rrpc.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483
  1. /*
  2. * Copyright (C) 2015 IT University of Copenhagen
  3. * Initial release: Matias Bjorling <m@bjorling.me>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License version
  7. * 2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but
  10. * WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * Implementation of a Round-robin page-based Hybrid FTL for Open-channel SSDs.
  15. */
  16. #include "rrpc.h"
  17. static struct kmem_cache *rrpc_gcb_cache, *rrpc_rq_cache;
  18. static DECLARE_RWSEM(rrpc_lock);
  19. static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
  20. struct nvm_rq *rqd, unsigned long flags);
  21. #define rrpc_for_each_lun(rrpc, rlun, i) \
  22. for ((i) = 0, rlun = &(rrpc)->luns[0]; \
  23. (i) < (rrpc)->nr_luns; (i)++, rlun = &(rrpc)->luns[(i)])
  24. static void rrpc_page_invalidate(struct rrpc *rrpc, struct rrpc_addr *a)
  25. {
  26. struct rrpc_block *rblk = a->rblk;
  27. unsigned int pg_offset;
  28. lockdep_assert_held(&rrpc->rev_lock);
  29. if (a->addr == ADDR_EMPTY || !rblk)
  30. return;
  31. spin_lock(&rblk->lock);
  32. div_u64_rem(a->addr, rrpc->dev->sec_per_blk, &pg_offset);
  33. WARN_ON(test_and_set_bit(pg_offset, rblk->invalid_pages));
  34. rblk->nr_invalid_pages++;
  35. spin_unlock(&rblk->lock);
  36. rrpc->rev_trans_map[a->addr - rrpc->poffset].addr = ADDR_EMPTY;
  37. }
  38. static void rrpc_invalidate_range(struct rrpc *rrpc, sector_t slba,
  39. unsigned len)
  40. {
  41. sector_t i;
  42. spin_lock(&rrpc->rev_lock);
  43. for (i = slba; i < slba + len; i++) {
  44. struct rrpc_addr *gp = &rrpc->trans_map[i];
  45. rrpc_page_invalidate(rrpc, gp);
  46. gp->rblk = NULL;
  47. }
  48. spin_unlock(&rrpc->rev_lock);
  49. }
  50. static struct nvm_rq *rrpc_inflight_laddr_acquire(struct rrpc *rrpc,
  51. sector_t laddr, unsigned int pages)
  52. {
  53. struct nvm_rq *rqd;
  54. struct rrpc_inflight_rq *inf;
  55. rqd = mempool_alloc(rrpc->rq_pool, GFP_ATOMIC);
  56. if (!rqd)
  57. return ERR_PTR(-ENOMEM);
  58. inf = rrpc_get_inflight_rq(rqd);
  59. if (rrpc_lock_laddr(rrpc, laddr, pages, inf)) {
  60. mempool_free(rqd, rrpc->rq_pool);
  61. return NULL;
  62. }
  63. return rqd;
  64. }
  65. static void rrpc_inflight_laddr_release(struct rrpc *rrpc, struct nvm_rq *rqd)
  66. {
  67. struct rrpc_inflight_rq *inf = rrpc_get_inflight_rq(rqd);
  68. rrpc_unlock_laddr(rrpc, inf);
  69. mempool_free(rqd, rrpc->rq_pool);
  70. }
  71. static void rrpc_discard(struct rrpc *rrpc, struct bio *bio)
  72. {
  73. sector_t slba = bio->bi_iter.bi_sector / NR_PHY_IN_LOG;
  74. sector_t len = bio->bi_iter.bi_size / RRPC_EXPOSED_PAGE_SIZE;
  75. struct nvm_rq *rqd;
  76. while (1) {
  77. rqd = rrpc_inflight_laddr_acquire(rrpc, slba, len);
  78. if (rqd)
  79. break;
  80. schedule();
  81. }
  82. if (IS_ERR(rqd)) {
  83. pr_err("rrpc: unable to acquire inflight IO\n");
  84. bio_io_error(bio);
  85. return;
  86. }
  87. rrpc_invalidate_range(rrpc, slba, len);
  88. rrpc_inflight_laddr_release(rrpc, rqd);
  89. }
  90. static int block_is_full(struct rrpc *rrpc, struct rrpc_block *rblk)
  91. {
  92. return (rblk->next_page == rrpc->dev->sec_per_blk);
  93. }
  94. /* Calculate relative addr for the given block, considering instantiated LUNs */
  95. static u64 block_to_rel_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
  96. {
  97. struct nvm_block *blk = rblk->parent;
  98. int lun_blk = blk->id % (rrpc->dev->blks_per_lun * rrpc->nr_luns);
  99. return lun_blk * rrpc->dev->sec_per_blk;
  100. }
  101. /* Calculate global addr for the given block */
  102. static u64 block_to_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
  103. {
  104. struct nvm_block *blk = rblk->parent;
  105. return blk->id * rrpc->dev->sec_per_blk;
  106. }
  107. static struct ppa_addr linear_to_generic_addr(struct nvm_dev *dev,
  108. struct ppa_addr r)
  109. {
  110. struct ppa_addr l;
  111. int secs, pgs, blks, luns;
  112. sector_t ppa = r.ppa;
  113. l.ppa = 0;
  114. div_u64_rem(ppa, dev->sec_per_pg, &secs);
  115. l.g.sec = secs;
  116. sector_div(ppa, dev->sec_per_pg);
  117. div_u64_rem(ppa, dev->pgs_per_blk, &pgs);
  118. l.g.pg = pgs;
  119. sector_div(ppa, dev->pgs_per_blk);
  120. div_u64_rem(ppa, dev->blks_per_lun, &blks);
  121. l.g.blk = blks;
  122. sector_div(ppa, dev->blks_per_lun);
  123. div_u64_rem(ppa, dev->luns_per_chnl, &luns);
  124. l.g.lun = luns;
  125. sector_div(ppa, dev->luns_per_chnl);
  126. l.g.ch = ppa;
  127. return l;
  128. }
  129. static struct ppa_addr rrpc_ppa_to_gaddr(struct nvm_dev *dev, u64 addr)
  130. {
  131. struct ppa_addr paddr;
  132. paddr.ppa = addr;
  133. return linear_to_generic_addr(dev, paddr);
  134. }
  135. /* requires lun->lock taken */
  136. static void rrpc_set_lun_cur(struct rrpc_lun *rlun, struct rrpc_block *rblk)
  137. {
  138. struct rrpc *rrpc = rlun->rrpc;
  139. BUG_ON(!rblk);
  140. if (rlun->cur) {
  141. spin_lock(&rlun->cur->lock);
  142. WARN_ON(!block_is_full(rrpc, rlun->cur));
  143. spin_unlock(&rlun->cur->lock);
  144. }
  145. rlun->cur = rblk;
  146. }
  147. static struct rrpc_block *rrpc_get_blk(struct rrpc *rrpc, struct rrpc_lun *rlun,
  148. unsigned long flags)
  149. {
  150. struct nvm_lun *lun = rlun->parent;
  151. struct nvm_block *blk;
  152. struct rrpc_block *rblk;
  153. spin_lock(&lun->lock);
  154. blk = nvm_get_blk_unlocked(rrpc->dev, rlun->parent, flags);
  155. if (!blk) {
  156. pr_err("nvm: rrpc: cannot get new block from media manager\n");
  157. spin_unlock(&lun->lock);
  158. return NULL;
  159. }
  160. rblk = rrpc_get_rblk(rlun, blk->id);
  161. list_add_tail(&rblk->list, &rlun->open_list);
  162. spin_unlock(&lun->lock);
  163. blk->priv = rblk;
  164. bitmap_zero(rblk->invalid_pages, rrpc->dev->sec_per_blk);
  165. rblk->next_page = 0;
  166. rblk->nr_invalid_pages = 0;
  167. atomic_set(&rblk->data_cmnt_size, 0);
  168. return rblk;
  169. }
  170. static void rrpc_put_blk(struct rrpc *rrpc, struct rrpc_block *rblk)
  171. {
  172. struct rrpc_lun *rlun = rblk->rlun;
  173. struct nvm_lun *lun = rlun->parent;
  174. spin_lock(&lun->lock);
  175. nvm_put_blk_unlocked(rrpc->dev, rblk->parent);
  176. list_del(&rblk->list);
  177. spin_unlock(&lun->lock);
  178. }
  179. static void rrpc_put_blks(struct rrpc *rrpc)
  180. {
  181. struct rrpc_lun *rlun;
  182. int i;
  183. for (i = 0; i < rrpc->nr_luns; i++) {
  184. rlun = &rrpc->luns[i];
  185. if (rlun->cur)
  186. rrpc_put_blk(rrpc, rlun->cur);
  187. if (rlun->gc_cur)
  188. rrpc_put_blk(rrpc, rlun->gc_cur);
  189. }
  190. }
  191. static struct rrpc_lun *get_next_lun(struct rrpc *rrpc)
  192. {
  193. int next = atomic_inc_return(&rrpc->next_lun);
  194. return &rrpc->luns[next % rrpc->nr_luns];
  195. }
  196. static void rrpc_gc_kick(struct rrpc *rrpc)
  197. {
  198. struct rrpc_lun *rlun;
  199. unsigned int i;
  200. for (i = 0; i < rrpc->nr_luns; i++) {
  201. rlun = &rrpc->luns[i];
  202. queue_work(rrpc->krqd_wq, &rlun->ws_gc);
  203. }
  204. }
  205. /*
  206. * timed GC every interval.
  207. */
  208. static void rrpc_gc_timer(unsigned long data)
  209. {
  210. struct rrpc *rrpc = (struct rrpc *)data;
  211. rrpc_gc_kick(rrpc);
  212. mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
  213. }
  214. static void rrpc_end_sync_bio(struct bio *bio)
  215. {
  216. struct completion *waiting = bio->bi_private;
  217. if (bio->bi_error)
  218. pr_err("nvm: gc request failed (%u).\n", bio->bi_error);
  219. complete(waiting);
  220. }
  221. /*
  222. * rrpc_move_valid_pages -- migrate live data off the block
  223. * @rrpc: the 'rrpc' structure
  224. * @block: the block from which to migrate live pages
  225. *
  226. * Description:
  227. * GC algorithms may call this function to migrate remaining live
  228. * pages off the block prior to erasing it. This function blocks
  229. * further execution until the operation is complete.
  230. */
  231. static int rrpc_move_valid_pages(struct rrpc *rrpc, struct rrpc_block *rblk)
  232. {
  233. struct request_queue *q = rrpc->dev->q;
  234. struct rrpc_rev_addr *rev;
  235. struct nvm_rq *rqd;
  236. struct bio *bio;
  237. struct page *page;
  238. int slot;
  239. int nr_sec_per_blk = rrpc->dev->sec_per_blk;
  240. u64 phys_addr;
  241. DECLARE_COMPLETION_ONSTACK(wait);
  242. if (bitmap_full(rblk->invalid_pages, nr_sec_per_blk))
  243. return 0;
  244. bio = bio_alloc(GFP_NOIO, 1);
  245. if (!bio) {
  246. pr_err("nvm: could not alloc bio to gc\n");
  247. return -ENOMEM;
  248. }
  249. page = mempool_alloc(rrpc->page_pool, GFP_NOIO);
  250. if (!page) {
  251. bio_put(bio);
  252. return -ENOMEM;
  253. }
  254. while ((slot = find_first_zero_bit(rblk->invalid_pages,
  255. nr_sec_per_blk)) < nr_sec_per_blk) {
  256. /* Lock laddr */
  257. phys_addr = rblk->parent->id * nr_sec_per_blk + slot;
  258. try:
  259. spin_lock(&rrpc->rev_lock);
  260. /* Get logical address from physical to logical table */
  261. rev = &rrpc->rev_trans_map[phys_addr - rrpc->poffset];
  262. /* already updated by previous regular write */
  263. if (rev->addr == ADDR_EMPTY) {
  264. spin_unlock(&rrpc->rev_lock);
  265. continue;
  266. }
  267. rqd = rrpc_inflight_laddr_acquire(rrpc, rev->addr, 1);
  268. if (IS_ERR_OR_NULL(rqd)) {
  269. spin_unlock(&rrpc->rev_lock);
  270. schedule();
  271. goto try;
  272. }
  273. spin_unlock(&rrpc->rev_lock);
  274. /* Perform read to do GC */
  275. bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
  276. bio_set_op_attrs(bio, REQ_OP_READ, 0);
  277. bio->bi_private = &wait;
  278. bio->bi_end_io = rrpc_end_sync_bio;
  279. /* TODO: may fail when EXP_PG_SIZE > PAGE_SIZE */
  280. bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
  281. if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
  282. pr_err("rrpc: gc read failed.\n");
  283. rrpc_inflight_laddr_release(rrpc, rqd);
  284. goto finished;
  285. }
  286. wait_for_completion_io(&wait);
  287. if (bio->bi_error) {
  288. rrpc_inflight_laddr_release(rrpc, rqd);
  289. goto finished;
  290. }
  291. bio_reset(bio);
  292. reinit_completion(&wait);
  293. bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
  294. bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
  295. bio->bi_private = &wait;
  296. bio->bi_end_io = rrpc_end_sync_bio;
  297. bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
  298. /* turn the command around and write the data back to a new
  299. * address
  300. */
  301. if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
  302. pr_err("rrpc: gc write failed.\n");
  303. rrpc_inflight_laddr_release(rrpc, rqd);
  304. goto finished;
  305. }
  306. wait_for_completion_io(&wait);
  307. rrpc_inflight_laddr_release(rrpc, rqd);
  308. if (bio->bi_error)
  309. goto finished;
  310. bio_reset(bio);
  311. }
  312. finished:
  313. mempool_free(page, rrpc->page_pool);
  314. bio_put(bio);
  315. if (!bitmap_full(rblk->invalid_pages, nr_sec_per_blk)) {
  316. pr_err("nvm: failed to garbage collect block\n");
  317. return -EIO;
  318. }
  319. return 0;
  320. }
  321. static void rrpc_block_gc(struct work_struct *work)
  322. {
  323. struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
  324. ws_gc);
  325. struct rrpc *rrpc = gcb->rrpc;
  326. struct rrpc_block *rblk = gcb->rblk;
  327. struct rrpc_lun *rlun = rblk->rlun;
  328. struct nvm_dev *dev = rrpc->dev;
  329. mempool_free(gcb, rrpc->gcb_pool);
  330. pr_debug("nvm: block '%lu' being reclaimed\n", rblk->parent->id);
  331. if (rrpc_move_valid_pages(rrpc, rblk))
  332. goto put_back;
  333. if (nvm_erase_blk(dev, rblk->parent))
  334. goto put_back;
  335. rrpc_put_blk(rrpc, rblk);
  336. return;
  337. put_back:
  338. spin_lock(&rlun->lock);
  339. list_add_tail(&rblk->prio, &rlun->prio_list);
  340. spin_unlock(&rlun->lock);
  341. }
  342. /* the block with highest number of invalid pages, will be in the beginning
  343. * of the list
  344. */
  345. static struct rrpc_block *rblock_max_invalid(struct rrpc_block *ra,
  346. struct rrpc_block *rb)
  347. {
  348. if (ra->nr_invalid_pages == rb->nr_invalid_pages)
  349. return ra;
  350. return (ra->nr_invalid_pages < rb->nr_invalid_pages) ? rb : ra;
  351. }
  352. /* linearly find the block with highest number of invalid pages
  353. * requires lun->lock
  354. */
  355. static struct rrpc_block *block_prio_find_max(struct rrpc_lun *rlun)
  356. {
  357. struct list_head *prio_list = &rlun->prio_list;
  358. struct rrpc_block *rblock, *max;
  359. BUG_ON(list_empty(prio_list));
  360. max = list_first_entry(prio_list, struct rrpc_block, prio);
  361. list_for_each_entry(rblock, prio_list, prio)
  362. max = rblock_max_invalid(max, rblock);
  363. return max;
  364. }
  365. static void rrpc_lun_gc(struct work_struct *work)
  366. {
  367. struct rrpc_lun *rlun = container_of(work, struct rrpc_lun, ws_gc);
  368. struct rrpc *rrpc = rlun->rrpc;
  369. struct nvm_lun *lun = rlun->parent;
  370. struct rrpc_block_gc *gcb;
  371. unsigned int nr_blocks_need;
  372. nr_blocks_need = rrpc->dev->blks_per_lun / GC_LIMIT_INVERSE;
  373. if (nr_blocks_need < rrpc->nr_luns)
  374. nr_blocks_need = rrpc->nr_luns;
  375. spin_lock(&rlun->lock);
  376. while (nr_blocks_need > lun->nr_free_blocks &&
  377. !list_empty(&rlun->prio_list)) {
  378. struct rrpc_block *rblock = block_prio_find_max(rlun);
  379. struct nvm_block *block = rblock->parent;
  380. if (!rblock->nr_invalid_pages)
  381. break;
  382. gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
  383. if (!gcb)
  384. break;
  385. list_del_init(&rblock->prio);
  386. BUG_ON(!block_is_full(rrpc, rblock));
  387. pr_debug("rrpc: selected block '%lu' for GC\n", block->id);
  388. gcb->rrpc = rrpc;
  389. gcb->rblk = rblock;
  390. INIT_WORK(&gcb->ws_gc, rrpc_block_gc);
  391. queue_work(rrpc->kgc_wq, &gcb->ws_gc);
  392. nr_blocks_need--;
  393. }
  394. spin_unlock(&rlun->lock);
  395. /* TODO: Hint that request queue can be started again */
  396. }
  397. static void rrpc_gc_queue(struct work_struct *work)
  398. {
  399. struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
  400. ws_gc);
  401. struct rrpc *rrpc = gcb->rrpc;
  402. struct rrpc_block *rblk = gcb->rblk;
  403. struct rrpc_lun *rlun = rblk->rlun;
  404. struct nvm_lun *lun = rblk->parent->lun;
  405. struct nvm_block *blk = rblk->parent;
  406. spin_lock(&rlun->lock);
  407. list_add_tail(&rblk->prio, &rlun->prio_list);
  408. spin_unlock(&rlun->lock);
  409. spin_lock(&lun->lock);
  410. lun->nr_open_blocks--;
  411. lun->nr_closed_blocks++;
  412. blk->state &= ~NVM_BLK_ST_OPEN;
  413. blk->state |= NVM_BLK_ST_CLOSED;
  414. list_move_tail(&rblk->list, &rlun->closed_list);
  415. spin_unlock(&lun->lock);
  416. mempool_free(gcb, rrpc->gcb_pool);
  417. pr_debug("nvm: block '%lu' is full, allow GC (sched)\n",
  418. rblk->parent->id);
  419. }
  420. static const struct block_device_operations rrpc_fops = {
  421. .owner = THIS_MODULE,
  422. };
  423. static struct rrpc_lun *rrpc_get_lun_rr(struct rrpc *rrpc, int is_gc)
  424. {
  425. unsigned int i;
  426. struct rrpc_lun *rlun, *max_free;
  427. if (!is_gc)
  428. return get_next_lun(rrpc);
  429. /* during GC, we don't care about RR, instead we want to make
  430. * sure that we maintain evenness between the block luns.
  431. */
  432. max_free = &rrpc->luns[0];
  433. /* prevent GC-ing lun from devouring pages of a lun with
  434. * little free blocks. We don't take the lock as we only need an
  435. * estimate.
  436. */
  437. rrpc_for_each_lun(rrpc, rlun, i) {
  438. if (rlun->parent->nr_free_blocks >
  439. max_free->parent->nr_free_blocks)
  440. max_free = rlun;
  441. }
  442. return max_free;
  443. }
  444. static struct rrpc_addr *rrpc_update_map(struct rrpc *rrpc, sector_t laddr,
  445. struct rrpc_block *rblk, u64 paddr)
  446. {
  447. struct rrpc_addr *gp;
  448. struct rrpc_rev_addr *rev;
  449. BUG_ON(laddr >= rrpc->nr_sects);
  450. gp = &rrpc->trans_map[laddr];
  451. spin_lock(&rrpc->rev_lock);
  452. if (gp->rblk)
  453. rrpc_page_invalidate(rrpc, gp);
  454. gp->addr = paddr;
  455. gp->rblk = rblk;
  456. rev = &rrpc->rev_trans_map[gp->addr - rrpc->poffset];
  457. rev->addr = laddr;
  458. spin_unlock(&rrpc->rev_lock);
  459. return gp;
  460. }
  461. static u64 rrpc_alloc_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
  462. {
  463. u64 addr = ADDR_EMPTY;
  464. spin_lock(&rblk->lock);
  465. if (block_is_full(rrpc, rblk))
  466. goto out;
  467. addr = block_to_addr(rrpc, rblk) + rblk->next_page;
  468. rblk->next_page++;
  469. out:
  470. spin_unlock(&rblk->lock);
  471. return addr;
  472. }
  473. /* Simple round-robin Logical to physical address translation.
  474. *
  475. * Retrieve the mapping using the active append point. Then update the ap for
  476. * the next write to the disk.
  477. *
  478. * Returns rrpc_addr with the physical address and block. Remember to return to
  479. * rrpc->addr_cache when request is finished.
  480. */
  481. static struct rrpc_addr *rrpc_map_page(struct rrpc *rrpc, sector_t laddr,
  482. int is_gc)
  483. {
  484. struct rrpc_lun *rlun;
  485. struct rrpc_block *rblk;
  486. struct nvm_lun *lun;
  487. u64 paddr;
  488. rlun = rrpc_get_lun_rr(rrpc, is_gc);
  489. lun = rlun->parent;
  490. if (!is_gc && lun->nr_free_blocks < rrpc->nr_luns * 4)
  491. return NULL;
  492. spin_lock(&rlun->lock);
  493. rblk = rlun->cur;
  494. retry:
  495. paddr = rrpc_alloc_addr(rrpc, rblk);
  496. if (paddr == ADDR_EMPTY) {
  497. rblk = rrpc_get_blk(rrpc, rlun, 0);
  498. if (rblk) {
  499. rrpc_set_lun_cur(rlun, rblk);
  500. goto retry;
  501. }
  502. if (is_gc) {
  503. /* retry from emergency gc block */
  504. paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
  505. if (paddr == ADDR_EMPTY) {
  506. rblk = rrpc_get_blk(rrpc, rlun, 1);
  507. if (!rblk) {
  508. pr_err("rrpc: no more blocks");
  509. goto err;
  510. }
  511. rlun->gc_cur = rblk;
  512. paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
  513. }
  514. rblk = rlun->gc_cur;
  515. }
  516. }
  517. spin_unlock(&rlun->lock);
  518. return rrpc_update_map(rrpc, laddr, rblk, paddr);
  519. err:
  520. spin_unlock(&rlun->lock);
  521. return NULL;
  522. }
  523. static void rrpc_run_gc(struct rrpc *rrpc, struct rrpc_block *rblk)
  524. {
  525. struct rrpc_block_gc *gcb;
  526. gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
  527. if (!gcb) {
  528. pr_err("rrpc: unable to queue block for gc.");
  529. return;
  530. }
  531. gcb->rrpc = rrpc;
  532. gcb->rblk = rblk;
  533. INIT_WORK(&gcb->ws_gc, rrpc_gc_queue);
  534. queue_work(rrpc->kgc_wq, &gcb->ws_gc);
  535. }
  536. static void rrpc_end_io_write(struct rrpc *rrpc, struct rrpc_rq *rrqd,
  537. sector_t laddr, uint8_t npages)
  538. {
  539. struct rrpc_addr *p;
  540. struct rrpc_block *rblk;
  541. struct nvm_lun *lun;
  542. int cmnt_size, i;
  543. for (i = 0; i < npages; i++) {
  544. p = &rrpc->trans_map[laddr + i];
  545. rblk = p->rblk;
  546. lun = rblk->parent->lun;
  547. cmnt_size = atomic_inc_return(&rblk->data_cmnt_size);
  548. if (unlikely(cmnt_size == rrpc->dev->sec_per_blk))
  549. rrpc_run_gc(rrpc, rblk);
  550. }
  551. }
  552. static void rrpc_end_io(struct nvm_rq *rqd)
  553. {
  554. struct rrpc *rrpc = container_of(rqd->ins, struct rrpc, instance);
  555. struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
  556. uint8_t npages = rqd->nr_ppas;
  557. sector_t laddr = rrpc_get_laddr(rqd->bio) - npages;
  558. if (bio_data_dir(rqd->bio) == WRITE)
  559. rrpc_end_io_write(rrpc, rrqd, laddr, npages);
  560. bio_put(rqd->bio);
  561. if (rrqd->flags & NVM_IOTYPE_GC)
  562. return;
  563. rrpc_unlock_rq(rrpc, rqd);
  564. if (npages > 1)
  565. nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
  566. mempool_free(rqd, rrpc->rq_pool);
  567. }
  568. static int rrpc_read_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
  569. struct nvm_rq *rqd, unsigned long flags, int npages)
  570. {
  571. struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
  572. struct rrpc_addr *gp;
  573. sector_t laddr = rrpc_get_laddr(bio);
  574. int is_gc = flags & NVM_IOTYPE_GC;
  575. int i;
  576. if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
  577. nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
  578. return NVM_IO_REQUEUE;
  579. }
  580. for (i = 0; i < npages; i++) {
  581. /* We assume that mapping occurs at 4KB granularity */
  582. BUG_ON(!(laddr + i >= 0 && laddr + i < rrpc->nr_sects));
  583. gp = &rrpc->trans_map[laddr + i];
  584. if (gp->rblk) {
  585. rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
  586. gp->addr);
  587. } else {
  588. BUG_ON(is_gc);
  589. rrpc_unlock_laddr(rrpc, r);
  590. nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
  591. rqd->dma_ppa_list);
  592. return NVM_IO_DONE;
  593. }
  594. }
  595. rqd->opcode = NVM_OP_HBREAD;
  596. return NVM_IO_OK;
  597. }
  598. static int rrpc_read_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd,
  599. unsigned long flags)
  600. {
  601. struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
  602. int is_gc = flags & NVM_IOTYPE_GC;
  603. sector_t laddr = rrpc_get_laddr(bio);
  604. struct rrpc_addr *gp;
  605. if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
  606. return NVM_IO_REQUEUE;
  607. BUG_ON(!(laddr >= 0 && laddr < rrpc->nr_sects));
  608. gp = &rrpc->trans_map[laddr];
  609. if (gp->rblk) {
  610. rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, gp->addr);
  611. } else {
  612. BUG_ON(is_gc);
  613. rrpc_unlock_rq(rrpc, rqd);
  614. return NVM_IO_DONE;
  615. }
  616. rqd->opcode = NVM_OP_HBREAD;
  617. rrqd->addr = gp;
  618. return NVM_IO_OK;
  619. }
  620. static int rrpc_write_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
  621. struct nvm_rq *rqd, unsigned long flags, int npages)
  622. {
  623. struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
  624. struct rrpc_addr *p;
  625. sector_t laddr = rrpc_get_laddr(bio);
  626. int is_gc = flags & NVM_IOTYPE_GC;
  627. int i;
  628. if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
  629. nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
  630. return NVM_IO_REQUEUE;
  631. }
  632. for (i = 0; i < npages; i++) {
  633. /* We assume that mapping occurs at 4KB granularity */
  634. p = rrpc_map_page(rrpc, laddr + i, is_gc);
  635. if (!p) {
  636. BUG_ON(is_gc);
  637. rrpc_unlock_laddr(rrpc, r);
  638. nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
  639. rqd->dma_ppa_list);
  640. rrpc_gc_kick(rrpc);
  641. return NVM_IO_REQUEUE;
  642. }
  643. rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
  644. p->addr);
  645. }
  646. rqd->opcode = NVM_OP_HBWRITE;
  647. return NVM_IO_OK;
  648. }
  649. static int rrpc_write_rq(struct rrpc *rrpc, struct bio *bio,
  650. struct nvm_rq *rqd, unsigned long flags)
  651. {
  652. struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
  653. struct rrpc_addr *p;
  654. int is_gc = flags & NVM_IOTYPE_GC;
  655. sector_t laddr = rrpc_get_laddr(bio);
  656. if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
  657. return NVM_IO_REQUEUE;
  658. p = rrpc_map_page(rrpc, laddr, is_gc);
  659. if (!p) {
  660. BUG_ON(is_gc);
  661. rrpc_unlock_rq(rrpc, rqd);
  662. rrpc_gc_kick(rrpc);
  663. return NVM_IO_REQUEUE;
  664. }
  665. rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, p->addr);
  666. rqd->opcode = NVM_OP_HBWRITE;
  667. rrqd->addr = p;
  668. return NVM_IO_OK;
  669. }
  670. static int rrpc_setup_rq(struct rrpc *rrpc, struct bio *bio,
  671. struct nvm_rq *rqd, unsigned long flags, uint8_t npages)
  672. {
  673. if (npages > 1) {
  674. rqd->ppa_list = nvm_dev_dma_alloc(rrpc->dev, GFP_KERNEL,
  675. &rqd->dma_ppa_list);
  676. if (!rqd->ppa_list) {
  677. pr_err("rrpc: not able to allocate ppa list\n");
  678. return NVM_IO_ERR;
  679. }
  680. if (bio_rw(bio) == WRITE)
  681. return rrpc_write_ppalist_rq(rrpc, bio, rqd, flags,
  682. npages);
  683. return rrpc_read_ppalist_rq(rrpc, bio, rqd, flags, npages);
  684. }
  685. if (bio_rw(bio) == WRITE)
  686. return rrpc_write_rq(rrpc, bio, rqd, flags);
  687. return rrpc_read_rq(rrpc, bio, rqd, flags);
  688. }
  689. static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
  690. struct nvm_rq *rqd, unsigned long flags)
  691. {
  692. int err;
  693. struct rrpc_rq *rrq = nvm_rq_to_pdu(rqd);
  694. uint8_t nr_pages = rrpc_get_pages(bio);
  695. int bio_size = bio_sectors(bio) << 9;
  696. if (bio_size < rrpc->dev->sec_size)
  697. return NVM_IO_ERR;
  698. else if (bio_size > rrpc->dev->max_rq_size)
  699. return NVM_IO_ERR;
  700. err = rrpc_setup_rq(rrpc, bio, rqd, flags, nr_pages);
  701. if (err)
  702. return err;
  703. bio_get(bio);
  704. rqd->bio = bio;
  705. rqd->ins = &rrpc->instance;
  706. rqd->nr_ppas = nr_pages;
  707. rrq->flags = flags;
  708. err = nvm_submit_io(rrpc->dev, rqd);
  709. if (err) {
  710. pr_err("rrpc: I/O submission failed: %d\n", err);
  711. bio_put(bio);
  712. if (!(flags & NVM_IOTYPE_GC)) {
  713. rrpc_unlock_rq(rrpc, rqd);
  714. if (rqd->nr_ppas > 1)
  715. nvm_dev_dma_free(rrpc->dev,
  716. rqd->ppa_list, rqd->dma_ppa_list);
  717. }
  718. return NVM_IO_ERR;
  719. }
  720. return NVM_IO_OK;
  721. }
  722. static blk_qc_t rrpc_make_rq(struct request_queue *q, struct bio *bio)
  723. {
  724. struct rrpc *rrpc = q->queuedata;
  725. struct nvm_rq *rqd;
  726. int err;
  727. if (bio_op(bio) == REQ_OP_DISCARD) {
  728. rrpc_discard(rrpc, bio);
  729. return BLK_QC_T_NONE;
  730. }
  731. rqd = mempool_alloc(rrpc->rq_pool, GFP_KERNEL);
  732. if (!rqd) {
  733. pr_err_ratelimited("rrpc: not able to queue bio.");
  734. bio_io_error(bio);
  735. return BLK_QC_T_NONE;
  736. }
  737. memset(rqd, 0, sizeof(struct nvm_rq));
  738. err = rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_NONE);
  739. switch (err) {
  740. case NVM_IO_OK:
  741. return BLK_QC_T_NONE;
  742. case NVM_IO_ERR:
  743. bio_io_error(bio);
  744. break;
  745. case NVM_IO_DONE:
  746. bio_endio(bio);
  747. break;
  748. case NVM_IO_REQUEUE:
  749. spin_lock(&rrpc->bio_lock);
  750. bio_list_add(&rrpc->requeue_bios, bio);
  751. spin_unlock(&rrpc->bio_lock);
  752. queue_work(rrpc->kgc_wq, &rrpc->ws_requeue);
  753. break;
  754. }
  755. mempool_free(rqd, rrpc->rq_pool);
  756. return BLK_QC_T_NONE;
  757. }
  758. static void rrpc_requeue(struct work_struct *work)
  759. {
  760. struct rrpc *rrpc = container_of(work, struct rrpc, ws_requeue);
  761. struct bio_list bios;
  762. struct bio *bio;
  763. bio_list_init(&bios);
  764. spin_lock(&rrpc->bio_lock);
  765. bio_list_merge(&bios, &rrpc->requeue_bios);
  766. bio_list_init(&rrpc->requeue_bios);
  767. spin_unlock(&rrpc->bio_lock);
  768. while ((bio = bio_list_pop(&bios)))
  769. rrpc_make_rq(rrpc->disk->queue, bio);
  770. }
  771. static void rrpc_gc_free(struct rrpc *rrpc)
  772. {
  773. if (rrpc->krqd_wq)
  774. destroy_workqueue(rrpc->krqd_wq);
  775. if (rrpc->kgc_wq)
  776. destroy_workqueue(rrpc->kgc_wq);
  777. }
  778. static int rrpc_gc_init(struct rrpc *rrpc)
  779. {
  780. rrpc->krqd_wq = alloc_workqueue("rrpc-lun", WQ_MEM_RECLAIM|WQ_UNBOUND,
  781. rrpc->nr_luns);
  782. if (!rrpc->krqd_wq)
  783. return -ENOMEM;
  784. rrpc->kgc_wq = alloc_workqueue("rrpc-bg", WQ_MEM_RECLAIM, 1);
  785. if (!rrpc->kgc_wq)
  786. return -ENOMEM;
  787. setup_timer(&rrpc->gc_timer, rrpc_gc_timer, (unsigned long)rrpc);
  788. return 0;
  789. }
  790. static void rrpc_map_free(struct rrpc *rrpc)
  791. {
  792. vfree(rrpc->rev_trans_map);
  793. vfree(rrpc->trans_map);
  794. }
  795. static int rrpc_l2p_update(u64 slba, u32 nlb, __le64 *entries, void *private)
  796. {
  797. struct rrpc *rrpc = (struct rrpc *)private;
  798. struct nvm_dev *dev = rrpc->dev;
  799. struct rrpc_addr *addr = rrpc->trans_map + slba;
  800. struct rrpc_rev_addr *raddr = rrpc->rev_trans_map;
  801. u64 elba = slba + nlb;
  802. u64 i;
  803. if (unlikely(elba > dev->total_secs)) {
  804. pr_err("nvm: L2P data from device is out of bounds!\n");
  805. return -EINVAL;
  806. }
  807. for (i = 0; i < nlb; i++) {
  808. u64 pba = le64_to_cpu(entries[i]);
  809. unsigned int mod;
  810. /* LNVM treats address-spaces as silos, LBA and PBA are
  811. * equally large and zero-indexed.
  812. */
  813. if (unlikely(pba >= dev->total_secs && pba != U64_MAX)) {
  814. pr_err("nvm: L2P data entry is out of bounds!\n");
  815. return -EINVAL;
  816. }
  817. /* Address zero is a special one. The first page on a disk is
  818. * protected. As it often holds internal device boot
  819. * information.
  820. */
  821. if (!pba)
  822. continue;
  823. div_u64_rem(pba, rrpc->nr_sects, &mod);
  824. addr[i].addr = pba;
  825. raddr[mod].addr = slba + i;
  826. }
  827. return 0;
  828. }
  829. static int rrpc_map_init(struct rrpc *rrpc)
  830. {
  831. struct nvm_dev *dev = rrpc->dev;
  832. sector_t i;
  833. int ret;
  834. rrpc->trans_map = vzalloc(sizeof(struct rrpc_addr) * rrpc->nr_sects);
  835. if (!rrpc->trans_map)
  836. return -ENOMEM;
  837. rrpc->rev_trans_map = vmalloc(sizeof(struct rrpc_rev_addr)
  838. * rrpc->nr_sects);
  839. if (!rrpc->rev_trans_map)
  840. return -ENOMEM;
  841. for (i = 0; i < rrpc->nr_sects; i++) {
  842. struct rrpc_addr *p = &rrpc->trans_map[i];
  843. struct rrpc_rev_addr *r = &rrpc->rev_trans_map[i];
  844. p->addr = ADDR_EMPTY;
  845. r->addr = ADDR_EMPTY;
  846. }
  847. if (!dev->ops->get_l2p_tbl)
  848. return 0;
  849. /* Bring up the mapping table from device */
  850. ret = dev->ops->get_l2p_tbl(dev, rrpc->soffset, rrpc->nr_sects,
  851. rrpc_l2p_update, rrpc);
  852. if (ret) {
  853. pr_err("nvm: rrpc: could not read L2P table.\n");
  854. return -EINVAL;
  855. }
  856. return 0;
  857. }
  858. /* Minimum pages needed within a lun */
  859. #define PAGE_POOL_SIZE 16
  860. #define ADDR_POOL_SIZE 64
  861. static int rrpc_core_init(struct rrpc *rrpc)
  862. {
  863. down_write(&rrpc_lock);
  864. if (!rrpc_gcb_cache) {
  865. rrpc_gcb_cache = kmem_cache_create("rrpc_gcb",
  866. sizeof(struct rrpc_block_gc), 0, 0, NULL);
  867. if (!rrpc_gcb_cache) {
  868. up_write(&rrpc_lock);
  869. return -ENOMEM;
  870. }
  871. rrpc_rq_cache = kmem_cache_create("rrpc_rq",
  872. sizeof(struct nvm_rq) + sizeof(struct rrpc_rq),
  873. 0, 0, NULL);
  874. if (!rrpc_rq_cache) {
  875. kmem_cache_destroy(rrpc_gcb_cache);
  876. up_write(&rrpc_lock);
  877. return -ENOMEM;
  878. }
  879. }
  880. up_write(&rrpc_lock);
  881. rrpc->page_pool = mempool_create_page_pool(PAGE_POOL_SIZE, 0);
  882. if (!rrpc->page_pool)
  883. return -ENOMEM;
  884. rrpc->gcb_pool = mempool_create_slab_pool(rrpc->dev->nr_luns,
  885. rrpc_gcb_cache);
  886. if (!rrpc->gcb_pool)
  887. return -ENOMEM;
  888. rrpc->rq_pool = mempool_create_slab_pool(64, rrpc_rq_cache);
  889. if (!rrpc->rq_pool)
  890. return -ENOMEM;
  891. spin_lock_init(&rrpc->inflights.lock);
  892. INIT_LIST_HEAD(&rrpc->inflights.reqs);
  893. return 0;
  894. }
  895. static void rrpc_core_free(struct rrpc *rrpc)
  896. {
  897. mempool_destroy(rrpc->page_pool);
  898. mempool_destroy(rrpc->gcb_pool);
  899. mempool_destroy(rrpc->rq_pool);
  900. }
  901. static void rrpc_luns_free(struct rrpc *rrpc)
  902. {
  903. struct nvm_dev *dev = rrpc->dev;
  904. struct nvm_lun *lun;
  905. struct rrpc_lun *rlun;
  906. int i;
  907. if (!rrpc->luns)
  908. return;
  909. for (i = 0; i < rrpc->nr_luns; i++) {
  910. rlun = &rrpc->luns[i];
  911. lun = rlun->parent;
  912. if (!lun)
  913. break;
  914. dev->mt->release_lun(dev, lun->id);
  915. vfree(rlun->blocks);
  916. }
  917. kfree(rrpc->luns);
  918. }
  919. static int rrpc_luns_init(struct rrpc *rrpc, int lun_begin, int lun_end)
  920. {
  921. struct nvm_dev *dev = rrpc->dev;
  922. struct rrpc_lun *rlun;
  923. int i, j, ret = -EINVAL;
  924. if (dev->sec_per_blk > MAX_INVALID_PAGES_STORAGE * BITS_PER_LONG) {
  925. pr_err("rrpc: number of pages per block too high.");
  926. return -EINVAL;
  927. }
  928. spin_lock_init(&rrpc->rev_lock);
  929. rrpc->luns = kcalloc(rrpc->nr_luns, sizeof(struct rrpc_lun),
  930. GFP_KERNEL);
  931. if (!rrpc->luns)
  932. return -ENOMEM;
  933. /* 1:1 mapping */
  934. for (i = 0; i < rrpc->nr_luns; i++) {
  935. int lunid = lun_begin + i;
  936. struct nvm_lun *lun;
  937. if (dev->mt->reserve_lun(dev, lunid)) {
  938. pr_err("rrpc: lun %u is already allocated\n", lunid);
  939. goto err;
  940. }
  941. lun = dev->mt->get_lun(dev, lunid);
  942. if (!lun)
  943. goto err;
  944. rlun = &rrpc->luns[i];
  945. rlun->parent = lun;
  946. rlun->blocks = vzalloc(sizeof(struct rrpc_block) *
  947. rrpc->dev->blks_per_lun);
  948. if (!rlun->blocks) {
  949. ret = -ENOMEM;
  950. goto err;
  951. }
  952. for (j = 0; j < rrpc->dev->blks_per_lun; j++) {
  953. struct rrpc_block *rblk = &rlun->blocks[j];
  954. struct nvm_block *blk = &lun->blocks[j];
  955. rblk->parent = blk;
  956. rblk->rlun = rlun;
  957. INIT_LIST_HEAD(&rblk->prio);
  958. spin_lock_init(&rblk->lock);
  959. }
  960. rlun->rrpc = rrpc;
  961. INIT_LIST_HEAD(&rlun->prio_list);
  962. INIT_LIST_HEAD(&rlun->open_list);
  963. INIT_LIST_HEAD(&rlun->closed_list);
  964. INIT_WORK(&rlun->ws_gc, rrpc_lun_gc);
  965. spin_lock_init(&rlun->lock);
  966. }
  967. return 0;
  968. err:
  969. return ret;
  970. }
  971. /* returns 0 on success and stores the beginning address in *begin */
  972. static int rrpc_area_init(struct rrpc *rrpc, sector_t *begin)
  973. {
  974. struct nvm_dev *dev = rrpc->dev;
  975. struct nvmm_type *mt = dev->mt;
  976. sector_t size = rrpc->nr_sects * dev->sec_size;
  977. int ret;
  978. size >>= 9;
  979. ret = mt->get_area(dev, begin, size);
  980. if (!ret)
  981. *begin >>= (ilog2(dev->sec_size) - 9);
  982. return ret;
  983. }
  984. static void rrpc_area_free(struct rrpc *rrpc)
  985. {
  986. struct nvm_dev *dev = rrpc->dev;
  987. struct nvmm_type *mt = dev->mt;
  988. sector_t begin = rrpc->soffset << (ilog2(dev->sec_size) - 9);
  989. mt->put_area(dev, begin);
  990. }
  991. static void rrpc_free(struct rrpc *rrpc)
  992. {
  993. rrpc_gc_free(rrpc);
  994. rrpc_map_free(rrpc);
  995. rrpc_core_free(rrpc);
  996. rrpc_luns_free(rrpc);
  997. rrpc_area_free(rrpc);
  998. kfree(rrpc);
  999. }
  1000. static void rrpc_exit(void *private)
  1001. {
  1002. struct rrpc *rrpc = private;
  1003. del_timer(&rrpc->gc_timer);
  1004. flush_workqueue(rrpc->krqd_wq);
  1005. flush_workqueue(rrpc->kgc_wq);
  1006. rrpc_free(rrpc);
  1007. }
  1008. static sector_t rrpc_capacity(void *private)
  1009. {
  1010. struct rrpc *rrpc = private;
  1011. struct nvm_dev *dev = rrpc->dev;
  1012. sector_t reserved, provisioned;
  1013. /* cur, gc, and two emergency blocks for each lun */
  1014. reserved = rrpc->nr_luns * dev->sec_per_blk * 4;
  1015. provisioned = rrpc->nr_sects - reserved;
  1016. if (reserved > rrpc->nr_sects) {
  1017. pr_err("rrpc: not enough space available to expose storage.\n");
  1018. return 0;
  1019. }
  1020. sector_div(provisioned, 10);
  1021. return provisioned * 9 * NR_PHY_IN_LOG;
  1022. }
  1023. /*
  1024. * Looks up the logical address from reverse trans map and check if its valid by
  1025. * comparing the logical to physical address with the physical address.
  1026. * Returns 0 on free, otherwise 1 if in use
  1027. */
  1028. static void rrpc_block_map_update(struct rrpc *rrpc, struct rrpc_block *rblk)
  1029. {
  1030. struct nvm_dev *dev = rrpc->dev;
  1031. int offset;
  1032. struct rrpc_addr *laddr;
  1033. u64 bpaddr, paddr, pladdr;
  1034. bpaddr = block_to_rel_addr(rrpc, rblk);
  1035. for (offset = 0; offset < dev->sec_per_blk; offset++) {
  1036. paddr = bpaddr + offset;
  1037. pladdr = rrpc->rev_trans_map[paddr].addr;
  1038. if (pladdr == ADDR_EMPTY)
  1039. continue;
  1040. laddr = &rrpc->trans_map[pladdr];
  1041. if (paddr == laddr->addr) {
  1042. laddr->rblk = rblk;
  1043. } else {
  1044. set_bit(offset, rblk->invalid_pages);
  1045. rblk->nr_invalid_pages++;
  1046. }
  1047. }
  1048. }
  1049. static int rrpc_blocks_init(struct rrpc *rrpc)
  1050. {
  1051. struct rrpc_lun *rlun;
  1052. struct rrpc_block *rblk;
  1053. int lun_iter, blk_iter;
  1054. for (lun_iter = 0; lun_iter < rrpc->nr_luns; lun_iter++) {
  1055. rlun = &rrpc->luns[lun_iter];
  1056. for (blk_iter = 0; blk_iter < rrpc->dev->blks_per_lun;
  1057. blk_iter++) {
  1058. rblk = &rlun->blocks[blk_iter];
  1059. rrpc_block_map_update(rrpc, rblk);
  1060. }
  1061. }
  1062. return 0;
  1063. }
  1064. static int rrpc_luns_configure(struct rrpc *rrpc)
  1065. {
  1066. struct rrpc_lun *rlun;
  1067. struct rrpc_block *rblk;
  1068. int i;
  1069. for (i = 0; i < rrpc->nr_luns; i++) {
  1070. rlun = &rrpc->luns[i];
  1071. rblk = rrpc_get_blk(rrpc, rlun, 0);
  1072. if (!rblk)
  1073. goto err;
  1074. rrpc_set_lun_cur(rlun, rblk);
  1075. /* Emergency gc block */
  1076. rblk = rrpc_get_blk(rrpc, rlun, 1);
  1077. if (!rblk)
  1078. goto err;
  1079. rlun->gc_cur = rblk;
  1080. }
  1081. return 0;
  1082. err:
  1083. rrpc_put_blks(rrpc);
  1084. return -EINVAL;
  1085. }
  1086. static struct nvm_tgt_type tt_rrpc;
  1087. static void *rrpc_init(struct nvm_dev *dev, struct gendisk *tdisk,
  1088. int lun_begin, int lun_end)
  1089. {
  1090. struct request_queue *bqueue = dev->q;
  1091. struct request_queue *tqueue = tdisk->queue;
  1092. struct rrpc *rrpc;
  1093. sector_t soffset;
  1094. int ret;
  1095. if (!(dev->identity.dom & NVM_RSP_L2P)) {
  1096. pr_err("nvm: rrpc: device does not support l2p (%x)\n",
  1097. dev->identity.dom);
  1098. return ERR_PTR(-EINVAL);
  1099. }
  1100. rrpc = kzalloc(sizeof(struct rrpc), GFP_KERNEL);
  1101. if (!rrpc)
  1102. return ERR_PTR(-ENOMEM);
  1103. rrpc->instance.tt = &tt_rrpc;
  1104. rrpc->dev = dev;
  1105. rrpc->disk = tdisk;
  1106. bio_list_init(&rrpc->requeue_bios);
  1107. spin_lock_init(&rrpc->bio_lock);
  1108. INIT_WORK(&rrpc->ws_requeue, rrpc_requeue);
  1109. rrpc->nr_luns = lun_end - lun_begin + 1;
  1110. rrpc->total_blocks = (unsigned long)dev->blks_per_lun * rrpc->nr_luns;
  1111. rrpc->nr_sects = (unsigned long long)dev->sec_per_lun * rrpc->nr_luns;
  1112. /* simple round-robin strategy */
  1113. atomic_set(&rrpc->next_lun, -1);
  1114. ret = rrpc_area_init(rrpc, &soffset);
  1115. if (ret < 0) {
  1116. pr_err("nvm: rrpc: could not initialize area\n");
  1117. return ERR_PTR(ret);
  1118. }
  1119. rrpc->soffset = soffset;
  1120. ret = rrpc_luns_init(rrpc, lun_begin, lun_end);
  1121. if (ret) {
  1122. pr_err("nvm: rrpc: could not initialize luns\n");
  1123. goto err;
  1124. }
  1125. rrpc->poffset = dev->sec_per_lun * lun_begin;
  1126. rrpc->lun_offset = lun_begin;
  1127. ret = rrpc_core_init(rrpc);
  1128. if (ret) {
  1129. pr_err("nvm: rrpc: could not initialize core\n");
  1130. goto err;
  1131. }
  1132. ret = rrpc_map_init(rrpc);
  1133. if (ret) {
  1134. pr_err("nvm: rrpc: could not initialize maps\n");
  1135. goto err;
  1136. }
  1137. ret = rrpc_blocks_init(rrpc);
  1138. if (ret) {
  1139. pr_err("nvm: rrpc: could not initialize state for blocks\n");
  1140. goto err;
  1141. }
  1142. ret = rrpc_luns_configure(rrpc);
  1143. if (ret) {
  1144. pr_err("nvm: rrpc: not enough blocks available in LUNs.\n");
  1145. goto err;
  1146. }
  1147. ret = rrpc_gc_init(rrpc);
  1148. if (ret) {
  1149. pr_err("nvm: rrpc: could not initialize gc\n");
  1150. goto err;
  1151. }
  1152. /* inherit the size from the underlying device */
  1153. blk_queue_logical_block_size(tqueue, queue_physical_block_size(bqueue));
  1154. blk_queue_max_hw_sectors(tqueue, queue_max_hw_sectors(bqueue));
  1155. pr_info("nvm: rrpc initialized with %u luns and %llu pages.\n",
  1156. rrpc->nr_luns, (unsigned long long)rrpc->nr_sects);
  1157. mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
  1158. return rrpc;
  1159. err:
  1160. rrpc_free(rrpc);
  1161. return ERR_PTR(ret);
  1162. }
  1163. /* round robin, page-based FTL, and cost-based GC */
  1164. static struct nvm_tgt_type tt_rrpc = {
  1165. .name = "rrpc",
  1166. .version = {1, 0, 0},
  1167. .make_rq = rrpc_make_rq,
  1168. .capacity = rrpc_capacity,
  1169. .end_io = rrpc_end_io,
  1170. .init = rrpc_init,
  1171. .exit = rrpc_exit,
  1172. };
  1173. static int __init rrpc_module_init(void)
  1174. {
  1175. return nvm_register_tgt_type(&tt_rrpc);
  1176. }
  1177. static void rrpc_module_exit(void)
  1178. {
  1179. nvm_unregister_tgt_type(&tt_rrpc);
  1180. }
  1181. module_init(rrpc_module_init);
  1182. module_exit(rrpc_module_exit);
  1183. MODULE_LICENSE("GPL v2");
  1184. MODULE_DESCRIPTION("Block-Device Target for Open-Channel SSDs");