skbuff.h 88 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162
  1. /*
  2. * Definitions for the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors:
  5. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  6. * Florian La Roche, <rzsfl@rz.uni-sb.de>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. */
  13. #ifndef _LINUX_SKBUFF_H
  14. #define _LINUX_SKBUFF_H
  15. #include <linux/kernel.h>
  16. #include <linux/kmemcheck.h>
  17. #include <linux/compiler.h>
  18. #include <linux/time.h>
  19. #include <linux/bug.h>
  20. #include <linux/cache.h>
  21. #include <linux/atomic.h>
  22. #include <asm/types.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/net.h>
  25. #include <linux/textsearch.h>
  26. #include <net/checksum.h>
  27. #include <linux/rcupdate.h>
  28. #include <linux/dmaengine.h>
  29. #include <linux/hrtimer.h>
  30. #include <linux/dma-mapping.h>
  31. #include <linux/netdev_features.h>
  32. #include <linux/sched.h>
  33. #include <net/flow_keys.h>
  34. /* A. Checksumming of received packets by device.
  35. *
  36. * CHECKSUM_NONE:
  37. *
  38. * Device failed to checksum this packet e.g. due to lack of capabilities.
  39. * The packet contains full (though not verified) checksum in packet but
  40. * not in skb->csum. Thus, skb->csum is undefined in this case.
  41. *
  42. * CHECKSUM_UNNECESSARY:
  43. *
  44. * The hardware you're dealing with doesn't calculate the full checksum
  45. * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
  46. * for specific protocols e.g. TCP/UDP/SCTP, then, for such packets it will
  47. * set CHECKSUM_UNNECESSARY if their checksums are okay. skb->csum is still
  48. * undefined in this case though. It is a bad option, but, unfortunately,
  49. * nowadays most vendors do this. Apparently with the secret goal to sell
  50. * you new devices, when you will add new protocol to your host, f.e. IPv6 8)
  51. *
  52. * CHECKSUM_COMPLETE:
  53. *
  54. * This is the most generic way. The device supplied checksum of the _whole_
  55. * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
  56. * hardware doesn't need to parse L3/L4 headers to implement this.
  57. *
  58. * Note: Even if device supports only some protocols, but is able to produce
  59. * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
  60. *
  61. * CHECKSUM_PARTIAL:
  62. *
  63. * This is identical to the case for output below. This may occur on a packet
  64. * received directly from another Linux OS, e.g., a virtualized Linux kernel
  65. * on the same host. The packet can be treated in the same way as
  66. * CHECKSUM_UNNECESSARY, except that on output (i.e., forwarding) the
  67. * checksum must be filled in by the OS or the hardware.
  68. *
  69. * B. Checksumming on output.
  70. *
  71. * CHECKSUM_NONE:
  72. *
  73. * The skb was already checksummed by the protocol, or a checksum is not
  74. * required.
  75. *
  76. * CHECKSUM_PARTIAL:
  77. *
  78. * The device is required to checksum the packet as seen by hard_start_xmit()
  79. * from skb->csum_start up to the end, and to record/write the checksum at
  80. * offset skb->csum_start + skb->csum_offset.
  81. *
  82. * The device must show its capabilities in dev->features, set up at device
  83. * setup time, e.g. netdev_features.h:
  84. *
  85. * NETIF_F_HW_CSUM - It's a clever device, it's able to checksum everything.
  86. * NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
  87. * IPv4. Sigh. Vendors like this way for an unknown reason.
  88. * Though, see comment above about CHECKSUM_UNNECESSARY. 8)
  89. * NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
  90. * NETIF_F_... - Well, you get the picture.
  91. *
  92. * CHECKSUM_UNNECESSARY:
  93. *
  94. * Normally, the device will do per protocol specific checksumming. Protocol
  95. * implementations that do not want the NIC to perform the checksum
  96. * calculation should use this flag in their outgoing skbs.
  97. *
  98. * NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
  99. * offload. Correspondingly, the FCoE protocol driver
  100. * stack should use CHECKSUM_UNNECESSARY.
  101. *
  102. * Any questions? No questions, good. --ANK
  103. */
  104. /* Don't change this without changing skb_csum_unnecessary! */
  105. #define CHECKSUM_NONE 0
  106. #define CHECKSUM_UNNECESSARY 1
  107. #define CHECKSUM_COMPLETE 2
  108. #define CHECKSUM_PARTIAL 3
  109. #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
  110. ~(SMP_CACHE_BYTES - 1))
  111. #define SKB_WITH_OVERHEAD(X) \
  112. ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  113. #define SKB_MAX_ORDER(X, ORDER) \
  114. SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
  115. #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
  116. #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
  117. /* return minimum truesize of one skb containing X bytes of data */
  118. #define SKB_TRUESIZE(X) ((X) + \
  119. SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
  120. SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  121. struct net_device;
  122. struct scatterlist;
  123. struct pipe_inode_info;
  124. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  125. struct nf_conntrack {
  126. atomic_t use;
  127. };
  128. #endif
  129. #ifdef CONFIG_BRIDGE_NETFILTER
  130. struct nf_bridge_info {
  131. atomic_t use;
  132. unsigned int mask;
  133. struct net_device *physindev;
  134. struct net_device *physoutdev;
  135. unsigned long data[32 / sizeof(unsigned long)];
  136. };
  137. #endif
  138. struct sk_buff_head {
  139. /* These two members must be first. */
  140. struct sk_buff *next;
  141. struct sk_buff *prev;
  142. __u32 qlen;
  143. spinlock_t lock;
  144. };
  145. struct sk_buff;
  146. /* To allow 64K frame to be packed as single skb without frag_list we
  147. * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
  148. * buffers which do not start on a page boundary.
  149. *
  150. * Since GRO uses frags we allocate at least 16 regardless of page
  151. * size.
  152. */
  153. #if (65536/PAGE_SIZE + 1) < 16
  154. #define MAX_SKB_FRAGS 16UL
  155. #else
  156. #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
  157. #endif
  158. typedef struct skb_frag_struct skb_frag_t;
  159. struct skb_frag_struct {
  160. struct {
  161. struct page *p;
  162. } page;
  163. #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
  164. __u32 page_offset;
  165. __u32 size;
  166. #else
  167. __u16 page_offset;
  168. __u16 size;
  169. #endif
  170. };
  171. static inline unsigned int skb_frag_size(const skb_frag_t *frag)
  172. {
  173. return frag->size;
  174. }
  175. static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
  176. {
  177. frag->size = size;
  178. }
  179. static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
  180. {
  181. frag->size += delta;
  182. }
  183. static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
  184. {
  185. frag->size -= delta;
  186. }
  187. #define HAVE_HW_TIME_STAMP
  188. /**
  189. * struct skb_shared_hwtstamps - hardware time stamps
  190. * @hwtstamp: hardware time stamp transformed into duration
  191. * since arbitrary point in time
  192. * @syststamp: hwtstamp transformed to system time base
  193. *
  194. * Software time stamps generated by ktime_get_real() are stored in
  195. * skb->tstamp. The relation between the different kinds of time
  196. * stamps is as follows:
  197. *
  198. * syststamp and tstamp can be compared against each other in
  199. * arbitrary combinations. The accuracy of a
  200. * syststamp/tstamp/"syststamp from other device" comparison is
  201. * limited by the accuracy of the transformation into system time
  202. * base. This depends on the device driver and its underlying
  203. * hardware.
  204. *
  205. * hwtstamps can only be compared against other hwtstamps from
  206. * the same device.
  207. *
  208. * This structure is attached to packets as part of the
  209. * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
  210. */
  211. struct skb_shared_hwtstamps {
  212. ktime_t hwtstamp;
  213. ktime_t syststamp;
  214. };
  215. /* Definitions for tx_flags in struct skb_shared_info */
  216. enum {
  217. /* generate hardware time stamp */
  218. SKBTX_HW_TSTAMP = 1 << 0,
  219. /* generate software time stamp */
  220. SKBTX_SW_TSTAMP = 1 << 1,
  221. /* device driver is going to provide hardware time stamp */
  222. SKBTX_IN_PROGRESS = 1 << 2,
  223. /* device driver supports TX zero-copy buffers */
  224. SKBTX_DEV_ZEROCOPY = 1 << 3,
  225. /* generate wifi status information (where possible) */
  226. SKBTX_WIFI_STATUS = 1 << 4,
  227. /* This indicates at least one fragment might be overwritten
  228. * (as in vmsplice(), sendfile() ...)
  229. * If we need to compute a TX checksum, we'll need to copy
  230. * all frags to avoid possible bad checksum
  231. */
  232. SKBTX_SHARED_FRAG = 1 << 5,
  233. };
  234. /*
  235. * The callback notifies userspace to release buffers when skb DMA is done in
  236. * lower device, the skb last reference should be 0 when calling this.
  237. * The zerocopy_success argument is true if zero copy transmit occurred,
  238. * false on data copy or out of memory error caused by data copy attempt.
  239. * The ctx field is used to track device context.
  240. * The desc field is used to track userspace buffer index.
  241. */
  242. struct ubuf_info {
  243. void (*callback)(struct ubuf_info *, bool zerocopy_success);
  244. void *ctx;
  245. unsigned long desc;
  246. };
  247. /* This data is invariant across clones and lives at
  248. * the end of the header data, ie. at skb->end.
  249. */
  250. struct skb_shared_info {
  251. unsigned char nr_frags;
  252. __u8 tx_flags;
  253. unsigned short gso_size;
  254. /* Warning: this field is not always filled in (UFO)! */
  255. unsigned short gso_segs;
  256. unsigned short gso_type;
  257. struct sk_buff *frag_list;
  258. struct skb_shared_hwtstamps hwtstamps;
  259. __be32 ip6_frag_id;
  260. /*
  261. * Warning : all fields before dataref are cleared in __alloc_skb()
  262. */
  263. atomic_t dataref;
  264. /* Intermediate layers must ensure that destructor_arg
  265. * remains valid until skb destructor */
  266. void * destructor_arg;
  267. /* must be last field, see pskb_expand_head() */
  268. skb_frag_t frags[MAX_SKB_FRAGS];
  269. };
  270. /* We divide dataref into two halves. The higher 16 bits hold references
  271. * to the payload part of skb->data. The lower 16 bits hold references to
  272. * the entire skb->data. A clone of a headerless skb holds the length of
  273. * the header in skb->hdr_len.
  274. *
  275. * All users must obey the rule that the skb->data reference count must be
  276. * greater than or equal to the payload reference count.
  277. *
  278. * Holding a reference to the payload part means that the user does not
  279. * care about modifications to the header part of skb->data.
  280. */
  281. #define SKB_DATAREF_SHIFT 16
  282. #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
  283. enum {
  284. SKB_FCLONE_UNAVAILABLE,
  285. SKB_FCLONE_ORIG,
  286. SKB_FCLONE_CLONE,
  287. };
  288. enum {
  289. SKB_GSO_TCPV4 = 1 << 0,
  290. SKB_GSO_UDP = 1 << 1,
  291. /* This indicates the skb is from an untrusted source. */
  292. SKB_GSO_DODGY = 1 << 2,
  293. /* This indicates the tcp segment has CWR set. */
  294. SKB_GSO_TCP_ECN = 1 << 3,
  295. SKB_GSO_TCPV6 = 1 << 4,
  296. SKB_GSO_FCOE = 1 << 5,
  297. SKB_GSO_GRE = 1 << 6,
  298. SKB_GSO_GRE_CSUM = 1 << 7,
  299. SKB_GSO_IPIP = 1 << 8,
  300. SKB_GSO_SIT = 1 << 9,
  301. SKB_GSO_UDP_TUNNEL = 1 << 10,
  302. SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
  303. SKB_GSO_MPLS = 1 << 12,
  304. };
  305. #if BITS_PER_LONG > 32
  306. #define NET_SKBUFF_DATA_USES_OFFSET 1
  307. #endif
  308. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  309. typedef unsigned int sk_buff_data_t;
  310. #else
  311. typedef unsigned char *sk_buff_data_t;
  312. #endif
  313. /**
  314. * struct skb_mstamp - multi resolution time stamps
  315. * @stamp_us: timestamp in us resolution
  316. * @stamp_jiffies: timestamp in jiffies
  317. */
  318. struct skb_mstamp {
  319. union {
  320. u64 v64;
  321. struct {
  322. u32 stamp_us;
  323. u32 stamp_jiffies;
  324. };
  325. };
  326. };
  327. /**
  328. * skb_mstamp_get - get current timestamp
  329. * @cl: place to store timestamps
  330. */
  331. static inline void skb_mstamp_get(struct skb_mstamp *cl)
  332. {
  333. u64 val = local_clock();
  334. do_div(val, NSEC_PER_USEC);
  335. cl->stamp_us = (u32)val;
  336. cl->stamp_jiffies = (u32)jiffies;
  337. }
  338. /**
  339. * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
  340. * @t1: pointer to newest sample
  341. * @t0: pointer to oldest sample
  342. */
  343. static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
  344. const struct skb_mstamp *t0)
  345. {
  346. s32 delta_us = t1->stamp_us - t0->stamp_us;
  347. u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
  348. /* If delta_us is negative, this might be because interval is too big,
  349. * or local_clock() drift is too big : fallback using jiffies.
  350. */
  351. if (delta_us <= 0 ||
  352. delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
  353. delta_us = jiffies_to_usecs(delta_jiffies);
  354. return delta_us;
  355. }
  356. /**
  357. * struct sk_buff - socket buffer
  358. * @next: Next buffer in list
  359. * @prev: Previous buffer in list
  360. * @tstamp: Time we arrived/left
  361. * @sk: Socket we are owned by
  362. * @dev: Device we arrived on/are leaving by
  363. * @cb: Control buffer. Free for use by every layer. Put private vars here
  364. * @_skb_refdst: destination entry (with norefcount bit)
  365. * @sp: the security path, used for xfrm
  366. * @len: Length of actual data
  367. * @data_len: Data length
  368. * @mac_len: Length of link layer header
  369. * @hdr_len: writable header length of cloned skb
  370. * @csum: Checksum (must include start/offset pair)
  371. * @csum_start: Offset from skb->head where checksumming should start
  372. * @csum_offset: Offset from csum_start where checksum should be stored
  373. * @priority: Packet queueing priority
  374. * @ignore_df: allow local fragmentation
  375. * @cloned: Head may be cloned (check refcnt to be sure)
  376. * @ip_summed: Driver fed us an IP checksum
  377. * @nohdr: Payload reference only, must not modify header
  378. * @nfctinfo: Relationship of this skb to the connection
  379. * @pkt_type: Packet class
  380. * @fclone: skbuff clone status
  381. * @ipvs_property: skbuff is owned by ipvs
  382. * @peeked: this packet has been seen already, so stats have been
  383. * done for it, don't do them again
  384. * @nf_trace: netfilter packet trace flag
  385. * @protocol: Packet protocol from driver
  386. * @destructor: Destruct function
  387. * @nfct: Associated connection, if any
  388. * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
  389. * @skb_iif: ifindex of device we arrived on
  390. * @tc_index: Traffic control index
  391. * @tc_verd: traffic control verdict
  392. * @hash: the packet hash
  393. * @queue_mapping: Queue mapping for multiqueue devices
  394. * @ndisc_nodetype: router type (from link layer)
  395. * @ooo_okay: allow the mapping of a socket to a queue to be changed
  396. * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
  397. * ports.
  398. * @wifi_acked_valid: wifi_acked was set
  399. * @wifi_acked: whether frame was acked on wifi or not
  400. * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
  401. * @dma_cookie: a cookie to one of several possible DMA operations
  402. * done by skb DMA functions
  403. * @napi_id: id of the NAPI struct this skb came from
  404. * @secmark: security marking
  405. * @mark: Generic packet mark
  406. * @dropcount: total number of sk_receive_queue overflows
  407. * @vlan_proto: vlan encapsulation protocol
  408. * @vlan_tci: vlan tag control information
  409. * @inner_protocol: Protocol (encapsulation)
  410. * @inner_transport_header: Inner transport layer header (encapsulation)
  411. * @inner_network_header: Network layer header (encapsulation)
  412. * @inner_mac_header: Link layer header (encapsulation)
  413. * @transport_header: Transport layer header
  414. * @network_header: Network layer header
  415. * @mac_header: Link layer header
  416. * @tail: Tail pointer
  417. * @end: End pointer
  418. * @head: Head of buffer
  419. * @data: Data head pointer
  420. * @truesize: Buffer size
  421. * @users: User count - see {datagram,tcp}.c
  422. */
  423. struct sk_buff {
  424. /* These two members must be first. */
  425. struct sk_buff *next;
  426. struct sk_buff *prev;
  427. union {
  428. ktime_t tstamp;
  429. struct skb_mstamp skb_mstamp;
  430. };
  431. struct sock *sk;
  432. struct net_device *dev;
  433. /*
  434. * This is the control buffer. It is free to use for every
  435. * layer. Please put your private variables there. If you
  436. * want to keep them across layers you have to do a skb_clone()
  437. * first. This is owned by whoever has the skb queued ATM.
  438. */
  439. char cb[48] __aligned(8);
  440. unsigned long _skb_refdst;
  441. #ifdef CONFIG_XFRM
  442. struct sec_path *sp;
  443. #endif
  444. unsigned int len,
  445. data_len;
  446. __u16 mac_len,
  447. hdr_len;
  448. union {
  449. __wsum csum;
  450. struct {
  451. __u16 csum_start;
  452. __u16 csum_offset;
  453. };
  454. };
  455. __u32 priority;
  456. kmemcheck_bitfield_begin(flags1);
  457. __u8 ignore_df:1,
  458. cloned:1,
  459. ip_summed:2,
  460. nohdr:1,
  461. nfctinfo:3;
  462. __u8 pkt_type:3,
  463. fclone:2,
  464. ipvs_property:1,
  465. peeked:1,
  466. nf_trace:1;
  467. kmemcheck_bitfield_end(flags1);
  468. __be16 protocol;
  469. void (*destructor)(struct sk_buff *skb);
  470. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  471. struct nf_conntrack *nfct;
  472. #endif
  473. #ifdef CONFIG_BRIDGE_NETFILTER
  474. struct nf_bridge_info *nf_bridge;
  475. #endif
  476. int skb_iif;
  477. __u32 hash;
  478. __be16 vlan_proto;
  479. __u16 vlan_tci;
  480. #ifdef CONFIG_NET_SCHED
  481. __u16 tc_index; /* traffic control index */
  482. #ifdef CONFIG_NET_CLS_ACT
  483. __u16 tc_verd; /* traffic control verdict */
  484. #endif
  485. #endif
  486. __u16 queue_mapping;
  487. kmemcheck_bitfield_begin(flags2);
  488. #ifdef CONFIG_IPV6_NDISC_NODETYPE
  489. __u8 ndisc_nodetype:2;
  490. #endif
  491. __u8 pfmemalloc:1;
  492. __u8 ooo_okay:1;
  493. __u8 l4_hash:1;
  494. __u8 wifi_acked_valid:1;
  495. __u8 wifi_acked:1;
  496. __u8 no_fcs:1;
  497. __u8 head_frag:1;
  498. /* Encapsulation protocol and NIC drivers should use
  499. * this flag to indicate to each other if the skb contains
  500. * encapsulated packet or not and maybe use the inner packet
  501. * headers if needed
  502. */
  503. __u8 encapsulation:1;
  504. __u8 encap_hdr_csum:1;
  505. __u8 csum_valid:1;
  506. __u8 csum_complete_sw:1;
  507. /* 3/5 bit hole (depending on ndisc_nodetype presence) */
  508. kmemcheck_bitfield_end(flags2);
  509. #if defined CONFIG_NET_DMA || defined CONFIG_NET_RX_BUSY_POLL
  510. union {
  511. unsigned int napi_id;
  512. dma_cookie_t dma_cookie;
  513. };
  514. #endif
  515. #ifdef CONFIG_NETWORK_SECMARK
  516. __u32 secmark;
  517. #endif
  518. union {
  519. __u32 mark;
  520. __u32 dropcount;
  521. __u32 reserved_tailroom;
  522. };
  523. __be16 inner_protocol;
  524. __u16 inner_transport_header;
  525. __u16 inner_network_header;
  526. __u16 inner_mac_header;
  527. __u16 transport_header;
  528. __u16 network_header;
  529. __u16 mac_header;
  530. /* These elements must be at the end, see alloc_skb() for details. */
  531. sk_buff_data_t tail;
  532. sk_buff_data_t end;
  533. unsigned char *head,
  534. *data;
  535. unsigned int truesize;
  536. atomic_t users;
  537. };
  538. #ifdef __KERNEL__
  539. /*
  540. * Handling routines are only of interest to the kernel
  541. */
  542. #include <linux/slab.h>
  543. #define SKB_ALLOC_FCLONE 0x01
  544. #define SKB_ALLOC_RX 0x02
  545. /* Returns true if the skb was allocated from PFMEMALLOC reserves */
  546. static inline bool skb_pfmemalloc(const struct sk_buff *skb)
  547. {
  548. return unlikely(skb->pfmemalloc);
  549. }
  550. /*
  551. * skb might have a dst pointer attached, refcounted or not.
  552. * _skb_refdst low order bit is set if refcount was _not_ taken
  553. */
  554. #define SKB_DST_NOREF 1UL
  555. #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
  556. /**
  557. * skb_dst - returns skb dst_entry
  558. * @skb: buffer
  559. *
  560. * Returns skb dst_entry, regardless of reference taken or not.
  561. */
  562. static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
  563. {
  564. /* If refdst was not refcounted, check we still are in a
  565. * rcu_read_lock section
  566. */
  567. WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
  568. !rcu_read_lock_held() &&
  569. !rcu_read_lock_bh_held());
  570. return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
  571. }
  572. /**
  573. * skb_dst_set - sets skb dst
  574. * @skb: buffer
  575. * @dst: dst entry
  576. *
  577. * Sets skb dst, assuming a reference was taken on dst and should
  578. * be released by skb_dst_drop()
  579. */
  580. static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
  581. {
  582. skb->_skb_refdst = (unsigned long)dst;
  583. }
  584. void __skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst,
  585. bool force);
  586. /**
  587. * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
  588. * @skb: buffer
  589. * @dst: dst entry
  590. *
  591. * Sets skb dst, assuming a reference was not taken on dst.
  592. * If dst entry is cached, we do not take reference and dst_release
  593. * will be avoided by refdst_drop. If dst entry is not cached, we take
  594. * reference, so that last dst_release can destroy the dst immediately.
  595. */
  596. static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
  597. {
  598. __skb_dst_set_noref(skb, dst, false);
  599. }
  600. /**
  601. * skb_dst_set_noref_force - sets skb dst, without taking reference
  602. * @skb: buffer
  603. * @dst: dst entry
  604. *
  605. * Sets skb dst, assuming a reference was not taken on dst.
  606. * No reference is taken and no dst_release will be called. While for
  607. * cached dsts deferred reclaim is a basic feature, for entries that are
  608. * not cached it is caller's job to guarantee that last dst_release for
  609. * provided dst happens when nobody uses it, eg. after a RCU grace period.
  610. */
  611. static inline void skb_dst_set_noref_force(struct sk_buff *skb,
  612. struct dst_entry *dst)
  613. {
  614. __skb_dst_set_noref(skb, dst, true);
  615. }
  616. /**
  617. * skb_dst_is_noref - Test if skb dst isn't refcounted
  618. * @skb: buffer
  619. */
  620. static inline bool skb_dst_is_noref(const struct sk_buff *skb)
  621. {
  622. return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
  623. }
  624. static inline struct rtable *skb_rtable(const struct sk_buff *skb)
  625. {
  626. return (struct rtable *)skb_dst(skb);
  627. }
  628. void kfree_skb(struct sk_buff *skb);
  629. void kfree_skb_list(struct sk_buff *segs);
  630. void skb_tx_error(struct sk_buff *skb);
  631. void consume_skb(struct sk_buff *skb);
  632. void __kfree_skb(struct sk_buff *skb);
  633. extern struct kmem_cache *skbuff_head_cache;
  634. void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
  635. bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
  636. bool *fragstolen, int *delta_truesize);
  637. struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
  638. int node);
  639. struct sk_buff *build_skb(void *data, unsigned int frag_size);
  640. static inline struct sk_buff *alloc_skb(unsigned int size,
  641. gfp_t priority)
  642. {
  643. return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
  644. }
  645. static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
  646. gfp_t priority)
  647. {
  648. return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
  649. }
  650. struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
  651. static inline struct sk_buff *alloc_skb_head(gfp_t priority)
  652. {
  653. return __alloc_skb_head(priority, -1);
  654. }
  655. struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
  656. int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
  657. struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
  658. struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
  659. struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
  660. gfp_t gfp_mask, bool fclone);
  661. static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
  662. gfp_t gfp_mask)
  663. {
  664. return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
  665. }
  666. int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
  667. struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
  668. unsigned int headroom);
  669. struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
  670. int newtailroom, gfp_t priority);
  671. int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
  672. int offset, int len);
  673. int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
  674. int len);
  675. int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
  676. int skb_pad(struct sk_buff *skb, int pad);
  677. #define dev_kfree_skb(a) consume_skb(a)
  678. int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  679. int getfrag(void *from, char *to, int offset,
  680. int len, int odd, struct sk_buff *skb),
  681. void *from, int length);
  682. struct skb_seq_state {
  683. __u32 lower_offset;
  684. __u32 upper_offset;
  685. __u32 frag_idx;
  686. __u32 stepped_offset;
  687. struct sk_buff *root_skb;
  688. struct sk_buff *cur_skb;
  689. __u8 *frag_data;
  690. };
  691. void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
  692. unsigned int to, struct skb_seq_state *st);
  693. unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  694. struct skb_seq_state *st);
  695. void skb_abort_seq_read(struct skb_seq_state *st);
  696. unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  697. unsigned int to, struct ts_config *config,
  698. struct ts_state *state);
  699. /*
  700. * Packet hash types specify the type of hash in skb_set_hash.
  701. *
  702. * Hash types refer to the protocol layer addresses which are used to
  703. * construct a packet's hash. The hashes are used to differentiate or identify
  704. * flows of the protocol layer for the hash type. Hash types are either
  705. * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
  706. *
  707. * Properties of hashes:
  708. *
  709. * 1) Two packets in different flows have different hash values
  710. * 2) Two packets in the same flow should have the same hash value
  711. *
  712. * A hash at a higher layer is considered to be more specific. A driver should
  713. * set the most specific hash possible.
  714. *
  715. * A driver cannot indicate a more specific hash than the layer at which a hash
  716. * was computed. For instance an L3 hash cannot be set as an L4 hash.
  717. *
  718. * A driver may indicate a hash level which is less specific than the
  719. * actual layer the hash was computed on. For instance, a hash computed
  720. * at L4 may be considered an L3 hash. This should only be done if the
  721. * driver can't unambiguously determine that the HW computed the hash at
  722. * the higher layer. Note that the "should" in the second property above
  723. * permits this.
  724. */
  725. enum pkt_hash_types {
  726. PKT_HASH_TYPE_NONE, /* Undefined type */
  727. PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
  728. PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
  729. PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
  730. };
  731. static inline void
  732. skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
  733. {
  734. skb->l4_hash = (type == PKT_HASH_TYPE_L4);
  735. skb->hash = hash;
  736. }
  737. void __skb_get_hash(struct sk_buff *skb);
  738. static inline __u32 skb_get_hash(struct sk_buff *skb)
  739. {
  740. if (!skb->l4_hash)
  741. __skb_get_hash(skb);
  742. return skb->hash;
  743. }
  744. static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
  745. {
  746. return skb->hash;
  747. }
  748. static inline void skb_clear_hash(struct sk_buff *skb)
  749. {
  750. skb->hash = 0;
  751. skb->l4_hash = 0;
  752. }
  753. static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
  754. {
  755. if (!skb->l4_hash)
  756. skb_clear_hash(skb);
  757. }
  758. static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
  759. {
  760. to->hash = from->hash;
  761. to->l4_hash = from->l4_hash;
  762. };
  763. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  764. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  765. {
  766. return skb->head + skb->end;
  767. }
  768. static inline unsigned int skb_end_offset(const struct sk_buff *skb)
  769. {
  770. return skb->end;
  771. }
  772. #else
  773. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  774. {
  775. return skb->end;
  776. }
  777. static inline unsigned int skb_end_offset(const struct sk_buff *skb)
  778. {
  779. return skb->end - skb->head;
  780. }
  781. #endif
  782. /* Internal */
  783. #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
  784. static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
  785. {
  786. return &skb_shinfo(skb)->hwtstamps;
  787. }
  788. /**
  789. * skb_queue_empty - check if a queue is empty
  790. * @list: queue head
  791. *
  792. * Returns true if the queue is empty, false otherwise.
  793. */
  794. static inline int skb_queue_empty(const struct sk_buff_head *list)
  795. {
  796. return list->next == (const struct sk_buff *) list;
  797. }
  798. /**
  799. * skb_queue_is_last - check if skb is the last entry in the queue
  800. * @list: queue head
  801. * @skb: buffer
  802. *
  803. * Returns true if @skb is the last buffer on the list.
  804. */
  805. static inline bool skb_queue_is_last(const struct sk_buff_head *list,
  806. const struct sk_buff *skb)
  807. {
  808. return skb->next == (const struct sk_buff *) list;
  809. }
  810. /**
  811. * skb_queue_is_first - check if skb is the first entry in the queue
  812. * @list: queue head
  813. * @skb: buffer
  814. *
  815. * Returns true if @skb is the first buffer on the list.
  816. */
  817. static inline bool skb_queue_is_first(const struct sk_buff_head *list,
  818. const struct sk_buff *skb)
  819. {
  820. return skb->prev == (const struct sk_buff *) list;
  821. }
  822. /**
  823. * skb_queue_next - return the next packet in the queue
  824. * @list: queue head
  825. * @skb: current buffer
  826. *
  827. * Return the next packet in @list after @skb. It is only valid to
  828. * call this if skb_queue_is_last() evaluates to false.
  829. */
  830. static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
  831. const struct sk_buff *skb)
  832. {
  833. /* This BUG_ON may seem severe, but if we just return then we
  834. * are going to dereference garbage.
  835. */
  836. BUG_ON(skb_queue_is_last(list, skb));
  837. return skb->next;
  838. }
  839. /**
  840. * skb_queue_prev - return the prev packet in the queue
  841. * @list: queue head
  842. * @skb: current buffer
  843. *
  844. * Return the prev packet in @list before @skb. It is only valid to
  845. * call this if skb_queue_is_first() evaluates to false.
  846. */
  847. static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
  848. const struct sk_buff *skb)
  849. {
  850. /* This BUG_ON may seem severe, but if we just return then we
  851. * are going to dereference garbage.
  852. */
  853. BUG_ON(skb_queue_is_first(list, skb));
  854. return skb->prev;
  855. }
  856. /**
  857. * skb_get - reference buffer
  858. * @skb: buffer to reference
  859. *
  860. * Makes another reference to a socket buffer and returns a pointer
  861. * to the buffer.
  862. */
  863. static inline struct sk_buff *skb_get(struct sk_buff *skb)
  864. {
  865. atomic_inc(&skb->users);
  866. return skb;
  867. }
  868. /*
  869. * If users == 1, we are the only owner and are can avoid redundant
  870. * atomic change.
  871. */
  872. /**
  873. * skb_cloned - is the buffer a clone
  874. * @skb: buffer to check
  875. *
  876. * Returns true if the buffer was generated with skb_clone() and is
  877. * one of multiple shared copies of the buffer. Cloned buffers are
  878. * shared data so must not be written to under normal circumstances.
  879. */
  880. static inline int skb_cloned(const struct sk_buff *skb)
  881. {
  882. return skb->cloned &&
  883. (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
  884. }
  885. static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
  886. {
  887. might_sleep_if(pri & __GFP_WAIT);
  888. if (skb_cloned(skb))
  889. return pskb_expand_head(skb, 0, 0, pri);
  890. return 0;
  891. }
  892. /**
  893. * skb_header_cloned - is the header a clone
  894. * @skb: buffer to check
  895. *
  896. * Returns true if modifying the header part of the buffer requires
  897. * the data to be copied.
  898. */
  899. static inline int skb_header_cloned(const struct sk_buff *skb)
  900. {
  901. int dataref;
  902. if (!skb->cloned)
  903. return 0;
  904. dataref = atomic_read(&skb_shinfo(skb)->dataref);
  905. dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
  906. return dataref != 1;
  907. }
  908. /**
  909. * skb_header_release - release reference to header
  910. * @skb: buffer to operate on
  911. *
  912. * Drop a reference to the header part of the buffer. This is done
  913. * by acquiring a payload reference. You must not read from the header
  914. * part of skb->data after this.
  915. */
  916. static inline void skb_header_release(struct sk_buff *skb)
  917. {
  918. BUG_ON(skb->nohdr);
  919. skb->nohdr = 1;
  920. atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
  921. }
  922. /**
  923. * skb_shared - is the buffer shared
  924. * @skb: buffer to check
  925. *
  926. * Returns true if more than one person has a reference to this
  927. * buffer.
  928. */
  929. static inline int skb_shared(const struct sk_buff *skb)
  930. {
  931. return atomic_read(&skb->users) != 1;
  932. }
  933. /**
  934. * skb_share_check - check if buffer is shared and if so clone it
  935. * @skb: buffer to check
  936. * @pri: priority for memory allocation
  937. *
  938. * If the buffer is shared the buffer is cloned and the old copy
  939. * drops a reference. A new clone with a single reference is returned.
  940. * If the buffer is not shared the original buffer is returned. When
  941. * being called from interrupt status or with spinlocks held pri must
  942. * be GFP_ATOMIC.
  943. *
  944. * NULL is returned on a memory allocation failure.
  945. */
  946. static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
  947. {
  948. might_sleep_if(pri & __GFP_WAIT);
  949. if (skb_shared(skb)) {
  950. struct sk_buff *nskb = skb_clone(skb, pri);
  951. if (likely(nskb))
  952. consume_skb(skb);
  953. else
  954. kfree_skb(skb);
  955. skb = nskb;
  956. }
  957. return skb;
  958. }
  959. /*
  960. * Copy shared buffers into a new sk_buff. We effectively do COW on
  961. * packets to handle cases where we have a local reader and forward
  962. * and a couple of other messy ones. The normal one is tcpdumping
  963. * a packet thats being forwarded.
  964. */
  965. /**
  966. * skb_unshare - make a copy of a shared buffer
  967. * @skb: buffer to check
  968. * @pri: priority for memory allocation
  969. *
  970. * If the socket buffer is a clone then this function creates a new
  971. * copy of the data, drops a reference count on the old copy and returns
  972. * the new copy with the reference count at 1. If the buffer is not a clone
  973. * the original buffer is returned. When called with a spinlock held or
  974. * from interrupt state @pri must be %GFP_ATOMIC
  975. *
  976. * %NULL is returned on a memory allocation failure.
  977. */
  978. static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
  979. gfp_t pri)
  980. {
  981. might_sleep_if(pri & __GFP_WAIT);
  982. if (skb_cloned(skb)) {
  983. struct sk_buff *nskb = skb_copy(skb, pri);
  984. kfree_skb(skb); /* Free our shared copy */
  985. skb = nskb;
  986. }
  987. return skb;
  988. }
  989. /**
  990. * skb_peek - peek at the head of an &sk_buff_head
  991. * @list_: list to peek at
  992. *
  993. * Peek an &sk_buff. Unlike most other operations you _MUST_
  994. * be careful with this one. A peek leaves the buffer on the
  995. * list and someone else may run off with it. You must hold
  996. * the appropriate locks or have a private queue to do this.
  997. *
  998. * Returns %NULL for an empty list or a pointer to the head element.
  999. * The reference count is not incremented and the reference is therefore
  1000. * volatile. Use with caution.
  1001. */
  1002. static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
  1003. {
  1004. struct sk_buff *skb = list_->next;
  1005. if (skb == (struct sk_buff *)list_)
  1006. skb = NULL;
  1007. return skb;
  1008. }
  1009. /**
  1010. * skb_peek_next - peek skb following the given one from a queue
  1011. * @skb: skb to start from
  1012. * @list_: list to peek at
  1013. *
  1014. * Returns %NULL when the end of the list is met or a pointer to the
  1015. * next element. The reference count is not incremented and the
  1016. * reference is therefore volatile. Use with caution.
  1017. */
  1018. static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
  1019. const struct sk_buff_head *list_)
  1020. {
  1021. struct sk_buff *next = skb->next;
  1022. if (next == (struct sk_buff *)list_)
  1023. next = NULL;
  1024. return next;
  1025. }
  1026. /**
  1027. * skb_peek_tail - peek at the tail of an &sk_buff_head
  1028. * @list_: list to peek at
  1029. *
  1030. * Peek an &sk_buff. Unlike most other operations you _MUST_
  1031. * be careful with this one. A peek leaves the buffer on the
  1032. * list and someone else may run off with it. You must hold
  1033. * the appropriate locks or have a private queue to do this.
  1034. *
  1035. * Returns %NULL for an empty list or a pointer to the tail element.
  1036. * The reference count is not incremented and the reference is therefore
  1037. * volatile. Use with caution.
  1038. */
  1039. static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
  1040. {
  1041. struct sk_buff *skb = list_->prev;
  1042. if (skb == (struct sk_buff *)list_)
  1043. skb = NULL;
  1044. return skb;
  1045. }
  1046. /**
  1047. * skb_queue_len - get queue length
  1048. * @list_: list to measure
  1049. *
  1050. * Return the length of an &sk_buff queue.
  1051. */
  1052. static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
  1053. {
  1054. return list_->qlen;
  1055. }
  1056. /**
  1057. * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
  1058. * @list: queue to initialize
  1059. *
  1060. * This initializes only the list and queue length aspects of
  1061. * an sk_buff_head object. This allows to initialize the list
  1062. * aspects of an sk_buff_head without reinitializing things like
  1063. * the spinlock. It can also be used for on-stack sk_buff_head
  1064. * objects where the spinlock is known to not be used.
  1065. */
  1066. static inline void __skb_queue_head_init(struct sk_buff_head *list)
  1067. {
  1068. list->prev = list->next = (struct sk_buff *)list;
  1069. list->qlen = 0;
  1070. }
  1071. /*
  1072. * This function creates a split out lock class for each invocation;
  1073. * this is needed for now since a whole lot of users of the skb-queue
  1074. * infrastructure in drivers have different locking usage (in hardirq)
  1075. * than the networking core (in softirq only). In the long run either the
  1076. * network layer or drivers should need annotation to consolidate the
  1077. * main types of usage into 3 classes.
  1078. */
  1079. static inline void skb_queue_head_init(struct sk_buff_head *list)
  1080. {
  1081. spin_lock_init(&list->lock);
  1082. __skb_queue_head_init(list);
  1083. }
  1084. static inline void skb_queue_head_init_class(struct sk_buff_head *list,
  1085. struct lock_class_key *class)
  1086. {
  1087. skb_queue_head_init(list);
  1088. lockdep_set_class(&list->lock, class);
  1089. }
  1090. /*
  1091. * Insert an sk_buff on a list.
  1092. *
  1093. * The "__skb_xxxx()" functions are the non-atomic ones that
  1094. * can only be called with interrupts disabled.
  1095. */
  1096. void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
  1097. struct sk_buff_head *list);
  1098. static inline void __skb_insert(struct sk_buff *newsk,
  1099. struct sk_buff *prev, struct sk_buff *next,
  1100. struct sk_buff_head *list)
  1101. {
  1102. newsk->next = next;
  1103. newsk->prev = prev;
  1104. next->prev = prev->next = newsk;
  1105. list->qlen++;
  1106. }
  1107. static inline void __skb_queue_splice(const struct sk_buff_head *list,
  1108. struct sk_buff *prev,
  1109. struct sk_buff *next)
  1110. {
  1111. struct sk_buff *first = list->next;
  1112. struct sk_buff *last = list->prev;
  1113. first->prev = prev;
  1114. prev->next = first;
  1115. last->next = next;
  1116. next->prev = last;
  1117. }
  1118. /**
  1119. * skb_queue_splice - join two skb lists, this is designed for stacks
  1120. * @list: the new list to add
  1121. * @head: the place to add it in the first list
  1122. */
  1123. static inline void skb_queue_splice(const struct sk_buff_head *list,
  1124. struct sk_buff_head *head)
  1125. {
  1126. if (!skb_queue_empty(list)) {
  1127. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  1128. head->qlen += list->qlen;
  1129. }
  1130. }
  1131. /**
  1132. * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
  1133. * @list: the new list to add
  1134. * @head: the place to add it in the first list
  1135. *
  1136. * The list at @list is reinitialised
  1137. */
  1138. static inline void skb_queue_splice_init(struct sk_buff_head *list,
  1139. struct sk_buff_head *head)
  1140. {
  1141. if (!skb_queue_empty(list)) {
  1142. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  1143. head->qlen += list->qlen;
  1144. __skb_queue_head_init(list);
  1145. }
  1146. }
  1147. /**
  1148. * skb_queue_splice_tail - join two skb lists, each list being a queue
  1149. * @list: the new list to add
  1150. * @head: the place to add it in the first list
  1151. */
  1152. static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
  1153. struct sk_buff_head *head)
  1154. {
  1155. if (!skb_queue_empty(list)) {
  1156. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  1157. head->qlen += list->qlen;
  1158. }
  1159. }
  1160. /**
  1161. * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
  1162. * @list: the new list to add
  1163. * @head: the place to add it in the first list
  1164. *
  1165. * Each of the lists is a queue.
  1166. * The list at @list is reinitialised
  1167. */
  1168. static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
  1169. struct sk_buff_head *head)
  1170. {
  1171. if (!skb_queue_empty(list)) {
  1172. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  1173. head->qlen += list->qlen;
  1174. __skb_queue_head_init(list);
  1175. }
  1176. }
  1177. /**
  1178. * __skb_queue_after - queue a buffer at the list head
  1179. * @list: list to use
  1180. * @prev: place after this buffer
  1181. * @newsk: buffer to queue
  1182. *
  1183. * Queue a buffer int the middle of a list. This function takes no locks
  1184. * and you must therefore hold required locks before calling it.
  1185. *
  1186. * A buffer cannot be placed on two lists at the same time.
  1187. */
  1188. static inline void __skb_queue_after(struct sk_buff_head *list,
  1189. struct sk_buff *prev,
  1190. struct sk_buff *newsk)
  1191. {
  1192. __skb_insert(newsk, prev, prev->next, list);
  1193. }
  1194. void skb_append(struct sk_buff *old, struct sk_buff *newsk,
  1195. struct sk_buff_head *list);
  1196. static inline void __skb_queue_before(struct sk_buff_head *list,
  1197. struct sk_buff *next,
  1198. struct sk_buff *newsk)
  1199. {
  1200. __skb_insert(newsk, next->prev, next, list);
  1201. }
  1202. /**
  1203. * __skb_queue_head - queue a buffer at the list head
  1204. * @list: list to use
  1205. * @newsk: buffer to queue
  1206. *
  1207. * Queue a buffer at the start of a list. This function takes no locks
  1208. * and you must therefore hold required locks before calling it.
  1209. *
  1210. * A buffer cannot be placed on two lists at the same time.
  1211. */
  1212. void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
  1213. static inline void __skb_queue_head(struct sk_buff_head *list,
  1214. struct sk_buff *newsk)
  1215. {
  1216. __skb_queue_after(list, (struct sk_buff *)list, newsk);
  1217. }
  1218. /**
  1219. * __skb_queue_tail - queue a buffer at the list tail
  1220. * @list: list to use
  1221. * @newsk: buffer to queue
  1222. *
  1223. * Queue a buffer at the end of a list. This function takes no locks
  1224. * and you must therefore hold required locks before calling it.
  1225. *
  1226. * A buffer cannot be placed on two lists at the same time.
  1227. */
  1228. void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
  1229. static inline void __skb_queue_tail(struct sk_buff_head *list,
  1230. struct sk_buff *newsk)
  1231. {
  1232. __skb_queue_before(list, (struct sk_buff *)list, newsk);
  1233. }
  1234. /*
  1235. * remove sk_buff from list. _Must_ be called atomically, and with
  1236. * the list known..
  1237. */
  1238. void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
  1239. static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  1240. {
  1241. struct sk_buff *next, *prev;
  1242. list->qlen--;
  1243. next = skb->next;
  1244. prev = skb->prev;
  1245. skb->next = skb->prev = NULL;
  1246. next->prev = prev;
  1247. prev->next = next;
  1248. }
  1249. /**
  1250. * __skb_dequeue - remove from the head of the queue
  1251. * @list: list to dequeue from
  1252. *
  1253. * Remove the head of the list. This function does not take any locks
  1254. * so must be used with appropriate locks held only. The head item is
  1255. * returned or %NULL if the list is empty.
  1256. */
  1257. struct sk_buff *skb_dequeue(struct sk_buff_head *list);
  1258. static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
  1259. {
  1260. struct sk_buff *skb = skb_peek(list);
  1261. if (skb)
  1262. __skb_unlink(skb, list);
  1263. return skb;
  1264. }
  1265. /**
  1266. * __skb_dequeue_tail - remove from the tail of the queue
  1267. * @list: list to dequeue from
  1268. *
  1269. * Remove the tail of the list. This function does not take any locks
  1270. * so must be used with appropriate locks held only. The tail item is
  1271. * returned or %NULL if the list is empty.
  1272. */
  1273. struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
  1274. static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
  1275. {
  1276. struct sk_buff *skb = skb_peek_tail(list);
  1277. if (skb)
  1278. __skb_unlink(skb, list);
  1279. return skb;
  1280. }
  1281. static inline bool skb_is_nonlinear(const struct sk_buff *skb)
  1282. {
  1283. return skb->data_len;
  1284. }
  1285. static inline unsigned int skb_headlen(const struct sk_buff *skb)
  1286. {
  1287. return skb->len - skb->data_len;
  1288. }
  1289. static inline int skb_pagelen(const struct sk_buff *skb)
  1290. {
  1291. int i, len = 0;
  1292. for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
  1293. len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
  1294. return len + skb_headlen(skb);
  1295. }
  1296. /**
  1297. * __skb_fill_page_desc - initialise a paged fragment in an skb
  1298. * @skb: buffer containing fragment to be initialised
  1299. * @i: paged fragment index to initialise
  1300. * @page: the page to use for this fragment
  1301. * @off: the offset to the data with @page
  1302. * @size: the length of the data
  1303. *
  1304. * Initialises the @i'th fragment of @skb to point to &size bytes at
  1305. * offset @off within @page.
  1306. *
  1307. * Does not take any additional reference on the fragment.
  1308. */
  1309. static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
  1310. struct page *page, int off, int size)
  1311. {
  1312. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1313. /*
  1314. * Propagate page->pfmemalloc to the skb if we can. The problem is
  1315. * that not all callers have unique ownership of the page. If
  1316. * pfmemalloc is set, we check the mapping as a mapping implies
  1317. * page->index is set (index and pfmemalloc share space).
  1318. * If it's a valid mapping, we cannot use page->pfmemalloc but we
  1319. * do not lose pfmemalloc information as the pages would not be
  1320. * allocated using __GFP_MEMALLOC.
  1321. */
  1322. frag->page.p = page;
  1323. frag->page_offset = off;
  1324. skb_frag_size_set(frag, size);
  1325. page = compound_head(page);
  1326. if (page->pfmemalloc && !page->mapping)
  1327. skb->pfmemalloc = true;
  1328. }
  1329. /**
  1330. * skb_fill_page_desc - initialise a paged fragment in an skb
  1331. * @skb: buffer containing fragment to be initialised
  1332. * @i: paged fragment index to initialise
  1333. * @page: the page to use for this fragment
  1334. * @off: the offset to the data with @page
  1335. * @size: the length of the data
  1336. *
  1337. * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
  1338. * @skb to point to @size bytes at offset @off within @page. In
  1339. * addition updates @skb such that @i is the last fragment.
  1340. *
  1341. * Does not take any additional reference on the fragment.
  1342. */
  1343. static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
  1344. struct page *page, int off, int size)
  1345. {
  1346. __skb_fill_page_desc(skb, i, page, off, size);
  1347. skb_shinfo(skb)->nr_frags = i + 1;
  1348. }
  1349. void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
  1350. int size, unsigned int truesize);
  1351. void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
  1352. unsigned int truesize);
  1353. #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
  1354. #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
  1355. #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
  1356. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1357. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1358. {
  1359. return skb->head + skb->tail;
  1360. }
  1361. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1362. {
  1363. skb->tail = skb->data - skb->head;
  1364. }
  1365. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1366. {
  1367. skb_reset_tail_pointer(skb);
  1368. skb->tail += offset;
  1369. }
  1370. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1371. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1372. {
  1373. return skb->tail;
  1374. }
  1375. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1376. {
  1377. skb->tail = skb->data;
  1378. }
  1379. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1380. {
  1381. skb->tail = skb->data + offset;
  1382. }
  1383. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1384. /*
  1385. * Add data to an sk_buff
  1386. */
  1387. unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
  1388. unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
  1389. static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
  1390. {
  1391. unsigned char *tmp = skb_tail_pointer(skb);
  1392. SKB_LINEAR_ASSERT(skb);
  1393. skb->tail += len;
  1394. skb->len += len;
  1395. return tmp;
  1396. }
  1397. unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
  1398. static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
  1399. {
  1400. skb->data -= len;
  1401. skb->len += len;
  1402. return skb->data;
  1403. }
  1404. unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
  1405. static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
  1406. {
  1407. skb->len -= len;
  1408. BUG_ON(skb->len < skb->data_len);
  1409. return skb->data += len;
  1410. }
  1411. static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
  1412. {
  1413. return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
  1414. }
  1415. unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
  1416. static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
  1417. {
  1418. if (len > skb_headlen(skb) &&
  1419. !__pskb_pull_tail(skb, len - skb_headlen(skb)))
  1420. return NULL;
  1421. skb->len -= len;
  1422. return skb->data += len;
  1423. }
  1424. static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
  1425. {
  1426. return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
  1427. }
  1428. static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
  1429. {
  1430. if (likely(len <= skb_headlen(skb)))
  1431. return 1;
  1432. if (unlikely(len > skb->len))
  1433. return 0;
  1434. return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
  1435. }
  1436. /**
  1437. * skb_headroom - bytes at buffer head
  1438. * @skb: buffer to check
  1439. *
  1440. * Return the number of bytes of free space at the head of an &sk_buff.
  1441. */
  1442. static inline unsigned int skb_headroom(const struct sk_buff *skb)
  1443. {
  1444. return skb->data - skb->head;
  1445. }
  1446. /**
  1447. * skb_tailroom - bytes at buffer end
  1448. * @skb: buffer to check
  1449. *
  1450. * Return the number of bytes of free space at the tail of an sk_buff
  1451. */
  1452. static inline int skb_tailroom(const struct sk_buff *skb)
  1453. {
  1454. return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
  1455. }
  1456. /**
  1457. * skb_availroom - bytes at buffer end
  1458. * @skb: buffer to check
  1459. *
  1460. * Return the number of bytes of free space at the tail of an sk_buff
  1461. * allocated by sk_stream_alloc()
  1462. */
  1463. static inline int skb_availroom(const struct sk_buff *skb)
  1464. {
  1465. if (skb_is_nonlinear(skb))
  1466. return 0;
  1467. return skb->end - skb->tail - skb->reserved_tailroom;
  1468. }
  1469. /**
  1470. * skb_reserve - adjust headroom
  1471. * @skb: buffer to alter
  1472. * @len: bytes to move
  1473. *
  1474. * Increase the headroom of an empty &sk_buff by reducing the tail
  1475. * room. This is only allowed for an empty buffer.
  1476. */
  1477. static inline void skb_reserve(struct sk_buff *skb, int len)
  1478. {
  1479. skb->data += len;
  1480. skb->tail += len;
  1481. }
  1482. static inline void skb_reset_inner_headers(struct sk_buff *skb)
  1483. {
  1484. skb->inner_mac_header = skb->mac_header;
  1485. skb->inner_network_header = skb->network_header;
  1486. skb->inner_transport_header = skb->transport_header;
  1487. }
  1488. static inline void skb_reset_mac_len(struct sk_buff *skb)
  1489. {
  1490. skb->mac_len = skb->network_header - skb->mac_header;
  1491. }
  1492. static inline unsigned char *skb_inner_transport_header(const struct sk_buff
  1493. *skb)
  1494. {
  1495. return skb->head + skb->inner_transport_header;
  1496. }
  1497. static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
  1498. {
  1499. skb->inner_transport_header = skb->data - skb->head;
  1500. }
  1501. static inline void skb_set_inner_transport_header(struct sk_buff *skb,
  1502. const int offset)
  1503. {
  1504. skb_reset_inner_transport_header(skb);
  1505. skb->inner_transport_header += offset;
  1506. }
  1507. static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
  1508. {
  1509. return skb->head + skb->inner_network_header;
  1510. }
  1511. static inline void skb_reset_inner_network_header(struct sk_buff *skb)
  1512. {
  1513. skb->inner_network_header = skb->data - skb->head;
  1514. }
  1515. static inline void skb_set_inner_network_header(struct sk_buff *skb,
  1516. const int offset)
  1517. {
  1518. skb_reset_inner_network_header(skb);
  1519. skb->inner_network_header += offset;
  1520. }
  1521. static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
  1522. {
  1523. return skb->head + skb->inner_mac_header;
  1524. }
  1525. static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
  1526. {
  1527. skb->inner_mac_header = skb->data - skb->head;
  1528. }
  1529. static inline void skb_set_inner_mac_header(struct sk_buff *skb,
  1530. const int offset)
  1531. {
  1532. skb_reset_inner_mac_header(skb);
  1533. skb->inner_mac_header += offset;
  1534. }
  1535. static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
  1536. {
  1537. return skb->transport_header != (typeof(skb->transport_header))~0U;
  1538. }
  1539. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1540. {
  1541. return skb->head + skb->transport_header;
  1542. }
  1543. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1544. {
  1545. skb->transport_header = skb->data - skb->head;
  1546. }
  1547. static inline void skb_set_transport_header(struct sk_buff *skb,
  1548. const int offset)
  1549. {
  1550. skb_reset_transport_header(skb);
  1551. skb->transport_header += offset;
  1552. }
  1553. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1554. {
  1555. return skb->head + skb->network_header;
  1556. }
  1557. static inline void skb_reset_network_header(struct sk_buff *skb)
  1558. {
  1559. skb->network_header = skb->data - skb->head;
  1560. }
  1561. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1562. {
  1563. skb_reset_network_header(skb);
  1564. skb->network_header += offset;
  1565. }
  1566. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1567. {
  1568. return skb->head + skb->mac_header;
  1569. }
  1570. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1571. {
  1572. return skb->mac_header != (typeof(skb->mac_header))~0U;
  1573. }
  1574. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1575. {
  1576. skb->mac_header = skb->data - skb->head;
  1577. }
  1578. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1579. {
  1580. skb_reset_mac_header(skb);
  1581. skb->mac_header += offset;
  1582. }
  1583. static inline void skb_pop_mac_header(struct sk_buff *skb)
  1584. {
  1585. skb->mac_header = skb->network_header;
  1586. }
  1587. static inline void skb_probe_transport_header(struct sk_buff *skb,
  1588. const int offset_hint)
  1589. {
  1590. struct flow_keys keys;
  1591. if (skb_transport_header_was_set(skb))
  1592. return;
  1593. else if (skb_flow_dissect(skb, &keys))
  1594. skb_set_transport_header(skb, keys.thoff);
  1595. else
  1596. skb_set_transport_header(skb, offset_hint);
  1597. }
  1598. static inline void skb_mac_header_rebuild(struct sk_buff *skb)
  1599. {
  1600. if (skb_mac_header_was_set(skb)) {
  1601. const unsigned char *old_mac = skb_mac_header(skb);
  1602. skb_set_mac_header(skb, -skb->mac_len);
  1603. memmove(skb_mac_header(skb), old_mac, skb->mac_len);
  1604. }
  1605. }
  1606. static inline int skb_checksum_start_offset(const struct sk_buff *skb)
  1607. {
  1608. return skb->csum_start - skb_headroom(skb);
  1609. }
  1610. static inline int skb_transport_offset(const struct sk_buff *skb)
  1611. {
  1612. return skb_transport_header(skb) - skb->data;
  1613. }
  1614. static inline u32 skb_network_header_len(const struct sk_buff *skb)
  1615. {
  1616. return skb->transport_header - skb->network_header;
  1617. }
  1618. static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
  1619. {
  1620. return skb->inner_transport_header - skb->inner_network_header;
  1621. }
  1622. static inline int skb_network_offset(const struct sk_buff *skb)
  1623. {
  1624. return skb_network_header(skb) - skb->data;
  1625. }
  1626. static inline int skb_inner_network_offset(const struct sk_buff *skb)
  1627. {
  1628. return skb_inner_network_header(skb) - skb->data;
  1629. }
  1630. static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
  1631. {
  1632. return pskb_may_pull(skb, skb_network_offset(skb) + len);
  1633. }
  1634. static inline void skb_pop_rcv_encapsulation(struct sk_buff *skb)
  1635. {
  1636. /* Only continue with checksum unnecessary if device indicated
  1637. * it is valid across encapsulation (skb->encapsulation was set).
  1638. */
  1639. if (skb->ip_summed == CHECKSUM_UNNECESSARY && !skb->encapsulation)
  1640. skb->ip_summed = CHECKSUM_NONE;
  1641. skb->encapsulation = 0;
  1642. skb->csum_valid = 0;
  1643. }
  1644. /*
  1645. * CPUs often take a performance hit when accessing unaligned memory
  1646. * locations. The actual performance hit varies, it can be small if the
  1647. * hardware handles it or large if we have to take an exception and fix it
  1648. * in software.
  1649. *
  1650. * Since an ethernet header is 14 bytes network drivers often end up with
  1651. * the IP header at an unaligned offset. The IP header can be aligned by
  1652. * shifting the start of the packet by 2 bytes. Drivers should do this
  1653. * with:
  1654. *
  1655. * skb_reserve(skb, NET_IP_ALIGN);
  1656. *
  1657. * The downside to this alignment of the IP header is that the DMA is now
  1658. * unaligned. On some architectures the cost of an unaligned DMA is high
  1659. * and this cost outweighs the gains made by aligning the IP header.
  1660. *
  1661. * Since this trade off varies between architectures, we allow NET_IP_ALIGN
  1662. * to be overridden.
  1663. */
  1664. #ifndef NET_IP_ALIGN
  1665. #define NET_IP_ALIGN 2
  1666. #endif
  1667. /*
  1668. * The networking layer reserves some headroom in skb data (via
  1669. * dev_alloc_skb). This is used to avoid having to reallocate skb data when
  1670. * the header has to grow. In the default case, if the header has to grow
  1671. * 32 bytes or less we avoid the reallocation.
  1672. *
  1673. * Unfortunately this headroom changes the DMA alignment of the resulting
  1674. * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
  1675. * on some architectures. An architecture can override this value,
  1676. * perhaps setting it to a cacheline in size (since that will maintain
  1677. * cacheline alignment of the DMA). It must be a power of 2.
  1678. *
  1679. * Various parts of the networking layer expect at least 32 bytes of
  1680. * headroom, you should not reduce this.
  1681. *
  1682. * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
  1683. * to reduce average number of cache lines per packet.
  1684. * get_rps_cpus() for example only access one 64 bytes aligned block :
  1685. * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
  1686. */
  1687. #ifndef NET_SKB_PAD
  1688. #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
  1689. #endif
  1690. int ___pskb_trim(struct sk_buff *skb, unsigned int len);
  1691. static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
  1692. {
  1693. if (unlikely(skb_is_nonlinear(skb))) {
  1694. WARN_ON(1);
  1695. return;
  1696. }
  1697. skb->len = len;
  1698. skb_set_tail_pointer(skb, len);
  1699. }
  1700. void skb_trim(struct sk_buff *skb, unsigned int len);
  1701. static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
  1702. {
  1703. if (skb->data_len)
  1704. return ___pskb_trim(skb, len);
  1705. __skb_trim(skb, len);
  1706. return 0;
  1707. }
  1708. static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
  1709. {
  1710. return (len < skb->len) ? __pskb_trim(skb, len) : 0;
  1711. }
  1712. /**
  1713. * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
  1714. * @skb: buffer to alter
  1715. * @len: new length
  1716. *
  1717. * This is identical to pskb_trim except that the caller knows that
  1718. * the skb is not cloned so we should never get an error due to out-
  1719. * of-memory.
  1720. */
  1721. static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
  1722. {
  1723. int err = pskb_trim(skb, len);
  1724. BUG_ON(err);
  1725. }
  1726. /**
  1727. * skb_orphan - orphan a buffer
  1728. * @skb: buffer to orphan
  1729. *
  1730. * If a buffer currently has an owner then we call the owner's
  1731. * destructor function and make the @skb unowned. The buffer continues
  1732. * to exist but is no longer charged to its former owner.
  1733. */
  1734. static inline void skb_orphan(struct sk_buff *skb)
  1735. {
  1736. if (skb->destructor) {
  1737. skb->destructor(skb);
  1738. skb->destructor = NULL;
  1739. skb->sk = NULL;
  1740. } else {
  1741. BUG_ON(skb->sk);
  1742. }
  1743. }
  1744. /**
  1745. * skb_orphan_frags - orphan the frags contained in a buffer
  1746. * @skb: buffer to orphan frags from
  1747. * @gfp_mask: allocation mask for replacement pages
  1748. *
  1749. * For each frag in the SKB which needs a destructor (i.e. has an
  1750. * owner) create a copy of that frag and release the original
  1751. * page by calling the destructor.
  1752. */
  1753. static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
  1754. {
  1755. if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
  1756. return 0;
  1757. return skb_copy_ubufs(skb, gfp_mask);
  1758. }
  1759. /**
  1760. * __skb_queue_purge - empty a list
  1761. * @list: list to empty
  1762. *
  1763. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  1764. * the list and one reference dropped. This function does not take the
  1765. * list lock and the caller must hold the relevant locks to use it.
  1766. */
  1767. void skb_queue_purge(struct sk_buff_head *list);
  1768. static inline void __skb_queue_purge(struct sk_buff_head *list)
  1769. {
  1770. struct sk_buff *skb;
  1771. while ((skb = __skb_dequeue(list)) != NULL)
  1772. kfree_skb(skb);
  1773. }
  1774. #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
  1775. #define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
  1776. #define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE
  1777. void *netdev_alloc_frag(unsigned int fragsz);
  1778. struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
  1779. gfp_t gfp_mask);
  1780. /**
  1781. * netdev_alloc_skb - allocate an skbuff for rx on a specific device
  1782. * @dev: network device to receive on
  1783. * @length: length to allocate
  1784. *
  1785. * Allocate a new &sk_buff and assign it a usage count of one. The
  1786. * buffer has unspecified headroom built in. Users should allocate
  1787. * the headroom they think they need without accounting for the
  1788. * built in space. The built in space is used for optimisations.
  1789. *
  1790. * %NULL is returned if there is no free memory. Although this function
  1791. * allocates memory it can be called from an interrupt.
  1792. */
  1793. static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
  1794. unsigned int length)
  1795. {
  1796. return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
  1797. }
  1798. /* legacy helper around __netdev_alloc_skb() */
  1799. static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
  1800. gfp_t gfp_mask)
  1801. {
  1802. return __netdev_alloc_skb(NULL, length, gfp_mask);
  1803. }
  1804. /* legacy helper around netdev_alloc_skb() */
  1805. static inline struct sk_buff *dev_alloc_skb(unsigned int length)
  1806. {
  1807. return netdev_alloc_skb(NULL, length);
  1808. }
  1809. static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
  1810. unsigned int length, gfp_t gfp)
  1811. {
  1812. struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
  1813. if (NET_IP_ALIGN && skb)
  1814. skb_reserve(skb, NET_IP_ALIGN);
  1815. return skb;
  1816. }
  1817. static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
  1818. unsigned int length)
  1819. {
  1820. return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
  1821. }
  1822. /**
  1823. * __skb_alloc_pages - allocate pages for ps-rx on a skb and preserve pfmemalloc data
  1824. * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
  1825. * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
  1826. * @order: size of the allocation
  1827. *
  1828. * Allocate a new page.
  1829. *
  1830. * %NULL is returned if there is no free memory.
  1831. */
  1832. static inline struct page *__skb_alloc_pages(gfp_t gfp_mask,
  1833. struct sk_buff *skb,
  1834. unsigned int order)
  1835. {
  1836. struct page *page;
  1837. gfp_mask |= __GFP_COLD;
  1838. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1839. gfp_mask |= __GFP_MEMALLOC;
  1840. page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
  1841. if (skb && page && page->pfmemalloc)
  1842. skb->pfmemalloc = true;
  1843. return page;
  1844. }
  1845. /**
  1846. * __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data
  1847. * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
  1848. * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
  1849. *
  1850. * Allocate a new page.
  1851. *
  1852. * %NULL is returned if there is no free memory.
  1853. */
  1854. static inline struct page *__skb_alloc_page(gfp_t gfp_mask,
  1855. struct sk_buff *skb)
  1856. {
  1857. return __skb_alloc_pages(gfp_mask, skb, 0);
  1858. }
  1859. /**
  1860. * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
  1861. * @page: The page that was allocated from skb_alloc_page
  1862. * @skb: The skb that may need pfmemalloc set
  1863. */
  1864. static inline void skb_propagate_pfmemalloc(struct page *page,
  1865. struct sk_buff *skb)
  1866. {
  1867. if (page && page->pfmemalloc)
  1868. skb->pfmemalloc = true;
  1869. }
  1870. /**
  1871. * skb_frag_page - retrieve the page referred to by a paged fragment
  1872. * @frag: the paged fragment
  1873. *
  1874. * Returns the &struct page associated with @frag.
  1875. */
  1876. static inline struct page *skb_frag_page(const skb_frag_t *frag)
  1877. {
  1878. return frag->page.p;
  1879. }
  1880. /**
  1881. * __skb_frag_ref - take an addition reference on a paged fragment.
  1882. * @frag: the paged fragment
  1883. *
  1884. * Takes an additional reference on the paged fragment @frag.
  1885. */
  1886. static inline void __skb_frag_ref(skb_frag_t *frag)
  1887. {
  1888. get_page(skb_frag_page(frag));
  1889. }
  1890. /**
  1891. * skb_frag_ref - take an addition reference on a paged fragment of an skb.
  1892. * @skb: the buffer
  1893. * @f: the fragment offset.
  1894. *
  1895. * Takes an additional reference on the @f'th paged fragment of @skb.
  1896. */
  1897. static inline void skb_frag_ref(struct sk_buff *skb, int f)
  1898. {
  1899. __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
  1900. }
  1901. /**
  1902. * __skb_frag_unref - release a reference on a paged fragment.
  1903. * @frag: the paged fragment
  1904. *
  1905. * Releases a reference on the paged fragment @frag.
  1906. */
  1907. static inline void __skb_frag_unref(skb_frag_t *frag)
  1908. {
  1909. put_page(skb_frag_page(frag));
  1910. }
  1911. /**
  1912. * skb_frag_unref - release a reference on a paged fragment of an skb.
  1913. * @skb: the buffer
  1914. * @f: the fragment offset
  1915. *
  1916. * Releases a reference on the @f'th paged fragment of @skb.
  1917. */
  1918. static inline void skb_frag_unref(struct sk_buff *skb, int f)
  1919. {
  1920. __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
  1921. }
  1922. /**
  1923. * skb_frag_address - gets the address of the data contained in a paged fragment
  1924. * @frag: the paged fragment buffer
  1925. *
  1926. * Returns the address of the data within @frag. The page must already
  1927. * be mapped.
  1928. */
  1929. static inline void *skb_frag_address(const skb_frag_t *frag)
  1930. {
  1931. return page_address(skb_frag_page(frag)) + frag->page_offset;
  1932. }
  1933. /**
  1934. * skb_frag_address_safe - gets the address of the data contained in a paged fragment
  1935. * @frag: the paged fragment buffer
  1936. *
  1937. * Returns the address of the data within @frag. Checks that the page
  1938. * is mapped and returns %NULL otherwise.
  1939. */
  1940. static inline void *skb_frag_address_safe(const skb_frag_t *frag)
  1941. {
  1942. void *ptr = page_address(skb_frag_page(frag));
  1943. if (unlikely(!ptr))
  1944. return NULL;
  1945. return ptr + frag->page_offset;
  1946. }
  1947. /**
  1948. * __skb_frag_set_page - sets the page contained in a paged fragment
  1949. * @frag: the paged fragment
  1950. * @page: the page to set
  1951. *
  1952. * Sets the fragment @frag to contain @page.
  1953. */
  1954. static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
  1955. {
  1956. frag->page.p = page;
  1957. }
  1958. /**
  1959. * skb_frag_set_page - sets the page contained in a paged fragment of an skb
  1960. * @skb: the buffer
  1961. * @f: the fragment offset
  1962. * @page: the page to set
  1963. *
  1964. * Sets the @f'th fragment of @skb to contain @page.
  1965. */
  1966. static inline void skb_frag_set_page(struct sk_buff *skb, int f,
  1967. struct page *page)
  1968. {
  1969. __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
  1970. }
  1971. bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
  1972. /**
  1973. * skb_frag_dma_map - maps a paged fragment via the DMA API
  1974. * @dev: the device to map the fragment to
  1975. * @frag: the paged fragment to map
  1976. * @offset: the offset within the fragment (starting at the
  1977. * fragment's own offset)
  1978. * @size: the number of bytes to map
  1979. * @dir: the direction of the mapping (%PCI_DMA_*)
  1980. *
  1981. * Maps the page associated with @frag to @device.
  1982. */
  1983. static inline dma_addr_t skb_frag_dma_map(struct device *dev,
  1984. const skb_frag_t *frag,
  1985. size_t offset, size_t size,
  1986. enum dma_data_direction dir)
  1987. {
  1988. return dma_map_page(dev, skb_frag_page(frag),
  1989. frag->page_offset + offset, size, dir);
  1990. }
  1991. static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
  1992. gfp_t gfp_mask)
  1993. {
  1994. return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
  1995. }
  1996. static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
  1997. gfp_t gfp_mask)
  1998. {
  1999. return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
  2000. }
  2001. /**
  2002. * skb_clone_writable - is the header of a clone writable
  2003. * @skb: buffer to check
  2004. * @len: length up to which to write
  2005. *
  2006. * Returns true if modifying the header part of the cloned buffer
  2007. * does not requires the data to be copied.
  2008. */
  2009. static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
  2010. {
  2011. return !skb_header_cloned(skb) &&
  2012. skb_headroom(skb) + len <= skb->hdr_len;
  2013. }
  2014. static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
  2015. int cloned)
  2016. {
  2017. int delta = 0;
  2018. if (headroom > skb_headroom(skb))
  2019. delta = headroom - skb_headroom(skb);
  2020. if (delta || cloned)
  2021. return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
  2022. GFP_ATOMIC);
  2023. return 0;
  2024. }
  2025. /**
  2026. * skb_cow - copy header of skb when it is required
  2027. * @skb: buffer to cow
  2028. * @headroom: needed headroom
  2029. *
  2030. * If the skb passed lacks sufficient headroom or its data part
  2031. * is shared, data is reallocated. If reallocation fails, an error
  2032. * is returned and original skb is not changed.
  2033. *
  2034. * The result is skb with writable area skb->head...skb->tail
  2035. * and at least @headroom of space at head.
  2036. */
  2037. static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
  2038. {
  2039. return __skb_cow(skb, headroom, skb_cloned(skb));
  2040. }
  2041. /**
  2042. * skb_cow_head - skb_cow but only making the head writable
  2043. * @skb: buffer to cow
  2044. * @headroom: needed headroom
  2045. *
  2046. * This function is identical to skb_cow except that we replace the
  2047. * skb_cloned check by skb_header_cloned. It should be used when
  2048. * you only need to push on some header and do not need to modify
  2049. * the data.
  2050. */
  2051. static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
  2052. {
  2053. return __skb_cow(skb, headroom, skb_header_cloned(skb));
  2054. }
  2055. /**
  2056. * skb_padto - pad an skbuff up to a minimal size
  2057. * @skb: buffer to pad
  2058. * @len: minimal length
  2059. *
  2060. * Pads up a buffer to ensure the trailing bytes exist and are
  2061. * blanked. If the buffer already contains sufficient data it
  2062. * is untouched. Otherwise it is extended. Returns zero on
  2063. * success. The skb is freed on error.
  2064. */
  2065. static inline int skb_padto(struct sk_buff *skb, unsigned int len)
  2066. {
  2067. unsigned int size = skb->len;
  2068. if (likely(size >= len))
  2069. return 0;
  2070. return skb_pad(skb, len - size);
  2071. }
  2072. static inline int skb_add_data(struct sk_buff *skb,
  2073. char __user *from, int copy)
  2074. {
  2075. const int off = skb->len;
  2076. if (skb->ip_summed == CHECKSUM_NONE) {
  2077. int err = 0;
  2078. __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
  2079. copy, 0, &err);
  2080. if (!err) {
  2081. skb->csum = csum_block_add(skb->csum, csum, off);
  2082. return 0;
  2083. }
  2084. } else if (!copy_from_user(skb_put(skb, copy), from, copy))
  2085. return 0;
  2086. __skb_trim(skb, off);
  2087. return -EFAULT;
  2088. }
  2089. static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
  2090. const struct page *page, int off)
  2091. {
  2092. if (i) {
  2093. const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
  2094. return page == skb_frag_page(frag) &&
  2095. off == frag->page_offset + skb_frag_size(frag);
  2096. }
  2097. return false;
  2098. }
  2099. static inline int __skb_linearize(struct sk_buff *skb)
  2100. {
  2101. return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
  2102. }
  2103. /**
  2104. * skb_linearize - convert paged skb to linear one
  2105. * @skb: buffer to linarize
  2106. *
  2107. * If there is no free memory -ENOMEM is returned, otherwise zero
  2108. * is returned and the old skb data released.
  2109. */
  2110. static inline int skb_linearize(struct sk_buff *skb)
  2111. {
  2112. return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
  2113. }
  2114. /**
  2115. * skb_has_shared_frag - can any frag be overwritten
  2116. * @skb: buffer to test
  2117. *
  2118. * Return true if the skb has at least one frag that might be modified
  2119. * by an external entity (as in vmsplice()/sendfile())
  2120. */
  2121. static inline bool skb_has_shared_frag(const struct sk_buff *skb)
  2122. {
  2123. return skb_is_nonlinear(skb) &&
  2124. skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
  2125. }
  2126. /**
  2127. * skb_linearize_cow - make sure skb is linear and writable
  2128. * @skb: buffer to process
  2129. *
  2130. * If there is no free memory -ENOMEM is returned, otherwise zero
  2131. * is returned and the old skb data released.
  2132. */
  2133. static inline int skb_linearize_cow(struct sk_buff *skb)
  2134. {
  2135. return skb_is_nonlinear(skb) || skb_cloned(skb) ?
  2136. __skb_linearize(skb) : 0;
  2137. }
  2138. /**
  2139. * skb_postpull_rcsum - update checksum for received skb after pull
  2140. * @skb: buffer to update
  2141. * @start: start of data before pull
  2142. * @len: length of data pulled
  2143. *
  2144. * After doing a pull on a received packet, you need to call this to
  2145. * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
  2146. * CHECKSUM_NONE so that it can be recomputed from scratch.
  2147. */
  2148. static inline void skb_postpull_rcsum(struct sk_buff *skb,
  2149. const void *start, unsigned int len)
  2150. {
  2151. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2152. skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
  2153. }
  2154. unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
  2155. /**
  2156. * pskb_trim_rcsum - trim received skb and update checksum
  2157. * @skb: buffer to trim
  2158. * @len: new length
  2159. *
  2160. * This is exactly the same as pskb_trim except that it ensures the
  2161. * checksum of received packets are still valid after the operation.
  2162. */
  2163. static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
  2164. {
  2165. if (likely(len >= skb->len))
  2166. return 0;
  2167. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2168. skb->ip_summed = CHECKSUM_NONE;
  2169. return __pskb_trim(skb, len);
  2170. }
  2171. #define skb_queue_walk(queue, skb) \
  2172. for (skb = (queue)->next; \
  2173. skb != (struct sk_buff *)(queue); \
  2174. skb = skb->next)
  2175. #define skb_queue_walk_safe(queue, skb, tmp) \
  2176. for (skb = (queue)->next, tmp = skb->next; \
  2177. skb != (struct sk_buff *)(queue); \
  2178. skb = tmp, tmp = skb->next)
  2179. #define skb_queue_walk_from(queue, skb) \
  2180. for (; skb != (struct sk_buff *)(queue); \
  2181. skb = skb->next)
  2182. #define skb_queue_walk_from_safe(queue, skb, tmp) \
  2183. for (tmp = skb->next; \
  2184. skb != (struct sk_buff *)(queue); \
  2185. skb = tmp, tmp = skb->next)
  2186. #define skb_queue_reverse_walk(queue, skb) \
  2187. for (skb = (queue)->prev; \
  2188. skb != (struct sk_buff *)(queue); \
  2189. skb = skb->prev)
  2190. #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
  2191. for (skb = (queue)->prev, tmp = skb->prev; \
  2192. skb != (struct sk_buff *)(queue); \
  2193. skb = tmp, tmp = skb->prev)
  2194. #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
  2195. for (tmp = skb->prev; \
  2196. skb != (struct sk_buff *)(queue); \
  2197. skb = tmp, tmp = skb->prev)
  2198. static inline bool skb_has_frag_list(const struct sk_buff *skb)
  2199. {
  2200. return skb_shinfo(skb)->frag_list != NULL;
  2201. }
  2202. static inline void skb_frag_list_init(struct sk_buff *skb)
  2203. {
  2204. skb_shinfo(skb)->frag_list = NULL;
  2205. }
  2206. static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
  2207. {
  2208. frag->next = skb_shinfo(skb)->frag_list;
  2209. skb_shinfo(skb)->frag_list = frag;
  2210. }
  2211. #define skb_walk_frags(skb, iter) \
  2212. for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
  2213. struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
  2214. int *peeked, int *off, int *err);
  2215. struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
  2216. int *err);
  2217. unsigned int datagram_poll(struct file *file, struct socket *sock,
  2218. struct poll_table_struct *wait);
  2219. int skb_copy_datagram_iovec(const struct sk_buff *from, int offset,
  2220. struct iovec *to, int size);
  2221. int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, int hlen,
  2222. struct iovec *iov);
  2223. int skb_copy_datagram_from_iovec(struct sk_buff *skb, int offset,
  2224. const struct iovec *from, int from_offset,
  2225. int len);
  2226. int zerocopy_sg_from_iovec(struct sk_buff *skb, const struct iovec *frm,
  2227. int offset, size_t count);
  2228. int skb_copy_datagram_const_iovec(const struct sk_buff *from, int offset,
  2229. const struct iovec *to, int to_offset,
  2230. int size);
  2231. void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
  2232. void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
  2233. int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
  2234. int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
  2235. int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
  2236. __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
  2237. int len, __wsum csum);
  2238. int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
  2239. struct pipe_inode_info *pipe, unsigned int len,
  2240. unsigned int flags);
  2241. void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
  2242. unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
  2243. int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
  2244. int len, int hlen);
  2245. void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
  2246. int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
  2247. void skb_scrub_packet(struct sk_buff *skb, bool xnet);
  2248. unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
  2249. struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
  2250. struct skb_checksum_ops {
  2251. __wsum (*update)(const void *mem, int len, __wsum wsum);
  2252. __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
  2253. };
  2254. __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
  2255. __wsum csum, const struct skb_checksum_ops *ops);
  2256. __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
  2257. __wsum csum);
  2258. static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
  2259. int len, void *buffer)
  2260. {
  2261. int hlen = skb_headlen(skb);
  2262. if (hlen - offset >= len)
  2263. return skb->data + offset;
  2264. if (skb_copy_bits(skb, offset, buffer, len) < 0)
  2265. return NULL;
  2266. return buffer;
  2267. }
  2268. /**
  2269. * skb_needs_linearize - check if we need to linearize a given skb
  2270. * depending on the given device features.
  2271. * @skb: socket buffer to check
  2272. * @features: net device features
  2273. *
  2274. * Returns true if either:
  2275. * 1. skb has frag_list and the device doesn't support FRAGLIST, or
  2276. * 2. skb is fragmented and the device does not support SG.
  2277. */
  2278. static inline bool skb_needs_linearize(struct sk_buff *skb,
  2279. netdev_features_t features)
  2280. {
  2281. return skb_is_nonlinear(skb) &&
  2282. ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
  2283. (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
  2284. }
  2285. static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
  2286. void *to,
  2287. const unsigned int len)
  2288. {
  2289. memcpy(to, skb->data, len);
  2290. }
  2291. static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
  2292. const int offset, void *to,
  2293. const unsigned int len)
  2294. {
  2295. memcpy(to, skb->data + offset, len);
  2296. }
  2297. static inline void skb_copy_to_linear_data(struct sk_buff *skb,
  2298. const void *from,
  2299. const unsigned int len)
  2300. {
  2301. memcpy(skb->data, from, len);
  2302. }
  2303. static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
  2304. const int offset,
  2305. const void *from,
  2306. const unsigned int len)
  2307. {
  2308. memcpy(skb->data + offset, from, len);
  2309. }
  2310. void skb_init(void);
  2311. static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
  2312. {
  2313. return skb->tstamp;
  2314. }
  2315. /**
  2316. * skb_get_timestamp - get timestamp from a skb
  2317. * @skb: skb to get stamp from
  2318. * @stamp: pointer to struct timeval to store stamp in
  2319. *
  2320. * Timestamps are stored in the skb as offsets to a base timestamp.
  2321. * This function converts the offset back to a struct timeval and stores
  2322. * it in stamp.
  2323. */
  2324. static inline void skb_get_timestamp(const struct sk_buff *skb,
  2325. struct timeval *stamp)
  2326. {
  2327. *stamp = ktime_to_timeval(skb->tstamp);
  2328. }
  2329. static inline void skb_get_timestampns(const struct sk_buff *skb,
  2330. struct timespec *stamp)
  2331. {
  2332. *stamp = ktime_to_timespec(skb->tstamp);
  2333. }
  2334. static inline void __net_timestamp(struct sk_buff *skb)
  2335. {
  2336. skb->tstamp = ktime_get_real();
  2337. }
  2338. static inline ktime_t net_timedelta(ktime_t t)
  2339. {
  2340. return ktime_sub(ktime_get_real(), t);
  2341. }
  2342. static inline ktime_t net_invalid_timestamp(void)
  2343. {
  2344. return ktime_set(0, 0);
  2345. }
  2346. #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
  2347. void skb_clone_tx_timestamp(struct sk_buff *skb);
  2348. bool skb_defer_rx_timestamp(struct sk_buff *skb);
  2349. #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
  2350. static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
  2351. {
  2352. }
  2353. static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
  2354. {
  2355. return false;
  2356. }
  2357. #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
  2358. /**
  2359. * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
  2360. *
  2361. * PHY drivers may accept clones of transmitted packets for
  2362. * timestamping via their phy_driver.txtstamp method. These drivers
  2363. * must call this function to return the skb back to the stack, with
  2364. * or without a timestamp.
  2365. *
  2366. * @skb: clone of the the original outgoing packet
  2367. * @hwtstamps: hardware time stamps, may be NULL if not available
  2368. *
  2369. */
  2370. void skb_complete_tx_timestamp(struct sk_buff *skb,
  2371. struct skb_shared_hwtstamps *hwtstamps);
  2372. /**
  2373. * skb_tstamp_tx - queue clone of skb with send time stamps
  2374. * @orig_skb: the original outgoing packet
  2375. * @hwtstamps: hardware time stamps, may be NULL if not available
  2376. *
  2377. * If the skb has a socket associated, then this function clones the
  2378. * skb (thus sharing the actual data and optional structures), stores
  2379. * the optional hardware time stamping information (if non NULL) or
  2380. * generates a software time stamp (otherwise), then queues the clone
  2381. * to the error queue of the socket. Errors are silently ignored.
  2382. */
  2383. void skb_tstamp_tx(struct sk_buff *orig_skb,
  2384. struct skb_shared_hwtstamps *hwtstamps);
  2385. static inline void sw_tx_timestamp(struct sk_buff *skb)
  2386. {
  2387. if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
  2388. !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
  2389. skb_tstamp_tx(skb, NULL);
  2390. }
  2391. /**
  2392. * skb_tx_timestamp() - Driver hook for transmit timestamping
  2393. *
  2394. * Ethernet MAC Drivers should call this function in their hard_xmit()
  2395. * function immediately before giving the sk_buff to the MAC hardware.
  2396. *
  2397. * Specifically, one should make absolutely sure that this function is
  2398. * called before TX completion of this packet can trigger. Otherwise
  2399. * the packet could potentially already be freed.
  2400. *
  2401. * @skb: A socket buffer.
  2402. */
  2403. static inline void skb_tx_timestamp(struct sk_buff *skb)
  2404. {
  2405. skb_clone_tx_timestamp(skb);
  2406. sw_tx_timestamp(skb);
  2407. }
  2408. /**
  2409. * skb_complete_wifi_ack - deliver skb with wifi status
  2410. *
  2411. * @skb: the original outgoing packet
  2412. * @acked: ack status
  2413. *
  2414. */
  2415. void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
  2416. __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
  2417. __sum16 __skb_checksum_complete(struct sk_buff *skb);
  2418. static inline int skb_csum_unnecessary(const struct sk_buff *skb)
  2419. {
  2420. return ((skb->ip_summed & CHECKSUM_UNNECESSARY) || skb->csum_valid);
  2421. }
  2422. /**
  2423. * skb_checksum_complete - Calculate checksum of an entire packet
  2424. * @skb: packet to process
  2425. *
  2426. * This function calculates the checksum over the entire packet plus
  2427. * the value of skb->csum. The latter can be used to supply the
  2428. * checksum of a pseudo header as used by TCP/UDP. It returns the
  2429. * checksum.
  2430. *
  2431. * For protocols that contain complete checksums such as ICMP/TCP/UDP,
  2432. * this function can be used to verify that checksum on received
  2433. * packets. In that case the function should return zero if the
  2434. * checksum is correct. In particular, this function will return zero
  2435. * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
  2436. * hardware has already verified the correctness of the checksum.
  2437. */
  2438. static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
  2439. {
  2440. return skb_csum_unnecessary(skb) ?
  2441. 0 : __skb_checksum_complete(skb);
  2442. }
  2443. /* Check if we need to perform checksum complete validation.
  2444. *
  2445. * Returns true if checksum complete is needed, false otherwise
  2446. * (either checksum is unnecessary or zero checksum is allowed).
  2447. */
  2448. static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
  2449. bool zero_okay,
  2450. __sum16 check)
  2451. {
  2452. if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
  2453. skb->csum_valid = 1;
  2454. return false;
  2455. }
  2456. return true;
  2457. }
  2458. /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
  2459. * in checksum_init.
  2460. */
  2461. #define CHECKSUM_BREAK 76
  2462. /* Validate (init) checksum based on checksum complete.
  2463. *
  2464. * Return values:
  2465. * 0: checksum is validated or try to in skb_checksum_complete. In the latter
  2466. * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
  2467. * checksum is stored in skb->csum for use in __skb_checksum_complete
  2468. * non-zero: value of invalid checksum
  2469. *
  2470. */
  2471. static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
  2472. bool complete,
  2473. __wsum psum)
  2474. {
  2475. if (skb->ip_summed == CHECKSUM_COMPLETE) {
  2476. if (!csum_fold(csum_add(psum, skb->csum))) {
  2477. skb->csum_valid = 1;
  2478. return 0;
  2479. }
  2480. }
  2481. skb->csum = psum;
  2482. if (complete || skb->len <= CHECKSUM_BREAK) {
  2483. __sum16 csum;
  2484. csum = __skb_checksum_complete(skb);
  2485. skb->csum_valid = !csum;
  2486. return csum;
  2487. }
  2488. return 0;
  2489. }
  2490. static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
  2491. {
  2492. return 0;
  2493. }
  2494. /* Perform checksum validate (init). Note that this is a macro since we only
  2495. * want to calculate the pseudo header which is an input function if necessary.
  2496. * First we try to validate without any computation (checksum unnecessary) and
  2497. * then calculate based on checksum complete calling the function to compute
  2498. * pseudo header.
  2499. *
  2500. * Return values:
  2501. * 0: checksum is validated or try to in skb_checksum_complete
  2502. * non-zero: value of invalid checksum
  2503. */
  2504. #define __skb_checksum_validate(skb, proto, complete, \
  2505. zero_okay, check, compute_pseudo) \
  2506. ({ \
  2507. __sum16 __ret = 0; \
  2508. skb->csum_valid = 0; \
  2509. if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
  2510. __ret = __skb_checksum_validate_complete(skb, \
  2511. complete, compute_pseudo(skb, proto)); \
  2512. __ret; \
  2513. })
  2514. #define skb_checksum_init(skb, proto, compute_pseudo) \
  2515. __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
  2516. #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
  2517. __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
  2518. #define skb_checksum_validate(skb, proto, compute_pseudo) \
  2519. __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
  2520. #define skb_checksum_validate_zero_check(skb, proto, check, \
  2521. compute_pseudo) \
  2522. __skb_checksum_validate_(skb, proto, true, true, check, compute_pseudo)
  2523. #define skb_checksum_simple_validate(skb) \
  2524. __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
  2525. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2526. void nf_conntrack_destroy(struct nf_conntrack *nfct);
  2527. static inline void nf_conntrack_put(struct nf_conntrack *nfct)
  2528. {
  2529. if (nfct && atomic_dec_and_test(&nfct->use))
  2530. nf_conntrack_destroy(nfct);
  2531. }
  2532. static inline void nf_conntrack_get(struct nf_conntrack *nfct)
  2533. {
  2534. if (nfct)
  2535. atomic_inc(&nfct->use);
  2536. }
  2537. #endif
  2538. #ifdef CONFIG_BRIDGE_NETFILTER
  2539. static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
  2540. {
  2541. if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
  2542. kfree(nf_bridge);
  2543. }
  2544. static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
  2545. {
  2546. if (nf_bridge)
  2547. atomic_inc(&nf_bridge->use);
  2548. }
  2549. #endif /* CONFIG_BRIDGE_NETFILTER */
  2550. static inline void nf_reset(struct sk_buff *skb)
  2551. {
  2552. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2553. nf_conntrack_put(skb->nfct);
  2554. skb->nfct = NULL;
  2555. #endif
  2556. #ifdef CONFIG_BRIDGE_NETFILTER
  2557. nf_bridge_put(skb->nf_bridge);
  2558. skb->nf_bridge = NULL;
  2559. #endif
  2560. }
  2561. static inline void nf_reset_trace(struct sk_buff *skb)
  2562. {
  2563. #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
  2564. skb->nf_trace = 0;
  2565. #endif
  2566. }
  2567. /* Note: This doesn't put any conntrack and bridge info in dst. */
  2568. static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2569. {
  2570. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2571. dst->nfct = src->nfct;
  2572. nf_conntrack_get(src->nfct);
  2573. dst->nfctinfo = src->nfctinfo;
  2574. #endif
  2575. #ifdef CONFIG_BRIDGE_NETFILTER
  2576. dst->nf_bridge = src->nf_bridge;
  2577. nf_bridge_get(src->nf_bridge);
  2578. #endif
  2579. #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
  2580. dst->nf_trace = src->nf_trace;
  2581. #endif
  2582. }
  2583. static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2584. {
  2585. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2586. nf_conntrack_put(dst->nfct);
  2587. #endif
  2588. #ifdef CONFIG_BRIDGE_NETFILTER
  2589. nf_bridge_put(dst->nf_bridge);
  2590. #endif
  2591. __nf_copy(dst, src);
  2592. }
  2593. #ifdef CONFIG_NETWORK_SECMARK
  2594. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2595. {
  2596. to->secmark = from->secmark;
  2597. }
  2598. static inline void skb_init_secmark(struct sk_buff *skb)
  2599. {
  2600. skb->secmark = 0;
  2601. }
  2602. #else
  2603. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2604. { }
  2605. static inline void skb_init_secmark(struct sk_buff *skb)
  2606. { }
  2607. #endif
  2608. static inline bool skb_irq_freeable(const struct sk_buff *skb)
  2609. {
  2610. return !skb->destructor &&
  2611. #if IS_ENABLED(CONFIG_XFRM)
  2612. !skb->sp &&
  2613. #endif
  2614. #if IS_ENABLED(CONFIG_NF_CONNTRACK)
  2615. !skb->nfct &&
  2616. #endif
  2617. !skb->_skb_refdst &&
  2618. !skb_has_frag_list(skb);
  2619. }
  2620. static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
  2621. {
  2622. skb->queue_mapping = queue_mapping;
  2623. }
  2624. static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
  2625. {
  2626. return skb->queue_mapping;
  2627. }
  2628. static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
  2629. {
  2630. to->queue_mapping = from->queue_mapping;
  2631. }
  2632. static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
  2633. {
  2634. skb->queue_mapping = rx_queue + 1;
  2635. }
  2636. static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
  2637. {
  2638. return skb->queue_mapping - 1;
  2639. }
  2640. static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
  2641. {
  2642. return skb->queue_mapping != 0;
  2643. }
  2644. u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
  2645. unsigned int num_tx_queues);
  2646. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  2647. {
  2648. #ifdef CONFIG_XFRM
  2649. return skb->sp;
  2650. #else
  2651. return NULL;
  2652. #endif
  2653. }
  2654. /* Keeps track of mac header offset relative to skb->head.
  2655. * It is useful for TSO of Tunneling protocol. e.g. GRE.
  2656. * For non-tunnel skb it points to skb_mac_header() and for
  2657. * tunnel skb it points to outer mac header.
  2658. * Keeps track of level of encapsulation of network headers.
  2659. */
  2660. struct skb_gso_cb {
  2661. int mac_offset;
  2662. int encap_level;
  2663. __u16 csum_start;
  2664. };
  2665. #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
  2666. static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
  2667. {
  2668. return (skb_mac_header(inner_skb) - inner_skb->head) -
  2669. SKB_GSO_CB(inner_skb)->mac_offset;
  2670. }
  2671. static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
  2672. {
  2673. int new_headroom, headroom;
  2674. int ret;
  2675. headroom = skb_headroom(skb);
  2676. ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
  2677. if (ret)
  2678. return ret;
  2679. new_headroom = skb_headroom(skb);
  2680. SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
  2681. return 0;
  2682. }
  2683. /* Compute the checksum for a gso segment. First compute the checksum value
  2684. * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
  2685. * then add in skb->csum (checksum from csum_start to end of packet).
  2686. * skb->csum and csum_start are then updated to reflect the checksum of the
  2687. * resultant packet starting from the transport header-- the resultant checksum
  2688. * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
  2689. * header.
  2690. */
  2691. static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
  2692. {
  2693. int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) -
  2694. skb_transport_offset(skb);
  2695. __u16 csum;
  2696. csum = csum_fold(csum_partial(skb_transport_header(skb),
  2697. plen, skb->csum));
  2698. skb->csum = res;
  2699. SKB_GSO_CB(skb)->csum_start -= plen;
  2700. return csum;
  2701. }
  2702. static inline bool skb_is_gso(const struct sk_buff *skb)
  2703. {
  2704. return skb_shinfo(skb)->gso_size;
  2705. }
  2706. /* Note: Should be called only if skb_is_gso(skb) is true */
  2707. static inline bool skb_is_gso_v6(const struct sk_buff *skb)
  2708. {
  2709. return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
  2710. }
  2711. void __skb_warn_lro_forwarding(const struct sk_buff *skb);
  2712. static inline bool skb_warn_if_lro(const struct sk_buff *skb)
  2713. {
  2714. /* LRO sets gso_size but not gso_type, whereas if GSO is really
  2715. * wanted then gso_type will be set. */
  2716. const struct skb_shared_info *shinfo = skb_shinfo(skb);
  2717. if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
  2718. unlikely(shinfo->gso_type == 0)) {
  2719. __skb_warn_lro_forwarding(skb);
  2720. return true;
  2721. }
  2722. return false;
  2723. }
  2724. static inline void skb_forward_csum(struct sk_buff *skb)
  2725. {
  2726. /* Unfortunately we don't support this one. Any brave souls? */
  2727. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2728. skb->ip_summed = CHECKSUM_NONE;
  2729. }
  2730. /**
  2731. * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
  2732. * @skb: skb to check
  2733. *
  2734. * fresh skbs have their ip_summed set to CHECKSUM_NONE.
  2735. * Instead of forcing ip_summed to CHECKSUM_NONE, we can
  2736. * use this helper, to document places where we make this assertion.
  2737. */
  2738. static inline void skb_checksum_none_assert(const struct sk_buff *skb)
  2739. {
  2740. #ifdef DEBUG
  2741. BUG_ON(skb->ip_summed != CHECKSUM_NONE);
  2742. #endif
  2743. }
  2744. bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
  2745. int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
  2746. u32 __skb_get_poff(const struct sk_buff *skb);
  2747. /**
  2748. * skb_head_is_locked - Determine if the skb->head is locked down
  2749. * @skb: skb to check
  2750. *
  2751. * The head on skbs build around a head frag can be removed if they are
  2752. * not cloned. This function returns true if the skb head is locked down
  2753. * due to either being allocated via kmalloc, or by being a clone with
  2754. * multiple references to the head.
  2755. */
  2756. static inline bool skb_head_is_locked(const struct sk_buff *skb)
  2757. {
  2758. return !skb->head_frag || skb_cloned(skb);
  2759. }
  2760. /**
  2761. * skb_gso_network_seglen - Return length of individual segments of a gso packet
  2762. *
  2763. * @skb: GSO skb
  2764. *
  2765. * skb_gso_network_seglen is used to determine the real size of the
  2766. * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
  2767. *
  2768. * The MAC/L2 header is not accounted for.
  2769. */
  2770. static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
  2771. {
  2772. unsigned int hdr_len = skb_transport_header(skb) -
  2773. skb_network_header(skb);
  2774. return hdr_len + skb_gso_transport_seglen(skb);
  2775. }
  2776. #endif /* __KERNEL__ */
  2777. #endif /* _LINUX_SKBUFF_H */