi)
  932. {
  933. int i;
  934. for (i = 0; i < MAX_INO_ENTRY; i++) {
  935. struct inode_management *im = &sbi->im[i];
  936. INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
  937. spin_lock_init(&im->ino_lock);
  938. INIT_LIST_HEAD(&im->ino_list);
  939. im->ino_num = 0;
  940. }
  941. /*
  942. * considering 512 blocks in a segment 8 blocks are needed for cp
  943. * and log segment summaries. Remaining blocks are used to keep
  944. * orphan entries with the limitation one reserved segment
  945. * for cp pack we can have max 1020*504 orphan entries
  946. */
  947. sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
  948. NR_CURSEG_TYPE) * F2FS_ORPHANS_PER_BLOCK;
  949. }
  950. int __init create_checkpoint_caches(void)
  951. {
  952. ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
  953. sizeof(struct ino_entry));
  954. if (!ino_entry_slab)
  955. return -ENOMEM;
  956. inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
  957. sizeof(struct inode_entry));
  958. if (!inode_entry_slab) {
  959. kmem_cache_destroy(ino_entry_slab);
  960. return -ENOMEM;
  961. }
  962. return 0;
  963. }
  964. void destroy_checkpoint_caches(void)
  965. {
  966. kmem_cache_destroy(ino_entry_slab);
  967. kmem_cache_destroy(inode_entry_slab);
  968. }