vmalloc.c 68 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720
  1. /*
  2. * linux/mm/vmalloc.c
  3. *
  4. * Copyright (C) 1993 Linus Torvalds
  5. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  6. * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
  7. * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
  8. * Numa awareness, Christoph Lameter, SGI, June 2005
  9. */
  10. #include <linux/vmalloc.h>
  11. #include <linux/mm.h>
  12. #include <linux/module.h>
  13. #include <linux/highmem.h>
  14. #include <linux/sched.h>
  15. #include <linux/slab.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/debugobjects.h>
  21. #include <linux/kallsyms.h>
  22. #include <linux/list.h>
  23. #include <linux/rbtree.h>
  24. #include <linux/radix-tree.h>
  25. #include <linux/rcupdate.h>
  26. #include <linux/pfn.h>
  27. #include <linux/kmemleak.h>
  28. #include <linux/atomic.h>
  29. #include <linux/compiler.h>
  30. #include <linux/llist.h>
  31. #include <linux/bitops.h>
  32. #include <asm/uaccess.h>
  33. #include <asm/tlbflush.h>
  34. #include <asm/shmparam.h>
  35. struct vfree_deferred {
  36. struct llist_head list;
  37. struct work_struct wq;
  38. };
  39. static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  40. static void __vunmap(const void *, int);
  41. static void free_work(struct work_struct *w)
  42. {
  43. struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  44. struct llist_node *llnode = llist_del_all(&p->list);
  45. while (llnode) {
  46. void *p = llnode;
  47. llnode = llist_next(llnode);
  48. __vunmap(p, 1);
  49. }
  50. }
  51. /*** Page table manipulation functions ***/
  52. static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  53. {
  54. pte_t *pte;
  55. pte = pte_offset_kernel(pmd, addr);
  56. do {
  57. pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  58. WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  59. } while (pte++, addr += PAGE_SIZE, addr != end);
  60. }
  61. static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  62. {
  63. pmd_t *pmd;
  64. unsigned long next;
  65. pmd = pmd_offset(pud, addr);
  66. do {
  67. next = pmd_addr_end(addr, end);
  68. if (pmd_none_or_clear_bad(pmd))
  69. continue;
  70. vunmap_pte_range(pmd, addr, next);
  71. } while (pmd++, addr = next, addr != end);
  72. }
  73. static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  74. {
  75. pud_t *pud;
  76. unsigned long next;
  77. pud = pud_offset(pgd, addr);
  78. do {
  79. next = pud_addr_end(addr, end);
  80. if (pud_none_or_clear_bad(pud))
  81. continue;
  82. vunmap_pmd_range(pud, addr, next);
  83. } while (pud++, addr = next, addr != end);
  84. }
  85. static void vunmap_page_range(unsigned long addr, unsigned long end)
  86. {
  87. pgd_t *pgd;
  88. unsigned long next;
  89. BUG_ON(addr >= end);
  90. pgd = pgd_offset_k(addr);
  91. do {
  92. next = pgd_addr_end(addr, end);
  93. if (pgd_none_or_clear_bad(pgd))
  94. continue;
  95. vunmap_pud_range(pgd, addr, next);
  96. } while (pgd++, addr = next, addr != end);
  97. }
  98. static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
  99. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  100. {
  101. pte_t *pte;
  102. /*
  103. * nr is a running index into the array which helps higher level
  104. * callers keep track of where we're up to.
  105. */
  106. pte = pte_alloc_kernel(pmd, addr);
  107. if (!pte)
  108. return -ENOMEM;
  109. do {
  110. struct page *page = pages[*nr];
  111. if (WARN_ON(!pte_none(*pte)))
  112. return -EBUSY;
  113. if (WARN_ON(!page))
  114. return -ENOMEM;
  115. set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
  116. (*nr)++;
  117. } while (pte++, addr += PAGE_SIZE, addr != end);
  118. return 0;
  119. }
  120. static int vmap_pmd_range(pud_t *pud, unsigned long addr,
  121. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  122. {
  123. pmd_t *pmd;
  124. unsigned long next;
  125. pmd = pmd_alloc(&init_mm, pud, addr);
  126. if (!pmd)
  127. return -ENOMEM;
  128. do {
  129. next = pmd_addr_end(addr, end);
  130. if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
  131. return -ENOMEM;
  132. } while (pmd++, addr = next, addr != end);
  133. return 0;
  134. }
  135. static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
  136. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  137. {
  138. pud_t *pud;
  139. unsigned long next;
  140. pud = pud_alloc(&init_mm, pgd, addr);
  141. if (!pud)
  142. return -ENOMEM;
  143. do {
  144. next = pud_addr_end(addr, end);
  145. if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
  146. return -ENOMEM;
  147. } while (pud++, addr = next, addr != end);
  148. return 0;
  149. }
  150. /*
  151. * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
  152. * will have pfns corresponding to the "pages" array.
  153. *
  154. * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
  155. */
  156. static int vmap_page_range_noflush(unsigned long start, unsigned long end,
  157. pgprot_t prot, struct page **pages)
  158. {
  159. pgd_t *pgd;
  160. unsigned long next;
  161. unsigned long addr = start;
  162. int err = 0;
  163. int nr = 0;
  164. BUG_ON(addr >= end);
  165. pgd = pgd_offset_k(addr);
  166. do {
  167. next = pgd_addr_end(addr, end);
  168. err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
  169. if (err)
  170. return err;
  171. } while (pgd++, addr = next, addr != end);
  172. return nr;
  173. }
  174. static int vmap_page_range(unsigned long start, unsigned long end,
  175. pgprot_t prot, struct page **pages)
  176. {
  177. int ret;
  178. ret = vmap_page_range_noflush(start, end, prot, pages);
  179. flush_cache_vmap(start, end);
  180. return ret;
  181. }
  182. int is_vmalloc_or_module_addr(const void *x)
  183. {
  184. /*
  185. * ARM, x86-64 and sparc64 put modules in a special place,
  186. * and fall back on vmalloc() if that fails. Others
  187. * just put it in the vmalloc space.
  188. */
  189. #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
  190. unsigned long addr = (unsigned long)x;
  191. if (addr >= MODULES_VADDR && addr < MODULES_END)
  192. return 1;
  193. #endif
  194. return is_vmalloc_addr(x);
  195. }
  196. /*
  197. * Walk a vmap address to the struct page it maps.
  198. */
  199. struct page *vmalloc_to_page(const void *vmalloc_addr)
  200. {
  201. unsigned long addr = (unsigned long) vmalloc_addr;
  202. struct page *page = NULL;
  203. pgd_t *pgd = pgd_offset_k(addr);
  204. /*
  205. * XXX we might need to change this if we add VIRTUAL_BUG_ON for
  206. * architectures that do not vmalloc module space
  207. */
  208. VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
  209. if (!pgd_none(*pgd)) {
  210. pud_t *pud = pud_offset(pgd, addr);
  211. if (!pud_none(*pud)) {
  212. pmd_t *pmd = pmd_offset(pud, addr);
  213. if (!pmd_none(*pmd)) {
  214. pte_t *ptep, pte;
  215. ptep = pte_offset_map(pmd, addr);
  216. pte = *ptep;
  217. if (pte_present(pte))
  218. page = pte_page(pte);
  219. pte_unmap(ptep);
  220. }
  221. }
  222. }
  223. return page;
  224. }
  225. EXPORT_SYMBOL(vmalloc_to_page);
  226. /*
  227. * Map a vmalloc()-space virtual address to the physical page frame number.
  228. */
  229. unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
  230. {
  231. return page_to_pfn(vmalloc_to_page(vmalloc_addr));
  232. }
  233. EXPORT_SYMBOL(vmalloc_to_pfn);
  234. /*** Global kva allocator ***/
  235. #define VM_LAZY_FREE 0x01
  236. #define VM_LAZY_FREEING 0x02
  237. #define VM_VM_AREA 0x04
  238. static DEFINE_SPINLOCK(vmap_area_lock);
  239. /* Export for kexec only */
  240. LIST_HEAD(vmap_area_list);
  241. static struct rb_root vmap_area_root = RB_ROOT;
  242. /* The vmap cache globals are protected by vmap_area_lock */
  243. static struct rb_node *free_vmap_cache;
  244. static unsigned long cached_hole_size;
  245. static unsigned long cached_vstart;
  246. static unsigned long cached_align;
  247. static unsigned long vmap_area_pcpu_hole;
  248. static struct vmap_area *__find_vmap_area(unsigned long addr)
  249. {
  250. struct rb_node *n = vmap_area_root.rb_node;
  251. while (n) {
  252. struct vmap_area *va;
  253. va = rb_entry(n, struct vmap_area, rb_node);
  254. if (addr < va->va_start)
  255. n = n->rb_left;
  256. else if (addr >= va->va_end)
  257. n = n->rb_right;
  258. else
  259. return va;
  260. }
  261. return NULL;
  262. }
  263. static void __insert_vmap_area(struct vmap_area *va)
  264. {
  265. struct rb_node **p = &vmap_area_root.rb_node;
  266. struct rb_node *parent = NULL;
  267. struct rb_node *tmp;
  268. while (*p) {
  269. struct vmap_area *tmp_va;
  270. parent = *p;
  271. tmp_va = rb_entry(parent, struct vmap_area, rb_node);
  272. if (va->va_start < tmp_va->va_end)
  273. p = &(*p)->rb_left;
  274. else if (va->va_end > tmp_va->va_start)
  275. p = &(*p)->rb_right;
  276. else
  277. BUG();
  278. }
  279. rb_link_node(&va->rb_node, parent, p);
  280. rb_insert_color(&va->rb_node, &vmap_area_root);
  281. /* address-sort this list */
  282. tmp = rb_prev(&va->rb_node);
  283. if (tmp) {
  284. struct vmap_area *prev;
  285. prev = rb_entry(tmp, struct vmap_area, rb_node);
  286. list_add_rcu(&va->list, &prev->list);
  287. } else
  288. list_add_rcu(&va->list, &vmap_area_list);
  289. }
  290. static void purge_vmap_area_lazy(void);
  291. /*
  292. * Allocate a region of KVA of the specified size and alignment, within the
  293. * vstart and vend.
  294. */
  295. static struct vmap_area *alloc_vmap_area(unsigned long size,
  296. unsigned long align,
  297. unsigned long vstart, unsigned long vend,
  298. int node, gfp_t gfp_mask)
  299. {
  300. struct vmap_area *va;
  301. struct rb_node *n;
  302. unsigned long addr;
  303. int purged = 0;
  304. struct vmap_area *first;
  305. BUG_ON(!size);
  306. BUG_ON(size & ~PAGE_MASK);
  307. BUG_ON(!is_power_of_2(align));
  308. va = kmalloc_node(sizeof(struct vmap_area),
  309. gfp_mask & GFP_RECLAIM_MASK, node);
  310. if (unlikely(!va))
  311. return ERR_PTR(-ENOMEM);
  312. /*
  313. * Only scan the relevant parts containing pointers to other objects
  314. * to avoid false negatives.
  315. */
  316. kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
  317. retry:
  318. spin_lock(&vmap_area_lock);
  319. /*
  320. * Invalidate cache if we have more permissive parameters.
  321. * cached_hole_size notes the largest hole noticed _below_
  322. * the vmap_area cached in free_vmap_cache: if size fits
  323. * into that hole, we want to scan from vstart to reuse
  324. * the hole instead of allocating above free_vmap_cache.
  325. * Note that __free_vmap_area may update free_vmap_cache
  326. * without updating cached_hole_size or cached_align.
  327. */
  328. if (!free_vmap_cache ||
  329. size < cached_hole_size ||
  330. vstart < cached_vstart ||
  331. align < cached_align) {
  332. nocache:
  333. cached_hole_size = 0;
  334. free_vmap_cache = NULL;
  335. }
  336. /* record if we encounter less permissive parameters */
  337. cached_vstart = vstart;
  338. cached_align = align;
  339. /* find starting point for our search */
  340. if (free_vmap_cache) {
  341. first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
  342. addr = ALIGN(first->va_end, align);
  343. if (addr < vstart)
  344. goto nocache;
  345. if (addr + size < addr)
  346. goto overflow;
  347. } else {
  348. addr = ALIGN(vstart, align);
  349. if (addr + size < addr)
  350. goto overflow;
  351. n = vmap_area_root.rb_node;
  352. first = NULL;
  353. while (n) {
  354. struct vmap_area *tmp;
  355. tmp = rb_entry(n, struct vmap_area, rb_node);
  356. if (tmp->va_end >= addr) {
  357. first = tmp;
  358. if (tmp->va_start <= addr)
  359. break;
  360. n = n->rb_left;
  361. } else
  362. n = n->rb_right;
  363. }
  364. if (!first)
  365. goto found;
  366. }
  367. /* from the starting point, walk areas until a suitable hole is found */
  368. while (addr + size > first->va_start && addr + size <= vend) {
  369. if (addr + cached_hole_size < first->va_start)
  370. cached_hole_size = first->va_start - addr;
  371. addr = ALIGN(first->va_end, align);
  372. if (addr + size < addr)
  373. goto overflow;
  374. if (list_is_last(&first->list, &vmap_area_list))
  375. goto found;
  376. first = list_entry(first->list.next,
  377. struct vmap_area, list);
  378. }
  379. found:
  380. if (addr + size > vend)
  381. goto overflow;
  382. va->va_start = addr;
  383. va->va_end = addr + size;
  384. va->flags = 0;
  385. __insert_vmap_area(va);
  386. free_vmap_cache = &va->rb_node;
  387. spin_unlock(&vmap_area_lock);
  388. BUG_ON(va->va_start & (align-1));
  389. BUG_ON(va->va_start < vstart);
  390. BUG_ON(va->va_end > vend);
  391. return va;
  392. overflow:
  393. spin_unlock(&vmap_area_lock);
  394. if (!purged) {
  395. purge_vmap_area_lazy();
  396. purged = 1;
  397. goto retry;
  398. }
  399. if (printk_ratelimit())
  400. pr_warn("vmap allocation for size %lu failed: "
  401. "use vmalloc=<size> to increase size.\n", size);
  402. kfree(va);
  403. return ERR_PTR(-EBUSY);
  404. }
  405. static void __free_vmap_area(struct vmap_area *va)
  406. {
  407. BUG_ON(RB_EMPTY_NODE(&va->rb_node));
  408. if (free_vmap_cache) {
  409. if (va->va_end < cached_vstart) {
  410. free_vmap_cache = NULL;
  411. } else {
  412. struct vmap_area *cache;
  413. cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
  414. if (va->va_start <= cache->va_start) {
  415. free_vmap_cache = rb_prev(&va->rb_node);
  416. /*
  417. * We don't try to update cached_hole_size or
  418. * cached_align, but it won't go very wrong.
  419. */
  420. }
  421. }
  422. }
  423. rb_erase(&va->rb_node, &vmap_area_root);
  424. RB_CLEAR_NODE(&va->rb_node);
  425. list_del_rcu(&va->list);
  426. /*
  427. * Track the highest possible candidate for pcpu area
  428. * allocation. Areas outside of vmalloc area can be returned
  429. * here too, consider only end addresses which fall inside
  430. * vmalloc area proper.
  431. */
  432. if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
  433. vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
  434. kfree_rcu(va, rcu_head);
  435. }
  436. /*
  437. * Free a region of KVA allocated by alloc_vmap_area
  438. */
  439. static void free_vmap_area(struct vmap_area *va)
  440. {
  441. spin_lock(&vmap_area_lock);
  442. __free_vmap_area(va);
  443. spin_unlock(&vmap_area_lock);
  444. }
  445. /*
  446. * Clear the pagetable entries of a given vmap_area
  447. */
  448. static void unmap_vmap_area(struct vmap_area *va)
  449. {
  450. vunmap_page_range(va->va_start, va->va_end);
  451. }
  452. static void vmap_debug_free_range(unsigned long start, unsigned long end)
  453. {
  454. /*
  455. * Unmap page tables and force a TLB flush immediately if
  456. * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
  457. * bugs similarly to those in linear kernel virtual address
  458. * space after a page has been freed.
  459. *
  460. * All the lazy freeing logic is still retained, in order to
  461. * minimise intrusiveness of this debugging feature.
  462. *
  463. * This is going to be *slow* (linear kernel virtual address
  464. * debugging doesn't do a broadcast TLB flush so it is a lot
  465. * faster).
  466. */
  467. #ifdef CONFIG_DEBUG_PAGEALLOC
  468. vunmap_page_range(start, end);
  469. flush_tlb_kernel_range(start, end);
  470. #endif
  471. }
  472. /*
  473. * lazy_max_pages is the maximum amount of virtual address space we gather up
  474. * before attempting to purge with a TLB flush.
  475. *
  476. * There is a tradeoff here: a larger number will cover more kernel page tables
  477. * and take slightly longer to purge, but it will linearly reduce the number of
  478. * global TLB flushes that must be performed. It would seem natural to scale
  479. * this number up linearly with the number of CPUs (because vmapping activity
  480. * could also scale linearly with the number of CPUs), however it is likely
  481. * that in practice, workloads might be constrained in other ways that mean
  482. * vmap activity will not scale linearly with CPUs. Also, I want to be
  483. * conservative and not introduce a big latency on huge systems, so go with
  484. * a less aggressive log scale. It will still be an improvement over the old
  485. * code, and it will be simple to change the scale factor if we find that it
  486. * becomes a problem on bigger systems.
  487. */
  488. static unsigned long lazy_max_pages(void)
  489. {
  490. unsigned int log;
  491. log = fls(num_online_cpus());
  492. return log * (32UL * 1024 * 1024 / PAGE_SIZE);
  493. }
  494. static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
  495. /* for per-CPU blocks */
  496. static void purge_fragmented_blocks_allcpus(void);
  497. /*
  498. * called before a call to iounmap() if the caller wants vm_area_struct's
  499. * immediately freed.
  500. */
  501. void set_iounmap_nonlazy(void)
  502. {
  503. atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
  504. }
  505. /*
  506. * Purges all lazily-freed vmap areas.
  507. *
  508. * If sync is 0 then don't purge if there is already a purge in progress.
  509. * If force_flush is 1, then flush kernel TLBs between *start and *end even
  510. * if we found no lazy vmap areas to unmap (callers can use this to optimise
  511. * their own TLB flushing).
  512. * Returns with *start = min(*start, lowest purged address)
  513. * *end = max(*end, highest purged address)
  514. */
  515. static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
  516. int sync, int force_flush)
  517. {
  518. static DEFINE_SPINLOCK(purge_lock);
  519. LIST_HEAD(valist);
  520. struct vmap_area *va;
  521. struct vmap_area *n_va;
  522. int nr = 0;
  523. /*
  524. * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
  525. * should not expect such behaviour. This just simplifies locking for
  526. * the case that isn't actually used at the moment anyway.
  527. */
  528. if (!sync && !force_flush) {
  529. if (!spin_trylock(&purge_lock))
  530. return;
  531. } else
  532. spin_lock(&purge_lock);
  533. if (sync)
  534. purge_fragmented_blocks_allcpus();
  535. rcu_read_lock();
  536. list_for_each_entry_rcu(va, &vmap_area_list, list) {
  537. if (va->flags & VM_LAZY_FREE) {
  538. if (va->va_start < *start)
  539. *start = va->va_start;
  540. if (va->va_end > *end)
  541. *end = va->va_end;
  542. nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
  543. list_add_tail(&va->purge_list, &valist);
  544. va->flags |= VM_LAZY_FREEING;
  545. va->flags &= ~VM_LAZY_FREE;
  546. }
  547. }
  548. rcu_read_unlock();
  549. if (nr)
  550. atomic_sub(nr, &vmap_lazy_nr);
  551. if (nr || force_flush)
  552. flush_tlb_kernel_range(*start, *end);
  553. if (nr) {
  554. spin_lock(&vmap_area_lock);
  555. list_for_each_entry_safe(va, n_va, &valist, purge_list)
  556. __free_vmap_area(va);
  557. spin_unlock(&vmap_area_lock);
  558. }
  559. spin_unlock(&purge_lock);
  560. }
  561. /*
  562. * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
  563. * is already purging.
  564. */
  565. static void try_purge_vmap_area_lazy(void)
  566. {
  567. unsigned long start = ULONG_MAX, end = 0;
  568. __purge_vmap_area_lazy(&start, &end, 0, 0);
  569. }
  570. /*
  571. * Kick off a purge of the outstanding lazy areas.
  572. */
  573. static void purge_vmap_area_lazy(void)
  574. {
  575. unsigned long start = ULONG_MAX, end = 0;
  576. __purge_vmap_area_lazy(&start, &end, 1, 0);
  577. }
  578. /*
  579. * Free a vmap area, caller ensuring that the area has been unmapped
  580. * and flush_cache_vunmap had been called for the correct range
  581. * previously.
  582. */
  583. static void free_vmap_area_noflush(struct vmap_area *va)
  584. {
  585. va->flags |= VM_LAZY_FREE;
  586. atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
  587. if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
  588. try_purge_vmap_area_lazy();
  589. }
  590. /*
  591. * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
  592. * called for the correct range previously.
  593. */
  594. static void free_unmap_vmap_area_noflush(struct vmap_area *va)
  595. {
  596. unmap_vmap_area(va);
  597. free_vmap_area_noflush(va);
  598. }
  599. /*
  600. * Free and unmap a vmap area
  601. */
  602. static void free_unmap_vmap_area(struct vmap_area *va)
  603. {
  604. flush_cache_vunmap(va->va_start, va->va_end);
  605. free_unmap_vmap_area_noflush(va);
  606. }
  607. static struct vmap_area *find_vmap_area(unsigned long addr)
  608. {
  609. struct vmap_area *va;
  610. spin_lock(&vmap_area_lock);
  611. va = __find_vmap_area(addr);
  612. spin_unlock(&vmap_area_lock);
  613. return va;
  614. }
  615. static void free_unmap_vmap_area_addr(unsigned long addr)
  616. {
  617. struct vmap_area *va;
  618. va = find_vmap_area(addr);
  619. BUG_ON(!va);
  620. free_unmap_vmap_area(va);
  621. }
  622. /*** Per cpu kva allocator ***/
  623. /*
  624. * vmap space is limited especially on 32 bit architectures. Ensure there is
  625. * room for at least 16 percpu vmap blocks per CPU.
  626. */
  627. /*
  628. * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
  629. * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
  630. * instead (we just need a rough idea)
  631. */
  632. #if BITS_PER_LONG == 32
  633. #define VMALLOC_SPACE (128UL*1024*1024)
  634. #else
  635. #define VMALLOC_SPACE (128UL*1024*1024*1024)
  636. #endif
  637. #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
  638. #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
  639. #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
  640. #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
  641. #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
  642. #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
  643. #define VMAP_BBMAP_BITS \
  644. VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
  645. VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
  646. VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
  647. #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
  648. static bool vmap_initialized __read_mostly = false;
  649. struct vmap_block_queue {
  650. spinlock_t lock;
  651. struct list_head free;
  652. };
  653. struct vmap_block {
  654. spinlock_t lock;
  655. struct vmap_area *va;
  656. unsigned long free, dirty;
  657. DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
  658. struct list_head free_list;
  659. struct rcu_head rcu_head;
  660. struct list_head purge;
  661. };
  662. /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
  663. static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
  664. /*
  665. * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
  666. * in the free path. Could get rid of this if we change the API to return a
  667. * "cookie" from alloc, to be passed to free. But no big deal yet.
  668. */
  669. static DEFINE_SPINLOCK(vmap_block_tree_lock);
  670. static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
  671. /*
  672. * We should probably have a fallback mechanism to allocate virtual memory
  673. * out of partially filled vmap blocks. However vmap block sizing should be
  674. * fairly reasonable according to the vmalloc size, so it shouldn't be a
  675. * big problem.
  676. */
  677. static unsigned long addr_to_vb_idx(unsigned long addr)
  678. {
  679. addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
  680. addr /= VMAP_BLOCK_SIZE;
  681. return addr;
  682. }
  683. static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
  684. {
  685. struct vmap_block_queue *vbq;
  686. struct vmap_block *vb;
  687. struct vmap_area *va;
  688. unsigned long vb_idx;
  689. int node, err;
  690. node = numa_node_id();
  691. vb = kmalloc_node(sizeof(struct vmap_block),
  692. gfp_mask & GFP_RECLAIM_MASK, node);
  693. if (unlikely(!vb))
  694. return ERR_PTR(-ENOMEM);
  695. va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
  696. VMALLOC_START, VMALLOC_END,
  697. node, gfp_mask);
  698. if (IS_ERR(va)) {
  699. kfree(vb);
  700. return ERR_CAST(va);
  701. }
  702. err = radix_tree_preload(gfp_mask);
  703. if (unlikely(err)) {
  704. kfree(vb);
  705. free_vmap_area(va);
  706. return ERR_PTR(err);
  707. }
  708. spin_lock_init(&vb->lock);
  709. vb->va = va;
  710. vb->free = VMAP_BBMAP_BITS;
  711. vb->dirty = 0;
  712. bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
  713. INIT_LIST_HEAD(&vb->free_list);
  714. vb_idx = addr_to_vb_idx(va->va_start);
  715. spin_lock(&vmap_block_tree_lock);
  716. err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
  717. spin_unlock(&vmap_block_tree_lock);
  718. BUG_ON(err);
  719. radix_tree_preload_end();
  720. vbq = &get_cpu_var(vmap_block_queue);
  721. spin_lock(&vbq->lock);
  722. list_add_rcu(&vb->free_list, &vbq->free);
  723. spin_unlock(&vbq->lock);
  724. put_cpu_var(vmap_block_queue);
  725. return vb;
  726. }
  727. static void free_vmap_block(struct vmap_block *vb)
  728. {
  729. struct vmap_block *tmp;
  730. unsigned long vb_idx;
  731. vb_idx = addr_to_vb_idx(vb->va->va_start);
  732. spin_lock(&vmap_block_tree_lock);
  733. tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
  734. spin_unlock(&vmap_block_tree_lock);
  735. BUG_ON(tmp != vb);
  736. free_vmap_area_noflush(vb->va);
  737. kfree_rcu(vb, rcu_head);
  738. }
  739. static void purge_fragmented_blocks(int cpu)
  740. {
  741. LIST_HEAD(purge);
  742. struct vmap_block *vb;
  743. struct vmap_block *n_vb;
  744. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  745. rcu_read_lock();
  746. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  747. if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
  748. continue;
  749. spin_lock(&vb->lock);
  750. if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
  751. vb->free = 0; /* prevent further allocs after releasing lock */
  752. vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
  753. bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
  754. spin_lock(&vbq->lock);
  755. list_del_rcu(&vb->free_list);
  756. spin_unlock(&vbq->lock);
  757. spin_unlock(&vb->lock);
  758. list_add_tail(&vb->purge, &purge);
  759. } else
  760. spin_unlock(&vb->lock);
  761. }
  762. rcu_read_unlock();
  763. list_for_each_entry_safe(vb, n_vb, &purge, purge) {
  764. list_del(&vb->purge);
  765. free_vmap_block(vb);
  766. }
  767. }
  768. static void purge_fragmented_blocks_allcpus(void)
  769. {
  770. int cpu;
  771. for_each_possible_cpu(cpu)
  772. purge_fragmented_blocks(cpu);
  773. }
  774. static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
  775. {
  776. struct vmap_block_queue *vbq;
  777. struct vmap_block *vb;
  778. unsigned long addr = 0;
  779. unsigned int order;
  780. BUG_ON(size & ~PAGE_MASK);
  781. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  782. if (WARN_ON(size == 0)) {
  783. /*
  784. * Allocating 0 bytes isn't what caller wants since
  785. * get_order(0) returns funny result. Just warn and terminate
  786. * early.
  787. */
  788. return NULL;
  789. }
  790. order = get_order(size);
  791. again:
  792. rcu_read_lock();
  793. vbq = &get_cpu_var(vmap_block_queue);
  794. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  795. int i;
  796. spin_lock(&vb->lock);
  797. if (vb->free < 1UL << order)
  798. goto next;
  799. i = VMAP_BBMAP_BITS - vb->free;
  800. addr = vb->va->va_start + (i << PAGE_SHIFT);
  801. BUG_ON(addr_to_vb_idx(addr) !=
  802. addr_to_vb_idx(vb->va->va_start));
  803. vb->free -= 1UL << order;
  804. if (vb->free == 0) {
  805. spin_lock(&vbq->lock);
  806. list_del_rcu(&vb->free_list);
  807. spin_unlock(&vbq->lock);
  808. }
  809. spin_unlock(&vb->lock);
  810. break;
  811. next:
  812. spin_unlock(&vb->lock);
  813. }
  814. put_cpu_var(vmap_block_queue);
  815. rcu_read_unlock();
  816. if (!addr) {
  817. vb = new_vmap_block(gfp_mask);
  818. if (IS_ERR(vb))
  819. return vb;
  820. goto again;
  821. }
  822. return (void *)addr;
  823. }
  824. static void vb_free(const void *addr, unsigned long size)
  825. {
  826. unsigned long offset;
  827. unsigned long vb_idx;
  828. unsigned int order;
  829. struct vmap_block *vb;
  830. BUG_ON(size & ~PAGE_MASK);
  831. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  832. flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
  833. order = get_order(size);
  834. offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
  835. vb_idx = addr_to_vb_idx((unsigned long)addr);
  836. rcu_read_lock();
  837. vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
  838. rcu_read_unlock();
  839. BUG_ON(!vb);
  840. vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
  841. spin_lock(&vb->lock);
  842. BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
  843. vb->dirty += 1UL << order;
  844. if (vb->dirty == VMAP_BBMAP_BITS) {
  845. BUG_ON(vb->free);
  846. spin_unlock(&vb->lock);
  847. free_vmap_block(vb);
  848. } else
  849. spin_unlock(&vb->lock);
  850. }
  851. /**
  852. * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
  853. *
  854. * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
  855. * to amortize TLB flushing overheads. What this means is that any page you
  856. * have now, may, in a former life, have been mapped into kernel virtual
  857. * address by the vmap layer and so there might be some CPUs with TLB entries
  858. * still referencing that page (additional to the regular 1:1 kernel mapping).
  859. *
  860. * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
  861. * be sure that none of the pages we have control over will have any aliases
  862. * from the vmap layer.
  863. */
  864. void vm_unmap_aliases(void)
  865. {
  866. unsigned long start = ULONG_MAX, end = 0;
  867. int cpu;
  868. int flush = 0;
  869. if (unlikely(!vmap_initialized))
  870. return;
  871. for_each_possible_cpu(cpu) {
  872. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  873. struct vmap_block *vb;
  874. rcu_read_lock();
  875. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  876. int i, j;
  877. spin_lock(&vb->lock);
  878. i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
  879. if (i < VMAP_BBMAP_BITS) {
  880. unsigned long s, e;
  881. j = find_last_bit(vb->dirty_map,
  882. VMAP_BBMAP_BITS);
  883. j = j + 1; /* need exclusive index */
  884. s = vb->va->va_start + (i << PAGE_SHIFT);
  885. e = vb->va->va_start + (j << PAGE_SHIFT);
  886. flush = 1;
  887. if (s < start)
  888. start = s;
  889. if (e > end)
  890. end = e;
  891. }
  892. spin_unlock(&vb->lock);
  893. }
  894. rcu_read_unlock();
  895. }
  896. __purge_vmap_area_lazy(&start, &end, 1, flush);
  897. }
  898. EXPORT_SYMBOL_GPL(vm_unmap_aliases);
  899. /**
  900. * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
  901. * @mem: the pointer returned by vm_map_ram
  902. * @count: the count passed to that vm_map_ram call (cannot unmap partial)
  903. */
  904. void vm_unmap_ram(const void *mem, unsigned int count)
  905. {
  906. unsigned long size = count << PAGE_SHIFT;
  907. unsigned long addr = (unsigned long)mem;
  908. BUG_ON(!addr);
  909. BUG_ON(addr < VMALLOC_START);
  910. BUG_ON(addr > VMALLOC_END);
  911. BUG_ON(addr & (PAGE_SIZE-1));
  912. debug_check_no_locks_freed(mem, size);
  913. vmap_debug_free_range(addr, addr+size);
  914. if (likely(count <= VMAP_MAX_ALLOC))
  915. vb_free(mem, size);
  916. else
  917. free_unmap_vmap_area_addr(addr);
  918. }
  919. EXPORT_SYMBOL(vm_unmap_ram);
  920. /**
  921. * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
  922. * @pages: an array of pointers to the pages to be mapped
  923. * @count: number of pages
  924. * @node: prefer to allocate data structures on this node
  925. * @prot: memory protection to use. PAGE_KERNEL for regular RAM
  926. *
  927. * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
  928. * faster than vmap so it's good. But if you mix long-life and short-life
  929. * objects with vm_map_ram(), it could consume lots of address space through
  930. * fragmentation (especially on a 32bit machine). You could see failures in
  931. * the end. Please use this function for short-lived objects.
  932. *
  933. * Returns: a pointer to the address that has been mapped, or %NULL on failure
  934. */
  935. void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
  936. {
  937. unsigned long size = count << PAGE_SHIFT;
  938. unsigned long addr;
  939. void *mem;
  940. if (likely(count <= VMAP_MAX_ALLOC)) {
  941. mem = vb_alloc(size, GFP_KERNEL);
  942. if (IS_ERR(mem))
  943. return NULL;
  944. addr = (unsigned long)mem;
  945. } else {
  946. struct vmap_area *va;
  947. va = alloc_vmap_area(size, PAGE_SIZE,
  948. VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
  949. if (IS_ERR(va))
  950. return NULL;
  951. addr = va->va_start;
  952. mem = (void *)addr;
  953. }
  954. if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
  955. vm_unmap_ram(mem, count);
  956. return NULL;
  957. }
  958. return mem;
  959. }
  960. EXPORT_SYMBOL(vm_map_ram);
  961. static struct vm_struct *vmlist __initdata;
  962. /**
  963. * vm_area_add_early - add vmap area early during boot
  964. * @vm: vm_struct to add
  965. *
  966. * This function is used to add fixed kernel vm area to vmlist before
  967. * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
  968. * should contain proper values and the other fields should be zero.
  969. *
  970. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  971. */
  972. void __init vm_area_add_early(struct vm_struct *vm)
  973. {
  974. struct vm_struct *tmp, **p;
  975. BUG_ON(vmap_initialized);
  976. for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
  977. if (tmp->addr >= vm->addr) {
  978. BUG_ON(tmp->addr < vm->addr + vm->size);
  979. break;
  980. } else
  981. BUG_ON(tmp->addr + tmp->size > vm->addr);
  982. }
  983. vm->next = *p;
  984. *p = vm;
  985. }
  986. /**
  987. * vm_area_register_early - register vmap area early during boot
  988. * @vm: vm_struct to register
  989. * @align: requested alignment
  990. *
  991. * This function is used to register kernel vm area before
  992. * vmalloc_init() is called. @vm->size and @vm->flags should contain
  993. * proper values on entry and other fields should be zero. On return,
  994. * vm->addr contains the allocated address.
  995. *
  996. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  997. */
  998. void __init vm_area_register_early(struct vm_struct *vm, size_t align)
  999. {
  1000. static size_t vm_init_off __initdata;
  1001. unsigned long addr;
  1002. addr = ALIGN(VMALLOC_START + vm_init_off, align);
  1003. vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
  1004. vm->addr = (void *)addr;
  1005. vm_area_add_early(vm);
  1006. }
  1007. void __init vmalloc_init(void)
  1008. {
  1009. struct vmap_area *va;
  1010. struct vm_struct *tmp;
  1011. int i;
  1012. for_each_possible_cpu(i) {
  1013. struct vmap_block_queue *vbq;
  1014. struct vfree_deferred *p;
  1015. vbq = &per_cpu(vmap_block_queue, i);
  1016. spin_lock_init(&vbq->lock);
  1017. INIT_LIST_HEAD(&vbq->free);
  1018. p = &per_cpu(vfree_deferred, i);
  1019. init_llist_head(&p->list);
  1020. INIT_WORK(&p->wq, free_work);
  1021. }
  1022. /* Import existing vmlist entries. */
  1023. for (tmp = vmlist; tmp; tmp = tmp->next) {
  1024. va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
  1025. va->flags = VM_VM_AREA;
  1026. va->va_start = (unsigned long)tmp->addr;
  1027. va->va_end = va->va_start + tmp->size;
  1028. va->vm = tmp;
  1029. __insert_vmap_area(va);
  1030. }
  1031. vmap_area_pcpu_hole = VMALLOC_END;
  1032. vmap_initialized = true;
  1033. }
  1034. /**
  1035. * map_kernel_range_noflush - map kernel VM area with the specified pages
  1036. * @addr: start of the VM area to map
  1037. * @size: size of the VM area to map
  1038. * @prot: page protection flags to use
  1039. * @pages: pages to map
  1040. *
  1041. * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
  1042. * specify should have been allocated using get_vm_area() and its
  1043. * friends.
  1044. *
  1045. * NOTE:
  1046. * This function does NOT do any cache flushing. The caller is
  1047. * responsible for calling flush_cache_vmap() on to-be-mapped areas
  1048. * before calling this function.
  1049. *
  1050. * RETURNS:
  1051. * The number of pages mapped on success, -errno on failure.
  1052. */
  1053. int map_kernel_range_noflush(unsigned long addr, unsigned long size,
  1054. pgprot_t prot, struct page **pages)
  1055. {
  1056. return vmap_page_range_noflush(addr, addr + size, prot, pages);
  1057. }
  1058. /**
  1059. * unmap_kernel_range_noflush - unmap kernel VM area
  1060. * @addr: start of the VM area to unmap
  1061. * @size: size of the VM area to unmap
  1062. *
  1063. * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
  1064. * specify should have been allocated using get_vm_area() and its
  1065. * friends.
  1066. *
  1067. * NOTE:
  1068. * This function does NOT do any cache flushing. The caller is
  1069. * responsible for calling flush_cache_vunmap() on to-be-mapped areas
  1070. * before calling this function and flush_tlb_kernel_range() after.
  1071. */
  1072. void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
  1073. {
  1074. vunmap_page_range(addr, addr + size);
  1075. }
  1076. EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
  1077. /**
  1078. * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
  1079. * @addr: start of the VM area to unmap
  1080. * @size: size of the VM area to unmap
  1081. *
  1082. * Similar to unmap_kernel_range_noflush() but flushes vcache before
  1083. * the unmapping and tlb after.
  1084. */
  1085. void unmap_kernel_range(unsigned long addr, unsigned long size)
  1086. {
  1087. unsigned long end = addr + size;
  1088. flush_cache_vunmap(addr, end);
  1089. vunmap_page_range(addr, end);
  1090. flush_tlb_kernel_range(addr, end);
  1091. }
  1092. EXPORT_SYMBOL_GPL(unmap_kernel_range);
  1093. int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
  1094. {
  1095. unsigned long addr = (unsigned long)area->addr;
  1096. unsigned long end = addr + get_vm_area_size(area);
  1097. int err;
  1098. err = vmap_page_range(addr, end, prot, pages);
  1099. return err > 0 ? 0 : err;
  1100. }
  1101. EXPORT_SYMBOL_GPL(map_vm_area);
  1102. static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
  1103. unsigned long flags, const void *caller)
  1104. {
  1105. spin_lock(&vmap_area_lock);
  1106. vm->flags = flags;
  1107. vm->addr = (void *)va->va_start;
  1108. vm->size = va->va_end - va->va_start;
  1109. vm->caller = caller;
  1110. va->vm = vm;
  1111. va->flags |= VM_VM_AREA;
  1112. spin_unlock(&vmap_area_lock);
  1113. }
  1114. static void clear_vm_uninitialized_flag(struct vm_struct *vm)
  1115. {
  1116. /*
  1117. * Before removing VM_UNINITIALIZED,
  1118. * we should make sure that vm has proper values.
  1119. * Pair with smp_rmb() in show_numa_info().
  1120. */
  1121. smp_wmb();
  1122. vm->flags &= ~VM_UNINITIALIZED;
  1123. }
  1124. static struct vm_struct *__get_vm_area_node(unsigned long size,
  1125. unsigned long align, unsigned long flags, unsigned long start,
  1126. unsigned long end, int node, gfp_t gfp_mask, const void *caller)
  1127. {
  1128. struct vmap_area *va;
  1129. struct vm_struct *area;
  1130. BUG_ON(in_interrupt());
  1131. if (flags & VM_IOREMAP)
  1132. align = 1ul << clamp_t(int, fls_long(size),
  1133. PAGE_SHIFT, IOREMAP_MAX_ORDER);
  1134. size = PAGE_ALIGN(size);
  1135. if (unlikely(!size))
  1136. return NULL;
  1137. area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
  1138. if (unlikely(!area))
  1139. return NULL;
  1140. if (!(flags & VM_NO_GUARD))
  1141. size += PAGE_SIZE;
  1142. va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
  1143. if (IS_ERR(va)) {
  1144. kfree(area);
  1145. return NULL;
  1146. }
  1147. setup_vmalloc_vm(area, va, flags, caller);
  1148. return area;
  1149. }
  1150. struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
  1151. unsigned long start, unsigned long end)
  1152. {
  1153. return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
  1154. GFP_KERNEL, __builtin_return_address(0));
  1155. }
  1156. EXPORT_SYMBOL_GPL(__get_vm_area);
  1157. struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
  1158. unsigned long start, unsigned long end,
  1159. const void *caller)
  1160. {
  1161. return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
  1162. GFP_KERNEL, caller);
  1163. }
  1164. /**
  1165. * get_vm_area - reserve a contiguous kernel virtual area
  1166. * @size: size of the area
  1167. * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
  1168. *
  1169. * Search an area of @size in the kernel virtual mapping area,
  1170. * and reserved it for out purposes. Returns the area descriptor
  1171. * on success or %NULL on failure.
  1172. */
  1173. struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
  1174. {
  1175. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1176. NUMA_NO_NODE, GFP_KERNEL,
  1177. __builtin_return_address(0));
  1178. }
  1179. struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
  1180. const void *caller)
  1181. {
  1182. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1183. NUMA_NO_NODE, GFP_KERNEL, caller);
  1184. }
  1185. /**
  1186. * find_vm_area - find a continuous kernel virtual area
  1187. * @addr: base address
  1188. *
  1189. * Search for the kernel VM area starting at @addr, and return it.
  1190. * It is up to the caller to do all required locking to keep the returned
  1191. * pointer valid.
  1192. */
  1193. struct vm_struct *find_vm_area(const void *addr)
  1194. {
  1195. struct vmap_area *va;
  1196. va = find_vmap_area((unsigned long)addr);
  1197. if (va && va->flags & VM_VM_AREA)
  1198. return va->vm;
  1199. return NULL;
  1200. }
  1201. /**
  1202. * remove_vm_area - find and remove a continuous kernel virtual area
  1203. * @addr: base address
  1204. *
  1205. * Search for the kernel VM area starting at @addr, and remove it.
  1206. * This function returns the found VM area, but using it is NOT safe
  1207. * on SMP machines, except for its size or flags.
  1208. */
  1209. struct vm_struct *remove_vm_area(const void *addr)
  1210. {
  1211. struct vmap_area *va;
  1212. va = find_vmap_area((unsigned long)addr);
  1213. if (va && va->flags & VM_VM_AREA) {
  1214. struct vm_struct *vm = va->vm;
  1215. spin_lock(&vmap_area_lock);
  1216. va->vm = NULL;
  1217. va->flags &= ~VM_VM_AREA;
  1218. spin_unlock(&vmap_area_lock);
  1219. vmap_debug_free_range(va->va_start, va->va_end);
  1220. kasan_free_shadow(vm);
  1221. free_unmap_vmap_area(va);
  1222. vm->size -= PAGE_SIZE;
  1223. return vm;
  1224. }
  1225. return NULL;
  1226. }
  1227. static void __vunmap(const void *addr, int deallocate_pages)
  1228. {
  1229. struct vm_struct *area;
  1230. if (!addr)
  1231. return;
  1232. if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
  1233. addr))
  1234. return;
  1235. area = remove_vm_area(addr);
  1236. if (unlikely(!area)) {
  1237. WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
  1238. addr);
  1239. return;
  1240. }
  1241. debug_check_no_locks_freed(addr, area->size);
  1242. debug_check_no_obj_freed(addr, area->size);
  1243. if (deallocate_pages) {
  1244. int i;
  1245. for (i = 0; i < area->nr_pages; i++) {
  1246. struct page *page = area->pages[i];
  1247. BUG_ON(!page);
  1248. __free_page(page);
  1249. }
  1250. if (area->flags & VM_VPAGES)
  1251. vfree(area->pages);
  1252. else
  1253. kfree(area->pages);
  1254. }
  1255. kfree(area);
  1256. return;
  1257. }
  1258. /**
  1259. * vfree - release memory allocated by vmalloc()
  1260. * @addr: memory base address
  1261. *
  1262. * Free the virtually continuous memory area starting at @addr, as
  1263. * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
  1264. * NULL, no operation is performed.
  1265. *
  1266. * Must not be called in NMI context (strictly speaking, only if we don't
  1267. * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
  1268. * conventions for vfree() arch-depenedent would be a really bad idea)
  1269. *
  1270. * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
  1271. */
  1272. void vfree(const void *addr)
  1273. {
  1274. BUG_ON(in_nmi());
  1275. kmemleak_free(addr);
  1276. if (!addr)
  1277. return;
  1278. if (unlikely(in_interrupt())) {
  1279. struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
  1280. if (llist_add((struct llist_node *)addr, &p->list))
  1281. schedule_work(&p->wq);
  1282. } else
  1283. __vunmap(addr, 1);
  1284. }
  1285. EXPORT_SYMBOL(vfree);
  1286. /**
  1287. * vunmap - release virtual mapping obtained by vmap()
  1288. * @addr: memory base address
  1289. *
  1290. * Free the virtually contiguous memory area starting at @addr,
  1291. * which was created from the page array passed to vmap().
  1292. *
  1293. * Must not be called in interrupt context.
  1294. */
  1295. void vunmap(const void *addr)
  1296. {
  1297. BUG_ON(in_interrupt());
  1298. might_sleep();
  1299. if (addr)
  1300. __vunmap(addr, 0);
  1301. }
  1302. EXPORT_SYMBOL(vunmap);
  1303. /**
  1304. * vmap - map an array of pages into virtually contiguous space
  1305. * @pages: array of page pointers
  1306. * @count: number of pages to map
  1307. * @flags: vm_area->flags
  1308. * @prot: page protection for the mapping
  1309. *
  1310. * Maps @count pages from @pages into contiguous kernel virtual
  1311. * space.
  1312. */
  1313. void *vmap(struct page **pages, unsigned int count,
  1314. unsigned long flags, pgprot_t prot)
  1315. {
  1316. struct vm_struct *area;
  1317. might_sleep();
  1318. if (count > totalram_pages)
  1319. return NULL;
  1320. area = get_vm_area_caller((count << PAGE_SHIFT), flags,
  1321. __builtin_return_address(0));
  1322. if (!area)
  1323. return NULL;
  1324. if (map_vm_area(area, prot, pages)) {
  1325. vunmap(area->addr);
  1326. return NULL;
  1327. }
  1328. return area->addr;
  1329. }
  1330. EXPORT_SYMBOL(vmap);
  1331. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1332. gfp_t gfp_mask, pgprot_t prot,
  1333. int node, const void *caller);
  1334. static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
  1335. pgprot_t prot, int node)
  1336. {
  1337. const int order = 0;
  1338. struct page **pages;
  1339. unsigned int nr_pages, array_size, i;
  1340. const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
  1341. const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
  1342. nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
  1343. array_size = (nr_pages * sizeof(struct page *));
  1344. area->nr_pages = nr_pages;
  1345. /* Please note that the recursion is strictly bounded. */
  1346. if (array_size > PAGE_SIZE) {
  1347. pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
  1348. PAGE_KERNEL, node, area->caller);
  1349. area->flags |= VM_VPAGES;
  1350. } else {
  1351. pages = kmalloc_node(array_size, nested_gfp, node);
  1352. }
  1353. area->pages = pages;
  1354. if (!area->pages) {
  1355. remove_vm_area(area->addr);
  1356. kfree(area);
  1357. return NULL;
  1358. }
  1359. for (i = 0; i < area->nr_pages; i++) {
  1360. struct page *page;
  1361. if (node == NUMA_NO_NODE)
  1362. page = alloc_page(alloc_mask);
  1363. else
  1364. page = alloc_pages_node(node, alloc_mask, order);
  1365. if (unlikely(!page)) {
  1366. /* Successfully allocated i pages, free them in __vunmap() */
  1367. area->nr_pages = i;
  1368. goto fail;
  1369. }
  1370. area->pages[i] = page;
  1371. if (gfp_mask & __GFP_WAIT)
  1372. cond_resched();
  1373. }
  1374. if (map_vm_area(area, prot, pages))
  1375. goto fail;
  1376. return area->addr;
  1377. fail:
  1378. warn_alloc_failed(gfp_mask, order,
  1379. "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
  1380. (area->nr_pages*PAGE_SIZE), area->size);
  1381. vfree(area->addr);
  1382. return NULL;
  1383. }
  1384. /**
  1385. * __vmalloc_node_range - allocate virtually contiguous memory
  1386. * @size: allocation size
  1387. * @align: desired alignment
  1388. * @start: vm area range start
  1389. * @end: vm area range end
  1390. * @gfp_mask: flags for the page level allocator
  1391. * @prot: protection mask for the allocated pages
  1392. * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
  1393. * @node: node to use for allocation or NUMA_NO_NODE
  1394. * @caller: caller's return address
  1395. *
  1396. * Allocate enough pages to cover @size from the page level
  1397. * allocator with @gfp_mask flags. Map them into contiguous
  1398. * kernel virtual space, using a pagetable protection of @prot.
  1399. */
  1400. void *__vmalloc_node_range(unsigned long size, unsigned long align,
  1401. unsigned long start, unsigned long end, gfp_t gfp_mask,
  1402. pgprot_t prot, unsigned long vm_flags, int node,
  1403. const void *caller)
  1404. {
  1405. struct vm_struct *area;
  1406. void *addr;
  1407. unsigned long real_size = size;
  1408. size = PAGE_ALIGN(size);
  1409. if (!size || (size >> PAGE_SHIFT) > totalram_pages)
  1410. goto fail;
  1411. area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
  1412. vm_flags, start, end, node, gfp_mask, caller);
  1413. if (!area)
  1414. goto fail;
  1415. addr = __vmalloc_area_node(area, gfp_mask, prot, node);
  1416. if (!addr)
  1417. return NULL;
  1418. /*
  1419. * In this function, newly allocated vm_struct has VM_UNINITIALIZED
  1420. * flag. It means that vm_struct is not fully initialized.
  1421. * Now, it is fully initialized, so remove this flag here.
  1422. */
  1423. clear_vm_uninitialized_flag(area);
  1424. /*
  1425. * A ref_count = 2 is needed because vm_struct allocated in
  1426. * __get_vm_area_node() contains a reference to the virtual address of
  1427. * the vmalloc'ed block.
  1428. */
  1429. kmemleak_alloc(addr, real_size, 2, gfp_mask);
  1430. return addr;
  1431. fail:
  1432. warn_alloc_failed(gfp_mask, 0,
  1433. "vmalloc: allocation failure: %lu bytes\n",
  1434. real_size);
  1435. return NULL;
  1436. }
  1437. /**
  1438. * __vmalloc_node - allocate virtually contiguous memory
  1439. * @size: allocation size
  1440. * @align: desired alignment
  1441. * @gfp_mask: flags for the page level allocator
  1442. * @prot: protection mask for the allocated pages
  1443. * @node: node to use for allocation or NUMA_NO_NODE
  1444. * @caller: caller's return address
  1445. *
  1446. * Allocate enough pages to cover @size from the page level
  1447. * allocator with @gfp_mask flags. Map them into contiguous
  1448. * kernel virtual space, using a pagetable protection of @prot.
  1449. */
  1450. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1451. gfp_t gfp_mask, pgprot_t prot,
  1452. int node, const void *caller)
  1453. {
  1454. return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
  1455. gfp_mask, prot, 0, node, caller);
  1456. }
  1457. void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
  1458. {
  1459. return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
  1460. __builtin_return_address(0));
  1461. }
  1462. EXPORT_SYMBOL(__vmalloc);
  1463. static inline void *__vmalloc_node_flags(unsigned long size,
  1464. int node, gfp_t flags)
  1465. {
  1466. return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
  1467. node, __builtin_return_address(0));
  1468. }
  1469. /**
  1470. * vmalloc - allocate virtually contiguous memory
  1471. * @size: allocation size
  1472. * Allocate enough pages to cover @size from the page level
  1473. * allocator and map them into contiguous kernel virtual space.
  1474. *
  1475. * For tight control over page level allocator and protection flags
  1476. * use __vmalloc() instead.
  1477. */
  1478. void *vmalloc(unsigned long size)
  1479. {
  1480. return __vmalloc_node_flags(size, NUMA_NO_NODE,
  1481. GFP_KERNEL | __GFP_HIGHMEM);
  1482. }
  1483. EXPORT_SYMBOL(vmalloc);
  1484. /**
  1485. * vzalloc - allocate virtually contiguous memory with zero fill
  1486. * @size: allocation size
  1487. * Allocate enough pages to cover @size from the page level
  1488. * allocator and map them into contiguous kernel virtual space.
  1489. * The memory allocated is set to zero.
  1490. *
  1491. * For tight control over page level allocator and protection flags
  1492. * use __vmalloc() instead.
  1493. */
  1494. void *vzalloc(unsigned long size)
  1495. {
  1496. return __vmalloc_node_flags(size, NUMA_NO_NODE,
  1497. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
  1498. }
  1499. EXPORT_SYMBOL(vzalloc);
  1500. /**
  1501. * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
  1502. * @size: allocation size
  1503. *
  1504. * The resulting memory area is zeroed so it can be mapped to userspace
  1505. * without leaking data.
  1506. */
  1507. void *vmalloc_user(unsigned long size)
  1508. {
  1509. struct vm_struct *area;
  1510. void *ret;
  1511. ret = __vmalloc_node(size, SHMLBA,
  1512. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
  1513. PAGE_KERNEL, NUMA_NO_NODE,
  1514. __builtin_return_address(0));
  1515. if (ret) {
  1516. area = find_vm_area(ret);
  1517. area->flags |= VM_USERMAP;
  1518. }
  1519. return ret;
  1520. }
  1521. EXPORT_SYMBOL(vmalloc_user);
  1522. /**
  1523. * vmalloc_node - allocate memory on a specific node
  1524. * @size: allocation size
  1525. * @node: numa node
  1526. *
  1527. * Allocate enough pages to cover @size from the page level
  1528. * allocator and map them into contiguous kernel virtual space.
  1529. *
  1530. * For tight control over page level allocator and protection flags
  1531. * use __vmalloc() instead.
  1532. */
  1533. void *vmalloc_node(unsigned long size, int node)
  1534. {
  1535. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
  1536. node, __builtin_return_address(0));
  1537. }
  1538. EXPORT_SYMBOL(vmalloc_node);
  1539. /**
  1540. * vzalloc_node - allocate memory on a specific node with zero fill
  1541. * @size: allocation size
  1542. * @node: numa node
  1543. *
  1544. * Allocate enough pages to cover @size from the page level
  1545. * allocator and map them into contiguous kernel virtual space.
  1546. * The memory allocated is set to zero.
  1547. *
  1548. * For tight control over page level allocator and protection flags
  1549. * use __vmalloc_node() instead.
  1550. */
  1551. void *vzalloc_node(unsigned long size, int node)
  1552. {
  1553. return __vmalloc_node_flags(size, node,
  1554. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
  1555. }
  1556. EXPORT_SYMBOL(vzalloc_node);
  1557. #ifndef PAGE_KERNEL_EXEC
  1558. # define PAGE_KERNEL_EXEC PAGE_KERNEL
  1559. #endif
  1560. /**
  1561. * vmalloc_exec - allocate virtually contiguous, executable memory
  1562. * @size: allocation size
  1563. *
  1564. * Kernel-internal function to allocate enough pages to cover @size
  1565. * the page level allocator and map them into contiguous and
  1566. * executable kernel virtual space.
  1567. *
  1568. * For tight control over page level allocator and protection flags
  1569. * use __vmalloc() instead.
  1570. */
  1571. void *vmalloc_exec(unsigned long size)
  1572. {
  1573. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
  1574. NUMA_NO_NODE, __builtin_return_address(0));
  1575. }
  1576. #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
  1577. #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
  1578. #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
  1579. #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
  1580. #else
  1581. #define GFP_VMALLOC32 GFP_KERNEL
  1582. #endif
  1583. /**
  1584. * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
  1585. * @size: allocation size
  1586. *
  1587. * Allocate enough 32bit PA addressable pages to cover @size from the
  1588. * page level allocator and map them into contiguous kernel virtual space.
  1589. */
  1590. void *vmalloc_32(unsigned long size)
  1591. {
  1592. return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
  1593. NUMA_NO_NODE, __builtin_return_address(0));
  1594. }
  1595. EXPORT_SYMBOL(vmalloc_32);
  1596. /**
  1597. * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
  1598. * @size: allocation size
  1599. *
  1600. * The resulting memory area is 32bit addressable and zeroed so it can be
  1601. * mapped to userspace without leaking data.
  1602. */
  1603. void *vmalloc_32_user(unsigned long size)
  1604. {
  1605. struct vm_struct *area;
  1606. void *ret;
  1607. ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
  1608. NUMA_NO_NODE, __builtin_return_address(0));
  1609. if (ret) {
  1610. area = find_vm_area(ret);
  1611. area->flags |= VM_USERMAP;
  1612. }
  1613. return ret;
  1614. }
  1615. EXPORT_SYMBOL(vmalloc_32_user);
  1616. /*
  1617. * small helper routine , copy contents to buf from addr.
  1618. * If the page is not present, fill zero.
  1619. */
  1620. static int aligned_vread(char *buf, char *addr, unsigned long count)
  1621. {
  1622. struct page *p;
  1623. int copied = 0;
  1624. while (count) {
  1625. unsigned long offset, length;
  1626. offset = (unsigned long)addr & ~PAGE_MASK;
  1627. length = PAGE_SIZE - offset;
  1628. if (length > count)
  1629. length = count;
  1630. p = vmalloc_to_page(addr);
  1631. /*
  1632. * To do safe access to this _mapped_ area, we need
  1633. * lock. But adding lock here means that we need to add
  1634. * overhead of vmalloc()/vfree() calles for this _debug_
  1635. * interface, rarely used. Instead of that, we'll use
  1636. * kmap() and get small overhead in this access function.
  1637. */
  1638. if (p) {
  1639. /*
  1640. * we can expect USER0 is not used (see vread/vwrite's
  1641. * function description)
  1642. */
  1643. void *map = kmap_atomic(p);
  1644. memcpy(buf, map + offset, length);
  1645. kunmap_atomic(map);
  1646. } else
  1647. memset(buf, 0, length);
  1648. addr += length;
  1649. buf += length;
  1650. copied += length;
  1651. count -= length;
  1652. }
  1653. return copied;
  1654. }
  1655. static int aligned_vwrite(char *buf, char *addr, unsigned long count)
  1656. {
  1657. struct page *p;
  1658. int copied = 0;
  1659. while (count) {
  1660. unsigned long offset, length;
  1661. offset = (unsigned long)addr & ~PAGE_MASK;
  1662. length = PAGE_SIZE - offset;
  1663. if (length > count)
  1664. length = count;
  1665. p = vmalloc_to_page(addr);
  1666. /*
  1667. * To do safe access to this _mapped_ area, we need
  1668. * lock. But adding lock here means that we need to add
  1669. * overhead of vmalloc()/vfree() calles for this _debug_
  1670. * interface, rarely used. Instead of that, we'll use
  1671. * kmap() and get small overhead in this access function.
  1672. */
  1673. if (p) {
  1674. /*
  1675. * we can expect USER0 is not used (see vread/vwrite's
  1676. * function description)
  1677. */
  1678. void *map = kmap_atomic(p);
  1679. memcpy(map + offset, buf, length);
  1680. kunmap_atomic(map);
  1681. }
  1682. addr += length;
  1683. buf += length;
  1684. copied += length;
  1685. count -= length;
  1686. }
  1687. return copied;
  1688. }
  1689. /**
  1690. * vread() - read vmalloc area in a safe way.
  1691. * @buf: buffer for reading data
  1692. * @addr: vm address.
  1693. * @count: number of bytes to be read.
  1694. *
  1695. * Returns # of bytes which addr and buf should be increased.
  1696. * (same number to @count). Returns 0 if [addr...addr+count) doesn't
  1697. * includes any intersect with alive vmalloc area.
  1698. *
  1699. * This function checks that addr is a valid vmalloc'ed area, and
  1700. * copy data from that area to a given buffer. If the given memory range
  1701. * of [addr...addr+count) includes some valid address, data is copied to
  1702. * proper area of @buf. If there are memory holes, they'll be zero-filled.
  1703. * IOREMAP area is treated as memory hole and no copy is done.
  1704. *
  1705. * If [addr...addr+count) doesn't includes any intersects with alive
  1706. * vm_struct area, returns 0. @buf should be kernel's buffer.
  1707. *
  1708. * Note: In usual ops, vread() is never necessary because the caller
  1709. * should know vmalloc() area is valid and can use memcpy().
  1710. * This is for routines which have to access vmalloc area without
  1711. * any informaion, as /dev/kmem.
  1712. *
  1713. */
  1714. long vread(char *buf, char *addr, unsigned long count)
  1715. {
  1716. struct vmap_area *va;
  1717. struct vm_struct *vm;
  1718. char *vaddr, *buf_start = buf;
  1719. unsigned long buflen = count;
  1720. unsigned long n;
  1721. /* Don't allow overflow */
  1722. if ((unsigned long) addr + count < count)
  1723. count = -(unsigned long) addr;
  1724. spin_lock(&vmap_area_lock);
  1725. list_for_each_entry(va, &vmap_area_list, list) {
  1726. if (!count)
  1727. break;
  1728. if (!(va->flags & VM_VM_AREA))
  1729. continue;
  1730. vm = va->vm;
  1731. vaddr = (char *) vm->addr;
  1732. if (addr >= vaddr + get_vm_area_size(vm))
  1733. continue;
  1734. while (addr < vaddr) {
  1735. if (count == 0)
  1736. goto finished;
  1737. *buf = '\0';
  1738. buf++;
  1739. addr++;
  1740. count--;
  1741. }
  1742. n = vaddr + get_vm_area_size(vm) - addr;
  1743. if (n > count)
  1744. n = count;
  1745. if (!(vm->flags & VM_IOREMAP))
  1746. aligned_vread(buf, addr, n);
  1747. else /* IOREMAP area is treated as memory hole */
  1748. memset(buf, 0, n);
  1749. buf += n;
  1750. addr += n;
  1751. count -= n;
  1752. }
  1753. finished:
  1754. spin_unlock(&vmap_area_lock);
  1755. if (buf == buf_start)
  1756. return 0;
  1757. /* zero-fill memory holes */
  1758. if (buf != buf_start + buflen)
  1759. memset(buf, 0, buflen - (buf - buf_start));
  1760. return buflen;
  1761. }
  1762. /**
  1763. * vwrite() - write vmalloc area in a safe way.
  1764. * @buf: buffer for source data
  1765. * @addr: vm address.
  1766. * @count: number of bytes to be read.
  1767. *
  1768. * Returns # of bytes which addr and buf should be incresed.
  1769. * (same number to @count).
  1770. * If [addr...addr+count) doesn't includes any intersect with valid
  1771. * vmalloc area, returns 0.
  1772. *
  1773. * This function checks that addr is a valid vmalloc'ed area, and
  1774. * copy data from a buffer to the given addr. If specified range of
  1775. * [addr...addr+count) includes some valid address, data is copied from
  1776. * proper area of @buf. If there are memory holes, no copy to hole.
  1777. * IOREMAP area is treated as memory hole and no copy is done.
  1778. *
  1779. * If [addr...addr+count) doesn't includes any intersects with alive
  1780. * vm_struct area, returns 0. @buf should be kernel's buffer.
  1781. *
  1782. * Note: In usual ops, vwrite() is never necessary because the caller
  1783. * should know vmalloc() area is valid and can use memcpy().
  1784. * This is for routines which have to access vmalloc area without
  1785. * any informaion, as /dev/kmem.
  1786. */
  1787. long vwrite(char *buf, char *addr, unsigned long count)
  1788. {
  1789. struct vmap_area *va;
  1790. struct vm_struct *vm;
  1791. char *vaddr;
  1792. unsigned long n, buflen;
  1793. int copied = 0;
  1794. /* Don't allow overflow */
  1795. if ((unsigned long) addr + count < count)
  1796. count = -(unsigned long) addr;
  1797. buflen = count;
  1798. spin_lock(&vmap_area_lock);
  1799. list_for_each_entry(va, &vmap_area_list, list) {
  1800. if (!count)
  1801. break;
  1802. if (!(va->flags & VM_VM_AREA))
  1803. continue;
  1804. vm = va->vm;
  1805. vaddr = (char *) vm->addr;
  1806. if (addr >= vaddr + get_vm_area_size(vm))
  1807. continue;
  1808. while (addr < vaddr) {
  1809. if (count == 0)
  1810. goto finished;
  1811. buf++;
  1812. addr++;
  1813. count--;
  1814. }
  1815. n = vaddr + get_vm_area_size(vm) - addr;
  1816. if (n > count)
  1817. n = count;
  1818. if (!(vm->flags & VM_IOREMAP)) {
  1819. aligned_vwrite(buf, addr, n);
  1820. copied++;
  1821. }
  1822. buf += n;
  1823. addr += n;
  1824. count -= n;
  1825. }
  1826. finished:
  1827. spin_unlock(&vmap_area_lock);
  1828. if (!copied)
  1829. return 0;
  1830. return buflen;
  1831. }
  1832. /**
  1833. * remap_vmalloc_range_partial - map vmalloc pages to userspace
  1834. * @vma: vma to cover
  1835. * @uaddr: target user address to start at
  1836. * @kaddr: virtual address of vmalloc kernel memory
  1837. * @size: size of map area
  1838. *
  1839. * Returns: 0 for success, -Exxx on failure
  1840. *
  1841. * This function checks that @kaddr is a valid vmalloc'ed area,
  1842. * and that it is big enough to cover the range starting at
  1843. * @uaddr in @vma. Will return failure if that criteria isn't
  1844. * met.
  1845. *
  1846. * Similar to remap_pfn_range() (see mm/memory.c)
  1847. */
  1848. int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
  1849. void *kaddr, unsigned long size)
  1850. {
  1851. struct vm_struct *area;
  1852. size = PAGE_ALIGN(size);
  1853. if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
  1854. return -EINVAL;
  1855. area = find_vm_area(kaddr);
  1856. if (!area)
  1857. return -EINVAL;
  1858. if (!(area->flags & VM_USERMAP))
  1859. return -EINVAL;
  1860. if (kaddr + size > area->addr + area->size)
  1861. return -EINVAL;
  1862. do {
  1863. struct page *page = vmalloc_to_page(kaddr);
  1864. int ret;
  1865. ret = vm_insert_page(vma, uaddr, page);
  1866. if (ret)
  1867. return ret;
  1868. uaddr += PAGE_SIZE;
  1869. kaddr += PAGE_SIZE;
  1870. size -= PAGE_SIZE;
  1871. } while (size > 0);
  1872. vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
  1873. return 0;
  1874. }
  1875. EXPORT_SYMBOL(remap_vmalloc_range_partial);
  1876. /**
  1877. * remap_vmalloc_range - map vmalloc pages to userspace
  1878. * @vma: vma to cover (map full range of vma)
  1879. * @addr: vmalloc memory
  1880. * @pgoff: number of pages into addr before first page to map
  1881. *
  1882. * Returns: 0 for success, -Exxx on failure
  1883. *
  1884. * This function checks that addr is a valid vmalloc'ed area, and
  1885. * that it is big enough to cover the vma. Will return failure if
  1886. * that criteria isn't met.
  1887. *
  1888. * Similar to remap_pfn_range() (see mm/memory.c)
  1889. */
  1890. int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
  1891. unsigned long pgoff)
  1892. {
  1893. return remap_vmalloc_range_partial(vma, vma->vm_start,
  1894. addr + (pgoff << PAGE_SHIFT),
  1895. vma->vm_end - vma->vm_start);
  1896. }
  1897. EXPORT_SYMBOL(remap_vmalloc_range);
  1898. /*
  1899. * Implement a stub for vmalloc_sync_all() if the architecture chose not to
  1900. * have one.
  1901. */
  1902. void __weak vmalloc_sync_all(void)
  1903. {
  1904. }
  1905. static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
  1906. {
  1907. pte_t ***p = data;
  1908. if (p) {
  1909. *(*p) = pte;
  1910. (*p)++;
  1911. }
  1912. return 0;
  1913. }
  1914. /**
  1915. * alloc_vm_area - allocate a range of kernel address space
  1916. * @size: size of the area
  1917. * @ptes: returns the PTEs for the address space
  1918. *
  1919. * Returns: NULL on failure, vm_struct on success
  1920. *
  1921. * This function reserves a range of kernel address space, and
  1922. * allocates pagetables to map that range. No actual mappings
  1923. * are created.
  1924. *
  1925. * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
  1926. * allocated for the VM area are returned.
  1927. */
  1928. struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
  1929. {
  1930. struct vm_struct *area;
  1931. area = get_vm_area_caller(size, VM_IOREMAP,
  1932. __builtin_return_address(0));
  1933. if (area == NULL)
  1934. return NULL;
  1935. /*
  1936. * This ensures that page tables are constructed for this region
  1937. * of kernel virtual address space and mapped into init_mm.
  1938. */
  1939. if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
  1940. size, f, ptes ? &ptes : NULL)) {
  1941. free_vm_area(area);
  1942. return NULL;
  1943. }
  1944. return area;
  1945. }
  1946. EXPORT_SYMBOL_GPL(alloc_vm_area);
  1947. void free_vm_area(struct vm_struct *area)
  1948. {
  1949. struct vm_struct *ret;
  1950. ret = remove_vm_area(area->addr);
  1951. BUG_ON(ret != area);
  1952. kfree(area);
  1953. }
  1954. EXPORT_SYMBOL_GPL(free_vm_area);
  1955. #ifdef CONFIG_SMP
  1956. static struct vmap_area *node_to_va(struct rb_node *n)
  1957. {
  1958. return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
  1959. }
  1960. /**
  1961. * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
  1962. * @end: target address
  1963. * @pnext: out arg for the next vmap_area
  1964. * @pprev: out arg for the previous vmap_area
  1965. *
  1966. * Returns: %true if either or both of next and prev are found,
  1967. * %false if no vmap_area exists
  1968. *
  1969. * Find vmap_areas end addresses of which enclose @end. ie. if not
  1970. * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
  1971. */
  1972. static bool pvm_find_next_prev(unsigned long end,
  1973. struct vmap_area **pnext,
  1974. struct vmap_area **pprev)
  1975. {
  1976. struct rb_node *n = vmap_area_root.rb_node;
  1977. struct vmap_area *va = NULL;
  1978. while (n) {
  1979. va = rb_entry(n, struct vmap_area, rb_node);
  1980. if (end < va->va_end)
  1981. n = n->rb_left;
  1982. else if (end > va->va_end)
  1983. n = n->rb_right;
  1984. else
  1985. break;
  1986. }
  1987. if (!va)
  1988. return false;
  1989. if (va->va_end > end) {
  1990. *pnext = va;
  1991. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  1992. } else {
  1993. *pprev = va;
  1994. *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
  1995. }
  1996. return true;
  1997. }
  1998. /**
  1999. * pvm_determine_end - find the highest aligned address between two vmap_areas
  2000. * @pnext: in/out arg for the next vmap_area
  2001. * @pprev: in/out arg for the previous vmap_area
  2002. * @align: alignment
  2003. *
  2004. * Returns: determined end address
  2005. *
  2006. * Find the highest aligned address between *@pnext and *@pprev below
  2007. * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
  2008. * down address is between the end addresses of the two vmap_areas.
  2009. *
  2010. * Please note that the address returned by this function may fall
  2011. * inside *@pnext vmap_area. The caller is responsible for checking
  2012. * that.
  2013. */
  2014. static unsigned long pvm_determine_end(struct vmap_area **pnext,
  2015. struct vmap_area **pprev,
  2016. unsigned long align)
  2017. {
  2018. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  2019. unsigned long addr;
  2020. if (*pnext)
  2021. addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
  2022. else
  2023. addr = vmalloc_end;
  2024. while (*pprev && (*pprev)->va_end > addr) {
  2025. *pnext = *pprev;
  2026. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  2027. }
  2028. return addr;
  2029. }
  2030. /**
  2031. * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
  2032. * @offsets: array containing offset of each area
  2033. * @sizes: array containing size of each area
  2034. * @nr_vms: the number of areas to allocate
  2035. * @align: alignment, all entries in @offsets and @sizes must be aligned to this
  2036. *
  2037. * Returns: kmalloc'd vm_struct pointer array pointing to allocated
  2038. * vm_structs on success, %NULL on failure
  2039. *
  2040. * Percpu allocator wants to use congruent vm areas so that it can
  2041. * maintain the offsets among percpu areas. This function allocates
  2042. * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
  2043. * be scattered pretty far, distance between two areas easily going up
  2044. * to gigabytes. To avoid interacting with regular vmallocs, these
  2045. * areas are allocated from top.
  2046. *
  2047. * Despite its complicated look, this allocator is rather simple. It
  2048. * does everything top-down and scans areas from the end looking for
  2049. * matching slot. While scanning, if any of the areas overlaps with
  2050. * existing vmap_area, the base address is pulled down to fit the
  2051. * area. Scanning is repeated till all the areas fit and then all
  2052. * necessary data structres are inserted and the result is returned.
  2053. */
  2054. struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
  2055. const size_t *sizes, int nr_vms,
  2056. size_t align)
  2057. {
  2058. const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
  2059. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  2060. struct vmap_area **vas, *prev, *next;
  2061. struct vm_struct **vms;
  2062. int area, area2, last_area, term_area;
  2063. unsigned long base, start, end, last_end;
  2064. bool purged = false;
  2065. /* verify parameters and allocate data structures */
  2066. BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
  2067. for (last_area = 0, area = 0; area < nr_vms; area++) {
  2068. start = offsets[area];
  2069. end = start + sizes[area];
  2070. /* is everything aligned properly? */
  2071. BUG_ON(!IS_ALIGNED(offsets[area], align));
  2072. BUG_ON(!IS_ALIGNED(sizes[area], align));
  2073. /* detect the area with the highest address */
  2074. if (start > offsets[last_area])
  2075. last_area = area;
  2076. for (area2 = 0; area2 < nr_vms; area2++) {
  2077. unsigned long start2 = offsets[area2];
  2078. unsigned long end2 = start2 + sizes[area2];
  2079. if (area2 == area)
  2080. continue;
  2081. BUG_ON(start2 >= start && start2 < end);
  2082. BUG_ON(end2 <= end && end2 > start);
  2083. }
  2084. }
  2085. last_end = offsets[last_area] + sizes[last_area];
  2086. if (vmalloc_end - vmalloc_start < last_end) {
  2087. WARN_ON(true);
  2088. return NULL;
  2089. }
  2090. vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
  2091. vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
  2092. if (!vas || !vms)
  2093. goto err_free2;
  2094. for (area = 0; area < nr_vms; area++) {
  2095. vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
  2096. vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
  2097. if (!vas[area] || !vms[area])
  2098. goto err_free;
  2099. }
  2100. retry:
  2101. spin_lock(&vmap_area_lock);
  2102. /* start scanning - we scan from the top, begin with the last area */
  2103. area = term_area = last_area;
  2104. start = offsets[area];
  2105. end = start + sizes[area];
  2106. if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
  2107. base = vmalloc_end - last_end;
  2108. goto found;
  2109. }
  2110. base = pvm_determine_end(&next, &prev, align) - end;
  2111. while (true) {
  2112. BUG_ON(next && next->va_end <= base + end);
  2113. BUG_ON(prev && prev->va_end > base + end);
  2114. /*
  2115. * base might have underflowed, add last_end before
  2116. * comparing.
  2117. */
  2118. if (base + last_end < vmalloc_start + last_end) {
  2119. spin_unlock(&vmap_area_lock);
  2120. if (!purged) {
  2121. purge_vmap_area_lazy();
  2122. purged = true;
  2123. goto retry;
  2124. }
  2125. goto err_free;
  2126. }
  2127. /*
  2128. * If next overlaps, move base downwards so that it's
  2129. * right below next and then recheck.
  2130. */
  2131. if (next && next->va_start < base + end) {
  2132. base = pvm_determine_end(&next, &prev, align) - end;
  2133. term_area = area;
  2134. continue;
  2135. }
  2136. /*
  2137. * If prev overlaps, shift down next and prev and move
  2138. * base so that it's right below new next and then
  2139. * recheck.
  2140. */
  2141. if (prev && prev->va_end > base + start) {
  2142. next = prev;
  2143. prev = node_to_va(rb_prev(&next->rb_node));
  2144. base = pvm_determine_end(&next, &prev, align) - end;
  2145. term_area = area;
  2146. continue;
  2147. }
  2148. /*
  2149. * This area fits, move on to the previous one. If
  2150. * the previous one is the terminal one, we're done.
  2151. */
  2152. area = (area + nr_vms - 1) % nr_vms;
  2153. if (area == term_area)
  2154. break;
  2155. start = offsets[area];
  2156. end = start + sizes[area];
  2157. pvm_find_next_prev(base + end, &next, &prev);
  2158. }
  2159. found:
  2160. /* we've found a fitting base, insert all va's */
  2161. for (area = 0; area < nr_vms; area++) {
  2162. struct vmap_area *va = vas[area];
  2163. va->va_start = base + offsets[area];
  2164. va->va_end = va->va_start + sizes[area];
  2165. __insert_vmap_area(va);
  2166. }
  2167. vmap_area_pcpu_hole = base + offsets[last_area];
  2168. spin_unlock(&vmap_area_lock);
  2169. /* insert all vm's */
  2170. for (area = 0; area < nr_vms; area++)
  2171. setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
  2172. pcpu_get_vm_areas);
  2173. kfree(vas);
  2174. return vms;
  2175. err_free:
  2176. for (area = 0; area < nr_vms; area++) {
  2177. kfree(vas[area]);
  2178. kfree(vms[area]);
  2179. }
  2180. err_free2:
  2181. kfree(vas);
  2182. kfree(vms);
  2183. return NULL;
  2184. }
  2185. /**
  2186. * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
  2187. * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
  2188. * @nr_vms: the number of allocated areas
  2189. *
  2190. * Free vm_structs and the array allocated by pcpu_get_vm_areas().
  2191. */
  2192. void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
  2193. {
  2194. int i;
  2195. for (i = 0; i < nr_vms; i++)
  2196. free_vm_area(vms[i]);
  2197. kfree(vms);
  2198. }
  2199. #endif /* CONFIG_SMP */
  2200. #ifdef CONFIG_PROC_FS
  2201. static void *s_start(struct seq_file *m, loff_t *pos)
  2202. __acquires(&vmap_area_lock)
  2203. {
  2204. loff_t n = *pos;
  2205. struct vmap_area *va;
  2206. spin_lock(&vmap_area_lock);
  2207. va = list_entry((&vmap_area_list)->next, typeof(*va), list);
  2208. while (n > 0 && &va->list != &vmap_area_list) {
  2209. n--;
  2210. va = list_entry(va->list.next, typeof(*va), list);
  2211. }
  2212. if (!n && &va->list != &vmap_area_list)
  2213. return va;
  2214. return NULL;
  2215. }
  2216. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  2217. {
  2218. struct vmap_area *va = p, *next;
  2219. ++*pos;
  2220. next = list_entry(va->list.next, typeof(*va), list);
  2221. if (&next->list != &vmap_area_list)
  2222. return next;
  2223. return NULL;
  2224. }
  2225. static void s_stop(struct seq_file *m, void *p)
  2226. __releases(&vmap_area_lock)
  2227. {
  2228. spin_unlock(&vmap_area_lock);
  2229. }
  2230. static void show_numa_info(struct seq_file *m, struct vm_struct *v)
  2231. {
  2232. if (IS_ENABLED(CONFIG_NUMA)) {
  2233. unsigned int nr, *counters = m->private;
  2234. if (!counters)
  2235. return;
  2236. if (v->flags & VM_UNINITIALIZED)
  2237. return;
  2238. /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
  2239. smp_rmb();
  2240. memset(counters, 0, nr_node_ids * sizeof(unsigned int));
  2241. for (nr = 0; nr < v->nr_pages; nr++)
  2242. counters[page_to_nid(v->pages[nr])]++;
  2243. for_each_node_state(nr, N_HIGH_MEMORY)
  2244. if (counters[nr])
  2245. seq_printf(m, " N%u=%u", nr, counters[nr]);
  2246. }
  2247. }
  2248. static int s_show(struct seq_file *m, void *p)
  2249. {
  2250. struct vmap_area *va = p;
  2251. struct vm_struct *v;
  2252. /*
  2253. * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
  2254. * behalf of vmap area is being tear down or vm_map_ram allocation.
  2255. */
  2256. if (!(va->flags & VM_VM_AREA))
  2257. return 0;
  2258. v = va->vm;
  2259. seq_printf(m, "0x%pK-0x%pK %7ld",
  2260. v->addr, v->addr + v->size, v->size);
  2261. if (v->caller)
  2262. seq_printf(m, " %pS", v->caller);
  2263. if (v->nr_pages)
  2264. seq_printf(m, " pages=%d", v->nr_pages);
  2265. if (v->phys_addr)
  2266. seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
  2267. if (v->flags & VM_IOREMAP)
  2268. seq_puts(m, " ioremap");
  2269. if (v->flags & VM_ALLOC)
  2270. seq_puts(m, " vmalloc");
  2271. if (v->flags & VM_MAP)
  2272. seq_puts(m, " vmap");
  2273. if (v->flags & VM_USERMAP)
  2274. seq_puts(m, " user");
  2275. if (v->flags & VM_VPAGES)
  2276. seq_puts(m, " vpages");
  2277. show_numa_info(m, v);
  2278. seq_putc(m, '\n');
  2279. return 0;
  2280. }
  2281. static const struct seq_operations vmalloc_op = {
  2282. .start = s_start,
  2283. .next = s_next,
  2284. .stop = s_stop,
  2285. .show = s_show,
  2286. };
  2287. static int vmalloc_open(struct inode *inode, struct file *file)
  2288. {
  2289. if (IS_ENABLED(CONFIG_NUMA))
  2290. return seq_open_private(file, &vmalloc_op,
  2291. nr_node_ids * sizeof(unsigned int));
  2292. else
  2293. return seq_open(file, &vmalloc_op);
  2294. }
  2295. static const struct file_operations proc_vmalloc_operations = {
  2296. .open = vmalloc_open,
  2297. .read = seq_read,
  2298. .llseek = seq_lseek,
  2299. .release = seq_release_private,
  2300. };
  2301. static int __init proc_vmalloc_init(void)
  2302. {
  2303. proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
  2304. return 0;
  2305. }
  2306. module_init(proc_vmalloc_init);
  2307. void get_vmalloc_info(struct vmalloc_info *vmi)
  2308. {
  2309. struct vmap_area *va;
  2310. unsigned long free_area_size;
  2311. unsigned long prev_end;
  2312. vmi->used = 0;
  2313. vmi->largest_chunk = 0;
  2314. prev_end = VMALLOC_START;
  2315. rcu_read_lock();
  2316. if (list_empty(&vmap_area_list)) {
  2317. vmi->largest_chunk = VMALLOC_TOTAL;
  2318. goto out;
  2319. }
  2320. list_for_each_entry_rcu(va, &vmap_area_list, list) {
  2321. unsigned long addr = va->va_start;
  2322. /*
  2323. * Some archs keep another range for modules in vmalloc space
  2324. */
  2325. if (addr < VMALLOC_START)
  2326. continue;
  2327. if (addr >= VMALLOC_END)
  2328. break;
  2329. if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
  2330. continue;
  2331. vmi->used += (va->va_end - va->va_start);
  2332. free_area_size = addr - prev_end;
  2333. if (vmi->largest_chunk < free_area_size)
  2334. vmi->largest_chunk = free_area_size;
  2335. prev_end = va->va_end;
  2336. }
  2337. if (VMALLOC_END - prev_end > vmi->largest_chunk)
  2338. vmi->largest_chunk = VMALLOC_END - prev_end;
  2339. out:
  2340. rcu_read_unlock();
  2341. }
  2342. #endif