encrypted.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014
  1. /*
  2. * Copyright (C) 2010 IBM Corporation
  3. * Copyright (C) 2010 Politecnico di Torino, Italy
  4. * TORSEC group -- http://security.polito.it
  5. *
  6. * Authors:
  7. * Mimi Zohar <zohar@us.ibm.com>
  8. * Roberto Sassu <roberto.sassu@polito.it>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation, version 2 of the License.
  13. *
  14. * See Documentation/security/keys-trusted-encrypted.txt
  15. */
  16. #include <linux/uaccess.h>
  17. #include <linux/module.h>
  18. #include <linux/init.h>
  19. #include <linux/slab.h>
  20. #include <linux/parser.h>
  21. #include <linux/string.h>
  22. #include <linux/err.h>
  23. #include <keys/user-type.h>
  24. #include <keys/trusted-type.h>
  25. #include <keys/encrypted-type.h>
  26. #include <linux/key-type.h>
  27. #include <linux/random.h>
  28. #include <linux/rcupdate.h>
  29. #include <linux/scatterlist.h>
  30. #include <linux/ctype.h>
  31. #include <crypto/aes.h>
  32. #include <crypto/algapi.h>
  33. #include <crypto/hash.h>
  34. #include <crypto/sha.h>
  35. #include <crypto/skcipher.h>
  36. #include "encrypted.h"
  37. #include "ecryptfs_format.h"
  38. static const char KEY_TRUSTED_PREFIX[] = "trusted:";
  39. static const char KEY_USER_PREFIX[] = "user:";
  40. static const char hash_alg[] = "sha256";
  41. static const char hmac_alg[] = "hmac(sha256)";
  42. static const char blkcipher_alg[] = "cbc(aes)";
  43. static const char key_format_default[] = "default";
  44. static const char key_format_ecryptfs[] = "ecryptfs";
  45. static unsigned int ivsize;
  46. static int blksize;
  47. #define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1)
  48. #define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1)
  49. #define KEY_ECRYPTFS_DESC_LEN 16
  50. #define HASH_SIZE SHA256_DIGEST_SIZE
  51. #define MAX_DATA_SIZE 4096
  52. #define MIN_DATA_SIZE 20
  53. static struct crypto_shash *hash_tfm;
  54. enum {
  55. Opt_err = -1, Opt_new, Opt_load, Opt_update
  56. };
  57. enum {
  58. Opt_error = -1, Opt_default, Opt_ecryptfs
  59. };
  60. static const match_table_t key_format_tokens = {
  61. {Opt_default, "default"},
  62. {Opt_ecryptfs, "ecryptfs"},
  63. {Opt_error, NULL}
  64. };
  65. static const match_table_t key_tokens = {
  66. {Opt_new, "new"},
  67. {Opt_load, "load"},
  68. {Opt_update, "update"},
  69. {Opt_err, NULL}
  70. };
  71. static int aes_get_sizes(void)
  72. {
  73. struct crypto_skcipher *tfm;
  74. tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
  75. if (IS_ERR(tfm)) {
  76. pr_err("encrypted_key: failed to alloc_cipher (%ld)\n",
  77. PTR_ERR(tfm));
  78. return PTR_ERR(tfm);
  79. }
  80. ivsize = crypto_skcipher_ivsize(tfm);
  81. blksize = crypto_skcipher_blocksize(tfm);
  82. crypto_free_skcipher(tfm);
  83. return 0;
  84. }
  85. /*
  86. * valid_ecryptfs_desc - verify the description of a new/loaded encrypted key
  87. *
  88. * The description of a encrypted key with format 'ecryptfs' must contain
  89. * exactly 16 hexadecimal characters.
  90. *
  91. */
  92. static int valid_ecryptfs_desc(const char *ecryptfs_desc)
  93. {
  94. int i;
  95. if (strlen(ecryptfs_desc) != KEY_ECRYPTFS_DESC_LEN) {
  96. pr_err("encrypted_key: key description must be %d hexadecimal "
  97. "characters long\n", KEY_ECRYPTFS_DESC_LEN);
  98. return -EINVAL;
  99. }
  100. for (i = 0; i < KEY_ECRYPTFS_DESC_LEN; i++) {
  101. if (!isxdigit(ecryptfs_desc[i])) {
  102. pr_err("encrypted_key: key description must contain "
  103. "only hexadecimal characters\n");
  104. return -EINVAL;
  105. }
  106. }
  107. return 0;
  108. }
  109. /*
  110. * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key
  111. *
  112. * key-type:= "trusted:" | "user:"
  113. * desc:= master-key description
  114. *
  115. * Verify that 'key-type' is valid and that 'desc' exists. On key update,
  116. * only the master key description is permitted to change, not the key-type.
  117. * The key-type remains constant.
  118. *
  119. * On success returns 0, otherwise -EINVAL.
  120. */
  121. static int valid_master_desc(const char *new_desc, const char *orig_desc)
  122. {
  123. int prefix_len;
  124. if (!strncmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN))
  125. prefix_len = KEY_TRUSTED_PREFIX_LEN;
  126. else if (!strncmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN))
  127. prefix_len = KEY_USER_PREFIX_LEN;
  128. else
  129. return -EINVAL;
  130. if (!new_desc[prefix_len])
  131. return -EINVAL;
  132. if (orig_desc && strncmp(new_desc, orig_desc, prefix_len))
  133. return -EINVAL;
  134. return 0;
  135. }
  136. /*
  137. * datablob_parse - parse the keyctl data
  138. *
  139. * datablob format:
  140. * new [<format>] <master-key name> <decrypted data length>
  141. * load [<format>] <master-key name> <decrypted data length>
  142. * <encrypted iv + data>
  143. * update <new-master-key name>
  144. *
  145. * Tokenizes a copy of the keyctl data, returning a pointer to each token,
  146. * which is null terminated.
  147. *
  148. * On success returns 0, otherwise -EINVAL.
  149. */
  150. static int datablob_parse(char *datablob, const char **format,
  151. char **master_desc, char **decrypted_datalen,
  152. char **hex_encoded_iv)
  153. {
  154. substring_t args[MAX_OPT_ARGS];
  155. int ret = -EINVAL;
  156. int key_cmd;
  157. int key_format;
  158. char *p, *keyword;
  159. keyword = strsep(&datablob, " \t");
  160. if (!keyword) {
  161. pr_info("encrypted_key: insufficient parameters specified\n");
  162. return ret;
  163. }
  164. key_cmd = match_token(keyword, key_tokens, args);
  165. /* Get optional format: default | ecryptfs */
  166. p = strsep(&datablob, " \t");
  167. if (!p) {
  168. pr_err("encrypted_key: insufficient parameters specified\n");
  169. return ret;
  170. }
  171. key_format = match_token(p, key_format_tokens, args);
  172. switch (key_format) {
  173. case Opt_ecryptfs:
  174. case Opt_default:
  175. *format = p;
  176. *master_desc = strsep(&datablob, " \t");
  177. break;
  178. case Opt_error:
  179. *master_desc = p;
  180. break;
  181. }
  182. if (!*master_desc) {
  183. pr_info("encrypted_key: master key parameter is missing\n");
  184. goto out;
  185. }
  186. if (valid_master_desc(*master_desc, NULL) < 0) {
  187. pr_info("encrypted_key: master key parameter \'%s\' "
  188. "is invalid\n", *master_desc);
  189. goto out;
  190. }
  191. if (decrypted_datalen) {
  192. *decrypted_datalen = strsep(&datablob, " \t");
  193. if (!*decrypted_datalen) {
  194. pr_info("encrypted_key: keylen parameter is missing\n");
  195. goto out;
  196. }
  197. }
  198. switch (key_cmd) {
  199. case Opt_new:
  200. if (!decrypted_datalen) {
  201. pr_info("encrypted_key: keyword \'%s\' not allowed "
  202. "when called from .update method\n", keyword);
  203. break;
  204. }
  205. ret = 0;
  206. break;
  207. case Opt_load:
  208. if (!decrypted_datalen) {
  209. pr_info("encrypted_key: keyword \'%s\' not allowed "
  210. "when called from .update method\n", keyword);
  211. break;
  212. }
  213. *hex_encoded_iv = strsep(&datablob, " \t");
  214. if (!*hex_encoded_iv) {
  215. pr_info("encrypted_key: hex blob is missing\n");
  216. break;
  217. }
  218. ret = 0;
  219. break;
  220. case Opt_update:
  221. if (decrypted_datalen) {
  222. pr_info("encrypted_key: keyword \'%s\' not allowed "
  223. "when called from .instantiate method\n",
  224. keyword);
  225. break;
  226. }
  227. ret = 0;
  228. break;
  229. case Opt_err:
  230. pr_info("encrypted_key: keyword \'%s\' not recognized\n",
  231. keyword);
  232. break;
  233. }
  234. out:
  235. return ret;
  236. }
  237. /*
  238. * datablob_format - format as an ascii string, before copying to userspace
  239. */
  240. static char *datablob_format(struct encrypted_key_payload *epayload,
  241. size_t asciiblob_len)
  242. {
  243. char *ascii_buf, *bufp;
  244. u8 *iv = epayload->iv;
  245. int len;
  246. int i;
  247. ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL);
  248. if (!ascii_buf)
  249. goto out;
  250. ascii_buf[asciiblob_len] = '\0';
  251. /* copy datablob master_desc and datalen strings */
  252. len = sprintf(ascii_buf, "%s %s %s ", epayload->format,
  253. epayload->master_desc, epayload->datalen);
  254. /* convert the hex encoded iv, encrypted-data and HMAC to ascii */
  255. bufp = &ascii_buf[len];
  256. for (i = 0; i < (asciiblob_len - len) / 2; i++)
  257. bufp = hex_byte_pack(bufp, iv[i]);
  258. out:
  259. return ascii_buf;
  260. }
  261. /*
  262. * request_user_key - request the user key
  263. *
  264. * Use a user provided key to encrypt/decrypt an encrypted-key.
  265. */
  266. static struct key *request_user_key(const char *master_desc, const u8 **master_key,
  267. size_t *master_keylen)
  268. {
  269. const struct user_key_payload *upayload;
  270. struct key *ukey;
  271. ukey = request_key(&key_type_user, master_desc, NULL);
  272. if (IS_ERR(ukey))
  273. goto error;
  274. down_read(&ukey->sem);
  275. upayload = user_key_payload_locked(ukey);
  276. *master_key = upayload->data;
  277. *master_keylen = upayload->datalen;
  278. error:
  279. return ukey;
  280. }
  281. static int calc_hash(struct crypto_shash *tfm, u8 *digest,
  282. const u8 *buf, unsigned int buflen)
  283. {
  284. SHASH_DESC_ON_STACK(desc, tfm);
  285. int err;
  286. desc->tfm = tfm;
  287. desc->flags = 0;
  288. err = crypto_shash_digest(desc, buf, buflen, digest);
  289. shash_desc_zero(desc);
  290. return err;
  291. }
  292. static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen,
  293. const u8 *buf, unsigned int buflen)
  294. {
  295. struct crypto_shash *tfm;
  296. int err;
  297. tfm = crypto_alloc_shash(hmac_alg, 0, CRYPTO_ALG_ASYNC);
  298. if (IS_ERR(tfm)) {
  299. pr_err("encrypted_key: can't alloc %s transform: %ld\n",
  300. hmac_alg, PTR_ERR(tfm));
  301. return PTR_ERR(tfm);
  302. }
  303. err = crypto_shash_setkey(tfm, key, keylen);
  304. if (!err)
  305. err = calc_hash(tfm, digest, buf, buflen);
  306. crypto_free_shash(tfm);
  307. return err;
  308. }
  309. enum derived_key_type { ENC_KEY, AUTH_KEY };
  310. /* Derive authentication/encryption key from trusted key */
  311. static int get_derived_key(u8 *derived_key, enum derived_key_type key_type,
  312. const u8 *master_key, size_t master_keylen)
  313. {
  314. u8 *derived_buf;
  315. unsigned int derived_buf_len;
  316. int ret;
  317. derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen;
  318. if (derived_buf_len < HASH_SIZE)
  319. derived_buf_len = HASH_SIZE;
  320. derived_buf = kzalloc(derived_buf_len, GFP_KERNEL);
  321. if (!derived_buf)
  322. return -ENOMEM;
  323. if (key_type)
  324. strcpy(derived_buf, "AUTH_KEY");
  325. else
  326. strcpy(derived_buf, "ENC_KEY");
  327. memcpy(derived_buf + strlen(derived_buf) + 1, master_key,
  328. master_keylen);
  329. ret = calc_hash(hash_tfm, derived_key, derived_buf, derived_buf_len);
  330. kfree(derived_buf);
  331. return ret;
  332. }
  333. static struct skcipher_request *init_skcipher_req(const u8 *key,
  334. unsigned int key_len)
  335. {
  336. struct skcipher_request *req;
  337. struct crypto_skcipher *tfm;
  338. int ret;
  339. tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
  340. if (IS_ERR(tfm)) {
  341. pr_err("encrypted_key: failed to load %s transform (%ld)\n",
  342. blkcipher_alg, PTR_ERR(tfm));
  343. return ERR_CAST(tfm);
  344. }
  345. ret = crypto_skcipher_setkey(tfm, key, key_len);
  346. if (ret < 0) {
  347. pr_err("encrypted_key: failed to setkey (%d)\n", ret);
  348. crypto_free_skcipher(tfm);
  349. return ERR_PTR(ret);
  350. }
  351. req = skcipher_request_alloc(tfm, GFP_KERNEL);
  352. if (!req) {
  353. pr_err("encrypted_key: failed to allocate request for %s\n",
  354. blkcipher_alg);
  355. crypto_free_skcipher(tfm);
  356. return ERR_PTR(-ENOMEM);
  357. }
  358. skcipher_request_set_callback(req, 0, NULL, NULL);
  359. return req;
  360. }
  361. static struct key *request_master_key(struct encrypted_key_payload *epayload,
  362. const u8 **master_key, size_t *master_keylen)
  363. {
  364. struct key *mkey = ERR_PTR(-EINVAL);
  365. if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX,
  366. KEY_TRUSTED_PREFIX_LEN)) {
  367. mkey = request_trusted_key(epayload->master_desc +
  368. KEY_TRUSTED_PREFIX_LEN,
  369. master_key, master_keylen);
  370. } else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX,
  371. KEY_USER_PREFIX_LEN)) {
  372. mkey = request_user_key(epayload->master_desc +
  373. KEY_USER_PREFIX_LEN,
  374. master_key, master_keylen);
  375. } else
  376. goto out;
  377. if (IS_ERR(mkey)) {
  378. int ret = PTR_ERR(mkey);
  379. if (ret == -ENOTSUPP)
  380. pr_info("encrypted_key: key %s not supported",
  381. epayload->master_desc);
  382. else
  383. pr_info("encrypted_key: key %s not found",
  384. epayload->master_desc);
  385. goto out;
  386. }
  387. dump_master_key(*master_key, *master_keylen);
  388. out:
  389. return mkey;
  390. }
  391. /* Before returning data to userspace, encrypt decrypted data. */
  392. static int derived_key_encrypt(struct encrypted_key_payload *epayload,
  393. const u8 *derived_key,
  394. unsigned int derived_keylen)
  395. {
  396. struct scatterlist sg_in[2];
  397. struct scatterlist sg_out[1];
  398. struct crypto_skcipher *tfm;
  399. struct skcipher_request *req;
  400. unsigned int encrypted_datalen;
  401. u8 iv[AES_BLOCK_SIZE];
  402. int ret;
  403. encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
  404. req = init_skcipher_req(derived_key, derived_keylen);
  405. ret = PTR_ERR(req);
  406. if (IS_ERR(req))
  407. goto out;
  408. dump_decrypted_data(epayload);
  409. sg_init_table(sg_in, 2);
  410. sg_set_buf(&sg_in[0], epayload->decrypted_data,
  411. epayload->decrypted_datalen);
  412. sg_set_page(&sg_in[1], ZERO_PAGE(0), AES_BLOCK_SIZE, 0);
  413. sg_init_table(sg_out, 1);
  414. sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen);
  415. memcpy(iv, epayload->iv, sizeof(iv));
  416. skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
  417. ret = crypto_skcipher_encrypt(req);
  418. tfm = crypto_skcipher_reqtfm(req);
  419. skcipher_request_free(req);
  420. crypto_free_skcipher(tfm);
  421. if (ret < 0)
  422. pr_err("encrypted_key: failed to encrypt (%d)\n", ret);
  423. else
  424. dump_encrypted_data(epayload, encrypted_datalen);
  425. out:
  426. return ret;
  427. }
  428. static int datablob_hmac_append(struct encrypted_key_payload *epayload,
  429. const u8 *master_key, size_t master_keylen)
  430. {
  431. u8 derived_key[HASH_SIZE];
  432. u8 *digest;
  433. int ret;
  434. ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
  435. if (ret < 0)
  436. goto out;
  437. digest = epayload->format + epayload->datablob_len;
  438. ret = calc_hmac(digest, derived_key, sizeof derived_key,
  439. epayload->format, epayload->datablob_len);
  440. if (!ret)
  441. dump_hmac(NULL, digest, HASH_SIZE);
  442. out:
  443. return ret;
  444. }
  445. /* verify HMAC before decrypting encrypted key */
  446. static int datablob_hmac_verify(struct encrypted_key_payload *epayload,
  447. const u8 *format, const u8 *master_key,
  448. size_t master_keylen)
  449. {
  450. u8 derived_key[HASH_SIZE];
  451. u8 digest[HASH_SIZE];
  452. int ret;
  453. char *p;
  454. unsigned short len;
  455. ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
  456. if (ret < 0)
  457. goto out;
  458. len = epayload->datablob_len;
  459. if (!format) {
  460. p = epayload->master_desc;
  461. len -= strlen(epayload->format) + 1;
  462. } else
  463. p = epayload->format;
  464. ret = calc_hmac(digest, derived_key, sizeof derived_key, p, len);
  465. if (ret < 0)
  466. goto out;
  467. ret = crypto_memneq(digest, epayload->format + epayload->datablob_len,
  468. sizeof(digest));
  469. if (ret) {
  470. ret = -EINVAL;
  471. dump_hmac("datablob",
  472. epayload->format + epayload->datablob_len,
  473. HASH_SIZE);
  474. dump_hmac("calc", digest, HASH_SIZE);
  475. }
  476. out:
  477. return ret;
  478. }
  479. static int derived_key_decrypt(struct encrypted_key_payload *epayload,
  480. const u8 *derived_key,
  481. unsigned int derived_keylen)
  482. {
  483. struct scatterlist sg_in[1];
  484. struct scatterlist sg_out[2];
  485. struct crypto_skcipher *tfm;
  486. struct skcipher_request *req;
  487. unsigned int encrypted_datalen;
  488. u8 iv[AES_BLOCK_SIZE];
  489. u8 *pad;
  490. int ret;
  491. /* Throwaway buffer to hold the unused zero padding at the end */
  492. pad = kmalloc(AES_BLOCK_SIZE, GFP_KERNEL);
  493. if (!pad)
  494. return -ENOMEM;
  495. encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
  496. req = init_skcipher_req(derived_key, derived_keylen);
  497. ret = PTR_ERR(req);
  498. if (IS_ERR(req))
  499. goto out;
  500. dump_encrypted_data(epayload, encrypted_datalen);
  501. sg_init_table(sg_in, 1);
  502. sg_init_table(sg_out, 2);
  503. sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen);
  504. sg_set_buf(&sg_out[0], epayload->decrypted_data,
  505. epayload->decrypted_datalen);
  506. sg_set_buf(&sg_out[1], pad, AES_BLOCK_SIZE);
  507. memcpy(iv, epayload->iv, sizeof(iv));
  508. skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
  509. ret = crypto_skcipher_decrypt(req);
  510. tfm = crypto_skcipher_reqtfm(req);
  511. skcipher_request_free(req);
  512. crypto_free_skcipher(tfm);
  513. if (ret < 0)
  514. goto out;
  515. dump_decrypted_data(epayload);
  516. out:
  517. kfree(pad);
  518. return ret;
  519. }
  520. /* Allocate memory for decrypted key and datablob. */
  521. static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
  522. const char *format,
  523. const char *master_desc,
  524. const char *datalen)
  525. {
  526. struct encrypted_key_payload *epayload = NULL;
  527. unsigned short datablob_len;
  528. unsigned short decrypted_datalen;
  529. unsigned short payload_datalen;
  530. unsigned int encrypted_datalen;
  531. unsigned int format_len;
  532. long dlen;
  533. int ret;
  534. ret = kstrtol(datalen, 10, &dlen);
  535. if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE)
  536. return ERR_PTR(-EINVAL);
  537. format_len = (!format) ? strlen(key_format_default) : strlen(format);
  538. decrypted_datalen = dlen;
  539. payload_datalen = decrypted_datalen;
  540. if (format && !strcmp(format, key_format_ecryptfs)) {
  541. if (dlen != ECRYPTFS_MAX_KEY_BYTES) {
  542. pr_err("encrypted_key: keylen for the ecryptfs format "
  543. "must be equal to %d bytes\n",
  544. ECRYPTFS_MAX_KEY_BYTES);
  545. return ERR_PTR(-EINVAL);
  546. }
  547. decrypted_datalen = ECRYPTFS_MAX_KEY_BYTES;
  548. payload_datalen = sizeof(struct ecryptfs_auth_tok);
  549. }
  550. encrypted_datalen = roundup(decrypted_datalen, blksize);
  551. datablob_len = format_len + 1 + strlen(master_desc) + 1
  552. + strlen(datalen) + 1 + ivsize + 1 + encrypted_datalen;
  553. ret = key_payload_reserve(key, payload_datalen + datablob_len
  554. + HASH_SIZE + 1);
  555. if (ret < 0)
  556. return ERR_PTR(ret);
  557. epayload = kzalloc(sizeof(*epayload) + payload_datalen +
  558. datablob_len + HASH_SIZE + 1, GFP_KERNEL);
  559. if (!epayload)
  560. return ERR_PTR(-ENOMEM);
  561. epayload->payload_datalen = payload_datalen;
  562. epayload->decrypted_datalen = decrypted_datalen;
  563. epayload->datablob_len = datablob_len;
  564. return epayload;
  565. }
  566. static int encrypted_key_decrypt(struct encrypted_key_payload *epayload,
  567. const char *format, const char *hex_encoded_iv)
  568. {
  569. struct key *mkey;
  570. u8 derived_key[HASH_SIZE];
  571. const u8 *master_key;
  572. u8 *hmac;
  573. const char *hex_encoded_data;
  574. unsigned int encrypted_datalen;
  575. size_t master_keylen;
  576. size_t asciilen;
  577. int ret;
  578. encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
  579. asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2;
  580. if (strlen(hex_encoded_iv) != asciilen)
  581. return -EINVAL;
  582. hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2;
  583. ret = hex2bin(epayload->iv, hex_encoded_iv, ivsize);
  584. if (ret < 0)
  585. return -EINVAL;
  586. ret = hex2bin(epayload->encrypted_data, hex_encoded_data,
  587. encrypted_datalen);
  588. if (ret < 0)
  589. return -EINVAL;
  590. hmac = epayload->format + epayload->datablob_len;
  591. ret = hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2),
  592. HASH_SIZE);
  593. if (ret < 0)
  594. return -EINVAL;
  595. mkey = request_master_key(epayload, &master_key, &master_keylen);
  596. if (IS_ERR(mkey))
  597. return PTR_ERR(mkey);
  598. ret = datablob_hmac_verify(epayload, format, master_key, master_keylen);
  599. if (ret < 0) {
  600. pr_err("encrypted_key: bad hmac (%d)\n", ret);
  601. goto out;
  602. }
  603. ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
  604. if (ret < 0)
  605. goto out;
  606. ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key);
  607. if (ret < 0)
  608. pr_err("encrypted_key: failed to decrypt key (%d)\n", ret);
  609. out:
  610. up_read(&mkey->sem);
  611. key_put(mkey);
  612. return ret;
  613. }
  614. static void __ekey_init(struct encrypted_key_payload *epayload,
  615. const char *format, const char *master_desc,
  616. const char *datalen)
  617. {
  618. unsigned int format_len;
  619. format_len = (!format) ? strlen(key_format_default) : strlen(format);
  620. epayload->format = epayload->payload_data + epayload->payload_datalen;
  621. epayload->master_desc = epayload->format + format_len + 1;
  622. epayload->datalen = epayload->master_desc + strlen(master_desc) + 1;
  623. epayload->iv = epayload->datalen + strlen(datalen) + 1;
  624. epayload->encrypted_data = epayload->iv + ivsize + 1;
  625. epayload->decrypted_data = epayload->payload_data;
  626. if (!format)
  627. memcpy(epayload->format, key_format_default, format_len);
  628. else {
  629. if (!strcmp(format, key_format_ecryptfs))
  630. epayload->decrypted_data =
  631. ecryptfs_get_auth_tok_key((struct ecryptfs_auth_tok *)epayload->payload_data);
  632. memcpy(epayload->format, format, format_len);
  633. }
  634. memcpy(epayload->master_desc, master_desc, strlen(master_desc));
  635. memcpy(epayload->datalen, datalen, strlen(datalen));
  636. }
  637. /*
  638. * encrypted_init - initialize an encrypted key
  639. *
  640. * For a new key, use a random number for both the iv and data
  641. * itself. For an old key, decrypt the hex encoded data.
  642. */
  643. static int encrypted_init(struct encrypted_key_payload *epayload,
  644. const char *key_desc, const char *format,
  645. const char *master_desc, const char *datalen,
  646. const char *hex_encoded_iv)
  647. {
  648. int ret = 0;
  649. if (format && !strcmp(format, key_format_ecryptfs)) {
  650. ret = valid_ecryptfs_desc(key_desc);
  651. if (ret < 0)
  652. return ret;
  653. ecryptfs_fill_auth_tok((struct ecryptfs_auth_tok *)epayload->payload_data,
  654. key_desc);
  655. }
  656. __ekey_init(epayload, format, master_desc, datalen);
  657. if (!hex_encoded_iv) {
  658. get_random_bytes(epayload->iv, ivsize);
  659. get_random_bytes(epayload->decrypted_data,
  660. epayload->decrypted_datalen);
  661. } else
  662. ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv);
  663. return ret;
  664. }
  665. /*
  666. * encrypted_instantiate - instantiate an encrypted key
  667. *
  668. * Decrypt an existing encrypted datablob or create a new encrypted key
  669. * based on a kernel random number.
  670. *
  671. * On success, return 0. Otherwise return errno.
  672. */
  673. static int encrypted_instantiate(struct key *key,
  674. struct key_preparsed_payload *prep)
  675. {
  676. struct encrypted_key_payload *epayload = NULL;
  677. char *datablob = NULL;
  678. const char *format = NULL;
  679. char *master_desc = NULL;
  680. char *decrypted_datalen = NULL;
  681. char *hex_encoded_iv = NULL;
  682. size_t datalen = prep->datalen;
  683. int ret;
  684. if (datalen <= 0 || datalen > 32767 || !prep->data)
  685. return -EINVAL;
  686. datablob = kmalloc(datalen + 1, GFP_KERNEL);
  687. if (!datablob)
  688. return -ENOMEM;
  689. datablob[datalen] = 0;
  690. memcpy(datablob, prep->data, datalen);
  691. ret = datablob_parse(datablob, &format, &master_desc,
  692. &decrypted_datalen, &hex_encoded_iv);
  693. if (ret < 0)
  694. goto out;
  695. epayload = encrypted_key_alloc(key, format, master_desc,
  696. decrypted_datalen);
  697. if (IS_ERR(epayload)) {
  698. ret = PTR_ERR(epayload);
  699. goto out;
  700. }
  701. ret = encrypted_init(epayload, key->description, format, master_desc,
  702. decrypted_datalen, hex_encoded_iv);
  703. if (ret < 0) {
  704. kfree(epayload);
  705. goto out;
  706. }
  707. rcu_assign_keypointer(key, epayload);
  708. out:
  709. kfree(datablob);
  710. return ret;
  711. }
  712. static void encrypted_rcu_free(struct rcu_head *rcu)
  713. {
  714. struct encrypted_key_payload *epayload;
  715. epayload = container_of(rcu, struct encrypted_key_payload, rcu);
  716. memset(epayload->decrypted_data, 0, epayload->decrypted_datalen);
  717. kfree(epayload);
  718. }
  719. /*
  720. * encrypted_update - update the master key description
  721. *
  722. * Change the master key description for an existing encrypted key.
  723. * The next read will return an encrypted datablob using the new
  724. * master key description.
  725. *
  726. * On success, return 0. Otherwise return errno.
  727. */
  728. static int encrypted_update(struct key *key, struct key_preparsed_payload *prep)
  729. {
  730. struct encrypted_key_payload *epayload = key->payload.data[0];
  731. struct encrypted_key_payload *new_epayload;
  732. char *buf;
  733. char *new_master_desc = NULL;
  734. const char *format = NULL;
  735. size_t datalen = prep->datalen;
  736. int ret = 0;
  737. if (test_bit(KEY_FLAG_NEGATIVE, &key->flags))
  738. return -ENOKEY;
  739. if (datalen <= 0 || datalen > 32767 || !prep->data)
  740. return -EINVAL;
  741. buf = kmalloc(datalen + 1, GFP_KERNEL);
  742. if (!buf)
  743. return -ENOMEM;
  744. buf[datalen] = 0;
  745. memcpy(buf, prep->data, datalen);
  746. ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL);
  747. if (ret < 0)
  748. goto out;
  749. ret = valid_master_desc(new_master_desc, epayload->master_desc);
  750. if (ret < 0)
  751. goto out;
  752. new_epayload = encrypted_key_alloc(key, epayload->format,
  753. new_master_desc, epayload->datalen);
  754. if (IS_ERR(new_epayload)) {
  755. ret = PTR_ERR(new_epayload);
  756. goto out;
  757. }
  758. __ekey_init(new_epayload, epayload->format, new_master_desc,
  759. epayload->datalen);
  760. memcpy(new_epayload->iv, epayload->iv, ivsize);
  761. memcpy(new_epayload->payload_data, epayload->payload_data,
  762. epayload->payload_datalen);
  763. rcu_assign_keypointer(key, new_epayload);
  764. call_rcu(&epayload->rcu, encrypted_rcu_free);
  765. out:
  766. kfree(buf);
  767. return ret;
  768. }
  769. /*
  770. * encrypted_read - format and copy the encrypted data to userspace
  771. *
  772. * The resulting datablob format is:
  773. * <master-key name> <decrypted data length> <encrypted iv> <encrypted data>
  774. *
  775. * On success, return to userspace the encrypted key datablob size.
  776. */
  777. static long encrypted_read(const struct key *key, char __user *buffer,
  778. size_t buflen)
  779. {
  780. struct encrypted_key_payload *epayload;
  781. struct key *mkey;
  782. const u8 *master_key;
  783. size_t master_keylen;
  784. char derived_key[HASH_SIZE];
  785. char *ascii_buf;
  786. size_t asciiblob_len;
  787. int ret;
  788. epayload = dereference_key_locked(key);
  789. /* returns the hex encoded iv, encrypted-data, and hmac as ascii */
  790. asciiblob_len = epayload->datablob_len + ivsize + 1
  791. + roundup(epayload->decrypted_datalen, blksize)
  792. + (HASH_SIZE * 2);
  793. if (!buffer || buflen < asciiblob_len)
  794. return asciiblob_len;
  795. mkey = request_master_key(epayload, &master_key, &master_keylen);
  796. if (IS_ERR(mkey))
  797. return PTR_ERR(mkey);
  798. ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
  799. if (ret < 0)
  800. goto out;
  801. ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key);
  802. if (ret < 0)
  803. goto out;
  804. ret = datablob_hmac_append(epayload, master_key, master_keylen);
  805. if (ret < 0)
  806. goto out;
  807. ascii_buf = datablob_format(epayload, asciiblob_len);
  808. if (!ascii_buf) {
  809. ret = -ENOMEM;
  810. goto out;
  811. }
  812. up_read(&mkey->sem);
  813. key_put(mkey);
  814. if (copy_to_user(buffer, ascii_buf, asciiblob_len) != 0)
  815. ret = -EFAULT;
  816. kfree(ascii_buf);
  817. return asciiblob_len;
  818. out:
  819. up_read(&mkey->sem);
  820. key_put(mkey);
  821. return ret;
  822. }
  823. /*
  824. * encrypted_destroy - before freeing the key, clear the decrypted data
  825. *
  826. * Before freeing the key, clear the memory containing the decrypted
  827. * key data.
  828. */
  829. static void encrypted_destroy(struct key *key)
  830. {
  831. struct encrypted_key_payload *epayload = key->payload.data[0];
  832. if (!epayload)
  833. return;
  834. memzero_explicit(epayload->decrypted_data, epayload->decrypted_datalen);
  835. kfree(key->payload.data[0]);
  836. }
  837. struct key_type key_type_encrypted = {
  838. .name = "encrypted",
  839. .instantiate = encrypted_instantiate,
  840. .update = encrypted_update,
  841. .destroy = encrypted_destroy,
  842. .describe = user_describe,
  843. .read = encrypted_read,
  844. };
  845. EXPORT_SYMBOL_GPL(key_type_encrypted);
  846. static int __init init_encrypted(void)
  847. {
  848. int ret;
  849. hash_tfm = crypto_alloc_shash(hash_alg, 0, CRYPTO_ALG_ASYNC);
  850. if (IS_ERR(hash_tfm)) {
  851. pr_err("encrypted_key: can't allocate %s transform: %ld\n",
  852. hash_alg, PTR_ERR(hash_tfm));
  853. return PTR_ERR(hash_tfm);
  854. }
  855. ret = aes_get_sizes();
  856. if (ret < 0)
  857. goto out;
  858. ret = register_key_type(&key_type_encrypted);
  859. if (ret < 0)
  860. goto out;
  861. return 0;
  862. out:
  863. crypto_free_shash(hash_tfm);
  864. return ret;
  865. }
  866. static void __exit cleanup_encrypted(void)
  867. {
  868. crypto_free_shash(hash_tfm);
  869. unregister_key_type(&key_type_encrypted);
  870. }
  871. late_initcall(init_encrypted);
  872. module_exit(cleanup_encrypted);
  873. MODULE_LICENSE("GPL");