page_alloc.c 182 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/module.h>
  28. #include <linux/suspend.h>
  29. #include <linux/pagevec.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/slab.h>
  32. #include <linux/ratelimit.h>
  33. #include <linux/oom.h>
  34. #include <linux/notifier.h>
  35. #include <linux/topology.h>
  36. #include <linux/sysctl.h>
  37. #include <linux/cpu.h>
  38. #include <linux/cpuset.h>
  39. #include <linux/memory_hotplug.h>
  40. #include <linux/nodemask.h>
  41. #include <linux/vmalloc.h>
  42. #include <linux/vmstat.h>
  43. #include <linux/mempolicy.h>
  44. #include <linux/stop_machine.h>
  45. #include <linux/sort.h>
  46. #include <linux/pfn.h>
  47. #include <linux/backing-dev.h>
  48. #include <linux/fault-inject.h>
  49. #include <linux/page-isolation.h>
  50. #include <linux/page_ext.h>
  51. #include <linux/debugobjects.h>
  52. #include <linux/kmemleak.h>
  53. #include <linux/compaction.h>
  54. #include <trace/events/kmem.h>
  55. #include <linux/prefetch.h>
  56. #include <linux/mm_inline.h>
  57. #include <linux/migrate.h>
  58. #include <linux/page_ext.h>
  59. #include <linux/hugetlb.h>
  60. #include <linux/sched/rt.h>
  61. #include <linux/page_owner.h>
  62. #include <asm/sections.h>
  63. #include <asm/tlbflush.h>
  64. #include <asm/div64.h>
  65. #include "internal.h"
  66. /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  67. static DEFINE_MUTEX(pcp_batch_high_lock);
  68. #define MIN_PERCPU_PAGELIST_FRACTION (8)
  69. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  70. DEFINE_PER_CPU(int, numa_node);
  71. EXPORT_PER_CPU_SYMBOL(numa_node);
  72. #endif
  73. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  74. /*
  75. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  76. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  77. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  78. * defined in <linux/topology.h>.
  79. */
  80. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  81. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  82. int _node_numa_mem_[MAX_NUMNODES];
  83. #endif
  84. /*
  85. * Array of node states.
  86. */
  87. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  88. [N_POSSIBLE] = NODE_MASK_ALL,
  89. [N_ONLINE] = { { [0] = 1UL } },
  90. #ifndef CONFIG_NUMA
  91. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  92. #ifdef CONFIG_HIGHMEM
  93. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  94. #endif
  95. #ifdef CONFIG_MOVABLE_NODE
  96. [N_MEMORY] = { { [0] = 1UL } },
  97. #endif
  98. [N_CPU] = { { [0] = 1UL } },
  99. #endif /* NUMA */
  100. };
  101. EXPORT_SYMBOL(node_states);
  102. /* Protect totalram_pages and zone->managed_pages */
  103. static DEFINE_SPINLOCK(managed_page_count_lock);
  104. unsigned long totalram_pages __read_mostly;
  105. unsigned long totalreserve_pages __read_mostly;
  106. unsigned long totalcma_pages __read_mostly;
  107. /*
  108. * When calculating the number of globally allowed dirty pages, there
  109. * is a certain number of per-zone reserves that should not be
  110. * considered dirtyable memory. This is the sum of those reserves
  111. * over all existing zones that contribute dirtyable memory.
  112. */
  113. unsigned long dirty_balance_reserve __read_mostly;
  114. int percpu_pagelist_fraction;
  115. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  116. #ifdef CONFIG_PM_SLEEP
  117. /*
  118. * The following functions are used by the suspend/hibernate code to temporarily
  119. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  120. * while devices are suspended. To avoid races with the suspend/hibernate code,
  121. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  122. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  123. * guaranteed not to run in parallel with that modification).
  124. */
  125. static gfp_t saved_gfp_mask;
  126. void pm_restore_gfp_mask(void)
  127. {
  128. WARN_ON(!mutex_is_locked(&pm_mutex));
  129. if (saved_gfp_mask) {
  130. gfp_allowed_mask = saved_gfp_mask;
  131. saved_gfp_mask = 0;
  132. }
  133. }
  134. void pm_restrict_gfp_mask(void)
  135. {
  136. WARN_ON(!mutex_is_locked(&pm_mutex));
  137. WARN_ON(saved_gfp_mask);
  138. saved_gfp_mask = gfp_allowed_mask;
  139. gfp_allowed_mask &= ~GFP_IOFS;
  140. }
  141. bool pm_suspended_storage(void)
  142. {
  143. if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
  144. return false;
  145. return true;
  146. }
  147. #endif /* CONFIG_PM_SLEEP */
  148. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  149. int pageblock_order __read_mostly;
  150. #endif
  151. static void __free_pages_ok(struct page *page, unsigned int order);
  152. /*
  153. * results with 256, 32 in the lowmem_reserve sysctl:
  154. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  155. * 1G machine -> (16M dma, 784M normal, 224M high)
  156. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  157. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  158. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  159. *
  160. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  161. * don't need any ZONE_NORMAL reservation
  162. */
  163. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  164. #ifdef CONFIG_ZONE_DMA
  165. 256,
  166. #endif
  167. #ifdef CONFIG_ZONE_DMA32
  168. 256,
  169. #endif
  170. #ifdef CONFIG_HIGHMEM
  171. 32,
  172. #endif
  173. 32,
  174. };
  175. EXPORT_SYMBOL(totalram_pages);
  176. static char * const zone_names[MAX_NR_ZONES] = {
  177. #ifdef CONFIG_ZONE_DMA
  178. "DMA",
  179. #endif
  180. #ifdef CONFIG_ZONE_DMA32
  181. "DMA32",
  182. #endif
  183. "Normal",
  184. #ifdef CONFIG_HIGHMEM
  185. "HighMem",
  186. #endif
  187. "Movable",
  188. };
  189. int min_free_kbytes = 1024;
  190. int user_min_free_kbytes = -1;
  191. static unsigned long __meminitdata nr_kernel_pages;
  192. static unsigned long __meminitdata nr_all_pages;
  193. static unsigned long __meminitdata dma_reserve;
  194. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  195. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  196. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  197. static unsigned long __initdata required_kernelcore;
  198. static unsigned long __initdata required_movablecore;
  199. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  200. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  201. int movable_zone;
  202. EXPORT_SYMBOL(movable_zone);
  203. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  204. #if MAX_NUMNODES > 1
  205. int nr_node_ids __read_mostly = MAX_NUMNODES;
  206. int nr_online_nodes __read_mostly = 1;
  207. EXPORT_SYMBOL(nr_node_ids);
  208. EXPORT_SYMBOL(nr_online_nodes);
  209. #endif
  210. int page_group_by_mobility_disabled __read_mostly;
  211. void set_pageblock_migratetype(struct page *page, int migratetype)
  212. {
  213. if (unlikely(page_group_by_mobility_disabled &&
  214. migratetype < MIGRATE_PCPTYPES))
  215. migratetype = MIGRATE_UNMOVABLE;
  216. set_pageblock_flags_group(page, (unsigned long)migratetype,
  217. PB_migrate, PB_migrate_end);
  218. }
  219. #ifdef CONFIG_DEBUG_VM
  220. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  221. {
  222. int ret = 0;
  223. unsigned seq;
  224. unsigned long pfn = page_to_pfn(page);
  225. unsigned long sp, start_pfn;
  226. do {
  227. seq = zone_span_seqbegin(zone);
  228. start_pfn = zone->zone_start_pfn;
  229. sp = zone->spanned_pages;
  230. if (!zone_spans_pfn(zone, pfn))
  231. ret = 1;
  232. } while (zone_span_seqretry(zone, seq));
  233. if (ret)
  234. pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
  235. pfn, zone_to_nid(zone), zone->name,
  236. start_pfn, start_pfn + sp);
  237. return ret;
  238. }
  239. static int page_is_consistent(struct zone *zone, struct page *page)
  240. {
  241. if (!pfn_valid_within(page_to_pfn(page)))
  242. return 0;
  243. if (zone != page_zone(page))
  244. return 0;
  245. return 1;
  246. }
  247. /*
  248. * Temporary debugging check for pages not lying within a given zone.
  249. */
  250. static int bad_range(struct zone *zone, struct page *page)
  251. {
  252. if (page_outside_zone_boundaries(zone, page))
  253. return 1;
  254. if (!page_is_consistent(zone, page))
  255. return 1;
  256. return 0;
  257. }
  258. #else
  259. static inline int bad_range(struct zone *zone, struct page *page)
  260. {
  261. return 0;
  262. }
  263. #endif
  264. static void bad_page(struct page *page, const char *reason,
  265. unsigned long bad_flags)
  266. {
  267. static unsigned long resume;
  268. static unsigned long nr_shown;
  269. static unsigned long nr_unshown;
  270. /* Don't complain about poisoned pages */
  271. if (PageHWPoison(page)) {
  272. page_mapcount_reset(page); /* remove PageBuddy */
  273. return;
  274. }
  275. /*
  276. * Allow a burst of 60 reports, then keep quiet for that minute;
  277. * or allow a steady drip of one report per second.
  278. */
  279. if (nr_shown == 60) {
  280. if (time_before(jiffies, resume)) {
  281. nr_unshown++;
  282. goto out;
  283. }
  284. if (nr_unshown) {
  285. printk(KERN_ALERT
  286. "BUG: Bad page state: %lu messages suppressed\n",
  287. nr_unshown);
  288. nr_unshown = 0;
  289. }
  290. nr_shown = 0;
  291. }
  292. if (nr_shown++ == 0)
  293. resume = jiffies + 60 * HZ;
  294. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  295. current->comm, page_to_pfn(page));
  296. dump_page_badflags(page, reason, bad_flags);
  297. print_modules();
  298. dump_stack();
  299. out:
  300. /* Leave bad fields for debug, except PageBuddy could make trouble */
  301. page_mapcount_reset(page); /* remove PageBuddy */
  302. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  303. }
  304. /*
  305. * Higher-order pages are called "compound pages". They are structured thusly:
  306. *
  307. * The first PAGE_SIZE page is called the "head page".
  308. *
  309. * The remaining PAGE_SIZE pages are called "tail pages".
  310. *
  311. * All pages have PG_compound set. All tail pages have their ->first_page
  312. * pointing at the head page.
  313. *
  314. * The first tail page's ->lru.next holds the address of the compound page's
  315. * put_page() function. Its ->lru.prev holds the order of allocation.
  316. * This usage means that zero-order pages may not be compound.
  317. */
  318. static void free_compound_page(struct page *page)
  319. {
  320. __free_pages_ok(page, compound_order(page));
  321. }
  322. void prep_compound_page(struct page *page, unsigned long order)
  323. {
  324. int i;
  325. int nr_pages = 1 << order;
  326. set_compound_page_dtor(page, free_compound_page);
  327. set_compound_order(page, order);
  328. __SetPageHead(page);
  329. for (i = 1; i < nr_pages; i++) {
  330. struct page *p = page + i;
  331. set_page_count(p, 0);
  332. p->first_page = page;
  333. /* Make sure p->first_page is always valid for PageTail() */
  334. smp_wmb();
  335. __SetPageTail(p);
  336. }
  337. }
  338. static inline void prep_zero_page(struct page *page, unsigned int order,
  339. gfp_t gfp_flags)
  340. {
  341. int i;
  342. /*
  343. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  344. * and __GFP_HIGHMEM from hard or soft interrupt context.
  345. */
  346. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  347. for (i = 0; i < (1 << order); i++)
  348. clear_highpage(page + i);
  349. }
  350. #ifdef CONFIG_DEBUG_PAGEALLOC
  351. unsigned int _debug_guardpage_minorder;
  352. bool _debug_pagealloc_enabled __read_mostly;
  353. bool _debug_guardpage_enabled __read_mostly;
  354. static int __init early_debug_pagealloc(char *buf)
  355. {
  356. if (!buf)
  357. return -EINVAL;
  358. if (strcmp(buf, "on") == 0)
  359. _debug_pagealloc_enabled = true;
  360. return 0;
  361. }
  362. early_param("debug_pagealloc", early_debug_pagealloc);
  363. static bool need_debug_guardpage(void)
  364. {
  365. /* If we don't use debug_pagealloc, we don't need guard page */
  366. if (!debug_pagealloc_enabled())
  367. return false;
  368. return true;
  369. }
  370. static void init_debug_guardpage(void)
  371. {
  372. if (!debug_pagealloc_enabled())
  373. return;
  374. _debug_guardpage_enabled = true;
  375. }
  376. struct page_ext_operations debug_guardpage_ops = {
  377. .need = need_debug_guardpage,
  378. .init = init_debug_guardpage,
  379. };
  380. static int __init debug_guardpage_minorder_setup(char *buf)
  381. {
  382. unsigned long res;
  383. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  384. printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
  385. return 0;
  386. }
  387. _debug_guardpage_minorder = res;
  388. printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
  389. return 0;
  390. }
  391. __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
  392. static inline void set_page_guard(struct zone *zone, struct page *page,
  393. unsigned int order, int migratetype)
  394. {
  395. struct page_ext *page_ext;
  396. if (!debug_guardpage_enabled())
  397. return;
  398. page_ext = lookup_page_ext(page);
  399. __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  400. INIT_LIST_HEAD(&page->lru);
  401. set_page_private(page, order);
  402. /* Guard pages are not available for any usage */
  403. __mod_zone_freepage_state(zone, -(1 << order), migratetype);
  404. }
  405. static inline void clear_page_guard(struct zone *zone, struct page *page,
  406. unsigned int order, int migratetype)
  407. {
  408. struct page_ext *page_ext;
  409. if (!debug_guardpage_enabled())
  410. return;
  411. page_ext = lookup_page_ext(page);
  412. __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  413. set_page_private(page, 0);
  414. if (!is_migrate_isolate(migratetype))
  415. __mod_zone_freepage_state(zone, (1 << order), migratetype);
  416. }
  417. #else
  418. struct page_ext_operations debug_guardpage_ops = { NULL, };
  419. static inline void set_page_guard(struct zone *zone, struct page *page,
  420. unsigned int order, int migratetype) {}
  421. static inline void clear_page_guard(struct zone *zone, struct page *page,
  422. unsigned int order, int migratetype) {}
  423. #endif
  424. static inline void set_page_order(struct page *page, unsigned int order)
  425. {
  426. set_page_private(page, order);
  427. __SetPageBuddy(page);
  428. }
  429. static inline void rmv_page_order(struct page *page)
  430. {
  431. __ClearPageBuddy(page);
  432. set_page_private(page, 0);
  433. }
  434. /*
  435. * This function checks whether a page is free && is the buddy
  436. * we can do coalesce a page and its buddy if
  437. * (a) the buddy is not in a hole &&
  438. * (b) the buddy is in the buddy system &&
  439. * (c) a page and its buddy have the same order &&
  440. * (d) a page and its buddy are in the same zone.
  441. *
  442. * For recording whether a page is in the buddy system, we set ->_mapcount
  443. * PAGE_BUDDY_MAPCOUNT_VALUE.
  444. * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
  445. * serialized by zone->lock.
  446. *
  447. * For recording page's order, we use page_private(page).
  448. */
  449. static inline int page_is_buddy(struct page *page, struct page *buddy,
  450. unsigned int order)
  451. {
  452. if (!pfn_valid_within(page_to_pfn(buddy)))
  453. return 0;
  454. if (page_is_guard(buddy) && page_order(buddy) == order) {
  455. if (page_zone_id(page) != page_zone_id(buddy))
  456. return 0;
  457. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  458. return 1;
  459. }
  460. if (PageBuddy(buddy) && page_order(buddy) == order) {
  461. /*
  462. * zone check is done late to avoid uselessly
  463. * calculating zone/node ids for pages that could
  464. * never merge.
  465. */
  466. if (page_zone_id(page) != page_zone_id(buddy))
  467. return 0;
  468. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  469. return 1;
  470. }
  471. return 0;
  472. }
  473. /*
  474. * Freeing function for a buddy system allocator.
  475. *
  476. * The concept of a buddy system is to maintain direct-mapped table
  477. * (containing bit values) for memory blocks of various "orders".
  478. * The bottom level table contains the map for the smallest allocatable
  479. * units of memory (here, pages), and each level above it describes
  480. * pairs of units from the levels below, hence, "buddies".
  481. * At a high level, all that happens here is marking the table entry
  482. * at the bottom level available, and propagating the changes upward
  483. * as necessary, plus some accounting needed to play nicely with other
  484. * parts of the VM system.
  485. * At each level, we keep a list of pages, which are heads of continuous
  486. * free pages of length of (1 << order) and marked with _mapcount
  487. * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
  488. * field.
  489. * So when we are allocating or freeing one, we can derive the state of the
  490. * other. That is, if we allocate a small block, and both were
  491. * free, the remainder of the region must be split into blocks.
  492. * If a block is freed, and its buddy is also free, then this
  493. * triggers coalescing into a block of larger size.
  494. *
  495. * -- nyc
  496. */
  497. static inline void __free_one_page(struct page *page,
  498. unsigned long pfn,
  499. struct zone *zone, unsigned int order,
  500. int migratetype)
  501. {
  502. unsigned long page_idx;
  503. unsigned long combined_idx;
  504. unsigned long uninitialized_var(buddy_idx);
  505. struct page *buddy;
  506. int max_order = MAX_ORDER;
  507. VM_BUG_ON(!zone_is_initialized(zone));
  508. VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
  509. VM_BUG_ON(migratetype == -1);
  510. if (is_migrate_isolate(migratetype)) {
  511. /*
  512. * We restrict max order of merging to prevent merge
  513. * between freepages on isolate pageblock and normal
  514. * pageblock. Without this, pageblock isolation
  515. * could cause incorrect freepage accounting.
  516. */
  517. max_order = min(MAX_ORDER, pageblock_order + 1);
  518. } else {
  519. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  520. }
  521. page_idx = pfn & ((1 << max_order) - 1);
  522. VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
  523. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  524. while (order < max_order - 1) {
  525. buddy_idx = __find_buddy_index(page_idx, order);
  526. buddy = page + (buddy_idx - page_idx);
  527. if (!page_is_buddy(page, buddy, order))
  528. break;
  529. /*
  530. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  531. * merge with it and move up one order.
  532. */
  533. if (page_is_guard(buddy)) {
  534. clear_page_guard(zone, buddy, order, migratetype);
  535. } else {
  536. list_del(&buddy->lru);
  537. zone->free_area[order].nr_free--;
  538. rmv_page_order(buddy);
  539. }
  540. combined_idx = buddy_idx & page_idx;
  541. page = page + (combined_idx - page_idx);
  542. page_idx = combined_idx;
  543. order++;
  544. }
  545. set_page_order(page, order);
  546. /*
  547. * If this is not the largest possible page, check if the buddy
  548. * of the next-highest order is free. If it is, it's possible
  549. * that pages are being freed that will coalesce soon. In case,
  550. * that is happening, add the free page to the tail of the list
  551. * so it's less likely to be used soon and more likely to be merged
  552. * as a higher order page
  553. */
  554. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  555. struct page *higher_page, *higher_buddy;
  556. combined_idx = buddy_idx & page_idx;
  557. higher_page = page + (combined_idx - page_idx);
  558. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  559. higher_buddy = higher_page + (buddy_idx - combined_idx);
  560. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  561. list_add_tail(&page->lru,
  562. &zone->free_area[order].free_list[migratetype]);
  563. goto out;
  564. }
  565. }
  566. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  567. out:
  568. zone->free_area[order].nr_free++;
  569. }
  570. static inline int free_pages_check(struct page *page)
  571. {
  572. const char *bad_reason = NULL;
  573. unsigned long bad_flags = 0;
  574. if (unlikely(page_mapcount(page)))
  575. bad_reason = "nonzero mapcount";
  576. if (unlikely(page->mapping != NULL))
  577. bad_reason = "non-NULL mapping";
  578. if (unlikely(atomic_read(&page->_count) != 0))
  579. bad_reason = "nonzero _count";
  580. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
  581. bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
  582. bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
  583. }
  584. #ifdef CONFIG_MEMCG
  585. if (unlikely(page->mem_cgroup))
  586. bad_reason = "page still charged to cgroup";
  587. #endif
  588. if (unlikely(bad_reason)) {
  589. bad_page(page, bad_reason, bad_flags);
  590. return 1;
  591. }
  592. page_cpupid_reset_last(page);
  593. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  594. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  595. return 0;
  596. }
  597. /*
  598. * Frees a number of pages from the PCP lists
  599. * Assumes all pages on list are in same zone, and of same order.
  600. * count is the number of pages to free.
  601. *
  602. * If the zone was previously in an "all pages pinned" state then look to
  603. * see if this freeing clears that state.
  604. *
  605. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  606. * pinned" detection logic.
  607. */
  608. static void free_pcppages_bulk(struct zone *zone, int count,
  609. struct per_cpu_pages *pcp)
  610. {
  611. int migratetype = 0;
  612. int batch_free = 0;
  613. int to_free = count;
  614. unsigned long nr_scanned;
  615. spin_lock(&zone->lock);
  616. nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
  617. if (nr_scanned)
  618. __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
  619. while (to_free) {
  620. struct page *page;
  621. struct list_head *list;
  622. /*
  623. * Remove pages from lists in a round-robin fashion. A
  624. * batch_free count is maintained that is incremented when an
  625. * empty list is encountered. This is so more pages are freed
  626. * off fuller lists instead of spinning excessively around empty
  627. * lists
  628. */
  629. do {
  630. batch_free++;
  631. if (++migratetype == MIGRATE_PCPTYPES)
  632. migratetype = 0;
  633. list = &pcp->lists[migratetype];
  634. } while (list_empty(list));
  635. /* This is the only non-empty list. Free them all. */
  636. if (batch_free == MIGRATE_PCPTYPES)
  637. batch_free = to_free;
  638. do {
  639. int mt; /* migratetype of the to-be-freed page */
  640. page = list_entry(list->prev, struct page, lru);
  641. /* must delete as __free_one_page list manipulates */
  642. list_del(&page->lru);
  643. mt = get_freepage_migratetype(page);
  644. if (unlikely(has_isolate_pageblock(zone)))
  645. mt = get_pageblock_migratetype(page);
  646. /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
  647. __free_one_page(page, page_to_pfn(page), zone, 0, mt);
  648. trace_mm_page_pcpu_drain(page, 0, mt);
  649. } while (--to_free && --batch_free && !list_empty(list));
  650. }
  651. spin_unlock(&zone->lock);
  652. }
  653. static void free_one_page(struct zone *zone,
  654. struct page *page, unsigned long pfn,
  655. unsigned int order,
  656. int migratetype)
  657. {
  658. unsigned long nr_scanned;
  659. spin_lock(&zone->lock);
  660. nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
  661. if (nr_scanned)
  662. __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
  663. if (unlikely(has_isolate_pageblock(zone) ||
  664. is_migrate_isolate(migratetype))) {
  665. migratetype = get_pfnblock_migratetype(page, pfn);
  666. }
  667. __free_one_page(page, pfn, zone, order, migratetype);
  668. spin_unlock(&zone->lock);
  669. }
  670. static int free_tail_pages_check(struct page *head_page, struct page *page)
  671. {
  672. if (!IS_ENABLED(CONFIG_DEBUG_VM))
  673. return 0;
  674. if (unlikely(!PageTail(page))) {
  675. bad_page(page, "PageTail not set", 0);
  676. return 1;
  677. }
  678. if (unlikely(page->first_page != head_page)) {
  679. bad_page(page, "first_page not consistent", 0);
  680. return 1;
  681. }
  682. return 0;
  683. }
  684. static bool free_pages_prepare(struct page *page, unsigned int order)
  685. {
  686. bool compound = PageCompound(page);
  687. int i, bad = 0;
  688. VM_BUG_ON_PAGE(PageTail(page), page);
  689. VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
  690. trace_mm_page_free(page, order);
  691. kmemcheck_free_shadow(page, order);
  692. if (PageAnon(page))
  693. page->mapping = NULL;
  694. bad += free_pages_check(page);
  695. for (i = 1; i < (1 << order); i++) {
  696. if (compound)
  697. bad += free_tail_pages_check(page, page + i);
  698. bad += free_pages_check(page + i);
  699. }
  700. if (bad)
  701. return false;
  702. reset_page_owner(page, order);
  703. if (!PageHighMem(page)) {
  704. debug_check_no_locks_freed(page_address(page),
  705. PAGE_SIZE << order);
  706. debug_check_no_obj_freed(page_address(page),
  707. PAGE_SIZE << order);
  708. }
  709. arch_free_page(page, order);
  710. kernel_map_pages(page, 1 << order, 0);
  711. return true;
  712. }
  713. static void __free_pages_ok(struct page *page, unsigned int order)
  714. {
  715. unsigned long flags;
  716. int migratetype;
  717. unsigned long pfn = page_to_pfn(page);
  718. if (!free_pages_prepare(page, order))
  719. return;
  720. migratetype = get_pfnblock_migratetype(page, pfn);
  721. local_irq_save(flags);
  722. __count_vm_events(PGFREE, 1 << order);
  723. set_freepage_migratetype(page, migratetype);
  724. free_one_page(page_zone(page), page, pfn, order, migratetype);
  725. local_irq_restore(flags);
  726. }
  727. void __init __free_pages_bootmem(struct page *page, unsigned int order)
  728. {
  729. unsigned int nr_pages = 1 << order;
  730. struct page *p = page;
  731. unsigned int loop;
  732. prefetchw(p);
  733. for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
  734. prefetchw(p + 1);
  735. __ClearPageReserved(p);
  736. set_page_count(p, 0);
  737. }
  738. __ClearPageReserved(p);
  739. set_page_count(p, 0);
  740. page_zone(page)->managed_pages += nr_pages;
  741. set_page_refcounted(page);
  742. __free_pages(page, order);
  743. }
  744. #ifdef CONFIG_CMA
  745. /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
  746. void __init init_cma_reserved_pageblock(struct page *page)
  747. {
  748. unsigned i = pageblock_nr_pages;
  749. struct page *p = page;
  750. do {
  751. __ClearPageReserved(p);
  752. set_page_count(p, 0);
  753. } while (++p, --i);
  754. set_pageblock_migratetype(page, MIGRATE_CMA);
  755. if (pageblock_order >= MAX_ORDER) {
  756. i = pageblock_nr_pages;
  757. p = page;
  758. do {
  759. set_page_refcounted(p);
  760. __free_pages(p, MAX_ORDER - 1);
  761. p += MAX_ORDER_NR_PAGES;
  762. } while (i -= MAX_ORDER_NR_PAGES);
  763. } else {
  764. set_page_refcounted(page);
  765. __free_pages(page, pageblock_order);
  766. }
  767. adjust_managed_page_count(page, pageblock_nr_pages);
  768. }
  769. #endif
  770. /*
  771. * The order of subdivision here is critical for the IO subsystem.
  772. * Please do not alter this order without good reasons and regression
  773. * testing. Specifically, as large blocks of memory are subdivided,
  774. * the order in which smaller blocks are delivered depends on the order
  775. * they're subdivided in this function. This is the primary factor
  776. * influencing the order in which pages are delivered to the IO
  777. * subsystem according to empirical testing, and this is also justified
  778. * by considering the behavior of a buddy system containing a single
  779. * large block of memory acted on by a series of small allocations.
  780. * This behavior is a critical factor in sglist merging's success.
  781. *
  782. * -- nyc
  783. */
  784. static inline void expand(struct zone *zone, struct page *page,
  785. int low, int high, struct free_area *area,
  786. int migratetype)
  787. {
  788. unsigned long size = 1 << high;
  789. while (high > low) {
  790. area--;
  791. high--;
  792. size >>= 1;
  793. VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
  794. if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
  795. debug_guardpage_enabled() &&
  796. high < debug_guardpage_minorder()) {
  797. /*
  798. * Mark as guard pages (or page), that will allow to
  799. * merge back to allocator when buddy will be freed.
  800. * Corresponding page table entries will not be touched,
  801. * pages will stay not present in virtual address space
  802. */
  803. set_page_guard(zone, &page[size], high, migratetype);
  804. continue;
  805. }
  806. list_add(&page[size].lru, &area->free_list[migratetype]);
  807. area->nr_free++;
  808. set_page_order(&page[size], high);
  809. }
  810. }
  811. /*
  812. * This page is about to be returned from the page allocator
  813. */
  814. static inline int check_new_page(struct page *page)
  815. {
  816. const char *bad_reason = NULL;
  817. unsigned long bad_flags = 0;
  818. if (unlikely(page_mapcount(page)))
  819. bad_reason = "nonzero mapcount";
  820. if (unlikely(page->mapping != NULL))
  821. bad_reason = "non-NULL mapping";
  822. if (unlikely(atomic_read(&page->_count) != 0))
  823. bad_reason = "nonzero _count";
  824. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
  825. bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
  826. bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
  827. }
  828. #ifdef CONFIG_MEMCG
  829. if (unlikely(page->mem_cgroup))
  830. bad_reason = "page still charged to cgroup";
  831. #endif
  832. if (unlikely(bad_reason)) {
  833. bad_page(page, bad_reason, bad_flags);
  834. return 1;
  835. }
  836. return 0;
  837. }
  838. static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
  839. int alloc_flags)
  840. {
  841. int i;
  842. for (i = 0; i < (1 << order); i++) {
  843. struct page *p = page + i;
  844. if (unlikely(check_new_page(p)))
  845. return 1;
  846. }
  847. set_page_private(page, 0);
  848. set_page_refcounted(page);
  849. arch_alloc_page(page, order);
  850. kernel_map_pages(page, 1 << order, 1);
  851. if (gfp_flags & __GFP_ZERO)
  852. prep_zero_page(page, order, gfp_flags);
  853. if (order && (gfp_flags & __GFP_COMP))
  854. prep_compound_page(page, order);
  855. set_page_owner(page, order, gfp_flags);
  856. /*
  857. * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to
  858. * allocate the page. The expectation is that the caller is taking
  859. * steps that will free more memory. The caller should avoid the page
  860. * being used for !PFMEMALLOC purposes.
  861. */
  862. page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
  863. return 0;
  864. }
  865. /*
  866. * Go through the free lists for the given migratetype and remove
  867. * the smallest available page from the freelists
  868. */
  869. static inline
  870. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  871. int migratetype)
  872. {
  873. unsigned int current_order;
  874. struct free_area *area;
  875. struct page *page;
  876. /* Find a page of the appropriate size in the preferred list */
  877. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  878. area = &(zone->free_area[current_order]);
  879. if (list_empty(&area->free_list[migratetype]))
  880. continue;
  881. page = list_entry(area->free_list[migratetype].next,
  882. struct page, lru);
  883. list_del(&page->lru);
  884. rmv_page_order(page);
  885. area->nr_free--;
  886. expand(zone, page, order, current_order, area, migratetype);
  887. set_freepage_migratetype(page, migratetype);
  888. return page;
  889. }
  890. return NULL;
  891. }
  892. /*
  893. * This array describes the order lists are fallen back to when
  894. * the free lists for the desirable migrate type are depleted
  895. */
  896. static int fallbacks[MIGRATE_TYPES][4] = {
  897. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  898. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  899. #ifdef CONFIG_CMA
  900. [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  901. [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
  902. #else
  903. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  904. #endif
  905. [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
  906. #ifdef CONFIG_MEMORY_ISOLATION
  907. [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
  908. #endif
  909. };
  910. /*
  911. * Move the free pages in a range to the free lists of the requested type.
  912. * Note that start_page and end_pages are not aligned on a pageblock
  913. * boundary. If alignment is required, use move_freepages_block()
  914. */
  915. int move_freepages(struct zone *zone,
  916. struct page *start_page, struct page *end_page,
  917. int migratetype)
  918. {
  919. struct page *page;
  920. unsigned long order;
  921. int pages_moved = 0;
  922. #ifndef CONFIG_HOLES_IN_ZONE
  923. /*
  924. * page_zone is not safe to call in this context when
  925. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  926. * anyway as we check zone boundaries in move_freepages_block().
  927. * Remove at a later date when no bug reports exist related to
  928. * grouping pages by mobility
  929. */
  930. VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
  931. #endif
  932. for (page = start_page; page <= end_page;) {
  933. /* Make sure we are not inadvertently changing nodes */
  934. VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
  935. if (!pfn_valid_within(page_to_pfn(page))) {
  936. page++;
  937. continue;
  938. }
  939. if (!PageBuddy(page)) {
  940. page++;
  941. continue;
  942. }
  943. order = page_order(page);
  944. list_move(&page->lru,
  945. &zone->free_area[order].free_list[migratetype]);
  946. set_freepage_migratetype(page, migratetype);
  947. page += 1 << order;
  948. pages_moved += 1 << order;
  949. }
  950. return pages_moved;
  951. }
  952. int move_freepages_block(struct zone *zone, struct page *page,
  953. int migratetype)
  954. {
  955. unsigned long start_pfn, end_pfn;
  956. struct page *start_page, *end_page;
  957. start_pfn = page_to_pfn(page);
  958. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  959. start_page = pfn_to_page(start_pfn);
  960. end_page = start_page + pageblock_nr_pages - 1;
  961. end_pfn = start_pfn + pageblock_nr_pages - 1;
  962. /* Do not cross zone boundaries */
  963. if (!zone_spans_pfn(zone, start_pfn))
  964. start_page = page;
  965. if (!zone_spans_pfn(zone, end_pfn))
  966. return 0;
  967. return move_freepages(zone, start_page, end_page, migratetype);
  968. }
  969. static void change_pageblock_range(struct page *pageblock_page,
  970. int start_order, int migratetype)
  971. {
  972. int nr_pageblocks = 1 << (start_order - pageblock_order);
  973. while (nr_pageblocks--) {
  974. set_pageblock_migratetype(pageblock_page, migratetype);
  975. pageblock_page += pageblock_nr_pages;
  976. }
  977. }
  978. /*
  979. * When we are falling back to another migratetype during allocation, try to
  980. * steal extra free pages from the same pageblocks to satisfy further
  981. * allocations, instead of polluting multiple pageblocks.
  982. *
  983. * If we are stealing a relatively large buddy page, it is likely there will
  984. * be more free pages in the pageblock, so try to steal them all. For
  985. * reclaimable and unmovable allocations, we steal regardless of page size,
  986. * as fragmentation caused by those allocations polluting movable pageblocks
  987. * is worse than movable allocations stealing from unmovable and reclaimable
  988. * pageblocks.
  989. *
  990. * If we claim more than half of the pageblock, change pageblock's migratetype
  991. * as well.
  992. */
  993. static void try_to_steal_freepages(struct zone *zone, struct page *page,
  994. int start_type, int fallback_type)
  995. {
  996. int current_order = page_order(page);
  997. /* Take ownership for orders >= pageblock_order */
  998. if (current_order >= pageblock_order) {
  999. change_pageblock_range(page, current_order, start_type);
  1000. return;
  1001. }
  1002. if (current_order >= pageblock_order / 2 ||
  1003. start_type == MIGRATE_RECLAIMABLE ||
  1004. start_type == MIGRATE_UNMOVABLE ||
  1005. page_group_by_mobility_disabled) {
  1006. int pages;
  1007. pages = move_freepages_block(zone, page, start_type);
  1008. /* Claim the whole block if over half of it is free */
  1009. if (pages >= (1 << (pageblock_order-1)) ||
  1010. page_group_by_mobility_disabled)
  1011. set_pageblock_migratetype(page, start_type);
  1012. }
  1013. }
  1014. /* Remove an element from the buddy allocator from the fallback list */
  1015. static inline struct page *
  1016. __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
  1017. {
  1018. struct free_area *area;
  1019. unsigned int current_order;
  1020. struct page *page;
  1021. /* Find the largest possible block of pages in the other list */
  1022. for (current_order = MAX_ORDER-1;
  1023. current_order >= order && current_order <= MAX_ORDER-1;
  1024. --current_order) {
  1025. int i;
  1026. for (i = 0;; i++) {
  1027. int migratetype = fallbacks[start_migratetype][i];
  1028. int buddy_type = start_migratetype;
  1029. /* MIGRATE_RESERVE handled later if necessary */
  1030. if (migratetype == MIGRATE_RESERVE)
  1031. break;
  1032. area = &(zone->free_area[current_order]);
  1033. if (list_empty(&area->free_list[migratetype]))
  1034. continue;
  1035. page = list_entry(area->free_list[migratetype].next,
  1036. struct page, lru);
  1037. area->nr_free--;
  1038. if (!is_migrate_cma(migratetype)) {
  1039. try_to_steal_freepages(zone, page,
  1040. start_migratetype,
  1041. migratetype);
  1042. } else {
  1043. /*
  1044. * When borrowing from MIGRATE_CMA, we need to
  1045. * release the excess buddy pages to CMA
  1046. * itself, and we do not try to steal extra
  1047. * free pages.
  1048. */
  1049. buddy_type = migratetype;
  1050. }
  1051. /* Remove the page from the freelists */
  1052. list_del(&page->lru);
  1053. rmv_page_order(page);
  1054. expand(zone, page, order, current_order, area,
  1055. buddy_type);
  1056. /*
  1057. * The freepage_migratetype may differ from pageblock's
  1058. * migratetype depending on the decisions in
  1059. * try_to_steal_freepages(). This is OK as long as it
  1060. * does not differ for MIGRATE_CMA pageblocks. For CMA
  1061. * we need to make sure unallocated pages flushed from
  1062. * pcp lists are returned to the correct freelist.
  1063. */
  1064. set_freepage_migratetype(page, buddy_type);
  1065. trace_mm_page_alloc_extfrag(page, order, current_order,
  1066. start_migratetype, migratetype);
  1067. return page;
  1068. }
  1069. }
  1070. return NULL;
  1071. }
  1072. /*
  1073. * Do the hard work of removing an element from the buddy allocator.
  1074. * Call me with the zone->lock already held.
  1075. */
  1076. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  1077. int migratetype)
  1078. {
  1079. struct page *page;
  1080. retry_reserve:
  1081. page = __rmqueue_smallest(zone, order, migratetype);
  1082. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  1083. page = __rmqueue_fallback(zone, order, migratetype);
  1084. /*
  1085. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  1086. * is used because __rmqueue_smallest is an inline function
  1087. * and we want just one call site
  1088. */
  1089. if (!page) {
  1090. migratetype = MIGRATE_RESERVE;
  1091. goto retry_reserve;
  1092. }
  1093. }
  1094. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  1095. return page;
  1096. }
  1097. /*
  1098. * Obtain a specified number of elements from the buddy allocator, all under
  1099. * a single hold of the lock, for efficiency. Add them to the supplied list.
  1100. * Returns the number of new pages which were placed at *list.
  1101. */
  1102. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  1103. unsigned long count, struct list_head *list,
  1104. int migratetype, bool cold)
  1105. {
  1106. int i;
  1107. spin_lock(&zone->lock);
  1108. for (i = 0; i < count; ++i) {
  1109. struct page *page = __rmqueue(zone, order, migratetype);
  1110. if (unlikely(page == NULL))
  1111. break;
  1112. /*
  1113. * Split buddy pages returned by expand() are received here
  1114. * in physical page order. The page is added to the callers and
  1115. * list and the list head then moves forward. From the callers
  1116. * perspective, the linked list is ordered by page number in
  1117. * some conditions. This is useful for IO devices that can
  1118. * merge IO requests if the physical pages are ordered
  1119. * properly.
  1120. */
  1121. if (likely(!cold))
  1122. list_add(&page->lru, list);
  1123. else
  1124. list_add_tail(&page->lru, list);
  1125. list = &page->lru;
  1126. if (is_migrate_cma(get_freepage_migratetype(page)))
  1127. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  1128. -(1 << order));
  1129. }
  1130. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  1131. spin_unlock(&zone->lock);
  1132. return i;
  1133. }
  1134. #ifdef CONFIG_NUMA
  1135. /*
  1136. * Called from the vmstat counter updater to drain pagesets of this
  1137. * currently executing processor on remote nodes after they have
  1138. * expired.
  1139. *
  1140. * Note that this function must be called with the thread pinned to
  1141. * a single processor.
  1142. */
  1143. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  1144. {
  1145. unsigned long flags;
  1146. int to_drain, batch;
  1147. local_irq_save(flags);
  1148. batch = ACCESS_ONCE(pcp->batch);
  1149. to_drain = min(pcp->count, batch);
  1150. if (to_drain > 0) {
  1151. free_pcppages_bulk(zone, to_drain, pcp);
  1152. pcp->count -= to_drain;
  1153. }
  1154. local_irq_restore(flags);
  1155. }
  1156. #endif
  1157. /*
  1158. * Drain pcplists of the indicated processor and zone.
  1159. *
  1160. * The processor must either be the current processor and the
  1161. * thread pinned to the current processor or a processor that
  1162. * is not online.
  1163. */
  1164. static void drain_pages_zone(unsigned int cpu, struct zone *zone)
  1165. {
  1166. unsigned long flags;
  1167. struct per_cpu_pageset *pset;
  1168. struct per_cpu_pages *pcp;
  1169. local_irq_save(flags);
  1170. pset = per_cpu_ptr(zone->pageset, cpu);
  1171. pcp = &pset->pcp;
  1172. if (pcp->count) {
  1173. free_pcppages_bulk(zone, pcp->count, pcp);
  1174. pcp->count = 0;
  1175. }
  1176. local_irq_restore(flags);
  1177. }
  1178. /*
  1179. * Drain pcplists of all zones on the indicated processor.
  1180. *
  1181. * The processor must either be the current processor and the
  1182. * thread pinned to the current processor or a processor that
  1183. * is not online.
  1184. */
  1185. static void drain_pages(unsigned int cpu)
  1186. {
  1187. struct zone *zone;
  1188. for_each_populated_zone(zone) {
  1189. drain_pages_zone(cpu, zone);
  1190. }
  1191. }
  1192. /*
  1193. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  1194. *
  1195. * The CPU has to be pinned. When zone parameter is non-NULL, spill just
  1196. * the single zone's pages.
  1197. */
  1198. void drain_local_pages(struct zone *zone)
  1199. {
  1200. int cpu = smp_processor_id();
  1201. if (zone)
  1202. drain_pages_zone(cpu, zone);
  1203. else
  1204. drain_pages(cpu);
  1205. }
  1206. /*
  1207. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  1208. *
  1209. * When zone parameter is non-NULL, spill just the single zone's pages.
  1210. *
  1211. * Note that this code is protected against sending an IPI to an offline
  1212. * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
  1213. * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
  1214. * nothing keeps CPUs from showing up after we populated the cpumask and
  1215. * before the call to on_each_cpu_mask().
  1216. */
  1217. void drain_all_pages(struct zone *zone)
  1218. {
  1219. int cpu;
  1220. /*
  1221. * Allocate in the BSS so we wont require allocation in
  1222. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  1223. */
  1224. static cpumask_t cpus_with_pcps;
  1225. /*
  1226. * We don't care about racing with CPU hotplug event
  1227. * as offline notification will cause the notified
  1228. * cpu to drain that CPU pcps and on_each_cpu_mask
  1229. * disables preemption as part of its processing
  1230. */
  1231. for_each_online_cpu(cpu) {
  1232. struct per_cpu_pageset *pcp;
  1233. struct zone *z;
  1234. bool has_pcps = false;
  1235. if (zone) {
  1236. pcp = per_cpu_ptr(zone->pageset, cpu);
  1237. if (pcp->pcp.count)
  1238. has_pcps = true;
  1239. } else {
  1240. for_each_populated_zone(z) {
  1241. pcp = per_cpu_ptr(z->pageset, cpu);
  1242. if (pcp->pcp.count) {
  1243. has_pcps = true;
  1244. break;
  1245. }
  1246. }
  1247. }
  1248. if (has_pcps)
  1249. cpumask_set_cpu(cpu, &cpus_with_pcps);
  1250. else
  1251. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  1252. }
  1253. on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
  1254. zone, 1);
  1255. }
  1256. #ifdef CONFIG_HIBERNATION
  1257. void mark_free_pages(struct zone *zone)
  1258. {
  1259. unsigned long pfn, max_zone_pfn;
  1260. unsigned long flags;
  1261. unsigned int order, t;
  1262. struct list_head *curr;
  1263. if (zone_is_empty(zone))
  1264. return;
  1265. spin_lock_irqsave(&zone->lock, flags);
  1266. max_zone_pfn = zone_end_pfn(zone);
  1267. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  1268. if (pfn_valid(pfn)) {
  1269. struct page *page = pfn_to_page(pfn);
  1270. if (!swsusp_page_is_forbidden(page))
  1271. swsusp_unset_page_free(page);
  1272. }
  1273. for_each_migratetype_order(order, t) {
  1274. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  1275. unsigned long i;
  1276. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  1277. for (i = 0; i < (1UL << order); i++)
  1278. swsusp_set_page_free(pfn_to_page(pfn + i));
  1279. }
  1280. }
  1281. spin_unlock_irqrestore(&zone->lock, flags);
  1282. }
  1283. #endif /* CONFIG_PM */
  1284. /*
  1285. * Free a 0-order page
  1286. * cold == true ? free a cold page : free a hot page
  1287. */
  1288. void free_hot_cold_page(struct page *page, bool cold)
  1289. {
  1290. struct zone *zone = page_zone(page);
  1291. struct per_cpu_pages *pcp;
  1292. unsigned long flags;
  1293. unsigned long pfn = page_to_pfn(page);
  1294. int migratetype;
  1295. if (!free_pages_prepare(page, 0))
  1296. return;
  1297. migratetype = get_pfnblock_migratetype(page, pfn);
  1298. set_freepage_migratetype(page, migratetype);
  1299. local_irq_save(flags);
  1300. __count_vm_event(PGFREE);
  1301. /*
  1302. * We only track unmovable, reclaimable and movable on pcp lists.
  1303. * Free ISOLATE pages back to the allocator because they are being
  1304. * offlined but treat RESERVE as movable pages so we can get those
  1305. * areas back if necessary. Otherwise, we may have to free
  1306. * excessively into the page allocator
  1307. */
  1308. if (migratetype >= MIGRATE_PCPTYPES) {
  1309. if (unlikely(is_migrate_isolate(migratetype))) {
  1310. free_one_page(zone, page, pfn, 0, migratetype);
  1311. goto out;
  1312. }
  1313. migratetype = MIGRATE_MOVABLE;
  1314. }
  1315. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1316. if (!cold)
  1317. list_add(&page->lru, &pcp->lists[migratetype]);
  1318. else
  1319. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  1320. pcp->count++;
  1321. if (pcp->count >= pcp->high) {
  1322. unsigned long batch = ACCESS_ONCE(pcp->batch);
  1323. free_pcppages_bulk(zone, batch, pcp);
  1324. pcp->count -= batch;
  1325. }
  1326. out:
  1327. local_irq_restore(flags);
  1328. }
  1329. /*
  1330. * Free a list of 0-order pages
  1331. */
  1332. void free_hot_cold_page_list(struct list_head *list, bool cold)
  1333. {
  1334. struct page *page, *next;
  1335. list_for_each_entry_safe(page, next, list, lru) {
  1336. trace_mm_page_free_batched(page, cold);
  1337. free_hot_cold_page(page, cold);
  1338. }
  1339. }
  1340. /*
  1341. * split_page takes a non-compound higher-order page, and splits it into
  1342. * n (1<<order) sub-pages: page[0..n]
  1343. * Each sub-page must be freed individually.
  1344. *
  1345. * Note: this is probably too low level an operation for use in drivers.
  1346. * Please consult with lkml before using this in your driver.
  1347. */
  1348. void split_page(struct page *page, unsigned int order)
  1349. {
  1350. int i;
  1351. VM_BUG_ON_PAGE(PageCompound(page), page);
  1352. VM_BUG_ON_PAGE(!page_count(page), page);
  1353. #ifdef CONFIG_KMEMCHECK
  1354. /*
  1355. * Split shadow pages too, because free(page[0]) would
  1356. * otherwise free the whole shadow.
  1357. */
  1358. if (kmemcheck_page_is_tracked(page))
  1359. split_page(virt_to_page(page[0].shadow), order);
  1360. #endif
  1361. set_page_owner(page, 0, 0);
  1362. for (i = 1; i < (1 << order); i++) {
  1363. set_page_refcounted(page + i);
  1364. set_page_owner(page + i, 0, 0);
  1365. }
  1366. }
  1367. EXPORT_SYMBOL_GPL(split_page);
  1368. int __isolate_free_page(struct page *page, unsigned int order)
  1369. {
  1370. unsigned long watermark;
  1371. struct zone *zone;
  1372. int mt;
  1373. BUG_ON(!PageBuddy(page));
  1374. zone = page_zone(page);
  1375. mt = get_pageblock_migratetype(page);
  1376. if (!is_migrate_isolate(mt)) {
  1377. /* Obey watermarks as if the page was being allocated */
  1378. watermark = low_wmark_pages(zone) + (1 << order);
  1379. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  1380. return 0;
  1381. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  1382. }
  1383. /* Remove page from free list */
  1384. list_del(&page->lru);
  1385. zone->free_area[order].nr_free--;
  1386. rmv_page_order(page);
  1387. /* Set the pageblock if the isolated page is at least a pageblock */
  1388. if (order >= pageblock_order - 1) {
  1389. struct page *endpage = page + (1 << order) - 1;
  1390. for (; page < endpage; page += pageblock_nr_pages) {
  1391. int mt = get_pageblock_migratetype(page);
  1392. if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
  1393. set_pageblock_migratetype(page,
  1394. MIGRATE_MOVABLE);
  1395. }
  1396. }
  1397. set_page_owner(page, order, 0);
  1398. return 1UL << order;
  1399. }
  1400. /*
  1401. * Similar to split_page except the page is already free. As this is only
  1402. * being used for migration, the migratetype of the block also changes.
  1403. * As this is called with interrupts disabled, the caller is responsible
  1404. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  1405. * are enabled.
  1406. *
  1407. * Note: this is probably too low level an operation for use in drivers.
  1408. * Please consult with lkml before using this in your driver.
  1409. */
  1410. int split_free_page(struct page *page)
  1411. {
  1412. unsigned int order;
  1413. int nr_pages;
  1414. order = page_order(page);
  1415. nr_pages = __isolate_free_page(page, order);
  1416. if (!nr_pages)
  1417. return 0;
  1418. /* Split into individual pages */
  1419. set_page_refcounted(page);
  1420. split_page(page, order);
  1421. return nr_pages;
  1422. }
  1423. /*
  1424. * Allocate a page from the given zone. Use pcplists for order-0 allocations.
  1425. */
  1426. static inline
  1427. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1428. struct zone *zone, unsigned int order,
  1429. gfp_t gfp_flags, int migratetype)
  1430. {
  1431. unsigned long flags;
  1432. struct page *page;
  1433. bool cold = ((gfp_flags & __GFP_COLD) != 0);
  1434. if (likely(order == 0)) {
  1435. struct per_cpu_pages *pcp;
  1436. struct list_head *list;
  1437. local_irq_save(flags);
  1438. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1439. list = &pcp->lists[migratetype];
  1440. if (list_empty(list)) {
  1441. pcp->count += rmqueue_bulk(zone, 0,
  1442. pcp->batch, list,
  1443. migratetype, cold);
  1444. if (unlikely(list_empty(list)))
  1445. goto failed;
  1446. }
  1447. if (cold)
  1448. page = list_entry(list->prev, struct page, lru);
  1449. else
  1450. page = list_entry(list->next, struct page, lru);
  1451. list_del(&page->lru);
  1452. pcp->count--;
  1453. } else {
  1454. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1455. /*
  1456. * __GFP_NOFAIL is not to be used in new code.
  1457. *
  1458. * All __GFP_NOFAIL callers should be fixed so that they
  1459. * properly detect and handle allocation failures.
  1460. *
  1461. * We most definitely don't want callers attempting to
  1462. * allocate greater than order-1 page units with
  1463. * __GFP_NOFAIL.
  1464. */
  1465. WARN_ON_ONCE(order > 1);
  1466. }
  1467. spin_lock_irqsave(&zone->lock, flags);
  1468. page = __rmqueue(zone, order, migratetype);
  1469. spin_unlock(&zone->lock);
  1470. if (!page)
  1471. goto failed;
  1472. __mod_zone_freepage_state(zone, -(1 << order),
  1473. get_freepage_migratetype(page));
  1474. }
  1475. __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
  1476. if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
  1477. !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
  1478. set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
  1479. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1480. zone_statistics(preferred_zone, zone, gfp_flags);
  1481. local_irq_restore(flags);
  1482. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  1483. return page;
  1484. failed:
  1485. local_irq_restore(flags);
  1486. return NULL;
  1487. }
  1488. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1489. static struct {
  1490. struct fault_attr attr;
  1491. u32 ignore_gfp_highmem;
  1492. u32 ignore_gfp_wait;
  1493. u32 min_order;
  1494. } fail_page_alloc = {
  1495. .attr = FAULT_ATTR_INITIALIZER,
  1496. .ignore_gfp_wait = 1,
  1497. .ignore_gfp_highmem = 1,
  1498. .min_order = 1,
  1499. };
  1500. static int __init setup_fail_page_alloc(char *str)
  1501. {
  1502. return setup_fault_attr(&fail_page_alloc.attr, str);
  1503. }
  1504. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1505. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1506. {
  1507. if (order < fail_page_alloc.min_order)
  1508. return false;
  1509. if (gfp_mask & __GFP_NOFAIL)
  1510. return false;
  1511. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1512. return false;
  1513. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1514. return false;
  1515. return should_fail(&fail_page_alloc.attr, 1 << order);
  1516. }
  1517. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1518. static int __init fail_page_alloc_debugfs(void)
  1519. {
  1520. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1521. struct dentry *dir;
  1522. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  1523. &fail_page_alloc.attr);
  1524. if (IS_ERR(dir))
  1525. return PTR_ERR(dir);
  1526. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1527. &fail_page_alloc.ignore_gfp_wait))
  1528. goto fail;
  1529. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1530. &fail_page_alloc.ignore_gfp_highmem))
  1531. goto fail;
  1532. if (!debugfs_create_u32("min-order", mode, dir,
  1533. &fail_page_alloc.min_order))
  1534. goto fail;
  1535. return 0;
  1536. fail:
  1537. debugfs_remove_recursive(dir);
  1538. return -ENOMEM;
  1539. }
  1540. late_initcall(fail_page_alloc_debugfs);
  1541. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1542. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1543. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1544. {
  1545. return false;
  1546. }
  1547. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1548. /*
  1549. * Return true if free pages are above 'mark'. This takes into account the order
  1550. * of the allocation.
  1551. */
  1552. static bool __zone_watermark_ok(struct zone *z, unsigned int order,
  1553. unsigned long mark, int classzone_idx, int alloc_flags,
  1554. long free_pages)
  1555. {
  1556. /* free_pages may go negative - that's OK */
  1557. long min = mark;
  1558. int o;
  1559. long free_cma = 0;
  1560. free_pages -= (1 << order) - 1;
  1561. if (alloc_flags & ALLOC_HIGH)
  1562. min -= min / 2;
  1563. if (alloc_flags & ALLOC_HARDER)
  1564. min -= min / 4;
  1565. #ifdef CONFIG_CMA
  1566. /* If allocation can't use CMA areas don't use free CMA pages */
  1567. if (!(alloc_flags & ALLOC_CMA))
  1568. free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
  1569. #endif
  1570. if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
  1571. return false;
  1572. for (o = 0; o < order; o++) {
  1573. /* At the next order, this order's pages become unavailable */
  1574. free_pages -= z->free_area[o].nr_free << o;
  1575. /* Require fewer higher order pages to be free */
  1576. min >>= 1;
  1577. if (free_pages <= min)
  1578. return false;
  1579. }
  1580. return true;
  1581. }
  1582. bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  1583. int classzone_idx, int alloc_flags)
  1584. {
  1585. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1586. zone_page_state(z, NR_FREE_PAGES));
  1587. }
  1588. bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
  1589. unsigned long mark, int classzone_idx, int alloc_flags)
  1590. {
  1591. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  1592. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  1593. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  1594. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1595. free_pages);
  1596. }
  1597. #ifdef CONFIG_NUMA
  1598. /*
  1599. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1600. * skip over zones that are not allowed by the cpuset, or that have
  1601. * been recently (in last second) found to be nearly full. See further
  1602. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1603. * that have to skip over a lot of full or unallowed zones.
  1604. *
  1605. * If the zonelist cache is present in the passed zonelist, then
  1606. * returns a pointer to the allowed node mask (either the current
  1607. * tasks mems_allowed, or node_states[N_MEMORY].)
  1608. *
  1609. * If the zonelist cache is not available for this zonelist, does
  1610. * nothing and returns NULL.
  1611. *
  1612. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1613. * a second since last zap'd) then we zap it out (clear its bits.)
  1614. *
  1615. * We hold off even calling zlc_setup, until after we've checked the
  1616. * first zone in the zonelist, on the theory that most allocations will
  1617. * be satisfied from that first zone, so best to examine that zone as
  1618. * quickly as we can.
  1619. */
  1620. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1621. {
  1622. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1623. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1624. zlc = zonelist->zlcache_ptr;
  1625. if (!zlc)
  1626. return NULL;
  1627. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1628. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1629. zlc->last_full_zap = jiffies;
  1630. }
  1631. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1632. &cpuset_current_mems_allowed :
  1633. &node_states[N_MEMORY];
  1634. return allowednodes;
  1635. }
  1636. /*
  1637. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1638. * if it is worth looking at further for free memory:
  1639. * 1) Check that the zone isn't thought to be full (doesn't have its
  1640. * bit set in the zonelist_cache fullzones BITMAP).
  1641. * 2) Check that the zones node (obtained from the zonelist_cache
  1642. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1643. * Return true (non-zero) if zone is worth looking at further, or
  1644. * else return false (zero) if it is not.
  1645. *
  1646. * This check -ignores- the distinction between various watermarks,
  1647. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1648. * found to be full for any variation of these watermarks, it will
  1649. * be considered full for up to one second by all requests, unless
  1650. * we are so low on memory on all allowed nodes that we are forced
  1651. * into the second scan of the zonelist.
  1652. *
  1653. * In the second scan we ignore this zonelist cache and exactly
  1654. * apply the watermarks to all zones, even it is slower to do so.
  1655. * We are low on memory in the second scan, and should leave no stone
  1656. * unturned looking for a free page.
  1657. */
  1658. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1659. nodemask_t *allowednodes)
  1660. {
  1661. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1662. int i; /* index of *z in zonelist zones */
  1663. int n; /* node that zone *z is on */
  1664. zlc = zonelist->zlcache_ptr;
  1665. if (!zlc)
  1666. return 1;
  1667. i = z - zonelist->_zonerefs;
  1668. n = zlc->z_to_n[i];
  1669. /* This zone is worth trying if it is allowed but not full */
  1670. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1671. }
  1672. /*
  1673. * Given 'z' scanning a zonelist, set the corresponding bit in
  1674. * zlc->fullzones, so that subsequent attempts to allocate a page
  1675. * from that zone don't waste time re-examining it.
  1676. */
  1677. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1678. {
  1679. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1680. int i; /* index of *z in zonelist zones */
  1681. zlc = zonelist->zlcache_ptr;
  1682. if (!zlc)
  1683. return;
  1684. i = z - zonelist->_zonerefs;
  1685. set_bit(i, zlc->fullzones);
  1686. }
  1687. /*
  1688. * clear all zones full, called after direct reclaim makes progress so that
  1689. * a zone that was recently full is not skipped over for up to a second
  1690. */
  1691. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1692. {
  1693. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1694. zlc = zonelist->zlcache_ptr;
  1695. if (!zlc)
  1696. return;
  1697. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1698. }
  1699. static bool zone_local(struct zone *local_zone, struct zone *zone)
  1700. {
  1701. return local_zone->node == zone->node;
  1702. }
  1703. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  1704. {
  1705. return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
  1706. RECLAIM_DISTANCE;
  1707. }
  1708. #else /* CONFIG_NUMA */
  1709. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1710. {
  1711. return NULL;
  1712. }
  1713. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1714. nodemask_t *allowednodes)
  1715. {
  1716. return 1;
  1717. }
  1718. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1719. {
  1720. }
  1721. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1722. {
  1723. }
  1724. static bool zone_local(struct zone *local_zone, struct zone *zone)
  1725. {
  1726. return true;
  1727. }
  1728. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  1729. {
  1730. return true;
  1731. }
  1732. #endif /* CONFIG_NUMA */
  1733. static void reset_alloc_batches(struct zone *preferred_zone)
  1734. {
  1735. struct zone *zone = preferred_zone->zone_pgdat->node_zones;
  1736. do {
  1737. mod_zone_page_state(zone, NR_ALLOC_BATCH,
  1738. high_wmark_pages(zone) - low_wmark_pages(zone) -
  1739. atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
  1740. clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
  1741. } while (zone++ != preferred_zone);
  1742. }
  1743. /*
  1744. * get_page_from_freelist goes through the zonelist trying to allocate
  1745. * a page.
  1746. */
  1747. static struct page *
  1748. get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
  1749. const struct alloc_context *ac)
  1750. {
  1751. struct zonelist *zonelist = ac->zonelist;
  1752. struct zoneref *z;
  1753. struct page *page = NULL;
  1754. struct zone *zone;
  1755. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1756. int zlc_active = 0; /* set if using zonelist_cache */
  1757. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1758. bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
  1759. (gfp_mask & __GFP_WRITE);
  1760. int nr_fair_skipped = 0;
  1761. bool zonelist_rescan;
  1762. zonelist_scan:
  1763. zonelist_rescan = false;
  1764. /*
  1765. * Scan zonelist, looking for a zone with enough free.
  1766. * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
  1767. */
  1768. for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
  1769. ac->nodemask) {
  1770. unsigned long mark;
  1771. if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
  1772. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1773. continue;
  1774. if (cpusets_enabled() &&
  1775. (alloc_flags & ALLOC_CPUSET) &&
  1776. !cpuset_zone_allowed(zone, gfp_mask))
  1777. continue;
  1778. /*
  1779. * Distribute pages in proportion to the individual
  1780. * zone size to ensure fair page aging. The zone a
  1781. * page was allocated in should have no effect on the
  1782. * time the page has in memory before being reclaimed.
  1783. */
  1784. if (alloc_flags & ALLOC_FAIR) {
  1785. if (!zone_local(ac->preferred_zone, zone))
  1786. break;
  1787. if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
  1788. nr_fair_skipped++;
  1789. continue;
  1790. }
  1791. }
  1792. /*
  1793. * When allocating a page cache page for writing, we
  1794. * want to get it from a zone that is within its dirty
  1795. * limit, such that no single zone holds more than its
  1796. * proportional share of globally allowed dirty pages.
  1797. * The dirty limits take into account the zone's
  1798. * lowmem reserves and high watermark so that kswapd
  1799. * should be able to balance it without having to
  1800. * write pages from its LRU list.
  1801. *
  1802. * This may look like it could increase pressure on
  1803. * lower zones by failing allocations in higher zones
  1804. * before they are full. But the pages that do spill
  1805. * over are limited as the lower zones are protected
  1806. * by this very same mechanism. It should not become
  1807. * a practical burden to them.
  1808. *
  1809. * XXX: For now, allow allocations to potentially
  1810. * exceed the per-zone dirty limit in the slowpath
  1811. * (ALLOC_WMARK_LOW unset) before going into reclaim,
  1812. * which is important when on a NUMA setup the allowed
  1813. * zones are together not big enough to reach the
  1814. * global limit. The proper fix for these situations
  1815. * will require awareness of zones in the
  1816. * dirty-throttling and the flusher threads.
  1817. */
  1818. if (consider_zone_dirty && !zone_dirty_ok(zone))
  1819. continue;
  1820. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1821. if (!zone_watermark_ok(zone, order, mark,
  1822. ac->classzone_idx, alloc_flags)) {
  1823. int ret;
  1824. /* Checked here to keep the fast path fast */
  1825. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1826. if (alloc_flags & ALLOC_NO_WATERMARKS)
  1827. goto try_this_zone;
  1828. if (IS_ENABLED(CONFIG_NUMA) &&
  1829. !did_zlc_setup && nr_online_nodes > 1) {
  1830. /*
  1831. * we do zlc_setup if there are multiple nodes
  1832. * and before considering the first zone allowed
  1833. * by the cpuset.
  1834. */
  1835. allowednodes = zlc_setup(zonelist, alloc_flags);
  1836. zlc_active = 1;
  1837. did_zlc_setup = 1;
  1838. }
  1839. if (zone_reclaim_mode == 0 ||
  1840. !zone_allows_reclaim(ac->preferred_zone, zone))
  1841. goto this_zone_full;
  1842. /*
  1843. * As we may have just activated ZLC, check if the first
  1844. * eligible zone has failed zone_reclaim recently.
  1845. */
  1846. if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
  1847. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1848. continue;
  1849. ret = zone_reclaim(zone, gfp_mask, order);
  1850. switch (ret) {
  1851. case ZONE_RECLAIM_NOSCAN:
  1852. /* did not scan */
  1853. continue;
  1854. case ZONE_RECLAIM_FULL:
  1855. /* scanned but unreclaimable */
  1856. continue;
  1857. default:
  1858. /* did we reclaim enough */
  1859. if (zone_watermark_ok(zone, order, mark,
  1860. ac->classzone_idx, alloc_flags))
  1861. goto try_this_zone;
  1862. /*
  1863. * Failed to reclaim enough to meet watermark.
  1864. * Only mark the zone full if checking the min
  1865. * watermark or if we failed to reclaim just
  1866. * 1<<order pages or else the page allocator
  1867. * fastpath will prematurely mark zones full
  1868. * when the watermark is between the low and
  1869. * min watermarks.
  1870. */
  1871. if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
  1872. ret == ZONE_RECLAIM_SOME)
  1873. goto this_zone_full;
  1874. continue;
  1875. }
  1876. }
  1877. try_this_zone:
  1878. page = buffered_rmqueue(ac->preferred_zone, zone, order,
  1879. gfp_mask, ac->migratetype);
  1880. if (page) {
  1881. if (prep_new_page(page, order, gfp_mask, alloc_flags))
  1882. goto try_this_zone;
  1883. return page;
  1884. }
  1885. this_zone_full:
  1886. if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
  1887. zlc_mark_zone_full(zonelist, z);
  1888. }
  1889. /*
  1890. * The first pass makes sure allocations are spread fairly within the
  1891. * local node. However, the local node might have free pages left
  1892. * after the fairness batches are exhausted, and remote zones haven't
  1893. * even been considered yet. Try once more without fairness, and
  1894. * include remote zones now, before entering the slowpath and waking
  1895. * kswapd: prefer spilling to a remote zone over swapping locally.
  1896. */
  1897. if (alloc_flags & ALLOC_FAIR) {
  1898. alloc_flags &= ~ALLOC_FAIR;
  1899. if (nr_fair_skipped) {
  1900. zonelist_rescan = true;
  1901. reset_alloc_batches(ac->preferred_zone);
  1902. }
  1903. if (nr_online_nodes > 1)
  1904. zonelist_rescan = true;
  1905. }
  1906. if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
  1907. /* Disable zlc cache for second zonelist scan */
  1908. zlc_active = 0;
  1909. zonelist_rescan = true;
  1910. }
  1911. if (zonelist_rescan)
  1912. goto zonelist_scan;
  1913. return NULL;
  1914. }
  1915. /*
  1916. * Large machines with many possible nodes should not always dump per-node
  1917. * meminfo in irq context.
  1918. */
  1919. static inline bool should_suppress_show_mem(void)
  1920. {
  1921. bool ret = false;
  1922. #if NODES_SHIFT > 8
  1923. ret = in_interrupt();
  1924. #endif
  1925. return ret;
  1926. }
  1927. static DEFINE_RATELIMIT_STATE(nopage_rs,
  1928. DEFAULT_RATELIMIT_INTERVAL,
  1929. DEFAULT_RATELIMIT_BURST);
  1930. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
  1931. {
  1932. unsigned int filter = SHOW_MEM_FILTER_NODES;
  1933. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  1934. debug_guardpage_minorder() > 0)
  1935. return;
  1936. /*
  1937. * This documents exceptions given to allocations in certain
  1938. * contexts that are allowed to allocate outside current's set
  1939. * of allowed nodes.
  1940. */
  1941. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1942. if (test_thread_flag(TIF_MEMDIE) ||
  1943. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  1944. filter &= ~SHOW_MEM_FILTER_NODES;
  1945. if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
  1946. filter &= ~SHOW_MEM_FILTER_NODES;
  1947. if (fmt) {
  1948. struct va_format vaf;
  1949. va_list args;
  1950. va_start(args, fmt);
  1951. vaf.fmt = fmt;
  1952. vaf.va = &args;
  1953. pr_warn("%pV", &vaf);
  1954. va_end(args);
  1955. }
  1956. pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
  1957. current->comm, order, gfp_mask);
  1958. dump_stack();
  1959. if (!should_suppress_show_mem())
  1960. show_mem(filter);
  1961. }
  1962. static inline int
  1963. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1964. unsigned long did_some_progress,
  1965. unsigned long pages_reclaimed)
  1966. {
  1967. /* Do not loop if specifically requested */
  1968. if (gfp_mask & __GFP_NORETRY)
  1969. return 0;
  1970. /* Always retry if specifically requested */
  1971. if (gfp_mask & __GFP_NOFAIL)
  1972. return 1;
  1973. /*
  1974. * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
  1975. * making forward progress without invoking OOM. Suspend also disables
  1976. * storage devices so kswapd will not help. Bail if we are suspending.
  1977. */
  1978. if (!did_some_progress && pm_suspended_storage())
  1979. return 0;
  1980. /*
  1981. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1982. * means __GFP_NOFAIL, but that may not be true in other
  1983. * implementations.
  1984. */
  1985. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1986. return 1;
  1987. /*
  1988. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1989. * specified, then we retry until we no longer reclaim any pages
  1990. * (above), or we've reclaimed an order of pages at least as
  1991. * large as the allocation's order. In both cases, if the
  1992. * allocation still fails, we stop retrying.
  1993. */
  1994. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1995. return 1;
  1996. return 0;
  1997. }
  1998. static inline struct page *
  1999. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  2000. const struct alloc_context *ac, unsigned long *did_some_progress)
  2001. {
  2002. struct page *page;
  2003. *did_some_progress = 0;
  2004. /*
  2005. * Acquire the per-zone oom lock for each zone. If that
  2006. * fails, somebody else is making progress for us.
  2007. */
  2008. if (!oom_zonelist_trylock(ac->zonelist, gfp_mask)) {
  2009. *did_some_progress = 1;
  2010. schedule_timeout_uninterruptible(1);
  2011. return NULL;
  2012. }
  2013. /*
  2014. * Go through the zonelist yet one more time, keep very high watermark
  2015. * here, this is only to catch a parallel oom killing, we must fail if
  2016. * we're still under heavy pressure.
  2017. */
  2018. page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
  2019. ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
  2020. if (page)
  2021. goto out;
  2022. if (!(gfp_mask & __GFP_NOFAIL)) {
  2023. /* Coredumps can quickly deplete all memory reserves */
  2024. if (current->flags & PF_DUMPCORE)
  2025. goto out;
  2026. /* The OOM killer will not help higher order allocs */
  2027. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2028. goto out;
  2029. /* The OOM killer does not needlessly kill tasks for lowmem */
  2030. if (ac->high_zoneidx < ZONE_NORMAL)
  2031. goto out;
  2032. /* The OOM killer does not compensate for light reclaim */
  2033. if (!(gfp_mask & __GFP_FS))
  2034. goto out;
  2035. /*
  2036. * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
  2037. * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
  2038. * The caller should handle page allocation failure by itself if
  2039. * it specifies __GFP_THISNODE.
  2040. * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
  2041. */
  2042. if (gfp_mask & __GFP_THISNODE)
  2043. goto out;
  2044. }
  2045. /* Exhausted what can be done so it's blamo time */
  2046. if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false))
  2047. *did_some_progress = 1;
  2048. out:
  2049. oom_zonelist_unlock(ac->zonelist, gfp_mask);
  2050. return page;
  2051. }
  2052. #ifdef CONFIG_COMPACTION
  2053. /* Try memory compaction for high-order allocations before reclaim */
  2054. static struct page *
  2055. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2056. int alloc_flags, const struct alloc_context *ac,
  2057. enum migrate_mode mode, int *contended_compaction,
  2058. bool *deferred_compaction)
  2059. {
  2060. unsigned long compact_result;
  2061. struct page *page;
  2062. if (!order)
  2063. return NULL;
  2064. current->flags |= PF_MEMALLOC;
  2065. compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
  2066. mode, contended_compaction);
  2067. current->flags &= ~PF_MEMALLOC;
  2068. switch (compact_result) {
  2069. case COMPACT_DEFERRED:
  2070. *deferred_compaction = true;
  2071. /* fall-through */
  2072. case COMPACT_SKIPPED:
  2073. return NULL;
  2074. default:
  2075. break;
  2076. }
  2077. /*
  2078. * At least in one zone compaction wasn't deferred or skipped, so let's
  2079. * count a compaction stall
  2080. */
  2081. count_vm_event(COMPACTSTALL);
  2082. page = get_page_from_freelist(gfp_mask, order,
  2083. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  2084. if (page) {
  2085. struct zone *zone = page_zone(page);
  2086. zone->compact_blockskip_flush = false;
  2087. compaction_defer_reset(zone, order, true);
  2088. count_vm_event(COMPACTSUCCESS);
  2089. return page;
  2090. }
  2091. /*
  2092. * It's bad if compaction run occurs and fails. The most likely reason
  2093. * is that pages exist, but not enough to satisfy watermarks.
  2094. */
  2095. count_vm_event(COMPACTFAIL);
  2096. cond_resched();
  2097. return NULL;
  2098. }
  2099. #else
  2100. static inline struct page *
  2101. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2102. int alloc_flags, const struct alloc_context *ac,
  2103. enum migrate_mode mode, int *contended_compaction,
  2104. bool *deferred_compaction)
  2105. {
  2106. return NULL;
  2107. }
  2108. #endif /* CONFIG_COMPACTION */
  2109. /* Perform direct synchronous page reclaim */
  2110. static int
  2111. __perform_reclaim(gfp_t gfp_mask, unsigned int order,
  2112. const struct alloc_context *ac)
  2113. {
  2114. struct reclaim_state reclaim_state;
  2115. int progress;
  2116. cond_resched();
  2117. /* We now go into synchronous reclaim */
  2118. cpuset_memory_pressure_bump();
  2119. current->flags |= PF_MEMALLOC;
  2120. lockdep_set_current_reclaim_state(gfp_mask);
  2121. reclaim_state.reclaimed_slab = 0;
  2122. current->reclaim_state = &reclaim_state;
  2123. progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
  2124. ac->nodemask);
  2125. current->reclaim_state = NULL;
  2126. lockdep_clear_current_reclaim_state();
  2127. current->flags &= ~PF_MEMALLOC;
  2128. cond_resched();
  2129. return progress;
  2130. }
  2131. /* The really slow allocator path where we enter direct reclaim */
  2132. static inline struct page *
  2133. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  2134. int alloc_flags, const struct alloc_context *ac,
  2135. unsigned long *did_some_progress)
  2136. {
  2137. struct page *page = NULL;
  2138. bool drained = false;
  2139. *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
  2140. if (unlikely(!(*did_some_progress)))
  2141. return NULL;
  2142. /* After successful reclaim, reconsider all zones for allocation */
  2143. if (IS_ENABLED(CONFIG_NUMA))
  2144. zlc_clear_zones_full(ac->zonelist);
  2145. retry:
  2146. page = get_page_from_freelist(gfp_mask, order,
  2147. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  2148. /*
  2149. * If an allocation failed after direct reclaim, it could be because
  2150. * pages are pinned on the per-cpu lists. Drain them and try again
  2151. */
  2152. if (!page && !drained) {
  2153. drain_all_pages(NULL);
  2154. drained = true;
  2155. goto retry;
  2156. }
  2157. return page;
  2158. }
  2159. /*
  2160. * This is called in the allocator slow-path if the allocation request is of
  2161. * sufficient urgency to ignore watermarks and take other desperate measures
  2162. */
  2163. static inline struct page *
  2164. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  2165. const struct alloc_context *ac)
  2166. {
  2167. struct page *page;
  2168. do {
  2169. page = get_page_from_freelist(gfp_mask, order,
  2170. ALLOC_NO_WATERMARKS, ac);
  2171. if (!page && gfp_mask & __GFP_NOFAIL)
  2172. wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
  2173. HZ/50);
  2174. } while (!page && (gfp_mask & __GFP_NOFAIL));
  2175. return page;
  2176. }
  2177. static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
  2178. {
  2179. struct zoneref *z;
  2180. struct zone *zone;
  2181. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
  2182. ac->high_zoneidx, ac->nodemask)
  2183. wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
  2184. }
  2185. static inline int
  2186. gfp_to_alloc_flags(gfp_t gfp_mask)
  2187. {
  2188. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  2189. const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
  2190. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  2191. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  2192. /*
  2193. * The caller may dip into page reserves a bit more if the caller
  2194. * cannot run direct reclaim, or if the caller has realtime scheduling
  2195. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  2196. * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
  2197. */
  2198. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  2199. if (atomic) {
  2200. /*
  2201. * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
  2202. * if it can't schedule.
  2203. */
  2204. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2205. alloc_flags |= ALLOC_HARDER;
  2206. /*
  2207. * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
  2208. * comment for __cpuset_node_allowed().
  2209. */
  2210. alloc_flags &= ~ALLOC_CPUSET;
  2211. } else if (unlikely(rt_task(current)) && !in_interrupt())
  2212. alloc_flags |= ALLOC_HARDER;
  2213. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  2214. if (gfp_mask & __GFP_MEMALLOC)
  2215. alloc_flags |= ALLOC_NO_WATERMARKS;
  2216. else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  2217. alloc_flags |= ALLOC_NO_WATERMARKS;
  2218. else if (!in_interrupt() &&
  2219. ((current->flags & PF_MEMALLOC) ||
  2220. unlikely(test_thread_flag(TIF_MEMDIE))))
  2221. alloc_flags |= ALLOC_NO_WATERMARKS;
  2222. }
  2223. #ifdef CONFIG_CMA
  2224. if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2225. alloc_flags |= ALLOC_CMA;
  2226. #endif
  2227. return alloc_flags;
  2228. }
  2229. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  2230. {
  2231. return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
  2232. }
  2233. static inline struct page *
  2234. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  2235. struct alloc_context *ac)
  2236. {
  2237. const gfp_t wait = gfp_mask & __GFP_WAIT;
  2238. struct page *page = NULL;
  2239. int alloc_flags;
  2240. unsigned long pages_reclaimed = 0;
  2241. unsigned long did_some_progress;
  2242. enum migrate_mode migration_mode = MIGRATE_ASYNC;
  2243. bool deferred_compaction = false;
  2244. int contended_compaction = COMPACT_CONTENDED_NONE;
  2245. /*
  2246. * In the slowpath, we sanity check order to avoid ever trying to
  2247. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  2248. * be using allocators in order of preference for an area that is
  2249. * too large.
  2250. */
  2251. if (order >= MAX_ORDER) {
  2252. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  2253. return NULL;
  2254. }
  2255. /*
  2256. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  2257. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  2258. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  2259. * using a larger set of nodes after it has established that the
  2260. * allowed per node queues are empty and that nodes are
  2261. * over allocated.
  2262. */
  2263. if (IS_ENABLED(CONFIG_NUMA) &&
  2264. (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  2265. goto nopage;
  2266. retry:
  2267. if (!(gfp_mask & __GFP_NO_KSWAPD))
  2268. wake_all_kswapds(order, ac);
  2269. /*
  2270. * OK, we're below the kswapd watermark and have kicked background
  2271. * reclaim. Now things get more complex, so set up alloc_flags according
  2272. * to how we want to proceed.
  2273. */
  2274. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  2275. /*
  2276. * Find the true preferred zone if the allocation is unconstrained by
  2277. * cpusets.
  2278. */
  2279. if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
  2280. struct zoneref *preferred_zoneref;
  2281. preferred_zoneref = first_zones_zonelist(ac->zonelist,
  2282. ac->high_zoneidx, NULL, &ac->preferred_zone);
  2283. ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
  2284. }
  2285. /* This is the last chance, in general, before the goto nopage. */
  2286. page = get_page_from_freelist(gfp_mask, order,
  2287. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  2288. if (page)
  2289. goto got_pg;
  2290. /* Allocate without watermarks if the context allows */
  2291. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  2292. /*
  2293. * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
  2294. * the allocation is high priority and these type of
  2295. * allocations are system rather than user orientated
  2296. */
  2297. ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
  2298. page = __alloc_pages_high_priority(gfp_mask, order, ac);
  2299. if (page) {
  2300. goto got_pg;
  2301. }
  2302. }
  2303. /* Atomic allocations - we can't balance anything */
  2304. if (!wait) {
  2305. /*
  2306. * All existing users of the deprecated __GFP_NOFAIL are
  2307. * blockable, so warn of any new users that actually allow this
  2308. * type of allocation to fail.
  2309. */
  2310. WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
  2311. goto nopage;
  2312. }
  2313. /* Avoid recursion of direct reclaim */
  2314. if (current->flags & PF_MEMALLOC)
  2315. goto nopage;
  2316. /* Avoid allocations with no watermarks from looping endlessly */
  2317. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  2318. goto nopage;
  2319. /*
  2320. * Try direct compaction. The first pass is asynchronous. Subsequent
  2321. * attempts after direct reclaim are synchronous
  2322. */
  2323. page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
  2324. migration_mode,
  2325. &contended_compaction,
  2326. &deferred_compaction);
  2327. if (page)
  2328. goto got_pg;
  2329. /* Checks for THP-specific high-order allocations */
  2330. if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
  2331. /*
  2332. * If compaction is deferred for high-order allocations, it is
  2333. * because sync compaction recently failed. If this is the case
  2334. * and the caller requested a THP allocation, we do not want
  2335. * to heavily disrupt the system, so we fail the allocation
  2336. * instead of entering direct reclaim.
  2337. */
  2338. if (deferred_compaction)
  2339. goto nopage;
  2340. /*
  2341. * In all zones where compaction was attempted (and not
  2342. * deferred or skipped), lock contention has been detected.
  2343. * For THP allocation we do not want to disrupt the others
  2344. * so we fallback to base pages instead.
  2345. */
  2346. if (contended_compaction == COMPACT_CONTENDED_LOCK)
  2347. goto nopage;
  2348. /*
  2349. * If compaction was aborted due to need_resched(), we do not
  2350. * want to further increase allocation latency, unless it is
  2351. * khugepaged trying to collapse.
  2352. */
  2353. if (contended_compaction == COMPACT_CONTENDED_SCHED
  2354. && !(current->flags & PF_KTHREAD))
  2355. goto nopage;
  2356. }
  2357. /*
  2358. * It can become very expensive to allocate transparent hugepages at
  2359. * fault, so use asynchronous memory compaction for THP unless it is
  2360. * khugepaged trying to collapse.
  2361. */
  2362. if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
  2363. (current->flags & PF_KTHREAD))
  2364. migration_mode = MIGRATE_SYNC_LIGHT;
  2365. /* Try direct reclaim and then allocating */
  2366. page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
  2367. &did_some_progress);
  2368. if (page)
  2369. goto got_pg;
  2370. /* Check if we should retry the allocation */
  2371. pages_reclaimed += did_some_progress;
  2372. if (should_alloc_retry(gfp_mask, order, did_some_progress,
  2373. pages_reclaimed)) {
  2374. /*
  2375. * If we fail to make progress by freeing individual
  2376. * pages, but the allocation wants us to keep going,
  2377. * start OOM killing tasks.
  2378. */
  2379. if (!did_some_progress) {
  2380. page = __alloc_pages_may_oom(gfp_mask, order, ac,
  2381. &did_some_progress);
  2382. if (page)
  2383. goto got_pg;
  2384. if (!did_some_progress)
  2385. goto nopage;
  2386. }
  2387. /* Wait for some write requests to complete then retry */
  2388. wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
  2389. goto retry;
  2390. } else {
  2391. /*
  2392. * High-order allocations do not necessarily loop after
  2393. * direct reclaim and reclaim/compaction depends on compaction
  2394. * being called after reclaim so call directly if necessary
  2395. */
  2396. page = __alloc_pages_direct_compact(gfp_mask, order,
  2397. alloc_flags, ac, migration_mode,
  2398. &contended_compaction,
  2399. &deferred_compaction);
  2400. if (page)
  2401. goto got_pg;
  2402. }
  2403. nopage:
  2404. warn_alloc_failed(gfp_mask, order, NULL);
  2405. got_pg:
  2406. return page;
  2407. }
  2408. /*
  2409. * This is the 'heart' of the zoned buddy allocator.
  2410. */
  2411. struct page *
  2412. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  2413. struct zonelist *zonelist, nodemask_t *nodemask)
  2414. {
  2415. struct zoneref *preferred_zoneref;
  2416. struct page *page = NULL;
  2417. unsigned int cpuset_mems_cookie;
  2418. int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
  2419. gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
  2420. struct alloc_context ac = {
  2421. .high_zoneidx = gfp_zone(gfp_mask),
  2422. .nodemask = nodemask,
  2423. .migratetype = gfpflags_to_migratetype(gfp_mask),
  2424. };
  2425. gfp_mask &= gfp_allowed_mask;
  2426. lockdep_trace_alloc(gfp_mask);
  2427. might_sleep_if(gfp_mask & __GFP_WAIT);
  2428. if (should_fail_alloc_page(gfp_mask, order))
  2429. return NULL;
  2430. /*
  2431. * Check the zones suitable for the gfp_mask contain at least one
  2432. * valid zone. It's possible to have an empty zonelist as a result
  2433. * of GFP_THISNODE and a memoryless node
  2434. */
  2435. if (unlikely(!zonelist->_zonerefs->zone))
  2436. return NULL;
  2437. if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
  2438. alloc_flags |= ALLOC_CMA;
  2439. retry_cpuset:
  2440. cpuset_mems_cookie = read_mems_allowed_begin();
  2441. /* We set it here, as __alloc_pages_slowpath might have changed it */
  2442. ac.zonelist = zonelist;
  2443. /* The preferred zone is used for statistics later */
  2444. preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
  2445. ac.nodemask ? : &cpuset_current_mems_allowed,
  2446. &ac.preferred_zone);
  2447. if (!ac.preferred_zone)
  2448. goto out;
  2449. ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
  2450. /* First allocation attempt */
  2451. alloc_mask = gfp_mask|__GFP_HARDWALL;
  2452. page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
  2453. if (unlikely(!page)) {
  2454. /*
  2455. * Runtime PM, block IO and its error handling path
  2456. * can deadlock because I/O on the device might not
  2457. * complete.
  2458. */
  2459. alloc_mask = memalloc_noio_flags(gfp_mask);
  2460. page = __alloc_pages_slowpath(alloc_mask, order, &ac);
  2461. }
  2462. if (kmemcheck_enabled && page)
  2463. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  2464. trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
  2465. out:
  2466. /*
  2467. * When updating a task's mems_allowed, it is possible to race with
  2468. * parallel threads in such a way that an allocation can fail while
  2469. * the mask is being updated. If a page allocation is about to fail,
  2470. * check if the cpuset changed during allocation and if so, retry.
  2471. */
  2472. if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
  2473. goto retry_cpuset;
  2474. return page;
  2475. }
  2476. EXPORT_SYMBOL(__alloc_pages_nodemask);
  2477. /*
  2478. * Common helper functions.
  2479. */
  2480. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  2481. {
  2482. struct page *page;
  2483. /*
  2484. * __get_free_pages() returns a 32-bit address, which cannot represent
  2485. * a highmem page
  2486. */
  2487. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  2488. page = alloc_pages(gfp_mask, order);
  2489. if (!page)
  2490. return 0;
  2491. return (unsigned long) page_address(page);
  2492. }
  2493. EXPORT_SYMBOL(__get_free_pages);
  2494. unsigned long get_zeroed_page(gfp_t gfp_mask)
  2495. {
  2496. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  2497. }
  2498. EXPORT_SYMBOL(get_zeroed_page);
  2499. void __free_pages(struct page *page, unsigned int order)
  2500. {
  2501. if (put_page_testzero(page)) {
  2502. if (order == 0)
  2503. free_hot_cold_page(page, false);
  2504. else
  2505. __free_pages_ok(page, order);
  2506. }
  2507. }
  2508. EXPORT_SYMBOL(__free_pages);
  2509. void free_pages(unsigned long addr, unsigned int order)
  2510. {
  2511. if (addr != 0) {
  2512. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2513. __free_pages(virt_to_page((void *)addr), order);
  2514. }
  2515. }
  2516. EXPORT_SYMBOL(free_pages);
  2517. /*
  2518. * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
  2519. * of the current memory cgroup.
  2520. *
  2521. * It should be used when the caller would like to use kmalloc, but since the
  2522. * allocation is large, it has to fall back to the page allocator.
  2523. */
  2524. struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
  2525. {
  2526. struct page *page;
  2527. struct mem_cgroup *memcg = NULL;
  2528. if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
  2529. return NULL;
  2530. page = alloc_pages(gfp_mask, order);
  2531. memcg_kmem_commit_charge(page, memcg, order);
  2532. return page;
  2533. }
  2534. struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
  2535. {
  2536. struct page *page;
  2537. struct mem_cgroup *memcg = NULL;
  2538. if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
  2539. return NULL;
  2540. page = alloc_pages_node(nid, gfp_mask, order);
  2541. memcg_kmem_commit_charge(page, memcg, order);
  2542. return page;
  2543. }
  2544. /*
  2545. * __free_kmem_pages and free_kmem_pages will free pages allocated with
  2546. * alloc_kmem_pages.
  2547. */
  2548. void __free_kmem_pages(struct page *page, unsigned int order)
  2549. {
  2550. memcg_kmem_uncharge_pages(page, order);
  2551. __free_pages(page, order);
  2552. }
  2553. void free_kmem_pages(unsigned long addr, unsigned int order)
  2554. {
  2555. if (addr != 0) {
  2556. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2557. __free_kmem_pages(virt_to_page((void *)addr), order);
  2558. }
  2559. }
  2560. static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
  2561. {
  2562. if (addr) {
  2563. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  2564. unsigned long used = addr + PAGE_ALIGN(size);
  2565. split_page(virt_to_page((void *)addr), order);
  2566. while (used < alloc_end) {
  2567. free_page(used);
  2568. used += PAGE_SIZE;
  2569. }
  2570. }
  2571. return (void *)addr;
  2572. }
  2573. /**
  2574. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  2575. * @size: the number of bytes to allocate
  2576. * @gfp_mask: GFP flags for the allocation
  2577. *
  2578. * This function is similar to alloc_pages(), except that it allocates the
  2579. * minimum number of pages to satisfy the request. alloc_pages() can only
  2580. * allocate memory in power-of-two pages.
  2581. *
  2582. * This function is also limited by MAX_ORDER.
  2583. *
  2584. * Memory allocated by this function must be released by free_pages_exact().
  2585. */
  2586. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  2587. {
  2588. unsigned int order = get_order(size);
  2589. unsigned long addr;
  2590. addr = __get_free_pages(gfp_mask, order);
  2591. return make_alloc_exact(addr, order, size);
  2592. }
  2593. EXPORT_SYMBOL(alloc_pages_exact);
  2594. /**
  2595. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  2596. * pages on a node.
  2597. * @nid: the preferred node ID where memory should be allocated
  2598. * @size: the number of bytes to allocate
  2599. * @gfp_mask: GFP flags for the allocation
  2600. *
  2601. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  2602. * back.
  2603. * Note this is not alloc_pages_exact_node() which allocates on a specific node,
  2604. * but is not exact.
  2605. */
  2606. void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  2607. {
  2608. unsigned order = get_order(size);
  2609. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  2610. if (!p)
  2611. return NULL;
  2612. return make_alloc_exact((unsigned long)page_address(p), order, size);
  2613. }
  2614. /**
  2615. * free_pages_exact - release memory allocated via alloc_pages_exact()
  2616. * @virt: the value returned by alloc_pages_exact.
  2617. * @size: size of allocation, same value as passed to alloc_pages_exact().
  2618. *
  2619. * Release the memory allocated by a previous call to alloc_pages_exact.
  2620. */
  2621. void free_pages_exact(void *virt, size_t size)
  2622. {
  2623. unsigned long addr = (unsigned long)virt;
  2624. unsigned long end = addr + PAGE_ALIGN(size);
  2625. while (addr < end) {
  2626. free_page(addr);
  2627. addr += PAGE_SIZE;
  2628. }
  2629. }
  2630. EXPORT_SYMBOL(free_pages_exact);
  2631. /**
  2632. * nr_free_zone_pages - count number of pages beyond high watermark
  2633. * @offset: The zone index of the highest zone
  2634. *
  2635. * nr_free_zone_pages() counts the number of counts pages which are beyond the
  2636. * high watermark within all zones at or below a given zone index. For each
  2637. * zone, the number of pages is calculated as:
  2638. * managed_pages - high_pages
  2639. */
  2640. static unsigned long nr_free_zone_pages(int offset)
  2641. {
  2642. struct zoneref *z;
  2643. struct zone *zone;
  2644. /* Just pick one node, since fallback list is circular */
  2645. unsigned long sum = 0;
  2646. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  2647. for_each_zone_zonelist(zone, z, zonelist, offset) {
  2648. unsigned long size = zone->managed_pages;
  2649. unsigned long high = high_wmark_pages(zone);
  2650. if (size > high)
  2651. sum += size - high;
  2652. }
  2653. return sum;
  2654. }
  2655. /**
  2656. * nr_free_buffer_pages - count number of pages beyond high watermark
  2657. *
  2658. * nr_free_buffer_pages() counts the number of pages which are beyond the high
  2659. * watermark within ZONE_DMA and ZONE_NORMAL.
  2660. */
  2661. unsigned long nr_free_buffer_pages(void)
  2662. {
  2663. return nr_free_zone_pages(gfp_zone(GFP_USER));
  2664. }
  2665. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  2666. /**
  2667. * nr_free_pagecache_pages - count number of pages beyond high watermark
  2668. *
  2669. * nr_free_pagecache_pages() counts the number of pages which are beyond the
  2670. * high watermark within all zones.
  2671. */
  2672. unsigned long nr_free_pagecache_pages(void)
  2673. {
  2674. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  2675. }
  2676. static inline void show_node(struct zone *zone)
  2677. {
  2678. if (IS_ENABLED(CONFIG_NUMA))
  2679. printk("Node %d ", zone_to_nid(zone));
  2680. }
  2681. void si_meminfo(struct sysinfo *val)
  2682. {
  2683. val->totalram = totalram_pages;
  2684. val->sharedram = global_page_state(NR_SHMEM);
  2685. val->freeram = global_page_state(NR_FREE_PAGES);
  2686. val->bufferram = nr_blockdev_pages();
  2687. val->totalhigh = totalhigh_pages;
  2688. val->freehigh = nr_free_highpages();
  2689. val->mem_unit = PAGE_SIZE;
  2690. }
  2691. EXPORT_SYMBOL(si_meminfo);
  2692. #ifdef CONFIG_NUMA
  2693. void si_meminfo_node(struct sysinfo *val, int nid)
  2694. {
  2695. int zone_type; /* needs to be signed */
  2696. unsigned long managed_pages = 0;
  2697. pg_data_t *pgdat = NODE_DATA(nid);
  2698. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
  2699. managed_pages += pgdat->node_zones[zone_type].managed_pages;
  2700. val->totalram = managed_pages;
  2701. val->sharedram = node_page_state(nid, NR_SHMEM);
  2702. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  2703. #ifdef CONFIG_HIGHMEM
  2704. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
  2705. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  2706. NR_FREE_PAGES);
  2707. #else
  2708. val->totalhigh = 0;
  2709. val->freehigh = 0;
  2710. #endif
  2711. val->mem_unit = PAGE_SIZE;
  2712. }
  2713. #endif
  2714. /*
  2715. * Determine whether the node should be displayed or not, depending on whether
  2716. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  2717. */
  2718. bool skip_free_areas_node(unsigned int flags, int nid)
  2719. {
  2720. bool ret = false;
  2721. unsigned int cpuset_mems_cookie;
  2722. if (!(flags & SHOW_MEM_FILTER_NODES))
  2723. goto out;
  2724. do {
  2725. cpuset_mems_cookie = read_mems_allowed_begin();
  2726. ret = !node_isset(nid, cpuset_current_mems_allowed);
  2727. } while (read_mems_allowed_retry(cpuset_mems_cookie));
  2728. out:
  2729. return ret;
  2730. }
  2731. #define K(x) ((x) << (PAGE_SHIFT-10))
  2732. static void show_migration_types(unsigned char type)
  2733. {
  2734. static const char types[MIGRATE_TYPES] = {
  2735. [MIGRATE_UNMOVABLE] = 'U',
  2736. [MIGRATE_RECLAIMABLE] = 'E',
  2737. [MIGRATE_MOVABLE] = 'M',
  2738. [MIGRATE_RESERVE] = 'R',
  2739. #ifdef CONFIG_CMA
  2740. [MIGRATE_CMA] = 'C',
  2741. #endif
  2742. #ifdef CONFIG_MEMORY_ISOLATION
  2743. [MIGRATE_ISOLATE] = 'I',
  2744. #endif
  2745. };
  2746. char tmp[MIGRATE_TYPES + 1];
  2747. char *p = tmp;
  2748. int i;
  2749. for (i = 0; i < MIGRATE_TYPES; i++) {
  2750. if (type & (1 << i))
  2751. *p++ = types[i];
  2752. }
  2753. *p = '\0';
  2754. printk("(%s) ", tmp);
  2755. }
  2756. /*
  2757. * Show free area list (used inside shift_scroll-lock stuff)
  2758. * We also calculate the percentage fragmentation. We do this by counting the
  2759. * memory on each free list with the exception of the first item on the list.
  2760. * Suppresses nodes that are not allowed by current's cpuset if
  2761. * SHOW_MEM_FILTER_NODES is passed.
  2762. */
  2763. void show_free_areas(unsigned int filter)
  2764. {
  2765. int cpu;
  2766. struct zone *zone;
  2767. for_each_populated_zone(zone) {
  2768. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2769. continue;
  2770. show_node(zone);
  2771. printk("%s per-cpu:\n", zone->name);
  2772. for_each_online_cpu(cpu) {
  2773. struct per_cpu_pageset *pageset;
  2774. pageset = per_cpu_ptr(zone->pageset, cpu);
  2775. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  2776. cpu, pageset->pcp.high,
  2777. pageset->pcp.batch, pageset->pcp.count);
  2778. }
  2779. }
  2780. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  2781. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  2782. " unevictable:%lu"
  2783. " dirty:%lu writeback:%lu unstable:%lu\n"
  2784. " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  2785. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  2786. " free_cma:%lu\n",
  2787. global_page_state(NR_ACTIVE_ANON),
  2788. global_page_state(NR_INACTIVE_ANON),
  2789. global_page_state(NR_ISOLATED_ANON),
  2790. global_page_state(NR_ACTIVE_FILE),
  2791. global_page_state(NR_INACTIVE_FILE),
  2792. global_page_state(NR_ISOLATED_FILE),
  2793. global_page_state(NR_UNEVICTABLE),
  2794. global_page_state(NR_FILE_DIRTY),
  2795. global_page_state(NR_WRITEBACK),
  2796. global_page_state(NR_UNSTABLE_NFS),
  2797. global_page_state(NR_FREE_PAGES),
  2798. global_page_state(NR_SLAB_RECLAIMABLE),
  2799. global_page_state(NR_SLAB_UNRECLAIMABLE),
  2800. global_page_state(NR_FILE_MAPPED),
  2801. global_page_state(NR_SHMEM),
  2802. global_page_state(NR_PAGETABLE),
  2803. global_page_state(NR_BOUNCE),
  2804. global_page_state(NR_FREE_CMA_PAGES));
  2805. for_each_populated_zone(zone) {
  2806. int i;
  2807. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2808. continue;
  2809. show_node(zone);
  2810. printk("%s"
  2811. " free:%lukB"
  2812. " min:%lukB"
  2813. " low:%lukB"
  2814. " high:%lukB"
  2815. " active_anon:%lukB"
  2816. " inactive_anon:%lukB"
  2817. " active_file:%lukB"
  2818. " inactive_file:%lukB"
  2819. " unevictable:%lukB"
  2820. " isolated(anon):%lukB"
  2821. " isolated(file):%lukB"
  2822. " present:%lukB"
  2823. " managed:%lukB"
  2824. " mlocked:%lukB"
  2825. " dirty:%lukB"
  2826. " writeback:%lukB"
  2827. " mapped:%lukB"
  2828. " shmem:%lukB"
  2829. " slab_reclaimable:%lukB"
  2830. " slab_unreclaimable:%lukB"
  2831. " kernel_stack:%lukB"
  2832. " pagetables:%lukB"
  2833. " unstable:%lukB"
  2834. " bounce:%lukB"
  2835. " free_cma:%lukB"
  2836. " writeback_tmp:%lukB"
  2837. " pages_scanned:%lu"
  2838. " all_unreclaimable? %s"
  2839. "\n",
  2840. zone->name,
  2841. K(zone_page_state(zone, NR_FREE_PAGES)),
  2842. K(min_wmark_pages(zone)),
  2843. K(low_wmark_pages(zone)),
  2844. K(high_wmark_pages(zone)),
  2845. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  2846. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  2847. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  2848. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  2849. K(zone_page_state(zone, NR_UNEVICTABLE)),
  2850. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  2851. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  2852. K(zone->present_pages),
  2853. K(zone->managed_pages),
  2854. K(zone_page_state(zone, NR_MLOCK)),
  2855. K(zone_page_state(zone, NR_FILE_DIRTY)),
  2856. K(zone_page_state(zone, NR_WRITEBACK)),
  2857. K(zone_page_state(zone, NR_FILE_MAPPED)),
  2858. K(zone_page_state(zone, NR_SHMEM)),
  2859. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  2860. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  2861. zone_page_state(zone, NR_KERNEL_STACK) *
  2862. THREAD_SIZE / 1024,
  2863. K(zone_page_state(zone, NR_PAGETABLE)),
  2864. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  2865. K(zone_page_state(zone, NR_BOUNCE)),
  2866. K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
  2867. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  2868. K(zone_page_state(zone, NR_PAGES_SCANNED)),
  2869. (!zone_reclaimable(zone) ? "yes" : "no")
  2870. );
  2871. printk("lowmem_reserve[]:");
  2872. for (i = 0; i < MAX_NR_ZONES; i++)
  2873. printk(" %ld", zone->lowmem_reserve[i]);
  2874. printk("\n");
  2875. }
  2876. for_each_populated_zone(zone) {
  2877. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  2878. unsigned char types[MAX_ORDER];
  2879. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2880. continue;
  2881. show_node(zone);
  2882. printk("%s: ", zone->name);
  2883. spin_lock_irqsave(&zone->lock, flags);
  2884. for (order = 0; order < MAX_ORDER; order++) {
  2885. struct free_area *area = &zone->free_area[order];
  2886. int type;
  2887. nr[order] = area->nr_free;
  2888. total += nr[order] << order;
  2889. types[order] = 0;
  2890. for (type = 0; type < MIGRATE_TYPES; type++) {
  2891. if (!list_empty(&area->free_list[type]))
  2892. types[order] |= 1 << type;
  2893. }
  2894. }
  2895. spin_unlock_irqrestore(&zone->lock, flags);
  2896. for (order = 0; order < MAX_ORDER; order++) {
  2897. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  2898. if (nr[order])
  2899. show_migration_types(types[order]);
  2900. }
  2901. printk("= %lukB\n", K(total));
  2902. }
  2903. hugetlb_show_meminfo();
  2904. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  2905. show_swap_cache_info();
  2906. }
  2907. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  2908. {
  2909. zoneref->zone = zone;
  2910. zoneref->zone_idx = zone_idx(zone);
  2911. }
  2912. /*
  2913. * Builds allocation fallback zone lists.
  2914. *
  2915. * Add all populated zones of a node to the zonelist.
  2916. */
  2917. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  2918. int nr_zones)
  2919. {
  2920. struct zone *zone;
  2921. enum zone_type zone_type = MAX_NR_ZONES;
  2922. do {
  2923. zone_type--;
  2924. zone = pgdat->node_zones + zone_type;
  2925. if (populated_zone(zone)) {
  2926. zoneref_set_zone(zone,
  2927. &zonelist->_zonerefs[nr_zones++]);
  2928. check_highest_zone(zone_type);
  2929. }
  2930. } while (zone_type);
  2931. return nr_zones;
  2932. }
  2933. /*
  2934. * zonelist_order:
  2935. * 0 = automatic detection of better ordering.
  2936. * 1 = order by ([node] distance, -zonetype)
  2937. * 2 = order by (-zonetype, [node] distance)
  2938. *
  2939. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  2940. * the same zonelist. So only NUMA can configure this param.
  2941. */
  2942. #define ZONELIST_ORDER_DEFAULT 0
  2943. #define ZONELIST_ORDER_NODE 1
  2944. #define ZONELIST_ORDER_ZONE 2
  2945. /* zonelist order in the kernel.
  2946. * set_zonelist_order() will set this to NODE or ZONE.
  2947. */
  2948. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2949. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  2950. #ifdef CONFIG_NUMA
  2951. /* The value user specified ....changed by config */
  2952. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2953. /* string for sysctl */
  2954. #define NUMA_ZONELIST_ORDER_LEN 16
  2955. char numa_zonelist_order[16] = "default";
  2956. /*
  2957. * interface for configure zonelist ordering.
  2958. * command line option "numa_zonelist_order"
  2959. * = "[dD]efault - default, automatic configuration.
  2960. * = "[nN]ode - order by node locality, then by zone within node
  2961. * = "[zZ]one - order by zone, then by locality within zone
  2962. */
  2963. static int __parse_numa_zonelist_order(char *s)
  2964. {
  2965. if (*s == 'd' || *s == 'D') {
  2966. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2967. } else if (*s == 'n' || *s == 'N') {
  2968. user_zonelist_order = ZONELIST_ORDER_NODE;
  2969. } else if (*s == 'z' || *s == 'Z') {
  2970. user_zonelist_order = ZONELIST_ORDER_ZONE;
  2971. } else {
  2972. printk(KERN_WARNING
  2973. "Ignoring invalid numa_zonelist_order value: "
  2974. "%s\n", s);
  2975. return -EINVAL;
  2976. }
  2977. return 0;
  2978. }
  2979. static __init int setup_numa_zonelist_order(char *s)
  2980. {
  2981. int ret;
  2982. if (!s)
  2983. return 0;
  2984. ret = __parse_numa_zonelist_order(s);
  2985. if (ret == 0)
  2986. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  2987. return ret;
  2988. }
  2989. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  2990. /*
  2991. * sysctl handler for numa_zonelist_order
  2992. */
  2993. int numa_zonelist_order_handler(struct ctl_table *table, int write,
  2994. void __user *buffer, size_t *length,
  2995. loff_t *ppos)
  2996. {
  2997. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  2998. int ret;
  2999. static DEFINE_MUTEX(zl_order_mutex);
  3000. mutex_lock(&zl_order_mutex);
  3001. if (write) {
  3002. if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
  3003. ret = -EINVAL;
  3004. goto out;
  3005. }
  3006. strcpy(saved_string, (char *)table->data);
  3007. }
  3008. ret = proc_dostring(table, write, buffer, length, ppos);
  3009. if (ret)
  3010. goto out;
  3011. if (write) {
  3012. int oldval = user_zonelist_order;
  3013. ret = __parse_numa_zonelist_order((char *)table->data);
  3014. if (ret) {
  3015. /*
  3016. * bogus value. restore saved string
  3017. */
  3018. strncpy((char *)table->data, saved_string,
  3019. NUMA_ZONELIST_ORDER_LEN);
  3020. user_zonelist_order = oldval;
  3021. } else if (oldval != user_zonelist_order) {
  3022. mutex_lock(&zonelists_mutex);
  3023. build_all_zonelists(NULL, NULL);
  3024. mutex_unlock(&zonelists_mutex);
  3025. }
  3026. }
  3027. out:
  3028. mutex_unlock(&zl_order_mutex);
  3029. return ret;
  3030. }
  3031. #define MAX_NODE_LOAD (nr_online_nodes)
  3032. static int node_load[MAX_NUMNODES];
  3033. /**
  3034. * find_next_best_node - find the next node that should appear in a given node's fallback list
  3035. * @node: node whose fallback list we're appending
  3036. * @used_node_mask: nodemask_t of already used nodes
  3037. *
  3038. * We use a number of factors to determine which is the next node that should
  3039. * appear on a given node's fallback list. The node should not have appeared
  3040. * already in @node's fallback list, and it should be the next closest node
  3041. * according to the distance array (which contains arbitrary distance values
  3042. * from each node to each node in the system), and should also prefer nodes
  3043. * with no CPUs, since presumably they'll have very little allocation pressure
  3044. * on them otherwise.
  3045. * It returns -1 if no node is found.
  3046. */
  3047. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  3048. {
  3049. int n, val;
  3050. int min_val = INT_MAX;
  3051. int best_node = NUMA_NO_NODE;
  3052. const struct cpumask *tmp = cpumask_of_node(0);
  3053. /* Use the local node if we haven't already */
  3054. if (!node_isset(node, *used_node_mask)) {
  3055. node_set(node, *used_node_mask);
  3056. return node;
  3057. }
  3058. for_each_node_state(n, N_MEMORY) {
  3059. /* Don't want a node to appear more than once */
  3060. if (node_isset(n, *used_node_mask))
  3061. continue;
  3062. /* Use the distance array to find the distance */
  3063. val = node_distance(node, n);
  3064. /* Penalize nodes under us ("prefer the next node") */
  3065. val += (n < node);
  3066. /* Give preference to headless and unused nodes */
  3067. tmp = cpumask_of_node(n);
  3068. if (!cpumask_empty(tmp))
  3069. val += PENALTY_FOR_NODE_WITH_CPUS;
  3070. /* Slight preference for less loaded node */
  3071. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  3072. val += node_load[n];
  3073. if (val < min_val) {
  3074. min_val = val;
  3075. best_node = n;
  3076. }
  3077. }
  3078. if (best_node >= 0)
  3079. node_set(best_node, *used_node_mask);
  3080. return best_node;
  3081. }
  3082. /*
  3083. * Build zonelists ordered by node and zones within node.
  3084. * This results in maximum locality--normal zone overflows into local
  3085. * DMA zone, if any--but risks exhausting DMA zone.
  3086. */
  3087. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  3088. {
  3089. int j;
  3090. struct zonelist *zonelist;
  3091. zonelist = &pgdat->node_zonelists[0];
  3092. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  3093. ;
  3094. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3095. zonelist->_zonerefs[j].zone = NULL;
  3096. zonelist->_zonerefs[j].zone_idx = 0;
  3097. }
  3098. /*
  3099. * Build gfp_thisnode zonelists
  3100. */
  3101. static void build_thisnode_zonelists(pg_data_t *pgdat)
  3102. {
  3103. int j;
  3104. struct zonelist *zonelist;
  3105. zonelist = &pgdat->node_zonelists[1];
  3106. j = build_zonelists_node(pgdat, zonelist, 0);
  3107. zonelist->_zonerefs[j].zone = NULL;
  3108. zonelist->_zonerefs[j].zone_idx = 0;
  3109. }
  3110. /*
  3111. * Build zonelists ordered by zone and nodes within zones.
  3112. * This results in conserving DMA zone[s] until all Normal memory is
  3113. * exhausted, but results in overflowing to remote node while memory
  3114. * may still exist in local DMA zone.
  3115. */
  3116. static int node_order[MAX_NUMNODES];
  3117. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  3118. {
  3119. int pos, j, node;
  3120. int zone_type; /* needs to be signed */
  3121. struct zone *z;
  3122. struct zonelist *zonelist;
  3123. zonelist = &pgdat->node_zonelists[0];
  3124. pos = 0;
  3125. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  3126. for (j = 0; j < nr_nodes; j++) {
  3127. node = node_order[j];
  3128. z = &NODE_DATA(node)->node_zones[zone_type];
  3129. if (populated_zone(z)) {
  3130. zoneref_set_zone(z,
  3131. &zonelist->_zonerefs[pos++]);
  3132. check_highest_zone(zone_type);
  3133. }
  3134. }
  3135. }
  3136. zonelist->_zonerefs[pos].zone = NULL;
  3137. zonelist->_zonerefs[pos].zone_idx = 0;
  3138. }
  3139. #if defined(CONFIG_64BIT)
  3140. /*
  3141. * Devices that require DMA32/DMA are relatively rare and do not justify a
  3142. * penalty to every machine in case the specialised case applies. Default
  3143. * to Node-ordering on 64-bit NUMA machines
  3144. */
  3145. static int default_zonelist_order(void)
  3146. {
  3147. return ZONELIST_ORDER_NODE;
  3148. }
  3149. #else
  3150. /*
  3151. * On 32-bit, the Normal zone needs to be preserved for allocations accessible
  3152. * by the kernel. If processes running on node 0 deplete the low memory zone
  3153. * then reclaim will occur more frequency increasing stalls and potentially
  3154. * be easier to OOM if a large percentage of the zone is under writeback or
  3155. * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
  3156. * Hence, default to zone ordering on 32-bit.
  3157. */
  3158. static int default_zonelist_order(void)
  3159. {
  3160. return ZONELIST_ORDER_ZONE;
  3161. }
  3162. #endif /* CONFIG_64BIT */
  3163. static void set_zonelist_order(void)
  3164. {
  3165. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  3166. current_zonelist_order = default_zonelist_order();
  3167. else
  3168. current_zonelist_order = user_zonelist_order;
  3169. }
  3170. static void build_zonelists(pg_data_t *pgdat)
  3171. {
  3172. int j, node, load;
  3173. enum zone_type i;
  3174. nodemask_t used_mask;
  3175. int local_node, prev_node;
  3176. struct zonelist *zonelist;
  3177. int order = current_zonelist_order;
  3178. /* initialize zonelists */
  3179. for (i = 0; i < MAX_ZONELISTS; i++) {
  3180. zonelist = pgdat->node_zonelists + i;
  3181. zonelist->_zonerefs[0].zone = NULL;
  3182. zonelist->_zonerefs[0].zone_idx = 0;
  3183. }
  3184. /* NUMA-aware ordering of nodes */
  3185. local_node = pgdat->node_id;
  3186. load = nr_online_nodes;
  3187. prev_node = local_node;
  3188. nodes_clear(used_mask);
  3189. memset(node_order, 0, sizeof(node_order));
  3190. j = 0;
  3191. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  3192. /*
  3193. * We don't want to pressure a particular node.
  3194. * So adding penalty to the first node in same
  3195. * distance group to make it round-robin.
  3196. */
  3197. if (node_distance(local_node, node) !=
  3198. node_distance(local_node, prev_node))
  3199. node_load[node] = load;
  3200. prev_node = node;
  3201. load--;
  3202. if (order == ZONELIST_ORDER_NODE)
  3203. build_zonelists_in_node_order(pgdat, node);
  3204. else
  3205. node_order[j++] = node; /* remember order */
  3206. }
  3207. if (order == ZONELIST_ORDER_ZONE) {
  3208. /* calculate node order -- i.e., DMA last! */
  3209. build_zonelists_in_zone_order(pgdat, j);
  3210. }
  3211. build_thisnode_zonelists(pgdat);
  3212. }
  3213. /* Construct the zonelist performance cache - see further mmzone.h */
  3214. static void build_zonelist_cache(pg_data_t *pgdat)
  3215. {
  3216. struct zonelist *zonelist;
  3217. struct zonelist_cache *zlc;
  3218. struct zoneref *z;
  3219. zonelist = &pgdat->node_zonelists[0];
  3220. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  3221. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  3222. for (z = zonelist->_zonerefs; z->zone; z++)
  3223. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  3224. }
  3225. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3226. /*
  3227. * Return node id of node used for "local" allocations.
  3228. * I.e., first node id of first zone in arg node's generic zonelist.
  3229. * Used for initializing percpu 'numa_mem', which is used primarily
  3230. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  3231. */
  3232. int local_memory_node(int node)
  3233. {
  3234. struct zone *zone;
  3235. (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  3236. gfp_zone(GFP_KERNEL),
  3237. NULL,
  3238. &zone);
  3239. return zone->node;
  3240. }
  3241. #endif
  3242. #else /* CONFIG_NUMA */
  3243. static void set_zonelist_order(void)
  3244. {
  3245. current_zonelist_order = ZONELIST_ORDER_ZONE;
  3246. }
  3247. static void build_zonelists(pg_data_t *pgdat)
  3248. {
  3249. int node, local_node;
  3250. enum zone_type j;
  3251. struct zonelist *zonelist;
  3252. local_node = pgdat->node_id;
  3253. zonelist = &pgdat->node_zonelists[0];
  3254. j = build_zonelists_node(pgdat, zonelist, 0);
  3255. /*
  3256. * Now we build the zonelist so that it contains the zones
  3257. * of all the other nodes.
  3258. * We don't want to pressure a particular node, so when
  3259. * building the zones for node N, we make sure that the
  3260. * zones coming right after the local ones are those from
  3261. * node N+1 (modulo N)
  3262. */
  3263. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  3264. if (!node_online(node))
  3265. continue;
  3266. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3267. }
  3268. for (node = 0; node < local_node; node++) {
  3269. if (!node_online(node))
  3270. continue;
  3271. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3272. }
  3273. zonelist->_zonerefs[j].zone = NULL;
  3274. zonelist->_zonerefs[j].zone_idx = 0;
  3275. }
  3276. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  3277. static void build_zonelist_cache(pg_data_t *pgdat)
  3278. {
  3279. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  3280. }
  3281. #endif /* CONFIG_NUMA */
  3282. /*
  3283. * Boot pageset table. One per cpu which is going to be used for all
  3284. * zones and all nodes. The parameters will be set in such a way
  3285. * that an item put on a list will immediately be handed over to
  3286. * the buddy list. This is safe since pageset manipulation is done
  3287. * with interrupts disabled.
  3288. *
  3289. * The boot_pagesets must be kept even after bootup is complete for
  3290. * unused processors and/or zones. They do play a role for bootstrapping
  3291. * hotplugged processors.
  3292. *
  3293. * zoneinfo_show() and maybe other functions do
  3294. * not check if the processor is online before following the pageset pointer.
  3295. * Other parts of the kernel may not check if the zone is available.
  3296. */
  3297. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  3298. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  3299. static void setup_zone_pageset(struct zone *zone);
  3300. /*
  3301. * Global mutex to protect against size modification of zonelists
  3302. * as well as to serialize pageset setup for the new populated zone.
  3303. */
  3304. DEFINE_MUTEX(zonelists_mutex);
  3305. /* return values int ....just for stop_machine() */
  3306. static int __build_all_zonelists(void *data)
  3307. {
  3308. int nid;
  3309. int cpu;
  3310. pg_data_t *self = data;
  3311. #ifdef CONFIG_NUMA
  3312. memset(node_load, 0, sizeof(node_load));
  3313. #endif
  3314. if (self && !node_online(self->node_id)) {
  3315. build_zonelists(self);
  3316. build_zonelist_cache(self);
  3317. }
  3318. for_each_online_node(nid) {
  3319. pg_data_t *pgdat = NODE_DATA(nid);
  3320. build_zonelists(pgdat);
  3321. build_zonelist_cache(pgdat);
  3322. }
  3323. /*
  3324. * Initialize the boot_pagesets that are going to be used
  3325. * for bootstrapping processors. The real pagesets for
  3326. * each zone will be allocated later when the per cpu
  3327. * allocator is available.
  3328. *
  3329. * boot_pagesets are used also for bootstrapping offline
  3330. * cpus if the system is already booted because the pagesets
  3331. * are needed to initialize allocators on a specific cpu too.
  3332. * F.e. the percpu allocator needs the page allocator which
  3333. * needs the percpu allocator in order to allocate its pagesets
  3334. * (a chicken-egg dilemma).
  3335. */
  3336. for_each_possible_cpu(cpu) {
  3337. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  3338. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3339. /*
  3340. * We now know the "local memory node" for each node--
  3341. * i.e., the node of the first zone in the generic zonelist.
  3342. * Set up numa_mem percpu variable for on-line cpus. During
  3343. * boot, only the boot cpu should be on-line; we'll init the
  3344. * secondary cpus' numa_mem as they come on-line. During
  3345. * node/memory hotplug, we'll fixup all on-line cpus.
  3346. */
  3347. if (cpu_online(cpu))
  3348. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  3349. #endif
  3350. }
  3351. return 0;
  3352. }
  3353. /*
  3354. * Called with zonelists_mutex held always
  3355. * unless system_state == SYSTEM_BOOTING.
  3356. */
  3357. void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
  3358. {
  3359. set_zonelist_order();
  3360. if (system_state == SYSTEM_BOOTING) {
  3361. __build_all_zonelists(NULL);
  3362. mminit_verify_zonelist();
  3363. cpuset_init_current_mems_allowed();
  3364. } else {
  3365. #ifdef CONFIG_MEMORY_HOTPLUG
  3366. if (zone)
  3367. setup_zone_pageset(zone);
  3368. #endif
  3369. /* we have to stop all cpus to guarantee there is no user
  3370. of zonelist */
  3371. stop_machine(__build_all_zonelists, pgdat, NULL);
  3372. /* cpuset refresh routine should be here */
  3373. }
  3374. vm_total_pages = nr_free_pagecache_pages();
  3375. /*
  3376. * Disable grouping by mobility if the number of pages in the
  3377. * system is too low to allow the mechanism to work. It would be
  3378. * more accurate, but expensive to check per-zone. This check is
  3379. * made on memory-hotadd so a system can start with mobility
  3380. * disabled and enable it later
  3381. */
  3382. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  3383. page_group_by_mobility_disabled = 1;
  3384. else
  3385. page_group_by_mobility_disabled = 0;
  3386. pr_info("Built %i zonelists in %s order, mobility grouping %s. "
  3387. "Total pages: %ld\n",
  3388. nr_online_nodes,
  3389. zonelist_order_name[current_zonelist_order],
  3390. page_group_by_mobility_disabled ? "off" : "on",
  3391. vm_total_pages);
  3392. #ifdef CONFIG_NUMA
  3393. pr_info("Policy zone: %s\n", zone_names[policy_zone]);
  3394. #endif
  3395. }
  3396. /*
  3397. * Helper functions to size the waitqueue hash table.
  3398. * Essentially these want to choose hash table sizes sufficiently
  3399. * large so that collisions trying to wait on pages are rare.
  3400. * But in fact, the number of active page waitqueues on typical
  3401. * systems is ridiculously low, less than 200. So this is even
  3402. * conservative, even though it seems large.
  3403. *
  3404. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  3405. * waitqueues, i.e. the size of the waitq table given the number of pages.
  3406. */
  3407. #define PAGES_PER_WAITQUEUE 256
  3408. #ifndef CONFIG_MEMORY_HOTPLUG
  3409. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3410. {
  3411. unsigned long size = 1;
  3412. pages /= PAGES_PER_WAITQUEUE;
  3413. while (size < pages)
  3414. size <<= 1;
  3415. /*
  3416. * Once we have dozens or even hundreds of threads sleeping
  3417. * on IO we've got bigger problems than wait queue collision.
  3418. * Limit the size of the wait table to a reasonable size.
  3419. */
  3420. size = min(size, 4096UL);
  3421. return max(size, 4UL);
  3422. }
  3423. #else
  3424. /*
  3425. * A zone's size might be changed by hot-add, so it is not possible to determine
  3426. * a suitable size for its wait_table. So we use the maximum size now.
  3427. *
  3428. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  3429. *
  3430. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  3431. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  3432. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  3433. *
  3434. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  3435. * or more by the traditional way. (See above). It equals:
  3436. *
  3437. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  3438. * ia64(16K page size) : = ( 8G + 4M)byte.
  3439. * powerpc (64K page size) : = (32G +16M)byte.
  3440. */
  3441. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3442. {
  3443. return 4096UL;
  3444. }
  3445. #endif
  3446. /*
  3447. * This is an integer logarithm so that shifts can be used later
  3448. * to extract the more random high bits from the multiplicative
  3449. * hash function before the remainder is taken.
  3450. */
  3451. static inline unsigned long wait_table_bits(unsigned long size)
  3452. {
  3453. return ffz(~size);
  3454. }
  3455. /*
  3456. * Check if a pageblock contains reserved pages
  3457. */
  3458. static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
  3459. {
  3460. unsigned long pfn;
  3461. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3462. if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
  3463. return 1;
  3464. }
  3465. return 0;
  3466. }
  3467. /*
  3468. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  3469. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  3470. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  3471. * higher will lead to a bigger reserve which will get freed as contiguous
  3472. * blocks as reclaim kicks in
  3473. */
  3474. static void setup_zone_migrate_reserve(struct zone *zone)
  3475. {
  3476. unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
  3477. struct page *page;
  3478. unsigned long block_migratetype;
  3479. int reserve;
  3480. int old_reserve;
  3481. /*
  3482. * Get the start pfn, end pfn and the number of blocks to reserve
  3483. * We have to be careful to be aligned to pageblock_nr_pages to
  3484. * make sure that we always check pfn_valid for the first page in
  3485. * the block.
  3486. */
  3487. start_pfn = zone->zone_start_pfn;
  3488. end_pfn = zone_end_pfn(zone);
  3489. start_pfn = roundup(start_pfn, pageblock_nr_pages);
  3490. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  3491. pageblock_order;
  3492. /*
  3493. * Reserve blocks are generally in place to help high-order atomic
  3494. * allocations that are short-lived. A min_free_kbytes value that
  3495. * would result in more than 2 reserve blocks for atomic allocations
  3496. * is assumed to be in place to help anti-fragmentation for the
  3497. * future allocation of hugepages at runtime.
  3498. */
  3499. reserve = min(2, reserve);
  3500. old_reserve = zone->nr_migrate_reserve_block;
  3501. /* When memory hot-add, we almost always need to do nothing */
  3502. if (reserve == old_reserve)
  3503. return;
  3504. zone->nr_migrate_reserve_block = reserve;
  3505. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  3506. if (!pfn_valid(pfn))
  3507. continue;
  3508. page = pfn_to_page(pfn);
  3509. /* Watch out for overlapping nodes */
  3510. if (page_to_nid(page) != zone_to_nid(zone))
  3511. continue;
  3512. block_migratetype = get_pageblock_migratetype(page);
  3513. /* Only test what is necessary when the reserves are not met */
  3514. if (reserve > 0) {
  3515. /*
  3516. * Blocks with reserved pages will never free, skip
  3517. * them.
  3518. */
  3519. block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
  3520. if (pageblock_is_reserved(pfn, block_end_pfn))
  3521. continue;
  3522. /* If this block is reserved, account for it */
  3523. if (block_migratetype == MIGRATE_RESERVE) {
  3524. reserve--;
  3525. continue;
  3526. }
  3527. /* Suitable for reserving if this block is movable */
  3528. if (block_migratetype == MIGRATE_MOVABLE) {
  3529. set_pageblock_migratetype(page,
  3530. MIGRATE_RESERVE);
  3531. move_freepages_block(zone, page,
  3532. MIGRATE_RESERVE);
  3533. reserve--;
  3534. continue;
  3535. }
  3536. } else if (!old_reserve) {
  3537. /*
  3538. * At boot time we don't need to scan the whole zone
  3539. * for turning off MIGRATE_RESERVE.
  3540. */
  3541. break;
  3542. }
  3543. /*
  3544. * If the reserve is met and this is a previous reserved block,
  3545. * take it back
  3546. */
  3547. if (block_migratetype == MIGRATE_RESERVE) {
  3548. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3549. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  3550. }
  3551. }
  3552. }
  3553. /*
  3554. * Initially all pages are reserved - free ones are freed
  3555. * up by free_all_bootmem() once the early boot process is
  3556. * done. Non-atomic initialization, single-pass.
  3557. */
  3558. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  3559. unsigned long start_pfn, enum memmap_context context)
  3560. {
  3561. struct page *page;
  3562. unsigned long end_pfn = start_pfn + size;
  3563. unsigned long pfn;
  3564. struct zone *z;
  3565. if (highest_memmap_pfn < end_pfn - 1)
  3566. highest_memmap_pfn = end_pfn - 1;
  3567. z = &NODE_DATA(nid)->node_zones[zone];
  3568. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3569. /*
  3570. * There can be holes in boot-time mem_map[]s
  3571. * handed to this function. They do not
  3572. * exist on hotplugged memory.
  3573. */
  3574. if (context == MEMMAP_EARLY) {
  3575. if (!early_pfn_valid(pfn))
  3576. continue;
  3577. if (!early_pfn_in_nid(pfn, nid))
  3578. continue;
  3579. }
  3580. page = pfn_to_page(pfn);
  3581. set_page_links(page, zone, nid, pfn);
  3582. mminit_verify_page_links(page, zone, nid, pfn);
  3583. init_page_count(page);
  3584. page_mapcount_reset(page);
  3585. page_cpupid_reset_last(page);
  3586. SetPageReserved(page);
  3587. /*
  3588. * Mark the block movable so that blocks are reserved for
  3589. * movable at startup. This will force kernel allocations
  3590. * to reserve their blocks rather than leaking throughout
  3591. * the address space during boot when many long-lived
  3592. * kernel allocations are made. Later some blocks near
  3593. * the start are marked MIGRATE_RESERVE by
  3594. * setup_zone_migrate_reserve()
  3595. *
  3596. * bitmap is created for zone's valid pfn range. but memmap
  3597. * can be created for invalid pages (for alignment)
  3598. * check here not to call set_pageblock_migratetype() against
  3599. * pfn out of zone.
  3600. */
  3601. if ((z->zone_start_pfn <= pfn)
  3602. && (pfn < zone_end_pfn(z))
  3603. && !(pfn & (pageblock_nr_pages - 1)))
  3604. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3605. INIT_LIST_HEAD(&page->lru);
  3606. #ifdef WANT_PAGE_VIRTUAL
  3607. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  3608. if (!is_highmem_idx(zone))
  3609. set_page_address(page, __va(pfn << PAGE_SHIFT));
  3610. #endif
  3611. }
  3612. }
  3613. static void __meminit zone_init_free_lists(struct zone *zone)
  3614. {
  3615. unsigned int order, t;
  3616. for_each_migratetype_order(order, t) {
  3617. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  3618. zone->free_area[order].nr_free = 0;
  3619. }
  3620. }
  3621. #ifndef __HAVE_ARCH_MEMMAP_INIT
  3622. #define memmap_init(size, nid, zone, start_pfn) \
  3623. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  3624. #endif
  3625. static int zone_batchsize(struct zone *zone)
  3626. {
  3627. #ifdef CONFIG_MMU
  3628. int batch;
  3629. /*
  3630. * The per-cpu-pages pools are set to around 1000th of the
  3631. * size of the zone. But no more than 1/2 of a meg.
  3632. *
  3633. * OK, so we don't know how big the cache is. So guess.
  3634. */
  3635. batch = zone->managed_pages / 1024;
  3636. if (batch * PAGE_SIZE > 512 * 1024)
  3637. batch = (512 * 1024) / PAGE_SIZE;
  3638. batch /= 4; /* We effectively *= 4 below */
  3639. if (batch < 1)
  3640. batch = 1;
  3641. /*
  3642. * Clamp the batch to a 2^n - 1 value. Having a power
  3643. * of 2 value was found to be more likely to have
  3644. * suboptimal cache aliasing properties in some cases.
  3645. *
  3646. * For example if 2 tasks are alternately allocating
  3647. * batches of pages, one task can end up with a lot
  3648. * of pages of one half of the possible page colors
  3649. * and the other with pages of the other colors.
  3650. */
  3651. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  3652. return batch;
  3653. #else
  3654. /* The deferral and batching of frees should be suppressed under NOMMU
  3655. * conditions.
  3656. *
  3657. * The problem is that NOMMU needs to be able to allocate large chunks
  3658. * of contiguous memory as there's no hardware page translation to
  3659. * assemble apparent contiguous memory from discontiguous pages.
  3660. *
  3661. * Queueing large contiguous runs of pages for batching, however,
  3662. * causes the pages to actually be freed in smaller chunks. As there
  3663. * can be a significant delay between the individual batches being
  3664. * recycled, this leads to the once large chunks of space being
  3665. * fragmented and becoming unavailable for high-order allocations.
  3666. */
  3667. return 0;
  3668. #endif
  3669. }
  3670. /*
  3671. * pcp->high and pcp->batch values are related and dependent on one another:
  3672. * ->batch must never be higher then ->high.
  3673. * The following function updates them in a safe manner without read side
  3674. * locking.
  3675. *
  3676. * Any new users of pcp->batch and pcp->high should ensure they can cope with
  3677. * those fields changing asynchronously (acording the the above rule).
  3678. *
  3679. * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
  3680. * outside of boot time (or some other assurance that no concurrent updaters
  3681. * exist).
  3682. */
  3683. static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
  3684. unsigned long batch)
  3685. {
  3686. /* start with a fail safe value for batch */
  3687. pcp->batch = 1;
  3688. smp_wmb();
  3689. /* Update high, then batch, in order */
  3690. pcp->high = high;
  3691. smp_wmb();
  3692. pcp->batch = batch;
  3693. }
  3694. /* a companion to pageset_set_high() */
  3695. static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
  3696. {
  3697. pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
  3698. }
  3699. static void pageset_init(struct per_cpu_pageset *p)
  3700. {
  3701. struct per_cpu_pages *pcp;
  3702. int migratetype;
  3703. memset(p, 0, sizeof(*p));
  3704. pcp = &p->pcp;
  3705. pcp->count = 0;
  3706. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  3707. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  3708. }
  3709. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  3710. {
  3711. pageset_init(p);
  3712. pageset_set_batch(p, batch);
  3713. }
  3714. /*
  3715. * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
  3716. * to the value high for the pageset p.
  3717. */
  3718. static void pageset_set_high(struct per_cpu_pageset *p,
  3719. unsigned long high)
  3720. {
  3721. unsigned long batch = max(1UL, high / 4);
  3722. if ((high / 4) > (PAGE_SHIFT * 8))
  3723. batch = PAGE_SHIFT * 8;
  3724. pageset_update(&p->pcp, high, batch);
  3725. }
  3726. static void pageset_set_high_and_batch(struct zone *zone,
  3727. struct per_cpu_pageset *pcp)
  3728. {
  3729. if (percpu_pagelist_fraction)
  3730. pageset_set_high(pcp,
  3731. (zone->managed_pages /
  3732. percpu_pagelist_fraction));
  3733. else
  3734. pageset_set_batch(pcp, zone_batchsize(zone));
  3735. }
  3736. static void __meminit zone_pageset_init(struct zone *zone, int cpu)
  3737. {
  3738. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  3739. pageset_init(pcp);
  3740. pageset_set_high_and_batch(zone, pcp);
  3741. }
  3742. static void __meminit setup_zone_pageset(struct zone *zone)
  3743. {
  3744. int cpu;
  3745. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  3746. for_each_possible_cpu(cpu)
  3747. zone_pageset_init(zone, cpu);
  3748. }
  3749. /*
  3750. * Allocate per cpu pagesets and initialize them.
  3751. * Before this call only boot pagesets were available.
  3752. */
  3753. void __init setup_per_cpu_pageset(void)
  3754. {
  3755. struct zone *zone;
  3756. for_each_populated_zone(zone)
  3757. setup_zone_pageset(zone);
  3758. }
  3759. static noinline __init_refok
  3760. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  3761. {
  3762. int i;
  3763. size_t alloc_size;
  3764. /*
  3765. * The per-page waitqueue mechanism uses hashed waitqueues
  3766. * per zone.
  3767. */
  3768. zone->wait_table_hash_nr_entries =
  3769. wait_table_hash_nr_entries(zone_size_pages);
  3770. zone->wait_table_bits =
  3771. wait_table_bits(zone->wait_table_hash_nr_entries);
  3772. alloc_size = zone->wait_table_hash_nr_entries
  3773. * sizeof(wait_queue_head_t);
  3774. if (!slab_is_available()) {
  3775. zone->wait_table = (wait_queue_head_t *)
  3776. memblock_virt_alloc_node_nopanic(
  3777. alloc_size, zone->zone_pgdat->node_id);
  3778. } else {
  3779. /*
  3780. * This case means that a zone whose size was 0 gets new memory
  3781. * via memory hot-add.
  3782. * But it may be the case that a new node was hot-added. In
  3783. * this case vmalloc() will not be able to use this new node's
  3784. * memory - this wait_table must be initialized to use this new
  3785. * node itself as well.
  3786. * To use this new node's memory, further consideration will be
  3787. * necessary.
  3788. */
  3789. zone->wait_table = vmalloc(alloc_size);
  3790. }
  3791. if (!zone->wait_table)
  3792. return -ENOMEM;
  3793. for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  3794. init_waitqueue_head(zone->wait_table + i);
  3795. return 0;
  3796. }
  3797. static __meminit void zone_pcp_init(struct zone *zone)
  3798. {
  3799. /*
  3800. * per cpu subsystem is not up at this point. The following code
  3801. * relies on the ability of the linker to provide the
  3802. * offset of a (static) per cpu variable into the per cpu area.
  3803. */
  3804. zone->pageset = &boot_pageset;
  3805. if (populated_zone(zone))
  3806. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  3807. zone->name, zone->present_pages,
  3808. zone_batchsize(zone));
  3809. }
  3810. int __meminit init_currently_empty_zone(struct zone *zone,
  3811. unsigned long zone_start_pfn,
  3812. unsigned long size,
  3813. enum memmap_context context)
  3814. {
  3815. struct pglist_data *pgdat = zone->zone_pgdat;
  3816. int ret;
  3817. ret = zone_wait_table_init(zone, size);
  3818. if (ret)
  3819. return ret;
  3820. pgdat->nr_zones = zone_idx(zone) + 1;
  3821. zone->zone_start_pfn = zone_start_pfn;
  3822. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  3823. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  3824. pgdat->node_id,
  3825. (unsigned long)zone_idx(zone),
  3826. zone_start_pfn, (zone_start_pfn + size));
  3827. zone_init_free_lists(zone);
  3828. return 0;
  3829. }
  3830. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  3831. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  3832. /*
  3833. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  3834. */
  3835. int __meminit __early_pfn_to_nid(unsigned long pfn)
  3836. {
  3837. unsigned long start_pfn, end_pfn;
  3838. int nid;
  3839. /*
  3840. * NOTE: The following SMP-unsafe globals are only used early in boot
  3841. * when the kernel is running single-threaded.
  3842. */
  3843. static unsigned long __meminitdata last_start_pfn, last_end_pfn;
  3844. static int __meminitdata last_nid;
  3845. if (last_start_pfn <= pfn && pfn < last_end_pfn)
  3846. return last_nid;
  3847. nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
  3848. if (nid != -1) {
  3849. last_start_pfn = start_pfn;
  3850. last_end_pfn = end_pfn;
  3851. last_nid = nid;
  3852. }
  3853. return nid;
  3854. }
  3855. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  3856. int __meminit early_pfn_to_nid(unsigned long pfn)
  3857. {
  3858. int nid;
  3859. nid = __early_pfn_to_nid(pfn);
  3860. if (nid >= 0)
  3861. return nid;
  3862. /* just returns 0 */
  3863. return 0;
  3864. }
  3865. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  3866. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  3867. {
  3868. int nid;
  3869. nid = __early_pfn_to_nid(pfn);
  3870. if (nid >= 0 && nid != node)
  3871. return false;
  3872. return true;
  3873. }
  3874. #endif
  3875. /**
  3876. * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
  3877. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  3878. * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
  3879. *
  3880. * If an architecture guarantees that all ranges registered contain no holes
  3881. * and may be freed, this this function may be used instead of calling
  3882. * memblock_free_early_nid() manually.
  3883. */
  3884. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  3885. {
  3886. unsigned long start_pfn, end_pfn;
  3887. int i, this_nid;
  3888. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  3889. start_pfn = min(start_pfn, max_low_pfn);
  3890. end_pfn = min(end_pfn, max_low_pfn);
  3891. if (start_pfn < end_pfn)
  3892. memblock_free_early_nid(PFN_PHYS(start_pfn),
  3893. (end_pfn - start_pfn) << PAGE_SHIFT,
  3894. this_nid);
  3895. }
  3896. }
  3897. /**
  3898. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  3899. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  3900. *
  3901. * If an architecture guarantees that all ranges registered contain no holes and may
  3902. * be freed, this function may be used instead of calling memory_present() manually.
  3903. */
  3904. void __init sparse_memory_present_with_active_regions(int nid)
  3905. {
  3906. unsigned long start_pfn, end_pfn;
  3907. int i, this_nid;
  3908. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  3909. memory_present(this_nid, start_pfn, end_pfn);
  3910. }
  3911. /**
  3912. * get_pfn_range_for_nid - Return the start and end page frames for a node
  3913. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  3914. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  3915. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  3916. *
  3917. * It returns the start and end page frame of a node based on information
  3918. * provided by memblock_set_node(). If called for a node
  3919. * with no available memory, a warning is printed and the start and end
  3920. * PFNs will be 0.
  3921. */
  3922. void __meminit get_pfn_range_for_nid(unsigned int nid,
  3923. unsigned long *start_pfn, unsigned long *end_pfn)
  3924. {
  3925. unsigned long this_start_pfn, this_end_pfn;
  3926. int i;
  3927. *start_pfn = -1UL;
  3928. *end_pfn = 0;
  3929. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  3930. *start_pfn = min(*start_pfn, this_start_pfn);
  3931. *end_pfn = max(*end_pfn, this_end_pfn);
  3932. }
  3933. if (*start_pfn == -1UL)
  3934. *start_pfn = 0;
  3935. }
  3936. /*
  3937. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  3938. * assumption is made that zones within a node are ordered in monotonic
  3939. * increasing memory addresses so that the "highest" populated zone is used
  3940. */
  3941. static void __init find_usable_zone_for_movable(void)
  3942. {
  3943. int zone_index;
  3944. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  3945. if (zone_index == ZONE_MOVABLE)
  3946. continue;
  3947. if (arch_zone_highest_possible_pfn[zone_index] >
  3948. arch_zone_lowest_possible_pfn[zone_index])
  3949. break;
  3950. }
  3951. VM_BUG_ON(zone_index == -1);
  3952. movable_zone = zone_index;
  3953. }
  3954. /*
  3955. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  3956. * because it is sized independent of architecture. Unlike the other zones,
  3957. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  3958. * in each node depending on the size of each node and how evenly kernelcore
  3959. * is distributed. This helper function adjusts the zone ranges
  3960. * provided by the architecture for a given node by using the end of the
  3961. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  3962. * zones within a node are in order of monotonic increases memory addresses
  3963. */
  3964. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  3965. unsigned long zone_type,
  3966. unsigned long node_start_pfn,
  3967. unsigned long node_end_pfn,
  3968. unsigned long *zone_start_pfn,
  3969. unsigned long *zone_end_pfn)
  3970. {
  3971. /* Only adjust if ZONE_MOVABLE is on this node */
  3972. if (zone_movable_pfn[nid]) {
  3973. /* Size ZONE_MOVABLE */
  3974. if (zone_type == ZONE_MOVABLE) {
  3975. *zone_start_pfn = zone_movable_pfn[nid];
  3976. *zone_end_pfn = min(node_end_pfn,
  3977. arch_zone_highest_possible_pfn[movable_zone]);
  3978. /* Adjust for ZONE_MOVABLE starting within this range */
  3979. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  3980. *zone_end_pfn > zone_movable_pfn[nid]) {
  3981. *zone_end_pfn = zone_movable_pfn[nid];
  3982. /* Check if this whole range is within ZONE_MOVABLE */
  3983. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  3984. *zone_start_pfn = *zone_end_pfn;
  3985. }
  3986. }
  3987. /*
  3988. * Return the number of pages a zone spans in a node, including holes
  3989. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  3990. */
  3991. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3992. unsigned long zone_type,
  3993. unsigned long node_start_pfn,
  3994. unsigned long node_end_pfn,
  3995. unsigned long *ignored)
  3996. {
  3997. unsigned long zone_start_pfn, zone_end_pfn;
  3998. /* Get the start and end of the zone */
  3999. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  4000. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  4001. adjust_zone_range_for_zone_movable(nid, zone_type,
  4002. node_start_pfn, node_end_pfn,
  4003. &zone_start_pfn, &zone_end_pfn);
  4004. /* Check that this node has pages within the zone's required range */
  4005. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  4006. return 0;
  4007. /* Move the zone boundaries inside the node if necessary */
  4008. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  4009. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  4010. /* Return the spanned pages */
  4011. return zone_end_pfn - zone_start_pfn;
  4012. }
  4013. /*
  4014. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  4015. * then all holes in the requested range will be accounted for.
  4016. */
  4017. unsigned long __meminit __absent_pages_in_range(int nid,
  4018. unsigned long range_start_pfn,
  4019. unsigned long range_end_pfn)
  4020. {
  4021. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  4022. unsigned long start_pfn, end_pfn;
  4023. int i;
  4024. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4025. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  4026. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  4027. nr_absent -= end_pfn - start_pfn;
  4028. }
  4029. return nr_absent;
  4030. }
  4031. /**
  4032. * absent_pages_in_range - Return number of page frames in holes within a range
  4033. * @start_pfn: The start PFN to start searching for holes
  4034. * @end_pfn: The end PFN to stop searching for holes
  4035. *
  4036. * It returns the number of pages frames in memory holes within a range.
  4037. */
  4038. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  4039. unsigned long end_pfn)
  4040. {
  4041. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  4042. }
  4043. /* Return the number of page frames in holes in a zone on a node */
  4044. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  4045. unsigned long zone_type,
  4046. unsigned long node_start_pfn,
  4047. unsigned long node_end_pfn,
  4048. unsigned long *ignored)
  4049. {
  4050. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  4051. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  4052. unsigned long zone_start_pfn, zone_end_pfn;
  4053. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  4054. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  4055. adjust_zone_range_for_zone_movable(nid, zone_type,
  4056. node_start_pfn, node_end_pfn,
  4057. &zone_start_pfn, &zone_end_pfn);
  4058. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  4059. }
  4060. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4061. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4062. unsigned long zone_type,
  4063. unsigned long node_start_pfn,
  4064. unsigned long node_end_pfn,
  4065. unsigned long *zones_size)
  4066. {
  4067. return zones_size[zone_type];
  4068. }
  4069. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  4070. unsigned long zone_type,
  4071. unsigned long node_start_pfn,
  4072. unsigned long node_end_pfn,
  4073. unsigned long *zholes_size)
  4074. {
  4075. if (!zholes_size)
  4076. return 0;
  4077. return zholes_size[zone_type];
  4078. }
  4079. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4080. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  4081. unsigned long node_start_pfn,
  4082. unsigned long node_end_pfn,
  4083. unsigned long *zones_size,
  4084. unsigned long *zholes_size)
  4085. {
  4086. unsigned long realtotalpages, totalpages = 0;
  4087. enum zone_type i;
  4088. for (i = 0; i < MAX_NR_ZONES; i++)
  4089. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  4090. node_start_pfn,
  4091. node_end_pfn,
  4092. zones_size);
  4093. pgdat->node_spanned_pages = totalpages;
  4094. realtotalpages = totalpages;
  4095. for (i = 0; i < MAX_NR_ZONES; i++)
  4096. realtotalpages -=
  4097. zone_absent_pages_in_node(pgdat->node_id, i,
  4098. node_start_pfn, node_end_pfn,
  4099. zholes_size);
  4100. pgdat->node_present_pages = realtotalpages;
  4101. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  4102. realtotalpages);
  4103. }
  4104. #ifndef CONFIG_SPARSEMEM
  4105. /*
  4106. * Calculate the size of the zone->blockflags rounded to an unsigned long
  4107. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  4108. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  4109. * round what is now in bits to nearest long in bits, then return it in
  4110. * bytes.
  4111. */
  4112. static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
  4113. {
  4114. unsigned long usemapsize;
  4115. zonesize += zone_start_pfn & (pageblock_nr_pages-1);
  4116. usemapsize = roundup(zonesize, pageblock_nr_pages);
  4117. usemapsize = usemapsize >> pageblock_order;
  4118. usemapsize *= NR_PAGEBLOCK_BITS;
  4119. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  4120. return usemapsize / 8;
  4121. }
  4122. static void __init setup_usemap(struct pglist_data *pgdat,
  4123. struct zone *zone,
  4124. unsigned long zone_start_pfn,
  4125. unsigned long zonesize)
  4126. {
  4127. unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
  4128. zone->pageblock_flags = NULL;
  4129. if (usemapsize)
  4130. zone->pageblock_flags =
  4131. memblock_virt_alloc_node_nopanic(usemapsize,
  4132. pgdat->node_id);
  4133. }
  4134. #else
  4135. static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
  4136. unsigned long zone_start_pfn, unsigned long zonesize) {}
  4137. #endif /* CONFIG_SPARSEMEM */
  4138. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  4139. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  4140. void __paginginit set_pageblock_order(void)
  4141. {
  4142. unsigned int order;
  4143. /* Check that pageblock_nr_pages has not already been setup */
  4144. if (pageblock_order)
  4145. return;
  4146. if (HPAGE_SHIFT > PAGE_SHIFT)
  4147. order = HUGETLB_PAGE_ORDER;
  4148. else
  4149. order = MAX_ORDER - 1;
  4150. /*
  4151. * Assume the largest contiguous order of interest is a huge page.
  4152. * This value may be variable depending on boot parameters on IA64 and
  4153. * powerpc.
  4154. */
  4155. pageblock_order = order;
  4156. }
  4157. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4158. /*
  4159. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  4160. * is unused as pageblock_order is set at compile-time. See
  4161. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  4162. * the kernel config
  4163. */
  4164. void __paginginit set_pageblock_order(void)
  4165. {
  4166. }
  4167. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4168. static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
  4169. unsigned long present_pages)
  4170. {
  4171. unsigned long pages = spanned_pages;
  4172. /*
  4173. * Provide a more accurate estimation if there are holes within
  4174. * the zone and SPARSEMEM is in use. If there are holes within the
  4175. * zone, each populated memory region may cost us one or two extra
  4176. * memmap pages due to alignment because memmap pages for each
  4177. * populated regions may not naturally algined on page boundary.
  4178. * So the (present_pages >> 4) heuristic is a tradeoff for that.
  4179. */
  4180. if (spanned_pages > present_pages + (present_pages >> 4) &&
  4181. IS_ENABLED(CONFIG_SPARSEMEM))
  4182. pages = present_pages;
  4183. return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
  4184. }
  4185. /*
  4186. * Set up the zone data structures:
  4187. * - mark all pages reserved
  4188. * - mark all memory queues empty
  4189. * - clear the memory bitmaps
  4190. *
  4191. * NOTE: pgdat should get zeroed by caller.
  4192. */
  4193. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  4194. unsigned long node_start_pfn, unsigned long node_end_pfn,
  4195. unsigned long *zones_size, unsigned long *zholes_size)
  4196. {
  4197. enum zone_type j;
  4198. int nid = pgdat->node_id;
  4199. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  4200. int ret;
  4201. pgdat_resize_init(pgdat);
  4202. #ifdef CONFIG_NUMA_BALANCING
  4203. spin_lock_init(&pgdat->numabalancing_migrate_lock);
  4204. pgdat->numabalancing_migrate_nr_pages = 0;
  4205. pgdat->numabalancing_migrate_next_window = jiffies;
  4206. #endif
  4207. init_waitqueue_head(&pgdat->kswapd_wait);
  4208. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  4209. pgdat_page_ext_init(pgdat);
  4210. for (j = 0; j < MAX_NR_ZONES; j++) {
  4211. struct zone *zone = pgdat->node_zones + j;
  4212. unsigned long size, realsize, freesize, memmap_pages;
  4213. size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
  4214. node_end_pfn, zones_size);
  4215. realsize = freesize = size - zone_absent_pages_in_node(nid, j,
  4216. node_start_pfn,
  4217. node_end_pfn,
  4218. zholes_size);
  4219. /*
  4220. * Adjust freesize so that it accounts for how much memory
  4221. * is used by this zone for memmap. This affects the watermark
  4222. * and per-cpu initialisations
  4223. */
  4224. memmap_pages = calc_memmap_size(size, realsize);
  4225. if (!is_highmem_idx(j)) {
  4226. if (freesize >= memmap_pages) {
  4227. freesize -= memmap_pages;
  4228. if (memmap_pages)
  4229. printk(KERN_DEBUG
  4230. " %s zone: %lu pages used for memmap\n",
  4231. zone_names[j], memmap_pages);
  4232. } else
  4233. printk(KERN_WARNING
  4234. " %s zone: %lu pages exceeds freesize %lu\n",
  4235. zone_names[j], memmap_pages, freesize);
  4236. }
  4237. /* Account for reserved pages */
  4238. if (j == 0 && freesize > dma_reserve) {
  4239. freesize -= dma_reserve;
  4240. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  4241. zone_names[0], dma_reserve);
  4242. }
  4243. if (!is_highmem_idx(j))
  4244. nr_kernel_pages += freesize;
  4245. /* Charge for highmem memmap if there are enough kernel pages */
  4246. else if (nr_kernel_pages > memmap_pages * 2)
  4247. nr_kernel_pages -= memmap_pages;
  4248. nr_all_pages += freesize;
  4249. zone->spanned_pages = size;
  4250. zone->present_pages = realsize;
  4251. /*
  4252. * Set an approximate value for lowmem here, it will be adjusted
  4253. * when the bootmem allocator frees pages into the buddy system.
  4254. * And all highmem pages will be managed by the buddy system.
  4255. */
  4256. zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
  4257. #ifdef CONFIG_NUMA
  4258. zone->node = nid;
  4259. zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
  4260. / 100;
  4261. zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
  4262. #endif
  4263. zone->name = zone_names[j];
  4264. spin_lock_init(&zone->lock);
  4265. spin_lock_init(&zone->lru_lock);
  4266. zone_seqlock_init(zone);
  4267. zone->zone_pgdat = pgdat;
  4268. zone_pcp_init(zone);
  4269. /* For bootup, initialized properly in watermark setup */
  4270. mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
  4271. lruvec_init(&zone->lruvec);
  4272. if (!size)
  4273. continue;
  4274. set_pageblock_order();
  4275. setup_usemap(pgdat, zone, zone_start_pfn, size);
  4276. ret = init_currently_empty_zone(zone, zone_start_pfn,
  4277. size, MEMMAP_EARLY);
  4278. BUG_ON(ret);
  4279. memmap_init(size, nid, j, zone_start_pfn);
  4280. zone_start_pfn += size;
  4281. }
  4282. }
  4283. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  4284. {
  4285. /* Skip empty nodes */
  4286. if (!pgdat->node_spanned_pages)
  4287. return;
  4288. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4289. /* ia64 gets its own node_mem_map, before this, without bootmem */
  4290. if (!pgdat->node_mem_map) {
  4291. unsigned long size, start, end;
  4292. struct page *map;
  4293. /*
  4294. * The zone's endpoints aren't required to be MAX_ORDER
  4295. * aligned but the node_mem_map endpoints must be in order
  4296. * for the buddy allocator to function correctly.
  4297. */
  4298. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  4299. end = pgdat_end_pfn(pgdat);
  4300. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  4301. size = (end - start) * sizeof(struct page);
  4302. map = alloc_remap(pgdat->node_id, size);
  4303. if (!map)
  4304. map = memblock_virt_alloc_node_nopanic(size,
  4305. pgdat->node_id);
  4306. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  4307. }
  4308. #ifndef CONFIG_NEED_MULTIPLE_NODES
  4309. /*
  4310. * With no DISCONTIG, the global mem_map is just set as node 0's
  4311. */
  4312. if (pgdat == NODE_DATA(0)) {
  4313. mem_map = NODE_DATA(0)->node_mem_map;
  4314. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4315. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  4316. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  4317. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4318. }
  4319. #endif
  4320. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  4321. }
  4322. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  4323. unsigned long node_start_pfn, unsigned long *zholes_size)
  4324. {
  4325. pg_data_t *pgdat = NODE_DATA(nid);
  4326. unsigned long start_pfn = 0;
  4327. unsigned long end_pfn = 0;
  4328. /* pg_data_t should be reset to zero when it's allocated */
  4329. WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
  4330. pgdat->node_id = nid;
  4331. pgdat->node_start_pfn = node_start_pfn;
  4332. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4333. get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
  4334. pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
  4335. (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
  4336. #endif
  4337. calculate_node_totalpages(pgdat, start_pfn, end_pfn,
  4338. zones_size, zholes_size);
  4339. alloc_node_mem_map(pgdat);
  4340. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4341. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  4342. nid, (unsigned long)pgdat,
  4343. (unsigned long)pgdat->node_mem_map);
  4344. #endif
  4345. free_area_init_core(pgdat, start_pfn, end_pfn,
  4346. zones_size, zholes_size);
  4347. }
  4348. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4349. #if MAX_NUMNODES > 1
  4350. /*
  4351. * Figure out the number of possible node ids.
  4352. */
  4353. void __init setup_nr_node_ids(void)
  4354. {
  4355. unsigned int node;
  4356. unsigned int highest = 0;
  4357. for_each_node_mask(node, node_possible_map)
  4358. highest = node;
  4359. nr_node_ids = highest + 1;
  4360. }
  4361. #endif
  4362. /**
  4363. * node_map_pfn_alignment - determine the maximum internode alignment
  4364. *
  4365. * This function should be called after node map is populated and sorted.
  4366. * It calculates the maximum power of two alignment which can distinguish
  4367. * all the nodes.
  4368. *
  4369. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  4370. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  4371. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  4372. * shifted, 1GiB is enough and this function will indicate so.
  4373. *
  4374. * This is used to test whether pfn -> nid mapping of the chosen memory
  4375. * model has fine enough granularity to avoid incorrect mapping for the
  4376. * populated node map.
  4377. *
  4378. * Returns the determined alignment in pfn's. 0 if there is no alignment
  4379. * requirement (single node).
  4380. */
  4381. unsigned long __init node_map_pfn_alignment(void)
  4382. {
  4383. unsigned long accl_mask = 0, last_end = 0;
  4384. unsigned long start, end, mask;
  4385. int last_nid = -1;
  4386. int i, nid;
  4387. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  4388. if (!start || last_nid < 0 || last_nid == nid) {
  4389. last_nid = nid;
  4390. last_end = end;
  4391. continue;
  4392. }
  4393. /*
  4394. * Start with a mask granular enough to pin-point to the
  4395. * start pfn and tick off bits one-by-one until it becomes
  4396. * too coarse to separate the current node from the last.
  4397. */
  4398. mask = ~((1 << __ffs(start)) - 1);
  4399. while (mask && last_end <= (start & (mask << 1)))
  4400. mask <<= 1;
  4401. /* accumulate all internode masks */
  4402. accl_mask |= mask;
  4403. }
  4404. /* convert mask to number of pages */
  4405. return ~accl_mask + 1;
  4406. }
  4407. /* Find the lowest pfn for a node */
  4408. static unsigned long __init find_min_pfn_for_node(int nid)
  4409. {
  4410. unsigned long min_pfn = ULONG_MAX;
  4411. unsigned long start_pfn;
  4412. int i;
  4413. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  4414. min_pfn = min(min_pfn, start_pfn);
  4415. if (min_pfn == ULONG_MAX) {
  4416. printk(KERN_WARNING
  4417. "Could not find start_pfn for node %d\n", nid);
  4418. return 0;
  4419. }
  4420. return min_pfn;
  4421. }
  4422. /**
  4423. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  4424. *
  4425. * It returns the minimum PFN based on information provided via
  4426. * memblock_set_node().
  4427. */
  4428. unsigned long __init find_min_pfn_with_active_regions(void)
  4429. {
  4430. return find_min_pfn_for_node(MAX_NUMNODES);
  4431. }
  4432. /*
  4433. * early_calculate_totalpages()
  4434. * Sum pages in active regions for movable zone.
  4435. * Populate N_MEMORY for calculating usable_nodes.
  4436. */
  4437. static unsigned long __init early_calculate_totalpages(void)
  4438. {
  4439. unsigned long totalpages = 0;
  4440. unsigned long start_pfn, end_pfn;
  4441. int i, nid;
  4442. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  4443. unsigned long pages = end_pfn - start_pfn;
  4444. totalpages += pages;
  4445. if (pages)
  4446. node_set_state(nid, N_MEMORY);
  4447. }
  4448. return totalpages;
  4449. }
  4450. /*
  4451. * Find the PFN the Movable zone begins in each node. Kernel memory
  4452. * is spread evenly between nodes as long as the nodes have enough
  4453. * memory. When they don't, some nodes will have more kernelcore than
  4454. * others
  4455. */
  4456. static void __init find_zone_movable_pfns_for_nodes(void)
  4457. {
  4458. int i, nid;
  4459. unsigned long usable_startpfn;
  4460. unsigned long kernelcore_node, kernelcore_remaining;
  4461. /* save the state before borrow the nodemask */
  4462. nodemask_t saved_node_state = node_states[N_MEMORY];
  4463. unsigned long totalpages = early_calculate_totalpages();
  4464. int usable_nodes = nodes_weight(node_states[N_MEMORY]);
  4465. struct memblock_region *r;
  4466. /* Need to find movable_zone earlier when movable_node is specified. */
  4467. find_usable_zone_for_movable();
  4468. /*
  4469. * If movable_node is specified, ignore kernelcore and movablecore
  4470. * options.
  4471. */
  4472. if (movable_node_is_enabled()) {
  4473. for_each_memblock(memory, r) {
  4474. if (!memblock_is_hotpluggable(r))
  4475. continue;
  4476. nid = r->nid;
  4477. usable_startpfn = PFN_DOWN(r->base);
  4478. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  4479. min(usable_startpfn, zone_movable_pfn[nid]) :
  4480. usable_startpfn;
  4481. }
  4482. goto out2;
  4483. }
  4484. /*
  4485. * If movablecore=nn[KMG] was specified, calculate what size of
  4486. * kernelcore that corresponds so that memory usable for
  4487. * any allocation type is evenly spread. If both kernelcore
  4488. * and movablecore are specified, then the value of kernelcore
  4489. * will be used for required_kernelcore if it's greater than
  4490. * what movablecore would have allowed.
  4491. */
  4492. if (required_movablecore) {
  4493. unsigned long corepages;
  4494. /*
  4495. * Round-up so that ZONE_MOVABLE is at least as large as what
  4496. * was requested by the user
  4497. */
  4498. required_movablecore =
  4499. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  4500. corepages = totalpages - required_movablecore;
  4501. required_kernelcore = max(required_kernelcore, corepages);
  4502. }
  4503. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  4504. if (!required_kernelcore)
  4505. goto out;
  4506. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  4507. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  4508. restart:
  4509. /* Spread kernelcore memory as evenly as possible throughout nodes */
  4510. kernelcore_node = required_kernelcore / usable_nodes;
  4511. for_each_node_state(nid, N_MEMORY) {
  4512. unsigned long start_pfn, end_pfn;
  4513. /*
  4514. * Recalculate kernelcore_node if the division per node
  4515. * now exceeds what is necessary to satisfy the requested
  4516. * amount of memory for the kernel
  4517. */
  4518. if (required_kernelcore < kernelcore_node)
  4519. kernelcore_node = required_kernelcore / usable_nodes;
  4520. /*
  4521. * As the map is walked, we track how much memory is usable
  4522. * by the kernel using kernelcore_remaining. When it is
  4523. * 0, the rest of the node is usable by ZONE_MOVABLE
  4524. */
  4525. kernelcore_remaining = kernelcore_node;
  4526. /* Go through each range of PFNs within this node */
  4527. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4528. unsigned long size_pages;
  4529. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  4530. if (start_pfn >= end_pfn)
  4531. continue;
  4532. /* Account for what is only usable for kernelcore */
  4533. if (start_pfn < usable_startpfn) {
  4534. unsigned long kernel_pages;
  4535. kernel_pages = min(end_pfn, usable_startpfn)
  4536. - start_pfn;
  4537. kernelcore_remaining -= min(kernel_pages,
  4538. kernelcore_remaining);
  4539. required_kernelcore -= min(kernel_pages,
  4540. required_kernelcore);
  4541. /* Continue if range is now fully accounted */
  4542. if (end_pfn <= usable_startpfn) {
  4543. /*
  4544. * Push zone_movable_pfn to the end so
  4545. * that if we have to rebalance
  4546. * kernelcore across nodes, we will
  4547. * not double account here
  4548. */
  4549. zone_movable_pfn[nid] = end_pfn;
  4550. continue;
  4551. }
  4552. start_pfn = usable_startpfn;
  4553. }
  4554. /*
  4555. * The usable PFN range for ZONE_MOVABLE is from
  4556. * start_pfn->end_pfn. Calculate size_pages as the
  4557. * number of pages used as kernelcore
  4558. */
  4559. size_pages = end_pfn - start_pfn;
  4560. if (size_pages > kernelcore_remaining)
  4561. size_pages = kernelcore_remaining;
  4562. zone_movable_pfn[nid] = start_pfn + size_pages;
  4563. /*
  4564. * Some kernelcore has been met, update counts and
  4565. * break if the kernelcore for this node has been
  4566. * satisfied
  4567. */
  4568. required_kernelcore -= min(required_kernelcore,
  4569. size_pages);
  4570. kernelcore_remaining -= size_pages;
  4571. if (!kernelcore_remaining)
  4572. break;
  4573. }
  4574. }
  4575. /*
  4576. * If there is still required_kernelcore, we do another pass with one
  4577. * less node in the count. This will push zone_movable_pfn[nid] further
  4578. * along on the nodes that still have memory until kernelcore is
  4579. * satisfied
  4580. */
  4581. usable_nodes--;
  4582. if (usable_nodes && required_kernelcore > usable_nodes)
  4583. goto restart;
  4584. out2:
  4585. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  4586. for (nid = 0; nid < MAX_NUMNODES; nid++)
  4587. zone_movable_pfn[nid] =
  4588. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  4589. out:
  4590. /* restore the node_state */
  4591. node_states[N_MEMORY] = saved_node_state;
  4592. }
  4593. /* Any regular or high memory on that node ? */
  4594. static void check_for_memory(pg_data_t *pgdat, int nid)
  4595. {
  4596. enum zone_type zone_type;
  4597. if (N_MEMORY == N_NORMAL_MEMORY)
  4598. return;
  4599. for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
  4600. struct zone *zone = &pgdat->node_zones[zone_type];
  4601. if (populated_zone(zone)) {
  4602. node_set_state(nid, N_HIGH_MEMORY);
  4603. if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
  4604. zone_type <= ZONE_NORMAL)
  4605. node_set_state(nid, N_NORMAL_MEMORY);
  4606. break;
  4607. }
  4608. }
  4609. }
  4610. /**
  4611. * free_area_init_nodes - Initialise all pg_data_t and zone data
  4612. * @max_zone_pfn: an array of max PFNs for each zone
  4613. *
  4614. * This will call free_area_init_node() for each active node in the system.
  4615. * Using the page ranges provided by memblock_set_node(), the size of each
  4616. * zone in each node and their holes is calculated. If the maximum PFN
  4617. * between two adjacent zones match, it is assumed that the zone is empty.
  4618. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  4619. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  4620. * starts where the previous one ended. For example, ZONE_DMA32 starts
  4621. * at arch_max_dma_pfn.
  4622. */
  4623. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  4624. {
  4625. unsigned long start_pfn, end_pfn;
  4626. int i, nid;
  4627. /* Record where the zone boundaries are */
  4628. memset(arch_zone_lowest_possible_pfn, 0,
  4629. sizeof(arch_zone_lowest_possible_pfn));
  4630. memset(arch_zone_highest_possible_pfn, 0,
  4631. sizeof(arch_zone_highest_possible_pfn));
  4632. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  4633. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  4634. for (i = 1; i < MAX_NR_ZONES; i++) {
  4635. if (i == ZONE_MOVABLE)
  4636. continue;
  4637. arch_zone_lowest_possible_pfn[i] =
  4638. arch_zone_highest_possible_pfn[i-1];
  4639. arch_zone_highest_possible_pfn[i] =
  4640. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  4641. }
  4642. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  4643. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  4644. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  4645. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  4646. find_zone_movable_pfns_for_nodes();
  4647. /* Print out the zone ranges */
  4648. pr_info("Zone ranges:\n");
  4649. for (i = 0; i < MAX_NR_ZONES; i++) {
  4650. if (i == ZONE_MOVABLE)
  4651. continue;
  4652. pr_info(" %-8s ", zone_names[i]);
  4653. if (arch_zone_lowest_possible_pfn[i] ==
  4654. arch_zone_highest_possible_pfn[i])
  4655. pr_cont("empty\n");
  4656. else
  4657. pr_cont("[mem %#018Lx-%#018Lx]\n",
  4658. (u64)arch_zone_lowest_possible_pfn[i]
  4659. << PAGE_SHIFT,
  4660. ((u64)arch_zone_highest_possible_pfn[i]
  4661. << PAGE_SHIFT) - 1);
  4662. }
  4663. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  4664. pr_info("Movable zone start for each node\n");
  4665. for (i = 0; i < MAX_NUMNODES; i++) {
  4666. if (zone_movable_pfn[i])
  4667. pr_info(" Node %d: %#018Lx\n", i,
  4668. (u64)zone_movable_pfn[i] << PAGE_SHIFT);
  4669. }
  4670. /* Print out the early node map */
  4671. pr_info("Early memory node ranges\n");
  4672. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  4673. pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
  4674. (u64)start_pfn << PAGE_SHIFT,
  4675. ((u64)end_pfn << PAGE_SHIFT) - 1);
  4676. /* Initialise every node */
  4677. mminit_verify_pageflags_layout();
  4678. setup_nr_node_ids();
  4679. for_each_online_node(nid) {
  4680. pg_data_t *pgdat = NODE_DATA(nid);
  4681. free_area_init_node(nid, NULL,
  4682. find_min_pfn_for_node(nid), NULL);
  4683. /* Any memory on that node */
  4684. if (pgdat->node_present_pages)
  4685. node_set_state(nid, N_MEMORY);
  4686. check_for_memory(pgdat, nid);
  4687. }
  4688. }
  4689. static int __init cmdline_parse_core(char *p, unsigned long *core)
  4690. {
  4691. unsigned long long coremem;
  4692. if (!p)
  4693. return -EINVAL;
  4694. coremem = memparse(p, &p);
  4695. *core = coremem >> PAGE_SHIFT;
  4696. /* Paranoid check that UL is enough for the coremem value */
  4697. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  4698. return 0;
  4699. }
  4700. /*
  4701. * kernelcore=size sets the amount of memory for use for allocations that
  4702. * cannot be reclaimed or migrated.
  4703. */
  4704. static int __init cmdline_parse_kernelcore(char *p)
  4705. {
  4706. return cmdline_parse_core(p, &required_kernelcore);
  4707. }
  4708. /*
  4709. * movablecore=size sets the amount of memory for use for allocations that
  4710. * can be reclaimed or migrated.
  4711. */
  4712. static int __init cmdline_parse_movablecore(char *p)
  4713. {
  4714. return cmdline_parse_core(p, &required_movablecore);
  4715. }
  4716. early_param("kernelcore", cmdline_parse_kernelcore);
  4717. early_param("movablecore", cmdline_parse_movablecore);
  4718. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4719. void adjust_managed_page_count(struct page *page, long count)
  4720. {
  4721. spin_lock(&managed_page_count_lock);
  4722. page_zone(page)->managed_pages += count;
  4723. totalram_pages += count;
  4724. #ifdef CONFIG_HIGHMEM
  4725. if (PageHighMem(page))
  4726. totalhigh_pages += count;
  4727. #endif
  4728. spin_unlock(&managed_page_count_lock);
  4729. }
  4730. EXPORT_SYMBOL(adjust_managed_page_count);
  4731. unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
  4732. {
  4733. void *pos;
  4734. unsigned long pages = 0;
  4735. start = (void *)PAGE_ALIGN((unsigned long)start);
  4736. end = (void *)((unsigned long)end & PAGE_MASK);
  4737. for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
  4738. if ((unsigned int)poison <= 0xFF)
  4739. memset(pos, poison, PAGE_SIZE);
  4740. free_reserved_page(virt_to_page(pos));
  4741. }
  4742. if (pages && s)
  4743. pr_info("Freeing %s memory: %ldK (%p - %p)\n",
  4744. s, pages << (PAGE_SHIFT - 10), start, end);
  4745. return pages;
  4746. }
  4747. EXPORT_SYMBOL(free_reserved_area);
  4748. #ifdef CONFIG_HIGHMEM
  4749. void free_highmem_page(struct page *page)
  4750. {
  4751. __free_reserved_page(page);
  4752. totalram_pages++;
  4753. page_zone(page)->managed_pages++;
  4754. totalhigh_pages++;
  4755. }
  4756. #endif
  4757. void __init mem_init_print_info(const char *str)
  4758. {
  4759. unsigned long physpages, codesize, datasize, rosize, bss_size;
  4760. unsigned long init_code_size, init_data_size;
  4761. physpages = get_num_physpages();
  4762. codesize = _etext - _stext;
  4763. datasize = _edata - _sdata;
  4764. rosize = __end_rodata - __start_rodata;
  4765. bss_size = __bss_stop - __bss_start;
  4766. init_data_size = __init_end - __init_begin;
  4767. init_code_size = _einittext - _sinittext;
  4768. /*
  4769. * Detect special cases and adjust section sizes accordingly:
  4770. * 1) .init.* may be embedded into .data sections
  4771. * 2) .init.text.* may be out of [__init_begin, __init_end],
  4772. * please refer to arch/tile/kernel/vmlinux.lds.S.
  4773. * 3) .rodata.* may be embedded into .text or .data sections.
  4774. */
  4775. #define adj_init_size(start, end, size, pos, adj) \
  4776. do { \
  4777. if (start <= pos && pos < end && size > adj) \
  4778. size -= adj; \
  4779. } while (0)
  4780. adj_init_size(__init_begin, __init_end, init_data_size,
  4781. _sinittext, init_code_size);
  4782. adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
  4783. adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
  4784. adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
  4785. adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
  4786. #undef adj_init_size
  4787. pr_info("Memory: %luK/%luK available "
  4788. "(%luK kernel code, %luK rwdata, %luK rodata, "
  4789. "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
  4790. #ifdef CONFIG_HIGHMEM
  4791. ", %luK highmem"
  4792. #endif
  4793. "%s%s)\n",
  4794. nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
  4795. codesize >> 10, datasize >> 10, rosize >> 10,
  4796. (init_data_size + init_code_size) >> 10, bss_size >> 10,
  4797. (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
  4798. totalcma_pages << (PAGE_SHIFT-10),
  4799. #ifdef CONFIG_HIGHMEM
  4800. totalhigh_pages << (PAGE_SHIFT-10),
  4801. #endif
  4802. str ? ", " : "", str ? str : "");
  4803. }
  4804. /**
  4805. * set_dma_reserve - set the specified number of pages reserved in the first zone
  4806. * @new_dma_reserve: The number of pages to mark reserved
  4807. *
  4808. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  4809. * In the DMA zone, a significant percentage may be consumed by kernel image
  4810. * and other unfreeable allocations which can skew the watermarks badly. This
  4811. * function may optionally be used to account for unfreeable pages in the
  4812. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  4813. * smaller per-cpu batchsize.
  4814. */
  4815. void __init set_dma_reserve(unsigned long new_dma_reserve)
  4816. {
  4817. dma_reserve = new_dma_reserve;
  4818. }
  4819. void __init free_area_init(unsigned long *zones_size)
  4820. {
  4821. free_area_init_node(0, zones_size,
  4822. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  4823. }
  4824. static int page_alloc_cpu_notify(struct notifier_block *self,
  4825. unsigned long action, void *hcpu)
  4826. {
  4827. int cpu = (unsigned long)hcpu;
  4828. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  4829. lru_add_drain_cpu(cpu);
  4830. drain_pages(cpu);
  4831. /*
  4832. * Spill the event counters of the dead processor
  4833. * into the current processors event counters.
  4834. * This artificially elevates the count of the current
  4835. * processor.
  4836. */
  4837. vm_events_fold_cpu(cpu);
  4838. /*
  4839. * Zero the differential counters of the dead processor
  4840. * so that the vm statistics are consistent.
  4841. *
  4842. * This is only okay since the processor is dead and cannot
  4843. * race with what we are doing.
  4844. */
  4845. cpu_vm_stats_fold(cpu);
  4846. }
  4847. return NOTIFY_OK;
  4848. }
  4849. void __init page_alloc_init(void)
  4850. {
  4851. hotcpu_notifier(page_alloc_cpu_notify, 0);
  4852. }
  4853. /*
  4854. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  4855. * or min_free_kbytes changes.
  4856. */
  4857. static void calculate_totalreserve_pages(void)
  4858. {
  4859. struct pglist_data *pgdat;
  4860. unsigned long reserve_pages = 0;
  4861. enum zone_type i, j;
  4862. for_each_online_pgdat(pgdat) {
  4863. for (i = 0; i < MAX_NR_ZONES; i++) {
  4864. struct zone *zone = pgdat->node_zones + i;
  4865. long max = 0;
  4866. /* Find valid and maximum lowmem_reserve in the zone */
  4867. for (j = i; j < MAX_NR_ZONES; j++) {
  4868. if (zone->lowmem_reserve[j] > max)
  4869. max = zone->lowmem_reserve[j];
  4870. }
  4871. /* we treat the high watermark as reserved pages. */
  4872. max += high_wmark_pages(zone);
  4873. if (max > zone->managed_pages)
  4874. max = zone->managed_pages;
  4875. reserve_pages += max;
  4876. /*
  4877. * Lowmem reserves are not available to
  4878. * GFP_HIGHUSER page cache allocations and
  4879. * kswapd tries to balance zones to their high
  4880. * watermark. As a result, neither should be
  4881. * regarded as dirtyable memory, to prevent a
  4882. * situation where reclaim has to clean pages
  4883. * in order to balance the zones.
  4884. */
  4885. zone->dirty_balance_reserve = max;
  4886. }
  4887. }
  4888. dirty_balance_reserve = reserve_pages;
  4889. totalreserve_pages = reserve_pages;
  4890. }
  4891. /*
  4892. * setup_per_zone_lowmem_reserve - called whenever
  4893. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  4894. * has a correct pages reserved value, so an adequate number of
  4895. * pages are left in the zone after a successful __alloc_pages().
  4896. */
  4897. static void setup_per_zone_lowmem_reserve(void)
  4898. {
  4899. struct pglist_data *pgdat;
  4900. enum zone_type j, idx;
  4901. for_each_online_pgdat(pgdat) {
  4902. for (j = 0; j < MAX_NR_ZONES; j++) {
  4903. struct zone *zone = pgdat->node_zones + j;
  4904. unsigned long managed_pages = zone->managed_pages;
  4905. zone->lowmem_reserve[j] = 0;
  4906. idx = j;
  4907. while (idx) {
  4908. struct zone *lower_zone;
  4909. idx--;
  4910. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  4911. sysctl_lowmem_reserve_ratio[idx] = 1;
  4912. lower_zone = pgdat->node_zones + idx;
  4913. lower_zone->lowmem_reserve[j] = managed_pages /
  4914. sysctl_lowmem_reserve_ratio[idx];
  4915. managed_pages += lower_zone->managed_pages;
  4916. }
  4917. }
  4918. }
  4919. /* update totalreserve_pages */
  4920. calculate_totalreserve_pages();
  4921. }
  4922. static void __setup_per_zone_wmarks(void)
  4923. {
  4924. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  4925. unsigned long lowmem_pages = 0;
  4926. struct zone *zone;
  4927. unsigned long flags;
  4928. /* Calculate total number of !ZONE_HIGHMEM pages */
  4929. for_each_zone(zone) {
  4930. if (!is_highmem(zone))
  4931. lowmem_pages += zone->managed_pages;
  4932. }
  4933. for_each_zone(zone) {
  4934. u64 tmp;
  4935. spin_lock_irqsave(&zone->lock, flags);
  4936. tmp = (u64)pages_min * zone->managed_pages;
  4937. do_div(tmp, lowmem_pages);
  4938. if (is_highmem(zone)) {
  4939. /*
  4940. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  4941. * need highmem pages, so cap pages_min to a small
  4942. * value here.
  4943. *
  4944. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  4945. * deltas controls asynch page reclaim, and so should
  4946. * not be capped for highmem.
  4947. */
  4948. unsigned long min_pages;
  4949. min_pages = zone->managed_pages / 1024;
  4950. min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
  4951. zone->watermark[WMARK_MIN] = min_pages;
  4952. } else {
  4953. /*
  4954. * If it's a lowmem zone, reserve a number of pages
  4955. * proportionate to the zone's size.
  4956. */
  4957. zone->watermark[WMARK_MIN] = tmp;
  4958. }
  4959. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  4960. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  4961. __mod_zone_page_state(zone, NR_ALLOC_BATCH,
  4962. high_wmark_pages(zone) - low_wmark_pages(zone) -
  4963. atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
  4964. setup_zone_migrate_reserve(zone);
  4965. spin_unlock_irqrestore(&zone->lock, flags);
  4966. }
  4967. /* update totalreserve_pages */
  4968. calculate_totalreserve_pages();
  4969. }
  4970. /**
  4971. * setup_per_zone_wmarks - called when min_free_kbytes changes
  4972. * or when memory is hot-{added|removed}
  4973. *
  4974. * Ensures that the watermark[min,low,high] values for each zone are set
  4975. * correctly with respect to min_free_kbytes.
  4976. */
  4977. void setup_per_zone_wmarks(void)
  4978. {
  4979. mutex_lock(&zonelists_mutex);
  4980. __setup_per_zone_wmarks();
  4981. mutex_unlock(&zonelists_mutex);
  4982. }
  4983. /*
  4984. * The inactive anon list should be small enough that the VM never has to
  4985. * do too much work, but large enough that each inactive page has a chance
  4986. * to be referenced again before it is swapped out.
  4987. *
  4988. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  4989. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  4990. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  4991. * the anonymous pages are kept on the inactive list.
  4992. *
  4993. * total target max
  4994. * memory ratio inactive anon
  4995. * -------------------------------------
  4996. * 10MB 1 5MB
  4997. * 100MB 1 50MB
  4998. * 1GB 3 250MB
  4999. * 10GB 10 0.9GB
  5000. * 100GB 31 3GB
  5001. * 1TB 101 10GB
  5002. * 10TB 320 32GB
  5003. */
  5004. static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
  5005. {
  5006. unsigned int gb, ratio;
  5007. /* Zone size in gigabytes */
  5008. gb = zone->managed_pages >> (30 - PAGE_SHIFT);
  5009. if (gb)
  5010. ratio = int_sqrt(10 * gb);
  5011. else
  5012. ratio = 1;
  5013. zone->inactive_ratio = ratio;
  5014. }
  5015. static void __meminit setup_per_zone_inactive_ratio(void)
  5016. {
  5017. struct zone *zone;
  5018. for_each_zone(zone)
  5019. calculate_zone_inactive_ratio(zone);
  5020. }
  5021. /*
  5022. * Initialise min_free_kbytes.
  5023. *
  5024. * For small machines we want it small (128k min). For large machines
  5025. * we want it large (64MB max). But it is not linear, because network
  5026. * bandwidth does not increase linearly with machine size. We use
  5027. *
  5028. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  5029. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  5030. *
  5031. * which yields
  5032. *
  5033. * 16MB: 512k
  5034. * 32MB: 724k
  5035. * 64MB: 1024k
  5036. * 128MB: 1448k
  5037. * 256MB: 2048k
  5038. * 512MB: 2896k
  5039. * 1024MB: 4096k
  5040. * 2048MB: 5792k
  5041. * 4096MB: 8192k
  5042. * 8192MB: 11584k
  5043. * 16384MB: 16384k
  5044. */
  5045. int __meminit init_per_zone_wmark_min(void)
  5046. {
  5047. unsigned long lowmem_kbytes;
  5048. int new_min_free_kbytes;
  5049. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  5050. new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  5051. if (new_min_free_kbytes > user_min_free_kbytes) {
  5052. min_free_kbytes = new_min_free_kbytes;
  5053. if (min_free_kbytes < 128)
  5054. min_free_kbytes = 128;
  5055. if (min_free_kbytes > 65536)
  5056. min_free_kbytes = 65536;
  5057. } else {
  5058. pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
  5059. new_min_free_kbytes, user_min_free_kbytes);
  5060. }
  5061. setup_per_zone_wmarks();
  5062. refresh_zone_stat_thresholds();
  5063. setup_per_zone_lowmem_reserve();
  5064. setup_per_zone_inactive_ratio();
  5065. return 0;
  5066. }
  5067. module_init(init_per_zone_wmark_min)
  5068. /*
  5069. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  5070. * that we can call two helper functions whenever min_free_kbytes
  5071. * changes.
  5072. */
  5073. int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
  5074. void __user *buffer, size_t *length, loff_t *ppos)
  5075. {
  5076. int rc;
  5077. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5078. if (rc)
  5079. return rc;
  5080. if (write) {
  5081. user_min_free_kbytes = min_free_kbytes;
  5082. setup_per_zone_wmarks();
  5083. }
  5084. return 0;
  5085. }
  5086. #ifdef CONFIG_NUMA
  5087. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
  5088. void __user *buffer, size_t *length, loff_t *ppos)
  5089. {
  5090. struct zone *zone;
  5091. int rc;
  5092. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5093. if (rc)
  5094. return rc;
  5095. for_each_zone(zone)
  5096. zone->min_unmapped_pages = (zone->managed_pages *
  5097. sysctl_min_unmapped_ratio) / 100;
  5098. return 0;
  5099. }
  5100. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
  5101. void __user *buffer, size_t *length, loff_t *ppos)
  5102. {
  5103. struct zone *zone;
  5104. int rc;
  5105. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5106. if (rc)
  5107. return rc;
  5108. for_each_zone(zone)
  5109. zone->min_slab_pages = (zone->managed_pages *
  5110. sysctl_min_slab_ratio) / 100;
  5111. return 0;
  5112. }
  5113. #endif
  5114. /*
  5115. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  5116. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  5117. * whenever sysctl_lowmem_reserve_ratio changes.
  5118. *
  5119. * The reserve ratio obviously has absolutely no relation with the
  5120. * minimum watermarks. The lowmem reserve ratio can only make sense
  5121. * if in function of the boot time zone sizes.
  5122. */
  5123. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
  5124. void __user *buffer, size_t *length, loff_t *ppos)
  5125. {
  5126. proc_dointvec_minmax(table, write, buffer, length, ppos);
  5127. setup_per_zone_lowmem_reserve();
  5128. return 0;
  5129. }
  5130. /*
  5131. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  5132. * cpu. It is the fraction of total pages in each zone that a hot per cpu
  5133. * pagelist can have before it gets flushed back to buddy allocator.
  5134. */
  5135. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
  5136. void __user *buffer, size_t *length, loff_t *ppos)
  5137. {
  5138. struct zone *zone;
  5139. int old_percpu_pagelist_fraction;
  5140. int ret;
  5141. mutex_lock(&pcp_batch_high_lock);
  5142. old_percpu_pagelist_fraction = percpu_pagelist_fraction;
  5143. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5144. if (!write || ret < 0)
  5145. goto out;
  5146. /* Sanity checking to avoid pcp imbalance */
  5147. if (percpu_pagelist_fraction &&
  5148. percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
  5149. percpu_pagelist_fraction = old_percpu_pagelist_fraction;
  5150. ret = -EINVAL;
  5151. goto out;
  5152. }
  5153. /* No change? */
  5154. if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
  5155. goto out;
  5156. for_each_populated_zone(zone) {
  5157. unsigned int cpu;
  5158. for_each_possible_cpu(cpu)
  5159. pageset_set_high_and_batch(zone,
  5160. per_cpu_ptr(zone->pageset, cpu));
  5161. }
  5162. out:
  5163. mutex_unlock(&pcp_batch_high_lock);
  5164. return ret;
  5165. }
  5166. int hashdist = HASHDIST_DEFAULT;
  5167. #ifdef CONFIG_NUMA
  5168. static int __init set_hashdist(char *str)
  5169. {
  5170. if (!str)
  5171. return 0;
  5172. hashdist = simple_strtoul(str, &str, 0);
  5173. return 1;
  5174. }
  5175. __setup("hashdist=", set_hashdist);
  5176. #endif
  5177. /*
  5178. * allocate a large system hash table from bootmem
  5179. * - it is assumed that the hash table must contain an exact power-of-2
  5180. * quantity of entries
  5181. * - limit is the number of hash buckets, not the total allocation size
  5182. */
  5183. void *__init alloc_large_system_hash(const char *tablename,
  5184. unsigned long bucketsize,
  5185. unsigned long numentries,
  5186. int scale,
  5187. int flags,
  5188. unsigned int *_hash_shift,
  5189. unsigned int *_hash_mask,
  5190. unsigned long low_limit,
  5191. unsigned long high_limit)
  5192. {
  5193. unsigned long long max = high_limit;
  5194. unsigned long log2qty, size;
  5195. void *table = NULL;
  5196. /* allow the kernel cmdline to have a say */
  5197. if (!numentries) {
  5198. /* round applicable memory size up to nearest megabyte */
  5199. numentries = nr_kernel_pages;
  5200. /* It isn't necessary when PAGE_SIZE >= 1MB */
  5201. if (PAGE_SHIFT < 20)
  5202. numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
  5203. /* limit to 1 bucket per 2^scale bytes of low memory */
  5204. if (scale > PAGE_SHIFT)
  5205. numentries >>= (scale - PAGE_SHIFT);
  5206. else
  5207. numentries <<= (PAGE_SHIFT - scale);
  5208. /* Make sure we've got at least a 0-order allocation.. */
  5209. if (unlikely(flags & HASH_SMALL)) {
  5210. /* Makes no sense without HASH_EARLY */
  5211. WARN_ON(!(flags & HASH_EARLY));
  5212. if (!(numentries >> *_hash_shift)) {
  5213. numentries = 1UL << *_hash_shift;
  5214. BUG_ON(!numentries);
  5215. }
  5216. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  5217. numentries = PAGE_SIZE / bucketsize;
  5218. }
  5219. numentries = roundup_pow_of_two(numentries);
  5220. /* limit allocation size to 1/16 total memory by default */
  5221. if (max == 0) {
  5222. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  5223. do_div(max, bucketsize);
  5224. }
  5225. max = min(max, 0x80000000ULL);
  5226. if (numentries < low_limit)
  5227. numentries = low_limit;
  5228. if (numentries > max)
  5229. numentries = max;
  5230. log2qty = ilog2(numentries);
  5231. do {
  5232. size = bucketsize << log2qty;
  5233. if (flags & HASH_EARLY)
  5234. table = memblock_virt_alloc_nopanic(size, 0);
  5235. else if (hashdist)
  5236. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  5237. else {
  5238. /*
  5239. * If bucketsize is not a power-of-two, we may free
  5240. * some pages at the end of hash table which
  5241. * alloc_pages_exact() automatically does
  5242. */
  5243. if (get_order(size) < MAX_ORDER) {
  5244. table = alloc_pages_exact(size, GFP_ATOMIC);
  5245. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  5246. }
  5247. }
  5248. } while (!table && size > PAGE_SIZE && --log2qty);
  5249. if (!table)
  5250. panic("Failed to allocate %s hash table\n", tablename);
  5251. printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
  5252. tablename,
  5253. (1UL << log2qty),
  5254. ilog2(size) - PAGE_SHIFT,
  5255. size);
  5256. if (_hash_shift)
  5257. *_hash_shift = log2qty;
  5258. if (_hash_mask)
  5259. *_hash_mask = (1 << log2qty) - 1;
  5260. return table;
  5261. }
  5262. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  5263. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  5264. unsigned long pfn)
  5265. {
  5266. #ifdef CONFIG_SPARSEMEM
  5267. return __pfn_to_section(pfn)->pageblock_flags;
  5268. #else
  5269. return zone->pageblock_flags;
  5270. #endif /* CONFIG_SPARSEMEM */
  5271. }
  5272. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  5273. {
  5274. #ifdef CONFIG_SPARSEMEM
  5275. pfn &= (PAGES_PER_SECTION-1);
  5276. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  5277. #else
  5278. pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
  5279. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  5280. #endif /* CONFIG_SPARSEMEM */
  5281. }
  5282. /**
  5283. * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
  5284. * @page: The page within the block of interest
  5285. * @pfn: The target page frame number
  5286. * @end_bitidx: The last bit of interest to retrieve
  5287. * @mask: mask of bits that the caller is interested in
  5288. *
  5289. * Return: pageblock_bits flags
  5290. */
  5291. unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
  5292. unsigned long end_bitidx,
  5293. unsigned long mask)
  5294. {
  5295. struct zone *zone;
  5296. unsigned long *bitmap;
  5297. unsigned long bitidx, word_bitidx;
  5298. unsigned long word;
  5299. zone = page_zone(page);
  5300. bitmap = get_pageblock_bitmap(zone, pfn);
  5301. bitidx = pfn_to_bitidx(zone, pfn);
  5302. word_bitidx = bitidx / BITS_PER_LONG;
  5303. bitidx &= (BITS_PER_LONG-1);
  5304. word = bitmap[word_bitidx];
  5305. bitidx += end_bitidx;
  5306. return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
  5307. }
  5308. /**
  5309. * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
  5310. * @page: The page within the block of interest
  5311. * @flags: The flags to set
  5312. * @pfn: The target page frame number
  5313. * @end_bitidx: The last bit of interest
  5314. * @mask: mask of bits that the caller is interested in
  5315. */
  5316. void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
  5317. unsigned long pfn,
  5318. unsigned long end_bitidx,
  5319. unsigned long mask)
  5320. {
  5321. struct zone *zone;
  5322. unsigned long *bitmap;
  5323. unsigned long bitidx, word_bitidx;
  5324. unsigned long old_word, word;
  5325. BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
  5326. zone = page_zone(page);
  5327. bitmap = get_pageblock_bitmap(zone, pfn);
  5328. bitidx = pfn_to_bitidx(zone, pfn);
  5329. word_bitidx = bitidx / BITS_PER_LONG;
  5330. bitidx &= (BITS_PER_LONG-1);
  5331. VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
  5332. bitidx += end_bitidx;
  5333. mask <<= (BITS_PER_LONG - bitidx - 1);
  5334. flags <<= (BITS_PER_LONG - bitidx - 1);
  5335. word = ACCESS_ONCE(bitmap[word_bitidx]);
  5336. for (;;) {
  5337. old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
  5338. if (word == old_word)
  5339. break;
  5340. word = old_word;
  5341. }
  5342. }
  5343. /*
  5344. * This function checks whether pageblock includes unmovable pages or not.
  5345. * If @count is not zero, it is okay to include less @count unmovable pages
  5346. *
  5347. * PageLRU check without isolation or lru_lock could race so that
  5348. * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
  5349. * expect this function should be exact.
  5350. */
  5351. bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
  5352. bool skip_hwpoisoned_pages)
  5353. {
  5354. unsigned long pfn, iter, found;
  5355. int mt;
  5356. /*
  5357. * For avoiding noise data, lru_add_drain_all() should be called
  5358. * If ZONE_MOVABLE, the zone never contains unmovable pages
  5359. */
  5360. if (zone_idx(zone) == ZONE_MOVABLE)
  5361. return false;
  5362. mt = get_pageblock_migratetype(page);
  5363. if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
  5364. return false;
  5365. pfn = page_to_pfn(page);
  5366. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  5367. unsigned long check = pfn + iter;
  5368. if (!pfn_valid_within(check))
  5369. continue;
  5370. page = pfn_to_page(check);
  5371. /*
  5372. * Hugepages are not in LRU lists, but they're movable.
  5373. * We need not scan over tail pages bacause we don't
  5374. * handle each tail page individually in migration.
  5375. */
  5376. if (PageHuge(page)) {
  5377. iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
  5378. continue;
  5379. }
  5380. /*
  5381. * We can't use page_count without pin a page
  5382. * because another CPU can free compound page.
  5383. * This check already skips compound tails of THP
  5384. * because their page->_count is zero at all time.
  5385. */
  5386. if (!atomic_read(&page->_count)) {
  5387. if (PageBuddy(page))
  5388. iter += (1 << page_order(page)) - 1;
  5389. continue;
  5390. }
  5391. /*
  5392. * The HWPoisoned page may be not in buddy system, and
  5393. * page_count() is not 0.
  5394. */
  5395. if (skip_hwpoisoned_pages && PageHWPoison(page))
  5396. continue;
  5397. if (!PageLRU(page))
  5398. found++;
  5399. /*
  5400. * If there are RECLAIMABLE pages, we need to check
  5401. * it. But now, memory offline itself doesn't call
  5402. * shrink_node_slabs() and it still to be fixed.
  5403. */
  5404. /*
  5405. * If the page is not RAM, page_count()should be 0.
  5406. * we don't need more check. This is an _used_ not-movable page.
  5407. *
  5408. * The problematic thing here is PG_reserved pages. PG_reserved
  5409. * is set to both of a memory hole page and a _used_ kernel
  5410. * page at boot.
  5411. */
  5412. if (found > count)
  5413. return true;
  5414. }
  5415. return false;
  5416. }
  5417. bool is_pageblock_removable_nolock(struct page *page)
  5418. {
  5419. struct zone *zone;
  5420. unsigned long pfn;
  5421. /*
  5422. * We have to be careful here because we are iterating over memory
  5423. * sections which are not zone aware so we might end up outside of
  5424. * the zone but still within the section.
  5425. * We have to take care about the node as well. If the node is offline
  5426. * its NODE_DATA will be NULL - see page_zone.
  5427. */
  5428. if (!node_online(page_to_nid(page)))
  5429. return false;
  5430. zone = page_zone(page);
  5431. pfn = page_to_pfn(page);
  5432. if (!zone_spans_pfn(zone, pfn))
  5433. return false;
  5434. return !has_unmovable_pages(zone, page, 0, true);
  5435. }
  5436. #ifdef CONFIG_CMA
  5437. static unsigned long pfn_max_align_down(unsigned long pfn)
  5438. {
  5439. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5440. pageblock_nr_pages) - 1);
  5441. }
  5442. static unsigned long pfn_max_align_up(unsigned long pfn)
  5443. {
  5444. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5445. pageblock_nr_pages));
  5446. }
  5447. /* [start, end) must belong to a single zone. */
  5448. static int __alloc_contig_migrate_range(struct compact_control *cc,
  5449. unsigned long start, unsigned long end)
  5450. {
  5451. /* This function is based on compact_zone() from compaction.c. */
  5452. unsigned long nr_reclaimed;
  5453. unsigned long pfn = start;
  5454. unsigned int tries = 0;
  5455. int ret = 0;
  5456. migrate_prep();
  5457. while (pfn < end || !list_empty(&cc->migratepages)) {
  5458. if (fatal_signal_pending(current)) {
  5459. ret = -EINTR;
  5460. break;
  5461. }
  5462. if (list_empty(&cc->migratepages)) {
  5463. cc->nr_migratepages = 0;
  5464. pfn = isolate_migratepages_range(cc, pfn, end);
  5465. if (!pfn) {
  5466. ret = -EINTR;
  5467. break;
  5468. }
  5469. tries = 0;
  5470. } else if (++tries == 5) {
  5471. ret = ret < 0 ? ret : -EBUSY;
  5472. break;
  5473. }
  5474. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
  5475. &cc->migratepages);
  5476. cc->nr_migratepages -= nr_reclaimed;
  5477. ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
  5478. NULL, 0, cc->mode, MR_CMA);
  5479. }
  5480. if (ret < 0) {
  5481. putback_movable_pages(&cc->migratepages);
  5482. return ret;
  5483. }
  5484. return 0;
  5485. }
  5486. /**
  5487. * alloc_contig_range() -- tries to allocate given range of pages
  5488. * @start: start PFN to allocate
  5489. * @end: one-past-the-last PFN to allocate
  5490. * @migratetype: migratetype of the underlaying pageblocks (either
  5491. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  5492. * in range must have the same migratetype and it must
  5493. * be either of the two.
  5494. *
  5495. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  5496. * aligned, however it's the caller's responsibility to guarantee that
  5497. * we are the only thread that changes migrate type of pageblocks the
  5498. * pages fall in.
  5499. *
  5500. * The PFN range must belong to a single zone.
  5501. *
  5502. * Returns zero on success or negative error code. On success all
  5503. * pages which PFN is in [start, end) are allocated for the caller and
  5504. * need to be freed with free_contig_range().
  5505. */
  5506. int alloc_contig_range(unsigned long start, unsigned long end,
  5507. unsigned migratetype)
  5508. {
  5509. unsigned long outer_start, outer_end;
  5510. int ret = 0, order;
  5511. struct compact_control cc = {
  5512. .nr_migratepages = 0,
  5513. .order = -1,
  5514. .zone = page_zone(pfn_to_page(start)),
  5515. .mode = MIGRATE_SYNC,
  5516. .ignore_skip_hint = true,
  5517. };
  5518. INIT_LIST_HEAD(&cc.migratepages);
  5519. /*
  5520. * What we do here is we mark all pageblocks in range as
  5521. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  5522. * have different sizes, and due to the way page allocator
  5523. * work, we align the range to biggest of the two pages so
  5524. * that page allocator won't try to merge buddies from
  5525. * different pageblocks and change MIGRATE_ISOLATE to some
  5526. * other migration type.
  5527. *
  5528. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  5529. * migrate the pages from an unaligned range (ie. pages that
  5530. * we are interested in). This will put all the pages in
  5531. * range back to page allocator as MIGRATE_ISOLATE.
  5532. *
  5533. * When this is done, we take the pages in range from page
  5534. * allocator removing them from the buddy system. This way
  5535. * page allocator will never consider using them.
  5536. *
  5537. * This lets us mark the pageblocks back as
  5538. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  5539. * aligned range but not in the unaligned, original range are
  5540. * put back to page allocator so that buddy can use them.
  5541. */
  5542. ret = start_isolate_page_range(pfn_max_align_down(start),
  5543. pfn_max_align_up(end), migratetype,
  5544. false);
  5545. if (ret)
  5546. return ret;
  5547. ret = __alloc_contig_migrate_range(&cc, start, end);
  5548. if (ret)
  5549. goto done;
  5550. /*
  5551. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  5552. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  5553. * more, all pages in [start, end) are free in page allocator.
  5554. * What we are going to do is to allocate all pages from
  5555. * [start, end) (that is remove them from page allocator).
  5556. *
  5557. * The only problem is that pages at the beginning and at the
  5558. * end of interesting range may be not aligned with pages that
  5559. * page allocator holds, ie. they can be part of higher order
  5560. * pages. Because of this, we reserve the bigger range and
  5561. * once this is done free the pages we are not interested in.
  5562. *
  5563. * We don't have to hold zone->lock here because the pages are
  5564. * isolated thus they won't get removed from buddy.
  5565. */
  5566. lru_add_drain_all();
  5567. drain_all_pages(cc.zone);
  5568. order = 0;
  5569. outer_start = start;
  5570. while (!PageBuddy(pfn_to_page(outer_start))) {
  5571. if (++order >= MAX_ORDER) {
  5572. ret = -EBUSY;
  5573. goto done;
  5574. }
  5575. outer_start &= ~0UL << order;
  5576. }
  5577. /* Make sure the range is really isolated. */
  5578. if (test_pages_isolated(outer_start, end, false)) {
  5579. pr_info("%s: [%lx, %lx) PFNs busy\n",
  5580. __func__, outer_start, end);
  5581. ret = -EBUSY;
  5582. goto done;
  5583. }
  5584. /* Grab isolated pages from freelists. */
  5585. outer_end = isolate_freepages_range(&cc, outer_start, end);
  5586. if (!outer_end) {
  5587. ret = -EBUSY;
  5588. goto done;
  5589. }
  5590. /* Free head and tail (if any) */
  5591. if (start != outer_start)
  5592. free_contig_range(outer_start, start - outer_start);
  5593. if (end != outer_end)
  5594. free_contig_range(end, outer_end - end);
  5595. done:
  5596. undo_isolate_page_range(pfn_max_align_down(start),
  5597. pfn_max_align_up(end), migratetype);
  5598. return ret;
  5599. }
  5600. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  5601. {
  5602. unsigned int count = 0;
  5603. for (; nr_pages--; pfn++) {
  5604. struct page *page = pfn_to_page(pfn);
  5605. count += page_count(page) != 1;
  5606. __free_page(page);
  5607. }
  5608. WARN(count != 0, "%d pages are still in use!\n", count);
  5609. }
  5610. #endif
  5611. #ifdef CONFIG_MEMORY_HOTPLUG
  5612. /*
  5613. * The zone indicated has a new number of managed_pages; batch sizes and percpu
  5614. * page high values need to be recalulated.
  5615. */
  5616. void __meminit zone_pcp_update(struct zone *zone)
  5617. {
  5618. unsigned cpu;
  5619. mutex_lock(&pcp_batch_high_lock);
  5620. for_each_possible_cpu(cpu)
  5621. pageset_set_high_and_batch(zone,
  5622. per_cpu_ptr(zone->pageset, cpu));
  5623. mutex_unlock(&pcp_batch_high_lock);
  5624. }
  5625. #endif
  5626. void zone_pcp_reset(struct zone *zone)
  5627. {
  5628. unsigned long flags;
  5629. int cpu;
  5630. struct per_cpu_pageset *pset;
  5631. /* avoid races with drain_pages() */
  5632. local_irq_save(flags);
  5633. if (zone->pageset != &boot_pageset) {
  5634. for_each_online_cpu(cpu) {
  5635. pset = per_cpu_ptr(zone->pageset, cpu);
  5636. drain_zonestat(zone, pset);
  5637. }
  5638. free_percpu(zone->pageset);
  5639. zone->pageset = &boot_pageset;
  5640. }
  5641. local_irq_restore(flags);
  5642. }
  5643. #ifdef CONFIG_MEMORY_HOTREMOVE
  5644. /*
  5645. * All pages in the range must be isolated before calling this.
  5646. */
  5647. void
  5648. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  5649. {
  5650. struct page *page;
  5651. struct zone *zone;
  5652. unsigned int order, i;
  5653. unsigned long pfn;
  5654. unsigned long flags;
  5655. /* find the first valid pfn */
  5656. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  5657. if (pfn_valid(pfn))
  5658. break;
  5659. if (pfn == end_pfn)
  5660. return;
  5661. zone = page_zone(pfn_to_page(pfn));
  5662. spin_lock_irqsave(&zone->lock, flags);
  5663. pfn = start_pfn;
  5664. while (pfn < end_pfn) {
  5665. if (!pfn_valid(pfn)) {
  5666. pfn++;
  5667. continue;
  5668. }
  5669. page = pfn_to_page(pfn);
  5670. /*
  5671. * The HWPoisoned page may be not in buddy system, and
  5672. * page_count() is not 0.
  5673. */
  5674. if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
  5675. pfn++;
  5676. SetPageReserved(page);
  5677. continue;
  5678. }
  5679. BUG_ON(page_count(page));
  5680. BUG_ON(!PageBuddy(page));
  5681. order = page_order(page);
  5682. #ifdef CONFIG_DEBUG_VM
  5683. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  5684. pfn, 1 << order, end_pfn);
  5685. #endif
  5686. list_del(&page->lru);
  5687. rmv_page_order(page);
  5688. zone->free_area[order].nr_free--;
  5689. for (i = 0; i < (1 << order); i++)
  5690. SetPageReserved((page+i));
  5691. pfn += (1 << order);
  5692. }
  5693. spin_unlock_irqrestore(&zone->lock, flags);
  5694. }
  5695. #endif
  5696. #ifdef CONFIG_MEMORY_FAILURE
  5697. bool is_free_buddy_page(struct page *page)
  5698. {
  5699. struct zone *zone = page_zone(page);
  5700. unsigned long pfn = page_to_pfn(page);
  5701. unsigned long flags;
  5702. unsigned int order;
  5703. spin_lock_irqsave(&zone->lock, flags);
  5704. for (order = 0; order < MAX_ORDER; order++) {
  5705. struct page *page_head = page - (pfn & ((1 << order) - 1));
  5706. if (PageBuddy(page_head) && page_order(page_head) >= order)
  5707. break;
  5708. }
  5709. spin_unlock_irqrestore(&zone->lock, flags);
  5710. return order < MAX_ORDER;
  5711. }
  5712. #endif