intel_pm.c 191 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include "i915_drv.h"
  29. #include "intel_drv.h"
  30. #include "../../../platform/x86/intel_ips.h"
  31. #include <linux/module.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/i915_powerwell.h>
  34. #include <linux/pm_runtime.h>
  35. /**
  36. * RC6 is a special power stage which allows the GPU to enter an very
  37. * low-voltage mode when idle, using down to 0V while at this stage. This
  38. * stage is entered automatically when the GPU is idle when RC6 support is
  39. * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  40. *
  41. * There are different RC6 modes available in Intel GPU, which differentiate
  42. * among each other with the latency required to enter and leave RC6 and
  43. * voltage consumed by the GPU in different states.
  44. *
  45. * The combination of the following flags define which states GPU is allowed
  46. * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  47. * RC6pp is deepest RC6. Their support by hardware varies according to the
  48. * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  49. * which brings the most power savings; deeper states save more power, but
  50. * require higher latency to switch to and wake up.
  51. */
  52. #define INTEL_RC6_ENABLE (1<<0)
  53. #define INTEL_RC6p_ENABLE (1<<1)
  54. #define INTEL_RC6pp_ENABLE (1<<2)
  55. /* FBC, or Frame Buffer Compression, is a technique employed to compress the
  56. * framebuffer contents in-memory, aiming at reducing the required bandwidth
  57. * during in-memory transfers and, therefore, reduce the power packet.
  58. *
  59. * The benefits of FBC are mostly visible with solid backgrounds and
  60. * variation-less patterns.
  61. *
  62. * FBC-related functionality can be enabled by the means of the
  63. * i915.i915_enable_fbc parameter
  64. */
  65. static void i8xx_disable_fbc(struct drm_device *dev)
  66. {
  67. struct drm_i915_private *dev_priv = dev->dev_private;
  68. u32 fbc_ctl;
  69. /* Disable compression */
  70. fbc_ctl = I915_READ(FBC_CONTROL);
  71. if ((fbc_ctl & FBC_CTL_EN) == 0)
  72. return;
  73. fbc_ctl &= ~FBC_CTL_EN;
  74. I915_WRITE(FBC_CONTROL, fbc_ctl);
  75. /* Wait for compressing bit to clear */
  76. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  77. DRM_DEBUG_KMS("FBC idle timed out\n");
  78. return;
  79. }
  80. DRM_DEBUG_KMS("disabled FBC\n");
  81. }
  82. static void i8xx_enable_fbc(struct drm_crtc *crtc)
  83. {
  84. struct drm_device *dev = crtc->dev;
  85. struct drm_i915_private *dev_priv = dev->dev_private;
  86. struct drm_framebuffer *fb = crtc->primary->fb;
  87. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  88. struct drm_i915_gem_object *obj = intel_fb->obj;
  89. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  90. int cfb_pitch;
  91. int i;
  92. u32 fbc_ctl;
  93. cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
  94. if (fb->pitches[0] < cfb_pitch)
  95. cfb_pitch = fb->pitches[0];
  96. /* FBC_CTL wants 32B or 64B units */
  97. if (IS_GEN2(dev))
  98. cfb_pitch = (cfb_pitch / 32) - 1;
  99. else
  100. cfb_pitch = (cfb_pitch / 64) - 1;
  101. /* Clear old tags */
  102. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  103. I915_WRITE(FBC_TAG + (i * 4), 0);
  104. if (IS_GEN4(dev)) {
  105. u32 fbc_ctl2;
  106. /* Set it up... */
  107. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  108. fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
  109. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  110. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  111. }
  112. /* enable it... */
  113. fbc_ctl = I915_READ(FBC_CONTROL);
  114. fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
  115. fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
  116. if (IS_I945GM(dev))
  117. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  118. fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  119. fbc_ctl |= obj->fence_reg;
  120. I915_WRITE(FBC_CONTROL, fbc_ctl);
  121. DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
  122. cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
  123. }
  124. static bool i8xx_fbc_enabled(struct drm_device *dev)
  125. {
  126. struct drm_i915_private *dev_priv = dev->dev_private;
  127. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  128. }
  129. static void g4x_enable_fbc(struct drm_crtc *crtc)
  130. {
  131. struct drm_device *dev = crtc->dev;
  132. struct drm_i915_private *dev_priv = dev->dev_private;
  133. struct drm_framebuffer *fb = crtc->primary->fb;
  134. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  135. struct drm_i915_gem_object *obj = intel_fb->obj;
  136. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  137. u32 dpfc_ctl;
  138. dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
  139. if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
  140. dpfc_ctl |= DPFC_CTL_LIMIT_2X;
  141. else
  142. dpfc_ctl |= DPFC_CTL_LIMIT_1X;
  143. dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
  144. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  145. /* enable it... */
  146. I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  147. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  148. }
  149. static void g4x_disable_fbc(struct drm_device *dev)
  150. {
  151. struct drm_i915_private *dev_priv = dev->dev_private;
  152. u32 dpfc_ctl;
  153. /* Disable compression */
  154. dpfc_ctl = I915_READ(DPFC_CONTROL);
  155. if (dpfc_ctl & DPFC_CTL_EN) {
  156. dpfc_ctl &= ~DPFC_CTL_EN;
  157. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  158. DRM_DEBUG_KMS("disabled FBC\n");
  159. }
  160. }
  161. static bool g4x_fbc_enabled(struct drm_device *dev)
  162. {
  163. struct drm_i915_private *dev_priv = dev->dev_private;
  164. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  165. }
  166. static void sandybridge_blit_fbc_update(struct drm_device *dev)
  167. {
  168. struct drm_i915_private *dev_priv = dev->dev_private;
  169. u32 blt_ecoskpd;
  170. /* Make sure blitter notifies FBC of writes */
  171. /* Blitter is part of Media powerwell on VLV. No impact of
  172. * his param in other platforms for now */
  173. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
  174. blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
  175. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
  176. GEN6_BLITTER_LOCK_SHIFT;
  177. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  178. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
  179. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  180. blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
  181. GEN6_BLITTER_LOCK_SHIFT);
  182. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  183. POSTING_READ(GEN6_BLITTER_ECOSKPD);
  184. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
  185. }
  186. static void ironlake_enable_fbc(struct drm_crtc *crtc)
  187. {
  188. struct drm_device *dev = crtc->dev;
  189. struct drm_i915_private *dev_priv = dev->dev_private;
  190. struct drm_framebuffer *fb = crtc->primary->fb;
  191. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  192. struct drm_i915_gem_object *obj = intel_fb->obj;
  193. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  194. u32 dpfc_ctl;
  195. dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
  196. if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
  197. dpfc_ctl |= DPFC_CTL_LIMIT_2X;
  198. else
  199. dpfc_ctl |= DPFC_CTL_LIMIT_1X;
  200. dpfc_ctl |= DPFC_CTL_FENCE_EN;
  201. if (IS_GEN5(dev))
  202. dpfc_ctl |= obj->fence_reg;
  203. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  204. I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
  205. /* enable it... */
  206. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  207. if (IS_GEN6(dev)) {
  208. I915_WRITE(SNB_DPFC_CTL_SA,
  209. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  210. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  211. sandybridge_blit_fbc_update(dev);
  212. }
  213. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  214. }
  215. static void ironlake_disable_fbc(struct drm_device *dev)
  216. {
  217. struct drm_i915_private *dev_priv = dev->dev_private;
  218. u32 dpfc_ctl;
  219. /* Disable compression */
  220. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  221. if (dpfc_ctl & DPFC_CTL_EN) {
  222. dpfc_ctl &= ~DPFC_CTL_EN;
  223. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  224. DRM_DEBUG_KMS("disabled FBC\n");
  225. }
  226. }
  227. static bool ironlake_fbc_enabled(struct drm_device *dev)
  228. {
  229. struct drm_i915_private *dev_priv = dev->dev_private;
  230. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  231. }
  232. static void gen7_enable_fbc(struct drm_crtc *crtc)
  233. {
  234. struct drm_device *dev = crtc->dev;
  235. struct drm_i915_private *dev_priv = dev->dev_private;
  236. struct drm_framebuffer *fb = crtc->primary->fb;
  237. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  238. struct drm_i915_gem_object *obj = intel_fb->obj;
  239. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  240. u32 dpfc_ctl;
  241. dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
  242. if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
  243. dpfc_ctl |= DPFC_CTL_LIMIT_2X;
  244. else
  245. dpfc_ctl |= DPFC_CTL_LIMIT_1X;
  246. dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
  247. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  248. if (IS_IVYBRIDGE(dev)) {
  249. /* WaFbcAsynchFlipDisableFbcQueue:ivb */
  250. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  251. I915_READ(ILK_DISPLAY_CHICKEN1) |
  252. ILK_FBCQ_DIS);
  253. } else {
  254. /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
  255. I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
  256. I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
  257. HSW_FBCQ_DIS);
  258. }
  259. I915_WRITE(SNB_DPFC_CTL_SA,
  260. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  261. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  262. sandybridge_blit_fbc_update(dev);
  263. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  264. }
  265. bool intel_fbc_enabled(struct drm_device *dev)
  266. {
  267. struct drm_i915_private *dev_priv = dev->dev_private;
  268. if (!dev_priv->display.fbc_enabled)
  269. return false;
  270. return dev_priv->display.fbc_enabled(dev);
  271. }
  272. static void intel_fbc_work_fn(struct work_struct *__work)
  273. {
  274. struct intel_fbc_work *work =
  275. container_of(to_delayed_work(__work),
  276. struct intel_fbc_work, work);
  277. struct drm_device *dev = work->crtc->dev;
  278. struct drm_i915_private *dev_priv = dev->dev_private;
  279. mutex_lock(&dev->struct_mutex);
  280. if (work == dev_priv->fbc.fbc_work) {
  281. /* Double check that we haven't switched fb without cancelling
  282. * the prior work.
  283. */
  284. if (work->crtc->primary->fb == work->fb) {
  285. dev_priv->display.enable_fbc(work->crtc);
  286. dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
  287. dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
  288. dev_priv->fbc.y = work->crtc->y;
  289. }
  290. dev_priv->fbc.fbc_work = NULL;
  291. }
  292. mutex_unlock(&dev->struct_mutex);
  293. kfree(work);
  294. }
  295. static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
  296. {
  297. if (dev_priv->fbc.fbc_work == NULL)
  298. return;
  299. DRM_DEBUG_KMS("cancelling pending FBC enable\n");
  300. /* Synchronisation is provided by struct_mutex and checking of
  301. * dev_priv->fbc.fbc_work, so we can perform the cancellation
  302. * entirely asynchronously.
  303. */
  304. if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
  305. /* tasklet was killed before being run, clean up */
  306. kfree(dev_priv->fbc.fbc_work);
  307. /* Mark the work as no longer wanted so that if it does
  308. * wake-up (because the work was already running and waiting
  309. * for our mutex), it will discover that is no longer
  310. * necessary to run.
  311. */
  312. dev_priv->fbc.fbc_work = NULL;
  313. }
  314. static void intel_enable_fbc(struct drm_crtc *crtc)
  315. {
  316. struct intel_fbc_work *work;
  317. struct drm_device *dev = crtc->dev;
  318. struct drm_i915_private *dev_priv = dev->dev_private;
  319. if (!dev_priv->display.enable_fbc)
  320. return;
  321. intel_cancel_fbc_work(dev_priv);
  322. work = kzalloc(sizeof(*work), GFP_KERNEL);
  323. if (work == NULL) {
  324. DRM_ERROR("Failed to allocate FBC work structure\n");
  325. dev_priv->display.enable_fbc(crtc);
  326. return;
  327. }
  328. work->crtc = crtc;
  329. work->fb = crtc->primary->fb;
  330. INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
  331. dev_priv->fbc.fbc_work = work;
  332. /* Delay the actual enabling to let pageflipping cease and the
  333. * display to settle before starting the compression. Note that
  334. * this delay also serves a second purpose: it allows for a
  335. * vblank to pass after disabling the FBC before we attempt
  336. * to modify the control registers.
  337. *
  338. * A more complicated solution would involve tracking vblanks
  339. * following the termination of the page-flipping sequence
  340. * and indeed performing the enable as a co-routine and not
  341. * waiting synchronously upon the vblank.
  342. *
  343. * WaFbcWaitForVBlankBeforeEnable:ilk,snb
  344. */
  345. schedule_delayed_work(&work->work, msecs_to_jiffies(50));
  346. }
  347. void intel_disable_fbc(struct drm_device *dev)
  348. {
  349. struct drm_i915_private *dev_priv = dev->dev_private;
  350. intel_cancel_fbc_work(dev_priv);
  351. if (!dev_priv->display.disable_fbc)
  352. return;
  353. dev_priv->display.disable_fbc(dev);
  354. dev_priv->fbc.plane = -1;
  355. }
  356. static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
  357. enum no_fbc_reason reason)
  358. {
  359. if (dev_priv->fbc.no_fbc_reason == reason)
  360. return false;
  361. dev_priv->fbc.no_fbc_reason = reason;
  362. return true;
  363. }
  364. /**
  365. * intel_update_fbc - enable/disable FBC as needed
  366. * @dev: the drm_device
  367. *
  368. * Set up the framebuffer compression hardware at mode set time. We
  369. * enable it if possible:
  370. * - plane A only (on pre-965)
  371. * - no pixel mulitply/line duplication
  372. * - no alpha buffer discard
  373. * - no dual wide
  374. * - framebuffer <= max_hdisplay in width, max_vdisplay in height
  375. *
  376. * We can't assume that any compression will take place (worst case),
  377. * so the compressed buffer has to be the same size as the uncompressed
  378. * one. It also must reside (along with the line length buffer) in
  379. * stolen memory.
  380. *
  381. * We need to enable/disable FBC on a global basis.
  382. */
  383. void intel_update_fbc(struct drm_device *dev)
  384. {
  385. struct drm_i915_private *dev_priv = dev->dev_private;
  386. struct drm_crtc *crtc = NULL, *tmp_crtc;
  387. struct intel_crtc *intel_crtc;
  388. struct drm_framebuffer *fb;
  389. struct intel_framebuffer *intel_fb;
  390. struct drm_i915_gem_object *obj;
  391. const struct drm_display_mode *adjusted_mode;
  392. unsigned int max_width, max_height;
  393. if (!HAS_FBC(dev)) {
  394. set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
  395. return;
  396. }
  397. if (!i915.powersave) {
  398. if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
  399. DRM_DEBUG_KMS("fbc disabled per module param\n");
  400. return;
  401. }
  402. /*
  403. * If FBC is already on, we just have to verify that we can
  404. * keep it that way...
  405. * Need to disable if:
  406. * - more than one pipe is active
  407. * - changing FBC params (stride, fence, mode)
  408. * - new fb is too large to fit in compressed buffer
  409. * - going to an unsupported config (interlace, pixel multiply, etc.)
  410. */
  411. for_each_crtc(dev, tmp_crtc) {
  412. if (intel_crtc_active(tmp_crtc) &&
  413. to_intel_crtc(tmp_crtc)->primary_enabled) {
  414. if (crtc) {
  415. if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
  416. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  417. goto out_disable;
  418. }
  419. crtc = tmp_crtc;
  420. }
  421. }
  422. if (!crtc || crtc->primary->fb == NULL) {
  423. if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
  424. DRM_DEBUG_KMS("no output, disabling\n");
  425. goto out_disable;
  426. }
  427. intel_crtc = to_intel_crtc(crtc);
  428. fb = crtc->primary->fb;
  429. intel_fb = to_intel_framebuffer(fb);
  430. obj = intel_fb->obj;
  431. adjusted_mode = &intel_crtc->config.adjusted_mode;
  432. if (i915.enable_fbc < 0 &&
  433. INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
  434. if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
  435. DRM_DEBUG_KMS("disabled per chip default\n");
  436. goto out_disable;
  437. }
  438. if (!i915.enable_fbc) {
  439. if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
  440. DRM_DEBUG_KMS("fbc disabled per module param\n");
  441. goto out_disable;
  442. }
  443. if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
  444. (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
  445. if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
  446. DRM_DEBUG_KMS("mode incompatible with compression, "
  447. "disabling\n");
  448. goto out_disable;
  449. }
  450. if (INTEL_INFO(dev)->gen >= 8 || IS_HASWELL(dev)) {
  451. max_width = 4096;
  452. max_height = 4096;
  453. } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
  454. max_width = 4096;
  455. max_height = 2048;
  456. } else {
  457. max_width = 2048;
  458. max_height = 1536;
  459. }
  460. if (intel_crtc->config.pipe_src_w > max_width ||
  461. intel_crtc->config.pipe_src_h > max_height) {
  462. if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
  463. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  464. goto out_disable;
  465. }
  466. if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
  467. intel_crtc->plane != PLANE_A) {
  468. if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
  469. DRM_DEBUG_KMS("plane not A, disabling compression\n");
  470. goto out_disable;
  471. }
  472. /* The use of a CPU fence is mandatory in order to detect writes
  473. * by the CPU to the scanout and trigger updates to the FBC.
  474. */
  475. if (obj->tiling_mode != I915_TILING_X ||
  476. obj->fence_reg == I915_FENCE_REG_NONE) {
  477. if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
  478. DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
  479. goto out_disable;
  480. }
  481. /* If the kernel debugger is active, always disable compression */
  482. if (in_dbg_master())
  483. goto out_disable;
  484. if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
  485. if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
  486. DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
  487. goto out_disable;
  488. }
  489. /* If the scanout has not changed, don't modify the FBC settings.
  490. * Note that we make the fundamental assumption that the fb->obj
  491. * cannot be unpinned (and have its GTT offset and fence revoked)
  492. * without first being decoupled from the scanout and FBC disabled.
  493. */
  494. if (dev_priv->fbc.plane == intel_crtc->plane &&
  495. dev_priv->fbc.fb_id == fb->base.id &&
  496. dev_priv->fbc.y == crtc->y)
  497. return;
  498. if (intel_fbc_enabled(dev)) {
  499. /* We update FBC along two paths, after changing fb/crtc
  500. * configuration (modeswitching) and after page-flipping
  501. * finishes. For the latter, we know that not only did
  502. * we disable the FBC at the start of the page-flip
  503. * sequence, but also more than one vblank has passed.
  504. *
  505. * For the former case of modeswitching, it is possible
  506. * to switch between two FBC valid configurations
  507. * instantaneously so we do need to disable the FBC
  508. * before we can modify its control registers. We also
  509. * have to wait for the next vblank for that to take
  510. * effect. However, since we delay enabling FBC we can
  511. * assume that a vblank has passed since disabling and
  512. * that we can safely alter the registers in the deferred
  513. * callback.
  514. *
  515. * In the scenario that we go from a valid to invalid
  516. * and then back to valid FBC configuration we have
  517. * no strict enforcement that a vblank occurred since
  518. * disabling the FBC. However, along all current pipe
  519. * disabling paths we do need to wait for a vblank at
  520. * some point. And we wait before enabling FBC anyway.
  521. */
  522. DRM_DEBUG_KMS("disabling active FBC for update\n");
  523. intel_disable_fbc(dev);
  524. }
  525. intel_enable_fbc(crtc);
  526. dev_priv->fbc.no_fbc_reason = FBC_OK;
  527. return;
  528. out_disable:
  529. /* Multiple disables should be harmless */
  530. if (intel_fbc_enabled(dev)) {
  531. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  532. intel_disable_fbc(dev);
  533. }
  534. i915_gem_stolen_cleanup_compression(dev);
  535. }
  536. static void i915_pineview_get_mem_freq(struct drm_device *dev)
  537. {
  538. struct drm_i915_private *dev_priv = dev->dev_private;
  539. u32 tmp;
  540. tmp = I915_READ(CLKCFG);
  541. switch (tmp & CLKCFG_FSB_MASK) {
  542. case CLKCFG_FSB_533:
  543. dev_priv->fsb_freq = 533; /* 133*4 */
  544. break;
  545. case CLKCFG_FSB_800:
  546. dev_priv->fsb_freq = 800; /* 200*4 */
  547. break;
  548. case CLKCFG_FSB_667:
  549. dev_priv->fsb_freq = 667; /* 167*4 */
  550. break;
  551. case CLKCFG_FSB_400:
  552. dev_priv->fsb_freq = 400; /* 100*4 */
  553. break;
  554. }
  555. switch (tmp & CLKCFG_MEM_MASK) {
  556. case CLKCFG_MEM_533:
  557. dev_priv->mem_freq = 533;
  558. break;
  559. case CLKCFG_MEM_667:
  560. dev_priv->mem_freq = 667;
  561. break;
  562. case CLKCFG_MEM_800:
  563. dev_priv->mem_freq = 800;
  564. break;
  565. }
  566. /* detect pineview DDR3 setting */
  567. tmp = I915_READ(CSHRDDR3CTL);
  568. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  569. }
  570. static void i915_ironlake_get_mem_freq(struct drm_device *dev)
  571. {
  572. struct drm_i915_private *dev_priv = dev->dev_private;
  573. u16 ddrpll, csipll;
  574. ddrpll = I915_READ16(DDRMPLL1);
  575. csipll = I915_READ16(CSIPLL0);
  576. switch (ddrpll & 0xff) {
  577. case 0xc:
  578. dev_priv->mem_freq = 800;
  579. break;
  580. case 0x10:
  581. dev_priv->mem_freq = 1066;
  582. break;
  583. case 0x14:
  584. dev_priv->mem_freq = 1333;
  585. break;
  586. case 0x18:
  587. dev_priv->mem_freq = 1600;
  588. break;
  589. default:
  590. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  591. ddrpll & 0xff);
  592. dev_priv->mem_freq = 0;
  593. break;
  594. }
  595. dev_priv->ips.r_t = dev_priv->mem_freq;
  596. switch (csipll & 0x3ff) {
  597. case 0x00c:
  598. dev_priv->fsb_freq = 3200;
  599. break;
  600. case 0x00e:
  601. dev_priv->fsb_freq = 3733;
  602. break;
  603. case 0x010:
  604. dev_priv->fsb_freq = 4266;
  605. break;
  606. case 0x012:
  607. dev_priv->fsb_freq = 4800;
  608. break;
  609. case 0x014:
  610. dev_priv->fsb_freq = 5333;
  611. break;
  612. case 0x016:
  613. dev_priv->fsb_freq = 5866;
  614. break;
  615. case 0x018:
  616. dev_priv->fsb_freq = 6400;
  617. break;
  618. default:
  619. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  620. csipll & 0x3ff);
  621. dev_priv->fsb_freq = 0;
  622. break;
  623. }
  624. if (dev_priv->fsb_freq == 3200) {
  625. dev_priv->ips.c_m = 0;
  626. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  627. dev_priv->ips.c_m = 1;
  628. } else {
  629. dev_priv->ips.c_m = 2;
  630. }
  631. }
  632. static const struct cxsr_latency cxsr_latency_table[] = {
  633. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  634. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  635. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  636. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  637. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  638. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  639. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  640. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  641. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  642. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  643. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  644. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  645. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  646. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  647. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  648. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  649. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  650. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  651. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  652. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  653. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  654. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  655. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  656. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  657. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  658. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  659. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  660. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  661. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  662. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  663. };
  664. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  665. int is_ddr3,
  666. int fsb,
  667. int mem)
  668. {
  669. const struct cxsr_latency *latency;
  670. int i;
  671. if (fsb == 0 || mem == 0)
  672. return NULL;
  673. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  674. latency = &cxsr_latency_table[i];
  675. if (is_desktop == latency->is_desktop &&
  676. is_ddr3 == latency->is_ddr3 &&
  677. fsb == latency->fsb_freq && mem == latency->mem_freq)
  678. return latency;
  679. }
  680. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  681. return NULL;
  682. }
  683. static void pineview_disable_cxsr(struct drm_device *dev)
  684. {
  685. struct drm_i915_private *dev_priv = dev->dev_private;
  686. /* deactivate cxsr */
  687. I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
  688. }
  689. /*
  690. * Latency for FIFO fetches is dependent on several factors:
  691. * - memory configuration (speed, channels)
  692. * - chipset
  693. * - current MCH state
  694. * It can be fairly high in some situations, so here we assume a fairly
  695. * pessimal value. It's a tradeoff between extra memory fetches (if we
  696. * set this value too high, the FIFO will fetch frequently to stay full)
  697. * and power consumption (set it too low to save power and we might see
  698. * FIFO underruns and display "flicker").
  699. *
  700. * A value of 5us seems to be a good balance; safe for very low end
  701. * platforms but not overly aggressive on lower latency configs.
  702. */
  703. static const int latency_ns = 5000;
  704. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  705. {
  706. struct drm_i915_private *dev_priv = dev->dev_private;
  707. uint32_t dsparb = I915_READ(DSPARB);
  708. int size;
  709. size = dsparb & 0x7f;
  710. if (plane)
  711. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  712. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  713. plane ? "B" : "A", size);
  714. return size;
  715. }
  716. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  717. {
  718. struct drm_i915_private *dev_priv = dev->dev_private;
  719. uint32_t dsparb = I915_READ(DSPARB);
  720. int size;
  721. size = dsparb & 0x1ff;
  722. if (plane)
  723. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  724. size >>= 1; /* Convert to cachelines */
  725. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  726. plane ? "B" : "A", size);
  727. return size;
  728. }
  729. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  730. {
  731. struct drm_i915_private *dev_priv = dev->dev_private;
  732. uint32_t dsparb = I915_READ(DSPARB);
  733. int size;
  734. size = dsparb & 0x7f;
  735. size >>= 2; /* Convert to cachelines */
  736. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  737. plane ? "B" : "A",
  738. size);
  739. return size;
  740. }
  741. /* Pineview has different values for various configs */
  742. static const struct intel_watermark_params pineview_display_wm = {
  743. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  744. .max_wm = PINEVIEW_MAX_WM,
  745. .default_wm = PINEVIEW_DFT_WM,
  746. .guard_size = PINEVIEW_GUARD_WM,
  747. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  748. };
  749. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  750. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  751. .max_wm = PINEVIEW_MAX_WM,
  752. .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
  753. .guard_size = PINEVIEW_GUARD_WM,
  754. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  755. };
  756. static const struct intel_watermark_params pineview_cursor_wm = {
  757. .fifo_size = PINEVIEW_CURSOR_FIFO,
  758. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  759. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  760. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  761. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  762. };
  763. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  764. .fifo_size = PINEVIEW_CURSOR_FIFO,
  765. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  766. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  767. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  768. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  769. };
  770. static const struct intel_watermark_params g4x_wm_info = {
  771. .fifo_size = G4X_FIFO_SIZE,
  772. .max_wm = G4X_MAX_WM,
  773. .default_wm = G4X_MAX_WM,
  774. .guard_size = 2,
  775. .cacheline_size = G4X_FIFO_LINE_SIZE,
  776. };
  777. static const struct intel_watermark_params g4x_cursor_wm_info = {
  778. .fifo_size = I965_CURSOR_FIFO,
  779. .max_wm = I965_CURSOR_MAX_WM,
  780. .default_wm = I965_CURSOR_DFT_WM,
  781. .guard_size = 2,
  782. .cacheline_size = G4X_FIFO_LINE_SIZE,
  783. };
  784. static const struct intel_watermark_params valleyview_wm_info = {
  785. .fifo_size = VALLEYVIEW_FIFO_SIZE,
  786. .max_wm = VALLEYVIEW_MAX_WM,
  787. .default_wm = VALLEYVIEW_MAX_WM,
  788. .guard_size = 2,
  789. .cacheline_size = G4X_FIFO_LINE_SIZE,
  790. };
  791. static const struct intel_watermark_params valleyview_cursor_wm_info = {
  792. .fifo_size = I965_CURSOR_FIFO,
  793. .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
  794. .default_wm = I965_CURSOR_DFT_WM,
  795. .guard_size = 2,
  796. .cacheline_size = G4X_FIFO_LINE_SIZE,
  797. };
  798. static const struct intel_watermark_params i965_cursor_wm_info = {
  799. .fifo_size = I965_CURSOR_FIFO,
  800. .max_wm = I965_CURSOR_MAX_WM,
  801. .default_wm = I965_CURSOR_DFT_WM,
  802. .guard_size = 2,
  803. .cacheline_size = I915_FIFO_LINE_SIZE,
  804. };
  805. static const struct intel_watermark_params i945_wm_info = {
  806. .fifo_size = I945_FIFO_SIZE,
  807. .max_wm = I915_MAX_WM,
  808. .default_wm = 1,
  809. .guard_size = 2,
  810. .cacheline_size = I915_FIFO_LINE_SIZE,
  811. };
  812. static const struct intel_watermark_params i915_wm_info = {
  813. .fifo_size = I915_FIFO_SIZE,
  814. .max_wm = I915_MAX_WM,
  815. .default_wm = 1,
  816. .guard_size = 2,
  817. .cacheline_size = I915_FIFO_LINE_SIZE,
  818. };
  819. static const struct intel_watermark_params i830_wm_info = {
  820. .fifo_size = I855GM_FIFO_SIZE,
  821. .max_wm = I915_MAX_WM,
  822. .default_wm = 1,
  823. .guard_size = 2,
  824. .cacheline_size = I830_FIFO_LINE_SIZE,
  825. };
  826. static const struct intel_watermark_params i845_wm_info = {
  827. .fifo_size = I830_FIFO_SIZE,
  828. .max_wm = I915_MAX_WM,
  829. .default_wm = 1,
  830. .guard_size = 2,
  831. .cacheline_size = I830_FIFO_LINE_SIZE,
  832. };
  833. /**
  834. * intel_calculate_wm - calculate watermark level
  835. * @clock_in_khz: pixel clock
  836. * @wm: chip FIFO params
  837. * @pixel_size: display pixel size
  838. * @latency_ns: memory latency for the platform
  839. *
  840. * Calculate the watermark level (the level at which the display plane will
  841. * start fetching from memory again). Each chip has a different display
  842. * FIFO size and allocation, so the caller needs to figure that out and pass
  843. * in the correct intel_watermark_params structure.
  844. *
  845. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  846. * on the pixel size. When it reaches the watermark level, it'll start
  847. * fetching FIFO line sized based chunks from memory until the FIFO fills
  848. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  849. * will occur, and a display engine hang could result.
  850. */
  851. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  852. const struct intel_watermark_params *wm,
  853. int fifo_size,
  854. int pixel_size,
  855. unsigned long latency_ns)
  856. {
  857. long entries_required, wm_size;
  858. /*
  859. * Note: we need to make sure we don't overflow for various clock &
  860. * latency values.
  861. * clocks go from a few thousand to several hundred thousand.
  862. * latency is usually a few thousand
  863. */
  864. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  865. 1000;
  866. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  867. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  868. wm_size = fifo_size - (entries_required + wm->guard_size);
  869. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  870. /* Don't promote wm_size to unsigned... */
  871. if (wm_size > (long)wm->max_wm)
  872. wm_size = wm->max_wm;
  873. if (wm_size <= 0)
  874. wm_size = wm->default_wm;
  875. return wm_size;
  876. }
  877. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  878. {
  879. struct drm_crtc *crtc, *enabled = NULL;
  880. for_each_crtc(dev, crtc) {
  881. if (intel_crtc_active(crtc)) {
  882. if (enabled)
  883. return NULL;
  884. enabled = crtc;
  885. }
  886. }
  887. return enabled;
  888. }
  889. static void pineview_update_wm(struct drm_crtc *unused_crtc)
  890. {
  891. struct drm_device *dev = unused_crtc->dev;
  892. struct drm_i915_private *dev_priv = dev->dev_private;
  893. struct drm_crtc *crtc;
  894. const struct cxsr_latency *latency;
  895. u32 reg;
  896. unsigned long wm;
  897. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  898. dev_priv->fsb_freq, dev_priv->mem_freq);
  899. if (!latency) {
  900. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  901. pineview_disable_cxsr(dev);
  902. return;
  903. }
  904. crtc = single_enabled_crtc(dev);
  905. if (crtc) {
  906. const struct drm_display_mode *adjusted_mode;
  907. int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
  908. int clock;
  909. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  910. clock = adjusted_mode->crtc_clock;
  911. /* Display SR */
  912. wm = intel_calculate_wm(clock, &pineview_display_wm,
  913. pineview_display_wm.fifo_size,
  914. pixel_size, latency->display_sr);
  915. reg = I915_READ(DSPFW1);
  916. reg &= ~DSPFW_SR_MASK;
  917. reg |= wm << DSPFW_SR_SHIFT;
  918. I915_WRITE(DSPFW1, reg);
  919. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  920. /* cursor SR */
  921. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  922. pineview_display_wm.fifo_size,
  923. pixel_size, latency->cursor_sr);
  924. reg = I915_READ(DSPFW3);
  925. reg &= ~DSPFW_CURSOR_SR_MASK;
  926. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  927. I915_WRITE(DSPFW3, reg);
  928. /* Display HPLL off SR */
  929. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  930. pineview_display_hplloff_wm.fifo_size,
  931. pixel_size, latency->display_hpll_disable);
  932. reg = I915_READ(DSPFW3);
  933. reg &= ~DSPFW_HPLL_SR_MASK;
  934. reg |= wm & DSPFW_HPLL_SR_MASK;
  935. I915_WRITE(DSPFW3, reg);
  936. /* cursor HPLL off SR */
  937. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  938. pineview_display_hplloff_wm.fifo_size,
  939. pixel_size, latency->cursor_hpll_disable);
  940. reg = I915_READ(DSPFW3);
  941. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  942. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  943. I915_WRITE(DSPFW3, reg);
  944. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  945. /* activate cxsr */
  946. I915_WRITE(DSPFW3,
  947. I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
  948. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  949. } else {
  950. pineview_disable_cxsr(dev);
  951. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  952. }
  953. }
  954. static bool g4x_compute_wm0(struct drm_device *dev,
  955. int plane,
  956. const struct intel_watermark_params *display,
  957. int display_latency_ns,
  958. const struct intel_watermark_params *cursor,
  959. int cursor_latency_ns,
  960. int *plane_wm,
  961. int *cursor_wm)
  962. {
  963. struct drm_crtc *crtc;
  964. const struct drm_display_mode *adjusted_mode;
  965. int htotal, hdisplay, clock, pixel_size;
  966. int line_time_us, line_count;
  967. int entries, tlb_miss;
  968. crtc = intel_get_crtc_for_plane(dev, plane);
  969. if (!intel_crtc_active(crtc)) {
  970. *cursor_wm = cursor->guard_size;
  971. *plane_wm = display->guard_size;
  972. return false;
  973. }
  974. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  975. clock = adjusted_mode->crtc_clock;
  976. htotal = adjusted_mode->crtc_htotal;
  977. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  978. pixel_size = crtc->primary->fb->bits_per_pixel / 8;
  979. /* Use the small buffer method to calculate plane watermark */
  980. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  981. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  982. if (tlb_miss > 0)
  983. entries += tlb_miss;
  984. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  985. *plane_wm = entries + display->guard_size;
  986. if (*plane_wm > (int)display->max_wm)
  987. *plane_wm = display->max_wm;
  988. /* Use the large buffer method to calculate cursor watermark */
  989. line_time_us = max(htotal * 1000 / clock, 1);
  990. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  991. entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
  992. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  993. if (tlb_miss > 0)
  994. entries += tlb_miss;
  995. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  996. *cursor_wm = entries + cursor->guard_size;
  997. if (*cursor_wm > (int)cursor->max_wm)
  998. *cursor_wm = (int)cursor->max_wm;
  999. return true;
  1000. }
  1001. /*
  1002. * Check the wm result.
  1003. *
  1004. * If any calculated watermark values is larger than the maximum value that
  1005. * can be programmed into the associated watermark register, that watermark
  1006. * must be disabled.
  1007. */
  1008. static bool g4x_check_srwm(struct drm_device *dev,
  1009. int display_wm, int cursor_wm,
  1010. const struct intel_watermark_params *display,
  1011. const struct intel_watermark_params *cursor)
  1012. {
  1013. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  1014. display_wm, cursor_wm);
  1015. if (display_wm > display->max_wm) {
  1016. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  1017. display_wm, display->max_wm);
  1018. return false;
  1019. }
  1020. if (cursor_wm > cursor->max_wm) {
  1021. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  1022. cursor_wm, cursor->max_wm);
  1023. return false;
  1024. }
  1025. if (!(display_wm || cursor_wm)) {
  1026. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  1027. return false;
  1028. }
  1029. return true;
  1030. }
  1031. static bool g4x_compute_srwm(struct drm_device *dev,
  1032. int plane,
  1033. int latency_ns,
  1034. const struct intel_watermark_params *display,
  1035. const struct intel_watermark_params *cursor,
  1036. int *display_wm, int *cursor_wm)
  1037. {
  1038. struct drm_crtc *crtc;
  1039. const struct drm_display_mode *adjusted_mode;
  1040. int hdisplay, htotal, pixel_size, clock;
  1041. unsigned long line_time_us;
  1042. int line_count, line_size;
  1043. int small, large;
  1044. int entries;
  1045. if (!latency_ns) {
  1046. *display_wm = *cursor_wm = 0;
  1047. return false;
  1048. }
  1049. crtc = intel_get_crtc_for_plane(dev, plane);
  1050. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1051. clock = adjusted_mode->crtc_clock;
  1052. htotal = adjusted_mode->crtc_htotal;
  1053. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1054. pixel_size = crtc->primary->fb->bits_per_pixel / 8;
  1055. line_time_us = max(htotal * 1000 / clock, 1);
  1056. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1057. line_size = hdisplay * pixel_size;
  1058. /* Use the minimum of the small and large buffer method for primary */
  1059. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1060. large = line_count * line_size;
  1061. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1062. *display_wm = entries + display->guard_size;
  1063. /* calculate the self-refresh watermark for display cursor */
  1064. entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
  1065. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1066. *cursor_wm = entries + cursor->guard_size;
  1067. return g4x_check_srwm(dev,
  1068. *display_wm, *cursor_wm,
  1069. display, cursor);
  1070. }
  1071. static bool vlv_compute_drain_latency(struct drm_device *dev,
  1072. int plane,
  1073. int *plane_prec_mult,
  1074. int *plane_dl,
  1075. int *cursor_prec_mult,
  1076. int *cursor_dl)
  1077. {
  1078. struct drm_crtc *crtc;
  1079. int clock, pixel_size;
  1080. int entries;
  1081. crtc = intel_get_crtc_for_plane(dev, plane);
  1082. if (!intel_crtc_active(crtc))
  1083. return false;
  1084. clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
  1085. pixel_size = crtc->primary->fb->bits_per_pixel / 8; /* BPP */
  1086. entries = (clock / 1000) * pixel_size;
  1087. *plane_prec_mult = (entries > 256) ?
  1088. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1089. *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
  1090. pixel_size);
  1091. entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
  1092. *cursor_prec_mult = (entries > 256) ?
  1093. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1094. *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
  1095. return true;
  1096. }
  1097. /*
  1098. * Update drain latency registers of memory arbiter
  1099. *
  1100. * Valleyview SoC has a new memory arbiter and needs drain latency registers
  1101. * to be programmed. Each plane has a drain latency multiplier and a drain
  1102. * latency value.
  1103. */
  1104. static void vlv_update_drain_latency(struct drm_device *dev)
  1105. {
  1106. struct drm_i915_private *dev_priv = dev->dev_private;
  1107. int planea_prec, planea_dl, planeb_prec, planeb_dl;
  1108. int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
  1109. int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
  1110. either 16 or 32 */
  1111. /* For plane A, Cursor A */
  1112. if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
  1113. &cursor_prec_mult, &cursora_dl)) {
  1114. cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1115. DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
  1116. planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1117. DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
  1118. I915_WRITE(VLV_DDL1, cursora_prec |
  1119. (cursora_dl << DDL_CURSORA_SHIFT) |
  1120. planea_prec | planea_dl);
  1121. }
  1122. /* For plane B, Cursor B */
  1123. if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
  1124. &cursor_prec_mult, &cursorb_dl)) {
  1125. cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1126. DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
  1127. planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1128. DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
  1129. I915_WRITE(VLV_DDL2, cursorb_prec |
  1130. (cursorb_dl << DDL_CURSORB_SHIFT) |
  1131. planeb_prec | planeb_dl);
  1132. }
  1133. }
  1134. #define single_plane_enabled(mask) is_power_of_2(mask)
  1135. static void valleyview_update_wm(struct drm_crtc *crtc)
  1136. {
  1137. struct drm_device *dev = crtc->dev;
  1138. static const int sr_latency_ns = 12000;
  1139. struct drm_i915_private *dev_priv = dev->dev_private;
  1140. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1141. int plane_sr, cursor_sr;
  1142. int ignore_plane_sr, ignore_cursor_sr;
  1143. unsigned int enabled = 0;
  1144. vlv_update_drain_latency(dev);
  1145. if (g4x_compute_wm0(dev, PIPE_A,
  1146. &valleyview_wm_info, latency_ns,
  1147. &valleyview_cursor_wm_info, latency_ns,
  1148. &planea_wm, &cursora_wm))
  1149. enabled |= 1 << PIPE_A;
  1150. if (g4x_compute_wm0(dev, PIPE_B,
  1151. &valleyview_wm_info, latency_ns,
  1152. &valleyview_cursor_wm_info, latency_ns,
  1153. &planeb_wm, &cursorb_wm))
  1154. enabled |= 1 << PIPE_B;
  1155. if (single_plane_enabled(enabled) &&
  1156. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1157. sr_latency_ns,
  1158. &valleyview_wm_info,
  1159. &valleyview_cursor_wm_info,
  1160. &plane_sr, &ignore_cursor_sr) &&
  1161. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1162. 2*sr_latency_ns,
  1163. &valleyview_wm_info,
  1164. &valleyview_cursor_wm_info,
  1165. &ignore_plane_sr, &cursor_sr)) {
  1166. I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
  1167. } else {
  1168. I915_WRITE(FW_BLC_SELF_VLV,
  1169. I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
  1170. plane_sr = cursor_sr = 0;
  1171. }
  1172. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1173. planea_wm, cursora_wm,
  1174. planeb_wm, cursorb_wm,
  1175. plane_sr, cursor_sr);
  1176. I915_WRITE(DSPFW1,
  1177. (plane_sr << DSPFW_SR_SHIFT) |
  1178. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1179. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1180. planea_wm);
  1181. I915_WRITE(DSPFW2,
  1182. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1183. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1184. I915_WRITE(DSPFW3,
  1185. (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
  1186. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1187. }
  1188. static void g4x_update_wm(struct drm_crtc *crtc)
  1189. {
  1190. struct drm_device *dev = crtc->dev;
  1191. static const int sr_latency_ns = 12000;
  1192. struct drm_i915_private *dev_priv = dev->dev_private;
  1193. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1194. int plane_sr, cursor_sr;
  1195. unsigned int enabled = 0;
  1196. if (g4x_compute_wm0(dev, PIPE_A,
  1197. &g4x_wm_info, latency_ns,
  1198. &g4x_cursor_wm_info, latency_ns,
  1199. &planea_wm, &cursora_wm))
  1200. enabled |= 1 << PIPE_A;
  1201. if (g4x_compute_wm0(dev, PIPE_B,
  1202. &g4x_wm_info, latency_ns,
  1203. &g4x_cursor_wm_info, latency_ns,
  1204. &planeb_wm, &cursorb_wm))
  1205. enabled |= 1 << PIPE_B;
  1206. if (single_plane_enabled(enabled) &&
  1207. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1208. sr_latency_ns,
  1209. &g4x_wm_info,
  1210. &g4x_cursor_wm_info,
  1211. &plane_sr, &cursor_sr)) {
  1212. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1213. } else {
  1214. I915_WRITE(FW_BLC_SELF,
  1215. I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
  1216. plane_sr = cursor_sr = 0;
  1217. }
  1218. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1219. planea_wm, cursora_wm,
  1220. planeb_wm, cursorb_wm,
  1221. plane_sr, cursor_sr);
  1222. I915_WRITE(DSPFW1,
  1223. (plane_sr << DSPFW_SR_SHIFT) |
  1224. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1225. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1226. planea_wm);
  1227. I915_WRITE(DSPFW2,
  1228. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1229. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1230. /* HPLL off in SR has some issues on G4x... disable it */
  1231. I915_WRITE(DSPFW3,
  1232. (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
  1233. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1234. }
  1235. static void i965_update_wm(struct drm_crtc *unused_crtc)
  1236. {
  1237. struct drm_device *dev = unused_crtc->dev;
  1238. struct drm_i915_private *dev_priv = dev->dev_private;
  1239. struct drm_crtc *crtc;
  1240. int srwm = 1;
  1241. int cursor_sr = 16;
  1242. /* Calc sr entries for one plane configs */
  1243. crtc = single_enabled_crtc(dev);
  1244. if (crtc) {
  1245. /* self-refresh has much higher latency */
  1246. static const int sr_latency_ns = 12000;
  1247. const struct drm_display_mode *adjusted_mode =
  1248. &to_intel_crtc(crtc)->config.adjusted_mode;
  1249. int clock = adjusted_mode->crtc_clock;
  1250. int htotal = adjusted_mode->crtc_htotal;
  1251. int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1252. int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
  1253. unsigned long line_time_us;
  1254. int entries;
  1255. line_time_us = max(htotal * 1000 / clock, 1);
  1256. /* Use ns/us then divide to preserve precision */
  1257. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1258. pixel_size * hdisplay;
  1259. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1260. srwm = I965_FIFO_SIZE - entries;
  1261. if (srwm < 0)
  1262. srwm = 1;
  1263. srwm &= 0x1ff;
  1264. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1265. entries, srwm);
  1266. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1267. pixel_size * to_intel_crtc(crtc)->cursor_width;
  1268. entries = DIV_ROUND_UP(entries,
  1269. i965_cursor_wm_info.cacheline_size);
  1270. cursor_sr = i965_cursor_wm_info.fifo_size -
  1271. (entries + i965_cursor_wm_info.guard_size);
  1272. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1273. cursor_sr = i965_cursor_wm_info.max_wm;
  1274. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1275. "cursor %d\n", srwm, cursor_sr);
  1276. if (IS_CRESTLINE(dev))
  1277. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1278. } else {
  1279. /* Turn off self refresh if both pipes are enabled */
  1280. if (IS_CRESTLINE(dev))
  1281. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  1282. & ~FW_BLC_SELF_EN);
  1283. }
  1284. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1285. srwm);
  1286. /* 965 has limitations... */
  1287. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
  1288. (8 << 16) | (8 << 8) | (8 << 0));
  1289. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  1290. /* update cursor SR watermark */
  1291. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1292. }
  1293. static void i9xx_update_wm(struct drm_crtc *unused_crtc)
  1294. {
  1295. struct drm_device *dev = unused_crtc->dev;
  1296. struct drm_i915_private *dev_priv = dev->dev_private;
  1297. const struct intel_watermark_params *wm_info;
  1298. uint32_t fwater_lo;
  1299. uint32_t fwater_hi;
  1300. int cwm, srwm = 1;
  1301. int fifo_size;
  1302. int planea_wm, planeb_wm;
  1303. struct drm_crtc *crtc, *enabled = NULL;
  1304. if (IS_I945GM(dev))
  1305. wm_info = &i945_wm_info;
  1306. else if (!IS_GEN2(dev))
  1307. wm_info = &i915_wm_info;
  1308. else
  1309. wm_info = &i830_wm_info;
  1310. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  1311. crtc = intel_get_crtc_for_plane(dev, 0);
  1312. if (intel_crtc_active(crtc)) {
  1313. const struct drm_display_mode *adjusted_mode;
  1314. int cpp = crtc->primary->fb->bits_per_pixel / 8;
  1315. if (IS_GEN2(dev))
  1316. cpp = 4;
  1317. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1318. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1319. wm_info, fifo_size, cpp,
  1320. latency_ns);
  1321. enabled = crtc;
  1322. } else
  1323. planea_wm = fifo_size - wm_info->guard_size;
  1324. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  1325. crtc = intel_get_crtc_for_plane(dev, 1);
  1326. if (intel_crtc_active(crtc)) {
  1327. const struct drm_display_mode *adjusted_mode;
  1328. int cpp = crtc->primary->fb->bits_per_pixel / 8;
  1329. if (IS_GEN2(dev))
  1330. cpp = 4;
  1331. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1332. planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1333. wm_info, fifo_size, cpp,
  1334. latency_ns);
  1335. if (enabled == NULL)
  1336. enabled = crtc;
  1337. else
  1338. enabled = NULL;
  1339. } else
  1340. planeb_wm = fifo_size - wm_info->guard_size;
  1341. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1342. if (IS_I915GM(dev) && enabled) {
  1343. struct intel_framebuffer *fb;
  1344. fb = to_intel_framebuffer(enabled->primary->fb);
  1345. /* self-refresh seems busted with untiled */
  1346. if (fb->obj->tiling_mode == I915_TILING_NONE)
  1347. enabled = NULL;
  1348. }
  1349. /*
  1350. * Overlay gets an aggressive default since video jitter is bad.
  1351. */
  1352. cwm = 2;
  1353. /* Play safe and disable self-refresh before adjusting watermarks. */
  1354. if (IS_I945G(dev) || IS_I945GM(dev))
  1355. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
  1356. else if (IS_I915GM(dev))
  1357. I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_SELF_EN));
  1358. /* Calc sr entries for one plane configs */
  1359. if (HAS_FW_BLC(dev) && enabled) {
  1360. /* self-refresh has much higher latency */
  1361. static const int sr_latency_ns = 6000;
  1362. const struct drm_display_mode *adjusted_mode =
  1363. &to_intel_crtc(enabled)->config.adjusted_mode;
  1364. int clock = adjusted_mode->crtc_clock;
  1365. int htotal = adjusted_mode->crtc_htotal;
  1366. int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
  1367. int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
  1368. unsigned long line_time_us;
  1369. int entries;
  1370. line_time_us = max(htotal * 1000 / clock, 1);
  1371. /* Use ns/us then divide to preserve precision */
  1372. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1373. pixel_size * hdisplay;
  1374. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1375. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1376. srwm = wm_info->fifo_size - entries;
  1377. if (srwm < 0)
  1378. srwm = 1;
  1379. if (IS_I945G(dev) || IS_I945GM(dev))
  1380. I915_WRITE(FW_BLC_SELF,
  1381. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1382. else if (IS_I915GM(dev))
  1383. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1384. }
  1385. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1386. planea_wm, planeb_wm, cwm, srwm);
  1387. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1388. fwater_hi = (cwm & 0x1f);
  1389. /* Set request length to 8 cachelines per fetch */
  1390. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1391. fwater_hi = fwater_hi | (1 << 8);
  1392. I915_WRITE(FW_BLC, fwater_lo);
  1393. I915_WRITE(FW_BLC2, fwater_hi);
  1394. if (HAS_FW_BLC(dev)) {
  1395. if (enabled) {
  1396. if (IS_I945G(dev) || IS_I945GM(dev))
  1397. I915_WRITE(FW_BLC_SELF,
  1398. FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  1399. else if (IS_I915GM(dev))
  1400. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_SELF_EN));
  1401. DRM_DEBUG_KMS("memory self refresh enabled\n");
  1402. } else
  1403. DRM_DEBUG_KMS("memory self refresh disabled\n");
  1404. }
  1405. }
  1406. static void i845_update_wm(struct drm_crtc *unused_crtc)
  1407. {
  1408. struct drm_device *dev = unused_crtc->dev;
  1409. struct drm_i915_private *dev_priv = dev->dev_private;
  1410. struct drm_crtc *crtc;
  1411. const struct drm_display_mode *adjusted_mode;
  1412. uint32_t fwater_lo;
  1413. int planea_wm;
  1414. crtc = single_enabled_crtc(dev);
  1415. if (crtc == NULL)
  1416. return;
  1417. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1418. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1419. &i845_wm_info,
  1420. dev_priv->display.get_fifo_size(dev, 0),
  1421. 4, latency_ns);
  1422. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1423. fwater_lo |= (3<<8) | planea_wm;
  1424. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  1425. I915_WRITE(FW_BLC, fwater_lo);
  1426. }
  1427. static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
  1428. struct drm_crtc *crtc)
  1429. {
  1430. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1431. uint32_t pixel_rate;
  1432. pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
  1433. /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
  1434. * adjust the pixel_rate here. */
  1435. if (intel_crtc->config.pch_pfit.enabled) {
  1436. uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
  1437. uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
  1438. pipe_w = intel_crtc->config.pipe_src_w;
  1439. pipe_h = intel_crtc->config.pipe_src_h;
  1440. pfit_w = (pfit_size >> 16) & 0xFFFF;
  1441. pfit_h = pfit_size & 0xFFFF;
  1442. if (pipe_w < pfit_w)
  1443. pipe_w = pfit_w;
  1444. if (pipe_h < pfit_h)
  1445. pipe_h = pfit_h;
  1446. pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
  1447. pfit_w * pfit_h);
  1448. }
  1449. return pixel_rate;
  1450. }
  1451. /* latency must be in 0.1us units. */
  1452. static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
  1453. uint32_t latency)
  1454. {
  1455. uint64_t ret;
  1456. if (WARN(latency == 0, "Latency value missing\n"))
  1457. return UINT_MAX;
  1458. ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
  1459. ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
  1460. return ret;
  1461. }
  1462. /* latency must be in 0.1us units. */
  1463. static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  1464. uint32_t horiz_pixels, uint8_t bytes_per_pixel,
  1465. uint32_t latency)
  1466. {
  1467. uint32_t ret;
  1468. if (WARN(latency == 0, "Latency value missing\n"))
  1469. return UINT_MAX;
  1470. ret = (latency * pixel_rate) / (pipe_htotal * 10000);
  1471. ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
  1472. ret = DIV_ROUND_UP(ret, 64) + 2;
  1473. return ret;
  1474. }
  1475. static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
  1476. uint8_t bytes_per_pixel)
  1477. {
  1478. return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
  1479. }
  1480. struct ilk_pipe_wm_parameters {
  1481. bool active;
  1482. uint32_t pipe_htotal;
  1483. uint32_t pixel_rate;
  1484. struct intel_plane_wm_parameters pri;
  1485. struct intel_plane_wm_parameters spr;
  1486. struct intel_plane_wm_parameters cur;
  1487. };
  1488. struct ilk_wm_maximums {
  1489. uint16_t pri;
  1490. uint16_t spr;
  1491. uint16_t cur;
  1492. uint16_t fbc;
  1493. };
  1494. /* used in computing the new watermarks state */
  1495. struct intel_wm_config {
  1496. unsigned int num_pipes_active;
  1497. bool sprites_enabled;
  1498. bool sprites_scaled;
  1499. };
  1500. /*
  1501. * For both WM_PIPE and WM_LP.
  1502. * mem_value must be in 0.1us units.
  1503. */
  1504. static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
  1505. uint32_t mem_value,
  1506. bool is_lp)
  1507. {
  1508. uint32_t method1, method2;
  1509. if (!params->active || !params->pri.enabled)
  1510. return 0;
  1511. method1 = ilk_wm_method1(params->pixel_rate,
  1512. params->pri.bytes_per_pixel,
  1513. mem_value);
  1514. if (!is_lp)
  1515. return method1;
  1516. method2 = ilk_wm_method2(params->pixel_rate,
  1517. params->pipe_htotal,
  1518. params->pri.horiz_pixels,
  1519. params->pri.bytes_per_pixel,
  1520. mem_value);
  1521. return min(method1, method2);
  1522. }
  1523. /*
  1524. * For both WM_PIPE and WM_LP.
  1525. * mem_value must be in 0.1us units.
  1526. */
  1527. static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
  1528. uint32_t mem_value)
  1529. {
  1530. uint32_t method1, method2;
  1531. if (!params->active || !params->spr.enabled)
  1532. return 0;
  1533. method1 = ilk_wm_method1(params->pixel_rate,
  1534. params->spr.bytes_per_pixel,
  1535. mem_value);
  1536. method2 = ilk_wm_method2(params->pixel_rate,
  1537. params->pipe_htotal,
  1538. params->spr.horiz_pixels,
  1539. params->spr.bytes_per_pixel,
  1540. mem_value);
  1541. return min(method1, method2);
  1542. }
  1543. /*
  1544. * For both WM_PIPE and WM_LP.
  1545. * mem_value must be in 0.1us units.
  1546. */
  1547. static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
  1548. uint32_t mem_value)
  1549. {
  1550. if (!params->active || !params->cur.enabled)
  1551. return 0;
  1552. return ilk_wm_method2(params->pixel_rate,
  1553. params->pipe_htotal,
  1554. params->cur.horiz_pixels,
  1555. params->cur.bytes_per_pixel,
  1556. mem_value);
  1557. }
  1558. /* Only for WM_LP. */
  1559. static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
  1560. uint32_t pri_val)
  1561. {
  1562. if (!params->active || !params->pri.enabled)
  1563. return 0;
  1564. return ilk_wm_fbc(pri_val,
  1565. params->pri.horiz_pixels,
  1566. params->pri.bytes_per_pixel);
  1567. }
  1568. static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
  1569. {
  1570. if (INTEL_INFO(dev)->gen >= 8)
  1571. return 3072;
  1572. else if (INTEL_INFO(dev)->gen >= 7)
  1573. return 768;
  1574. else
  1575. return 512;
  1576. }
  1577. static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
  1578. int level, bool is_sprite)
  1579. {
  1580. if (INTEL_INFO(dev)->gen >= 8)
  1581. /* BDW primary/sprite plane watermarks */
  1582. return level == 0 ? 255 : 2047;
  1583. else if (INTEL_INFO(dev)->gen >= 7)
  1584. /* IVB/HSW primary/sprite plane watermarks */
  1585. return level == 0 ? 127 : 1023;
  1586. else if (!is_sprite)
  1587. /* ILK/SNB primary plane watermarks */
  1588. return level == 0 ? 127 : 511;
  1589. else
  1590. /* ILK/SNB sprite plane watermarks */
  1591. return level == 0 ? 63 : 255;
  1592. }
  1593. static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
  1594. int level)
  1595. {
  1596. if (INTEL_INFO(dev)->gen >= 7)
  1597. return level == 0 ? 63 : 255;
  1598. else
  1599. return level == 0 ? 31 : 63;
  1600. }
  1601. static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
  1602. {
  1603. if (INTEL_INFO(dev)->gen >= 8)
  1604. return 31;
  1605. else
  1606. return 15;
  1607. }
  1608. /* Calculate the maximum primary/sprite plane watermark */
  1609. static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
  1610. int level,
  1611. const struct intel_wm_config *config,
  1612. enum intel_ddb_partitioning ddb_partitioning,
  1613. bool is_sprite)
  1614. {
  1615. unsigned int fifo_size = ilk_display_fifo_size(dev);
  1616. /* if sprites aren't enabled, sprites get nothing */
  1617. if (is_sprite && !config->sprites_enabled)
  1618. return 0;
  1619. /* HSW allows LP1+ watermarks even with multiple pipes */
  1620. if (level == 0 || config->num_pipes_active > 1) {
  1621. fifo_size /= INTEL_INFO(dev)->num_pipes;
  1622. /*
  1623. * For some reason the non self refresh
  1624. * FIFO size is only half of the self
  1625. * refresh FIFO size on ILK/SNB.
  1626. */
  1627. if (INTEL_INFO(dev)->gen <= 6)
  1628. fifo_size /= 2;
  1629. }
  1630. if (config->sprites_enabled) {
  1631. /* level 0 is always calculated with 1:1 split */
  1632. if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
  1633. if (is_sprite)
  1634. fifo_size *= 5;
  1635. fifo_size /= 6;
  1636. } else {
  1637. fifo_size /= 2;
  1638. }
  1639. }
  1640. /* clamp to max that the registers can hold */
  1641. return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
  1642. }
  1643. /* Calculate the maximum cursor plane watermark */
  1644. static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
  1645. int level,
  1646. const struct intel_wm_config *config)
  1647. {
  1648. /* HSW LP1+ watermarks w/ multiple pipes */
  1649. if (level > 0 && config->num_pipes_active > 1)
  1650. return 64;
  1651. /* otherwise just report max that registers can hold */
  1652. return ilk_cursor_wm_reg_max(dev, level);
  1653. }
  1654. static void ilk_compute_wm_maximums(const struct drm_device *dev,
  1655. int level,
  1656. const struct intel_wm_config *config,
  1657. enum intel_ddb_partitioning ddb_partitioning,
  1658. struct ilk_wm_maximums *max)
  1659. {
  1660. max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
  1661. max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
  1662. max->cur = ilk_cursor_wm_max(dev, level, config);
  1663. max->fbc = ilk_fbc_wm_reg_max(dev);
  1664. }
  1665. static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
  1666. int level,
  1667. struct ilk_wm_maximums *max)
  1668. {
  1669. max->pri = ilk_plane_wm_reg_max(dev, level, false);
  1670. max->spr = ilk_plane_wm_reg_max(dev, level, true);
  1671. max->cur = ilk_cursor_wm_reg_max(dev, level);
  1672. max->fbc = ilk_fbc_wm_reg_max(dev);
  1673. }
  1674. static bool ilk_validate_wm_level(int level,
  1675. const struct ilk_wm_maximums *max,
  1676. struct intel_wm_level *result)
  1677. {
  1678. bool ret;
  1679. /* already determined to be invalid? */
  1680. if (!result->enable)
  1681. return false;
  1682. result->enable = result->pri_val <= max->pri &&
  1683. result->spr_val <= max->spr &&
  1684. result->cur_val <= max->cur;
  1685. ret = result->enable;
  1686. /*
  1687. * HACK until we can pre-compute everything,
  1688. * and thus fail gracefully if LP0 watermarks
  1689. * are exceeded...
  1690. */
  1691. if (level == 0 && !result->enable) {
  1692. if (result->pri_val > max->pri)
  1693. DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
  1694. level, result->pri_val, max->pri);
  1695. if (result->spr_val > max->spr)
  1696. DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
  1697. level, result->spr_val, max->spr);
  1698. if (result->cur_val > max->cur)
  1699. DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
  1700. level, result->cur_val, max->cur);
  1701. result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
  1702. result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
  1703. result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
  1704. result->enable = true;
  1705. }
  1706. return ret;
  1707. }
  1708. static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
  1709. int level,
  1710. const struct ilk_pipe_wm_parameters *p,
  1711. struct intel_wm_level *result)
  1712. {
  1713. uint16_t pri_latency = dev_priv->wm.pri_latency[level];
  1714. uint16_t spr_latency = dev_priv->wm.spr_latency[level];
  1715. uint16_t cur_latency = dev_priv->wm.cur_latency[level];
  1716. /* WM1+ latency values stored in 0.5us units */
  1717. if (level > 0) {
  1718. pri_latency *= 5;
  1719. spr_latency *= 5;
  1720. cur_latency *= 5;
  1721. }
  1722. result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
  1723. result->spr_val = ilk_compute_spr_wm(p, spr_latency);
  1724. result->cur_val = ilk_compute_cur_wm(p, cur_latency);
  1725. result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
  1726. result->enable = true;
  1727. }
  1728. static uint32_t
  1729. hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
  1730. {
  1731. struct drm_i915_private *dev_priv = dev->dev_private;
  1732. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1733. struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
  1734. u32 linetime, ips_linetime;
  1735. if (!intel_crtc_active(crtc))
  1736. return 0;
  1737. /* The WM are computed with base on how long it takes to fill a single
  1738. * row at the given clock rate, multiplied by 8.
  1739. * */
  1740. linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
  1741. mode->crtc_clock);
  1742. ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
  1743. intel_ddi_get_cdclk_freq(dev_priv));
  1744. return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
  1745. PIPE_WM_LINETIME_TIME(linetime);
  1746. }
  1747. static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1748. {
  1749. struct drm_i915_private *dev_priv = dev->dev_private;
  1750. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  1751. uint64_t sskpd = I915_READ64(MCH_SSKPD);
  1752. wm[0] = (sskpd >> 56) & 0xFF;
  1753. if (wm[0] == 0)
  1754. wm[0] = sskpd & 0xF;
  1755. wm[1] = (sskpd >> 4) & 0xFF;
  1756. wm[2] = (sskpd >> 12) & 0xFF;
  1757. wm[3] = (sskpd >> 20) & 0x1FF;
  1758. wm[4] = (sskpd >> 32) & 0x1FF;
  1759. } else if (INTEL_INFO(dev)->gen >= 6) {
  1760. uint32_t sskpd = I915_READ(MCH_SSKPD);
  1761. wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
  1762. wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
  1763. wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
  1764. wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
  1765. } else if (INTEL_INFO(dev)->gen >= 5) {
  1766. uint32_t mltr = I915_READ(MLTR_ILK);
  1767. /* ILK primary LP0 latency is 700 ns */
  1768. wm[0] = 7;
  1769. wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
  1770. wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
  1771. }
  1772. }
  1773. static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1774. {
  1775. /* ILK sprite LP0 latency is 1300 ns */
  1776. if (INTEL_INFO(dev)->gen == 5)
  1777. wm[0] = 13;
  1778. }
  1779. static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1780. {
  1781. /* ILK cursor LP0 latency is 1300 ns */
  1782. if (INTEL_INFO(dev)->gen == 5)
  1783. wm[0] = 13;
  1784. /* WaDoubleCursorLP3Latency:ivb */
  1785. if (IS_IVYBRIDGE(dev))
  1786. wm[3] *= 2;
  1787. }
  1788. int ilk_wm_max_level(const struct drm_device *dev)
  1789. {
  1790. /* how many WM levels are we expecting */
  1791. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1792. return 4;
  1793. else if (INTEL_INFO(dev)->gen >= 6)
  1794. return 3;
  1795. else
  1796. return 2;
  1797. }
  1798. static void intel_print_wm_latency(struct drm_device *dev,
  1799. const char *name,
  1800. const uint16_t wm[5])
  1801. {
  1802. int level, max_level = ilk_wm_max_level(dev);
  1803. for (level = 0; level <= max_level; level++) {
  1804. unsigned int latency = wm[level];
  1805. if (latency == 0) {
  1806. DRM_ERROR("%s WM%d latency not provided\n",
  1807. name, level);
  1808. continue;
  1809. }
  1810. /* WM1+ latency values in 0.5us units */
  1811. if (level > 0)
  1812. latency *= 5;
  1813. DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
  1814. name, level, wm[level],
  1815. latency / 10, latency % 10);
  1816. }
  1817. }
  1818. static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
  1819. uint16_t wm[5], uint16_t min)
  1820. {
  1821. int level, max_level = ilk_wm_max_level(dev_priv->dev);
  1822. if (wm[0] >= min)
  1823. return false;
  1824. wm[0] = max(wm[0], min);
  1825. for (level = 1; level <= max_level; level++)
  1826. wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
  1827. return true;
  1828. }
  1829. static void snb_wm_latency_quirk(struct drm_device *dev)
  1830. {
  1831. struct drm_i915_private *dev_priv = dev->dev_private;
  1832. bool changed;
  1833. /*
  1834. * The BIOS provided WM memory latency values are often
  1835. * inadequate for high resolution displays. Adjust them.
  1836. */
  1837. changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
  1838. ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
  1839. ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
  1840. if (!changed)
  1841. return;
  1842. DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
  1843. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  1844. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  1845. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  1846. }
  1847. static void ilk_setup_wm_latency(struct drm_device *dev)
  1848. {
  1849. struct drm_i915_private *dev_priv = dev->dev_private;
  1850. intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
  1851. memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
  1852. sizeof(dev_priv->wm.pri_latency));
  1853. memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
  1854. sizeof(dev_priv->wm.pri_latency));
  1855. intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
  1856. intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
  1857. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  1858. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  1859. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  1860. if (IS_GEN6(dev))
  1861. snb_wm_latency_quirk(dev);
  1862. }
  1863. static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
  1864. struct ilk_pipe_wm_parameters *p)
  1865. {
  1866. struct drm_device *dev = crtc->dev;
  1867. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1868. enum pipe pipe = intel_crtc->pipe;
  1869. struct drm_plane *plane;
  1870. if (!intel_crtc_active(crtc))
  1871. return;
  1872. p->active = true;
  1873. p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
  1874. p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
  1875. p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
  1876. p->cur.bytes_per_pixel = 4;
  1877. p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
  1878. p->cur.horiz_pixels = intel_crtc->cursor_width;
  1879. /* TODO: for now, assume primary and cursor planes are always enabled. */
  1880. p->pri.enabled = true;
  1881. p->cur.enabled = true;
  1882. drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
  1883. struct intel_plane *intel_plane = to_intel_plane(plane);
  1884. if (intel_plane->pipe == pipe) {
  1885. p->spr = intel_plane->wm;
  1886. break;
  1887. }
  1888. }
  1889. }
  1890. static void ilk_compute_wm_config(struct drm_device *dev,
  1891. struct intel_wm_config *config)
  1892. {
  1893. struct intel_crtc *intel_crtc;
  1894. /* Compute the currently _active_ config */
  1895. for_each_intel_crtc(dev, intel_crtc) {
  1896. const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
  1897. if (!wm->pipe_enabled)
  1898. continue;
  1899. config->sprites_enabled |= wm->sprites_enabled;
  1900. config->sprites_scaled |= wm->sprites_scaled;
  1901. config->num_pipes_active++;
  1902. }
  1903. }
  1904. /* Compute new watermarks for the pipe */
  1905. static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
  1906. const struct ilk_pipe_wm_parameters *params,
  1907. struct intel_pipe_wm *pipe_wm)
  1908. {
  1909. struct drm_device *dev = crtc->dev;
  1910. const struct drm_i915_private *dev_priv = dev->dev_private;
  1911. int level, max_level = ilk_wm_max_level(dev);
  1912. /* LP0 watermark maximums depend on this pipe alone */
  1913. struct intel_wm_config config = {
  1914. .num_pipes_active = 1,
  1915. .sprites_enabled = params->spr.enabled,
  1916. .sprites_scaled = params->spr.scaled,
  1917. };
  1918. struct ilk_wm_maximums max;
  1919. pipe_wm->pipe_enabled = params->active;
  1920. pipe_wm->sprites_enabled = params->spr.enabled;
  1921. pipe_wm->sprites_scaled = params->spr.scaled;
  1922. /* ILK/SNB: LP2+ watermarks only w/o sprites */
  1923. if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
  1924. max_level = 1;
  1925. /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
  1926. if (params->spr.scaled)
  1927. max_level = 0;
  1928. ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
  1929. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1930. pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
  1931. /* LP0 watermarks always use 1/2 DDB partitioning */
  1932. ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
  1933. /* At least LP0 must be valid */
  1934. if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
  1935. return false;
  1936. ilk_compute_wm_reg_maximums(dev, 1, &max);
  1937. for (level = 1; level <= max_level; level++) {
  1938. struct intel_wm_level wm = {};
  1939. ilk_compute_wm_level(dev_priv, level, params, &wm);
  1940. /*
  1941. * Disable any watermark level that exceeds the
  1942. * register maximums since such watermarks are
  1943. * always invalid.
  1944. */
  1945. if (!ilk_validate_wm_level(level, &max, &wm))
  1946. break;
  1947. pipe_wm->wm[level] = wm;
  1948. }
  1949. return true;
  1950. }
  1951. /*
  1952. * Merge the watermarks from all active pipes for a specific level.
  1953. */
  1954. static void ilk_merge_wm_level(struct drm_device *dev,
  1955. int level,
  1956. struct intel_wm_level *ret_wm)
  1957. {
  1958. const struct intel_crtc *intel_crtc;
  1959. ret_wm->enable = true;
  1960. for_each_intel_crtc(dev, intel_crtc) {
  1961. const struct intel_pipe_wm *active = &intel_crtc->wm.active;
  1962. const struct intel_wm_level *wm = &active->wm[level];
  1963. if (!active->pipe_enabled)
  1964. continue;
  1965. /*
  1966. * The watermark values may have been used in the past,
  1967. * so we must maintain them in the registers for some
  1968. * time even if the level is now disabled.
  1969. */
  1970. if (!wm->enable)
  1971. ret_wm->enable = false;
  1972. ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
  1973. ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
  1974. ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
  1975. ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
  1976. }
  1977. }
  1978. /*
  1979. * Merge all low power watermarks for all active pipes.
  1980. */
  1981. static void ilk_wm_merge(struct drm_device *dev,
  1982. const struct intel_wm_config *config,
  1983. const struct ilk_wm_maximums *max,
  1984. struct intel_pipe_wm *merged)
  1985. {
  1986. int level, max_level = ilk_wm_max_level(dev);
  1987. int last_enabled_level = max_level;
  1988. /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
  1989. if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
  1990. config->num_pipes_active > 1)
  1991. return;
  1992. /* ILK: FBC WM must be disabled always */
  1993. merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
  1994. /* merge each WM1+ level */
  1995. for (level = 1; level <= max_level; level++) {
  1996. struct intel_wm_level *wm = &merged->wm[level];
  1997. ilk_merge_wm_level(dev, level, wm);
  1998. if (level > last_enabled_level)
  1999. wm->enable = false;
  2000. else if (!ilk_validate_wm_level(level, max, wm))
  2001. /* make sure all following levels get disabled */
  2002. last_enabled_level = level - 1;
  2003. /*
  2004. * The spec says it is preferred to disable
  2005. * FBC WMs instead of disabling a WM level.
  2006. */
  2007. if (wm->fbc_val > max->fbc) {
  2008. if (wm->enable)
  2009. merged->fbc_wm_enabled = false;
  2010. wm->fbc_val = 0;
  2011. }
  2012. }
  2013. /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
  2014. /*
  2015. * FIXME this is racy. FBC might get enabled later.
  2016. * What we should check here is whether FBC can be
  2017. * enabled sometime later.
  2018. */
  2019. if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
  2020. for (level = 2; level <= max_level; level++) {
  2021. struct intel_wm_level *wm = &merged->wm[level];
  2022. wm->enable = false;
  2023. }
  2024. }
  2025. }
  2026. static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
  2027. {
  2028. /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
  2029. return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
  2030. }
  2031. /* The value we need to program into the WM_LPx latency field */
  2032. static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
  2033. {
  2034. struct drm_i915_private *dev_priv = dev->dev_private;
  2035. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2036. return 2 * level;
  2037. else
  2038. return dev_priv->wm.pri_latency[level];
  2039. }
  2040. static void ilk_compute_wm_results(struct drm_device *dev,
  2041. const struct intel_pipe_wm *merged,
  2042. enum intel_ddb_partitioning partitioning,
  2043. struct ilk_wm_values *results)
  2044. {
  2045. struct intel_crtc *intel_crtc;
  2046. int level, wm_lp;
  2047. results->enable_fbc_wm = merged->fbc_wm_enabled;
  2048. results->partitioning = partitioning;
  2049. /* LP1+ register values */
  2050. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2051. const struct intel_wm_level *r;
  2052. level = ilk_wm_lp_to_level(wm_lp, merged);
  2053. r = &merged->wm[level];
  2054. /*
  2055. * Maintain the watermark values even if the level is
  2056. * disabled. Doing otherwise could cause underruns.
  2057. */
  2058. results->wm_lp[wm_lp - 1] =
  2059. (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
  2060. (r->pri_val << WM1_LP_SR_SHIFT) |
  2061. r->cur_val;
  2062. if (r->enable)
  2063. results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
  2064. if (INTEL_INFO(dev)->gen >= 8)
  2065. results->wm_lp[wm_lp - 1] |=
  2066. r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
  2067. else
  2068. results->wm_lp[wm_lp - 1] |=
  2069. r->fbc_val << WM1_LP_FBC_SHIFT;
  2070. /*
  2071. * Always set WM1S_LP_EN when spr_val != 0, even if the
  2072. * level is disabled. Doing otherwise could cause underruns.
  2073. */
  2074. if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
  2075. WARN_ON(wm_lp != 1);
  2076. results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
  2077. } else
  2078. results->wm_lp_spr[wm_lp - 1] = r->spr_val;
  2079. }
  2080. /* LP0 register values */
  2081. for_each_intel_crtc(dev, intel_crtc) {
  2082. enum pipe pipe = intel_crtc->pipe;
  2083. const struct intel_wm_level *r =
  2084. &intel_crtc->wm.active.wm[0];
  2085. if (WARN_ON(!r->enable))
  2086. continue;
  2087. results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
  2088. results->wm_pipe[pipe] =
  2089. (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
  2090. (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
  2091. r->cur_val;
  2092. }
  2093. }
  2094. /* Find the result with the highest level enabled. Check for enable_fbc_wm in
  2095. * case both are at the same level. Prefer r1 in case they're the same. */
  2096. static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
  2097. struct intel_pipe_wm *r1,
  2098. struct intel_pipe_wm *r2)
  2099. {
  2100. int level, max_level = ilk_wm_max_level(dev);
  2101. int level1 = 0, level2 = 0;
  2102. for (level = 1; level <= max_level; level++) {
  2103. if (r1->wm[level].enable)
  2104. level1 = level;
  2105. if (r2->wm[level].enable)
  2106. level2 = level;
  2107. }
  2108. if (level1 == level2) {
  2109. if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
  2110. return r2;
  2111. else
  2112. return r1;
  2113. } else if (level1 > level2) {
  2114. return r1;
  2115. } else {
  2116. return r2;
  2117. }
  2118. }
  2119. /* dirty bits used to track which watermarks need changes */
  2120. #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
  2121. #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
  2122. #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
  2123. #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
  2124. #define WM_DIRTY_FBC (1 << 24)
  2125. #define WM_DIRTY_DDB (1 << 25)
  2126. static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
  2127. const struct ilk_wm_values *old,
  2128. const struct ilk_wm_values *new)
  2129. {
  2130. unsigned int dirty = 0;
  2131. enum pipe pipe;
  2132. int wm_lp;
  2133. for_each_pipe(pipe) {
  2134. if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
  2135. dirty |= WM_DIRTY_LINETIME(pipe);
  2136. /* Must disable LP1+ watermarks too */
  2137. dirty |= WM_DIRTY_LP_ALL;
  2138. }
  2139. if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
  2140. dirty |= WM_DIRTY_PIPE(pipe);
  2141. /* Must disable LP1+ watermarks too */
  2142. dirty |= WM_DIRTY_LP_ALL;
  2143. }
  2144. }
  2145. if (old->enable_fbc_wm != new->enable_fbc_wm) {
  2146. dirty |= WM_DIRTY_FBC;
  2147. /* Must disable LP1+ watermarks too */
  2148. dirty |= WM_DIRTY_LP_ALL;
  2149. }
  2150. if (old->partitioning != new->partitioning) {
  2151. dirty |= WM_DIRTY_DDB;
  2152. /* Must disable LP1+ watermarks too */
  2153. dirty |= WM_DIRTY_LP_ALL;
  2154. }
  2155. /* LP1+ watermarks already deemed dirty, no need to continue */
  2156. if (dirty & WM_DIRTY_LP_ALL)
  2157. return dirty;
  2158. /* Find the lowest numbered LP1+ watermark in need of an update... */
  2159. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2160. if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
  2161. old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
  2162. break;
  2163. }
  2164. /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
  2165. for (; wm_lp <= 3; wm_lp++)
  2166. dirty |= WM_DIRTY_LP(wm_lp);
  2167. return dirty;
  2168. }
  2169. static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
  2170. unsigned int dirty)
  2171. {
  2172. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2173. bool changed = false;
  2174. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
  2175. previous->wm_lp[2] &= ~WM1_LP_SR_EN;
  2176. I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
  2177. changed = true;
  2178. }
  2179. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
  2180. previous->wm_lp[1] &= ~WM1_LP_SR_EN;
  2181. I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
  2182. changed = true;
  2183. }
  2184. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
  2185. previous->wm_lp[0] &= ~WM1_LP_SR_EN;
  2186. I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
  2187. changed = true;
  2188. }
  2189. /*
  2190. * Don't touch WM1S_LP_EN here.
  2191. * Doing so could cause underruns.
  2192. */
  2193. return changed;
  2194. }
  2195. /*
  2196. * The spec says we shouldn't write when we don't need, because every write
  2197. * causes WMs to be re-evaluated, expending some power.
  2198. */
  2199. static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
  2200. struct ilk_wm_values *results)
  2201. {
  2202. struct drm_device *dev = dev_priv->dev;
  2203. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2204. unsigned int dirty;
  2205. uint32_t val;
  2206. dirty = ilk_compute_wm_dirty(dev, previous, results);
  2207. if (!dirty)
  2208. return;
  2209. _ilk_disable_lp_wm(dev_priv, dirty);
  2210. if (dirty & WM_DIRTY_PIPE(PIPE_A))
  2211. I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
  2212. if (dirty & WM_DIRTY_PIPE(PIPE_B))
  2213. I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
  2214. if (dirty & WM_DIRTY_PIPE(PIPE_C))
  2215. I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
  2216. if (dirty & WM_DIRTY_LINETIME(PIPE_A))
  2217. I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
  2218. if (dirty & WM_DIRTY_LINETIME(PIPE_B))
  2219. I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
  2220. if (dirty & WM_DIRTY_LINETIME(PIPE_C))
  2221. I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
  2222. if (dirty & WM_DIRTY_DDB) {
  2223. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  2224. val = I915_READ(WM_MISC);
  2225. if (results->partitioning == INTEL_DDB_PART_1_2)
  2226. val &= ~WM_MISC_DATA_PARTITION_5_6;
  2227. else
  2228. val |= WM_MISC_DATA_PARTITION_5_6;
  2229. I915_WRITE(WM_MISC, val);
  2230. } else {
  2231. val = I915_READ(DISP_ARB_CTL2);
  2232. if (results->partitioning == INTEL_DDB_PART_1_2)
  2233. val &= ~DISP_DATA_PARTITION_5_6;
  2234. else
  2235. val |= DISP_DATA_PARTITION_5_6;
  2236. I915_WRITE(DISP_ARB_CTL2, val);
  2237. }
  2238. }
  2239. if (dirty & WM_DIRTY_FBC) {
  2240. val = I915_READ(DISP_ARB_CTL);
  2241. if (results->enable_fbc_wm)
  2242. val &= ~DISP_FBC_WM_DIS;
  2243. else
  2244. val |= DISP_FBC_WM_DIS;
  2245. I915_WRITE(DISP_ARB_CTL, val);
  2246. }
  2247. if (dirty & WM_DIRTY_LP(1) &&
  2248. previous->wm_lp_spr[0] != results->wm_lp_spr[0])
  2249. I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
  2250. if (INTEL_INFO(dev)->gen >= 7) {
  2251. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
  2252. I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
  2253. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
  2254. I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
  2255. }
  2256. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
  2257. I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
  2258. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
  2259. I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
  2260. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
  2261. I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
  2262. dev_priv->wm.hw = *results;
  2263. }
  2264. static bool ilk_disable_lp_wm(struct drm_device *dev)
  2265. {
  2266. struct drm_i915_private *dev_priv = dev->dev_private;
  2267. return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
  2268. }
  2269. static void ilk_update_wm(struct drm_crtc *crtc)
  2270. {
  2271. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2272. struct drm_device *dev = crtc->dev;
  2273. struct drm_i915_private *dev_priv = dev->dev_private;
  2274. struct ilk_wm_maximums max;
  2275. struct ilk_pipe_wm_parameters params = {};
  2276. struct ilk_wm_values results = {};
  2277. enum intel_ddb_partitioning partitioning;
  2278. struct intel_pipe_wm pipe_wm = {};
  2279. struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
  2280. struct intel_wm_config config = {};
  2281. ilk_compute_wm_parameters(crtc, &params);
  2282. intel_compute_pipe_wm(crtc, &params, &pipe_wm);
  2283. if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
  2284. return;
  2285. intel_crtc->wm.active = pipe_wm;
  2286. ilk_compute_wm_config(dev, &config);
  2287. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
  2288. ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
  2289. /* 5/6 split only in single pipe config on IVB+ */
  2290. if (INTEL_INFO(dev)->gen >= 7 &&
  2291. config.num_pipes_active == 1 && config.sprites_enabled) {
  2292. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
  2293. ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
  2294. best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
  2295. } else {
  2296. best_lp_wm = &lp_wm_1_2;
  2297. }
  2298. partitioning = (best_lp_wm == &lp_wm_1_2) ?
  2299. INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
  2300. ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
  2301. ilk_write_wm_values(dev_priv, &results);
  2302. }
  2303. static void ilk_update_sprite_wm(struct drm_plane *plane,
  2304. struct drm_crtc *crtc,
  2305. uint32_t sprite_width, int pixel_size,
  2306. bool enabled, bool scaled)
  2307. {
  2308. struct drm_device *dev = plane->dev;
  2309. struct intel_plane *intel_plane = to_intel_plane(plane);
  2310. intel_plane->wm.enabled = enabled;
  2311. intel_plane->wm.scaled = scaled;
  2312. intel_plane->wm.horiz_pixels = sprite_width;
  2313. intel_plane->wm.bytes_per_pixel = pixel_size;
  2314. /*
  2315. * IVB workaround: must disable low power watermarks for at least
  2316. * one frame before enabling scaling. LP watermarks can be re-enabled
  2317. * when scaling is disabled.
  2318. *
  2319. * WaCxSRDisabledForSpriteScaling:ivb
  2320. */
  2321. if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
  2322. intel_wait_for_vblank(dev, intel_plane->pipe);
  2323. ilk_update_wm(crtc);
  2324. }
  2325. static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  2326. {
  2327. struct drm_device *dev = crtc->dev;
  2328. struct drm_i915_private *dev_priv = dev->dev_private;
  2329. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  2330. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2331. struct intel_pipe_wm *active = &intel_crtc->wm.active;
  2332. enum pipe pipe = intel_crtc->pipe;
  2333. static const unsigned int wm0_pipe_reg[] = {
  2334. [PIPE_A] = WM0_PIPEA_ILK,
  2335. [PIPE_B] = WM0_PIPEB_ILK,
  2336. [PIPE_C] = WM0_PIPEC_IVB,
  2337. };
  2338. hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
  2339. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2340. hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  2341. active->pipe_enabled = intel_crtc_active(crtc);
  2342. if (active->pipe_enabled) {
  2343. u32 tmp = hw->wm_pipe[pipe];
  2344. /*
  2345. * For active pipes LP0 watermark is marked as
  2346. * enabled, and LP1+ watermaks as disabled since
  2347. * we can't really reverse compute them in case
  2348. * multiple pipes are active.
  2349. */
  2350. active->wm[0].enable = true;
  2351. active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
  2352. active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
  2353. active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
  2354. active->linetime = hw->wm_linetime[pipe];
  2355. } else {
  2356. int level, max_level = ilk_wm_max_level(dev);
  2357. /*
  2358. * For inactive pipes, all watermark levels
  2359. * should be marked as enabled but zeroed,
  2360. * which is what we'd compute them to.
  2361. */
  2362. for (level = 0; level <= max_level; level++)
  2363. active->wm[level].enable = true;
  2364. }
  2365. }
  2366. void ilk_wm_get_hw_state(struct drm_device *dev)
  2367. {
  2368. struct drm_i915_private *dev_priv = dev->dev_private;
  2369. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  2370. struct drm_crtc *crtc;
  2371. for_each_crtc(dev, crtc)
  2372. ilk_pipe_wm_get_hw_state(crtc);
  2373. hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
  2374. hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
  2375. hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
  2376. hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
  2377. if (INTEL_INFO(dev)->gen >= 7) {
  2378. hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
  2379. hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
  2380. }
  2381. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2382. hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
  2383. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  2384. else if (IS_IVYBRIDGE(dev))
  2385. hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
  2386. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  2387. hw->enable_fbc_wm =
  2388. !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
  2389. }
  2390. /**
  2391. * intel_update_watermarks - update FIFO watermark values based on current modes
  2392. *
  2393. * Calculate watermark values for the various WM regs based on current mode
  2394. * and plane configuration.
  2395. *
  2396. * There are several cases to deal with here:
  2397. * - normal (i.e. non-self-refresh)
  2398. * - self-refresh (SR) mode
  2399. * - lines are large relative to FIFO size (buffer can hold up to 2)
  2400. * - lines are small relative to FIFO size (buffer can hold more than 2
  2401. * lines), so need to account for TLB latency
  2402. *
  2403. * The normal calculation is:
  2404. * watermark = dotclock * bytes per pixel * latency
  2405. * where latency is platform & configuration dependent (we assume pessimal
  2406. * values here).
  2407. *
  2408. * The SR calculation is:
  2409. * watermark = (trunc(latency/line time)+1) * surface width *
  2410. * bytes per pixel
  2411. * where
  2412. * line time = htotal / dotclock
  2413. * surface width = hdisplay for normal plane and 64 for cursor
  2414. * and latency is assumed to be high, as above.
  2415. *
  2416. * The final value programmed to the register should always be rounded up,
  2417. * and include an extra 2 entries to account for clock crossings.
  2418. *
  2419. * We don't use the sprite, so we can ignore that. And on Crestline we have
  2420. * to set the non-SR watermarks to 8.
  2421. */
  2422. void intel_update_watermarks(struct drm_crtc *crtc)
  2423. {
  2424. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  2425. if (dev_priv->display.update_wm)
  2426. dev_priv->display.update_wm(crtc);
  2427. }
  2428. void intel_update_sprite_watermarks(struct drm_plane *plane,
  2429. struct drm_crtc *crtc,
  2430. uint32_t sprite_width, int pixel_size,
  2431. bool enabled, bool scaled)
  2432. {
  2433. struct drm_i915_private *dev_priv = plane->dev->dev_private;
  2434. if (dev_priv->display.update_sprite_wm)
  2435. dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
  2436. pixel_size, enabled, scaled);
  2437. }
  2438. static struct drm_i915_gem_object *
  2439. intel_alloc_context_page(struct drm_device *dev)
  2440. {
  2441. struct drm_i915_gem_object *ctx;
  2442. int ret;
  2443. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  2444. ctx = i915_gem_alloc_object(dev, 4096);
  2445. if (!ctx) {
  2446. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  2447. return NULL;
  2448. }
  2449. ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
  2450. if (ret) {
  2451. DRM_ERROR("failed to pin power context: %d\n", ret);
  2452. goto err_unref;
  2453. }
  2454. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  2455. if (ret) {
  2456. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  2457. goto err_unpin;
  2458. }
  2459. return ctx;
  2460. err_unpin:
  2461. i915_gem_object_ggtt_unpin(ctx);
  2462. err_unref:
  2463. drm_gem_object_unreference(&ctx->base);
  2464. return NULL;
  2465. }
  2466. /**
  2467. * Lock protecting IPS related data structures
  2468. */
  2469. DEFINE_SPINLOCK(mchdev_lock);
  2470. /* Global for IPS driver to get at the current i915 device. Protected by
  2471. * mchdev_lock. */
  2472. static struct drm_i915_private *i915_mch_dev;
  2473. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  2474. {
  2475. struct drm_i915_private *dev_priv = dev->dev_private;
  2476. u16 rgvswctl;
  2477. assert_spin_locked(&mchdev_lock);
  2478. rgvswctl = I915_READ16(MEMSWCTL);
  2479. if (rgvswctl & MEMCTL_CMD_STS) {
  2480. DRM_DEBUG("gpu busy, RCS change rejected\n");
  2481. return false; /* still busy with another command */
  2482. }
  2483. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  2484. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  2485. I915_WRITE16(MEMSWCTL, rgvswctl);
  2486. POSTING_READ16(MEMSWCTL);
  2487. rgvswctl |= MEMCTL_CMD_STS;
  2488. I915_WRITE16(MEMSWCTL, rgvswctl);
  2489. return true;
  2490. }
  2491. static void ironlake_enable_drps(struct drm_device *dev)
  2492. {
  2493. struct drm_i915_private *dev_priv = dev->dev_private;
  2494. u32 rgvmodectl = I915_READ(MEMMODECTL);
  2495. u8 fmax, fmin, fstart, vstart;
  2496. spin_lock_irq(&mchdev_lock);
  2497. /* Enable temp reporting */
  2498. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  2499. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  2500. /* 100ms RC evaluation intervals */
  2501. I915_WRITE(RCUPEI, 100000);
  2502. I915_WRITE(RCDNEI, 100000);
  2503. /* Set max/min thresholds to 90ms and 80ms respectively */
  2504. I915_WRITE(RCBMAXAVG, 90000);
  2505. I915_WRITE(RCBMINAVG, 80000);
  2506. I915_WRITE(MEMIHYST, 1);
  2507. /* Set up min, max, and cur for interrupt handling */
  2508. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  2509. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  2510. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  2511. MEMMODE_FSTART_SHIFT;
  2512. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  2513. PXVFREQ_PX_SHIFT;
  2514. dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  2515. dev_priv->ips.fstart = fstart;
  2516. dev_priv->ips.max_delay = fstart;
  2517. dev_priv->ips.min_delay = fmin;
  2518. dev_priv->ips.cur_delay = fstart;
  2519. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  2520. fmax, fmin, fstart);
  2521. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  2522. /*
  2523. * Interrupts will be enabled in ironlake_irq_postinstall
  2524. */
  2525. I915_WRITE(VIDSTART, vstart);
  2526. POSTING_READ(VIDSTART);
  2527. rgvmodectl |= MEMMODE_SWMODE_EN;
  2528. I915_WRITE(MEMMODECTL, rgvmodectl);
  2529. if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  2530. DRM_ERROR("stuck trying to change perf mode\n");
  2531. mdelay(1);
  2532. ironlake_set_drps(dev, fstart);
  2533. dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  2534. I915_READ(0x112e0);
  2535. dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  2536. dev_priv->ips.last_count2 = I915_READ(0x112f4);
  2537. getrawmonotonic(&dev_priv->ips.last_time2);
  2538. spin_unlock_irq(&mchdev_lock);
  2539. }
  2540. static void ironlake_disable_drps(struct drm_device *dev)
  2541. {
  2542. struct drm_i915_private *dev_priv = dev->dev_private;
  2543. u16 rgvswctl;
  2544. spin_lock_irq(&mchdev_lock);
  2545. rgvswctl = I915_READ16(MEMSWCTL);
  2546. /* Ack interrupts, disable EFC interrupt */
  2547. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  2548. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  2549. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  2550. I915_WRITE(DEIIR, DE_PCU_EVENT);
  2551. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  2552. /* Go back to the starting frequency */
  2553. ironlake_set_drps(dev, dev_priv->ips.fstart);
  2554. mdelay(1);
  2555. rgvswctl |= MEMCTL_CMD_STS;
  2556. I915_WRITE(MEMSWCTL, rgvswctl);
  2557. mdelay(1);
  2558. spin_unlock_irq(&mchdev_lock);
  2559. }
  2560. /* There's a funny hw issue where the hw returns all 0 when reading from
  2561. * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  2562. * ourselves, instead of doing a rmw cycle (which might result in us clearing
  2563. * all limits and the gpu stuck at whatever frequency it is at atm).
  2564. */
  2565. static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
  2566. {
  2567. u32 limits;
  2568. /* Only set the down limit when we've reached the lowest level to avoid
  2569. * getting more interrupts, otherwise leave this clear. This prevents a
  2570. * race in the hw when coming out of rc6: There's a tiny window where
  2571. * the hw runs at the minimal clock before selecting the desired
  2572. * frequency, if the down threshold expires in that window we will not
  2573. * receive a down interrupt. */
  2574. limits = dev_priv->rps.max_freq_softlimit << 24;
  2575. if (val <= dev_priv->rps.min_freq_softlimit)
  2576. limits |= dev_priv->rps.min_freq_softlimit << 16;
  2577. return limits;
  2578. }
  2579. static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
  2580. {
  2581. int new_power;
  2582. new_power = dev_priv->rps.power;
  2583. switch (dev_priv->rps.power) {
  2584. case LOW_POWER:
  2585. if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
  2586. new_power = BETWEEN;
  2587. break;
  2588. case BETWEEN:
  2589. if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
  2590. new_power = LOW_POWER;
  2591. else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
  2592. new_power = HIGH_POWER;
  2593. break;
  2594. case HIGH_POWER:
  2595. if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
  2596. new_power = BETWEEN;
  2597. break;
  2598. }
  2599. /* Max/min bins are special */
  2600. if (val == dev_priv->rps.min_freq_softlimit)
  2601. new_power = LOW_POWER;
  2602. if (val == dev_priv->rps.max_freq_softlimit)
  2603. new_power = HIGH_POWER;
  2604. if (new_power == dev_priv->rps.power)
  2605. return;
  2606. /* Note the units here are not exactly 1us, but 1280ns. */
  2607. switch (new_power) {
  2608. case LOW_POWER:
  2609. /* Upclock if more than 95% busy over 16ms */
  2610. I915_WRITE(GEN6_RP_UP_EI, 12500);
  2611. I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
  2612. /* Downclock if less than 85% busy over 32ms */
  2613. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2614. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
  2615. I915_WRITE(GEN6_RP_CONTROL,
  2616. GEN6_RP_MEDIA_TURBO |
  2617. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2618. GEN6_RP_MEDIA_IS_GFX |
  2619. GEN6_RP_ENABLE |
  2620. GEN6_RP_UP_BUSY_AVG |
  2621. GEN6_RP_DOWN_IDLE_AVG);
  2622. break;
  2623. case BETWEEN:
  2624. /* Upclock if more than 90% busy over 13ms */
  2625. I915_WRITE(GEN6_RP_UP_EI, 10250);
  2626. I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
  2627. /* Downclock if less than 75% busy over 32ms */
  2628. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2629. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
  2630. I915_WRITE(GEN6_RP_CONTROL,
  2631. GEN6_RP_MEDIA_TURBO |
  2632. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2633. GEN6_RP_MEDIA_IS_GFX |
  2634. GEN6_RP_ENABLE |
  2635. GEN6_RP_UP_BUSY_AVG |
  2636. GEN6_RP_DOWN_IDLE_AVG);
  2637. break;
  2638. case HIGH_POWER:
  2639. /* Upclock if more than 85% busy over 10ms */
  2640. I915_WRITE(GEN6_RP_UP_EI, 8000);
  2641. I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
  2642. /* Downclock if less than 60% busy over 32ms */
  2643. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2644. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
  2645. I915_WRITE(GEN6_RP_CONTROL,
  2646. GEN6_RP_MEDIA_TURBO |
  2647. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2648. GEN6_RP_MEDIA_IS_GFX |
  2649. GEN6_RP_ENABLE |
  2650. GEN6_RP_UP_BUSY_AVG |
  2651. GEN6_RP_DOWN_IDLE_AVG);
  2652. break;
  2653. }
  2654. dev_priv->rps.power = new_power;
  2655. dev_priv->rps.last_adj = 0;
  2656. }
  2657. static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
  2658. {
  2659. u32 mask = 0;
  2660. if (val > dev_priv->rps.min_freq_softlimit)
  2661. mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
  2662. if (val < dev_priv->rps.max_freq_softlimit)
  2663. mask |= GEN6_PM_RP_UP_THRESHOLD;
  2664. /* IVB and SNB hard hangs on looping batchbuffer
  2665. * if GEN6_PM_UP_EI_EXPIRED is masked.
  2666. */
  2667. if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
  2668. mask |= GEN6_PM_RP_UP_EI_EXPIRED;
  2669. if (IS_GEN8(dev_priv->dev))
  2670. mask |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;
  2671. return ~mask;
  2672. }
  2673. /* gen6_set_rps is called to update the frequency request, but should also be
  2674. * called when the range (min_delay and max_delay) is modified so that we can
  2675. * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
  2676. void gen6_set_rps(struct drm_device *dev, u8 val)
  2677. {
  2678. struct drm_i915_private *dev_priv = dev->dev_private;
  2679. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2680. WARN_ON(val > dev_priv->rps.max_freq_softlimit);
  2681. WARN_ON(val < dev_priv->rps.min_freq_softlimit);
  2682. /* min/max delay may still have been modified so be sure to
  2683. * write the limits value.
  2684. */
  2685. if (val != dev_priv->rps.cur_freq) {
  2686. gen6_set_rps_thresholds(dev_priv, val);
  2687. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2688. I915_WRITE(GEN6_RPNSWREQ,
  2689. HSW_FREQUENCY(val));
  2690. else
  2691. I915_WRITE(GEN6_RPNSWREQ,
  2692. GEN6_FREQUENCY(val) |
  2693. GEN6_OFFSET(0) |
  2694. GEN6_AGGRESSIVE_TURBO);
  2695. }
  2696. /* Make sure we continue to get interrupts
  2697. * until we hit the minimum or maximum frequencies.
  2698. */
  2699. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
  2700. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  2701. POSTING_READ(GEN6_RPNSWREQ);
  2702. dev_priv->rps.cur_freq = val;
  2703. trace_intel_gpu_freq_change(val * 50);
  2704. }
  2705. /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
  2706. *
  2707. * * If Gfx is Idle, then
  2708. * 1. Mask Turbo interrupts
  2709. * 2. Bring up Gfx clock
  2710. * 3. Change the freq to Rpn and wait till P-Unit updates freq
  2711. * 4. Clear the Force GFX CLK ON bit so that Gfx can down
  2712. * 5. Unmask Turbo interrupts
  2713. */
  2714. static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
  2715. {
  2716. /*
  2717. * When we are idle. Drop to min voltage state.
  2718. */
  2719. if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
  2720. return;
  2721. /* Mask turbo interrupt so that they will not come in between */
  2722. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  2723. vlv_force_gfx_clock(dev_priv, true);
  2724. dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
  2725. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
  2726. dev_priv->rps.min_freq_softlimit);
  2727. if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
  2728. & GENFREQSTATUS) == 0, 5))
  2729. DRM_ERROR("timed out waiting for Punit\n");
  2730. vlv_force_gfx_clock(dev_priv, false);
  2731. I915_WRITE(GEN6_PMINTRMSK,
  2732. gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
  2733. }
  2734. void gen6_rps_idle(struct drm_i915_private *dev_priv)
  2735. {
  2736. struct drm_device *dev = dev_priv->dev;
  2737. mutex_lock(&dev_priv->rps.hw_lock);
  2738. if (dev_priv->rps.enabled) {
  2739. if (IS_VALLEYVIEW(dev))
  2740. vlv_set_rps_idle(dev_priv);
  2741. else
  2742. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
  2743. dev_priv->rps.last_adj = 0;
  2744. }
  2745. mutex_unlock(&dev_priv->rps.hw_lock);
  2746. }
  2747. void gen6_rps_boost(struct drm_i915_private *dev_priv)
  2748. {
  2749. struct drm_device *dev = dev_priv->dev;
  2750. mutex_lock(&dev_priv->rps.hw_lock);
  2751. if (dev_priv->rps.enabled) {
  2752. if (IS_VALLEYVIEW(dev))
  2753. valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
  2754. else
  2755. gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
  2756. dev_priv->rps.last_adj = 0;
  2757. }
  2758. mutex_unlock(&dev_priv->rps.hw_lock);
  2759. }
  2760. void valleyview_set_rps(struct drm_device *dev, u8 val)
  2761. {
  2762. struct drm_i915_private *dev_priv = dev->dev_private;
  2763. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2764. WARN_ON(val > dev_priv->rps.max_freq_softlimit);
  2765. WARN_ON(val < dev_priv->rps.min_freq_softlimit);
  2766. DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
  2767. vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  2768. dev_priv->rps.cur_freq,
  2769. vlv_gpu_freq(dev_priv, val), val);
  2770. if (val != dev_priv->rps.cur_freq)
  2771. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  2772. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  2773. dev_priv->rps.cur_freq = val;
  2774. trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
  2775. }
  2776. static void gen8_disable_rps_interrupts(struct drm_device *dev)
  2777. {
  2778. struct drm_i915_private *dev_priv = dev->dev_private;
  2779. I915_WRITE(GEN6_PMINTRMSK, ~GEN8_PMINTR_REDIRECT_TO_NON_DISP);
  2780. I915_WRITE(GEN8_GT_IER(2), I915_READ(GEN8_GT_IER(2)) &
  2781. ~dev_priv->pm_rps_events);
  2782. /* Complete PM interrupt masking here doesn't race with the rps work
  2783. * item again unmasking PM interrupts because that is using a different
  2784. * register (GEN8_GT_IMR(2)) to mask PM interrupts. The only risk is in
  2785. * leaving stale bits in GEN8_GT_IIR(2) and GEN8_GT_IMR(2) which
  2786. * gen8_enable_rps will clean up. */
  2787. spin_lock_irq(&dev_priv->irq_lock);
  2788. dev_priv->rps.pm_iir = 0;
  2789. spin_unlock_irq(&dev_priv->irq_lock);
  2790. I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
  2791. }
  2792. static void gen6_disable_rps_interrupts(struct drm_device *dev)
  2793. {
  2794. struct drm_i915_private *dev_priv = dev->dev_private;
  2795. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  2796. I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
  2797. ~dev_priv->pm_rps_events);
  2798. /* Complete PM interrupt masking here doesn't race with the rps work
  2799. * item again unmasking PM interrupts because that is using a different
  2800. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  2801. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  2802. spin_lock_irq(&dev_priv->irq_lock);
  2803. dev_priv->rps.pm_iir = 0;
  2804. spin_unlock_irq(&dev_priv->irq_lock);
  2805. I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
  2806. }
  2807. static void gen6_disable_rps(struct drm_device *dev)
  2808. {
  2809. struct drm_i915_private *dev_priv = dev->dev_private;
  2810. I915_WRITE(GEN6_RC_CONTROL, 0);
  2811. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  2812. if (IS_BROADWELL(dev))
  2813. gen8_disable_rps_interrupts(dev);
  2814. else
  2815. gen6_disable_rps_interrupts(dev);
  2816. }
  2817. static void cherryview_disable_rps(struct drm_device *dev)
  2818. {
  2819. struct drm_i915_private *dev_priv = dev->dev_private;
  2820. I915_WRITE(GEN6_RC_CONTROL, 0);
  2821. }
  2822. static void valleyview_disable_rps(struct drm_device *dev)
  2823. {
  2824. struct drm_i915_private *dev_priv = dev->dev_private;
  2825. I915_WRITE(GEN6_RC_CONTROL, 0);
  2826. gen6_disable_rps_interrupts(dev);
  2827. }
  2828. static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
  2829. {
  2830. if (IS_VALLEYVIEW(dev)) {
  2831. if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
  2832. mode = GEN6_RC_CTL_RC6_ENABLE;
  2833. else
  2834. mode = 0;
  2835. }
  2836. DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
  2837. (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
  2838. (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
  2839. (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
  2840. }
  2841. static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
  2842. {
  2843. /* No RC6 before Ironlake */
  2844. if (INTEL_INFO(dev)->gen < 5)
  2845. return 0;
  2846. /* RC6 is only on Ironlake mobile not on desktop */
  2847. if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
  2848. return 0;
  2849. /* Respect the kernel parameter if it is set */
  2850. if (enable_rc6 >= 0) {
  2851. int mask;
  2852. if (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
  2853. mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
  2854. INTEL_RC6pp_ENABLE;
  2855. else
  2856. mask = INTEL_RC6_ENABLE;
  2857. if ((enable_rc6 & mask) != enable_rc6)
  2858. DRM_INFO("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
  2859. enable_rc6 & mask, enable_rc6, mask);
  2860. return enable_rc6 & mask;
  2861. }
  2862. /* Disable RC6 on Ironlake */
  2863. if (INTEL_INFO(dev)->gen == 5)
  2864. return 0;
  2865. if (IS_IVYBRIDGE(dev))
  2866. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  2867. return INTEL_RC6_ENABLE;
  2868. }
  2869. int intel_enable_rc6(const struct drm_device *dev)
  2870. {
  2871. return i915.enable_rc6;
  2872. }
  2873. static void gen8_enable_rps_interrupts(struct drm_device *dev)
  2874. {
  2875. struct drm_i915_private *dev_priv = dev->dev_private;
  2876. spin_lock_irq(&dev_priv->irq_lock);
  2877. WARN_ON(dev_priv->rps.pm_iir);
  2878. bdw_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  2879. I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
  2880. spin_unlock_irq(&dev_priv->irq_lock);
  2881. }
  2882. static void gen6_enable_rps_interrupts(struct drm_device *dev)
  2883. {
  2884. struct drm_i915_private *dev_priv = dev->dev_private;
  2885. spin_lock_irq(&dev_priv->irq_lock);
  2886. WARN_ON(dev_priv->rps.pm_iir);
  2887. snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  2888. I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
  2889. spin_unlock_irq(&dev_priv->irq_lock);
  2890. }
  2891. static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
  2892. {
  2893. /* All of these values are in units of 50MHz */
  2894. dev_priv->rps.cur_freq = 0;
  2895. /* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
  2896. dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
  2897. dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
  2898. dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
  2899. /* XXX: only BYT has a special efficient freq */
  2900. dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
  2901. /* hw_max = RP0 until we check for overclocking */
  2902. dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
  2903. /* Preserve min/max settings in case of re-init */
  2904. if (dev_priv->rps.max_freq_softlimit == 0)
  2905. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  2906. if (dev_priv->rps.min_freq_softlimit == 0)
  2907. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  2908. }
  2909. static void gen8_enable_rps(struct drm_device *dev)
  2910. {
  2911. struct drm_i915_private *dev_priv = dev->dev_private;
  2912. struct intel_engine_cs *ring;
  2913. uint32_t rc6_mask = 0, rp_state_cap;
  2914. int unused;
  2915. /* 1a: Software RC state - RC0 */
  2916. I915_WRITE(GEN6_RC_STATE, 0);
  2917. /* 1c & 1d: Get forcewake during program sequence. Although the driver
  2918. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  2919. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  2920. /* 2a: Disable RC states. */
  2921. I915_WRITE(GEN6_RC_CONTROL, 0);
  2922. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  2923. parse_rp_state_cap(dev_priv, rp_state_cap);
  2924. /* 2b: Program RC6 thresholds.*/
  2925. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  2926. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  2927. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  2928. for_each_ring(ring, dev_priv, unused)
  2929. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  2930. I915_WRITE(GEN6_RC_SLEEP, 0);
  2931. if (IS_BROADWELL(dev))
  2932. I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
  2933. else
  2934. I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
  2935. /* 3: Enable RC6 */
  2936. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  2937. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  2938. intel_print_rc6_info(dev, rc6_mask);
  2939. if (IS_BROADWELL(dev))
  2940. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  2941. GEN7_RC_CTL_TO_MODE |
  2942. rc6_mask);
  2943. else
  2944. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  2945. GEN6_RC_CTL_EI_MODE(1) |
  2946. rc6_mask);
  2947. /* 4 Program defaults and thresholds for RPS*/
  2948. I915_WRITE(GEN6_RPNSWREQ,
  2949. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  2950. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  2951. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  2952. /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
  2953. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
  2954. /* Docs recommend 900MHz, and 300 MHz respectively */
  2955. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  2956. dev_priv->rps.max_freq_softlimit << 24 |
  2957. dev_priv->rps.min_freq_softlimit << 16);
  2958. I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
  2959. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
  2960. I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
  2961. I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
  2962. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  2963. /* 5: Enable RPS */
  2964. I915_WRITE(GEN6_RP_CONTROL,
  2965. GEN6_RP_MEDIA_TURBO |
  2966. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2967. GEN6_RP_MEDIA_IS_GFX |
  2968. GEN6_RP_ENABLE |
  2969. GEN6_RP_UP_BUSY_AVG |
  2970. GEN6_RP_DOWN_IDLE_AVG);
  2971. /* 6: Ring frequency + overclocking (our driver does this later */
  2972. gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
  2973. gen8_enable_rps_interrupts(dev);
  2974. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  2975. }
  2976. static void gen6_enable_rps(struct drm_device *dev)
  2977. {
  2978. struct drm_i915_private *dev_priv = dev->dev_private;
  2979. struct intel_engine_cs *ring;
  2980. u32 rp_state_cap;
  2981. u32 gt_perf_status;
  2982. u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
  2983. u32 gtfifodbg;
  2984. int rc6_mode;
  2985. int i, ret;
  2986. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2987. /* Here begins a magic sequence of register writes to enable
  2988. * auto-downclocking.
  2989. *
  2990. * Perhaps there might be some value in exposing these to
  2991. * userspace...
  2992. */
  2993. I915_WRITE(GEN6_RC_STATE, 0);
  2994. /* Clear the DBG now so we don't confuse earlier errors */
  2995. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  2996. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  2997. I915_WRITE(GTFIFODBG, gtfifodbg);
  2998. }
  2999. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  3000. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  3001. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  3002. parse_rp_state_cap(dev_priv, rp_state_cap);
  3003. /* disable the counters and set deterministic thresholds */
  3004. I915_WRITE(GEN6_RC_CONTROL, 0);
  3005. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  3006. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  3007. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  3008. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  3009. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  3010. for_each_ring(ring, dev_priv, i)
  3011. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3012. I915_WRITE(GEN6_RC_SLEEP, 0);
  3013. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  3014. if (IS_IVYBRIDGE(dev))
  3015. I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
  3016. else
  3017. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  3018. I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
  3019. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  3020. /* Check if we are enabling RC6 */
  3021. rc6_mode = intel_enable_rc6(dev_priv->dev);
  3022. if (rc6_mode & INTEL_RC6_ENABLE)
  3023. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  3024. /* We don't use those on Haswell */
  3025. if (!IS_HASWELL(dev)) {
  3026. if (rc6_mode & INTEL_RC6p_ENABLE)
  3027. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  3028. if (rc6_mode & INTEL_RC6pp_ENABLE)
  3029. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  3030. }
  3031. intel_print_rc6_info(dev, rc6_mask);
  3032. I915_WRITE(GEN6_RC_CONTROL,
  3033. rc6_mask |
  3034. GEN6_RC_CTL_EI_MODE(1) |
  3035. GEN6_RC_CTL_HW_ENABLE);
  3036. /* Power down if completely idle for over 50ms */
  3037. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
  3038. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3039. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
  3040. if (ret)
  3041. DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
  3042. ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
  3043. if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
  3044. DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
  3045. (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
  3046. (pcu_mbox & 0xff) * 50);
  3047. dev_priv->rps.max_freq = pcu_mbox & 0xff;
  3048. }
  3049. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  3050. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
  3051. gen6_enable_rps_interrupts(dev);
  3052. rc6vids = 0;
  3053. ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  3054. if (IS_GEN6(dev) && ret) {
  3055. DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  3056. } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  3057. DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  3058. GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  3059. rc6vids &= 0xffff00;
  3060. rc6vids |= GEN6_ENCODE_RC6_VID(450);
  3061. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  3062. if (ret)
  3063. DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  3064. }
  3065. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3066. }
  3067. static void __gen6_update_ring_freq(struct drm_device *dev)
  3068. {
  3069. struct drm_i915_private *dev_priv = dev->dev_private;
  3070. int min_freq = 15;
  3071. unsigned int gpu_freq;
  3072. unsigned int max_ia_freq, min_ring_freq;
  3073. int scaling_factor = 180;
  3074. struct cpufreq_policy *policy;
  3075. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3076. policy = cpufreq_cpu_get(0);
  3077. if (policy) {
  3078. max_ia_freq = policy->cpuinfo.max_freq;
  3079. cpufreq_cpu_put(policy);
  3080. } else {
  3081. /*
  3082. * Default to measured freq if none found, PCU will ensure we
  3083. * don't go over
  3084. */
  3085. max_ia_freq = tsc_khz;
  3086. }
  3087. /* Convert from kHz to MHz */
  3088. max_ia_freq /= 1000;
  3089. min_ring_freq = I915_READ(DCLK) & 0xf;
  3090. /* convert DDR frequency from units of 266.6MHz to bandwidth */
  3091. min_ring_freq = mult_frac(min_ring_freq, 8, 3);
  3092. /*
  3093. * For each potential GPU frequency, load a ring frequency we'd like
  3094. * to use for memory access. We do this by specifying the IA frequency
  3095. * the PCU should use as a reference to determine the ring frequency.
  3096. */
  3097. for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
  3098. gpu_freq--) {
  3099. int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
  3100. unsigned int ia_freq = 0, ring_freq = 0;
  3101. if (INTEL_INFO(dev)->gen >= 8) {
  3102. /* max(2 * GT, DDR). NB: GT is 50MHz units */
  3103. ring_freq = max(min_ring_freq, gpu_freq);
  3104. } else if (IS_HASWELL(dev)) {
  3105. ring_freq = mult_frac(gpu_freq, 5, 4);
  3106. ring_freq = max(min_ring_freq, ring_freq);
  3107. /* leave ia_freq as the default, chosen by cpufreq */
  3108. } else {
  3109. /* On older processors, there is no separate ring
  3110. * clock domain, so in order to boost the bandwidth
  3111. * of the ring, we need to upclock the CPU (ia_freq).
  3112. *
  3113. * For GPU frequencies less than 750MHz,
  3114. * just use the lowest ring freq.
  3115. */
  3116. if (gpu_freq < min_freq)
  3117. ia_freq = 800;
  3118. else
  3119. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  3120. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  3121. }
  3122. sandybridge_pcode_write(dev_priv,
  3123. GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  3124. ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
  3125. ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
  3126. gpu_freq);
  3127. }
  3128. }
  3129. void gen6_update_ring_freq(struct drm_device *dev)
  3130. {
  3131. struct drm_i915_private *dev_priv = dev->dev_private;
  3132. if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
  3133. return;
  3134. mutex_lock(&dev_priv->rps.hw_lock);
  3135. __gen6_update_ring_freq(dev);
  3136. mutex_unlock(&dev_priv->rps.hw_lock);
  3137. }
  3138. int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
  3139. {
  3140. u32 val, rp0;
  3141. val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
  3142. rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
  3143. return rp0;
  3144. }
  3145. static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  3146. {
  3147. u32 val, rpe;
  3148. val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
  3149. rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
  3150. return rpe;
  3151. }
  3152. int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
  3153. {
  3154. u32 val, rpn;
  3155. val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
  3156. rpn = (val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) & PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK;
  3157. return rpn;
  3158. }
  3159. int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
  3160. {
  3161. u32 val, rp0;
  3162. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  3163. rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
  3164. /* Clamp to max */
  3165. rp0 = min_t(u32, rp0, 0xea);
  3166. return rp0;
  3167. }
  3168. static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  3169. {
  3170. u32 val, rpe;
  3171. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
  3172. rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
  3173. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
  3174. rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
  3175. return rpe;
  3176. }
  3177. int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
  3178. {
  3179. return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
  3180. }
  3181. /* Check that the pctx buffer wasn't move under us. */
  3182. static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
  3183. {
  3184. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  3185. WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
  3186. dev_priv->vlv_pctx->stolen->start);
  3187. }
  3188. /* Check that the pcbr address is not empty. */
  3189. static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
  3190. {
  3191. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  3192. WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
  3193. }
  3194. static void cherryview_setup_pctx(struct drm_device *dev)
  3195. {
  3196. struct drm_i915_private *dev_priv = dev->dev_private;
  3197. unsigned long pctx_paddr, paddr;
  3198. struct i915_gtt *gtt = &dev_priv->gtt;
  3199. u32 pcbr;
  3200. int pctx_size = 32*1024;
  3201. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3202. pcbr = I915_READ(VLV_PCBR);
  3203. if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
  3204. paddr = (dev_priv->mm.stolen_base +
  3205. (gtt->stolen_size - pctx_size));
  3206. pctx_paddr = (paddr & (~4095));
  3207. I915_WRITE(VLV_PCBR, pctx_paddr);
  3208. }
  3209. }
  3210. static void valleyview_setup_pctx(struct drm_device *dev)
  3211. {
  3212. struct drm_i915_private *dev_priv = dev->dev_private;
  3213. struct drm_i915_gem_object *pctx;
  3214. unsigned long pctx_paddr;
  3215. u32 pcbr;
  3216. int pctx_size = 24*1024;
  3217. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3218. pcbr = I915_READ(VLV_PCBR);
  3219. if (pcbr) {
  3220. /* BIOS set it up already, grab the pre-alloc'd space */
  3221. int pcbr_offset;
  3222. pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
  3223. pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
  3224. pcbr_offset,
  3225. I915_GTT_OFFSET_NONE,
  3226. pctx_size);
  3227. goto out;
  3228. }
  3229. /*
  3230. * From the Gunit register HAS:
  3231. * The Gfx driver is expected to program this register and ensure
  3232. * proper allocation within Gfx stolen memory. For example, this
  3233. * register should be programmed such than the PCBR range does not
  3234. * overlap with other ranges, such as the frame buffer, protected
  3235. * memory, or any other relevant ranges.
  3236. */
  3237. pctx = i915_gem_object_create_stolen(dev, pctx_size);
  3238. if (!pctx) {
  3239. DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
  3240. return;
  3241. }
  3242. pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
  3243. I915_WRITE(VLV_PCBR, pctx_paddr);
  3244. out:
  3245. dev_priv->vlv_pctx = pctx;
  3246. }
  3247. static void valleyview_cleanup_pctx(struct drm_device *dev)
  3248. {
  3249. struct drm_i915_private *dev_priv = dev->dev_private;
  3250. if (WARN_ON(!dev_priv->vlv_pctx))
  3251. return;
  3252. drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
  3253. dev_priv->vlv_pctx = NULL;
  3254. }
  3255. static void valleyview_init_gt_powersave(struct drm_device *dev)
  3256. {
  3257. struct drm_i915_private *dev_priv = dev->dev_private;
  3258. valleyview_setup_pctx(dev);
  3259. mutex_lock(&dev_priv->rps.hw_lock);
  3260. dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
  3261. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  3262. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  3263. vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  3264. dev_priv->rps.max_freq);
  3265. dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
  3266. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  3267. vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  3268. dev_priv->rps.efficient_freq);
  3269. dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
  3270. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  3271. vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  3272. dev_priv->rps.min_freq);
  3273. /* Preserve min/max settings in case of re-init */
  3274. if (dev_priv->rps.max_freq_softlimit == 0)
  3275. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  3276. if (dev_priv->rps.min_freq_softlimit == 0)
  3277. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  3278. mutex_unlock(&dev_priv->rps.hw_lock);
  3279. }
  3280. static void cherryview_init_gt_powersave(struct drm_device *dev)
  3281. {
  3282. struct drm_i915_private *dev_priv = dev->dev_private;
  3283. cherryview_setup_pctx(dev);
  3284. mutex_lock(&dev_priv->rps.hw_lock);
  3285. dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
  3286. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  3287. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  3288. vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  3289. dev_priv->rps.max_freq);
  3290. dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
  3291. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  3292. vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  3293. dev_priv->rps.efficient_freq);
  3294. dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
  3295. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  3296. vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  3297. dev_priv->rps.min_freq);
  3298. /* Preserve min/max settings in case of re-init */
  3299. if (dev_priv->rps.max_freq_softlimit == 0)
  3300. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  3301. if (dev_priv->rps.min_freq_softlimit == 0)
  3302. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  3303. mutex_unlock(&dev_priv->rps.hw_lock);
  3304. }
  3305. static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
  3306. {
  3307. valleyview_cleanup_pctx(dev);
  3308. }
  3309. static void cherryview_enable_rps(struct drm_device *dev)
  3310. {
  3311. struct drm_i915_private *dev_priv = dev->dev_private;
  3312. struct intel_engine_cs *ring;
  3313. u32 gtfifodbg, val, rc6_mode = 0, pcbr;
  3314. int i;
  3315. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3316. gtfifodbg = I915_READ(GTFIFODBG);
  3317. if (gtfifodbg) {
  3318. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  3319. gtfifodbg);
  3320. I915_WRITE(GTFIFODBG, gtfifodbg);
  3321. }
  3322. cherryview_check_pctx(dev_priv);
  3323. /* 1a & 1b: Get forcewake during program sequence. Although the driver
  3324. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  3325. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  3326. /* 2a: Program RC6 thresholds.*/
  3327. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  3328. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  3329. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  3330. for_each_ring(ring, dev_priv, i)
  3331. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3332. I915_WRITE(GEN6_RC_SLEEP, 0);
  3333. I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
  3334. /* allows RC6 residency counter to work */
  3335. I915_WRITE(VLV_COUNTER_CONTROL,
  3336. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
  3337. VLV_MEDIA_RC6_COUNT_EN |
  3338. VLV_RENDER_RC6_COUNT_EN));
  3339. /* For now we assume BIOS is allocating and populating the PCBR */
  3340. pcbr = I915_READ(VLV_PCBR);
  3341. DRM_DEBUG_DRIVER("PCBR offset : 0x%x\n", pcbr);
  3342. /* 3: Enable RC6 */
  3343. if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
  3344. (pcbr >> VLV_PCBR_ADDR_SHIFT))
  3345. rc6_mode = GEN6_RC_CTL_EI_MODE(1);
  3346. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  3347. /* 4 Program defaults and thresholds for RPS*/
  3348. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  3349. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  3350. I915_WRITE(GEN6_RP_UP_EI, 66000);
  3351. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  3352. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3353. /* WaDisablePwrmtrEvent:chv (pre-production hw) */
  3354. I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
  3355. I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);
  3356. /* 5: Enable RPS */
  3357. I915_WRITE(GEN6_RP_CONTROL,
  3358. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3359. GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
  3360. GEN6_RP_ENABLE |
  3361. GEN6_RP_UP_BUSY_AVG |
  3362. GEN6_RP_DOWN_IDLE_AVG);
  3363. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  3364. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
  3365. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  3366. dev_priv->rps.cur_freq = (val >> 8) & 0xff;
  3367. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  3368. vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  3369. dev_priv->rps.cur_freq);
  3370. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  3371. vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  3372. dev_priv->rps.efficient_freq);
  3373. valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
  3374. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3375. }
  3376. static void valleyview_enable_rps(struct drm_device *dev)
  3377. {
  3378. struct drm_i915_private *dev_priv = dev->dev_private;
  3379. struct intel_engine_cs *ring;
  3380. u32 gtfifodbg, val, rc6_mode = 0;
  3381. int i;
  3382. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3383. valleyview_check_pctx(dev_priv);
  3384. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  3385. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  3386. gtfifodbg);
  3387. I915_WRITE(GTFIFODBG, gtfifodbg);
  3388. }
  3389. /* If VLV, Forcewake all wells, else re-direct to regular path */
  3390. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  3391. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  3392. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  3393. I915_WRITE(GEN6_RP_UP_EI, 66000);
  3394. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  3395. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3396. I915_WRITE(GEN6_RP_CONTROL,
  3397. GEN6_RP_MEDIA_TURBO |
  3398. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3399. GEN6_RP_MEDIA_IS_GFX |
  3400. GEN6_RP_ENABLE |
  3401. GEN6_RP_UP_BUSY_AVG |
  3402. GEN6_RP_DOWN_IDLE_CONT);
  3403. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
  3404. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  3405. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  3406. for_each_ring(ring, dev_priv, i)
  3407. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3408. I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
  3409. /* allows RC6 residency counter to work */
  3410. I915_WRITE(VLV_COUNTER_CONTROL,
  3411. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
  3412. VLV_MEDIA_RC6_COUNT_EN |
  3413. VLV_RENDER_RC6_COUNT_EN));
  3414. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  3415. rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
  3416. intel_print_rc6_info(dev, rc6_mode);
  3417. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  3418. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  3419. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
  3420. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  3421. dev_priv->rps.cur_freq = (val >> 8) & 0xff;
  3422. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  3423. vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  3424. dev_priv->rps.cur_freq);
  3425. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  3426. vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  3427. dev_priv->rps.efficient_freq);
  3428. valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
  3429. gen6_enable_rps_interrupts(dev);
  3430. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3431. }
  3432. void ironlake_teardown_rc6(struct drm_device *dev)
  3433. {
  3434. struct drm_i915_private *dev_priv = dev->dev_private;
  3435. if (dev_priv->ips.renderctx) {
  3436. i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
  3437. drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
  3438. dev_priv->ips.renderctx = NULL;
  3439. }
  3440. if (dev_priv->ips.pwrctx) {
  3441. i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
  3442. drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
  3443. dev_priv->ips.pwrctx = NULL;
  3444. }
  3445. }
  3446. static void ironlake_disable_rc6(struct drm_device *dev)
  3447. {
  3448. struct drm_i915_private *dev_priv = dev->dev_private;
  3449. if (I915_READ(PWRCTXA)) {
  3450. /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
  3451. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
  3452. wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
  3453. 50);
  3454. I915_WRITE(PWRCTXA, 0);
  3455. POSTING_READ(PWRCTXA);
  3456. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  3457. POSTING_READ(RSTDBYCTL);
  3458. }
  3459. }
  3460. static int ironlake_setup_rc6(struct drm_device *dev)
  3461. {
  3462. struct drm_i915_private *dev_priv = dev->dev_private;
  3463. if (dev_priv->ips.renderctx == NULL)
  3464. dev_priv->ips.renderctx = intel_alloc_context_page(dev);
  3465. if (!dev_priv->ips.renderctx)
  3466. return -ENOMEM;
  3467. if (dev_priv->ips.pwrctx == NULL)
  3468. dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
  3469. if (!dev_priv->ips.pwrctx) {
  3470. ironlake_teardown_rc6(dev);
  3471. return -ENOMEM;
  3472. }
  3473. return 0;
  3474. }
  3475. static void ironlake_enable_rc6(struct drm_device *dev)
  3476. {
  3477. struct drm_i915_private *dev_priv = dev->dev_private;
  3478. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  3479. bool was_interruptible;
  3480. int ret;
  3481. /* rc6 disabled by default due to repeated reports of hanging during
  3482. * boot and resume.
  3483. */
  3484. if (!intel_enable_rc6(dev))
  3485. return;
  3486. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3487. ret = ironlake_setup_rc6(dev);
  3488. if (ret)
  3489. return;
  3490. was_interruptible = dev_priv->mm.interruptible;
  3491. dev_priv->mm.interruptible = false;
  3492. /*
  3493. * GPU can automatically power down the render unit if given a page
  3494. * to save state.
  3495. */
  3496. ret = intel_ring_begin(ring, 6);
  3497. if (ret) {
  3498. ironlake_teardown_rc6(dev);
  3499. dev_priv->mm.interruptible = was_interruptible;
  3500. return;
  3501. }
  3502. intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
  3503. intel_ring_emit(ring, MI_SET_CONTEXT);
  3504. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
  3505. MI_MM_SPACE_GTT |
  3506. MI_SAVE_EXT_STATE_EN |
  3507. MI_RESTORE_EXT_STATE_EN |
  3508. MI_RESTORE_INHIBIT);
  3509. intel_ring_emit(ring, MI_SUSPEND_FLUSH);
  3510. intel_ring_emit(ring, MI_NOOP);
  3511. intel_ring_emit(ring, MI_FLUSH);
  3512. intel_ring_advance(ring);
  3513. /*
  3514. * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
  3515. * does an implicit flush, combined with MI_FLUSH above, it should be
  3516. * safe to assume that renderctx is valid
  3517. */
  3518. ret = intel_ring_idle(ring);
  3519. dev_priv->mm.interruptible = was_interruptible;
  3520. if (ret) {
  3521. DRM_ERROR("failed to enable ironlake power savings\n");
  3522. ironlake_teardown_rc6(dev);
  3523. return;
  3524. }
  3525. I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
  3526. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  3527. intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
  3528. }
  3529. static unsigned long intel_pxfreq(u32 vidfreq)
  3530. {
  3531. unsigned long freq;
  3532. int div = (vidfreq & 0x3f0000) >> 16;
  3533. int post = (vidfreq & 0x3000) >> 12;
  3534. int pre = (vidfreq & 0x7);
  3535. if (!pre)
  3536. return 0;
  3537. freq = ((div * 133333) / ((1<<post) * pre));
  3538. return freq;
  3539. }
  3540. static const struct cparams {
  3541. u16 i;
  3542. u16 t;
  3543. u16 m;
  3544. u16 c;
  3545. } cparams[] = {
  3546. { 1, 1333, 301, 28664 },
  3547. { 1, 1066, 294, 24460 },
  3548. { 1, 800, 294, 25192 },
  3549. { 0, 1333, 276, 27605 },
  3550. { 0, 1066, 276, 27605 },
  3551. { 0, 800, 231, 23784 },
  3552. };
  3553. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  3554. {
  3555. u64 total_count, diff, ret;
  3556. u32 count1, count2, count3, m = 0, c = 0;
  3557. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  3558. int i;
  3559. assert_spin_locked(&mchdev_lock);
  3560. diff1 = now - dev_priv->ips.last_time1;
  3561. /* Prevent division-by-zero if we are asking too fast.
  3562. * Also, we don't get interesting results if we are polling
  3563. * faster than once in 10ms, so just return the saved value
  3564. * in such cases.
  3565. */
  3566. if (diff1 <= 10)
  3567. return dev_priv->ips.chipset_power;
  3568. count1 = I915_READ(DMIEC);
  3569. count2 = I915_READ(DDREC);
  3570. count3 = I915_READ(CSIEC);
  3571. total_count = count1 + count2 + count3;
  3572. /* FIXME: handle per-counter overflow */
  3573. if (total_count < dev_priv->ips.last_count1) {
  3574. diff = ~0UL - dev_priv->ips.last_count1;
  3575. diff += total_count;
  3576. } else {
  3577. diff = total_count - dev_priv->ips.last_count1;
  3578. }
  3579. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  3580. if (cparams[i].i == dev_priv->ips.c_m &&
  3581. cparams[i].t == dev_priv->ips.r_t) {
  3582. m = cparams[i].m;
  3583. c = cparams[i].c;
  3584. break;
  3585. }
  3586. }
  3587. diff = div_u64(diff, diff1);
  3588. ret = ((m * diff) + c);
  3589. ret = div_u64(ret, 10);
  3590. dev_priv->ips.last_count1 = total_count;
  3591. dev_priv->ips.last_time1 = now;
  3592. dev_priv->ips.chipset_power = ret;
  3593. return ret;
  3594. }
  3595. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  3596. {
  3597. struct drm_device *dev = dev_priv->dev;
  3598. unsigned long val;
  3599. if (INTEL_INFO(dev)->gen != 5)
  3600. return 0;
  3601. spin_lock_irq(&mchdev_lock);
  3602. val = __i915_chipset_val(dev_priv);
  3603. spin_unlock_irq(&mchdev_lock);
  3604. return val;
  3605. }
  3606. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  3607. {
  3608. unsigned long m, x, b;
  3609. u32 tsfs;
  3610. tsfs = I915_READ(TSFS);
  3611. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  3612. x = I915_READ8(TR1);
  3613. b = tsfs & TSFS_INTR_MASK;
  3614. return ((m * x) / 127) - b;
  3615. }
  3616. static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  3617. {
  3618. struct drm_device *dev = dev_priv->dev;
  3619. static const struct v_table {
  3620. u16 vd; /* in .1 mil */
  3621. u16 vm; /* in .1 mil */
  3622. } v_table[] = {
  3623. { 0, 0, },
  3624. { 375, 0, },
  3625. { 500, 0, },
  3626. { 625, 0, },
  3627. { 750, 0, },
  3628. { 875, 0, },
  3629. { 1000, 0, },
  3630. { 1125, 0, },
  3631. { 4125, 3000, },
  3632. { 4125, 3000, },
  3633. { 4125, 3000, },
  3634. { 4125, 3000, },
  3635. { 4125, 3000, },
  3636. { 4125, 3000, },
  3637. { 4125, 3000, },
  3638. { 4125, 3000, },
  3639. { 4125, 3000, },
  3640. { 4125, 3000, },
  3641. { 4125, 3000, },
  3642. { 4125, 3000, },
  3643. { 4125, 3000, },
  3644. { 4125, 3000, },
  3645. { 4125, 3000, },
  3646. { 4125, 3000, },
  3647. { 4125, 3000, },
  3648. { 4125, 3000, },
  3649. { 4125, 3000, },
  3650. { 4125, 3000, },
  3651. { 4125, 3000, },
  3652. { 4125, 3000, },
  3653. { 4125, 3000, },
  3654. { 4125, 3000, },
  3655. { 4250, 3125, },
  3656. { 4375, 3250, },
  3657. { 4500, 3375, },
  3658. { 4625, 3500, },
  3659. { 4750, 3625, },
  3660. { 4875, 3750, },
  3661. { 5000, 3875, },
  3662. { 5125, 4000, },
  3663. { 5250, 4125, },
  3664. { 5375, 4250, },
  3665. { 5500, 4375, },
  3666. { 5625, 4500, },
  3667. { 5750, 4625, },
  3668. { 5875, 4750, },
  3669. { 6000, 4875, },
  3670. { 6125, 5000, },
  3671. { 6250, 5125, },
  3672. { 6375, 5250, },
  3673. { 6500, 5375, },
  3674. { 6625, 5500, },
  3675. { 6750, 5625, },
  3676. { 6875, 5750, },
  3677. { 7000, 5875, },
  3678. { 7125, 6000, },
  3679. { 7250, 6125, },
  3680. { 7375, 6250, },
  3681. { 7500, 6375, },
  3682. { 7625, 6500, },
  3683. { 7750, 6625, },
  3684. { 7875, 6750, },
  3685. { 8000, 6875, },
  3686. { 8125, 7000, },
  3687. { 8250, 7125, },
  3688. { 8375, 7250, },
  3689. { 8500, 7375, },
  3690. { 8625, 7500, },
  3691. { 8750, 7625, },
  3692. { 8875, 7750, },
  3693. { 9000, 7875, },
  3694. { 9125, 8000, },
  3695. { 9250, 8125, },
  3696. { 9375, 8250, },
  3697. { 9500, 8375, },
  3698. { 9625, 8500, },
  3699. { 9750, 8625, },
  3700. { 9875, 8750, },
  3701. { 10000, 8875, },
  3702. { 10125, 9000, },
  3703. { 10250, 9125, },
  3704. { 10375, 9250, },
  3705. { 10500, 9375, },
  3706. { 10625, 9500, },
  3707. { 10750, 9625, },
  3708. { 10875, 9750, },
  3709. { 11000, 9875, },
  3710. { 11125, 10000, },
  3711. { 11250, 10125, },
  3712. { 11375, 10250, },
  3713. { 11500, 10375, },
  3714. { 11625, 10500, },
  3715. { 11750, 10625, },
  3716. { 11875, 10750, },
  3717. { 12000, 10875, },
  3718. { 12125, 11000, },
  3719. { 12250, 11125, },
  3720. { 12375, 11250, },
  3721. { 12500, 11375, },
  3722. { 12625, 11500, },
  3723. { 12750, 11625, },
  3724. { 12875, 11750, },
  3725. { 13000, 11875, },
  3726. { 13125, 12000, },
  3727. { 13250, 12125, },
  3728. { 13375, 12250, },
  3729. { 13500, 12375, },
  3730. { 13625, 12500, },
  3731. { 13750, 12625, },
  3732. { 13875, 12750, },
  3733. { 14000, 12875, },
  3734. { 14125, 13000, },
  3735. { 14250, 13125, },
  3736. { 14375, 13250, },
  3737. { 14500, 13375, },
  3738. { 14625, 13500, },
  3739. { 14750, 13625, },
  3740. { 14875, 13750, },
  3741. { 15000, 13875, },
  3742. { 15125, 14000, },
  3743. { 15250, 14125, },
  3744. { 15375, 14250, },
  3745. { 15500, 14375, },
  3746. { 15625, 14500, },
  3747. { 15750, 14625, },
  3748. { 15875, 14750, },
  3749. { 16000, 14875, },
  3750. { 16125, 15000, },
  3751. };
  3752. if (INTEL_INFO(dev)->is_mobile)
  3753. return v_table[pxvid].vm;
  3754. else
  3755. return v_table[pxvid].vd;
  3756. }
  3757. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  3758. {
  3759. struct timespec now, diff1;
  3760. u64 diff;
  3761. unsigned long diffms;
  3762. u32 count;
  3763. assert_spin_locked(&mchdev_lock);
  3764. getrawmonotonic(&now);
  3765. diff1 = timespec_sub(now, dev_priv->ips.last_time2);
  3766. /* Don't divide by 0 */
  3767. diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
  3768. if (!diffms)
  3769. return;
  3770. count = I915_READ(GFXEC);
  3771. if (count < dev_priv->ips.last_count2) {
  3772. diff = ~0UL - dev_priv->ips.last_count2;
  3773. diff += count;
  3774. } else {
  3775. diff = count - dev_priv->ips.last_count2;
  3776. }
  3777. dev_priv->ips.last_count2 = count;
  3778. dev_priv->ips.last_time2 = now;
  3779. /* More magic constants... */
  3780. diff = diff * 1181;
  3781. diff = div_u64(diff, diffms * 10);
  3782. dev_priv->ips.gfx_power = diff;
  3783. }
  3784. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  3785. {
  3786. struct drm_device *dev = dev_priv->dev;
  3787. if (INTEL_INFO(dev)->gen != 5)
  3788. return;
  3789. spin_lock_irq(&mchdev_lock);
  3790. __i915_update_gfx_val(dev_priv);
  3791. spin_unlock_irq(&mchdev_lock);
  3792. }
  3793. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  3794. {
  3795. unsigned long t, corr, state1, corr2, state2;
  3796. u32 pxvid, ext_v;
  3797. assert_spin_locked(&mchdev_lock);
  3798. pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
  3799. pxvid = (pxvid >> 24) & 0x7f;
  3800. ext_v = pvid_to_extvid(dev_priv, pxvid);
  3801. state1 = ext_v;
  3802. t = i915_mch_val(dev_priv);
  3803. /* Revel in the empirically derived constants */
  3804. /* Correction factor in 1/100000 units */
  3805. if (t > 80)
  3806. corr = ((t * 2349) + 135940);
  3807. else if (t >= 50)
  3808. corr = ((t * 964) + 29317);
  3809. else /* < 50 */
  3810. corr = ((t * 301) + 1004);
  3811. corr = corr * ((150142 * state1) / 10000 - 78642);
  3812. corr /= 100000;
  3813. corr2 = (corr * dev_priv->ips.corr);
  3814. state2 = (corr2 * state1) / 10000;
  3815. state2 /= 100; /* convert to mW */
  3816. __i915_update_gfx_val(dev_priv);
  3817. return dev_priv->ips.gfx_power + state2;
  3818. }
  3819. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  3820. {
  3821. struct drm_device *dev = dev_priv->dev;
  3822. unsigned long val;
  3823. if (INTEL_INFO(dev)->gen != 5)
  3824. return 0;
  3825. spin_lock_irq(&mchdev_lock);
  3826. val = __i915_gfx_val(dev_priv);
  3827. spin_unlock_irq(&mchdev_lock);
  3828. return val;
  3829. }
  3830. /**
  3831. * i915_read_mch_val - return value for IPS use
  3832. *
  3833. * Calculate and return a value for the IPS driver to use when deciding whether
  3834. * we have thermal and power headroom to increase CPU or GPU power budget.
  3835. */
  3836. unsigned long i915_read_mch_val(void)
  3837. {
  3838. struct drm_i915_private *dev_priv;
  3839. unsigned long chipset_val, graphics_val, ret = 0;
  3840. spin_lock_irq(&mchdev_lock);
  3841. if (!i915_mch_dev)
  3842. goto out_unlock;
  3843. dev_priv = i915_mch_dev;
  3844. chipset_val = __i915_chipset_val(dev_priv);
  3845. graphics_val = __i915_gfx_val(dev_priv);
  3846. ret = chipset_val + graphics_val;
  3847. out_unlock:
  3848. spin_unlock_irq(&mchdev_lock);
  3849. return ret;
  3850. }
  3851. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  3852. /**
  3853. * i915_gpu_raise - raise GPU frequency limit
  3854. *
  3855. * Raise the limit; IPS indicates we have thermal headroom.
  3856. */
  3857. bool i915_gpu_raise(void)
  3858. {
  3859. struct drm_i915_private *dev_priv;
  3860. bool ret = true;
  3861. spin_lock_irq(&mchdev_lock);
  3862. if (!i915_mch_dev) {
  3863. ret = false;
  3864. goto out_unlock;
  3865. }
  3866. dev_priv = i915_mch_dev;
  3867. if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  3868. dev_priv->ips.max_delay--;
  3869. out_unlock:
  3870. spin_unlock_irq(&mchdev_lock);
  3871. return ret;
  3872. }
  3873. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  3874. /**
  3875. * i915_gpu_lower - lower GPU frequency limit
  3876. *
  3877. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  3878. * frequency maximum.
  3879. */
  3880. bool i915_gpu_lower(void)
  3881. {
  3882. struct drm_i915_private *dev_priv;
  3883. bool ret = true;
  3884. spin_lock_irq(&mchdev_lock);
  3885. if (!i915_mch_dev) {
  3886. ret = false;
  3887. goto out_unlock;
  3888. }
  3889. dev_priv = i915_mch_dev;
  3890. if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  3891. dev_priv->ips.max_delay++;
  3892. out_unlock:
  3893. spin_unlock_irq(&mchdev_lock);
  3894. return ret;
  3895. }
  3896. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  3897. /**
  3898. * i915_gpu_busy - indicate GPU business to IPS
  3899. *
  3900. * Tell the IPS driver whether or not the GPU is busy.
  3901. */
  3902. bool i915_gpu_busy(void)
  3903. {
  3904. struct drm_i915_private *dev_priv;
  3905. struct intel_engine_cs *ring;
  3906. bool ret = false;
  3907. int i;
  3908. spin_lock_irq(&mchdev_lock);
  3909. if (!i915_mch_dev)
  3910. goto out_unlock;
  3911. dev_priv = i915_mch_dev;
  3912. for_each_ring(ring, dev_priv, i)
  3913. ret |= !list_empty(&ring->request_list);
  3914. out_unlock:
  3915. spin_unlock_irq(&mchdev_lock);
  3916. return ret;
  3917. }
  3918. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  3919. /**
  3920. * i915_gpu_turbo_disable - disable graphics turbo
  3921. *
  3922. * Disable graphics turbo by resetting the max frequency and setting the
  3923. * current frequency to the default.
  3924. */
  3925. bool i915_gpu_turbo_disable(void)
  3926. {
  3927. struct drm_i915_private *dev_priv;
  3928. bool ret = true;
  3929. spin_lock_irq(&mchdev_lock);
  3930. if (!i915_mch_dev) {
  3931. ret = false;
  3932. goto out_unlock;
  3933. }
  3934. dev_priv = i915_mch_dev;
  3935. dev_priv->ips.max_delay = dev_priv->ips.fstart;
  3936. if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
  3937. ret = false;
  3938. out_unlock:
  3939. spin_unlock_irq(&mchdev_lock);
  3940. return ret;
  3941. }
  3942. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  3943. /**
  3944. * Tells the intel_ips driver that the i915 driver is now loaded, if
  3945. * IPS got loaded first.
  3946. *
  3947. * This awkward dance is so that neither module has to depend on the
  3948. * other in order for IPS to do the appropriate communication of
  3949. * GPU turbo limits to i915.
  3950. */
  3951. static void
  3952. ips_ping_for_i915_load(void)
  3953. {
  3954. void (*link)(void);
  3955. link = symbol_get(ips_link_to_i915_driver);
  3956. if (link) {
  3957. link();
  3958. symbol_put(ips_link_to_i915_driver);
  3959. }
  3960. }
  3961. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  3962. {
  3963. /* We only register the i915 ips part with intel-ips once everything is
  3964. * set up, to avoid intel-ips sneaking in and reading bogus values. */
  3965. spin_lock_irq(&mchdev_lock);
  3966. i915_mch_dev = dev_priv;
  3967. spin_unlock_irq(&mchdev_lock);
  3968. ips_ping_for_i915_load();
  3969. }
  3970. void intel_gpu_ips_teardown(void)
  3971. {
  3972. spin_lock_irq(&mchdev_lock);
  3973. i915_mch_dev = NULL;
  3974. spin_unlock_irq(&mchdev_lock);
  3975. }
  3976. static void intel_init_emon(struct drm_device *dev)
  3977. {
  3978. struct drm_i915_private *dev_priv = dev->dev_private;
  3979. u32 lcfuse;
  3980. u8 pxw[16];
  3981. int i;
  3982. /* Disable to program */
  3983. I915_WRITE(ECR, 0);
  3984. POSTING_READ(ECR);
  3985. /* Program energy weights for various events */
  3986. I915_WRITE(SDEW, 0x15040d00);
  3987. I915_WRITE(CSIEW0, 0x007f0000);
  3988. I915_WRITE(CSIEW1, 0x1e220004);
  3989. I915_WRITE(CSIEW2, 0x04000004);
  3990. for (i = 0; i < 5; i++)
  3991. I915_WRITE(PEW + (i * 4), 0);
  3992. for (i = 0; i < 3; i++)
  3993. I915_WRITE(DEW + (i * 4), 0);
  3994. /* Program P-state weights to account for frequency power adjustment */
  3995. for (i = 0; i < 16; i++) {
  3996. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  3997. unsigned long freq = intel_pxfreq(pxvidfreq);
  3998. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  3999. PXVFREQ_PX_SHIFT;
  4000. unsigned long val;
  4001. val = vid * vid;
  4002. val *= (freq / 1000);
  4003. val *= 255;
  4004. val /= (127*127*900);
  4005. if (val > 0xff)
  4006. DRM_ERROR("bad pxval: %ld\n", val);
  4007. pxw[i] = val;
  4008. }
  4009. /* Render standby states get 0 weight */
  4010. pxw[14] = 0;
  4011. pxw[15] = 0;
  4012. for (i = 0; i < 4; i++) {
  4013. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  4014. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  4015. I915_WRITE(PXW + (i * 4), val);
  4016. }
  4017. /* Adjust magic regs to magic values (more experimental results) */
  4018. I915_WRITE(OGW0, 0);
  4019. I915_WRITE(OGW1, 0);
  4020. I915_WRITE(EG0, 0x00007f00);
  4021. I915_WRITE(EG1, 0x0000000e);
  4022. I915_WRITE(EG2, 0x000e0000);
  4023. I915_WRITE(EG3, 0x68000300);
  4024. I915_WRITE(EG4, 0x42000000);
  4025. I915_WRITE(EG5, 0x00140031);
  4026. I915_WRITE(EG6, 0);
  4027. I915_WRITE(EG7, 0);
  4028. for (i = 0; i < 8; i++)
  4029. I915_WRITE(PXWL + (i * 4), 0);
  4030. /* Enable PMON + select events */
  4031. I915_WRITE(ECR, 0x80000019);
  4032. lcfuse = I915_READ(LCFUSE02);
  4033. dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  4034. }
  4035. void intel_init_gt_powersave(struct drm_device *dev)
  4036. {
  4037. i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
  4038. if (IS_CHERRYVIEW(dev))
  4039. cherryview_init_gt_powersave(dev);
  4040. else if (IS_VALLEYVIEW(dev))
  4041. valleyview_init_gt_powersave(dev);
  4042. }
  4043. void intel_cleanup_gt_powersave(struct drm_device *dev)
  4044. {
  4045. if (IS_CHERRYVIEW(dev))
  4046. return;
  4047. else if (IS_VALLEYVIEW(dev))
  4048. valleyview_cleanup_gt_powersave(dev);
  4049. }
  4050. /**
  4051. * intel_suspend_gt_powersave - suspend PM work and helper threads
  4052. * @dev: drm device
  4053. *
  4054. * We don't want to disable RC6 or other features here, we just want
  4055. * to make sure any work we've queued has finished and won't bother
  4056. * us while we're suspended.
  4057. */
  4058. void intel_suspend_gt_powersave(struct drm_device *dev)
  4059. {
  4060. struct drm_i915_private *dev_priv = dev->dev_private;
  4061. /* Interrupts should be disabled already to avoid re-arming. */
  4062. WARN_ON(dev->irq_enabled && !dev_priv->pm.irqs_disabled);
  4063. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  4064. cancel_work_sync(&dev_priv->rps.work);
  4065. }
  4066. void intel_disable_gt_powersave(struct drm_device *dev)
  4067. {
  4068. struct drm_i915_private *dev_priv = dev->dev_private;
  4069. /* Interrupts should be disabled already to avoid re-arming. */
  4070. WARN_ON(dev->irq_enabled && !dev_priv->pm.irqs_disabled);
  4071. if (IS_IRONLAKE_M(dev)) {
  4072. ironlake_disable_drps(dev);
  4073. ironlake_disable_rc6(dev);
  4074. } else if (INTEL_INFO(dev)->gen >= 6) {
  4075. intel_suspend_gt_powersave(dev);
  4076. mutex_lock(&dev_priv->rps.hw_lock);
  4077. if (IS_CHERRYVIEW(dev))
  4078. cherryview_disable_rps(dev);
  4079. else if (IS_VALLEYVIEW(dev))
  4080. valleyview_disable_rps(dev);
  4081. else
  4082. gen6_disable_rps(dev);
  4083. dev_priv->rps.enabled = false;
  4084. mutex_unlock(&dev_priv->rps.hw_lock);
  4085. }
  4086. }
  4087. static void intel_gen6_powersave_work(struct work_struct *work)
  4088. {
  4089. struct drm_i915_private *dev_priv =
  4090. container_of(work, struct drm_i915_private,
  4091. rps.delayed_resume_work.work);
  4092. struct drm_device *dev = dev_priv->dev;
  4093. mutex_lock(&dev_priv->rps.hw_lock);
  4094. if (IS_CHERRYVIEW(dev)) {
  4095. cherryview_enable_rps(dev);
  4096. } else if (IS_VALLEYVIEW(dev)) {
  4097. valleyview_enable_rps(dev);
  4098. } else if (IS_BROADWELL(dev)) {
  4099. gen8_enable_rps(dev);
  4100. __gen6_update_ring_freq(dev);
  4101. } else {
  4102. gen6_enable_rps(dev);
  4103. __gen6_update_ring_freq(dev);
  4104. }
  4105. dev_priv->rps.enabled = true;
  4106. mutex_unlock(&dev_priv->rps.hw_lock);
  4107. intel_runtime_pm_put(dev_priv);
  4108. }
  4109. void intel_enable_gt_powersave(struct drm_device *dev)
  4110. {
  4111. struct drm_i915_private *dev_priv = dev->dev_private;
  4112. if (IS_IRONLAKE_M(dev)) {
  4113. mutex_lock(&dev->struct_mutex);
  4114. ironlake_enable_drps(dev);
  4115. ironlake_enable_rc6(dev);
  4116. intel_init_emon(dev);
  4117. mutex_unlock(&dev->struct_mutex);
  4118. } else if (INTEL_INFO(dev)->gen >= 6) {
  4119. /*
  4120. * PCU communication is slow and this doesn't need to be
  4121. * done at any specific time, so do this out of our fast path
  4122. * to make resume and init faster.
  4123. *
  4124. * We depend on the HW RC6 power context save/restore
  4125. * mechanism when entering D3 through runtime PM suspend. So
  4126. * disable RPM until RPS/RC6 is properly setup. We can only
  4127. * get here via the driver load/system resume/runtime resume
  4128. * paths, so the _noresume version is enough (and in case of
  4129. * runtime resume it's necessary).
  4130. */
  4131. if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
  4132. round_jiffies_up_relative(HZ)))
  4133. intel_runtime_pm_get_noresume(dev_priv);
  4134. }
  4135. }
  4136. void intel_reset_gt_powersave(struct drm_device *dev)
  4137. {
  4138. struct drm_i915_private *dev_priv = dev->dev_private;
  4139. dev_priv->rps.enabled = false;
  4140. intel_enable_gt_powersave(dev);
  4141. }
  4142. static void ibx_init_clock_gating(struct drm_device *dev)
  4143. {
  4144. struct drm_i915_private *dev_priv = dev->dev_private;
  4145. /*
  4146. * On Ibex Peak and Cougar Point, we need to disable clock
  4147. * gating for the panel power sequencer or it will fail to
  4148. * start up when no ports are active.
  4149. */
  4150. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  4151. }
  4152. static void g4x_disable_trickle_feed(struct drm_device *dev)
  4153. {
  4154. struct drm_i915_private *dev_priv = dev->dev_private;
  4155. int pipe;
  4156. for_each_pipe(pipe) {
  4157. I915_WRITE(DSPCNTR(pipe),
  4158. I915_READ(DSPCNTR(pipe)) |
  4159. DISPPLANE_TRICKLE_FEED_DISABLE);
  4160. intel_flush_primary_plane(dev_priv, pipe);
  4161. }
  4162. }
  4163. static void ilk_init_lp_watermarks(struct drm_device *dev)
  4164. {
  4165. struct drm_i915_private *dev_priv = dev->dev_private;
  4166. I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
  4167. I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
  4168. I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
  4169. /*
  4170. * Don't touch WM1S_LP_EN here.
  4171. * Doing so could cause underruns.
  4172. */
  4173. }
  4174. static void ironlake_init_clock_gating(struct drm_device *dev)
  4175. {
  4176. struct drm_i915_private *dev_priv = dev->dev_private;
  4177. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4178. /*
  4179. * Required for FBC
  4180. * WaFbcDisableDpfcClockGating:ilk
  4181. */
  4182. dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  4183. ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  4184. ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  4185. I915_WRITE(PCH_3DCGDIS0,
  4186. MARIUNIT_CLOCK_GATE_DISABLE |
  4187. SVSMUNIT_CLOCK_GATE_DISABLE);
  4188. I915_WRITE(PCH_3DCGDIS1,
  4189. VFMUNIT_CLOCK_GATE_DISABLE);
  4190. /*
  4191. * According to the spec the following bits should be set in
  4192. * order to enable memory self-refresh
  4193. * The bit 22/21 of 0x42004
  4194. * The bit 5 of 0x42020
  4195. * The bit 15 of 0x45000
  4196. */
  4197. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4198. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  4199. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  4200. dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  4201. I915_WRITE(DISP_ARB_CTL,
  4202. (I915_READ(DISP_ARB_CTL) |
  4203. DISP_FBC_WM_DIS));
  4204. ilk_init_lp_watermarks(dev);
  4205. /*
  4206. * Based on the document from hardware guys the following bits
  4207. * should be set unconditionally in order to enable FBC.
  4208. * The bit 22 of 0x42000
  4209. * The bit 22 of 0x42004
  4210. * The bit 7,8,9 of 0x42020.
  4211. */
  4212. if (IS_IRONLAKE_M(dev)) {
  4213. /* WaFbcAsynchFlipDisableFbcQueue:ilk */
  4214. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4215. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4216. ILK_FBCQ_DIS);
  4217. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4218. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4219. ILK_DPARB_GATE);
  4220. }
  4221. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4222. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4223. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4224. ILK_ELPIN_409_SELECT);
  4225. I915_WRITE(_3D_CHICKEN2,
  4226. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  4227. _3D_CHICKEN2_WM_READ_PIPELINED);
  4228. /* WaDisableRenderCachePipelinedFlush:ilk */
  4229. I915_WRITE(CACHE_MODE_0,
  4230. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  4231. /* WaDisable_RenderCache_OperationalFlush:ilk */
  4232. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4233. g4x_disable_trickle_feed(dev);
  4234. ibx_init_clock_gating(dev);
  4235. }
  4236. static void cpt_init_clock_gating(struct drm_device *dev)
  4237. {
  4238. struct drm_i915_private *dev_priv = dev->dev_private;
  4239. int pipe;
  4240. uint32_t val;
  4241. /*
  4242. * On Ibex Peak and Cougar Point, we need to disable clock
  4243. * gating for the panel power sequencer or it will fail to
  4244. * start up when no ports are active.
  4245. */
  4246. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
  4247. PCH_DPLUNIT_CLOCK_GATE_DISABLE |
  4248. PCH_CPUNIT_CLOCK_GATE_DISABLE);
  4249. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  4250. DPLS_EDP_PPS_FIX_DIS);
  4251. /* The below fixes the weird display corruption, a few pixels shifted
  4252. * downward, on (only) LVDS of some HP laptops with IVY.
  4253. */
  4254. for_each_pipe(pipe) {
  4255. val = I915_READ(TRANS_CHICKEN2(pipe));
  4256. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  4257. val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4258. if (dev_priv->vbt.fdi_rx_polarity_inverted)
  4259. val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4260. val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
  4261. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
  4262. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
  4263. I915_WRITE(TRANS_CHICKEN2(pipe), val);
  4264. }
  4265. /* WADP0ClockGatingDisable */
  4266. for_each_pipe(pipe) {
  4267. I915_WRITE(TRANS_CHICKEN1(pipe),
  4268. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4269. }
  4270. }
  4271. static void gen6_check_mch_setup(struct drm_device *dev)
  4272. {
  4273. struct drm_i915_private *dev_priv = dev->dev_private;
  4274. uint32_t tmp;
  4275. tmp = I915_READ(MCH_SSKPD);
  4276. if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
  4277. DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
  4278. DRM_INFO("This can cause pipe underruns and display issues.\n");
  4279. DRM_INFO("Please upgrade your BIOS to fix this.\n");
  4280. }
  4281. }
  4282. static void gen6_init_clock_gating(struct drm_device *dev)
  4283. {
  4284. struct drm_i915_private *dev_priv = dev->dev_private;
  4285. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4286. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4287. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4288. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4289. ILK_ELPIN_409_SELECT);
  4290. /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
  4291. I915_WRITE(_3D_CHICKEN,
  4292. _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
  4293. /* WaSetupGtModeTdRowDispatch:snb */
  4294. if (IS_SNB_GT1(dev))
  4295. I915_WRITE(GEN6_GT_MODE,
  4296. _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
  4297. /* WaDisable_RenderCache_OperationalFlush:snb */
  4298. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4299. /*
  4300. * BSpec recoomends 8x4 when MSAA is used,
  4301. * however in practice 16x4 seems fastest.
  4302. *
  4303. * Note that PS/WM thread counts depend on the WIZ hashing
  4304. * disable bit, which we don't touch here, but it's good
  4305. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  4306. */
  4307. I915_WRITE(GEN6_GT_MODE,
  4308. GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
  4309. ilk_init_lp_watermarks(dev);
  4310. I915_WRITE(CACHE_MODE_0,
  4311. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  4312. I915_WRITE(GEN6_UCGCTL1,
  4313. I915_READ(GEN6_UCGCTL1) |
  4314. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  4315. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  4316. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4317. * gating disable must be set. Failure to set it results in
  4318. * flickering pixels due to Z write ordering failures after
  4319. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4320. * Sanctuary and Tropics, and apparently anything else with
  4321. * alpha test or pixel discard.
  4322. *
  4323. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4324. * but we didn't debug actual testcases to find it out.
  4325. *
  4326. * WaDisableRCCUnitClockGating:snb
  4327. * WaDisableRCPBUnitClockGating:snb
  4328. */
  4329. I915_WRITE(GEN6_UCGCTL2,
  4330. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  4331. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4332. /* WaStripsFansDisableFastClipPerformanceFix:snb */
  4333. I915_WRITE(_3D_CHICKEN3,
  4334. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
  4335. /*
  4336. * Bspec says:
  4337. * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
  4338. * 3DSTATE_SF number of SF output attributes is more than 16."
  4339. */
  4340. I915_WRITE(_3D_CHICKEN3,
  4341. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
  4342. /*
  4343. * According to the spec the following bits should be
  4344. * set in order to enable memory self-refresh and fbc:
  4345. * The bit21 and bit22 of 0x42000
  4346. * The bit21 and bit22 of 0x42004
  4347. * The bit5 and bit7 of 0x42020
  4348. * The bit14 of 0x70180
  4349. * The bit14 of 0x71180
  4350. *
  4351. * WaFbcAsynchFlipDisableFbcQueue:snb
  4352. */
  4353. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4354. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4355. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  4356. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4357. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4358. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  4359. I915_WRITE(ILK_DSPCLK_GATE_D,
  4360. I915_READ(ILK_DSPCLK_GATE_D) |
  4361. ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
  4362. ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  4363. g4x_disable_trickle_feed(dev);
  4364. cpt_init_clock_gating(dev);
  4365. gen6_check_mch_setup(dev);
  4366. }
  4367. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  4368. {
  4369. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  4370. /*
  4371. * WaVSThreadDispatchOverride:ivb,vlv
  4372. *
  4373. * This actually overrides the dispatch
  4374. * mode for all thread types.
  4375. */
  4376. reg &= ~GEN7_FF_SCHED_MASK;
  4377. reg |= GEN7_FF_TS_SCHED_HW;
  4378. reg |= GEN7_FF_VS_SCHED_HW;
  4379. reg |= GEN7_FF_DS_SCHED_HW;
  4380. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  4381. }
  4382. static void lpt_init_clock_gating(struct drm_device *dev)
  4383. {
  4384. struct drm_i915_private *dev_priv = dev->dev_private;
  4385. /*
  4386. * TODO: this bit should only be enabled when really needed, then
  4387. * disabled when not needed anymore in order to save power.
  4388. */
  4389. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
  4390. I915_WRITE(SOUTH_DSPCLK_GATE_D,
  4391. I915_READ(SOUTH_DSPCLK_GATE_D) |
  4392. PCH_LP_PARTITION_LEVEL_DISABLE);
  4393. /* WADPOClockGatingDisable:hsw */
  4394. I915_WRITE(_TRANSA_CHICKEN1,
  4395. I915_READ(_TRANSA_CHICKEN1) |
  4396. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4397. }
  4398. static void lpt_suspend_hw(struct drm_device *dev)
  4399. {
  4400. struct drm_i915_private *dev_priv = dev->dev_private;
  4401. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  4402. uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
  4403. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  4404. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  4405. }
  4406. }
  4407. static void gen8_init_clock_gating(struct drm_device *dev)
  4408. {
  4409. struct drm_i915_private *dev_priv = dev->dev_private;
  4410. enum pipe pipe;
  4411. I915_WRITE(WM3_LP_ILK, 0);
  4412. I915_WRITE(WM2_LP_ILK, 0);
  4413. I915_WRITE(WM1_LP_ILK, 0);
  4414. /* FIXME(BDW): Check all the w/a, some might only apply to
  4415. * pre-production hw. */
  4416. /* WaDisablePartialInstShootdown:bdw */
  4417. I915_WRITE(GEN8_ROW_CHICKEN,
  4418. _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
  4419. /* WaDisableThreadStallDopClockGating:bdw */
  4420. /* FIXME: Unclear whether we really need this on production bdw. */
  4421. I915_WRITE(GEN8_ROW_CHICKEN,
  4422. _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
  4423. /*
  4424. * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
  4425. * pre-production hardware
  4426. */
  4427. I915_WRITE(HALF_SLICE_CHICKEN3,
  4428. _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
  4429. I915_WRITE(HALF_SLICE_CHICKEN3,
  4430. _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
  4431. I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
  4432. I915_WRITE(_3D_CHICKEN3,
  4433. _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));
  4434. I915_WRITE(COMMON_SLICE_CHICKEN2,
  4435. _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
  4436. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4437. _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
  4438. /* WaDisableDopClockGating:bdw May not be needed for production */
  4439. I915_WRITE(GEN7_ROW_CHICKEN2,
  4440. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4441. /* WaSwitchSolVfFArbitrationPriority:bdw */
  4442. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  4443. /* WaPsrDPAMaskVBlankInSRD:bdw */
  4444. I915_WRITE(CHICKEN_PAR1_1,
  4445. I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
  4446. /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
  4447. for_each_pipe(pipe) {
  4448. I915_WRITE(CHICKEN_PIPESL_1(pipe),
  4449. I915_READ(CHICKEN_PIPESL_1(pipe)) |
  4450. BDW_DPRS_MASK_VBLANK_SRD);
  4451. }
  4452. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  4453. * workaround for for a possible hang in the unlikely event a TLB
  4454. * invalidation occurs during a PSD flush.
  4455. */
  4456. I915_WRITE(HDC_CHICKEN0,
  4457. I915_READ(HDC_CHICKEN0) |
  4458. _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
  4459. /* WaVSRefCountFullforceMissDisable:bdw */
  4460. /* WaDSRefCountFullforceMissDisable:bdw */
  4461. I915_WRITE(GEN7_FF_THREAD_MODE,
  4462. I915_READ(GEN7_FF_THREAD_MODE) &
  4463. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  4464. /*
  4465. * BSpec recommends 8x4 when MSAA is used,
  4466. * however in practice 16x4 seems fastest.
  4467. *
  4468. * Note that PS/WM thread counts depend on the WIZ hashing
  4469. * disable bit, which we don't touch here, but it's good
  4470. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  4471. */
  4472. I915_WRITE(GEN7_GT_MODE,
  4473. GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
  4474. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  4475. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  4476. /* WaDisableSDEUnitClockGating:bdw */
  4477. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  4478. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  4479. /* Wa4x4STCOptimizationDisable:bdw */
  4480. I915_WRITE(CACHE_MODE_1,
  4481. _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
  4482. }
  4483. static void haswell_init_clock_gating(struct drm_device *dev)
  4484. {
  4485. struct drm_i915_private *dev_priv = dev->dev_private;
  4486. ilk_init_lp_watermarks(dev);
  4487. /* L3 caching of data atomics doesn't work -- disable it. */
  4488. I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
  4489. I915_WRITE(HSW_ROW_CHICKEN3,
  4490. _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
  4491. /* This is required by WaCatErrorRejectionIssue:hsw */
  4492. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4493. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4494. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4495. /* WaVSRefCountFullforceMissDisable:hsw */
  4496. I915_WRITE(GEN7_FF_THREAD_MODE,
  4497. I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
  4498. /* WaDisable_RenderCache_OperationalFlush:hsw */
  4499. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4500. /* enable HiZ Raw Stall Optimization */
  4501. I915_WRITE(CACHE_MODE_0_GEN7,
  4502. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  4503. /* WaDisable4x2SubspanOptimization:hsw */
  4504. I915_WRITE(CACHE_MODE_1,
  4505. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4506. /*
  4507. * BSpec recommends 8x4 when MSAA is used,
  4508. * however in practice 16x4 seems fastest.
  4509. *
  4510. * Note that PS/WM thread counts depend on the WIZ hashing
  4511. * disable bit, which we don't touch here, but it's good
  4512. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  4513. */
  4514. I915_WRITE(GEN7_GT_MODE,
  4515. GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
  4516. /* WaSwitchSolVfFArbitrationPriority:hsw */
  4517. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  4518. /* WaRsPkgCStateDisplayPMReq:hsw */
  4519. I915_WRITE(CHICKEN_PAR1_1,
  4520. I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
  4521. lpt_init_clock_gating(dev);
  4522. }
  4523. static void ivybridge_init_clock_gating(struct drm_device *dev)
  4524. {
  4525. struct drm_i915_private *dev_priv = dev->dev_private;
  4526. uint32_t snpcr;
  4527. ilk_init_lp_watermarks(dev);
  4528. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  4529. /* WaDisableEarlyCull:ivb */
  4530. I915_WRITE(_3D_CHICKEN3,
  4531. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  4532. /* WaDisableBackToBackFlipFix:ivb */
  4533. I915_WRITE(IVB_CHICKEN3,
  4534. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  4535. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  4536. /* WaDisablePSDDualDispatchEnable:ivb */
  4537. if (IS_IVB_GT1(dev))
  4538. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4539. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4540. /* WaDisable_RenderCache_OperationalFlush:ivb */
  4541. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4542. /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
  4543. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4544. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4545. /* WaApplyL3ControlAndL3ChickenMode:ivb */
  4546. I915_WRITE(GEN7_L3CNTLREG1,
  4547. GEN7_WA_FOR_GEN7_L3_CONTROL);
  4548. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  4549. GEN7_WA_L3_CHICKEN_MODE);
  4550. if (IS_IVB_GT1(dev))
  4551. I915_WRITE(GEN7_ROW_CHICKEN2,
  4552. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4553. else {
  4554. /* must write both registers */
  4555. I915_WRITE(GEN7_ROW_CHICKEN2,
  4556. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4557. I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  4558. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4559. }
  4560. /* WaForceL3Serialization:ivb */
  4561. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  4562. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  4563. /*
  4564. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4565. * This implements the WaDisableRCZUnitClockGating:ivb workaround.
  4566. */
  4567. I915_WRITE(GEN6_UCGCTL2,
  4568. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  4569. /* This is required by WaCatErrorRejectionIssue:ivb */
  4570. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4571. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4572. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4573. g4x_disable_trickle_feed(dev);
  4574. gen7_setup_fixed_func_scheduler(dev_priv);
  4575. if (0) { /* causes HiZ corruption on ivb:gt1 */
  4576. /* enable HiZ Raw Stall Optimization */
  4577. I915_WRITE(CACHE_MODE_0_GEN7,
  4578. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  4579. }
  4580. /* WaDisable4x2SubspanOptimization:ivb */
  4581. I915_WRITE(CACHE_MODE_1,
  4582. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4583. /*
  4584. * BSpec recommends 8x4 when MSAA is used,
  4585. * however in practice 16x4 seems fastest.
  4586. *
  4587. * Note that PS/WM thread counts depend on the WIZ hashing
  4588. * disable bit, which we don't touch here, but it's good
  4589. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  4590. */
  4591. I915_WRITE(GEN7_GT_MODE,
  4592. GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
  4593. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  4594. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  4595. snpcr |= GEN6_MBC_SNPCR_MED;
  4596. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  4597. if (!HAS_PCH_NOP(dev))
  4598. cpt_init_clock_gating(dev);
  4599. gen6_check_mch_setup(dev);
  4600. }
  4601. static void valleyview_init_clock_gating(struct drm_device *dev)
  4602. {
  4603. struct drm_i915_private *dev_priv = dev->dev_private;
  4604. u32 val;
  4605. mutex_lock(&dev_priv->rps.hw_lock);
  4606. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  4607. mutex_unlock(&dev_priv->rps.hw_lock);
  4608. switch ((val >> 6) & 3) {
  4609. case 0:
  4610. case 1:
  4611. dev_priv->mem_freq = 800;
  4612. break;
  4613. case 2:
  4614. dev_priv->mem_freq = 1066;
  4615. break;
  4616. case 3:
  4617. dev_priv->mem_freq = 1333;
  4618. break;
  4619. }
  4620. DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
  4621. dev_priv->vlv_cdclk_freq = valleyview_cur_cdclk(dev_priv);
  4622. DRM_DEBUG_DRIVER("Current CD clock rate: %d MHz",
  4623. dev_priv->vlv_cdclk_freq);
  4624. I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
  4625. /* WaDisableEarlyCull:vlv */
  4626. I915_WRITE(_3D_CHICKEN3,
  4627. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  4628. /* WaDisableBackToBackFlipFix:vlv */
  4629. I915_WRITE(IVB_CHICKEN3,
  4630. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  4631. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  4632. /* WaPsdDispatchEnable:vlv */
  4633. /* WaDisablePSDDualDispatchEnable:vlv */
  4634. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4635. _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
  4636. GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4637. /* WaDisable_RenderCache_OperationalFlush:vlv */
  4638. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4639. /* WaForceL3Serialization:vlv */
  4640. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  4641. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  4642. /* WaDisableDopClockGating:vlv */
  4643. I915_WRITE(GEN7_ROW_CHICKEN2,
  4644. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4645. /* This is required by WaCatErrorRejectionIssue:vlv */
  4646. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4647. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4648. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4649. gen7_setup_fixed_func_scheduler(dev_priv);
  4650. /*
  4651. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4652. * This implements the WaDisableRCZUnitClockGating:vlv workaround.
  4653. */
  4654. I915_WRITE(GEN6_UCGCTL2,
  4655. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  4656. /* WaDisableL3Bank2xClockGate:vlv
  4657. * Disabling L3 clock gating- MMIO 940c[25] = 1
  4658. * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
  4659. I915_WRITE(GEN7_UCGCTL4,
  4660. I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  4661. I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
  4662. /*
  4663. * BSpec says this must be set, even though
  4664. * WaDisable4x2SubspanOptimization isn't listed for VLV.
  4665. */
  4666. I915_WRITE(CACHE_MODE_1,
  4667. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4668. /*
  4669. * WaIncreaseL3CreditsForVLVB0:vlv
  4670. * This is the hardware default actually.
  4671. */
  4672. I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
  4673. /*
  4674. * WaDisableVLVClockGating_VBIIssue:vlv
  4675. * Disable clock gating on th GCFG unit to prevent a delay
  4676. * in the reporting of vblank events.
  4677. */
  4678. I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
  4679. }
  4680. static void cherryview_init_clock_gating(struct drm_device *dev)
  4681. {
  4682. struct drm_i915_private *dev_priv = dev->dev_private;
  4683. I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
  4684. I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
  4685. /* WaDisablePartialInstShootdown:chv */
  4686. I915_WRITE(GEN8_ROW_CHICKEN,
  4687. _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
  4688. /* WaDisableThreadStallDopClockGating:chv */
  4689. I915_WRITE(GEN8_ROW_CHICKEN,
  4690. _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
  4691. /* WaVSRefCountFullforceMissDisable:chv */
  4692. /* WaDSRefCountFullforceMissDisable:chv */
  4693. I915_WRITE(GEN7_FF_THREAD_MODE,
  4694. I915_READ(GEN7_FF_THREAD_MODE) &
  4695. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  4696. /* WaDisableSemaphoreAndSyncFlipWait:chv */
  4697. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  4698. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  4699. /* WaDisableCSUnitClockGating:chv */
  4700. I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
  4701. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  4702. /* WaDisableSDEUnitClockGating:chv */
  4703. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  4704. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  4705. /* WaDisableSamplerPowerBypass:chv (pre-production hw) */
  4706. I915_WRITE(HALF_SLICE_CHICKEN3,
  4707. _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
  4708. /* WaDisableGunitClockGating:chv (pre-production hw) */
  4709. I915_WRITE(VLV_GUNIT_CLOCK_GATE, I915_READ(VLV_GUNIT_CLOCK_GATE) |
  4710. GINT_DIS);
  4711. /* WaDisableFfDopClockGating:chv (pre-production hw) */
  4712. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  4713. _MASKED_BIT_ENABLE(GEN8_FF_DOP_CLOCK_GATE_DISABLE));
  4714. /* WaDisableDopClockGating:chv (pre-production hw) */
  4715. I915_WRITE(GEN7_ROW_CHICKEN2,
  4716. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4717. I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
  4718. GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
  4719. }
  4720. static void g4x_init_clock_gating(struct drm_device *dev)
  4721. {
  4722. struct drm_i915_private *dev_priv = dev->dev_private;
  4723. uint32_t dspclk_gate;
  4724. I915_WRITE(RENCLK_GATE_D1, 0);
  4725. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  4726. GS_UNIT_CLOCK_GATE_DISABLE |
  4727. CL_UNIT_CLOCK_GATE_DISABLE);
  4728. I915_WRITE(RAMCLK_GATE_D, 0);
  4729. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  4730. OVRUNIT_CLOCK_GATE_DISABLE |
  4731. OVCUNIT_CLOCK_GATE_DISABLE;
  4732. if (IS_GM45(dev))
  4733. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  4734. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  4735. /* WaDisableRenderCachePipelinedFlush */
  4736. I915_WRITE(CACHE_MODE_0,
  4737. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  4738. /* WaDisable_RenderCache_OperationalFlush:g4x */
  4739. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4740. g4x_disable_trickle_feed(dev);
  4741. }
  4742. static void crestline_init_clock_gating(struct drm_device *dev)
  4743. {
  4744. struct drm_i915_private *dev_priv = dev->dev_private;
  4745. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  4746. I915_WRITE(RENCLK_GATE_D2, 0);
  4747. I915_WRITE(DSPCLK_GATE_D, 0);
  4748. I915_WRITE(RAMCLK_GATE_D, 0);
  4749. I915_WRITE16(DEUC, 0);
  4750. I915_WRITE(MI_ARB_STATE,
  4751. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  4752. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  4753. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4754. }
  4755. static void broadwater_init_clock_gating(struct drm_device *dev)
  4756. {
  4757. struct drm_i915_private *dev_priv = dev->dev_private;
  4758. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  4759. I965_RCC_CLOCK_GATE_DISABLE |
  4760. I965_RCPB_CLOCK_GATE_DISABLE |
  4761. I965_ISC_CLOCK_GATE_DISABLE |
  4762. I965_FBC_CLOCK_GATE_DISABLE);
  4763. I915_WRITE(RENCLK_GATE_D2, 0);
  4764. I915_WRITE(MI_ARB_STATE,
  4765. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  4766. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  4767. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4768. }
  4769. static void gen3_init_clock_gating(struct drm_device *dev)
  4770. {
  4771. struct drm_i915_private *dev_priv = dev->dev_private;
  4772. u32 dstate = I915_READ(D_STATE);
  4773. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  4774. DSTATE_DOT_CLOCK_GATING;
  4775. I915_WRITE(D_STATE, dstate);
  4776. if (IS_PINEVIEW(dev))
  4777. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  4778. /* IIR "flip pending" means done if this bit is set */
  4779. I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  4780. /* interrupts should cause a wake up from C3 */
  4781. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
  4782. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  4783. I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  4784. }
  4785. static void i85x_init_clock_gating(struct drm_device *dev)
  4786. {
  4787. struct drm_i915_private *dev_priv = dev->dev_private;
  4788. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  4789. /* interrupts should cause a wake up from C3 */
  4790. I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
  4791. _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
  4792. }
  4793. static void i830_init_clock_gating(struct drm_device *dev)
  4794. {
  4795. struct drm_i915_private *dev_priv = dev->dev_private;
  4796. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  4797. }
  4798. void intel_init_clock_gating(struct drm_device *dev)
  4799. {
  4800. struct drm_i915_private *dev_priv = dev->dev_private;
  4801. dev_priv->display.init_clock_gating(dev);
  4802. }
  4803. void intel_suspend_hw(struct drm_device *dev)
  4804. {
  4805. if (HAS_PCH_LPT(dev))
  4806. lpt_suspend_hw(dev);
  4807. }
  4808. #define for_each_power_well(i, power_well, domain_mask, power_domains) \
  4809. for (i = 0; \
  4810. i < (power_domains)->power_well_count && \
  4811. ((power_well) = &(power_domains)->power_wells[i]); \
  4812. i++) \
  4813. if ((power_well)->domains & (domain_mask))
  4814. #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
  4815. for (i = (power_domains)->power_well_count - 1; \
  4816. i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
  4817. i--) \
  4818. if ((power_well)->domains & (domain_mask))
  4819. /**
  4820. * We should only use the power well if we explicitly asked the hardware to
  4821. * enable it, so check if it's enabled and also check if we've requested it to
  4822. * be enabled.
  4823. */
  4824. static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
  4825. struct i915_power_well *power_well)
  4826. {
  4827. return I915_READ(HSW_PWR_WELL_DRIVER) ==
  4828. (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
  4829. }
  4830. bool intel_display_power_enabled_sw(struct drm_i915_private *dev_priv,
  4831. enum intel_display_power_domain domain)
  4832. {
  4833. struct i915_power_domains *power_domains;
  4834. struct i915_power_well *power_well;
  4835. bool is_enabled;
  4836. int i;
  4837. if (dev_priv->pm.suspended)
  4838. return false;
  4839. power_domains = &dev_priv->power_domains;
  4840. is_enabled = true;
  4841. for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
  4842. if (power_well->always_on)
  4843. continue;
  4844. if (!power_well->count) {
  4845. is_enabled = false;
  4846. break;
  4847. }
  4848. }
  4849. return is_enabled;
  4850. }
  4851. bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
  4852. enum intel_display_power_domain domain)
  4853. {
  4854. struct i915_power_domains *power_domains;
  4855. struct i915_power_well *power_well;
  4856. bool is_enabled;
  4857. int i;
  4858. if (dev_priv->pm.suspended)
  4859. return false;
  4860. power_domains = &dev_priv->power_domains;
  4861. is_enabled = true;
  4862. mutex_lock(&power_domains->lock);
  4863. for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
  4864. if (power_well->always_on)
  4865. continue;
  4866. if (!power_well->ops->is_enabled(dev_priv, power_well)) {
  4867. is_enabled = false;
  4868. break;
  4869. }
  4870. }
  4871. mutex_unlock(&power_domains->lock);
  4872. return is_enabled;
  4873. }
  4874. /*
  4875. * Starting with Haswell, we have a "Power Down Well" that can be turned off
  4876. * when not needed anymore. We have 4 registers that can request the power well
  4877. * to be enabled, and it will only be disabled if none of the registers is
  4878. * requesting it to be enabled.
  4879. */
  4880. static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
  4881. {
  4882. struct drm_device *dev = dev_priv->dev;
  4883. unsigned long irqflags;
  4884. /*
  4885. * After we re-enable the power well, if we touch VGA register 0x3d5
  4886. * we'll get unclaimed register interrupts. This stops after we write
  4887. * anything to the VGA MSR register. The vgacon module uses this
  4888. * register all the time, so if we unbind our driver and, as a
  4889. * consequence, bind vgacon, we'll get stuck in an infinite loop at
  4890. * console_unlock(). So make here we touch the VGA MSR register, making
  4891. * sure vgacon can keep working normally without triggering interrupts
  4892. * and error messages.
  4893. */
  4894. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  4895. outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
  4896. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  4897. if (IS_BROADWELL(dev)) {
  4898. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  4899. I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
  4900. dev_priv->de_irq_mask[PIPE_B]);
  4901. I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
  4902. ~dev_priv->de_irq_mask[PIPE_B] |
  4903. GEN8_PIPE_VBLANK);
  4904. I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
  4905. dev_priv->de_irq_mask[PIPE_C]);
  4906. I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
  4907. ~dev_priv->de_irq_mask[PIPE_C] |
  4908. GEN8_PIPE_VBLANK);
  4909. POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
  4910. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  4911. }
  4912. }
  4913. static void hsw_set_power_well(struct drm_i915_private *dev_priv,
  4914. struct i915_power_well *power_well, bool enable)
  4915. {
  4916. bool is_enabled, enable_requested;
  4917. uint32_t tmp;
  4918. tmp = I915_READ(HSW_PWR_WELL_DRIVER);
  4919. is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
  4920. enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
  4921. if (enable) {
  4922. if (!enable_requested)
  4923. I915_WRITE(HSW_PWR_WELL_DRIVER,
  4924. HSW_PWR_WELL_ENABLE_REQUEST);
  4925. if (!is_enabled) {
  4926. DRM_DEBUG_KMS("Enabling power well\n");
  4927. if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
  4928. HSW_PWR_WELL_STATE_ENABLED), 20))
  4929. DRM_ERROR("Timeout enabling power well\n");
  4930. }
  4931. hsw_power_well_post_enable(dev_priv);
  4932. } else {
  4933. if (enable_requested) {
  4934. I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
  4935. POSTING_READ(HSW_PWR_WELL_DRIVER);
  4936. DRM_DEBUG_KMS("Requesting to disable the power well\n");
  4937. }
  4938. }
  4939. }
  4940. static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
  4941. struct i915_power_well *power_well)
  4942. {
  4943. hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
  4944. /*
  4945. * We're taking over the BIOS, so clear any requests made by it since
  4946. * the driver is in charge now.
  4947. */
  4948. if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
  4949. I915_WRITE(HSW_PWR_WELL_BIOS, 0);
  4950. }
  4951. static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
  4952. struct i915_power_well *power_well)
  4953. {
  4954. hsw_set_power_well(dev_priv, power_well, true);
  4955. }
  4956. static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
  4957. struct i915_power_well *power_well)
  4958. {
  4959. hsw_set_power_well(dev_priv, power_well, false);
  4960. }
  4961. static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
  4962. struct i915_power_well *power_well)
  4963. {
  4964. }
  4965. static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
  4966. struct i915_power_well *power_well)
  4967. {
  4968. return true;
  4969. }
  4970. void __vlv_set_power_well(struct drm_i915_private *dev_priv,
  4971. enum punit_power_well power_well_id, bool enable)
  4972. {
  4973. struct drm_device *dev = dev_priv->dev;
  4974. u32 mask;
  4975. u32 state;
  4976. u32 ctrl;
  4977. enum pipe pipe;
  4978. if (power_well_id == PUNIT_POWER_WELL_DPIO_CMN_BC) {
  4979. if (enable) {
  4980. /*
  4981. * Enable the CRI clock source so we can get at the
  4982. * display and the reference clock for VGA
  4983. * hotplug / manual detection.
  4984. */
  4985. I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
  4986. DPLL_REFA_CLK_ENABLE_VLV |
  4987. DPLL_INTEGRATED_CRI_CLK_VLV);
  4988. udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
  4989. } else {
  4990. for_each_pipe(pipe)
  4991. assert_pll_disabled(dev_priv, pipe);
  4992. /* Assert common reset */
  4993. I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) &
  4994. ~DPIO_CMNRST);
  4995. }
  4996. }
  4997. mask = PUNIT_PWRGT_MASK(power_well_id);
  4998. state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
  4999. PUNIT_PWRGT_PWR_GATE(power_well_id);
  5000. mutex_lock(&dev_priv->rps.hw_lock);
  5001. #define COND \
  5002. ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
  5003. if (COND)
  5004. goto out;
  5005. ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
  5006. ctrl &= ~mask;
  5007. ctrl |= state;
  5008. vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
  5009. if (wait_for(COND, 100))
  5010. DRM_ERROR("timout setting power well state %08x (%08x)\n",
  5011. state,
  5012. vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
  5013. #undef COND
  5014. out:
  5015. mutex_unlock(&dev_priv->rps.hw_lock);
  5016. /*
  5017. * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
  5018. * 6. De-assert cmn_reset/side_reset. Same as VLV X0.
  5019. * a. GUnit 0x2110 bit[0] set to 1 (def 0)
  5020. * b. The other bits such as sfr settings / modesel may all
  5021. * be set to 0.
  5022. *
  5023. * This should only be done on init and resume from S3 with
  5024. * both PLLs disabled, or we risk losing DPIO and PLL
  5025. * synchronization.
  5026. */
  5027. if (power_well_id == PUNIT_POWER_WELL_DPIO_CMN_BC && enable)
  5028. I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
  5029. }
  5030. static void vlv_set_power_well(struct drm_i915_private *dev_priv,
  5031. struct i915_power_well *power_well, bool enable)
  5032. {
  5033. enum punit_power_well power_well_id = power_well->data;
  5034. __vlv_set_power_well(dev_priv, power_well_id, enable);
  5035. }
  5036. static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
  5037. struct i915_power_well *power_well)
  5038. {
  5039. vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
  5040. }
  5041. static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
  5042. struct i915_power_well *power_well)
  5043. {
  5044. vlv_set_power_well(dev_priv, power_well, true);
  5045. }
  5046. static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
  5047. struct i915_power_well *power_well)
  5048. {
  5049. vlv_set_power_well(dev_priv, power_well, false);
  5050. }
  5051. static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
  5052. struct i915_power_well *power_well)
  5053. {
  5054. int power_well_id = power_well->data;
  5055. bool enabled = false;
  5056. u32 mask;
  5057. u32 state;
  5058. u32 ctrl;
  5059. mask = PUNIT_PWRGT_MASK(power_well_id);
  5060. ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
  5061. mutex_lock(&dev_priv->rps.hw_lock);
  5062. state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
  5063. /*
  5064. * We only ever set the power-on and power-gate states, anything
  5065. * else is unexpected.
  5066. */
  5067. WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
  5068. state != PUNIT_PWRGT_PWR_GATE(power_well_id));
  5069. if (state == ctrl)
  5070. enabled = true;
  5071. /*
  5072. * A transient state at this point would mean some unexpected party
  5073. * is poking at the power controls too.
  5074. */
  5075. ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
  5076. WARN_ON(ctrl != state);
  5077. mutex_unlock(&dev_priv->rps.hw_lock);
  5078. return enabled;
  5079. }
  5080. static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
  5081. struct i915_power_well *power_well)
  5082. {
  5083. WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
  5084. vlv_set_power_well(dev_priv, power_well, true);
  5085. spin_lock_irq(&dev_priv->irq_lock);
  5086. valleyview_enable_display_irqs(dev_priv);
  5087. spin_unlock_irq(&dev_priv->irq_lock);
  5088. /*
  5089. * During driver initialization/resume we can avoid restoring the
  5090. * part of the HW/SW state that will be inited anyway explicitly.
  5091. */
  5092. if (dev_priv->power_domains.initializing)
  5093. return;
  5094. intel_hpd_init(dev_priv->dev);
  5095. i915_redisable_vga_power_on(dev_priv->dev);
  5096. }
  5097. static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
  5098. struct i915_power_well *power_well)
  5099. {
  5100. WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
  5101. spin_lock_irq(&dev_priv->irq_lock);
  5102. valleyview_disable_display_irqs(dev_priv);
  5103. spin_unlock_irq(&dev_priv->irq_lock);
  5104. vlv_set_power_well(dev_priv, power_well, false);
  5105. }
  5106. static void check_power_well_state(struct drm_i915_private *dev_priv,
  5107. struct i915_power_well *power_well)
  5108. {
  5109. bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
  5110. if (power_well->always_on || !i915.disable_power_well) {
  5111. if (!enabled)
  5112. goto mismatch;
  5113. return;
  5114. }
  5115. if (enabled != (power_well->count > 0))
  5116. goto mismatch;
  5117. return;
  5118. mismatch:
  5119. WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
  5120. power_well->name, power_well->always_on, enabled,
  5121. power_well->count, i915.disable_power_well);
  5122. }
  5123. void intel_display_power_get(struct drm_i915_private *dev_priv,
  5124. enum intel_display_power_domain domain)
  5125. {
  5126. struct i915_power_domains *power_domains;
  5127. struct i915_power_well *power_well;
  5128. int i;
  5129. intel_runtime_pm_get(dev_priv);
  5130. power_domains = &dev_priv->power_domains;
  5131. mutex_lock(&power_domains->lock);
  5132. for_each_power_well(i, power_well, BIT(domain), power_domains) {
  5133. if (!power_well->count++) {
  5134. DRM_DEBUG_KMS("enabling %s\n", power_well->name);
  5135. power_well->ops->enable(dev_priv, power_well);
  5136. }
  5137. check_power_well_state(dev_priv, power_well);
  5138. }
  5139. power_domains->domain_use_count[domain]++;
  5140. mutex_unlock(&power_domains->lock);
  5141. }
  5142. void intel_display_power_put(struct drm_i915_private *dev_priv,
  5143. enum intel_display_power_domain domain)
  5144. {
  5145. struct i915_power_domains *power_domains;
  5146. struct i915_power_well *power_well;
  5147. int i;
  5148. power_domains = &dev_priv->power_domains;
  5149. mutex_lock(&power_domains->lock);
  5150. WARN_ON(!power_domains->domain_use_count[domain]);
  5151. power_domains->domain_use_count[domain]--;
  5152. for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
  5153. WARN_ON(!power_well->count);
  5154. if (!--power_well->count && i915.disable_power_well) {
  5155. DRM_DEBUG_KMS("disabling %s\n", power_well->name);
  5156. power_well->ops->disable(dev_priv, power_well);
  5157. }
  5158. check_power_well_state(dev_priv, power_well);
  5159. }
  5160. mutex_unlock(&power_domains->lock);
  5161. intel_runtime_pm_put(dev_priv);
  5162. }
  5163. static struct i915_power_domains *hsw_pwr;
  5164. /* Display audio driver power well request */
  5165. void i915_request_power_well(void)
  5166. {
  5167. struct drm_i915_private *dev_priv;
  5168. if (WARN_ON(!hsw_pwr))
  5169. return;
  5170. dev_priv = container_of(hsw_pwr, struct drm_i915_private,
  5171. power_domains);
  5172. intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
  5173. }
  5174. EXPORT_SYMBOL_GPL(i915_request_power_well);
  5175. /* Display audio driver power well release */
  5176. void i915_release_power_well(void)
  5177. {
  5178. struct drm_i915_private *dev_priv;
  5179. if (WARN_ON(!hsw_pwr))
  5180. return;
  5181. dev_priv = container_of(hsw_pwr, struct drm_i915_private,
  5182. power_domains);
  5183. intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
  5184. }
  5185. EXPORT_SYMBOL_GPL(i915_release_power_well);
  5186. #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
  5187. #define HSW_ALWAYS_ON_POWER_DOMAINS ( \
  5188. BIT(POWER_DOMAIN_PIPE_A) | \
  5189. BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
  5190. BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \
  5191. BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \
  5192. BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
  5193. BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
  5194. BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
  5195. BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
  5196. BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
  5197. BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
  5198. BIT(POWER_DOMAIN_PORT_CRT) | \
  5199. BIT(POWER_DOMAIN_INIT))
  5200. #define HSW_DISPLAY_POWER_DOMAINS ( \
  5201. (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) | \
  5202. BIT(POWER_DOMAIN_INIT))
  5203. #define BDW_ALWAYS_ON_POWER_DOMAINS ( \
  5204. HSW_ALWAYS_ON_POWER_DOMAINS | \
  5205. BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
  5206. #define BDW_DISPLAY_POWER_DOMAINS ( \
  5207. (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) | \
  5208. BIT(POWER_DOMAIN_INIT))
  5209. #define VLV_ALWAYS_ON_POWER_DOMAINS BIT(POWER_DOMAIN_INIT)
  5210. #define VLV_DISPLAY_POWER_DOMAINS POWER_DOMAIN_MASK
  5211. #define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \
  5212. BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
  5213. BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
  5214. BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
  5215. BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
  5216. BIT(POWER_DOMAIN_PORT_CRT) | \
  5217. BIT(POWER_DOMAIN_INIT))
  5218. #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \
  5219. BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
  5220. BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
  5221. BIT(POWER_DOMAIN_INIT))
  5222. #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \
  5223. BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
  5224. BIT(POWER_DOMAIN_INIT))
  5225. #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \
  5226. BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
  5227. BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
  5228. BIT(POWER_DOMAIN_INIT))
  5229. #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \
  5230. BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
  5231. BIT(POWER_DOMAIN_INIT))
  5232. static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
  5233. .sync_hw = i9xx_always_on_power_well_noop,
  5234. .enable = i9xx_always_on_power_well_noop,
  5235. .disable = i9xx_always_on_power_well_noop,
  5236. .is_enabled = i9xx_always_on_power_well_enabled,
  5237. };
  5238. static struct i915_power_well i9xx_always_on_power_well[] = {
  5239. {
  5240. .name = "always-on",
  5241. .always_on = 1,
  5242. .domains = POWER_DOMAIN_MASK,
  5243. .ops = &i9xx_always_on_power_well_ops,
  5244. },
  5245. };
  5246. static const struct i915_power_well_ops hsw_power_well_ops = {
  5247. .sync_hw = hsw_power_well_sync_hw,
  5248. .enable = hsw_power_well_enable,
  5249. .disable = hsw_power_well_disable,
  5250. .is_enabled = hsw_power_well_enabled,
  5251. };
  5252. static struct i915_power_well hsw_power_wells[] = {
  5253. {
  5254. .name = "always-on",
  5255. .always_on = 1,
  5256. .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
  5257. .ops = &i9xx_always_on_power_well_ops,
  5258. },
  5259. {
  5260. .name = "display",
  5261. .domains = HSW_DISPLAY_POWER_DOMAINS,
  5262. .ops = &hsw_power_well_ops,
  5263. },
  5264. };
  5265. static struct i915_power_well bdw_power_wells[] = {
  5266. {
  5267. .name = "always-on",
  5268. .always_on = 1,
  5269. .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
  5270. .ops = &i9xx_always_on_power_well_ops,
  5271. },
  5272. {
  5273. .name = "display",
  5274. .domains = BDW_DISPLAY_POWER_DOMAINS,
  5275. .ops = &hsw_power_well_ops,
  5276. },
  5277. };
  5278. static const struct i915_power_well_ops vlv_display_power_well_ops = {
  5279. .sync_hw = vlv_power_well_sync_hw,
  5280. .enable = vlv_display_power_well_enable,
  5281. .disable = vlv_display_power_well_disable,
  5282. .is_enabled = vlv_power_well_enabled,
  5283. };
  5284. static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
  5285. .sync_hw = vlv_power_well_sync_hw,
  5286. .enable = vlv_power_well_enable,
  5287. .disable = vlv_power_well_disable,
  5288. .is_enabled = vlv_power_well_enabled,
  5289. };
  5290. static struct i915_power_well vlv_power_wells[] = {
  5291. {
  5292. .name = "always-on",
  5293. .always_on = 1,
  5294. .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
  5295. .ops = &i9xx_always_on_power_well_ops,
  5296. },
  5297. {
  5298. .name = "display",
  5299. .domains = VLV_DISPLAY_POWER_DOMAINS,
  5300. .data = PUNIT_POWER_WELL_DISP2D,
  5301. .ops = &vlv_display_power_well_ops,
  5302. },
  5303. {
  5304. .name = "dpio-tx-b-01",
  5305. .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
  5306. VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
  5307. VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
  5308. VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
  5309. .ops = &vlv_dpio_power_well_ops,
  5310. .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
  5311. },
  5312. {
  5313. .name = "dpio-tx-b-23",
  5314. .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
  5315. VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
  5316. VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
  5317. VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
  5318. .ops = &vlv_dpio_power_well_ops,
  5319. .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
  5320. },
  5321. {
  5322. .name = "dpio-tx-c-01",
  5323. .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
  5324. VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
  5325. VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
  5326. VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
  5327. .ops = &vlv_dpio_power_well_ops,
  5328. .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
  5329. },
  5330. {
  5331. .name = "dpio-tx-c-23",
  5332. .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
  5333. VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
  5334. VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
  5335. VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
  5336. .ops = &vlv_dpio_power_well_ops,
  5337. .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
  5338. },
  5339. {
  5340. .name = "dpio-common",
  5341. .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
  5342. .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
  5343. .ops = &vlv_dpio_power_well_ops,
  5344. },
  5345. };
  5346. #define set_power_wells(power_domains, __power_wells) ({ \
  5347. (power_domains)->power_wells = (__power_wells); \
  5348. (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
  5349. })
  5350. int intel_power_domains_init(struct drm_i915_private *dev_priv)
  5351. {
  5352. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  5353. mutex_init(&power_domains->lock);
  5354. /*
  5355. * The enabling order will be from lower to higher indexed wells,
  5356. * the disabling order is reversed.
  5357. */
  5358. if (IS_HASWELL(dev_priv->dev)) {
  5359. set_power_wells(power_domains, hsw_power_wells);
  5360. hsw_pwr = power_domains;
  5361. } else if (IS_BROADWELL(dev_priv->dev)) {
  5362. set_power_wells(power_domains, bdw_power_wells);
  5363. hsw_pwr = power_domains;
  5364. } else if (IS_VALLEYVIEW(dev_priv->dev)) {
  5365. set_power_wells(power_domains, vlv_power_wells);
  5366. } else {
  5367. set_power_wells(power_domains, i9xx_always_on_power_well);
  5368. }
  5369. return 0;
  5370. }
  5371. void intel_power_domains_remove(struct drm_i915_private *dev_priv)
  5372. {
  5373. hsw_pwr = NULL;
  5374. }
  5375. static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
  5376. {
  5377. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  5378. struct i915_power_well *power_well;
  5379. int i;
  5380. mutex_lock(&power_domains->lock);
  5381. for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains)
  5382. power_well->ops->sync_hw(dev_priv, power_well);
  5383. mutex_unlock(&power_domains->lock);
  5384. }
  5385. void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
  5386. {
  5387. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  5388. power_domains->initializing = true;
  5389. /* For now, we need the power well to be always enabled. */
  5390. intel_display_set_init_power(dev_priv, true);
  5391. intel_power_domains_resume(dev_priv);
  5392. power_domains->initializing = false;
  5393. }
  5394. void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
  5395. {
  5396. intel_runtime_pm_get(dev_priv);
  5397. }
  5398. void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
  5399. {
  5400. intel_runtime_pm_put(dev_priv);
  5401. }
  5402. void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
  5403. {
  5404. struct drm_device *dev = dev_priv->dev;
  5405. struct device *device = &dev->pdev->dev;
  5406. if (!HAS_RUNTIME_PM(dev))
  5407. return;
  5408. pm_runtime_get_sync(device);
  5409. WARN(dev_priv->pm.suspended, "Device still suspended.\n");
  5410. }
  5411. void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
  5412. {
  5413. struct drm_device *dev = dev_priv->dev;
  5414. struct device *device = &dev->pdev->dev;
  5415. if (!HAS_RUNTIME_PM(dev))
  5416. return;
  5417. WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
  5418. pm_runtime_get_noresume(device);
  5419. }
  5420. void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
  5421. {
  5422. struct drm_device *dev = dev_priv->dev;
  5423. struct device *device = &dev->pdev->dev;
  5424. if (!HAS_RUNTIME_PM(dev))
  5425. return;
  5426. pm_runtime_mark_last_busy(device);
  5427. pm_runtime_put_autosuspend(device);
  5428. }
  5429. void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
  5430. {
  5431. struct drm_device *dev = dev_priv->dev;
  5432. struct device *device = &dev->pdev->dev;
  5433. if (!HAS_RUNTIME_PM(dev))
  5434. return;
  5435. pm_runtime_set_active(device);
  5436. /*
  5437. * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
  5438. * requirement.
  5439. */
  5440. if (!intel_enable_rc6(dev)) {
  5441. DRM_INFO("RC6 disabled, disabling runtime PM support\n");
  5442. return;
  5443. }
  5444. pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
  5445. pm_runtime_mark_last_busy(device);
  5446. pm_runtime_use_autosuspend(device);
  5447. pm_runtime_put_autosuspend(device);
  5448. }
  5449. void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
  5450. {
  5451. struct drm_device *dev = dev_priv->dev;
  5452. struct device *device = &dev->pdev->dev;
  5453. if (!HAS_RUNTIME_PM(dev))
  5454. return;
  5455. if (!intel_enable_rc6(dev))
  5456. return;
  5457. /* Make sure we're not suspended first. */
  5458. pm_runtime_get_sync(device);
  5459. pm_runtime_disable(device);
  5460. }
  5461. /* Set up chip specific power management-related functions */
  5462. void intel_init_pm(struct drm_device *dev)
  5463. {
  5464. struct drm_i915_private *dev_priv = dev->dev_private;
  5465. if (HAS_FBC(dev)) {
  5466. if (INTEL_INFO(dev)->gen >= 7) {
  5467. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  5468. dev_priv->display.enable_fbc = gen7_enable_fbc;
  5469. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  5470. } else if (INTEL_INFO(dev)->gen >= 5) {
  5471. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  5472. dev_priv->display.enable_fbc = ironlake_enable_fbc;
  5473. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  5474. } else if (IS_GM45(dev)) {
  5475. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  5476. dev_priv->display.enable_fbc = g4x_enable_fbc;
  5477. dev_priv->display.disable_fbc = g4x_disable_fbc;
  5478. } else {
  5479. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  5480. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  5481. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  5482. /* This value was pulled out of someone's hat */
  5483. I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
  5484. }
  5485. }
  5486. /* For cxsr */
  5487. if (IS_PINEVIEW(dev))
  5488. i915_pineview_get_mem_freq(dev);
  5489. else if (IS_GEN5(dev))
  5490. i915_ironlake_get_mem_freq(dev);
  5491. /* For FIFO watermark updates */
  5492. if (HAS_PCH_SPLIT(dev)) {
  5493. ilk_setup_wm_latency(dev);
  5494. if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
  5495. dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
  5496. (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
  5497. dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
  5498. dev_priv->display.update_wm = ilk_update_wm;
  5499. dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
  5500. } else {
  5501. DRM_DEBUG_KMS("Failed to read display plane latency. "
  5502. "Disable CxSR\n");
  5503. }
  5504. if (IS_GEN5(dev))
  5505. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  5506. else if (IS_GEN6(dev))
  5507. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  5508. else if (IS_IVYBRIDGE(dev))
  5509. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  5510. else if (IS_HASWELL(dev))
  5511. dev_priv->display.init_clock_gating = haswell_init_clock_gating;
  5512. else if (INTEL_INFO(dev)->gen == 8)
  5513. dev_priv->display.init_clock_gating = gen8_init_clock_gating;
  5514. } else if (IS_CHERRYVIEW(dev)) {
  5515. dev_priv->display.update_wm = valleyview_update_wm;
  5516. dev_priv->display.init_clock_gating =
  5517. cherryview_init_clock_gating;
  5518. } else if (IS_VALLEYVIEW(dev)) {
  5519. dev_priv->display.update_wm = valleyview_update_wm;
  5520. dev_priv->display.init_clock_gating =
  5521. valleyview_init_clock_gating;
  5522. } else if (IS_PINEVIEW(dev)) {
  5523. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  5524. dev_priv->is_ddr3,
  5525. dev_priv->fsb_freq,
  5526. dev_priv->mem_freq)) {
  5527. DRM_INFO("failed to find known CxSR latency "
  5528. "(found ddr%s fsb freq %d, mem freq %d), "
  5529. "disabling CxSR\n",
  5530. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  5531. dev_priv->fsb_freq, dev_priv->mem_freq);
  5532. /* Disable CxSR and never update its watermark again */
  5533. pineview_disable_cxsr(dev);
  5534. dev_priv->display.update_wm = NULL;
  5535. } else
  5536. dev_priv->display.update_wm = pineview_update_wm;
  5537. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  5538. } else if (IS_G4X(dev)) {
  5539. dev_priv->display.update_wm = g4x_update_wm;
  5540. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  5541. } else if (IS_GEN4(dev)) {
  5542. dev_priv->display.update_wm = i965_update_wm;
  5543. if (IS_CRESTLINE(dev))
  5544. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  5545. else if (IS_BROADWATER(dev))
  5546. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  5547. } else if (IS_GEN3(dev)) {
  5548. dev_priv->display.update_wm = i9xx_update_wm;
  5549. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  5550. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  5551. } else if (IS_GEN2(dev)) {
  5552. if (INTEL_INFO(dev)->num_pipes == 1) {
  5553. dev_priv->display.update_wm = i845_update_wm;
  5554. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  5555. } else {
  5556. dev_priv->display.update_wm = i9xx_update_wm;
  5557. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  5558. }
  5559. if (IS_I85X(dev) || IS_I865G(dev))
  5560. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  5561. else
  5562. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  5563. } else {
  5564. DRM_ERROR("unexpected fall-through in intel_init_pm\n");
  5565. }
  5566. }
  5567. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
  5568. {
  5569. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5570. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  5571. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
  5572. return -EAGAIN;
  5573. }
  5574. I915_WRITE(GEN6_PCODE_DATA, *val);
  5575. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  5576. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  5577. 500)) {
  5578. DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
  5579. return -ETIMEDOUT;
  5580. }
  5581. *val = I915_READ(GEN6_PCODE_DATA);
  5582. I915_WRITE(GEN6_PCODE_DATA, 0);
  5583. return 0;
  5584. }
  5585. int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
  5586. {
  5587. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5588. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  5589. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
  5590. return -EAGAIN;
  5591. }
  5592. I915_WRITE(GEN6_PCODE_DATA, val);
  5593. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  5594. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  5595. 500)) {
  5596. DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
  5597. return -ETIMEDOUT;
  5598. }
  5599. I915_WRITE(GEN6_PCODE_DATA, 0);
  5600. return 0;
  5601. }
  5602. int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
  5603. {
  5604. int div;
  5605. /* 4 x czclk */
  5606. switch (dev_priv->mem_freq) {
  5607. case 800:
  5608. div = 10;
  5609. break;
  5610. case 1066:
  5611. div = 12;
  5612. break;
  5613. case 1333:
  5614. div = 16;
  5615. break;
  5616. default:
  5617. return -1;
  5618. }
  5619. return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
  5620. }
  5621. int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
  5622. {
  5623. int mul;
  5624. /* 4 x czclk */
  5625. switch (dev_priv->mem_freq) {
  5626. case 800:
  5627. mul = 10;
  5628. break;
  5629. case 1066:
  5630. mul = 12;
  5631. break;
  5632. case 1333:
  5633. mul = 16;
  5634. break;
  5635. default:
  5636. return -1;
  5637. }
  5638. return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
  5639. }
  5640. void intel_pm_setup(struct drm_device *dev)
  5641. {
  5642. struct drm_i915_private *dev_priv = dev->dev_private;
  5643. mutex_init(&dev_priv->rps.hw_lock);
  5644. INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
  5645. intel_gen6_powersave_work);
  5646. dev_priv->pm.suspended = false;
  5647. dev_priv->pm.irqs_disabled = false;
  5648. }