perf_event.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824
  1. #undef DEBUG
  2. /*
  3. * ARM performance counter support.
  4. *
  5. * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
  6. * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
  7. *
  8. * This code is based on the sparc64 perf event code, which is in turn based
  9. * on the x86 code. Callchain code is based on the ARM OProfile backtrace
  10. * code.
  11. */
  12. #define pr_fmt(fmt) "hw perfevents: " fmt
  13. #include <linux/interrupt.h>
  14. #include <linux/kernel.h>
  15. #include <linux/module.h>
  16. #include <linux/perf_event.h>
  17. #include <linux/platform_device.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/uaccess.h>
  20. #include <asm/cputype.h>
  21. #include <asm/irq.h>
  22. #include <asm/irq_regs.h>
  23. #include <asm/pmu.h>
  24. #include <asm/stacktrace.h>
  25. /*
  26. * ARMv6 supports a maximum of 3 events, starting from index 0. If we add
  27. * another platform that supports more, we need to increase this to be the
  28. * largest of all platforms.
  29. *
  30. * ARMv7 supports up to 32 events:
  31. * cycle counter CCNT + 31 events counters CNT0..30.
  32. * Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
  33. */
  34. #define ARMPMU_MAX_HWEVENTS 32
  35. static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events);
  36. static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask);
  37. static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events);
  38. #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
  39. /* Set at runtime when we know what CPU type we are. */
  40. static struct arm_pmu *cpu_pmu;
  41. enum arm_perf_pmu_ids
  42. armpmu_get_pmu_id(void)
  43. {
  44. int id = -ENODEV;
  45. if (cpu_pmu != NULL)
  46. id = cpu_pmu->id;
  47. return id;
  48. }
  49. EXPORT_SYMBOL_GPL(armpmu_get_pmu_id);
  50. int
  51. armpmu_get_max_events(void)
  52. {
  53. int max_events = 0;
  54. if (cpu_pmu != NULL)
  55. max_events = cpu_pmu->num_events;
  56. return max_events;
  57. }
  58. EXPORT_SYMBOL_GPL(armpmu_get_max_events);
  59. int perf_num_counters(void)
  60. {
  61. return armpmu_get_max_events();
  62. }
  63. EXPORT_SYMBOL_GPL(perf_num_counters);
  64. #define HW_OP_UNSUPPORTED 0xFFFF
  65. #define C(_x) \
  66. PERF_COUNT_HW_CACHE_##_x
  67. #define CACHE_OP_UNSUPPORTED 0xFFFF
  68. static int
  69. armpmu_map_cache_event(const unsigned (*cache_map)
  70. [PERF_COUNT_HW_CACHE_MAX]
  71. [PERF_COUNT_HW_CACHE_OP_MAX]
  72. [PERF_COUNT_HW_CACHE_RESULT_MAX],
  73. u64 config)
  74. {
  75. unsigned int cache_type, cache_op, cache_result, ret;
  76. cache_type = (config >> 0) & 0xff;
  77. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  78. return -EINVAL;
  79. cache_op = (config >> 8) & 0xff;
  80. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  81. return -EINVAL;
  82. cache_result = (config >> 16) & 0xff;
  83. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  84. return -EINVAL;
  85. ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
  86. if (ret == CACHE_OP_UNSUPPORTED)
  87. return -ENOENT;
  88. return ret;
  89. }
  90. static int
  91. armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
  92. {
  93. int mapping = (*event_map)[config];
  94. return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
  95. }
  96. static int
  97. armpmu_map_raw_event(u32 raw_event_mask, u64 config)
  98. {
  99. return (int)(config & raw_event_mask);
  100. }
  101. static int map_cpu_event(struct perf_event *event,
  102. const unsigned (*event_map)[PERF_COUNT_HW_MAX],
  103. const unsigned (*cache_map)
  104. [PERF_COUNT_HW_CACHE_MAX]
  105. [PERF_COUNT_HW_CACHE_OP_MAX]
  106. [PERF_COUNT_HW_CACHE_RESULT_MAX],
  107. u32 raw_event_mask)
  108. {
  109. u64 config = event->attr.config;
  110. switch (event->attr.type) {
  111. case PERF_TYPE_HARDWARE:
  112. return armpmu_map_event(event_map, config);
  113. case PERF_TYPE_HW_CACHE:
  114. return armpmu_map_cache_event(cache_map, config);
  115. case PERF_TYPE_RAW:
  116. return armpmu_map_raw_event(raw_event_mask, config);
  117. }
  118. return -ENOENT;
  119. }
  120. int
  121. armpmu_event_set_period(struct perf_event *event,
  122. struct hw_perf_event *hwc,
  123. int idx)
  124. {
  125. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  126. s64 left = local64_read(&hwc->period_left);
  127. s64 period = hwc->sample_period;
  128. int ret = 0;
  129. if (unlikely(left <= -period)) {
  130. left = period;
  131. local64_set(&hwc->period_left, left);
  132. hwc->last_period = period;
  133. ret = 1;
  134. }
  135. if (unlikely(left <= 0)) {
  136. left += period;
  137. local64_set(&hwc->period_left, left);
  138. hwc->last_period = period;
  139. ret = 1;
  140. }
  141. if (left > (s64)armpmu->max_period)
  142. left = armpmu->max_period;
  143. local64_set(&hwc->prev_count, (u64)-left);
  144. armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
  145. perf_event_update_userpage(event);
  146. return ret;
  147. }
  148. u64
  149. armpmu_event_update(struct perf_event *event,
  150. struct hw_perf_event *hwc,
  151. int idx, int overflow)
  152. {
  153. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  154. u64 delta, prev_raw_count, new_raw_count;
  155. again:
  156. prev_raw_count = local64_read(&hwc->prev_count);
  157. new_raw_count = armpmu->read_counter(idx);
  158. if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
  159. new_raw_count) != prev_raw_count)
  160. goto again;
  161. new_raw_count &= armpmu->max_period;
  162. prev_raw_count &= armpmu->max_period;
  163. if (overflow)
  164. delta = armpmu->max_period - prev_raw_count + new_raw_count + 1;
  165. else
  166. delta = new_raw_count - prev_raw_count;
  167. local64_add(delta, &event->count);
  168. local64_sub(delta, &hwc->period_left);
  169. return new_raw_count;
  170. }
  171. static void
  172. armpmu_read(struct perf_event *event)
  173. {
  174. struct hw_perf_event *hwc = &event->hw;
  175. /* Don't read disabled counters! */
  176. if (hwc->idx < 0)
  177. return;
  178. armpmu_event_update(event, hwc, hwc->idx, 0);
  179. }
  180. static void
  181. armpmu_stop(struct perf_event *event, int flags)
  182. {
  183. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  184. struct hw_perf_event *hwc = &event->hw;
  185. /*
  186. * ARM pmu always has to update the counter, so ignore
  187. * PERF_EF_UPDATE, see comments in armpmu_start().
  188. */
  189. if (!(hwc->state & PERF_HES_STOPPED)) {
  190. armpmu->disable(hwc, hwc->idx);
  191. barrier(); /* why? */
  192. armpmu_event_update(event, hwc, hwc->idx, 0);
  193. hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
  194. }
  195. }
  196. static void
  197. armpmu_start(struct perf_event *event, int flags)
  198. {
  199. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  200. struct hw_perf_event *hwc = &event->hw;
  201. /*
  202. * ARM pmu always has to reprogram the period, so ignore
  203. * PERF_EF_RELOAD, see the comment below.
  204. */
  205. if (flags & PERF_EF_RELOAD)
  206. WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
  207. hwc->state = 0;
  208. /*
  209. * Set the period again. Some counters can't be stopped, so when we
  210. * were stopped we simply disabled the IRQ source and the counter
  211. * may have been left counting. If we don't do this step then we may
  212. * get an interrupt too soon or *way* too late if the overflow has
  213. * happened since disabling.
  214. */
  215. armpmu_event_set_period(event, hwc, hwc->idx);
  216. armpmu->enable(hwc, hwc->idx);
  217. }
  218. static void
  219. armpmu_del(struct perf_event *event, int flags)
  220. {
  221. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  222. struct pmu_hw_events *hw_events = armpmu->get_hw_events();
  223. struct hw_perf_event *hwc = &event->hw;
  224. int idx = hwc->idx;
  225. WARN_ON(idx < 0);
  226. armpmu_stop(event, PERF_EF_UPDATE);
  227. hw_events->events[idx] = NULL;
  228. clear_bit(idx, hw_events->used_mask);
  229. perf_event_update_userpage(event);
  230. }
  231. static int
  232. armpmu_add(struct perf_event *event, int flags)
  233. {
  234. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  235. struct pmu_hw_events *hw_events = armpmu->get_hw_events();
  236. struct hw_perf_event *hwc = &event->hw;
  237. int idx;
  238. int err = 0;
  239. perf_pmu_disable(event->pmu);
  240. /* If we don't have a space for the counter then finish early. */
  241. idx = armpmu->get_event_idx(hw_events, hwc);
  242. if (idx < 0) {
  243. err = idx;
  244. goto out;
  245. }
  246. /*
  247. * If there is an event in the counter we are going to use then make
  248. * sure it is disabled.
  249. */
  250. event->hw.idx = idx;
  251. armpmu->disable(hwc, idx);
  252. hw_events->events[idx] = event;
  253. hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
  254. if (flags & PERF_EF_START)
  255. armpmu_start(event, PERF_EF_RELOAD);
  256. /* Propagate our changes to the userspace mapping. */
  257. perf_event_update_userpage(event);
  258. out:
  259. perf_pmu_enable(event->pmu);
  260. return err;
  261. }
  262. static int
  263. validate_event(struct pmu_hw_events *hw_events,
  264. struct perf_event *event)
  265. {
  266. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  267. struct hw_perf_event fake_event = event->hw;
  268. struct pmu *leader_pmu = event->group_leader->pmu;
  269. if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF)
  270. return 1;
  271. return armpmu->get_event_idx(hw_events, &fake_event) >= 0;
  272. }
  273. static int
  274. validate_group(struct perf_event *event)
  275. {
  276. struct perf_event *sibling, *leader = event->group_leader;
  277. struct pmu_hw_events fake_pmu;
  278. memset(&fake_pmu, 0, sizeof(fake_pmu));
  279. if (!validate_event(&fake_pmu, leader))
  280. return -ENOSPC;
  281. list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
  282. if (!validate_event(&fake_pmu, sibling))
  283. return -ENOSPC;
  284. }
  285. if (!validate_event(&fake_pmu, event))
  286. return -ENOSPC;
  287. return 0;
  288. }
  289. static irqreturn_t armpmu_platform_irq(int irq, void *dev)
  290. {
  291. struct arm_pmu *armpmu = (struct arm_pmu *) dev;
  292. struct platform_device *plat_device = armpmu->plat_device;
  293. struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev);
  294. return plat->handle_irq(irq, dev, armpmu->handle_irq);
  295. }
  296. static void
  297. armpmu_release_hardware(struct arm_pmu *armpmu)
  298. {
  299. int i, irq, irqs;
  300. struct platform_device *pmu_device = armpmu->plat_device;
  301. irqs = min(pmu_device->num_resources, num_possible_cpus());
  302. for (i = 0; i < irqs; ++i) {
  303. if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs))
  304. continue;
  305. irq = platform_get_irq(pmu_device, i);
  306. if (irq >= 0)
  307. free_irq(irq, armpmu);
  308. }
  309. release_pmu(armpmu->type);
  310. }
  311. static int
  312. armpmu_reserve_hardware(struct arm_pmu *armpmu)
  313. {
  314. struct arm_pmu_platdata *plat;
  315. irq_handler_t handle_irq;
  316. int i, err, irq, irqs;
  317. struct platform_device *pmu_device = armpmu->plat_device;
  318. err = reserve_pmu(armpmu->type);
  319. if (err) {
  320. pr_warning("unable to reserve pmu\n");
  321. return err;
  322. }
  323. plat = dev_get_platdata(&pmu_device->dev);
  324. if (plat && plat->handle_irq)
  325. handle_irq = armpmu_platform_irq;
  326. else
  327. handle_irq = armpmu->handle_irq;
  328. irqs = min(pmu_device->num_resources, num_possible_cpus());
  329. if (irqs < 1) {
  330. pr_err("no irqs for PMUs defined\n");
  331. return -ENODEV;
  332. }
  333. for (i = 0; i < irqs; ++i) {
  334. err = 0;
  335. irq = platform_get_irq(pmu_device, i);
  336. if (irq < 0)
  337. continue;
  338. /*
  339. * If we have a single PMU interrupt that we can't shift,
  340. * assume that we're running on a uniprocessor machine and
  341. * continue. Otherwise, continue without this interrupt.
  342. */
  343. if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) {
  344. pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
  345. irq, i);
  346. continue;
  347. }
  348. err = request_irq(irq, handle_irq,
  349. IRQF_DISABLED | IRQF_NOBALANCING,
  350. "arm-pmu", armpmu);
  351. if (err) {
  352. pr_err("unable to request IRQ%d for ARM PMU counters\n",
  353. irq);
  354. armpmu_release_hardware(armpmu);
  355. return err;
  356. }
  357. cpumask_set_cpu(i, &armpmu->active_irqs);
  358. }
  359. return 0;
  360. }
  361. static void
  362. hw_perf_event_destroy(struct perf_event *event)
  363. {
  364. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  365. atomic_t *active_events = &armpmu->active_events;
  366. struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
  367. if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
  368. armpmu_release_hardware(armpmu);
  369. mutex_unlock(pmu_reserve_mutex);
  370. }
  371. }
  372. static int
  373. event_requires_mode_exclusion(struct perf_event_attr *attr)
  374. {
  375. return attr->exclude_idle || attr->exclude_user ||
  376. attr->exclude_kernel || attr->exclude_hv;
  377. }
  378. static int
  379. __hw_perf_event_init(struct perf_event *event)
  380. {
  381. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  382. struct hw_perf_event *hwc = &event->hw;
  383. int mapping, err;
  384. mapping = armpmu->map_event(event);
  385. if (mapping < 0) {
  386. pr_debug("event %x:%llx not supported\n", event->attr.type,
  387. event->attr.config);
  388. return mapping;
  389. }
  390. /*
  391. * We don't assign an index until we actually place the event onto
  392. * hardware. Use -1 to signify that we haven't decided where to put it
  393. * yet. For SMP systems, each core has it's own PMU so we can't do any
  394. * clever allocation or constraints checking at this point.
  395. */
  396. hwc->idx = -1;
  397. hwc->config_base = 0;
  398. hwc->config = 0;
  399. hwc->event_base = 0;
  400. /*
  401. * Check whether we need to exclude the counter from certain modes.
  402. */
  403. if ((!armpmu->set_event_filter ||
  404. armpmu->set_event_filter(hwc, &event->attr)) &&
  405. event_requires_mode_exclusion(&event->attr)) {
  406. pr_debug("ARM performance counters do not support "
  407. "mode exclusion\n");
  408. return -EPERM;
  409. }
  410. /*
  411. * Store the event encoding into the config_base field.
  412. */
  413. hwc->config_base |= (unsigned long)mapping;
  414. if (!hwc->sample_period) {
  415. hwc->sample_period = armpmu->max_period;
  416. hwc->last_period = hwc->sample_period;
  417. local64_set(&hwc->period_left, hwc->sample_period);
  418. }
  419. err = 0;
  420. if (event->group_leader != event) {
  421. err = validate_group(event);
  422. if (err)
  423. return -EINVAL;
  424. }
  425. return err;
  426. }
  427. static int armpmu_event_init(struct perf_event *event)
  428. {
  429. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  430. int err = 0;
  431. atomic_t *active_events = &armpmu->active_events;
  432. if (armpmu->map_event(event) == -ENOENT)
  433. return -ENOENT;
  434. event->destroy = hw_perf_event_destroy;
  435. if (!atomic_inc_not_zero(active_events)) {
  436. mutex_lock(&armpmu->reserve_mutex);
  437. if (atomic_read(active_events) == 0)
  438. err = armpmu_reserve_hardware(armpmu);
  439. if (!err)
  440. atomic_inc(active_events);
  441. mutex_unlock(&armpmu->reserve_mutex);
  442. }
  443. if (err)
  444. return err;
  445. err = __hw_perf_event_init(event);
  446. if (err)
  447. hw_perf_event_destroy(event);
  448. return err;
  449. }
  450. static void armpmu_enable(struct pmu *pmu)
  451. {
  452. /* Enable all of the perf events on hardware. */
  453. struct arm_pmu *armpmu = to_arm_pmu(pmu);
  454. int idx, enabled = 0;
  455. struct pmu_hw_events *hw_events = armpmu->get_hw_events();
  456. for (idx = 0; idx < armpmu->num_events; ++idx) {
  457. struct perf_event *event = hw_events->events[idx];
  458. if (!event)
  459. continue;
  460. armpmu->enable(&event->hw, idx);
  461. enabled = 1;
  462. }
  463. if (enabled)
  464. armpmu->start();
  465. }
  466. static void armpmu_disable(struct pmu *pmu)
  467. {
  468. struct arm_pmu *armpmu = to_arm_pmu(pmu);
  469. armpmu->stop();
  470. }
  471. static void __init armpmu_init(struct arm_pmu *armpmu)
  472. {
  473. atomic_set(&armpmu->active_events, 0);
  474. mutex_init(&armpmu->reserve_mutex);
  475. armpmu->pmu = (struct pmu) {
  476. .pmu_enable = armpmu_enable,
  477. .pmu_disable = armpmu_disable,
  478. .event_init = armpmu_event_init,
  479. .add = armpmu_add,
  480. .del = armpmu_del,
  481. .start = armpmu_start,
  482. .stop = armpmu_stop,
  483. .read = armpmu_read,
  484. };
  485. }
  486. int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type)
  487. {
  488. armpmu_init(armpmu);
  489. return perf_pmu_register(&armpmu->pmu, name, type);
  490. }
  491. /* Include the PMU-specific implementations. */
  492. #include "perf_event_xscale.c"
  493. #include "perf_event_v6.c"
  494. #include "perf_event_v7.c"
  495. /*
  496. * Ensure the PMU has sane values out of reset.
  497. * This requires SMP to be available, so exists as a separate initcall.
  498. */
  499. static int __init
  500. cpu_pmu_reset(void)
  501. {
  502. if (cpu_pmu && cpu_pmu->reset)
  503. return on_each_cpu(cpu_pmu->reset, NULL, 1);
  504. return 0;
  505. }
  506. arch_initcall(cpu_pmu_reset);
  507. /*
  508. * PMU platform driver and devicetree bindings.
  509. */
  510. static struct of_device_id armpmu_of_device_ids[] = {
  511. {.compatible = "arm,cortex-a9-pmu"},
  512. {.compatible = "arm,cortex-a8-pmu"},
  513. {.compatible = "arm,arm1136-pmu"},
  514. {.compatible = "arm,arm1176-pmu"},
  515. {},
  516. };
  517. static struct platform_device_id armpmu_plat_device_ids[] = {
  518. {.name = "arm-pmu"},
  519. {},
  520. };
  521. static int __devinit armpmu_device_probe(struct platform_device *pdev)
  522. {
  523. cpu_pmu->plat_device = pdev;
  524. return 0;
  525. }
  526. static struct platform_driver armpmu_driver = {
  527. .driver = {
  528. .name = "arm-pmu",
  529. .of_match_table = armpmu_of_device_ids,
  530. },
  531. .probe = armpmu_device_probe,
  532. .id_table = armpmu_plat_device_ids,
  533. };
  534. static int __init register_pmu_driver(void)
  535. {
  536. return platform_driver_register(&armpmu_driver);
  537. }
  538. device_initcall(register_pmu_driver);
  539. static struct pmu_hw_events *armpmu_get_cpu_events(void)
  540. {
  541. return &__get_cpu_var(cpu_hw_events);
  542. }
  543. static void __init cpu_pmu_init(struct arm_pmu *armpmu)
  544. {
  545. int cpu;
  546. for_each_possible_cpu(cpu) {
  547. struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
  548. events->events = per_cpu(hw_events, cpu);
  549. events->used_mask = per_cpu(used_mask, cpu);
  550. raw_spin_lock_init(&events->pmu_lock);
  551. }
  552. armpmu->get_hw_events = armpmu_get_cpu_events;
  553. armpmu->type = ARM_PMU_DEVICE_CPU;
  554. }
  555. /*
  556. * CPU PMU identification and registration.
  557. */
  558. static int __init
  559. init_hw_perf_events(void)
  560. {
  561. unsigned long cpuid = read_cpuid_id();
  562. unsigned long implementor = (cpuid & 0xFF000000) >> 24;
  563. unsigned long part_number = (cpuid & 0xFFF0);
  564. /* ARM Ltd CPUs. */
  565. if (0x41 == implementor) {
  566. switch (part_number) {
  567. case 0xB360: /* ARM1136 */
  568. case 0xB560: /* ARM1156 */
  569. case 0xB760: /* ARM1176 */
  570. cpu_pmu = armv6pmu_init();
  571. break;
  572. case 0xB020: /* ARM11mpcore */
  573. cpu_pmu = armv6mpcore_pmu_init();
  574. break;
  575. case 0xC080: /* Cortex-A8 */
  576. cpu_pmu = armv7_a8_pmu_init();
  577. break;
  578. case 0xC090: /* Cortex-A9 */
  579. cpu_pmu = armv7_a9_pmu_init();
  580. break;
  581. case 0xC050: /* Cortex-A5 */
  582. cpu_pmu = armv7_a5_pmu_init();
  583. break;
  584. case 0xC0F0: /* Cortex-A15 */
  585. cpu_pmu = armv7_a15_pmu_init();
  586. break;
  587. }
  588. /* Intel CPUs [xscale]. */
  589. } else if (0x69 == implementor) {
  590. part_number = (cpuid >> 13) & 0x7;
  591. switch (part_number) {
  592. case 1:
  593. cpu_pmu = xscale1pmu_init();
  594. break;
  595. case 2:
  596. cpu_pmu = xscale2pmu_init();
  597. break;
  598. }
  599. }
  600. if (cpu_pmu) {
  601. pr_info("enabled with %s PMU driver, %d counters available\n",
  602. cpu_pmu->name, cpu_pmu->num_events);
  603. cpu_pmu_init(cpu_pmu);
  604. armpmu_register(cpu_pmu, "cpu", PERF_TYPE_RAW);
  605. } else {
  606. pr_info("no hardware support available\n");
  607. }
  608. return 0;
  609. }
  610. early_initcall(init_hw_perf_events);
  611. /*
  612. * Callchain handling code.
  613. */
  614. /*
  615. * The registers we're interested in are at the end of the variable
  616. * length saved register structure. The fp points at the end of this
  617. * structure so the address of this struct is:
  618. * (struct frame_tail *)(xxx->fp)-1
  619. *
  620. * This code has been adapted from the ARM OProfile support.
  621. */
  622. struct frame_tail {
  623. struct frame_tail __user *fp;
  624. unsigned long sp;
  625. unsigned long lr;
  626. } __attribute__((packed));
  627. /*
  628. * Get the return address for a single stackframe and return a pointer to the
  629. * next frame tail.
  630. */
  631. static struct frame_tail __user *
  632. user_backtrace(struct frame_tail __user *tail,
  633. struct perf_callchain_entry *entry)
  634. {
  635. struct frame_tail buftail;
  636. /* Also check accessibility of one struct frame_tail beyond */
  637. if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
  638. return NULL;
  639. if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
  640. return NULL;
  641. perf_callchain_store(entry, buftail.lr);
  642. /*
  643. * Frame pointers should strictly progress back up the stack
  644. * (towards higher addresses).
  645. */
  646. if (tail + 1 >= buftail.fp)
  647. return NULL;
  648. return buftail.fp - 1;
  649. }
  650. void
  651. perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
  652. {
  653. struct frame_tail __user *tail;
  654. tail = (struct frame_tail __user *)regs->ARM_fp - 1;
  655. while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
  656. tail && !((unsigned long)tail & 0x3))
  657. tail = user_backtrace(tail, entry);
  658. }
  659. /*
  660. * Gets called by walk_stackframe() for every stackframe. This will be called
  661. * whist unwinding the stackframe and is like a subroutine return so we use
  662. * the PC.
  663. */
  664. static int
  665. callchain_trace(struct stackframe *fr,
  666. void *data)
  667. {
  668. struct perf_callchain_entry *entry = data;
  669. perf_callchain_store(entry, fr->pc);
  670. return 0;
  671. }
  672. void
  673. perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
  674. {
  675. struct stackframe fr;
  676. fr.fp = regs->ARM_fp;
  677. fr.sp = regs->ARM_sp;
  678. fr.lr = regs->ARM_lr;
  679. fr.pc = regs->ARM_pc;
  680. walk_stackframe(&fr, callchain_trace, entry);
  681. }