md.c 226 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/fs.h>
  31. #include <linux/poll.h>
  32. #include <linux/ctype.h>
  33. #include <linux/string.h>
  34. #include <linux/hdreg.h>
  35. #include <linux/proc_fs.h>
  36. #include <linux/random.h>
  37. #include <linux/module.h>
  38. #include <linux/reboot.h>
  39. #include <linux/file.h>
  40. #include <linux/compat.h>
  41. #include <linux/delay.h>
  42. #include <linux/raid/md_p.h>
  43. #include <linux/raid/md_u.h>
  44. #include <linux/slab.h>
  45. #include "md.h"
  46. #include "bitmap.h"
  47. #ifndef MODULE
  48. static void autostart_arrays(int part);
  49. #endif
  50. /* pers_list is a list of registered personalities protected
  51. * by pers_lock.
  52. * pers_lock does extra service to protect accesses to
  53. * mddev->thread when the mutex cannot be held.
  54. */
  55. static LIST_HEAD(pers_list);
  56. static DEFINE_SPINLOCK(pers_lock);
  57. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  58. static struct workqueue_struct *md_wq;
  59. static struct workqueue_struct *md_misc_wq;
  60. static int remove_and_add_spares(struct mddev *mddev,
  61. struct md_rdev *this);
  62. static void mddev_detach(struct mddev *mddev);
  63. /*
  64. * Default number of read corrections we'll attempt on an rdev
  65. * before ejecting it from the array. We divide the read error
  66. * count by 2 for every hour elapsed between read errors.
  67. */
  68. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  69. /*
  70. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  71. * is 1000 KB/sec, so the extra system load does not show up that much.
  72. * Increase it if you want to have more _guaranteed_ speed. Note that
  73. * the RAID driver will use the maximum available bandwidth if the IO
  74. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  75. * speed limit - in case reconstruction slows down your system despite
  76. * idle IO detection.
  77. *
  78. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  79. * or /sys/block/mdX/md/sync_speed_{min,max}
  80. */
  81. static int sysctl_speed_limit_min = 1000;
  82. static int sysctl_speed_limit_max = 200000;
  83. static inline int speed_min(struct mddev *mddev)
  84. {
  85. return mddev->sync_speed_min ?
  86. mddev->sync_speed_min : sysctl_speed_limit_min;
  87. }
  88. static inline int speed_max(struct mddev *mddev)
  89. {
  90. return mddev->sync_speed_max ?
  91. mddev->sync_speed_max : sysctl_speed_limit_max;
  92. }
  93. static struct ctl_table_header *raid_table_header;
  94. static struct ctl_table raid_table[] = {
  95. {
  96. .procname = "speed_limit_min",
  97. .data = &sysctl_speed_limit_min,
  98. .maxlen = sizeof(int),
  99. .mode = S_IRUGO|S_IWUSR,
  100. .proc_handler = proc_dointvec,
  101. },
  102. {
  103. .procname = "speed_limit_max",
  104. .data = &sysctl_speed_limit_max,
  105. .maxlen = sizeof(int),
  106. .mode = S_IRUGO|S_IWUSR,
  107. .proc_handler = proc_dointvec,
  108. },
  109. { }
  110. };
  111. static struct ctl_table raid_dir_table[] = {
  112. {
  113. .procname = "raid",
  114. .maxlen = 0,
  115. .mode = S_IRUGO|S_IXUGO,
  116. .child = raid_table,
  117. },
  118. { }
  119. };
  120. static struct ctl_table raid_root_table[] = {
  121. {
  122. .procname = "dev",
  123. .maxlen = 0,
  124. .mode = 0555,
  125. .child = raid_dir_table,
  126. },
  127. { }
  128. };
  129. static const struct block_device_operations md_fops;
  130. static int start_readonly;
  131. /* bio_clone_mddev
  132. * like bio_clone, but with a local bio set
  133. */
  134. struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
  135. struct mddev *mddev)
  136. {
  137. struct bio *b;
  138. if (!mddev || !mddev->bio_set)
  139. return bio_alloc(gfp_mask, nr_iovecs);
  140. b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
  141. if (!b)
  142. return NULL;
  143. return b;
  144. }
  145. EXPORT_SYMBOL_GPL(bio_alloc_mddev);
  146. struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
  147. struct mddev *mddev)
  148. {
  149. if (!mddev || !mddev->bio_set)
  150. return bio_clone(bio, gfp_mask);
  151. return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
  152. }
  153. EXPORT_SYMBOL_GPL(bio_clone_mddev);
  154. /*
  155. * We have a system wide 'event count' that is incremented
  156. * on any 'interesting' event, and readers of /proc/mdstat
  157. * can use 'poll' or 'select' to find out when the event
  158. * count increases.
  159. *
  160. * Events are:
  161. * start array, stop array, error, add device, remove device,
  162. * start build, activate spare
  163. */
  164. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  165. static atomic_t md_event_count;
  166. void md_new_event(struct mddev *mddev)
  167. {
  168. atomic_inc(&md_event_count);
  169. wake_up(&md_event_waiters);
  170. }
  171. EXPORT_SYMBOL_GPL(md_new_event);
  172. /* Alternate version that can be called from interrupts
  173. * when calling sysfs_notify isn't needed.
  174. */
  175. static void md_new_event_inintr(struct mddev *mddev)
  176. {
  177. atomic_inc(&md_event_count);
  178. wake_up(&md_event_waiters);
  179. }
  180. /*
  181. * Enables to iterate over all existing md arrays
  182. * all_mddevs_lock protects this list.
  183. */
  184. static LIST_HEAD(all_mddevs);
  185. static DEFINE_SPINLOCK(all_mddevs_lock);
  186. /*
  187. * iterates through all used mddevs in the system.
  188. * We take care to grab the all_mddevs_lock whenever navigating
  189. * the list, and to always hold a refcount when unlocked.
  190. * Any code which breaks out of this loop while own
  191. * a reference to the current mddev and must mddev_put it.
  192. */
  193. #define for_each_mddev(_mddev,_tmp) \
  194. \
  195. for (({ spin_lock(&all_mddevs_lock); \
  196. _tmp = all_mddevs.next; \
  197. _mddev = NULL;}); \
  198. ({ if (_tmp != &all_mddevs) \
  199. mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
  200. spin_unlock(&all_mddevs_lock); \
  201. if (_mddev) mddev_put(_mddev); \
  202. _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
  203. _tmp != &all_mddevs;}); \
  204. ({ spin_lock(&all_mddevs_lock); \
  205. _tmp = _tmp->next;}) \
  206. )
  207. /* Rather than calling directly into the personality make_request function,
  208. * IO requests come here first so that we can check if the device is
  209. * being suspended pending a reconfiguration.
  210. * We hold a refcount over the call to ->make_request. By the time that
  211. * call has finished, the bio has been linked into some internal structure
  212. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  213. */
  214. static void md_make_request(struct request_queue *q, struct bio *bio)
  215. {
  216. const int rw = bio_data_dir(bio);
  217. struct mddev *mddev = q->queuedata;
  218. unsigned int sectors;
  219. if (mddev == NULL || mddev->pers == NULL
  220. || !mddev->ready) {
  221. bio_io_error(bio);
  222. return;
  223. }
  224. if (mddev->ro == 1 && unlikely(rw == WRITE)) {
  225. bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
  226. return;
  227. }
  228. smp_rmb(); /* Ensure implications of 'active' are visible */
  229. rcu_read_lock();
  230. if (mddev->suspended) {
  231. DEFINE_WAIT(__wait);
  232. for (;;) {
  233. prepare_to_wait(&mddev->sb_wait, &__wait,
  234. TASK_UNINTERRUPTIBLE);
  235. if (!mddev->suspended)
  236. break;
  237. rcu_read_unlock();
  238. schedule();
  239. rcu_read_lock();
  240. }
  241. finish_wait(&mddev->sb_wait, &__wait);
  242. }
  243. atomic_inc(&mddev->active_io);
  244. rcu_read_unlock();
  245. /*
  246. * save the sectors now since our bio can
  247. * go away inside make_request
  248. */
  249. sectors = bio_sectors(bio);
  250. mddev->pers->make_request(mddev, bio);
  251. generic_start_io_acct(rw, sectors, &mddev->gendisk->part0);
  252. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  253. wake_up(&mddev->sb_wait);
  254. }
  255. /* mddev_suspend makes sure no new requests are submitted
  256. * to the device, and that any requests that have been submitted
  257. * are completely handled.
  258. * Once mddev_detach() is called and completes, the module will be
  259. * completely unused.
  260. */
  261. void mddev_suspend(struct mddev *mddev)
  262. {
  263. BUG_ON(mddev->suspended);
  264. mddev->suspended = 1;
  265. synchronize_rcu();
  266. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  267. mddev->pers->quiesce(mddev, 1);
  268. del_timer_sync(&mddev->safemode_timer);
  269. }
  270. EXPORT_SYMBOL_GPL(mddev_suspend);
  271. void mddev_resume(struct mddev *mddev)
  272. {
  273. mddev->suspended = 0;
  274. wake_up(&mddev->sb_wait);
  275. mddev->pers->quiesce(mddev, 0);
  276. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  277. md_wakeup_thread(mddev->thread);
  278. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  279. }
  280. EXPORT_SYMBOL_GPL(mddev_resume);
  281. int mddev_congested(struct mddev *mddev, int bits)
  282. {
  283. struct md_personality *pers = mddev->pers;
  284. int ret = 0;
  285. rcu_read_lock();
  286. if (mddev->suspended)
  287. ret = 1;
  288. else if (pers && pers->congested)
  289. ret = pers->congested(mddev, bits);
  290. rcu_read_unlock();
  291. return ret;
  292. }
  293. EXPORT_SYMBOL_GPL(mddev_congested);
  294. static int md_congested(void *data, int bits)
  295. {
  296. struct mddev *mddev = data;
  297. return mddev_congested(mddev, bits);
  298. }
  299. static int md_mergeable_bvec(struct request_queue *q,
  300. struct bvec_merge_data *bvm,
  301. struct bio_vec *biovec)
  302. {
  303. struct mddev *mddev = q->queuedata;
  304. int ret;
  305. rcu_read_lock();
  306. if (mddev->suspended) {
  307. /* Must always allow one vec */
  308. if (bvm->bi_size == 0)
  309. ret = biovec->bv_len;
  310. else
  311. ret = 0;
  312. } else {
  313. struct md_personality *pers = mddev->pers;
  314. if (pers && pers->mergeable_bvec)
  315. ret = pers->mergeable_bvec(mddev, bvm, biovec);
  316. else
  317. ret = biovec->bv_len;
  318. }
  319. rcu_read_unlock();
  320. return ret;
  321. }
  322. /*
  323. * Generic flush handling for md
  324. */
  325. static void md_end_flush(struct bio *bio, int err)
  326. {
  327. struct md_rdev *rdev = bio->bi_private;
  328. struct mddev *mddev = rdev->mddev;
  329. rdev_dec_pending(rdev, mddev);
  330. if (atomic_dec_and_test(&mddev->flush_pending)) {
  331. /* The pre-request flush has finished */
  332. queue_work(md_wq, &mddev->flush_work);
  333. }
  334. bio_put(bio);
  335. }
  336. static void md_submit_flush_data(struct work_struct *ws);
  337. static void submit_flushes(struct work_struct *ws)
  338. {
  339. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  340. struct md_rdev *rdev;
  341. INIT_WORK(&mddev->flush_work, md_submit_flush_data);
  342. atomic_set(&mddev->flush_pending, 1);
  343. rcu_read_lock();
  344. rdev_for_each_rcu(rdev, mddev)
  345. if (rdev->raid_disk >= 0 &&
  346. !test_bit(Faulty, &rdev->flags)) {
  347. /* Take two references, one is dropped
  348. * when request finishes, one after
  349. * we reclaim rcu_read_lock
  350. */
  351. struct bio *bi;
  352. atomic_inc(&rdev->nr_pending);
  353. atomic_inc(&rdev->nr_pending);
  354. rcu_read_unlock();
  355. bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
  356. bi->bi_end_io = md_end_flush;
  357. bi->bi_private = rdev;
  358. bi->bi_bdev = rdev->bdev;
  359. atomic_inc(&mddev->flush_pending);
  360. submit_bio(WRITE_FLUSH, bi);
  361. rcu_read_lock();
  362. rdev_dec_pending(rdev, mddev);
  363. }
  364. rcu_read_unlock();
  365. if (atomic_dec_and_test(&mddev->flush_pending))
  366. queue_work(md_wq, &mddev->flush_work);
  367. }
  368. static void md_submit_flush_data(struct work_struct *ws)
  369. {
  370. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  371. struct bio *bio = mddev->flush_bio;
  372. if (bio->bi_iter.bi_size == 0)
  373. /* an empty barrier - all done */
  374. bio_endio(bio, 0);
  375. else {
  376. bio->bi_rw &= ~REQ_FLUSH;
  377. mddev->pers->make_request(mddev, bio);
  378. }
  379. mddev->flush_bio = NULL;
  380. wake_up(&mddev->sb_wait);
  381. }
  382. void md_flush_request(struct mddev *mddev, struct bio *bio)
  383. {
  384. spin_lock_irq(&mddev->lock);
  385. wait_event_lock_irq(mddev->sb_wait,
  386. !mddev->flush_bio,
  387. mddev->lock);
  388. mddev->flush_bio = bio;
  389. spin_unlock_irq(&mddev->lock);
  390. INIT_WORK(&mddev->flush_work, submit_flushes);
  391. queue_work(md_wq, &mddev->flush_work);
  392. }
  393. EXPORT_SYMBOL(md_flush_request);
  394. void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
  395. {
  396. struct mddev *mddev = cb->data;
  397. md_wakeup_thread(mddev->thread);
  398. kfree(cb);
  399. }
  400. EXPORT_SYMBOL(md_unplug);
  401. static inline struct mddev *mddev_get(struct mddev *mddev)
  402. {
  403. atomic_inc(&mddev->active);
  404. return mddev;
  405. }
  406. static void mddev_delayed_delete(struct work_struct *ws);
  407. static void mddev_put(struct mddev *mddev)
  408. {
  409. struct bio_set *bs = NULL;
  410. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  411. return;
  412. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  413. mddev->ctime == 0 && !mddev->hold_active) {
  414. /* Array is not configured at all, and not held active,
  415. * so destroy it */
  416. list_del_init(&mddev->all_mddevs);
  417. bs = mddev->bio_set;
  418. mddev->bio_set = NULL;
  419. if (mddev->gendisk) {
  420. /* We did a probe so need to clean up. Call
  421. * queue_work inside the spinlock so that
  422. * flush_workqueue() after mddev_find will
  423. * succeed in waiting for the work to be done.
  424. */
  425. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  426. queue_work(md_misc_wq, &mddev->del_work);
  427. } else
  428. kfree(mddev);
  429. }
  430. spin_unlock(&all_mddevs_lock);
  431. if (bs)
  432. bioset_free(bs);
  433. }
  434. void mddev_init(struct mddev *mddev)
  435. {
  436. mutex_init(&mddev->open_mutex);
  437. mutex_init(&mddev->reconfig_mutex);
  438. mutex_init(&mddev->bitmap_info.mutex);
  439. INIT_LIST_HEAD(&mddev->disks);
  440. INIT_LIST_HEAD(&mddev->all_mddevs);
  441. init_timer(&mddev->safemode_timer);
  442. atomic_set(&mddev->active, 1);
  443. atomic_set(&mddev->openers, 0);
  444. atomic_set(&mddev->active_io, 0);
  445. spin_lock_init(&mddev->lock);
  446. atomic_set(&mddev->flush_pending, 0);
  447. init_waitqueue_head(&mddev->sb_wait);
  448. init_waitqueue_head(&mddev->recovery_wait);
  449. mddev->reshape_position = MaxSector;
  450. mddev->reshape_backwards = 0;
  451. mddev->last_sync_action = "none";
  452. mddev->resync_min = 0;
  453. mddev->resync_max = MaxSector;
  454. mddev->level = LEVEL_NONE;
  455. }
  456. EXPORT_SYMBOL_GPL(mddev_init);
  457. static struct mddev *mddev_find(dev_t unit)
  458. {
  459. struct mddev *mddev, *new = NULL;
  460. if (unit && MAJOR(unit) != MD_MAJOR)
  461. unit &= ~((1<<MdpMinorShift)-1);
  462. retry:
  463. spin_lock(&all_mddevs_lock);
  464. if (unit) {
  465. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  466. if (mddev->unit == unit) {
  467. mddev_get(mddev);
  468. spin_unlock(&all_mddevs_lock);
  469. kfree(new);
  470. return mddev;
  471. }
  472. if (new) {
  473. list_add(&new->all_mddevs, &all_mddevs);
  474. spin_unlock(&all_mddevs_lock);
  475. new->hold_active = UNTIL_IOCTL;
  476. return new;
  477. }
  478. } else if (new) {
  479. /* find an unused unit number */
  480. static int next_minor = 512;
  481. int start = next_minor;
  482. int is_free = 0;
  483. int dev = 0;
  484. while (!is_free) {
  485. dev = MKDEV(MD_MAJOR, next_minor);
  486. next_minor++;
  487. if (next_minor > MINORMASK)
  488. next_minor = 0;
  489. if (next_minor == start) {
  490. /* Oh dear, all in use. */
  491. spin_unlock(&all_mddevs_lock);
  492. kfree(new);
  493. return NULL;
  494. }
  495. is_free = 1;
  496. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  497. if (mddev->unit == dev) {
  498. is_free = 0;
  499. break;
  500. }
  501. }
  502. new->unit = dev;
  503. new->md_minor = MINOR(dev);
  504. new->hold_active = UNTIL_STOP;
  505. list_add(&new->all_mddevs, &all_mddevs);
  506. spin_unlock(&all_mddevs_lock);
  507. return new;
  508. }
  509. spin_unlock(&all_mddevs_lock);
  510. new = kzalloc(sizeof(*new), GFP_KERNEL);
  511. if (!new)
  512. return NULL;
  513. new->unit = unit;
  514. if (MAJOR(unit) == MD_MAJOR)
  515. new->md_minor = MINOR(unit);
  516. else
  517. new->md_minor = MINOR(unit) >> MdpMinorShift;
  518. mddev_init(new);
  519. goto retry;
  520. }
  521. static struct attribute_group md_redundancy_group;
  522. void mddev_unlock(struct mddev *mddev)
  523. {
  524. if (mddev->to_remove) {
  525. /* These cannot be removed under reconfig_mutex as
  526. * an access to the files will try to take reconfig_mutex
  527. * while holding the file unremovable, which leads to
  528. * a deadlock.
  529. * So hold set sysfs_active while the remove in happeing,
  530. * and anything else which might set ->to_remove or my
  531. * otherwise change the sysfs namespace will fail with
  532. * -EBUSY if sysfs_active is still set.
  533. * We set sysfs_active under reconfig_mutex and elsewhere
  534. * test it under the same mutex to ensure its correct value
  535. * is seen.
  536. */
  537. struct attribute_group *to_remove = mddev->to_remove;
  538. mddev->to_remove = NULL;
  539. mddev->sysfs_active = 1;
  540. mutex_unlock(&mddev->reconfig_mutex);
  541. if (mddev->kobj.sd) {
  542. if (to_remove != &md_redundancy_group)
  543. sysfs_remove_group(&mddev->kobj, to_remove);
  544. if (mddev->pers == NULL ||
  545. mddev->pers->sync_request == NULL) {
  546. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  547. if (mddev->sysfs_action)
  548. sysfs_put(mddev->sysfs_action);
  549. mddev->sysfs_action = NULL;
  550. }
  551. }
  552. mddev->sysfs_active = 0;
  553. } else
  554. mutex_unlock(&mddev->reconfig_mutex);
  555. /* As we've dropped the mutex we need a spinlock to
  556. * make sure the thread doesn't disappear
  557. */
  558. spin_lock(&pers_lock);
  559. md_wakeup_thread(mddev->thread);
  560. spin_unlock(&pers_lock);
  561. }
  562. EXPORT_SYMBOL_GPL(mddev_unlock);
  563. static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
  564. {
  565. struct md_rdev *rdev;
  566. rdev_for_each_rcu(rdev, mddev)
  567. if (rdev->desc_nr == nr)
  568. return rdev;
  569. return NULL;
  570. }
  571. static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
  572. {
  573. struct md_rdev *rdev;
  574. rdev_for_each(rdev, mddev)
  575. if (rdev->bdev->bd_dev == dev)
  576. return rdev;
  577. return NULL;
  578. }
  579. static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
  580. {
  581. struct md_rdev *rdev;
  582. rdev_for_each_rcu(rdev, mddev)
  583. if (rdev->bdev->bd_dev == dev)
  584. return rdev;
  585. return NULL;
  586. }
  587. static struct md_personality *find_pers(int level, char *clevel)
  588. {
  589. struct md_personality *pers;
  590. list_for_each_entry(pers, &pers_list, list) {
  591. if (level != LEVEL_NONE && pers->level == level)
  592. return pers;
  593. if (strcmp(pers->name, clevel)==0)
  594. return pers;
  595. }
  596. return NULL;
  597. }
  598. /* return the offset of the super block in 512byte sectors */
  599. static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
  600. {
  601. sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
  602. return MD_NEW_SIZE_SECTORS(num_sectors);
  603. }
  604. static int alloc_disk_sb(struct md_rdev *rdev)
  605. {
  606. rdev->sb_page = alloc_page(GFP_KERNEL);
  607. if (!rdev->sb_page) {
  608. printk(KERN_ALERT "md: out of memory.\n");
  609. return -ENOMEM;
  610. }
  611. return 0;
  612. }
  613. void md_rdev_clear(struct md_rdev *rdev)
  614. {
  615. if (rdev->sb_page) {
  616. put_page(rdev->sb_page);
  617. rdev->sb_loaded = 0;
  618. rdev->sb_page = NULL;
  619. rdev->sb_start = 0;
  620. rdev->sectors = 0;
  621. }
  622. if (rdev->bb_page) {
  623. put_page(rdev->bb_page);
  624. rdev->bb_page = NULL;
  625. }
  626. kfree(rdev->badblocks.page);
  627. rdev->badblocks.page = NULL;
  628. }
  629. EXPORT_SYMBOL_GPL(md_rdev_clear);
  630. static void super_written(struct bio *bio, int error)
  631. {
  632. struct md_rdev *rdev = bio->bi_private;
  633. struct mddev *mddev = rdev->mddev;
  634. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  635. printk("md: super_written gets error=%d, uptodate=%d\n",
  636. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  637. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  638. md_error(mddev, rdev);
  639. }
  640. if (atomic_dec_and_test(&mddev->pending_writes))
  641. wake_up(&mddev->sb_wait);
  642. bio_put(bio);
  643. }
  644. void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
  645. sector_t sector, int size, struct page *page)
  646. {
  647. /* write first size bytes of page to sector of rdev
  648. * Increment mddev->pending_writes before returning
  649. * and decrement it on completion, waking up sb_wait
  650. * if zero is reached.
  651. * If an error occurred, call md_error
  652. */
  653. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
  654. bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
  655. bio->bi_iter.bi_sector = sector;
  656. bio_add_page(bio, page, size, 0);
  657. bio->bi_private = rdev;
  658. bio->bi_end_io = super_written;
  659. atomic_inc(&mddev->pending_writes);
  660. submit_bio(WRITE_FLUSH_FUA, bio);
  661. }
  662. void md_super_wait(struct mddev *mddev)
  663. {
  664. /* wait for all superblock writes that were scheduled to complete */
  665. wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
  666. }
  667. int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
  668. struct page *page, int rw, bool metadata_op)
  669. {
  670. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
  671. int ret;
  672. bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
  673. rdev->meta_bdev : rdev->bdev;
  674. if (metadata_op)
  675. bio->bi_iter.bi_sector = sector + rdev->sb_start;
  676. else if (rdev->mddev->reshape_position != MaxSector &&
  677. (rdev->mddev->reshape_backwards ==
  678. (sector >= rdev->mddev->reshape_position)))
  679. bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
  680. else
  681. bio->bi_iter.bi_sector = sector + rdev->data_offset;
  682. bio_add_page(bio, page, size, 0);
  683. submit_bio_wait(rw, bio);
  684. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  685. bio_put(bio);
  686. return ret;
  687. }
  688. EXPORT_SYMBOL_GPL(sync_page_io);
  689. static int read_disk_sb(struct md_rdev *rdev, int size)
  690. {
  691. char b[BDEVNAME_SIZE];
  692. if (rdev->sb_loaded)
  693. return 0;
  694. if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
  695. goto fail;
  696. rdev->sb_loaded = 1;
  697. return 0;
  698. fail:
  699. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  700. bdevname(rdev->bdev,b));
  701. return -EINVAL;
  702. }
  703. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  704. {
  705. return sb1->set_uuid0 == sb2->set_uuid0 &&
  706. sb1->set_uuid1 == sb2->set_uuid1 &&
  707. sb1->set_uuid2 == sb2->set_uuid2 &&
  708. sb1->set_uuid3 == sb2->set_uuid3;
  709. }
  710. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  711. {
  712. int ret;
  713. mdp_super_t *tmp1, *tmp2;
  714. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  715. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  716. if (!tmp1 || !tmp2) {
  717. ret = 0;
  718. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  719. goto abort;
  720. }
  721. *tmp1 = *sb1;
  722. *tmp2 = *sb2;
  723. /*
  724. * nr_disks is not constant
  725. */
  726. tmp1->nr_disks = 0;
  727. tmp2->nr_disks = 0;
  728. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  729. abort:
  730. kfree(tmp1);
  731. kfree(tmp2);
  732. return ret;
  733. }
  734. static u32 md_csum_fold(u32 csum)
  735. {
  736. csum = (csum & 0xffff) + (csum >> 16);
  737. return (csum & 0xffff) + (csum >> 16);
  738. }
  739. static unsigned int calc_sb_csum(mdp_super_t *sb)
  740. {
  741. u64 newcsum = 0;
  742. u32 *sb32 = (u32*)sb;
  743. int i;
  744. unsigned int disk_csum, csum;
  745. disk_csum = sb->sb_csum;
  746. sb->sb_csum = 0;
  747. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  748. newcsum += sb32[i];
  749. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  750. #ifdef CONFIG_ALPHA
  751. /* This used to use csum_partial, which was wrong for several
  752. * reasons including that different results are returned on
  753. * different architectures. It isn't critical that we get exactly
  754. * the same return value as before (we always csum_fold before
  755. * testing, and that removes any differences). However as we
  756. * know that csum_partial always returned a 16bit value on
  757. * alphas, do a fold to maximise conformity to previous behaviour.
  758. */
  759. sb->sb_csum = md_csum_fold(disk_csum);
  760. #else
  761. sb->sb_csum = disk_csum;
  762. #endif
  763. return csum;
  764. }
  765. /*
  766. * Handle superblock details.
  767. * We want to be able to handle multiple superblock formats
  768. * so we have a common interface to them all, and an array of
  769. * different handlers.
  770. * We rely on user-space to write the initial superblock, and support
  771. * reading and updating of superblocks.
  772. * Interface methods are:
  773. * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
  774. * loads and validates a superblock on dev.
  775. * if refdev != NULL, compare superblocks on both devices
  776. * Return:
  777. * 0 - dev has a superblock that is compatible with refdev
  778. * 1 - dev has a superblock that is compatible and newer than refdev
  779. * so dev should be used as the refdev in future
  780. * -EINVAL superblock incompatible or invalid
  781. * -othererror e.g. -EIO
  782. *
  783. * int validate_super(struct mddev *mddev, struct md_rdev *dev)
  784. * Verify that dev is acceptable into mddev.
  785. * The first time, mddev->raid_disks will be 0, and data from
  786. * dev should be merged in. Subsequent calls check that dev
  787. * is new enough. Return 0 or -EINVAL
  788. *
  789. * void sync_super(struct mddev *mddev, struct md_rdev *dev)
  790. * Update the superblock for rdev with data in mddev
  791. * This does not write to disc.
  792. *
  793. */
  794. struct super_type {
  795. char *name;
  796. struct module *owner;
  797. int (*load_super)(struct md_rdev *rdev,
  798. struct md_rdev *refdev,
  799. int minor_version);
  800. int (*validate_super)(struct mddev *mddev,
  801. struct md_rdev *rdev);
  802. void (*sync_super)(struct mddev *mddev,
  803. struct md_rdev *rdev);
  804. unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
  805. sector_t num_sectors);
  806. int (*allow_new_offset)(struct md_rdev *rdev,
  807. unsigned long long new_offset);
  808. };
  809. /*
  810. * Check that the given mddev has no bitmap.
  811. *
  812. * This function is called from the run method of all personalities that do not
  813. * support bitmaps. It prints an error message and returns non-zero if mddev
  814. * has a bitmap. Otherwise, it returns 0.
  815. *
  816. */
  817. int md_check_no_bitmap(struct mddev *mddev)
  818. {
  819. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  820. return 0;
  821. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  822. mdname(mddev), mddev->pers->name);
  823. return 1;
  824. }
  825. EXPORT_SYMBOL(md_check_no_bitmap);
  826. /*
  827. * load_super for 0.90.0
  828. */
  829. static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  830. {
  831. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  832. mdp_super_t *sb;
  833. int ret;
  834. /*
  835. * Calculate the position of the superblock (512byte sectors),
  836. * it's at the end of the disk.
  837. *
  838. * It also happens to be a multiple of 4Kb.
  839. */
  840. rdev->sb_start = calc_dev_sboffset(rdev);
  841. ret = read_disk_sb(rdev, MD_SB_BYTES);
  842. if (ret) return ret;
  843. ret = -EINVAL;
  844. bdevname(rdev->bdev, b);
  845. sb = page_address(rdev->sb_page);
  846. if (sb->md_magic != MD_SB_MAGIC) {
  847. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  848. b);
  849. goto abort;
  850. }
  851. if (sb->major_version != 0 ||
  852. sb->minor_version < 90 ||
  853. sb->minor_version > 91) {
  854. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  855. sb->major_version, sb->minor_version,
  856. b);
  857. goto abort;
  858. }
  859. if (sb->raid_disks <= 0)
  860. goto abort;
  861. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  862. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  863. b);
  864. goto abort;
  865. }
  866. rdev->preferred_minor = sb->md_minor;
  867. rdev->data_offset = 0;
  868. rdev->new_data_offset = 0;
  869. rdev->sb_size = MD_SB_BYTES;
  870. rdev->badblocks.shift = -1;
  871. if (sb->level == LEVEL_MULTIPATH)
  872. rdev->desc_nr = -1;
  873. else
  874. rdev->desc_nr = sb->this_disk.number;
  875. if (!refdev) {
  876. ret = 1;
  877. } else {
  878. __u64 ev1, ev2;
  879. mdp_super_t *refsb = page_address(refdev->sb_page);
  880. if (!uuid_equal(refsb, sb)) {
  881. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  882. b, bdevname(refdev->bdev,b2));
  883. goto abort;
  884. }
  885. if (!sb_equal(refsb, sb)) {
  886. printk(KERN_WARNING "md: %s has same UUID"
  887. " but different superblock to %s\n",
  888. b, bdevname(refdev->bdev, b2));
  889. goto abort;
  890. }
  891. ev1 = md_event(sb);
  892. ev2 = md_event(refsb);
  893. if (ev1 > ev2)
  894. ret = 1;
  895. else
  896. ret = 0;
  897. }
  898. rdev->sectors = rdev->sb_start;
  899. /* Limit to 4TB as metadata cannot record more than that.
  900. * (not needed for Linear and RAID0 as metadata doesn't
  901. * record this size)
  902. */
  903. if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
  904. rdev->sectors = (2ULL << 32) - 2;
  905. if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
  906. /* "this cannot possibly happen" ... */
  907. ret = -EINVAL;
  908. abort:
  909. return ret;
  910. }
  911. /*
  912. * validate_super for 0.90.0
  913. */
  914. static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
  915. {
  916. mdp_disk_t *desc;
  917. mdp_super_t *sb = page_address(rdev->sb_page);
  918. __u64 ev1 = md_event(sb);
  919. rdev->raid_disk = -1;
  920. clear_bit(Faulty, &rdev->flags);
  921. clear_bit(In_sync, &rdev->flags);
  922. clear_bit(Bitmap_sync, &rdev->flags);
  923. clear_bit(WriteMostly, &rdev->flags);
  924. if (mddev->raid_disks == 0) {
  925. mddev->major_version = 0;
  926. mddev->minor_version = sb->minor_version;
  927. mddev->patch_version = sb->patch_version;
  928. mddev->external = 0;
  929. mddev->chunk_sectors = sb->chunk_size >> 9;
  930. mddev->ctime = sb->ctime;
  931. mddev->utime = sb->utime;
  932. mddev->level = sb->level;
  933. mddev->clevel[0] = 0;
  934. mddev->layout = sb->layout;
  935. mddev->raid_disks = sb->raid_disks;
  936. mddev->dev_sectors = ((sector_t)sb->size) * 2;
  937. mddev->events = ev1;
  938. mddev->bitmap_info.offset = 0;
  939. mddev->bitmap_info.space = 0;
  940. /* bitmap can use 60 K after the 4K superblocks */
  941. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  942. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  943. mddev->reshape_backwards = 0;
  944. if (mddev->minor_version >= 91) {
  945. mddev->reshape_position = sb->reshape_position;
  946. mddev->delta_disks = sb->delta_disks;
  947. mddev->new_level = sb->new_level;
  948. mddev->new_layout = sb->new_layout;
  949. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  950. if (mddev->delta_disks < 0)
  951. mddev->reshape_backwards = 1;
  952. } else {
  953. mddev->reshape_position = MaxSector;
  954. mddev->delta_disks = 0;
  955. mddev->new_level = mddev->level;
  956. mddev->new_layout = mddev->layout;
  957. mddev->new_chunk_sectors = mddev->chunk_sectors;
  958. }
  959. if (sb->state & (1<<MD_SB_CLEAN))
  960. mddev->recovery_cp = MaxSector;
  961. else {
  962. if (sb->events_hi == sb->cp_events_hi &&
  963. sb->events_lo == sb->cp_events_lo) {
  964. mddev->recovery_cp = sb->recovery_cp;
  965. } else
  966. mddev->recovery_cp = 0;
  967. }
  968. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  969. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  970. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  971. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  972. mddev->max_disks = MD_SB_DISKS;
  973. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  974. mddev->bitmap_info.file == NULL) {
  975. mddev->bitmap_info.offset =
  976. mddev->bitmap_info.default_offset;
  977. mddev->bitmap_info.space =
  978. mddev->bitmap_info.default_space;
  979. }
  980. } else if (mddev->pers == NULL) {
  981. /* Insist on good event counter while assembling, except
  982. * for spares (which don't need an event count) */
  983. ++ev1;
  984. if (sb->disks[rdev->desc_nr].state & (
  985. (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
  986. if (ev1 < mddev->events)
  987. return -EINVAL;
  988. } else if (mddev->bitmap) {
  989. /* if adding to array with a bitmap, then we can accept an
  990. * older device ... but not too old.
  991. */
  992. if (ev1 < mddev->bitmap->events_cleared)
  993. return 0;
  994. if (ev1 < mddev->events)
  995. set_bit(Bitmap_sync, &rdev->flags);
  996. } else {
  997. if (ev1 < mddev->events)
  998. /* just a hot-add of a new device, leave raid_disk at -1 */
  999. return 0;
  1000. }
  1001. if (mddev->level != LEVEL_MULTIPATH) {
  1002. desc = sb->disks + rdev->desc_nr;
  1003. if (desc->state & (1<<MD_DISK_FAULTY))
  1004. set_bit(Faulty, &rdev->flags);
  1005. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  1006. desc->raid_disk < mddev->raid_disks */) {
  1007. set_bit(In_sync, &rdev->flags);
  1008. rdev->raid_disk = desc->raid_disk;
  1009. rdev->saved_raid_disk = desc->raid_disk;
  1010. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  1011. /* active but not in sync implies recovery up to
  1012. * reshape position. We don't know exactly where
  1013. * that is, so set to zero for now */
  1014. if (mddev->minor_version >= 91) {
  1015. rdev->recovery_offset = 0;
  1016. rdev->raid_disk = desc->raid_disk;
  1017. }
  1018. }
  1019. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  1020. set_bit(WriteMostly, &rdev->flags);
  1021. } else /* MULTIPATH are always insync */
  1022. set_bit(In_sync, &rdev->flags);
  1023. return 0;
  1024. }
  1025. /*
  1026. * sync_super for 0.90.0
  1027. */
  1028. static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
  1029. {
  1030. mdp_super_t *sb;
  1031. struct md_rdev *rdev2;
  1032. int next_spare = mddev->raid_disks;
  1033. /* make rdev->sb match mddev data..
  1034. *
  1035. * 1/ zero out disks
  1036. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  1037. * 3/ any empty disks < next_spare become removed
  1038. *
  1039. * disks[0] gets initialised to REMOVED because
  1040. * we cannot be sure from other fields if it has
  1041. * been initialised or not.
  1042. */
  1043. int i;
  1044. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  1045. rdev->sb_size = MD_SB_BYTES;
  1046. sb = page_address(rdev->sb_page);
  1047. memset(sb, 0, sizeof(*sb));
  1048. sb->md_magic = MD_SB_MAGIC;
  1049. sb->major_version = mddev->major_version;
  1050. sb->patch_version = mddev->patch_version;
  1051. sb->gvalid_words = 0; /* ignored */
  1052. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  1053. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  1054. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  1055. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  1056. sb->ctime = mddev->ctime;
  1057. sb->level = mddev->level;
  1058. sb->size = mddev->dev_sectors / 2;
  1059. sb->raid_disks = mddev->raid_disks;
  1060. sb->md_minor = mddev->md_minor;
  1061. sb->not_persistent = 0;
  1062. sb->utime = mddev->utime;
  1063. sb->state = 0;
  1064. sb->events_hi = (mddev->events>>32);
  1065. sb->events_lo = (u32)mddev->events;
  1066. if (mddev->reshape_position == MaxSector)
  1067. sb->minor_version = 90;
  1068. else {
  1069. sb->minor_version = 91;
  1070. sb->reshape_position = mddev->reshape_position;
  1071. sb->new_level = mddev->new_level;
  1072. sb->delta_disks = mddev->delta_disks;
  1073. sb->new_layout = mddev->new_layout;
  1074. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1075. }
  1076. mddev->minor_version = sb->minor_version;
  1077. if (mddev->in_sync)
  1078. {
  1079. sb->recovery_cp = mddev->recovery_cp;
  1080. sb->cp_events_hi = (mddev->events>>32);
  1081. sb->cp_events_lo = (u32)mddev->events;
  1082. if (mddev->recovery_cp == MaxSector)
  1083. sb->state = (1<< MD_SB_CLEAN);
  1084. } else
  1085. sb->recovery_cp = 0;
  1086. sb->layout = mddev->layout;
  1087. sb->chunk_size = mddev->chunk_sectors << 9;
  1088. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1089. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1090. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1091. rdev_for_each(rdev2, mddev) {
  1092. mdp_disk_t *d;
  1093. int desc_nr;
  1094. int is_active = test_bit(In_sync, &rdev2->flags);
  1095. if (rdev2->raid_disk >= 0 &&
  1096. sb->minor_version >= 91)
  1097. /* we have nowhere to store the recovery_offset,
  1098. * but if it is not below the reshape_position,
  1099. * we can piggy-back on that.
  1100. */
  1101. is_active = 1;
  1102. if (rdev2->raid_disk < 0 ||
  1103. test_bit(Faulty, &rdev2->flags))
  1104. is_active = 0;
  1105. if (is_active)
  1106. desc_nr = rdev2->raid_disk;
  1107. else
  1108. desc_nr = next_spare++;
  1109. rdev2->desc_nr = desc_nr;
  1110. d = &sb->disks[rdev2->desc_nr];
  1111. nr_disks++;
  1112. d->number = rdev2->desc_nr;
  1113. d->major = MAJOR(rdev2->bdev->bd_dev);
  1114. d->minor = MINOR(rdev2->bdev->bd_dev);
  1115. if (is_active)
  1116. d->raid_disk = rdev2->raid_disk;
  1117. else
  1118. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1119. if (test_bit(Faulty, &rdev2->flags))
  1120. d->state = (1<<MD_DISK_FAULTY);
  1121. else if (is_active) {
  1122. d->state = (1<<MD_DISK_ACTIVE);
  1123. if (test_bit(In_sync, &rdev2->flags))
  1124. d->state |= (1<<MD_DISK_SYNC);
  1125. active++;
  1126. working++;
  1127. } else {
  1128. d->state = 0;
  1129. spare++;
  1130. working++;
  1131. }
  1132. if (test_bit(WriteMostly, &rdev2->flags))
  1133. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1134. }
  1135. /* now set the "removed" and "faulty" bits on any missing devices */
  1136. for (i=0 ; i < mddev->raid_disks ; i++) {
  1137. mdp_disk_t *d = &sb->disks[i];
  1138. if (d->state == 0 && d->number == 0) {
  1139. d->number = i;
  1140. d->raid_disk = i;
  1141. d->state = (1<<MD_DISK_REMOVED);
  1142. d->state |= (1<<MD_DISK_FAULTY);
  1143. failed++;
  1144. }
  1145. }
  1146. sb->nr_disks = nr_disks;
  1147. sb->active_disks = active;
  1148. sb->working_disks = working;
  1149. sb->failed_disks = failed;
  1150. sb->spare_disks = spare;
  1151. sb->this_disk = sb->disks[rdev->desc_nr];
  1152. sb->sb_csum = calc_sb_csum(sb);
  1153. }
  1154. /*
  1155. * rdev_size_change for 0.90.0
  1156. */
  1157. static unsigned long long
  1158. super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1159. {
  1160. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1161. return 0; /* component must fit device */
  1162. if (rdev->mddev->bitmap_info.offset)
  1163. return 0; /* can't move bitmap */
  1164. rdev->sb_start = calc_dev_sboffset(rdev);
  1165. if (!num_sectors || num_sectors > rdev->sb_start)
  1166. num_sectors = rdev->sb_start;
  1167. /* Limit to 4TB as metadata cannot record more than that.
  1168. * 4TB == 2^32 KB, or 2*2^32 sectors.
  1169. */
  1170. if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
  1171. num_sectors = (2ULL << 32) - 2;
  1172. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1173. rdev->sb_page);
  1174. md_super_wait(rdev->mddev);
  1175. return num_sectors;
  1176. }
  1177. static int
  1178. super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
  1179. {
  1180. /* non-zero offset changes not possible with v0.90 */
  1181. return new_offset == 0;
  1182. }
  1183. /*
  1184. * version 1 superblock
  1185. */
  1186. static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
  1187. {
  1188. __le32 disk_csum;
  1189. u32 csum;
  1190. unsigned long long newcsum;
  1191. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1192. __le32 *isuper = (__le32*)sb;
  1193. disk_csum = sb->sb_csum;
  1194. sb->sb_csum = 0;
  1195. newcsum = 0;
  1196. for (; size >= 4; size -= 4)
  1197. newcsum += le32_to_cpu(*isuper++);
  1198. if (size == 2)
  1199. newcsum += le16_to_cpu(*(__le16*) isuper);
  1200. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1201. sb->sb_csum = disk_csum;
  1202. return cpu_to_le32(csum);
  1203. }
  1204. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  1205. int acknowledged);
  1206. static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  1207. {
  1208. struct mdp_superblock_1 *sb;
  1209. int ret;
  1210. sector_t sb_start;
  1211. sector_t sectors;
  1212. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1213. int bmask;
  1214. /*
  1215. * Calculate the position of the superblock in 512byte sectors.
  1216. * It is always aligned to a 4K boundary and
  1217. * depeding on minor_version, it can be:
  1218. * 0: At least 8K, but less than 12K, from end of device
  1219. * 1: At start of device
  1220. * 2: 4K from start of device.
  1221. */
  1222. switch(minor_version) {
  1223. case 0:
  1224. sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
  1225. sb_start -= 8*2;
  1226. sb_start &= ~(sector_t)(4*2-1);
  1227. break;
  1228. case 1:
  1229. sb_start = 0;
  1230. break;
  1231. case 2:
  1232. sb_start = 8;
  1233. break;
  1234. default:
  1235. return -EINVAL;
  1236. }
  1237. rdev->sb_start = sb_start;
  1238. /* superblock is rarely larger than 1K, but it can be larger,
  1239. * and it is safe to read 4k, so we do that
  1240. */
  1241. ret = read_disk_sb(rdev, 4096);
  1242. if (ret) return ret;
  1243. sb = page_address(rdev->sb_page);
  1244. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1245. sb->major_version != cpu_to_le32(1) ||
  1246. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1247. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1248. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1249. return -EINVAL;
  1250. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1251. printk("md: invalid superblock checksum on %s\n",
  1252. bdevname(rdev->bdev,b));
  1253. return -EINVAL;
  1254. }
  1255. if (le64_to_cpu(sb->data_size) < 10) {
  1256. printk("md: data_size too small on %s\n",
  1257. bdevname(rdev->bdev,b));
  1258. return -EINVAL;
  1259. }
  1260. if (sb->pad0 ||
  1261. sb->pad3[0] ||
  1262. memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
  1263. /* Some padding is non-zero, might be a new feature */
  1264. return -EINVAL;
  1265. rdev->preferred_minor = 0xffff;
  1266. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1267. rdev->new_data_offset = rdev->data_offset;
  1268. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
  1269. (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
  1270. rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
  1271. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1272. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1273. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1274. if (rdev->sb_size & bmask)
  1275. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1276. if (minor_version
  1277. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1278. return -EINVAL;
  1279. if (minor_version
  1280. && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
  1281. return -EINVAL;
  1282. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1283. rdev->desc_nr = -1;
  1284. else
  1285. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1286. if (!rdev->bb_page) {
  1287. rdev->bb_page = alloc_page(GFP_KERNEL);
  1288. if (!rdev->bb_page)
  1289. return -ENOMEM;
  1290. }
  1291. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
  1292. rdev->badblocks.count == 0) {
  1293. /* need to load the bad block list.
  1294. * Currently we limit it to one page.
  1295. */
  1296. s32 offset;
  1297. sector_t bb_sector;
  1298. u64 *bbp;
  1299. int i;
  1300. int sectors = le16_to_cpu(sb->bblog_size);
  1301. if (sectors > (PAGE_SIZE / 512))
  1302. return -EINVAL;
  1303. offset = le32_to_cpu(sb->bblog_offset);
  1304. if (offset == 0)
  1305. return -EINVAL;
  1306. bb_sector = (long long)offset;
  1307. if (!sync_page_io(rdev, bb_sector, sectors << 9,
  1308. rdev->bb_page, READ, true))
  1309. return -EIO;
  1310. bbp = (u64 *)page_address(rdev->bb_page);
  1311. rdev->badblocks.shift = sb->bblog_shift;
  1312. for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
  1313. u64 bb = le64_to_cpu(*bbp);
  1314. int count = bb & (0x3ff);
  1315. u64 sector = bb >> 10;
  1316. sector <<= sb->bblog_shift;
  1317. count <<= sb->bblog_shift;
  1318. if (bb + 1 == 0)
  1319. break;
  1320. if (md_set_badblocks(&rdev->badblocks,
  1321. sector, count, 1) == 0)
  1322. return -EINVAL;
  1323. }
  1324. } else if (sb->bblog_offset != 0)
  1325. rdev->badblocks.shift = 0;
  1326. if (!refdev) {
  1327. ret = 1;
  1328. } else {
  1329. __u64 ev1, ev2;
  1330. struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
  1331. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1332. sb->level != refsb->level ||
  1333. sb->layout != refsb->layout ||
  1334. sb->chunksize != refsb->chunksize) {
  1335. printk(KERN_WARNING "md: %s has strangely different"
  1336. " superblock to %s\n",
  1337. bdevname(rdev->bdev,b),
  1338. bdevname(refdev->bdev,b2));
  1339. return -EINVAL;
  1340. }
  1341. ev1 = le64_to_cpu(sb->events);
  1342. ev2 = le64_to_cpu(refsb->events);
  1343. if (ev1 > ev2)
  1344. ret = 1;
  1345. else
  1346. ret = 0;
  1347. }
  1348. if (minor_version) {
  1349. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
  1350. sectors -= rdev->data_offset;
  1351. } else
  1352. sectors = rdev->sb_start;
  1353. if (sectors < le64_to_cpu(sb->data_size))
  1354. return -EINVAL;
  1355. rdev->sectors = le64_to_cpu(sb->data_size);
  1356. return ret;
  1357. }
  1358. static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
  1359. {
  1360. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  1361. __u64 ev1 = le64_to_cpu(sb->events);
  1362. rdev->raid_disk = -1;
  1363. clear_bit(Faulty, &rdev->flags);
  1364. clear_bit(In_sync, &rdev->flags);
  1365. clear_bit(Bitmap_sync, &rdev->flags);
  1366. clear_bit(WriteMostly, &rdev->flags);
  1367. if (mddev->raid_disks == 0) {
  1368. mddev->major_version = 1;
  1369. mddev->patch_version = 0;
  1370. mddev->external = 0;
  1371. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1372. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1373. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1374. mddev->level = le32_to_cpu(sb->level);
  1375. mddev->clevel[0] = 0;
  1376. mddev->layout = le32_to_cpu(sb->layout);
  1377. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1378. mddev->dev_sectors = le64_to_cpu(sb->size);
  1379. mddev->events = ev1;
  1380. mddev->bitmap_info.offset = 0;
  1381. mddev->bitmap_info.space = 0;
  1382. /* Default location for bitmap is 1K after superblock
  1383. * using 3K - total of 4K
  1384. */
  1385. mddev->bitmap_info.default_offset = 1024 >> 9;
  1386. mddev->bitmap_info.default_space = (4096-1024) >> 9;
  1387. mddev->reshape_backwards = 0;
  1388. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1389. memcpy(mddev->uuid, sb->set_uuid, 16);
  1390. mddev->max_disks = (4096-256)/2;
  1391. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1392. mddev->bitmap_info.file == NULL) {
  1393. mddev->bitmap_info.offset =
  1394. (__s32)le32_to_cpu(sb->bitmap_offset);
  1395. /* Metadata doesn't record how much space is available.
  1396. * For 1.0, we assume we can use up to the superblock
  1397. * if before, else to 4K beyond superblock.
  1398. * For others, assume no change is possible.
  1399. */
  1400. if (mddev->minor_version > 0)
  1401. mddev->bitmap_info.space = 0;
  1402. else if (mddev->bitmap_info.offset > 0)
  1403. mddev->bitmap_info.space =
  1404. 8 - mddev->bitmap_info.offset;
  1405. else
  1406. mddev->bitmap_info.space =
  1407. -mddev->bitmap_info.offset;
  1408. }
  1409. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1410. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1411. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1412. mddev->new_level = le32_to_cpu(sb->new_level);
  1413. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1414. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1415. if (mddev->delta_disks < 0 ||
  1416. (mddev->delta_disks == 0 &&
  1417. (le32_to_cpu(sb->feature_map)
  1418. & MD_FEATURE_RESHAPE_BACKWARDS)))
  1419. mddev->reshape_backwards = 1;
  1420. } else {
  1421. mddev->reshape_position = MaxSector;
  1422. mddev->delta_disks = 0;
  1423. mddev->new_level = mddev->level;
  1424. mddev->new_layout = mddev->layout;
  1425. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1426. }
  1427. } else if (mddev->pers == NULL) {
  1428. /* Insist of good event counter while assembling, except for
  1429. * spares (which don't need an event count) */
  1430. ++ev1;
  1431. if (rdev->desc_nr >= 0 &&
  1432. rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
  1433. le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
  1434. if (ev1 < mddev->events)
  1435. return -EINVAL;
  1436. } else if (mddev->bitmap) {
  1437. /* If adding to array with a bitmap, then we can accept an
  1438. * older device, but not too old.
  1439. */
  1440. if (ev1 < mddev->bitmap->events_cleared)
  1441. return 0;
  1442. if (ev1 < mddev->events)
  1443. set_bit(Bitmap_sync, &rdev->flags);
  1444. } else {
  1445. if (ev1 < mddev->events)
  1446. /* just a hot-add of a new device, leave raid_disk at -1 */
  1447. return 0;
  1448. }
  1449. if (mddev->level != LEVEL_MULTIPATH) {
  1450. int role;
  1451. if (rdev->desc_nr < 0 ||
  1452. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1453. role = 0xffff;
  1454. rdev->desc_nr = -1;
  1455. } else
  1456. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1457. switch(role) {
  1458. case 0xffff: /* spare */
  1459. break;
  1460. case 0xfffe: /* faulty */
  1461. set_bit(Faulty, &rdev->flags);
  1462. break;
  1463. default:
  1464. rdev->saved_raid_disk = role;
  1465. if ((le32_to_cpu(sb->feature_map) &
  1466. MD_FEATURE_RECOVERY_OFFSET)) {
  1467. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1468. if (!(le32_to_cpu(sb->feature_map) &
  1469. MD_FEATURE_RECOVERY_BITMAP))
  1470. rdev->saved_raid_disk = -1;
  1471. } else
  1472. set_bit(In_sync, &rdev->flags);
  1473. rdev->raid_disk = role;
  1474. break;
  1475. }
  1476. if (sb->devflags & WriteMostly1)
  1477. set_bit(WriteMostly, &rdev->flags);
  1478. if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
  1479. set_bit(Replacement, &rdev->flags);
  1480. } else /* MULTIPATH are always insync */
  1481. set_bit(In_sync, &rdev->flags);
  1482. return 0;
  1483. }
  1484. static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
  1485. {
  1486. struct mdp_superblock_1 *sb;
  1487. struct md_rdev *rdev2;
  1488. int max_dev, i;
  1489. /* make rdev->sb match mddev and rdev data. */
  1490. sb = page_address(rdev->sb_page);
  1491. sb->feature_map = 0;
  1492. sb->pad0 = 0;
  1493. sb->recovery_offset = cpu_to_le64(0);
  1494. memset(sb->pad3, 0, sizeof(sb->pad3));
  1495. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1496. sb->events = cpu_to_le64(mddev->events);
  1497. if (mddev->in_sync)
  1498. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1499. else
  1500. sb->resync_offset = cpu_to_le64(0);
  1501. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1502. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1503. sb->size = cpu_to_le64(mddev->dev_sectors);
  1504. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1505. sb->level = cpu_to_le32(mddev->level);
  1506. sb->layout = cpu_to_le32(mddev->layout);
  1507. if (test_bit(WriteMostly, &rdev->flags))
  1508. sb->devflags |= WriteMostly1;
  1509. else
  1510. sb->devflags &= ~WriteMostly1;
  1511. sb->data_offset = cpu_to_le64(rdev->data_offset);
  1512. sb->data_size = cpu_to_le64(rdev->sectors);
  1513. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1514. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1515. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1516. }
  1517. if (rdev->raid_disk >= 0 &&
  1518. !test_bit(In_sync, &rdev->flags)) {
  1519. sb->feature_map |=
  1520. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1521. sb->recovery_offset =
  1522. cpu_to_le64(rdev->recovery_offset);
  1523. if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
  1524. sb->feature_map |=
  1525. cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
  1526. }
  1527. if (test_bit(Replacement, &rdev->flags))
  1528. sb->feature_map |=
  1529. cpu_to_le32(MD_FEATURE_REPLACEMENT);
  1530. if (mddev->reshape_position != MaxSector) {
  1531. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1532. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1533. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1534. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1535. sb->new_level = cpu_to_le32(mddev->new_level);
  1536. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1537. if (mddev->delta_disks == 0 &&
  1538. mddev->reshape_backwards)
  1539. sb->feature_map
  1540. |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
  1541. if (rdev->new_data_offset != rdev->data_offset) {
  1542. sb->feature_map
  1543. |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
  1544. sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
  1545. - rdev->data_offset));
  1546. }
  1547. }
  1548. if (rdev->badblocks.count == 0)
  1549. /* Nothing to do for bad blocks*/ ;
  1550. else if (sb->bblog_offset == 0)
  1551. /* Cannot record bad blocks on this device */
  1552. md_error(mddev, rdev);
  1553. else {
  1554. struct badblocks *bb = &rdev->badblocks;
  1555. u64 *bbp = (u64 *)page_address(rdev->bb_page);
  1556. u64 *p = bb->page;
  1557. sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
  1558. if (bb->changed) {
  1559. unsigned seq;
  1560. retry:
  1561. seq = read_seqbegin(&bb->lock);
  1562. memset(bbp, 0xff, PAGE_SIZE);
  1563. for (i = 0 ; i < bb->count ; i++) {
  1564. u64 internal_bb = p[i];
  1565. u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
  1566. | BB_LEN(internal_bb));
  1567. bbp[i] = cpu_to_le64(store_bb);
  1568. }
  1569. bb->changed = 0;
  1570. if (read_seqretry(&bb->lock, seq))
  1571. goto retry;
  1572. bb->sector = (rdev->sb_start +
  1573. (int)le32_to_cpu(sb->bblog_offset));
  1574. bb->size = le16_to_cpu(sb->bblog_size);
  1575. }
  1576. }
  1577. max_dev = 0;
  1578. rdev_for_each(rdev2, mddev)
  1579. if (rdev2->desc_nr+1 > max_dev)
  1580. max_dev = rdev2->desc_nr+1;
  1581. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1582. int bmask;
  1583. sb->max_dev = cpu_to_le32(max_dev);
  1584. rdev->sb_size = max_dev * 2 + 256;
  1585. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1586. if (rdev->sb_size & bmask)
  1587. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1588. } else
  1589. max_dev = le32_to_cpu(sb->max_dev);
  1590. for (i=0; i<max_dev;i++)
  1591. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1592. rdev_for_each(rdev2, mddev) {
  1593. i = rdev2->desc_nr;
  1594. if (test_bit(Faulty, &rdev2->flags))
  1595. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1596. else if (test_bit(In_sync, &rdev2->flags))
  1597. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1598. else if (rdev2->raid_disk >= 0)
  1599. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1600. else
  1601. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1602. }
  1603. sb->sb_csum = calc_sb_1_csum(sb);
  1604. }
  1605. static unsigned long long
  1606. super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1607. {
  1608. struct mdp_superblock_1 *sb;
  1609. sector_t max_sectors;
  1610. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1611. return 0; /* component must fit device */
  1612. if (rdev->data_offset != rdev->new_data_offset)
  1613. return 0; /* too confusing */
  1614. if (rdev->sb_start < rdev->data_offset) {
  1615. /* minor versions 1 and 2; superblock before data */
  1616. max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
  1617. max_sectors -= rdev->data_offset;
  1618. if (!num_sectors || num_sectors > max_sectors)
  1619. num_sectors = max_sectors;
  1620. } else if (rdev->mddev->bitmap_info.offset) {
  1621. /* minor version 0 with bitmap we can't move */
  1622. return 0;
  1623. } else {
  1624. /* minor version 0; superblock after data */
  1625. sector_t sb_start;
  1626. sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
  1627. sb_start &= ~(sector_t)(4*2 - 1);
  1628. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1629. if (!num_sectors || num_sectors > max_sectors)
  1630. num_sectors = max_sectors;
  1631. rdev->sb_start = sb_start;
  1632. }
  1633. sb = page_address(rdev->sb_page);
  1634. sb->data_size = cpu_to_le64(num_sectors);
  1635. sb->super_offset = rdev->sb_start;
  1636. sb->sb_csum = calc_sb_1_csum(sb);
  1637. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1638. rdev->sb_page);
  1639. md_super_wait(rdev->mddev);
  1640. return num_sectors;
  1641. }
  1642. static int
  1643. super_1_allow_new_offset(struct md_rdev *rdev,
  1644. unsigned long long new_offset)
  1645. {
  1646. /* All necessary checks on new >= old have been done */
  1647. struct bitmap *bitmap;
  1648. if (new_offset >= rdev->data_offset)
  1649. return 1;
  1650. /* with 1.0 metadata, there is no metadata to tread on
  1651. * so we can always move back */
  1652. if (rdev->mddev->minor_version == 0)
  1653. return 1;
  1654. /* otherwise we must be sure not to step on
  1655. * any metadata, so stay:
  1656. * 36K beyond start of superblock
  1657. * beyond end of badblocks
  1658. * beyond write-intent bitmap
  1659. */
  1660. if (rdev->sb_start + (32+4)*2 > new_offset)
  1661. return 0;
  1662. bitmap = rdev->mddev->bitmap;
  1663. if (bitmap && !rdev->mddev->bitmap_info.file &&
  1664. rdev->sb_start + rdev->mddev->bitmap_info.offset +
  1665. bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
  1666. return 0;
  1667. if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
  1668. return 0;
  1669. return 1;
  1670. }
  1671. static struct super_type super_types[] = {
  1672. [0] = {
  1673. .name = "0.90.0",
  1674. .owner = THIS_MODULE,
  1675. .load_super = super_90_load,
  1676. .validate_super = super_90_validate,
  1677. .sync_super = super_90_sync,
  1678. .rdev_size_change = super_90_rdev_size_change,
  1679. .allow_new_offset = super_90_allow_new_offset,
  1680. },
  1681. [1] = {
  1682. .name = "md-1",
  1683. .owner = THIS_MODULE,
  1684. .load_super = super_1_load,
  1685. .validate_super = super_1_validate,
  1686. .sync_super = super_1_sync,
  1687. .rdev_size_change = super_1_rdev_size_change,
  1688. .allow_new_offset = super_1_allow_new_offset,
  1689. },
  1690. };
  1691. static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
  1692. {
  1693. if (mddev->sync_super) {
  1694. mddev->sync_super(mddev, rdev);
  1695. return;
  1696. }
  1697. BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
  1698. super_types[mddev->major_version].sync_super(mddev, rdev);
  1699. }
  1700. static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
  1701. {
  1702. struct md_rdev *rdev, *rdev2;
  1703. rcu_read_lock();
  1704. rdev_for_each_rcu(rdev, mddev1)
  1705. rdev_for_each_rcu(rdev2, mddev2)
  1706. if (rdev->bdev->bd_contains ==
  1707. rdev2->bdev->bd_contains) {
  1708. rcu_read_unlock();
  1709. return 1;
  1710. }
  1711. rcu_read_unlock();
  1712. return 0;
  1713. }
  1714. static LIST_HEAD(pending_raid_disks);
  1715. /*
  1716. * Try to register data integrity profile for an mddev
  1717. *
  1718. * This is called when an array is started and after a disk has been kicked
  1719. * from the array. It only succeeds if all working and active component devices
  1720. * are integrity capable with matching profiles.
  1721. */
  1722. int md_integrity_register(struct mddev *mddev)
  1723. {
  1724. struct md_rdev *rdev, *reference = NULL;
  1725. if (list_empty(&mddev->disks))
  1726. return 0; /* nothing to do */
  1727. if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
  1728. return 0; /* shouldn't register, or already is */
  1729. rdev_for_each(rdev, mddev) {
  1730. /* skip spares and non-functional disks */
  1731. if (test_bit(Faulty, &rdev->flags))
  1732. continue;
  1733. if (rdev->raid_disk < 0)
  1734. continue;
  1735. if (!reference) {
  1736. /* Use the first rdev as the reference */
  1737. reference = rdev;
  1738. continue;
  1739. }
  1740. /* does this rdev's profile match the reference profile? */
  1741. if (blk_integrity_compare(reference->bdev->bd_disk,
  1742. rdev->bdev->bd_disk) < 0)
  1743. return -EINVAL;
  1744. }
  1745. if (!reference || !bdev_get_integrity(reference->bdev))
  1746. return 0;
  1747. /*
  1748. * All component devices are integrity capable and have matching
  1749. * profiles, register the common profile for the md device.
  1750. */
  1751. if (blk_integrity_register(mddev->gendisk,
  1752. bdev_get_integrity(reference->bdev)) != 0) {
  1753. printk(KERN_ERR "md: failed to register integrity for %s\n",
  1754. mdname(mddev));
  1755. return -EINVAL;
  1756. }
  1757. printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
  1758. if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
  1759. printk(KERN_ERR "md: failed to create integrity pool for %s\n",
  1760. mdname(mddev));
  1761. return -EINVAL;
  1762. }
  1763. return 0;
  1764. }
  1765. EXPORT_SYMBOL(md_integrity_register);
  1766. /* Disable data integrity if non-capable/non-matching disk is being added */
  1767. void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
  1768. {
  1769. struct blk_integrity *bi_rdev;
  1770. struct blk_integrity *bi_mddev;
  1771. if (!mddev->gendisk)
  1772. return;
  1773. bi_rdev = bdev_get_integrity(rdev->bdev);
  1774. bi_mddev = blk_get_integrity(mddev->gendisk);
  1775. if (!bi_mddev) /* nothing to do */
  1776. return;
  1777. if (rdev->raid_disk < 0) /* skip spares */
  1778. return;
  1779. if (bi_rdev && blk_integrity_compare(mddev->gendisk,
  1780. rdev->bdev->bd_disk) >= 0)
  1781. return;
  1782. printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
  1783. blk_integrity_unregister(mddev->gendisk);
  1784. }
  1785. EXPORT_SYMBOL(md_integrity_add_rdev);
  1786. static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
  1787. {
  1788. char b[BDEVNAME_SIZE];
  1789. struct kobject *ko;
  1790. char *s;
  1791. int err;
  1792. /* prevent duplicates */
  1793. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1794. return -EEXIST;
  1795. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1796. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1797. rdev->sectors < mddev->dev_sectors)) {
  1798. if (mddev->pers) {
  1799. /* Cannot change size, so fail
  1800. * If mddev->level <= 0, then we don't care
  1801. * about aligning sizes (e.g. linear)
  1802. */
  1803. if (mddev->level > 0)
  1804. return -ENOSPC;
  1805. } else
  1806. mddev->dev_sectors = rdev->sectors;
  1807. }
  1808. /* Verify rdev->desc_nr is unique.
  1809. * If it is -1, assign a free number, else
  1810. * check number is not in use
  1811. */
  1812. rcu_read_lock();
  1813. if (rdev->desc_nr < 0) {
  1814. int choice = 0;
  1815. if (mddev->pers)
  1816. choice = mddev->raid_disks;
  1817. while (find_rdev_nr_rcu(mddev, choice))
  1818. choice++;
  1819. rdev->desc_nr = choice;
  1820. } else {
  1821. if (find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
  1822. rcu_read_unlock();
  1823. return -EBUSY;
  1824. }
  1825. }
  1826. rcu_read_unlock();
  1827. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1828. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1829. mdname(mddev), mddev->max_disks);
  1830. return -EBUSY;
  1831. }
  1832. bdevname(rdev->bdev,b);
  1833. while ( (s=strchr(b, '/')) != NULL)
  1834. *s = '!';
  1835. rdev->mddev = mddev;
  1836. printk(KERN_INFO "md: bind<%s>\n", b);
  1837. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1838. goto fail;
  1839. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1840. if (sysfs_create_link(&rdev->kobj, ko, "block"))
  1841. /* failure here is OK */;
  1842. rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
  1843. list_add_rcu(&rdev->same_set, &mddev->disks);
  1844. bd_link_disk_holder(rdev->bdev, mddev->gendisk);
  1845. /* May as well allow recovery to be retried once */
  1846. mddev->recovery_disabled++;
  1847. return 0;
  1848. fail:
  1849. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1850. b, mdname(mddev));
  1851. return err;
  1852. }
  1853. static void md_delayed_delete(struct work_struct *ws)
  1854. {
  1855. struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
  1856. kobject_del(&rdev->kobj);
  1857. kobject_put(&rdev->kobj);
  1858. }
  1859. static void unbind_rdev_from_array(struct md_rdev *rdev)
  1860. {
  1861. char b[BDEVNAME_SIZE];
  1862. bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
  1863. list_del_rcu(&rdev->same_set);
  1864. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1865. rdev->mddev = NULL;
  1866. sysfs_remove_link(&rdev->kobj, "block");
  1867. sysfs_put(rdev->sysfs_state);
  1868. rdev->sysfs_state = NULL;
  1869. rdev->badblocks.count = 0;
  1870. /* We need to delay this, otherwise we can deadlock when
  1871. * writing to 'remove' to "dev/state". We also need
  1872. * to delay it due to rcu usage.
  1873. */
  1874. synchronize_rcu();
  1875. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1876. kobject_get(&rdev->kobj);
  1877. queue_work(md_misc_wq, &rdev->del_work);
  1878. }
  1879. /*
  1880. * prevent the device from being mounted, repartitioned or
  1881. * otherwise reused by a RAID array (or any other kernel
  1882. * subsystem), by bd_claiming the device.
  1883. */
  1884. static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
  1885. {
  1886. int err = 0;
  1887. struct block_device *bdev;
  1888. char b[BDEVNAME_SIZE];
  1889. bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1890. shared ? (struct md_rdev *)lock_rdev : rdev);
  1891. if (IS_ERR(bdev)) {
  1892. printk(KERN_ERR "md: could not open %s.\n",
  1893. __bdevname(dev, b));
  1894. return PTR_ERR(bdev);
  1895. }
  1896. rdev->bdev = bdev;
  1897. return err;
  1898. }
  1899. static void unlock_rdev(struct md_rdev *rdev)
  1900. {
  1901. struct block_device *bdev = rdev->bdev;
  1902. rdev->bdev = NULL;
  1903. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1904. }
  1905. void md_autodetect_dev(dev_t dev);
  1906. static void export_rdev(struct md_rdev *rdev)
  1907. {
  1908. char b[BDEVNAME_SIZE];
  1909. printk(KERN_INFO "md: export_rdev(%s)\n",
  1910. bdevname(rdev->bdev,b));
  1911. md_rdev_clear(rdev);
  1912. #ifndef MODULE
  1913. if (test_bit(AutoDetected, &rdev->flags))
  1914. md_autodetect_dev(rdev->bdev->bd_dev);
  1915. #endif
  1916. unlock_rdev(rdev);
  1917. kobject_put(&rdev->kobj);
  1918. }
  1919. static void kick_rdev_from_array(struct md_rdev *rdev)
  1920. {
  1921. unbind_rdev_from_array(rdev);
  1922. export_rdev(rdev);
  1923. }
  1924. static void export_array(struct mddev *mddev)
  1925. {
  1926. struct md_rdev *rdev;
  1927. while (!list_empty(&mddev->disks)) {
  1928. rdev = list_first_entry(&mddev->disks, struct md_rdev,
  1929. same_set);
  1930. kick_rdev_from_array(rdev);
  1931. }
  1932. mddev->raid_disks = 0;
  1933. mddev->major_version = 0;
  1934. }
  1935. static void sync_sbs(struct mddev *mddev, int nospares)
  1936. {
  1937. /* Update each superblock (in-memory image), but
  1938. * if we are allowed to, skip spares which already
  1939. * have the right event counter, or have one earlier
  1940. * (which would mean they aren't being marked as dirty
  1941. * with the rest of the array)
  1942. */
  1943. struct md_rdev *rdev;
  1944. rdev_for_each(rdev, mddev) {
  1945. if (rdev->sb_events == mddev->events ||
  1946. (nospares &&
  1947. rdev->raid_disk < 0 &&
  1948. rdev->sb_events+1 == mddev->events)) {
  1949. /* Don't update this superblock */
  1950. rdev->sb_loaded = 2;
  1951. } else {
  1952. sync_super(mddev, rdev);
  1953. rdev->sb_loaded = 1;
  1954. }
  1955. }
  1956. }
  1957. static void md_update_sb(struct mddev *mddev, int force_change)
  1958. {
  1959. struct md_rdev *rdev;
  1960. int sync_req;
  1961. int nospares = 0;
  1962. int any_badblocks_changed = 0;
  1963. if (mddev->ro) {
  1964. if (force_change)
  1965. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  1966. return;
  1967. }
  1968. repeat:
  1969. /* First make sure individual recovery_offsets are correct */
  1970. rdev_for_each(rdev, mddev) {
  1971. if (rdev->raid_disk >= 0 &&
  1972. mddev->delta_disks >= 0 &&
  1973. !test_bit(In_sync, &rdev->flags) &&
  1974. mddev->curr_resync_completed > rdev->recovery_offset)
  1975. rdev->recovery_offset = mddev->curr_resync_completed;
  1976. }
  1977. if (!mddev->persistent) {
  1978. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  1979. clear_bit(MD_CHANGE_DEVS, &mddev->flags);
  1980. if (!mddev->external) {
  1981. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1982. rdev_for_each(rdev, mddev) {
  1983. if (rdev->badblocks.changed) {
  1984. rdev->badblocks.changed = 0;
  1985. md_ack_all_badblocks(&rdev->badblocks);
  1986. md_error(mddev, rdev);
  1987. }
  1988. clear_bit(Blocked, &rdev->flags);
  1989. clear_bit(BlockedBadBlocks, &rdev->flags);
  1990. wake_up(&rdev->blocked_wait);
  1991. }
  1992. }
  1993. wake_up(&mddev->sb_wait);
  1994. return;
  1995. }
  1996. spin_lock(&mddev->lock);
  1997. mddev->utime = get_seconds();
  1998. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  1999. force_change = 1;
  2000. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2001. /* just a clean<-> dirty transition, possibly leave spares alone,
  2002. * though if events isn't the right even/odd, we will have to do
  2003. * spares after all
  2004. */
  2005. nospares = 1;
  2006. if (force_change)
  2007. nospares = 0;
  2008. if (mddev->degraded)
  2009. /* If the array is degraded, then skipping spares is both
  2010. * dangerous and fairly pointless.
  2011. * Dangerous because a device that was removed from the array
  2012. * might have a event_count that still looks up-to-date,
  2013. * so it can be re-added without a resync.
  2014. * Pointless because if there are any spares to skip,
  2015. * then a recovery will happen and soon that array won't
  2016. * be degraded any more and the spare can go back to sleep then.
  2017. */
  2018. nospares = 0;
  2019. sync_req = mddev->in_sync;
  2020. /* If this is just a dirty<->clean transition, and the array is clean
  2021. * and 'events' is odd, we can roll back to the previous clean state */
  2022. if (nospares
  2023. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  2024. && mddev->can_decrease_events
  2025. && mddev->events != 1) {
  2026. mddev->events--;
  2027. mddev->can_decrease_events = 0;
  2028. } else {
  2029. /* otherwise we have to go forward and ... */
  2030. mddev->events ++;
  2031. mddev->can_decrease_events = nospares;
  2032. }
  2033. /*
  2034. * This 64-bit counter should never wrap.
  2035. * Either we are in around ~1 trillion A.C., assuming
  2036. * 1 reboot per second, or we have a bug...
  2037. */
  2038. WARN_ON(mddev->events == 0);
  2039. rdev_for_each(rdev, mddev) {
  2040. if (rdev->badblocks.changed)
  2041. any_badblocks_changed++;
  2042. if (test_bit(Faulty, &rdev->flags))
  2043. set_bit(FaultRecorded, &rdev->flags);
  2044. }
  2045. sync_sbs(mddev, nospares);
  2046. spin_unlock(&mddev->lock);
  2047. pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
  2048. mdname(mddev), mddev->in_sync);
  2049. bitmap_update_sb(mddev->bitmap);
  2050. rdev_for_each(rdev, mddev) {
  2051. char b[BDEVNAME_SIZE];
  2052. if (rdev->sb_loaded != 1)
  2053. continue; /* no noise on spare devices */
  2054. if (!test_bit(Faulty, &rdev->flags)) {
  2055. md_super_write(mddev,rdev,
  2056. rdev->sb_start, rdev->sb_size,
  2057. rdev->sb_page);
  2058. pr_debug("md: (write) %s's sb offset: %llu\n",
  2059. bdevname(rdev->bdev, b),
  2060. (unsigned long long)rdev->sb_start);
  2061. rdev->sb_events = mddev->events;
  2062. if (rdev->badblocks.size) {
  2063. md_super_write(mddev, rdev,
  2064. rdev->badblocks.sector,
  2065. rdev->badblocks.size << 9,
  2066. rdev->bb_page);
  2067. rdev->badblocks.size = 0;
  2068. }
  2069. } else
  2070. pr_debug("md: %s (skipping faulty)\n",
  2071. bdevname(rdev->bdev, b));
  2072. if (mddev->level == LEVEL_MULTIPATH)
  2073. /* only need to write one superblock... */
  2074. break;
  2075. }
  2076. md_super_wait(mddev);
  2077. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  2078. spin_lock(&mddev->lock);
  2079. if (mddev->in_sync != sync_req ||
  2080. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  2081. /* have to write it out again */
  2082. spin_unlock(&mddev->lock);
  2083. goto repeat;
  2084. }
  2085. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2086. spin_unlock(&mddev->lock);
  2087. wake_up(&mddev->sb_wait);
  2088. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2089. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  2090. rdev_for_each(rdev, mddev) {
  2091. if (test_and_clear_bit(FaultRecorded, &rdev->flags))
  2092. clear_bit(Blocked, &rdev->flags);
  2093. if (any_badblocks_changed)
  2094. md_ack_all_badblocks(&rdev->badblocks);
  2095. clear_bit(BlockedBadBlocks, &rdev->flags);
  2096. wake_up(&rdev->blocked_wait);
  2097. }
  2098. }
  2099. /* words written to sysfs files may, or may not, be \n terminated.
  2100. * We want to accept with case. For this we use cmd_match.
  2101. */
  2102. static int cmd_match(const char *cmd, const char *str)
  2103. {
  2104. /* See if cmd, written into a sysfs file, matches
  2105. * str. They must either be the same, or cmd can
  2106. * have a trailing newline
  2107. */
  2108. while (*cmd && *str && *cmd == *str) {
  2109. cmd++;
  2110. str++;
  2111. }
  2112. if (*cmd == '\n')
  2113. cmd++;
  2114. if (*str || *cmd)
  2115. return 0;
  2116. return 1;
  2117. }
  2118. struct rdev_sysfs_entry {
  2119. struct attribute attr;
  2120. ssize_t (*show)(struct md_rdev *, char *);
  2121. ssize_t (*store)(struct md_rdev *, const char *, size_t);
  2122. };
  2123. static ssize_t
  2124. state_show(struct md_rdev *rdev, char *page)
  2125. {
  2126. char *sep = "";
  2127. size_t len = 0;
  2128. unsigned long flags = ACCESS_ONCE(rdev->flags);
  2129. if (test_bit(Faulty, &flags) ||
  2130. rdev->badblocks.unacked_exist) {
  2131. len+= sprintf(page+len, "%sfaulty",sep);
  2132. sep = ",";
  2133. }
  2134. if (test_bit(In_sync, &flags)) {
  2135. len += sprintf(page+len, "%sin_sync",sep);
  2136. sep = ",";
  2137. }
  2138. if (test_bit(WriteMostly, &flags)) {
  2139. len += sprintf(page+len, "%swrite_mostly",sep);
  2140. sep = ",";
  2141. }
  2142. if (test_bit(Blocked, &flags) ||
  2143. (rdev->badblocks.unacked_exist
  2144. && !test_bit(Faulty, &flags))) {
  2145. len += sprintf(page+len, "%sblocked", sep);
  2146. sep = ",";
  2147. }
  2148. if (!test_bit(Faulty, &flags) &&
  2149. !test_bit(In_sync, &flags)) {
  2150. len += sprintf(page+len, "%sspare", sep);
  2151. sep = ",";
  2152. }
  2153. if (test_bit(WriteErrorSeen, &flags)) {
  2154. len += sprintf(page+len, "%swrite_error", sep);
  2155. sep = ",";
  2156. }
  2157. if (test_bit(WantReplacement, &flags)) {
  2158. len += sprintf(page+len, "%swant_replacement", sep);
  2159. sep = ",";
  2160. }
  2161. if (test_bit(Replacement, &flags)) {
  2162. len += sprintf(page+len, "%sreplacement", sep);
  2163. sep = ",";
  2164. }
  2165. return len+sprintf(page+len, "\n");
  2166. }
  2167. static ssize_t
  2168. state_store(struct md_rdev *rdev, const char *buf, size_t len)
  2169. {
  2170. /* can write
  2171. * faulty - simulates an error
  2172. * remove - disconnects the device
  2173. * writemostly - sets write_mostly
  2174. * -writemostly - clears write_mostly
  2175. * blocked - sets the Blocked flags
  2176. * -blocked - clears the Blocked and possibly simulates an error
  2177. * insync - sets Insync providing device isn't active
  2178. * -insync - clear Insync for a device with a slot assigned,
  2179. * so that it gets rebuilt based on bitmap
  2180. * write_error - sets WriteErrorSeen
  2181. * -write_error - clears WriteErrorSeen
  2182. */
  2183. int err = -EINVAL;
  2184. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2185. md_error(rdev->mddev, rdev);
  2186. if (test_bit(Faulty, &rdev->flags))
  2187. err = 0;
  2188. else
  2189. err = -EBUSY;
  2190. } else if (cmd_match(buf, "remove")) {
  2191. if (rdev->raid_disk >= 0)
  2192. err = -EBUSY;
  2193. else {
  2194. struct mddev *mddev = rdev->mddev;
  2195. kick_rdev_from_array(rdev);
  2196. if (mddev->pers)
  2197. md_update_sb(mddev, 1);
  2198. md_new_event(mddev);
  2199. err = 0;
  2200. }
  2201. } else if (cmd_match(buf, "writemostly")) {
  2202. set_bit(WriteMostly, &rdev->flags);
  2203. err = 0;
  2204. } else if (cmd_match(buf, "-writemostly")) {
  2205. clear_bit(WriteMostly, &rdev->flags);
  2206. err = 0;
  2207. } else if (cmd_match(buf, "blocked")) {
  2208. set_bit(Blocked, &rdev->flags);
  2209. err = 0;
  2210. } else if (cmd_match(buf, "-blocked")) {
  2211. if (!test_bit(Faulty, &rdev->flags) &&
  2212. rdev->badblocks.unacked_exist) {
  2213. /* metadata handler doesn't understand badblocks,
  2214. * so we need to fail the device
  2215. */
  2216. md_error(rdev->mddev, rdev);
  2217. }
  2218. clear_bit(Blocked, &rdev->flags);
  2219. clear_bit(BlockedBadBlocks, &rdev->flags);
  2220. wake_up(&rdev->blocked_wait);
  2221. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2222. md_wakeup_thread(rdev->mddev->thread);
  2223. err = 0;
  2224. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2225. set_bit(In_sync, &rdev->flags);
  2226. err = 0;
  2227. } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
  2228. if (rdev->mddev->pers == NULL) {
  2229. clear_bit(In_sync, &rdev->flags);
  2230. rdev->saved_raid_disk = rdev->raid_disk;
  2231. rdev->raid_disk = -1;
  2232. err = 0;
  2233. }
  2234. } else if (cmd_match(buf, "write_error")) {
  2235. set_bit(WriteErrorSeen, &rdev->flags);
  2236. err = 0;
  2237. } else if (cmd_match(buf, "-write_error")) {
  2238. clear_bit(WriteErrorSeen, &rdev->flags);
  2239. err = 0;
  2240. } else if (cmd_match(buf, "want_replacement")) {
  2241. /* Any non-spare device that is not a replacement can
  2242. * become want_replacement at any time, but we then need to
  2243. * check if recovery is needed.
  2244. */
  2245. if (rdev->raid_disk >= 0 &&
  2246. !test_bit(Replacement, &rdev->flags))
  2247. set_bit(WantReplacement, &rdev->flags);
  2248. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2249. md_wakeup_thread(rdev->mddev->thread);
  2250. err = 0;
  2251. } else if (cmd_match(buf, "-want_replacement")) {
  2252. /* Clearing 'want_replacement' is always allowed.
  2253. * Once replacements starts it is too late though.
  2254. */
  2255. err = 0;
  2256. clear_bit(WantReplacement, &rdev->flags);
  2257. } else if (cmd_match(buf, "replacement")) {
  2258. /* Can only set a device as a replacement when array has not
  2259. * yet been started. Once running, replacement is automatic
  2260. * from spares, or by assigning 'slot'.
  2261. */
  2262. if (rdev->mddev->pers)
  2263. err = -EBUSY;
  2264. else {
  2265. set_bit(Replacement, &rdev->flags);
  2266. err = 0;
  2267. }
  2268. } else if (cmd_match(buf, "-replacement")) {
  2269. /* Similarly, can only clear Replacement before start */
  2270. if (rdev->mddev->pers)
  2271. err = -EBUSY;
  2272. else {
  2273. clear_bit(Replacement, &rdev->flags);
  2274. err = 0;
  2275. }
  2276. }
  2277. if (!err)
  2278. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2279. return err ? err : len;
  2280. }
  2281. static struct rdev_sysfs_entry rdev_state =
  2282. __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2283. static ssize_t
  2284. errors_show(struct md_rdev *rdev, char *page)
  2285. {
  2286. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2287. }
  2288. static ssize_t
  2289. errors_store(struct md_rdev *rdev, const char *buf, size_t len)
  2290. {
  2291. char *e;
  2292. unsigned long n = simple_strtoul(buf, &e, 10);
  2293. if (*buf && (*e == 0 || *e == '\n')) {
  2294. atomic_set(&rdev->corrected_errors, n);
  2295. return len;
  2296. }
  2297. return -EINVAL;
  2298. }
  2299. static struct rdev_sysfs_entry rdev_errors =
  2300. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2301. static ssize_t
  2302. slot_show(struct md_rdev *rdev, char *page)
  2303. {
  2304. if (rdev->raid_disk < 0)
  2305. return sprintf(page, "none\n");
  2306. else
  2307. return sprintf(page, "%d\n", rdev->raid_disk);
  2308. }
  2309. static ssize_t
  2310. slot_store(struct md_rdev *rdev, const char *buf, size_t len)
  2311. {
  2312. char *e;
  2313. int err;
  2314. int slot = simple_strtoul(buf, &e, 10);
  2315. if (strncmp(buf, "none", 4)==0)
  2316. slot = -1;
  2317. else if (e==buf || (*e && *e!= '\n'))
  2318. return -EINVAL;
  2319. if (rdev->mddev->pers && slot == -1) {
  2320. /* Setting 'slot' on an active array requires also
  2321. * updating the 'rd%d' link, and communicating
  2322. * with the personality with ->hot_*_disk.
  2323. * For now we only support removing
  2324. * failed/spare devices. This normally happens automatically,
  2325. * but not when the metadata is externally managed.
  2326. */
  2327. if (rdev->raid_disk == -1)
  2328. return -EEXIST;
  2329. /* personality does all needed checks */
  2330. if (rdev->mddev->pers->hot_remove_disk == NULL)
  2331. return -EINVAL;
  2332. clear_bit(Blocked, &rdev->flags);
  2333. remove_and_add_spares(rdev->mddev, rdev);
  2334. if (rdev->raid_disk >= 0)
  2335. return -EBUSY;
  2336. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2337. md_wakeup_thread(rdev->mddev->thread);
  2338. } else if (rdev->mddev->pers) {
  2339. /* Activating a spare .. or possibly reactivating
  2340. * if we ever get bitmaps working here.
  2341. */
  2342. if (rdev->raid_disk != -1)
  2343. return -EBUSY;
  2344. if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
  2345. return -EBUSY;
  2346. if (rdev->mddev->pers->hot_add_disk == NULL)
  2347. return -EINVAL;
  2348. if (slot >= rdev->mddev->raid_disks &&
  2349. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2350. return -ENOSPC;
  2351. rdev->raid_disk = slot;
  2352. if (test_bit(In_sync, &rdev->flags))
  2353. rdev->saved_raid_disk = slot;
  2354. else
  2355. rdev->saved_raid_disk = -1;
  2356. clear_bit(In_sync, &rdev->flags);
  2357. clear_bit(Bitmap_sync, &rdev->flags);
  2358. err = rdev->mddev->pers->
  2359. hot_add_disk(rdev->mddev, rdev);
  2360. if (err) {
  2361. rdev->raid_disk = -1;
  2362. return err;
  2363. } else
  2364. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2365. if (sysfs_link_rdev(rdev->mddev, rdev))
  2366. /* failure here is OK */;
  2367. /* don't wakeup anyone, leave that to userspace. */
  2368. } else {
  2369. if (slot >= rdev->mddev->raid_disks &&
  2370. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2371. return -ENOSPC;
  2372. rdev->raid_disk = slot;
  2373. /* assume it is working */
  2374. clear_bit(Faulty, &rdev->flags);
  2375. clear_bit(WriteMostly, &rdev->flags);
  2376. set_bit(In_sync, &rdev->flags);
  2377. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2378. }
  2379. return len;
  2380. }
  2381. static struct rdev_sysfs_entry rdev_slot =
  2382. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2383. static ssize_t
  2384. offset_show(struct md_rdev *rdev, char *page)
  2385. {
  2386. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2387. }
  2388. static ssize_t
  2389. offset_store(struct md_rdev *rdev, const char *buf, size_t len)
  2390. {
  2391. unsigned long long offset;
  2392. if (kstrtoull(buf, 10, &offset) < 0)
  2393. return -EINVAL;
  2394. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2395. return -EBUSY;
  2396. if (rdev->sectors && rdev->mddev->external)
  2397. /* Must set offset before size, so overlap checks
  2398. * can be sane */
  2399. return -EBUSY;
  2400. rdev->data_offset = offset;
  2401. rdev->new_data_offset = offset;
  2402. return len;
  2403. }
  2404. static struct rdev_sysfs_entry rdev_offset =
  2405. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2406. static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
  2407. {
  2408. return sprintf(page, "%llu\n",
  2409. (unsigned long long)rdev->new_data_offset);
  2410. }
  2411. static ssize_t new_offset_store(struct md_rdev *rdev,
  2412. const char *buf, size_t len)
  2413. {
  2414. unsigned long long new_offset;
  2415. struct mddev *mddev = rdev->mddev;
  2416. if (kstrtoull(buf, 10, &new_offset) < 0)
  2417. return -EINVAL;
  2418. if (mddev->sync_thread ||
  2419. test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
  2420. return -EBUSY;
  2421. if (new_offset == rdev->data_offset)
  2422. /* reset is always permitted */
  2423. ;
  2424. else if (new_offset > rdev->data_offset) {
  2425. /* must not push array size beyond rdev_sectors */
  2426. if (new_offset - rdev->data_offset
  2427. + mddev->dev_sectors > rdev->sectors)
  2428. return -E2BIG;
  2429. }
  2430. /* Metadata worries about other space details. */
  2431. /* decreasing the offset is inconsistent with a backwards
  2432. * reshape.
  2433. */
  2434. if (new_offset < rdev->data_offset &&
  2435. mddev->reshape_backwards)
  2436. return -EINVAL;
  2437. /* Increasing offset is inconsistent with forwards
  2438. * reshape. reshape_direction should be set to
  2439. * 'backwards' first.
  2440. */
  2441. if (new_offset > rdev->data_offset &&
  2442. !mddev->reshape_backwards)
  2443. return -EINVAL;
  2444. if (mddev->pers && mddev->persistent &&
  2445. !super_types[mddev->major_version]
  2446. .allow_new_offset(rdev, new_offset))
  2447. return -E2BIG;
  2448. rdev->new_data_offset = new_offset;
  2449. if (new_offset > rdev->data_offset)
  2450. mddev->reshape_backwards = 1;
  2451. else if (new_offset < rdev->data_offset)
  2452. mddev->reshape_backwards = 0;
  2453. return len;
  2454. }
  2455. static struct rdev_sysfs_entry rdev_new_offset =
  2456. __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
  2457. static ssize_t
  2458. rdev_size_show(struct md_rdev *rdev, char *page)
  2459. {
  2460. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2461. }
  2462. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2463. {
  2464. /* check if two start/length pairs overlap */
  2465. if (s1+l1 <= s2)
  2466. return 0;
  2467. if (s2+l2 <= s1)
  2468. return 0;
  2469. return 1;
  2470. }
  2471. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2472. {
  2473. unsigned long long blocks;
  2474. sector_t new;
  2475. if (kstrtoull(buf, 10, &blocks) < 0)
  2476. return -EINVAL;
  2477. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2478. return -EINVAL; /* sector conversion overflow */
  2479. new = blocks * 2;
  2480. if (new != blocks * 2)
  2481. return -EINVAL; /* unsigned long long to sector_t overflow */
  2482. *sectors = new;
  2483. return 0;
  2484. }
  2485. static ssize_t
  2486. rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
  2487. {
  2488. struct mddev *my_mddev = rdev->mddev;
  2489. sector_t oldsectors = rdev->sectors;
  2490. sector_t sectors;
  2491. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2492. return -EINVAL;
  2493. if (rdev->data_offset != rdev->new_data_offset)
  2494. return -EINVAL; /* too confusing */
  2495. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2496. if (my_mddev->persistent) {
  2497. sectors = super_types[my_mddev->major_version].
  2498. rdev_size_change(rdev, sectors);
  2499. if (!sectors)
  2500. return -EBUSY;
  2501. } else if (!sectors)
  2502. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  2503. rdev->data_offset;
  2504. if (!my_mddev->pers->resize)
  2505. /* Cannot change size for RAID0 or Linear etc */
  2506. return -EINVAL;
  2507. }
  2508. if (sectors < my_mddev->dev_sectors)
  2509. return -EINVAL; /* component must fit device */
  2510. rdev->sectors = sectors;
  2511. if (sectors > oldsectors && my_mddev->external) {
  2512. /* Need to check that all other rdevs with the same
  2513. * ->bdev do not overlap. 'rcu' is sufficient to walk
  2514. * the rdev lists safely.
  2515. * This check does not provide a hard guarantee, it
  2516. * just helps avoid dangerous mistakes.
  2517. */
  2518. struct mddev *mddev;
  2519. int overlap = 0;
  2520. struct list_head *tmp;
  2521. rcu_read_lock();
  2522. for_each_mddev(mddev, tmp) {
  2523. struct md_rdev *rdev2;
  2524. rdev_for_each(rdev2, mddev)
  2525. if (rdev->bdev == rdev2->bdev &&
  2526. rdev != rdev2 &&
  2527. overlaps(rdev->data_offset, rdev->sectors,
  2528. rdev2->data_offset,
  2529. rdev2->sectors)) {
  2530. overlap = 1;
  2531. break;
  2532. }
  2533. if (overlap) {
  2534. mddev_put(mddev);
  2535. break;
  2536. }
  2537. }
  2538. rcu_read_unlock();
  2539. if (overlap) {
  2540. /* Someone else could have slipped in a size
  2541. * change here, but doing so is just silly.
  2542. * We put oldsectors back because we *know* it is
  2543. * safe, and trust userspace not to race with
  2544. * itself
  2545. */
  2546. rdev->sectors = oldsectors;
  2547. return -EBUSY;
  2548. }
  2549. }
  2550. return len;
  2551. }
  2552. static struct rdev_sysfs_entry rdev_size =
  2553. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2554. static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
  2555. {
  2556. unsigned long long recovery_start = rdev->recovery_offset;
  2557. if (test_bit(In_sync, &rdev->flags) ||
  2558. recovery_start == MaxSector)
  2559. return sprintf(page, "none\n");
  2560. return sprintf(page, "%llu\n", recovery_start);
  2561. }
  2562. static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
  2563. {
  2564. unsigned long long recovery_start;
  2565. if (cmd_match(buf, "none"))
  2566. recovery_start = MaxSector;
  2567. else if (kstrtoull(buf, 10, &recovery_start))
  2568. return -EINVAL;
  2569. if (rdev->mddev->pers &&
  2570. rdev->raid_disk >= 0)
  2571. return -EBUSY;
  2572. rdev->recovery_offset = recovery_start;
  2573. if (recovery_start == MaxSector)
  2574. set_bit(In_sync, &rdev->flags);
  2575. else
  2576. clear_bit(In_sync, &rdev->flags);
  2577. return len;
  2578. }
  2579. static struct rdev_sysfs_entry rdev_recovery_start =
  2580. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2581. static ssize_t
  2582. badblocks_show(struct badblocks *bb, char *page, int unack);
  2583. static ssize_t
  2584. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
  2585. static ssize_t bb_show(struct md_rdev *rdev, char *page)
  2586. {
  2587. return badblocks_show(&rdev->badblocks, page, 0);
  2588. }
  2589. static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
  2590. {
  2591. int rv = badblocks_store(&rdev->badblocks, page, len, 0);
  2592. /* Maybe that ack was all we needed */
  2593. if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
  2594. wake_up(&rdev->blocked_wait);
  2595. return rv;
  2596. }
  2597. static struct rdev_sysfs_entry rdev_bad_blocks =
  2598. __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
  2599. static ssize_t ubb_show(struct md_rdev *rdev, char *page)
  2600. {
  2601. return badblocks_show(&rdev->badblocks, page, 1);
  2602. }
  2603. static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
  2604. {
  2605. return badblocks_store(&rdev->badblocks, page, len, 1);
  2606. }
  2607. static struct rdev_sysfs_entry rdev_unack_bad_blocks =
  2608. __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
  2609. static struct attribute *rdev_default_attrs[] = {
  2610. &rdev_state.attr,
  2611. &rdev_errors.attr,
  2612. &rdev_slot.attr,
  2613. &rdev_offset.attr,
  2614. &rdev_new_offset.attr,
  2615. &rdev_size.attr,
  2616. &rdev_recovery_start.attr,
  2617. &rdev_bad_blocks.attr,
  2618. &rdev_unack_bad_blocks.attr,
  2619. NULL,
  2620. };
  2621. static ssize_t
  2622. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2623. {
  2624. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2625. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2626. if (!entry->show)
  2627. return -EIO;
  2628. if (!rdev->mddev)
  2629. return -EBUSY;
  2630. return entry->show(rdev, page);
  2631. }
  2632. static ssize_t
  2633. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2634. const char *page, size_t length)
  2635. {
  2636. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2637. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2638. ssize_t rv;
  2639. struct mddev *mddev = rdev->mddev;
  2640. if (!entry->store)
  2641. return -EIO;
  2642. if (!capable(CAP_SYS_ADMIN))
  2643. return -EACCES;
  2644. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2645. if (!rv) {
  2646. if (rdev->mddev == NULL)
  2647. rv = -EBUSY;
  2648. else
  2649. rv = entry->store(rdev, page, length);
  2650. mddev_unlock(mddev);
  2651. }
  2652. return rv;
  2653. }
  2654. static void rdev_free(struct kobject *ko)
  2655. {
  2656. struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
  2657. kfree(rdev);
  2658. }
  2659. static const struct sysfs_ops rdev_sysfs_ops = {
  2660. .show = rdev_attr_show,
  2661. .store = rdev_attr_store,
  2662. };
  2663. static struct kobj_type rdev_ktype = {
  2664. .release = rdev_free,
  2665. .sysfs_ops = &rdev_sysfs_ops,
  2666. .default_attrs = rdev_default_attrs,
  2667. };
  2668. int md_rdev_init(struct md_rdev *rdev)
  2669. {
  2670. rdev->desc_nr = -1;
  2671. rdev->saved_raid_disk = -1;
  2672. rdev->raid_disk = -1;
  2673. rdev->flags = 0;
  2674. rdev->data_offset = 0;
  2675. rdev->new_data_offset = 0;
  2676. rdev->sb_events = 0;
  2677. rdev->last_read_error.tv_sec = 0;
  2678. rdev->last_read_error.tv_nsec = 0;
  2679. rdev->sb_loaded = 0;
  2680. rdev->bb_page = NULL;
  2681. atomic_set(&rdev->nr_pending, 0);
  2682. atomic_set(&rdev->read_errors, 0);
  2683. atomic_set(&rdev->corrected_errors, 0);
  2684. INIT_LIST_HEAD(&rdev->same_set);
  2685. init_waitqueue_head(&rdev->blocked_wait);
  2686. /* Add space to store bad block list.
  2687. * This reserves the space even on arrays where it cannot
  2688. * be used - I wonder if that matters
  2689. */
  2690. rdev->badblocks.count = 0;
  2691. rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
  2692. rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2693. seqlock_init(&rdev->badblocks.lock);
  2694. if (rdev->badblocks.page == NULL)
  2695. return -ENOMEM;
  2696. return 0;
  2697. }
  2698. EXPORT_SYMBOL_GPL(md_rdev_init);
  2699. /*
  2700. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2701. *
  2702. * mark the device faulty if:
  2703. *
  2704. * - the device is nonexistent (zero size)
  2705. * - the device has no valid superblock
  2706. *
  2707. * a faulty rdev _never_ has rdev->sb set.
  2708. */
  2709. static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
  2710. {
  2711. char b[BDEVNAME_SIZE];
  2712. int err;
  2713. struct md_rdev *rdev;
  2714. sector_t size;
  2715. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2716. if (!rdev) {
  2717. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2718. return ERR_PTR(-ENOMEM);
  2719. }
  2720. err = md_rdev_init(rdev);
  2721. if (err)
  2722. goto abort_free;
  2723. err = alloc_disk_sb(rdev);
  2724. if (err)
  2725. goto abort_free;
  2726. err = lock_rdev(rdev, newdev, super_format == -2);
  2727. if (err)
  2728. goto abort_free;
  2729. kobject_init(&rdev->kobj, &rdev_ktype);
  2730. size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
  2731. if (!size) {
  2732. printk(KERN_WARNING
  2733. "md: %s has zero or unknown size, marking faulty!\n",
  2734. bdevname(rdev->bdev,b));
  2735. err = -EINVAL;
  2736. goto abort_free;
  2737. }
  2738. if (super_format >= 0) {
  2739. err = super_types[super_format].
  2740. load_super(rdev, NULL, super_minor);
  2741. if (err == -EINVAL) {
  2742. printk(KERN_WARNING
  2743. "md: %s does not have a valid v%d.%d "
  2744. "superblock, not importing!\n",
  2745. bdevname(rdev->bdev,b),
  2746. super_format, super_minor);
  2747. goto abort_free;
  2748. }
  2749. if (err < 0) {
  2750. printk(KERN_WARNING
  2751. "md: could not read %s's sb, not importing!\n",
  2752. bdevname(rdev->bdev,b));
  2753. goto abort_free;
  2754. }
  2755. }
  2756. return rdev;
  2757. abort_free:
  2758. if (rdev->bdev)
  2759. unlock_rdev(rdev);
  2760. md_rdev_clear(rdev);
  2761. kfree(rdev);
  2762. return ERR_PTR(err);
  2763. }
  2764. /*
  2765. * Check a full RAID array for plausibility
  2766. */
  2767. static void analyze_sbs(struct mddev *mddev)
  2768. {
  2769. int i;
  2770. struct md_rdev *rdev, *freshest, *tmp;
  2771. char b[BDEVNAME_SIZE];
  2772. freshest = NULL;
  2773. rdev_for_each_safe(rdev, tmp, mddev)
  2774. switch (super_types[mddev->major_version].
  2775. load_super(rdev, freshest, mddev->minor_version)) {
  2776. case 1:
  2777. freshest = rdev;
  2778. break;
  2779. case 0:
  2780. break;
  2781. default:
  2782. printk( KERN_ERR \
  2783. "md: fatal superblock inconsistency in %s"
  2784. " -- removing from array\n",
  2785. bdevname(rdev->bdev,b));
  2786. kick_rdev_from_array(rdev);
  2787. }
  2788. super_types[mddev->major_version].
  2789. validate_super(mddev, freshest);
  2790. i = 0;
  2791. rdev_for_each_safe(rdev, tmp, mddev) {
  2792. if (mddev->max_disks &&
  2793. (rdev->desc_nr >= mddev->max_disks ||
  2794. i > mddev->max_disks)) {
  2795. printk(KERN_WARNING
  2796. "md: %s: %s: only %d devices permitted\n",
  2797. mdname(mddev), bdevname(rdev->bdev, b),
  2798. mddev->max_disks);
  2799. kick_rdev_from_array(rdev);
  2800. continue;
  2801. }
  2802. if (rdev != freshest)
  2803. if (super_types[mddev->major_version].
  2804. validate_super(mddev, rdev)) {
  2805. printk(KERN_WARNING "md: kicking non-fresh %s"
  2806. " from array!\n",
  2807. bdevname(rdev->bdev,b));
  2808. kick_rdev_from_array(rdev);
  2809. continue;
  2810. }
  2811. if (mddev->level == LEVEL_MULTIPATH) {
  2812. rdev->desc_nr = i++;
  2813. rdev->raid_disk = rdev->desc_nr;
  2814. set_bit(In_sync, &rdev->flags);
  2815. } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
  2816. rdev->raid_disk = -1;
  2817. clear_bit(In_sync, &rdev->flags);
  2818. }
  2819. }
  2820. }
  2821. /* Read a fixed-point number.
  2822. * Numbers in sysfs attributes should be in "standard" units where
  2823. * possible, so time should be in seconds.
  2824. * However we internally use a a much smaller unit such as
  2825. * milliseconds or jiffies.
  2826. * This function takes a decimal number with a possible fractional
  2827. * component, and produces an integer which is the result of
  2828. * multiplying that number by 10^'scale'.
  2829. * all without any floating-point arithmetic.
  2830. */
  2831. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  2832. {
  2833. unsigned long result = 0;
  2834. long decimals = -1;
  2835. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  2836. if (*cp == '.')
  2837. decimals = 0;
  2838. else if (decimals < scale) {
  2839. unsigned int value;
  2840. value = *cp - '0';
  2841. result = result * 10 + value;
  2842. if (decimals >= 0)
  2843. decimals++;
  2844. }
  2845. cp++;
  2846. }
  2847. if (*cp == '\n')
  2848. cp++;
  2849. if (*cp)
  2850. return -EINVAL;
  2851. if (decimals < 0)
  2852. decimals = 0;
  2853. while (decimals < scale) {
  2854. result *= 10;
  2855. decimals ++;
  2856. }
  2857. *res = result;
  2858. return 0;
  2859. }
  2860. static void md_safemode_timeout(unsigned long data);
  2861. static ssize_t
  2862. safe_delay_show(struct mddev *mddev, char *page)
  2863. {
  2864. int msec = (mddev->safemode_delay*1000)/HZ;
  2865. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  2866. }
  2867. static ssize_t
  2868. safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
  2869. {
  2870. unsigned long msec;
  2871. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  2872. return -EINVAL;
  2873. if (msec == 0)
  2874. mddev->safemode_delay = 0;
  2875. else {
  2876. unsigned long old_delay = mddev->safemode_delay;
  2877. unsigned long new_delay = (msec*HZ)/1000;
  2878. if (new_delay == 0)
  2879. new_delay = 1;
  2880. mddev->safemode_delay = new_delay;
  2881. if (new_delay < old_delay || old_delay == 0)
  2882. mod_timer(&mddev->safemode_timer, jiffies+1);
  2883. }
  2884. return len;
  2885. }
  2886. static struct md_sysfs_entry md_safe_delay =
  2887. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  2888. static ssize_t
  2889. level_show(struct mddev *mddev, char *page)
  2890. {
  2891. struct md_personality *p;
  2892. int ret;
  2893. spin_lock(&mddev->lock);
  2894. p = mddev->pers;
  2895. if (p)
  2896. ret = sprintf(page, "%s\n", p->name);
  2897. else if (mddev->clevel[0])
  2898. ret = sprintf(page, "%s\n", mddev->clevel);
  2899. else if (mddev->level != LEVEL_NONE)
  2900. ret = sprintf(page, "%d\n", mddev->level);
  2901. else
  2902. ret = 0;
  2903. spin_unlock(&mddev->lock);
  2904. return ret;
  2905. }
  2906. static ssize_t
  2907. level_store(struct mddev *mddev, const char *buf, size_t len)
  2908. {
  2909. char clevel[16];
  2910. ssize_t rv;
  2911. size_t slen = len;
  2912. struct md_personality *pers, *oldpers;
  2913. long level;
  2914. void *priv, *oldpriv;
  2915. struct md_rdev *rdev;
  2916. if (slen == 0 || slen >= sizeof(clevel))
  2917. return -EINVAL;
  2918. rv = mddev_lock(mddev);
  2919. if (rv)
  2920. return rv;
  2921. if (mddev->pers == NULL) {
  2922. strncpy(mddev->clevel, buf, slen);
  2923. if (mddev->clevel[slen-1] == '\n')
  2924. slen--;
  2925. mddev->clevel[slen] = 0;
  2926. mddev->level = LEVEL_NONE;
  2927. rv = len;
  2928. goto out_unlock;
  2929. }
  2930. rv = -EROFS;
  2931. if (mddev->ro)
  2932. goto out_unlock;
  2933. /* request to change the personality. Need to ensure:
  2934. * - array is not engaged in resync/recovery/reshape
  2935. * - old personality can be suspended
  2936. * - new personality will access other array.
  2937. */
  2938. rv = -EBUSY;
  2939. if (mddev->sync_thread ||
  2940. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2941. mddev->reshape_position != MaxSector ||
  2942. mddev->sysfs_active)
  2943. goto out_unlock;
  2944. rv = -EINVAL;
  2945. if (!mddev->pers->quiesce) {
  2946. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  2947. mdname(mddev), mddev->pers->name);
  2948. goto out_unlock;
  2949. }
  2950. /* Now find the new personality */
  2951. strncpy(clevel, buf, slen);
  2952. if (clevel[slen-1] == '\n')
  2953. slen--;
  2954. clevel[slen] = 0;
  2955. if (kstrtol(clevel, 10, &level))
  2956. level = LEVEL_NONE;
  2957. if (request_module("md-%s", clevel) != 0)
  2958. request_module("md-level-%s", clevel);
  2959. spin_lock(&pers_lock);
  2960. pers = find_pers(level, clevel);
  2961. if (!pers || !try_module_get(pers->owner)) {
  2962. spin_unlock(&pers_lock);
  2963. printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
  2964. rv = -EINVAL;
  2965. goto out_unlock;
  2966. }
  2967. spin_unlock(&pers_lock);
  2968. if (pers == mddev->pers) {
  2969. /* Nothing to do! */
  2970. module_put(pers->owner);
  2971. rv = len;
  2972. goto out_unlock;
  2973. }
  2974. if (!pers->takeover) {
  2975. module_put(pers->owner);
  2976. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  2977. mdname(mddev), clevel);
  2978. rv = -EINVAL;
  2979. goto out_unlock;
  2980. }
  2981. rdev_for_each(rdev, mddev)
  2982. rdev->new_raid_disk = rdev->raid_disk;
  2983. /* ->takeover must set new_* and/or delta_disks
  2984. * if it succeeds, and may set them when it fails.
  2985. */
  2986. priv = pers->takeover(mddev);
  2987. if (IS_ERR(priv)) {
  2988. mddev->new_level = mddev->level;
  2989. mddev->new_layout = mddev->layout;
  2990. mddev->new_chunk_sectors = mddev->chunk_sectors;
  2991. mddev->raid_disks -= mddev->delta_disks;
  2992. mddev->delta_disks = 0;
  2993. mddev->reshape_backwards = 0;
  2994. module_put(pers->owner);
  2995. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  2996. mdname(mddev), clevel);
  2997. rv = PTR_ERR(priv);
  2998. goto out_unlock;
  2999. }
  3000. /* Looks like we have a winner */
  3001. mddev_suspend(mddev);
  3002. mddev_detach(mddev);
  3003. spin_lock(&mddev->lock);
  3004. oldpers = mddev->pers;
  3005. oldpriv = mddev->private;
  3006. mddev->pers = pers;
  3007. mddev->private = priv;
  3008. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3009. mddev->level = mddev->new_level;
  3010. mddev->layout = mddev->new_layout;
  3011. mddev->chunk_sectors = mddev->new_chunk_sectors;
  3012. mddev->delta_disks = 0;
  3013. mddev->reshape_backwards = 0;
  3014. mddev->degraded = 0;
  3015. spin_unlock(&mddev->lock);
  3016. if (oldpers->sync_request == NULL &&
  3017. mddev->external) {
  3018. /* We are converting from a no-redundancy array
  3019. * to a redundancy array and metadata is managed
  3020. * externally so we need to be sure that writes
  3021. * won't block due to a need to transition
  3022. * clean->dirty
  3023. * until external management is started.
  3024. */
  3025. mddev->in_sync = 0;
  3026. mddev->safemode_delay = 0;
  3027. mddev->safemode = 0;
  3028. }
  3029. oldpers->free(mddev, oldpriv);
  3030. if (oldpers->sync_request == NULL &&
  3031. pers->sync_request != NULL) {
  3032. /* need to add the md_redundancy_group */
  3033. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  3034. printk(KERN_WARNING
  3035. "md: cannot register extra attributes for %s\n",
  3036. mdname(mddev));
  3037. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
  3038. }
  3039. if (oldpers->sync_request != NULL &&
  3040. pers->sync_request == NULL) {
  3041. /* need to remove the md_redundancy_group */
  3042. if (mddev->to_remove == NULL)
  3043. mddev->to_remove = &md_redundancy_group;
  3044. }
  3045. rdev_for_each(rdev, mddev) {
  3046. if (rdev->raid_disk < 0)
  3047. continue;
  3048. if (rdev->new_raid_disk >= mddev->raid_disks)
  3049. rdev->new_raid_disk = -1;
  3050. if (rdev->new_raid_disk == rdev->raid_disk)
  3051. continue;
  3052. sysfs_unlink_rdev(mddev, rdev);
  3053. }
  3054. rdev_for_each(rdev, mddev) {
  3055. if (rdev->raid_disk < 0)
  3056. continue;
  3057. if (rdev->new_raid_disk == rdev->raid_disk)
  3058. continue;
  3059. rdev->raid_disk = rdev->new_raid_disk;
  3060. if (rdev->raid_disk < 0)
  3061. clear_bit(In_sync, &rdev->flags);
  3062. else {
  3063. if (sysfs_link_rdev(mddev, rdev))
  3064. printk(KERN_WARNING "md: cannot register rd%d"
  3065. " for %s after level change\n",
  3066. rdev->raid_disk, mdname(mddev));
  3067. }
  3068. }
  3069. if (pers->sync_request == NULL) {
  3070. /* this is now an array without redundancy, so
  3071. * it must always be in_sync
  3072. */
  3073. mddev->in_sync = 1;
  3074. del_timer_sync(&mddev->safemode_timer);
  3075. }
  3076. blk_set_stacking_limits(&mddev->queue->limits);
  3077. pers->run(mddev);
  3078. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3079. mddev_resume(mddev);
  3080. if (!mddev->thread)
  3081. md_update_sb(mddev, 1);
  3082. sysfs_notify(&mddev->kobj, NULL, "level");
  3083. md_new_event(mddev);
  3084. rv = len;
  3085. out_unlock:
  3086. mddev_unlock(mddev);
  3087. return rv;
  3088. }
  3089. static struct md_sysfs_entry md_level =
  3090. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  3091. static ssize_t
  3092. layout_show(struct mddev *mddev, char *page)
  3093. {
  3094. /* just a number, not meaningful for all levels */
  3095. if (mddev->reshape_position != MaxSector &&
  3096. mddev->layout != mddev->new_layout)
  3097. return sprintf(page, "%d (%d)\n",
  3098. mddev->new_layout, mddev->layout);
  3099. return sprintf(page, "%d\n", mddev->layout);
  3100. }
  3101. static ssize_t
  3102. layout_store(struct mddev *mddev, const char *buf, size_t len)
  3103. {
  3104. char *e;
  3105. unsigned long n = simple_strtoul(buf, &e, 10);
  3106. int err;
  3107. if (!*buf || (*e && *e != '\n'))
  3108. return -EINVAL;
  3109. err = mddev_lock(mddev);
  3110. if (err)
  3111. return err;
  3112. if (mddev->pers) {
  3113. if (mddev->pers->check_reshape == NULL)
  3114. err = -EBUSY;
  3115. else if (mddev->ro)
  3116. err = -EROFS;
  3117. else {
  3118. mddev->new_layout = n;
  3119. err = mddev->pers->check_reshape(mddev);
  3120. if (err)
  3121. mddev->new_layout = mddev->layout;
  3122. }
  3123. } else {
  3124. mddev->new_layout = n;
  3125. if (mddev->reshape_position == MaxSector)
  3126. mddev->layout = n;
  3127. }
  3128. mddev_unlock(mddev);
  3129. return err ?: len;
  3130. }
  3131. static struct md_sysfs_entry md_layout =
  3132. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  3133. static ssize_t
  3134. raid_disks_show(struct mddev *mddev, char *page)
  3135. {
  3136. if (mddev->raid_disks == 0)
  3137. return 0;
  3138. if (mddev->reshape_position != MaxSector &&
  3139. mddev->delta_disks != 0)
  3140. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  3141. mddev->raid_disks - mddev->delta_disks);
  3142. return sprintf(page, "%d\n", mddev->raid_disks);
  3143. }
  3144. static int update_raid_disks(struct mddev *mddev, int raid_disks);
  3145. static ssize_t
  3146. raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
  3147. {
  3148. char *e;
  3149. int err;
  3150. unsigned long n = simple_strtoul(buf, &e, 10);
  3151. if (!*buf || (*e && *e != '\n'))
  3152. return -EINVAL;
  3153. err = mddev_lock(mddev);
  3154. if (err)
  3155. return err;
  3156. if (mddev->pers)
  3157. err = update_raid_disks(mddev, n);
  3158. else if (mddev->reshape_position != MaxSector) {
  3159. struct md_rdev *rdev;
  3160. int olddisks = mddev->raid_disks - mddev->delta_disks;
  3161. err = -EINVAL;
  3162. rdev_for_each(rdev, mddev) {
  3163. if (olddisks < n &&
  3164. rdev->data_offset < rdev->new_data_offset)
  3165. goto out_unlock;
  3166. if (olddisks > n &&
  3167. rdev->data_offset > rdev->new_data_offset)
  3168. goto out_unlock;
  3169. }
  3170. err = 0;
  3171. mddev->delta_disks = n - olddisks;
  3172. mddev->raid_disks = n;
  3173. mddev->reshape_backwards = (mddev->delta_disks < 0);
  3174. } else
  3175. mddev->raid_disks = n;
  3176. out_unlock:
  3177. mddev_unlock(mddev);
  3178. return err ? err : len;
  3179. }
  3180. static struct md_sysfs_entry md_raid_disks =
  3181. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  3182. static ssize_t
  3183. chunk_size_show(struct mddev *mddev, char *page)
  3184. {
  3185. if (mddev->reshape_position != MaxSector &&
  3186. mddev->chunk_sectors != mddev->new_chunk_sectors)
  3187. return sprintf(page, "%d (%d)\n",
  3188. mddev->new_chunk_sectors << 9,
  3189. mddev->chunk_sectors << 9);
  3190. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  3191. }
  3192. static ssize_t
  3193. chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
  3194. {
  3195. int err;
  3196. char *e;
  3197. unsigned long n = simple_strtoul(buf, &e, 10);
  3198. if (!*buf || (*e && *e != '\n'))
  3199. return -EINVAL;
  3200. err = mddev_lock(mddev);
  3201. if (err)
  3202. return err;
  3203. if (mddev->pers) {
  3204. if (mddev->pers->check_reshape == NULL)
  3205. err = -EBUSY;
  3206. else if (mddev->ro)
  3207. err = -EROFS;
  3208. else {
  3209. mddev->new_chunk_sectors = n >> 9;
  3210. err = mddev->pers->check_reshape(mddev);
  3211. if (err)
  3212. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3213. }
  3214. } else {
  3215. mddev->new_chunk_sectors = n >> 9;
  3216. if (mddev->reshape_position == MaxSector)
  3217. mddev->chunk_sectors = n >> 9;
  3218. }
  3219. mddev_unlock(mddev);
  3220. return err ?: len;
  3221. }
  3222. static struct md_sysfs_entry md_chunk_size =
  3223. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  3224. static ssize_t
  3225. resync_start_show(struct mddev *mddev, char *page)
  3226. {
  3227. if (mddev->recovery_cp == MaxSector)
  3228. return sprintf(page, "none\n");
  3229. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  3230. }
  3231. static ssize_t
  3232. resync_start_store(struct mddev *mddev, const char *buf, size_t len)
  3233. {
  3234. int err;
  3235. char *e;
  3236. unsigned long long n = simple_strtoull(buf, &e, 10);
  3237. err = mddev_lock(mddev);
  3238. if (err)
  3239. return err;
  3240. if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3241. err = -EBUSY;
  3242. else if (cmd_match(buf, "none"))
  3243. n = MaxSector;
  3244. else if (!*buf || (*e && *e != '\n'))
  3245. err = -EINVAL;
  3246. if (!err) {
  3247. mddev->recovery_cp = n;
  3248. if (mddev->pers)
  3249. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3250. }
  3251. mddev_unlock(mddev);
  3252. return err ?: len;
  3253. }
  3254. static struct md_sysfs_entry md_resync_start =
  3255. __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
  3256. resync_start_show, resync_start_store);
  3257. /*
  3258. * The array state can be:
  3259. *
  3260. * clear
  3261. * No devices, no size, no level
  3262. * Equivalent to STOP_ARRAY ioctl
  3263. * inactive
  3264. * May have some settings, but array is not active
  3265. * all IO results in error
  3266. * When written, doesn't tear down array, but just stops it
  3267. * suspended (not supported yet)
  3268. * All IO requests will block. The array can be reconfigured.
  3269. * Writing this, if accepted, will block until array is quiescent
  3270. * readonly
  3271. * no resync can happen. no superblocks get written.
  3272. * write requests fail
  3273. * read-auto
  3274. * like readonly, but behaves like 'clean' on a write request.
  3275. *
  3276. * clean - no pending writes, but otherwise active.
  3277. * When written to inactive array, starts without resync
  3278. * If a write request arrives then
  3279. * if metadata is known, mark 'dirty' and switch to 'active'.
  3280. * if not known, block and switch to write-pending
  3281. * If written to an active array that has pending writes, then fails.
  3282. * active
  3283. * fully active: IO and resync can be happening.
  3284. * When written to inactive array, starts with resync
  3285. *
  3286. * write-pending
  3287. * clean, but writes are blocked waiting for 'active' to be written.
  3288. *
  3289. * active-idle
  3290. * like active, but no writes have been seen for a while (100msec).
  3291. *
  3292. */
  3293. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  3294. write_pending, active_idle, bad_word};
  3295. static char *array_states[] = {
  3296. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  3297. "write-pending", "active-idle", NULL };
  3298. static int match_word(const char *word, char **list)
  3299. {
  3300. int n;
  3301. for (n=0; list[n]; n++)
  3302. if (cmd_match(word, list[n]))
  3303. break;
  3304. return n;
  3305. }
  3306. static ssize_t
  3307. array_state_show(struct mddev *mddev, char *page)
  3308. {
  3309. enum array_state st = inactive;
  3310. if (mddev->pers)
  3311. switch(mddev->ro) {
  3312. case 1:
  3313. st = readonly;
  3314. break;
  3315. case 2:
  3316. st = read_auto;
  3317. break;
  3318. case 0:
  3319. if (mddev->in_sync)
  3320. st = clean;
  3321. else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  3322. st = write_pending;
  3323. else if (mddev->safemode)
  3324. st = active_idle;
  3325. else
  3326. st = active;
  3327. }
  3328. else {
  3329. if (list_empty(&mddev->disks) &&
  3330. mddev->raid_disks == 0 &&
  3331. mddev->dev_sectors == 0)
  3332. st = clear;
  3333. else
  3334. st = inactive;
  3335. }
  3336. return sprintf(page, "%s\n", array_states[st]);
  3337. }
  3338. static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
  3339. static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
  3340. static int do_md_run(struct mddev *mddev);
  3341. static int restart_array(struct mddev *mddev);
  3342. static ssize_t
  3343. array_state_store(struct mddev *mddev, const char *buf, size_t len)
  3344. {
  3345. int err;
  3346. enum array_state st = match_word(buf, array_states);
  3347. if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
  3348. /* don't take reconfig_mutex when toggling between
  3349. * clean and active
  3350. */
  3351. spin_lock(&mddev->lock);
  3352. if (st == active) {
  3353. restart_array(mddev);
  3354. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3355. wake_up(&mddev->sb_wait);
  3356. err = 0;
  3357. } else /* st == clean */ {
  3358. restart_array(mddev);
  3359. if (atomic_read(&mddev->writes_pending) == 0) {
  3360. if (mddev->in_sync == 0) {
  3361. mddev->in_sync = 1;
  3362. if (mddev->safemode == 1)
  3363. mddev->safemode = 0;
  3364. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3365. }
  3366. err = 0;
  3367. } else
  3368. err = -EBUSY;
  3369. }
  3370. spin_unlock(&mddev->lock);
  3371. return err;
  3372. }
  3373. err = mddev_lock(mddev);
  3374. if (err)
  3375. return err;
  3376. err = -EINVAL;
  3377. switch(st) {
  3378. case bad_word:
  3379. break;
  3380. case clear:
  3381. /* stopping an active array */
  3382. err = do_md_stop(mddev, 0, NULL);
  3383. break;
  3384. case inactive:
  3385. /* stopping an active array */
  3386. if (mddev->pers)
  3387. err = do_md_stop(mddev, 2, NULL);
  3388. else
  3389. err = 0; /* already inactive */
  3390. break;
  3391. case suspended:
  3392. break; /* not supported yet */
  3393. case readonly:
  3394. if (mddev->pers)
  3395. err = md_set_readonly(mddev, NULL);
  3396. else {
  3397. mddev->ro = 1;
  3398. set_disk_ro(mddev->gendisk, 1);
  3399. err = do_md_run(mddev);
  3400. }
  3401. break;
  3402. case read_auto:
  3403. if (mddev->pers) {
  3404. if (mddev->ro == 0)
  3405. err = md_set_readonly(mddev, NULL);
  3406. else if (mddev->ro == 1)
  3407. err = restart_array(mddev);
  3408. if (err == 0) {
  3409. mddev->ro = 2;
  3410. set_disk_ro(mddev->gendisk, 0);
  3411. }
  3412. } else {
  3413. mddev->ro = 2;
  3414. err = do_md_run(mddev);
  3415. }
  3416. break;
  3417. case clean:
  3418. if (mddev->pers) {
  3419. restart_array(mddev);
  3420. spin_lock(&mddev->lock);
  3421. if (atomic_read(&mddev->writes_pending) == 0) {
  3422. if (mddev->in_sync == 0) {
  3423. mddev->in_sync = 1;
  3424. if (mddev->safemode == 1)
  3425. mddev->safemode = 0;
  3426. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3427. }
  3428. err = 0;
  3429. } else
  3430. err = -EBUSY;
  3431. spin_unlock(&mddev->lock);
  3432. } else
  3433. err = -EINVAL;
  3434. break;
  3435. case active:
  3436. if (mddev->pers) {
  3437. restart_array(mddev);
  3438. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3439. wake_up(&mddev->sb_wait);
  3440. err = 0;
  3441. } else {
  3442. mddev->ro = 0;
  3443. set_disk_ro(mddev->gendisk, 0);
  3444. err = do_md_run(mddev);
  3445. }
  3446. break;
  3447. case write_pending:
  3448. case active_idle:
  3449. /* these cannot be set */
  3450. break;
  3451. }
  3452. if (!err) {
  3453. if (mddev->hold_active == UNTIL_IOCTL)
  3454. mddev->hold_active = 0;
  3455. sysfs_notify_dirent_safe(mddev->sysfs_state);
  3456. }
  3457. mddev_unlock(mddev);
  3458. return err ?: len;
  3459. }
  3460. static struct md_sysfs_entry md_array_state =
  3461. __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3462. static ssize_t
  3463. max_corrected_read_errors_show(struct mddev *mddev, char *page) {
  3464. return sprintf(page, "%d\n",
  3465. atomic_read(&mddev->max_corr_read_errors));
  3466. }
  3467. static ssize_t
  3468. max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
  3469. {
  3470. char *e;
  3471. unsigned long n = simple_strtoul(buf, &e, 10);
  3472. if (*buf && (*e == 0 || *e == '\n')) {
  3473. atomic_set(&mddev->max_corr_read_errors, n);
  3474. return len;
  3475. }
  3476. return -EINVAL;
  3477. }
  3478. static struct md_sysfs_entry max_corr_read_errors =
  3479. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3480. max_corrected_read_errors_store);
  3481. static ssize_t
  3482. null_show(struct mddev *mddev, char *page)
  3483. {
  3484. return -EINVAL;
  3485. }
  3486. static ssize_t
  3487. new_dev_store(struct mddev *mddev, const char *buf, size_t len)
  3488. {
  3489. /* buf must be %d:%d\n? giving major and minor numbers */
  3490. /* The new device is added to the array.
  3491. * If the array has a persistent superblock, we read the
  3492. * superblock to initialise info and check validity.
  3493. * Otherwise, only checking done is that in bind_rdev_to_array,
  3494. * which mainly checks size.
  3495. */
  3496. char *e;
  3497. int major = simple_strtoul(buf, &e, 10);
  3498. int minor;
  3499. dev_t dev;
  3500. struct md_rdev *rdev;
  3501. int err;
  3502. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3503. return -EINVAL;
  3504. minor = simple_strtoul(e+1, &e, 10);
  3505. if (*e && *e != '\n')
  3506. return -EINVAL;
  3507. dev = MKDEV(major, minor);
  3508. if (major != MAJOR(dev) ||
  3509. minor != MINOR(dev))
  3510. return -EOVERFLOW;
  3511. flush_workqueue(md_misc_wq);
  3512. err = mddev_lock(mddev);
  3513. if (err)
  3514. return err;
  3515. if (mddev->persistent) {
  3516. rdev = md_import_device(dev, mddev->major_version,
  3517. mddev->minor_version);
  3518. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3519. struct md_rdev *rdev0
  3520. = list_entry(mddev->disks.next,
  3521. struct md_rdev, same_set);
  3522. err = super_types[mddev->major_version]
  3523. .load_super(rdev, rdev0, mddev->minor_version);
  3524. if (err < 0)
  3525. goto out;
  3526. }
  3527. } else if (mddev->external)
  3528. rdev = md_import_device(dev, -2, -1);
  3529. else
  3530. rdev = md_import_device(dev, -1, -1);
  3531. if (IS_ERR(rdev))
  3532. return PTR_ERR(rdev);
  3533. err = bind_rdev_to_array(rdev, mddev);
  3534. out:
  3535. if (err)
  3536. export_rdev(rdev);
  3537. mddev_unlock(mddev);
  3538. return err ? err : len;
  3539. }
  3540. static struct md_sysfs_entry md_new_device =
  3541. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3542. static ssize_t
  3543. bitmap_store(struct mddev *mddev, const char *buf, size_t len)
  3544. {
  3545. char *end;
  3546. unsigned long chunk, end_chunk;
  3547. int err;
  3548. err = mddev_lock(mddev);
  3549. if (err)
  3550. return err;
  3551. if (!mddev->bitmap)
  3552. goto out;
  3553. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3554. while (*buf) {
  3555. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3556. if (buf == end) break;
  3557. if (*end == '-') { /* range */
  3558. buf = end + 1;
  3559. end_chunk = simple_strtoul(buf, &end, 0);
  3560. if (buf == end) break;
  3561. }
  3562. if (*end && !isspace(*end)) break;
  3563. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3564. buf = skip_spaces(end);
  3565. }
  3566. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3567. out:
  3568. mddev_unlock(mddev);
  3569. return len;
  3570. }
  3571. static struct md_sysfs_entry md_bitmap =
  3572. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3573. static ssize_t
  3574. size_show(struct mddev *mddev, char *page)
  3575. {
  3576. return sprintf(page, "%llu\n",
  3577. (unsigned long long)mddev->dev_sectors / 2);
  3578. }
  3579. static int update_size(struct mddev *mddev, sector_t num_sectors);
  3580. static ssize_t
  3581. size_store(struct mddev *mddev, const char *buf, size_t len)
  3582. {
  3583. /* If array is inactive, we can reduce the component size, but
  3584. * not increase it (except from 0).
  3585. * If array is active, we can try an on-line resize
  3586. */
  3587. sector_t sectors;
  3588. int err = strict_blocks_to_sectors(buf, &sectors);
  3589. if (err < 0)
  3590. return err;
  3591. err = mddev_lock(mddev);
  3592. if (err)
  3593. return err;
  3594. if (mddev->pers) {
  3595. err = update_size(mddev, sectors);
  3596. md_update_sb(mddev, 1);
  3597. } else {
  3598. if (mddev->dev_sectors == 0 ||
  3599. mddev->dev_sectors > sectors)
  3600. mddev->dev_sectors = sectors;
  3601. else
  3602. err = -ENOSPC;
  3603. }
  3604. mddev_unlock(mddev);
  3605. return err ? err : len;
  3606. }
  3607. static struct md_sysfs_entry md_size =
  3608. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3609. /* Metadata version.
  3610. * This is one of
  3611. * 'none' for arrays with no metadata (good luck...)
  3612. * 'external' for arrays with externally managed metadata,
  3613. * or N.M for internally known formats
  3614. */
  3615. static ssize_t
  3616. metadata_show(struct mddev *mddev, char *page)
  3617. {
  3618. if (mddev->persistent)
  3619. return sprintf(page, "%d.%d\n",
  3620. mddev->major_version, mddev->minor_version);
  3621. else if (mddev->external)
  3622. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3623. else
  3624. return sprintf(page, "none\n");
  3625. }
  3626. static ssize_t
  3627. metadata_store(struct mddev *mddev, const char *buf, size_t len)
  3628. {
  3629. int major, minor;
  3630. char *e;
  3631. int err;
  3632. /* Changing the details of 'external' metadata is
  3633. * always permitted. Otherwise there must be
  3634. * no devices attached to the array.
  3635. */
  3636. err = mddev_lock(mddev);
  3637. if (err)
  3638. return err;
  3639. err = -EBUSY;
  3640. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3641. ;
  3642. else if (!list_empty(&mddev->disks))
  3643. goto out_unlock;
  3644. err = 0;
  3645. if (cmd_match(buf, "none")) {
  3646. mddev->persistent = 0;
  3647. mddev->external = 0;
  3648. mddev->major_version = 0;
  3649. mddev->minor_version = 90;
  3650. goto out_unlock;
  3651. }
  3652. if (strncmp(buf, "external:", 9) == 0) {
  3653. size_t namelen = len-9;
  3654. if (namelen >= sizeof(mddev->metadata_type))
  3655. namelen = sizeof(mddev->metadata_type)-1;
  3656. strncpy(mddev->metadata_type, buf+9, namelen);
  3657. mddev->metadata_type[namelen] = 0;
  3658. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3659. mddev->metadata_type[--namelen] = 0;
  3660. mddev->persistent = 0;
  3661. mddev->external = 1;
  3662. mddev->major_version = 0;
  3663. mddev->minor_version = 90;
  3664. goto out_unlock;
  3665. }
  3666. major = simple_strtoul(buf, &e, 10);
  3667. err = -EINVAL;
  3668. if (e==buf || *e != '.')
  3669. goto out_unlock;
  3670. buf = e+1;
  3671. minor = simple_strtoul(buf, &e, 10);
  3672. if (e==buf || (*e && *e != '\n') )
  3673. goto out_unlock;
  3674. err = -ENOENT;
  3675. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3676. goto out_unlock;
  3677. mddev->major_version = major;
  3678. mddev->minor_version = minor;
  3679. mddev->persistent = 1;
  3680. mddev->external = 0;
  3681. err = 0;
  3682. out_unlock:
  3683. mddev_unlock(mddev);
  3684. return err ?: len;
  3685. }
  3686. static struct md_sysfs_entry md_metadata =
  3687. __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3688. static ssize_t
  3689. action_show(struct mddev *mddev, char *page)
  3690. {
  3691. char *type = "idle";
  3692. unsigned long recovery = mddev->recovery;
  3693. if (test_bit(MD_RECOVERY_FROZEN, &recovery))
  3694. type = "frozen";
  3695. else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
  3696. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
  3697. if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
  3698. type = "reshape";
  3699. else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
  3700. if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
  3701. type = "resync";
  3702. else if (test_bit(MD_RECOVERY_CHECK, &recovery))
  3703. type = "check";
  3704. else
  3705. type = "repair";
  3706. } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
  3707. type = "recover";
  3708. }
  3709. return sprintf(page, "%s\n", type);
  3710. }
  3711. static ssize_t
  3712. action_store(struct mddev *mddev, const char *page, size_t len)
  3713. {
  3714. if (!mddev->pers || !mddev->pers->sync_request)
  3715. return -EINVAL;
  3716. if (cmd_match(page, "frozen"))
  3717. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3718. else
  3719. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3720. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3721. flush_workqueue(md_misc_wq);
  3722. if (mddev->sync_thread) {
  3723. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3724. if (mddev_lock(mddev) == 0) {
  3725. md_reap_sync_thread(mddev);
  3726. mddev_unlock(mddev);
  3727. }
  3728. }
  3729. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3730. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  3731. return -EBUSY;
  3732. else if (cmd_match(page, "resync"))
  3733. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3734. else if (cmd_match(page, "recover")) {
  3735. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3736. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3737. } else if (cmd_match(page, "reshape")) {
  3738. int err;
  3739. if (mddev->pers->start_reshape == NULL)
  3740. return -EINVAL;
  3741. err = mddev_lock(mddev);
  3742. if (!err) {
  3743. err = mddev->pers->start_reshape(mddev);
  3744. mddev_unlock(mddev);
  3745. }
  3746. if (err)
  3747. return err;
  3748. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3749. } else {
  3750. if (cmd_match(page, "check"))
  3751. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3752. else if (!cmd_match(page, "repair"))
  3753. return -EINVAL;
  3754. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3755. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3756. }
  3757. if (mddev->ro == 2) {
  3758. /* A write to sync_action is enough to justify
  3759. * canceling read-auto mode
  3760. */
  3761. mddev->ro = 0;
  3762. md_wakeup_thread(mddev->sync_thread);
  3763. }
  3764. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3765. md_wakeup_thread(mddev->thread);
  3766. sysfs_notify_dirent_safe(mddev->sysfs_action);
  3767. return len;
  3768. }
  3769. static struct md_sysfs_entry md_scan_mode =
  3770. __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3771. static ssize_t
  3772. last_sync_action_show(struct mddev *mddev, char *page)
  3773. {
  3774. return sprintf(page, "%s\n", mddev->last_sync_action);
  3775. }
  3776. static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
  3777. static ssize_t
  3778. mismatch_cnt_show(struct mddev *mddev, char *page)
  3779. {
  3780. return sprintf(page, "%llu\n",
  3781. (unsigned long long)
  3782. atomic64_read(&mddev->resync_mismatches));
  3783. }
  3784. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3785. static ssize_t
  3786. sync_min_show(struct mddev *mddev, char *page)
  3787. {
  3788. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3789. mddev->sync_speed_min ? "local": "system");
  3790. }
  3791. static ssize_t
  3792. sync_min_store(struct mddev *mddev, const char *buf, size_t len)
  3793. {
  3794. int min;
  3795. char *e;
  3796. if (strncmp(buf, "system", 6)==0) {
  3797. mddev->sync_speed_min = 0;
  3798. return len;
  3799. }
  3800. min = simple_strtoul(buf, &e, 10);
  3801. if (buf == e || (*e && *e != '\n') || min <= 0)
  3802. return -EINVAL;
  3803. mddev->sync_speed_min = min;
  3804. return len;
  3805. }
  3806. static struct md_sysfs_entry md_sync_min =
  3807. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3808. static ssize_t
  3809. sync_max_show(struct mddev *mddev, char *page)
  3810. {
  3811. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3812. mddev->sync_speed_max ? "local": "system");
  3813. }
  3814. static ssize_t
  3815. sync_max_store(struct mddev *mddev, const char *buf, size_t len)
  3816. {
  3817. int max;
  3818. char *e;
  3819. if (strncmp(buf, "system", 6)==0) {
  3820. mddev->sync_speed_max = 0;
  3821. return len;
  3822. }
  3823. max = simple_strtoul(buf, &e, 10);
  3824. if (buf == e || (*e && *e != '\n') || max <= 0)
  3825. return -EINVAL;
  3826. mddev->sync_speed_max = max;
  3827. return len;
  3828. }
  3829. static struct md_sysfs_entry md_sync_max =
  3830. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3831. static ssize_t
  3832. degraded_show(struct mddev *mddev, char *page)
  3833. {
  3834. return sprintf(page, "%d\n", mddev->degraded);
  3835. }
  3836. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3837. static ssize_t
  3838. sync_force_parallel_show(struct mddev *mddev, char *page)
  3839. {
  3840. return sprintf(page, "%d\n", mddev->parallel_resync);
  3841. }
  3842. static ssize_t
  3843. sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
  3844. {
  3845. long n;
  3846. if (kstrtol(buf, 10, &n))
  3847. return -EINVAL;
  3848. if (n != 0 && n != 1)
  3849. return -EINVAL;
  3850. mddev->parallel_resync = n;
  3851. if (mddev->sync_thread)
  3852. wake_up(&resync_wait);
  3853. return len;
  3854. }
  3855. /* force parallel resync, even with shared block devices */
  3856. static struct md_sysfs_entry md_sync_force_parallel =
  3857. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3858. sync_force_parallel_show, sync_force_parallel_store);
  3859. static ssize_t
  3860. sync_speed_show(struct mddev *mddev, char *page)
  3861. {
  3862. unsigned long resync, dt, db;
  3863. if (mddev->curr_resync == 0)
  3864. return sprintf(page, "none\n");
  3865. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3866. dt = (jiffies - mddev->resync_mark) / HZ;
  3867. if (!dt) dt++;
  3868. db = resync - mddev->resync_mark_cnt;
  3869. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3870. }
  3871. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3872. static ssize_t
  3873. sync_completed_show(struct mddev *mddev, char *page)
  3874. {
  3875. unsigned long long max_sectors, resync;
  3876. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3877. return sprintf(page, "none\n");
  3878. if (mddev->curr_resync == 1 ||
  3879. mddev->curr_resync == 2)
  3880. return sprintf(page, "delayed\n");
  3881. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  3882. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3883. max_sectors = mddev->resync_max_sectors;
  3884. else
  3885. max_sectors = mddev->dev_sectors;
  3886. resync = mddev->curr_resync_completed;
  3887. return sprintf(page, "%llu / %llu\n", resync, max_sectors);
  3888. }
  3889. static struct md_sysfs_entry md_sync_completed =
  3890. __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
  3891. static ssize_t
  3892. min_sync_show(struct mddev *mddev, char *page)
  3893. {
  3894. return sprintf(page, "%llu\n",
  3895. (unsigned long long)mddev->resync_min);
  3896. }
  3897. static ssize_t
  3898. min_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3899. {
  3900. unsigned long long min;
  3901. int err;
  3902. int chunk;
  3903. if (kstrtoull(buf, 10, &min))
  3904. return -EINVAL;
  3905. spin_lock(&mddev->lock);
  3906. err = -EINVAL;
  3907. if (min > mddev->resync_max)
  3908. goto out_unlock;
  3909. err = -EBUSY;
  3910. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3911. goto out_unlock;
  3912. /* Must be a multiple of chunk_size */
  3913. chunk = mddev->chunk_sectors;
  3914. if (chunk) {
  3915. sector_t temp = min;
  3916. err = -EINVAL;
  3917. if (sector_div(temp, chunk))
  3918. goto out_unlock;
  3919. }
  3920. mddev->resync_min = min;
  3921. err = 0;
  3922. out_unlock:
  3923. spin_unlock(&mddev->lock);
  3924. return err ?: len;
  3925. }
  3926. static struct md_sysfs_entry md_min_sync =
  3927. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  3928. static ssize_t
  3929. max_sync_show(struct mddev *mddev, char *page)
  3930. {
  3931. if (mddev->resync_max == MaxSector)
  3932. return sprintf(page, "max\n");
  3933. else
  3934. return sprintf(page, "%llu\n",
  3935. (unsigned long long)mddev->resync_max);
  3936. }
  3937. static ssize_t
  3938. max_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3939. {
  3940. int err;
  3941. spin_lock(&mddev->lock);
  3942. if (strncmp(buf, "max", 3) == 0)
  3943. mddev->resync_max = MaxSector;
  3944. else {
  3945. unsigned long long max;
  3946. int chunk;
  3947. err = -EINVAL;
  3948. if (kstrtoull(buf, 10, &max))
  3949. goto out_unlock;
  3950. if (max < mddev->resync_min)
  3951. goto out_unlock;
  3952. err = -EBUSY;
  3953. if (max < mddev->resync_max &&
  3954. mddev->ro == 0 &&
  3955. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3956. goto out_unlock;
  3957. /* Must be a multiple of chunk_size */
  3958. chunk = mddev->chunk_sectors;
  3959. if (chunk) {
  3960. sector_t temp = max;
  3961. err = -EINVAL;
  3962. if (sector_div(temp, chunk))
  3963. goto out_unlock;
  3964. }
  3965. mddev->resync_max = max;
  3966. }
  3967. wake_up(&mddev->recovery_wait);
  3968. err = 0;
  3969. out_unlock:
  3970. spin_unlock(&mddev->lock);
  3971. return err ?: len;
  3972. }
  3973. static struct md_sysfs_entry md_max_sync =
  3974. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  3975. static ssize_t
  3976. suspend_lo_show(struct mddev *mddev, char *page)
  3977. {
  3978. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  3979. }
  3980. static ssize_t
  3981. suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
  3982. {
  3983. char *e;
  3984. unsigned long long new = simple_strtoull(buf, &e, 10);
  3985. unsigned long long old;
  3986. int err;
  3987. if (buf == e || (*e && *e != '\n'))
  3988. return -EINVAL;
  3989. err = mddev_lock(mddev);
  3990. if (err)
  3991. return err;
  3992. err = -EINVAL;
  3993. if (mddev->pers == NULL ||
  3994. mddev->pers->quiesce == NULL)
  3995. goto unlock;
  3996. old = mddev->suspend_lo;
  3997. mddev->suspend_lo = new;
  3998. if (new >= old)
  3999. /* Shrinking suspended region */
  4000. mddev->pers->quiesce(mddev, 2);
  4001. else {
  4002. /* Expanding suspended region - need to wait */
  4003. mddev->pers->quiesce(mddev, 1);
  4004. mddev->pers->quiesce(mddev, 0);
  4005. }
  4006. err = 0;
  4007. unlock:
  4008. mddev_unlock(mddev);
  4009. return err ?: len;
  4010. }
  4011. static struct md_sysfs_entry md_suspend_lo =
  4012. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  4013. static ssize_t
  4014. suspend_hi_show(struct mddev *mddev, char *page)
  4015. {
  4016. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  4017. }
  4018. static ssize_t
  4019. suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
  4020. {
  4021. char *e;
  4022. unsigned long long new = simple_strtoull(buf, &e, 10);
  4023. unsigned long long old;
  4024. int err;
  4025. if (buf == e || (*e && *e != '\n'))
  4026. return -EINVAL;
  4027. err = mddev_lock(mddev);
  4028. if (err)
  4029. return err;
  4030. err = -EINVAL;
  4031. if (mddev->pers == NULL ||
  4032. mddev->pers->quiesce == NULL)
  4033. goto unlock;
  4034. old = mddev->suspend_hi;
  4035. mddev->suspend_hi = new;
  4036. if (new <= old)
  4037. /* Shrinking suspended region */
  4038. mddev->pers->quiesce(mddev, 2);
  4039. else {
  4040. /* Expanding suspended region - need to wait */
  4041. mddev->pers->quiesce(mddev, 1);
  4042. mddev->pers->quiesce(mddev, 0);
  4043. }
  4044. err = 0;
  4045. unlock:
  4046. mddev_unlock(mddev);
  4047. return err ?: len;
  4048. }
  4049. static struct md_sysfs_entry md_suspend_hi =
  4050. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  4051. static ssize_t
  4052. reshape_position_show(struct mddev *mddev, char *page)
  4053. {
  4054. if (mddev->reshape_position != MaxSector)
  4055. return sprintf(page, "%llu\n",
  4056. (unsigned long long)mddev->reshape_position);
  4057. strcpy(page, "none\n");
  4058. return 5;
  4059. }
  4060. static ssize_t
  4061. reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
  4062. {
  4063. struct md_rdev *rdev;
  4064. char *e;
  4065. int err;
  4066. unsigned long long new = simple_strtoull(buf, &e, 10);
  4067. if (buf == e || (*e && *e != '\n'))
  4068. return -EINVAL;
  4069. err = mddev_lock(mddev);
  4070. if (err)
  4071. return err;
  4072. err = -EBUSY;
  4073. if (mddev->pers)
  4074. goto unlock;
  4075. mddev->reshape_position = new;
  4076. mddev->delta_disks = 0;
  4077. mddev->reshape_backwards = 0;
  4078. mddev->new_level = mddev->level;
  4079. mddev->new_layout = mddev->layout;
  4080. mddev->new_chunk_sectors = mddev->chunk_sectors;
  4081. rdev_for_each(rdev, mddev)
  4082. rdev->new_data_offset = rdev->data_offset;
  4083. err = 0;
  4084. unlock:
  4085. mddev_unlock(mddev);
  4086. return err ?: len;
  4087. }
  4088. static struct md_sysfs_entry md_reshape_position =
  4089. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  4090. reshape_position_store);
  4091. static ssize_t
  4092. reshape_direction_show(struct mddev *mddev, char *page)
  4093. {
  4094. return sprintf(page, "%s\n",
  4095. mddev->reshape_backwards ? "backwards" : "forwards");
  4096. }
  4097. static ssize_t
  4098. reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
  4099. {
  4100. int backwards = 0;
  4101. int err;
  4102. if (cmd_match(buf, "forwards"))
  4103. backwards = 0;
  4104. else if (cmd_match(buf, "backwards"))
  4105. backwards = 1;
  4106. else
  4107. return -EINVAL;
  4108. if (mddev->reshape_backwards == backwards)
  4109. return len;
  4110. err = mddev_lock(mddev);
  4111. if (err)
  4112. return err;
  4113. /* check if we are allowed to change */
  4114. if (mddev->delta_disks)
  4115. err = -EBUSY;
  4116. else if (mddev->persistent &&
  4117. mddev->major_version == 0)
  4118. err = -EINVAL;
  4119. else
  4120. mddev->reshape_backwards = backwards;
  4121. mddev_unlock(mddev);
  4122. return err ?: len;
  4123. }
  4124. static struct md_sysfs_entry md_reshape_direction =
  4125. __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
  4126. reshape_direction_store);
  4127. static ssize_t
  4128. array_size_show(struct mddev *mddev, char *page)
  4129. {
  4130. if (mddev->external_size)
  4131. return sprintf(page, "%llu\n",
  4132. (unsigned long long)mddev->array_sectors/2);
  4133. else
  4134. return sprintf(page, "default\n");
  4135. }
  4136. static ssize_t
  4137. array_size_store(struct mddev *mddev, const char *buf, size_t len)
  4138. {
  4139. sector_t sectors;
  4140. int err;
  4141. err = mddev_lock(mddev);
  4142. if (err)
  4143. return err;
  4144. if (strncmp(buf, "default", 7) == 0) {
  4145. if (mddev->pers)
  4146. sectors = mddev->pers->size(mddev, 0, 0);
  4147. else
  4148. sectors = mddev->array_sectors;
  4149. mddev->external_size = 0;
  4150. } else {
  4151. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  4152. err = -EINVAL;
  4153. else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  4154. err = -E2BIG;
  4155. else
  4156. mddev->external_size = 1;
  4157. }
  4158. if (!err) {
  4159. mddev->array_sectors = sectors;
  4160. if (mddev->pers) {
  4161. set_capacity(mddev->gendisk, mddev->array_sectors);
  4162. revalidate_disk(mddev->gendisk);
  4163. }
  4164. }
  4165. mddev_unlock(mddev);
  4166. return err ?: len;
  4167. }
  4168. static struct md_sysfs_entry md_array_size =
  4169. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  4170. array_size_store);
  4171. static struct attribute *md_default_attrs[] = {
  4172. &md_level.attr,
  4173. &md_layout.attr,
  4174. &md_raid_disks.attr,
  4175. &md_chunk_size.attr,
  4176. &md_size.attr,
  4177. &md_resync_start.attr,
  4178. &md_metadata.attr,
  4179. &md_new_device.attr,
  4180. &md_safe_delay.attr,
  4181. &md_array_state.attr,
  4182. &md_reshape_position.attr,
  4183. &md_reshape_direction.attr,
  4184. &md_array_size.attr,
  4185. &max_corr_read_errors.attr,
  4186. NULL,
  4187. };
  4188. static struct attribute *md_redundancy_attrs[] = {
  4189. &md_scan_mode.attr,
  4190. &md_last_scan_mode.attr,
  4191. &md_mismatches.attr,
  4192. &md_sync_min.attr,
  4193. &md_sync_max.attr,
  4194. &md_sync_speed.attr,
  4195. &md_sync_force_parallel.attr,
  4196. &md_sync_completed.attr,
  4197. &md_min_sync.attr,
  4198. &md_max_sync.attr,
  4199. &md_suspend_lo.attr,
  4200. &md_suspend_hi.attr,
  4201. &md_bitmap.attr,
  4202. &md_degraded.attr,
  4203. NULL,
  4204. };
  4205. static struct attribute_group md_redundancy_group = {
  4206. .name = NULL,
  4207. .attrs = md_redundancy_attrs,
  4208. };
  4209. static ssize_t
  4210. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  4211. {
  4212. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4213. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4214. ssize_t rv;
  4215. if (!entry->show)
  4216. return -EIO;
  4217. spin_lock(&all_mddevs_lock);
  4218. if (list_empty(&mddev->all_mddevs)) {
  4219. spin_unlock(&all_mddevs_lock);
  4220. return -EBUSY;
  4221. }
  4222. mddev_get(mddev);
  4223. spin_unlock(&all_mddevs_lock);
  4224. rv = entry->show(mddev, page);
  4225. mddev_put(mddev);
  4226. return rv;
  4227. }
  4228. static ssize_t
  4229. md_attr_store(struct kobject *kobj, struct attribute *attr,
  4230. const char *page, size_t length)
  4231. {
  4232. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4233. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4234. ssize_t rv;
  4235. if (!entry->store)
  4236. return -EIO;
  4237. if (!capable(CAP_SYS_ADMIN))
  4238. return -EACCES;
  4239. spin_lock(&all_mddevs_lock);
  4240. if (list_empty(&mddev->all_mddevs)) {
  4241. spin_unlock(&all_mddevs_lock);
  4242. return -EBUSY;
  4243. }
  4244. mddev_get(mddev);
  4245. spin_unlock(&all_mddevs_lock);
  4246. rv = entry->store(mddev, page, length);
  4247. mddev_put(mddev);
  4248. return rv;
  4249. }
  4250. static void md_free(struct kobject *ko)
  4251. {
  4252. struct mddev *mddev = container_of(ko, struct mddev, kobj);
  4253. if (mddev->sysfs_state)
  4254. sysfs_put(mddev->sysfs_state);
  4255. if (mddev->gendisk) {
  4256. del_gendisk(mddev->gendisk);
  4257. put_disk(mddev->gendisk);
  4258. }
  4259. if (mddev->queue)
  4260. blk_cleanup_queue(mddev->queue);
  4261. kfree(mddev);
  4262. }
  4263. static const struct sysfs_ops md_sysfs_ops = {
  4264. .show = md_attr_show,
  4265. .store = md_attr_store,
  4266. };
  4267. static struct kobj_type md_ktype = {
  4268. .release = md_free,
  4269. .sysfs_ops = &md_sysfs_ops,
  4270. .default_attrs = md_default_attrs,
  4271. };
  4272. int mdp_major = 0;
  4273. static void mddev_delayed_delete(struct work_struct *ws)
  4274. {
  4275. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  4276. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  4277. kobject_del(&mddev->kobj);
  4278. kobject_put(&mddev->kobj);
  4279. }
  4280. static int md_alloc(dev_t dev, char *name)
  4281. {
  4282. static DEFINE_MUTEX(disks_mutex);
  4283. struct mddev *mddev = mddev_find(dev);
  4284. struct gendisk *disk;
  4285. int partitioned;
  4286. int shift;
  4287. int unit;
  4288. int error;
  4289. if (!mddev)
  4290. return -ENODEV;
  4291. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  4292. shift = partitioned ? MdpMinorShift : 0;
  4293. unit = MINOR(mddev->unit) >> shift;
  4294. /* wait for any previous instance of this device to be
  4295. * completely removed (mddev_delayed_delete).
  4296. */
  4297. flush_workqueue(md_misc_wq);
  4298. mutex_lock(&disks_mutex);
  4299. error = -EEXIST;
  4300. if (mddev->gendisk)
  4301. goto abort;
  4302. if (name) {
  4303. /* Need to ensure that 'name' is not a duplicate.
  4304. */
  4305. struct mddev *mddev2;
  4306. spin_lock(&all_mddevs_lock);
  4307. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  4308. if (mddev2->gendisk &&
  4309. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  4310. spin_unlock(&all_mddevs_lock);
  4311. goto abort;
  4312. }
  4313. spin_unlock(&all_mddevs_lock);
  4314. }
  4315. error = -ENOMEM;
  4316. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  4317. if (!mddev->queue)
  4318. goto abort;
  4319. mddev->queue->queuedata = mddev;
  4320. blk_queue_make_request(mddev->queue, md_make_request);
  4321. blk_set_stacking_limits(&mddev->queue->limits);
  4322. disk = alloc_disk(1 << shift);
  4323. if (!disk) {
  4324. blk_cleanup_queue(mddev->queue);
  4325. mddev->queue = NULL;
  4326. goto abort;
  4327. }
  4328. disk->major = MAJOR(mddev->unit);
  4329. disk->first_minor = unit << shift;
  4330. if (name)
  4331. strcpy(disk->disk_name, name);
  4332. else if (partitioned)
  4333. sprintf(disk->disk_name, "md_d%d", unit);
  4334. else
  4335. sprintf(disk->disk_name, "md%d", unit);
  4336. disk->fops = &md_fops;
  4337. disk->private_data = mddev;
  4338. disk->queue = mddev->queue;
  4339. blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
  4340. /* Allow extended partitions. This makes the
  4341. * 'mdp' device redundant, but we can't really
  4342. * remove it now.
  4343. */
  4344. disk->flags |= GENHD_FL_EXT_DEVT;
  4345. mddev->gendisk = disk;
  4346. /* As soon as we call add_disk(), another thread could get
  4347. * through to md_open, so make sure it doesn't get too far
  4348. */
  4349. mutex_lock(&mddev->open_mutex);
  4350. add_disk(disk);
  4351. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  4352. &disk_to_dev(disk)->kobj, "%s", "md");
  4353. if (error) {
  4354. /* This isn't possible, but as kobject_init_and_add is marked
  4355. * __must_check, we must do something with the result
  4356. */
  4357. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  4358. disk->disk_name);
  4359. error = 0;
  4360. }
  4361. if (mddev->kobj.sd &&
  4362. sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  4363. printk(KERN_DEBUG "pointless warning\n");
  4364. mutex_unlock(&mddev->open_mutex);
  4365. abort:
  4366. mutex_unlock(&disks_mutex);
  4367. if (!error && mddev->kobj.sd) {
  4368. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  4369. mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
  4370. }
  4371. mddev_put(mddev);
  4372. return error;
  4373. }
  4374. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  4375. {
  4376. md_alloc(dev, NULL);
  4377. return NULL;
  4378. }
  4379. static int add_named_array(const char *val, struct kernel_param *kp)
  4380. {
  4381. /* val must be "md_*" where * is not all digits.
  4382. * We allocate an array with a large free minor number, and
  4383. * set the name to val. val must not already be an active name.
  4384. */
  4385. int len = strlen(val);
  4386. char buf[DISK_NAME_LEN];
  4387. while (len && val[len-1] == '\n')
  4388. len--;
  4389. if (len >= DISK_NAME_LEN)
  4390. return -E2BIG;
  4391. strlcpy(buf, val, len+1);
  4392. if (strncmp(buf, "md_", 3) != 0)
  4393. return -EINVAL;
  4394. return md_alloc(0, buf);
  4395. }
  4396. static void md_safemode_timeout(unsigned long data)
  4397. {
  4398. struct mddev *mddev = (struct mddev *) data;
  4399. if (!atomic_read(&mddev->writes_pending)) {
  4400. mddev->safemode = 1;
  4401. if (mddev->external)
  4402. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4403. }
  4404. md_wakeup_thread(mddev->thread);
  4405. }
  4406. static int start_dirty_degraded;
  4407. int md_run(struct mddev *mddev)
  4408. {
  4409. int err;
  4410. struct md_rdev *rdev;
  4411. struct md_personality *pers;
  4412. if (list_empty(&mddev->disks))
  4413. /* cannot run an array with no devices.. */
  4414. return -EINVAL;
  4415. if (mddev->pers)
  4416. return -EBUSY;
  4417. /* Cannot run until previous stop completes properly */
  4418. if (mddev->sysfs_active)
  4419. return -EBUSY;
  4420. /*
  4421. * Analyze all RAID superblock(s)
  4422. */
  4423. if (!mddev->raid_disks) {
  4424. if (!mddev->persistent)
  4425. return -EINVAL;
  4426. analyze_sbs(mddev);
  4427. }
  4428. if (mddev->level != LEVEL_NONE)
  4429. request_module("md-level-%d", mddev->level);
  4430. else if (mddev->clevel[0])
  4431. request_module("md-%s", mddev->clevel);
  4432. /*
  4433. * Drop all container device buffers, from now on
  4434. * the only valid external interface is through the md
  4435. * device.
  4436. */
  4437. rdev_for_each(rdev, mddev) {
  4438. if (test_bit(Faulty, &rdev->flags))
  4439. continue;
  4440. sync_blockdev(rdev->bdev);
  4441. invalidate_bdev(rdev->bdev);
  4442. /* perform some consistency tests on the device.
  4443. * We don't want the data to overlap the metadata,
  4444. * Internal Bitmap issues have been handled elsewhere.
  4445. */
  4446. if (rdev->meta_bdev) {
  4447. /* Nothing to check */;
  4448. } else if (rdev->data_offset < rdev->sb_start) {
  4449. if (mddev->dev_sectors &&
  4450. rdev->data_offset + mddev->dev_sectors
  4451. > rdev->sb_start) {
  4452. printk("md: %s: data overlaps metadata\n",
  4453. mdname(mddev));
  4454. return -EINVAL;
  4455. }
  4456. } else {
  4457. if (rdev->sb_start + rdev->sb_size/512
  4458. > rdev->data_offset) {
  4459. printk("md: %s: metadata overlaps data\n",
  4460. mdname(mddev));
  4461. return -EINVAL;
  4462. }
  4463. }
  4464. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4465. }
  4466. if (mddev->bio_set == NULL)
  4467. mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
  4468. spin_lock(&pers_lock);
  4469. pers = find_pers(mddev->level, mddev->clevel);
  4470. if (!pers || !try_module_get(pers->owner)) {
  4471. spin_unlock(&pers_lock);
  4472. if (mddev->level != LEVEL_NONE)
  4473. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  4474. mddev->level);
  4475. else
  4476. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  4477. mddev->clevel);
  4478. return -EINVAL;
  4479. }
  4480. spin_unlock(&pers_lock);
  4481. if (mddev->level != pers->level) {
  4482. mddev->level = pers->level;
  4483. mddev->new_level = pers->level;
  4484. }
  4485. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  4486. if (mddev->reshape_position != MaxSector &&
  4487. pers->start_reshape == NULL) {
  4488. /* This personality cannot handle reshaping... */
  4489. module_put(pers->owner);
  4490. return -EINVAL;
  4491. }
  4492. if (pers->sync_request) {
  4493. /* Warn if this is a potentially silly
  4494. * configuration.
  4495. */
  4496. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4497. struct md_rdev *rdev2;
  4498. int warned = 0;
  4499. rdev_for_each(rdev, mddev)
  4500. rdev_for_each(rdev2, mddev) {
  4501. if (rdev < rdev2 &&
  4502. rdev->bdev->bd_contains ==
  4503. rdev2->bdev->bd_contains) {
  4504. printk(KERN_WARNING
  4505. "%s: WARNING: %s appears to be"
  4506. " on the same physical disk as"
  4507. " %s.\n",
  4508. mdname(mddev),
  4509. bdevname(rdev->bdev,b),
  4510. bdevname(rdev2->bdev,b2));
  4511. warned = 1;
  4512. }
  4513. }
  4514. if (warned)
  4515. printk(KERN_WARNING
  4516. "True protection against single-disk"
  4517. " failure might be compromised.\n");
  4518. }
  4519. mddev->recovery = 0;
  4520. /* may be over-ridden by personality */
  4521. mddev->resync_max_sectors = mddev->dev_sectors;
  4522. mddev->ok_start_degraded = start_dirty_degraded;
  4523. if (start_readonly && mddev->ro == 0)
  4524. mddev->ro = 2; /* read-only, but switch on first write */
  4525. err = pers->run(mddev);
  4526. if (err)
  4527. printk(KERN_ERR "md: pers->run() failed ...\n");
  4528. else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
  4529. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  4530. " but 'external_size' not in effect?\n", __func__);
  4531. printk(KERN_ERR
  4532. "md: invalid array_size %llu > default size %llu\n",
  4533. (unsigned long long)mddev->array_sectors / 2,
  4534. (unsigned long long)pers->size(mddev, 0, 0) / 2);
  4535. err = -EINVAL;
  4536. }
  4537. if (err == 0 && pers->sync_request &&
  4538. (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
  4539. err = bitmap_create(mddev);
  4540. if (err)
  4541. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  4542. mdname(mddev), err);
  4543. }
  4544. if (err) {
  4545. mddev_detach(mddev);
  4546. if (mddev->private)
  4547. pers->free(mddev, mddev->private);
  4548. module_put(pers->owner);
  4549. bitmap_destroy(mddev);
  4550. return err;
  4551. }
  4552. if (mddev->queue) {
  4553. mddev->queue->backing_dev_info.congested_data = mddev;
  4554. mddev->queue->backing_dev_info.congested_fn = md_congested;
  4555. blk_queue_merge_bvec(mddev->queue, md_mergeable_bvec);
  4556. }
  4557. if (pers->sync_request) {
  4558. if (mddev->kobj.sd &&
  4559. sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  4560. printk(KERN_WARNING
  4561. "md: cannot register extra attributes for %s\n",
  4562. mdname(mddev));
  4563. mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
  4564. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  4565. mddev->ro = 0;
  4566. atomic_set(&mddev->writes_pending,0);
  4567. atomic_set(&mddev->max_corr_read_errors,
  4568. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  4569. mddev->safemode = 0;
  4570. mddev->safemode_timer.function = md_safemode_timeout;
  4571. mddev->safemode_timer.data = (unsigned long) mddev;
  4572. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  4573. mddev->in_sync = 1;
  4574. smp_wmb();
  4575. spin_lock(&mddev->lock);
  4576. mddev->pers = pers;
  4577. mddev->ready = 1;
  4578. spin_unlock(&mddev->lock);
  4579. rdev_for_each(rdev, mddev)
  4580. if (rdev->raid_disk >= 0)
  4581. if (sysfs_link_rdev(mddev, rdev))
  4582. /* failure here is OK */;
  4583. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4584. if (mddev->flags & MD_UPDATE_SB_FLAGS)
  4585. md_update_sb(mddev, 0);
  4586. md_new_event(mddev);
  4587. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4588. sysfs_notify_dirent_safe(mddev->sysfs_action);
  4589. sysfs_notify(&mddev->kobj, NULL, "degraded");
  4590. return 0;
  4591. }
  4592. EXPORT_SYMBOL_GPL(md_run);
  4593. static int do_md_run(struct mddev *mddev)
  4594. {
  4595. int err;
  4596. err = md_run(mddev);
  4597. if (err)
  4598. goto out;
  4599. err = bitmap_load(mddev);
  4600. if (err) {
  4601. bitmap_destroy(mddev);
  4602. goto out;
  4603. }
  4604. md_wakeup_thread(mddev->thread);
  4605. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  4606. set_capacity(mddev->gendisk, mddev->array_sectors);
  4607. revalidate_disk(mddev->gendisk);
  4608. mddev->changed = 1;
  4609. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4610. out:
  4611. return err;
  4612. }
  4613. static int restart_array(struct mddev *mddev)
  4614. {
  4615. struct gendisk *disk = mddev->gendisk;
  4616. /* Complain if it has no devices */
  4617. if (list_empty(&mddev->disks))
  4618. return -ENXIO;
  4619. if (!mddev->pers)
  4620. return -EINVAL;
  4621. if (!mddev->ro)
  4622. return -EBUSY;
  4623. mddev->safemode = 0;
  4624. mddev->ro = 0;
  4625. set_disk_ro(disk, 0);
  4626. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4627. mdname(mddev));
  4628. /* Kick recovery or resync if necessary */
  4629. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4630. md_wakeup_thread(mddev->thread);
  4631. md_wakeup_thread(mddev->sync_thread);
  4632. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4633. return 0;
  4634. }
  4635. static void md_clean(struct mddev *mddev)
  4636. {
  4637. mddev->array_sectors = 0;
  4638. mddev->external_size = 0;
  4639. mddev->dev_sectors = 0;
  4640. mddev->raid_disks = 0;
  4641. mddev->recovery_cp = 0;
  4642. mddev->resync_min = 0;
  4643. mddev->resync_max = MaxSector;
  4644. mddev->reshape_position = MaxSector;
  4645. mddev->external = 0;
  4646. mddev->persistent = 0;
  4647. mddev->level = LEVEL_NONE;
  4648. mddev->clevel[0] = 0;
  4649. mddev->flags = 0;
  4650. mddev->ro = 0;
  4651. mddev->metadata_type[0] = 0;
  4652. mddev->chunk_sectors = 0;
  4653. mddev->ctime = mddev->utime = 0;
  4654. mddev->layout = 0;
  4655. mddev->max_disks = 0;
  4656. mddev->events = 0;
  4657. mddev->can_decrease_events = 0;
  4658. mddev->delta_disks = 0;
  4659. mddev->reshape_backwards = 0;
  4660. mddev->new_level = LEVEL_NONE;
  4661. mddev->new_layout = 0;
  4662. mddev->new_chunk_sectors = 0;
  4663. mddev->curr_resync = 0;
  4664. atomic64_set(&mddev->resync_mismatches, 0);
  4665. mddev->suspend_lo = mddev->suspend_hi = 0;
  4666. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4667. mddev->recovery = 0;
  4668. mddev->in_sync = 0;
  4669. mddev->changed = 0;
  4670. mddev->degraded = 0;
  4671. mddev->safemode = 0;
  4672. mddev->merge_check_needed = 0;
  4673. mddev->bitmap_info.offset = 0;
  4674. mddev->bitmap_info.default_offset = 0;
  4675. mddev->bitmap_info.default_space = 0;
  4676. mddev->bitmap_info.chunksize = 0;
  4677. mddev->bitmap_info.daemon_sleep = 0;
  4678. mddev->bitmap_info.max_write_behind = 0;
  4679. }
  4680. static void __md_stop_writes(struct mddev *mddev)
  4681. {
  4682. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4683. flush_workqueue(md_misc_wq);
  4684. if (mddev->sync_thread) {
  4685. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4686. md_reap_sync_thread(mddev);
  4687. }
  4688. del_timer_sync(&mddev->safemode_timer);
  4689. bitmap_flush(mddev);
  4690. md_super_wait(mddev);
  4691. if (mddev->ro == 0 &&
  4692. (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
  4693. /* mark array as shutdown cleanly */
  4694. mddev->in_sync = 1;
  4695. md_update_sb(mddev, 1);
  4696. }
  4697. }
  4698. void md_stop_writes(struct mddev *mddev)
  4699. {
  4700. mddev_lock_nointr(mddev);
  4701. __md_stop_writes(mddev);
  4702. mddev_unlock(mddev);
  4703. }
  4704. EXPORT_SYMBOL_GPL(md_stop_writes);
  4705. static void mddev_detach(struct mddev *mddev)
  4706. {
  4707. struct bitmap *bitmap = mddev->bitmap;
  4708. /* wait for behind writes to complete */
  4709. if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
  4710. printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
  4711. mdname(mddev));
  4712. /* need to kick something here to make sure I/O goes? */
  4713. wait_event(bitmap->behind_wait,
  4714. atomic_read(&bitmap->behind_writes) == 0);
  4715. }
  4716. if (mddev->pers && mddev->pers->quiesce) {
  4717. mddev->pers->quiesce(mddev, 1);
  4718. mddev->pers->quiesce(mddev, 0);
  4719. }
  4720. md_unregister_thread(&mddev->thread);
  4721. if (mddev->queue)
  4722. blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
  4723. }
  4724. static void __md_stop(struct mddev *mddev)
  4725. {
  4726. struct md_personality *pers = mddev->pers;
  4727. mddev_detach(mddev);
  4728. spin_lock(&mddev->lock);
  4729. mddev->ready = 0;
  4730. mddev->pers = NULL;
  4731. spin_unlock(&mddev->lock);
  4732. pers->free(mddev, mddev->private);
  4733. if (pers->sync_request && mddev->to_remove == NULL)
  4734. mddev->to_remove = &md_redundancy_group;
  4735. module_put(pers->owner);
  4736. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4737. }
  4738. void md_stop(struct mddev *mddev)
  4739. {
  4740. /* stop the array and free an attached data structures.
  4741. * This is called from dm-raid
  4742. */
  4743. __md_stop(mddev);
  4744. bitmap_destroy(mddev);
  4745. if (mddev->bio_set)
  4746. bioset_free(mddev->bio_set);
  4747. }
  4748. EXPORT_SYMBOL_GPL(md_stop);
  4749. static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
  4750. {
  4751. int err = 0;
  4752. int did_freeze = 0;
  4753. if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
  4754. did_freeze = 1;
  4755. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4756. md_wakeup_thread(mddev->thread);
  4757. }
  4758. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  4759. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4760. if (mddev->sync_thread)
  4761. /* Thread might be blocked waiting for metadata update
  4762. * which will now never happen */
  4763. wake_up_process(mddev->sync_thread->tsk);
  4764. mddev_unlock(mddev);
  4765. wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
  4766. &mddev->recovery));
  4767. mddev_lock_nointr(mddev);
  4768. mutex_lock(&mddev->open_mutex);
  4769. if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
  4770. mddev->sync_thread ||
  4771. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  4772. (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
  4773. printk("md: %s still in use.\n",mdname(mddev));
  4774. if (did_freeze) {
  4775. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4776. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4777. md_wakeup_thread(mddev->thread);
  4778. }
  4779. err = -EBUSY;
  4780. goto out;
  4781. }
  4782. if (mddev->pers) {
  4783. __md_stop_writes(mddev);
  4784. err = -ENXIO;
  4785. if (mddev->ro==1)
  4786. goto out;
  4787. mddev->ro = 1;
  4788. set_disk_ro(mddev->gendisk, 1);
  4789. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4790. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4791. md_wakeup_thread(mddev->thread);
  4792. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4793. err = 0;
  4794. }
  4795. out:
  4796. mutex_unlock(&mddev->open_mutex);
  4797. return err;
  4798. }
  4799. /* mode:
  4800. * 0 - completely stop and dis-assemble array
  4801. * 2 - stop but do not disassemble array
  4802. */
  4803. static int do_md_stop(struct mddev *mddev, int mode,
  4804. struct block_device *bdev)
  4805. {
  4806. struct gendisk *disk = mddev->gendisk;
  4807. struct md_rdev *rdev;
  4808. int did_freeze = 0;
  4809. if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
  4810. did_freeze = 1;
  4811. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4812. md_wakeup_thread(mddev->thread);
  4813. }
  4814. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  4815. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4816. if (mddev->sync_thread)
  4817. /* Thread might be blocked waiting for metadata update
  4818. * which will now never happen */
  4819. wake_up_process(mddev->sync_thread->tsk);
  4820. mddev_unlock(mddev);
  4821. wait_event(resync_wait, (mddev->sync_thread == NULL &&
  4822. !test_bit(MD_RECOVERY_RUNNING,
  4823. &mddev->recovery)));
  4824. mddev_lock_nointr(mddev);
  4825. mutex_lock(&mddev->open_mutex);
  4826. if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
  4827. mddev->sysfs_active ||
  4828. mddev->sync_thread ||
  4829. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  4830. (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
  4831. printk("md: %s still in use.\n",mdname(mddev));
  4832. mutex_unlock(&mddev->open_mutex);
  4833. if (did_freeze) {
  4834. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4835. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4836. md_wakeup_thread(mddev->thread);
  4837. }
  4838. return -EBUSY;
  4839. }
  4840. if (mddev->pers) {
  4841. if (mddev->ro)
  4842. set_disk_ro(disk, 0);
  4843. __md_stop_writes(mddev);
  4844. __md_stop(mddev);
  4845. mddev->queue->merge_bvec_fn = NULL;
  4846. mddev->queue->backing_dev_info.congested_fn = NULL;
  4847. /* tell userspace to handle 'inactive' */
  4848. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4849. rdev_for_each(rdev, mddev)
  4850. if (rdev->raid_disk >= 0)
  4851. sysfs_unlink_rdev(mddev, rdev);
  4852. set_capacity(disk, 0);
  4853. mutex_unlock(&mddev->open_mutex);
  4854. mddev->changed = 1;
  4855. revalidate_disk(disk);
  4856. if (mddev->ro)
  4857. mddev->ro = 0;
  4858. } else
  4859. mutex_unlock(&mddev->open_mutex);
  4860. /*
  4861. * Free resources if final stop
  4862. */
  4863. if (mode == 0) {
  4864. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  4865. bitmap_destroy(mddev);
  4866. if (mddev->bitmap_info.file) {
  4867. struct file *f = mddev->bitmap_info.file;
  4868. spin_lock(&mddev->lock);
  4869. mddev->bitmap_info.file = NULL;
  4870. spin_unlock(&mddev->lock);
  4871. fput(f);
  4872. }
  4873. mddev->bitmap_info.offset = 0;
  4874. export_array(mddev);
  4875. md_clean(mddev);
  4876. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4877. if (mddev->hold_active == UNTIL_STOP)
  4878. mddev->hold_active = 0;
  4879. }
  4880. blk_integrity_unregister(disk);
  4881. md_new_event(mddev);
  4882. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4883. return 0;
  4884. }
  4885. #ifndef MODULE
  4886. static void autorun_array(struct mddev *mddev)
  4887. {
  4888. struct md_rdev *rdev;
  4889. int err;
  4890. if (list_empty(&mddev->disks))
  4891. return;
  4892. printk(KERN_INFO "md: running: ");
  4893. rdev_for_each(rdev, mddev) {
  4894. char b[BDEVNAME_SIZE];
  4895. printk("<%s>", bdevname(rdev->bdev,b));
  4896. }
  4897. printk("\n");
  4898. err = do_md_run(mddev);
  4899. if (err) {
  4900. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  4901. do_md_stop(mddev, 0, NULL);
  4902. }
  4903. }
  4904. /*
  4905. * lets try to run arrays based on all disks that have arrived
  4906. * until now. (those are in pending_raid_disks)
  4907. *
  4908. * the method: pick the first pending disk, collect all disks with
  4909. * the same UUID, remove all from the pending list and put them into
  4910. * the 'same_array' list. Then order this list based on superblock
  4911. * update time (freshest comes first), kick out 'old' disks and
  4912. * compare superblocks. If everything's fine then run it.
  4913. *
  4914. * If "unit" is allocated, then bump its reference count
  4915. */
  4916. static void autorun_devices(int part)
  4917. {
  4918. struct md_rdev *rdev0, *rdev, *tmp;
  4919. struct mddev *mddev;
  4920. char b[BDEVNAME_SIZE];
  4921. printk(KERN_INFO "md: autorun ...\n");
  4922. while (!list_empty(&pending_raid_disks)) {
  4923. int unit;
  4924. dev_t dev;
  4925. LIST_HEAD(candidates);
  4926. rdev0 = list_entry(pending_raid_disks.next,
  4927. struct md_rdev, same_set);
  4928. printk(KERN_INFO "md: considering %s ...\n",
  4929. bdevname(rdev0->bdev,b));
  4930. INIT_LIST_HEAD(&candidates);
  4931. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  4932. if (super_90_load(rdev, rdev0, 0) >= 0) {
  4933. printk(KERN_INFO "md: adding %s ...\n",
  4934. bdevname(rdev->bdev,b));
  4935. list_move(&rdev->same_set, &candidates);
  4936. }
  4937. /*
  4938. * now we have a set of devices, with all of them having
  4939. * mostly sane superblocks. It's time to allocate the
  4940. * mddev.
  4941. */
  4942. if (part) {
  4943. dev = MKDEV(mdp_major,
  4944. rdev0->preferred_minor << MdpMinorShift);
  4945. unit = MINOR(dev) >> MdpMinorShift;
  4946. } else {
  4947. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  4948. unit = MINOR(dev);
  4949. }
  4950. if (rdev0->preferred_minor != unit) {
  4951. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  4952. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  4953. break;
  4954. }
  4955. md_probe(dev, NULL, NULL);
  4956. mddev = mddev_find(dev);
  4957. if (!mddev || !mddev->gendisk) {
  4958. if (mddev)
  4959. mddev_put(mddev);
  4960. printk(KERN_ERR
  4961. "md: cannot allocate memory for md drive.\n");
  4962. break;
  4963. }
  4964. if (mddev_lock(mddev))
  4965. printk(KERN_WARNING "md: %s locked, cannot run\n",
  4966. mdname(mddev));
  4967. else if (mddev->raid_disks || mddev->major_version
  4968. || !list_empty(&mddev->disks)) {
  4969. printk(KERN_WARNING
  4970. "md: %s already running, cannot run %s\n",
  4971. mdname(mddev), bdevname(rdev0->bdev,b));
  4972. mddev_unlock(mddev);
  4973. } else {
  4974. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  4975. mddev->persistent = 1;
  4976. rdev_for_each_list(rdev, tmp, &candidates) {
  4977. list_del_init(&rdev->same_set);
  4978. if (bind_rdev_to_array(rdev, mddev))
  4979. export_rdev(rdev);
  4980. }
  4981. autorun_array(mddev);
  4982. mddev_unlock(mddev);
  4983. }
  4984. /* on success, candidates will be empty, on error
  4985. * it won't...
  4986. */
  4987. rdev_for_each_list(rdev, tmp, &candidates) {
  4988. list_del_init(&rdev->same_set);
  4989. export_rdev(rdev);
  4990. }
  4991. mddev_put(mddev);
  4992. }
  4993. printk(KERN_INFO "md: ... autorun DONE.\n");
  4994. }
  4995. #endif /* !MODULE */
  4996. static int get_version(void __user *arg)
  4997. {
  4998. mdu_version_t ver;
  4999. ver.major = MD_MAJOR_VERSION;
  5000. ver.minor = MD_MINOR_VERSION;
  5001. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  5002. if (copy_to_user(arg, &ver, sizeof(ver)))
  5003. return -EFAULT;
  5004. return 0;
  5005. }
  5006. static int get_array_info(struct mddev *mddev, void __user *arg)
  5007. {
  5008. mdu_array_info_t info;
  5009. int nr,working,insync,failed,spare;
  5010. struct md_rdev *rdev;
  5011. nr = working = insync = failed = spare = 0;
  5012. rcu_read_lock();
  5013. rdev_for_each_rcu(rdev, mddev) {
  5014. nr++;
  5015. if (test_bit(Faulty, &rdev->flags))
  5016. failed++;
  5017. else {
  5018. working++;
  5019. if (test_bit(In_sync, &rdev->flags))
  5020. insync++;
  5021. else
  5022. spare++;
  5023. }
  5024. }
  5025. rcu_read_unlock();
  5026. info.major_version = mddev->major_version;
  5027. info.minor_version = mddev->minor_version;
  5028. info.patch_version = MD_PATCHLEVEL_VERSION;
  5029. info.ctime = mddev->ctime;
  5030. info.level = mddev->level;
  5031. info.size = mddev->dev_sectors / 2;
  5032. if (info.size != mddev->dev_sectors / 2) /* overflow */
  5033. info.size = -1;
  5034. info.nr_disks = nr;
  5035. info.raid_disks = mddev->raid_disks;
  5036. info.md_minor = mddev->md_minor;
  5037. info.not_persistent= !mddev->persistent;
  5038. info.utime = mddev->utime;
  5039. info.state = 0;
  5040. if (mddev->in_sync)
  5041. info.state = (1<<MD_SB_CLEAN);
  5042. if (mddev->bitmap && mddev->bitmap_info.offset)
  5043. info.state |= (1<<MD_SB_BITMAP_PRESENT);
  5044. info.active_disks = insync;
  5045. info.working_disks = working;
  5046. info.failed_disks = failed;
  5047. info.spare_disks = spare;
  5048. info.layout = mddev->layout;
  5049. info.chunk_size = mddev->chunk_sectors << 9;
  5050. if (copy_to_user(arg, &info, sizeof(info)))
  5051. return -EFAULT;
  5052. return 0;
  5053. }
  5054. static int get_bitmap_file(struct mddev *mddev, void __user * arg)
  5055. {
  5056. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  5057. char *ptr;
  5058. int err;
  5059. file = kmalloc(sizeof(*file), GFP_NOIO);
  5060. if (!file)
  5061. return -ENOMEM;
  5062. err = 0;
  5063. spin_lock(&mddev->lock);
  5064. /* bitmap disabled, zero the first byte and copy out */
  5065. if (!mddev->bitmap_info.file)
  5066. file->pathname[0] = '\0';
  5067. else if ((ptr = d_path(&mddev->bitmap_info.file->f_path,
  5068. file->pathname, sizeof(file->pathname))),
  5069. IS_ERR(ptr))
  5070. err = PTR_ERR(ptr);
  5071. else
  5072. memmove(file->pathname, ptr,
  5073. sizeof(file->pathname)-(ptr-file->pathname));
  5074. spin_unlock(&mddev->lock);
  5075. if (err == 0 &&
  5076. copy_to_user(arg, file, sizeof(*file)))
  5077. err = -EFAULT;
  5078. kfree(file);
  5079. return err;
  5080. }
  5081. static int get_disk_info(struct mddev *mddev, void __user * arg)
  5082. {
  5083. mdu_disk_info_t info;
  5084. struct md_rdev *rdev;
  5085. if (copy_from_user(&info, arg, sizeof(info)))
  5086. return -EFAULT;
  5087. rcu_read_lock();
  5088. rdev = find_rdev_nr_rcu(mddev, info.number);
  5089. if (rdev) {
  5090. info.major = MAJOR(rdev->bdev->bd_dev);
  5091. info.minor = MINOR(rdev->bdev->bd_dev);
  5092. info.raid_disk = rdev->raid_disk;
  5093. info.state = 0;
  5094. if (test_bit(Faulty, &rdev->flags))
  5095. info.state |= (1<<MD_DISK_FAULTY);
  5096. else if (test_bit(In_sync, &rdev->flags)) {
  5097. info.state |= (1<<MD_DISK_ACTIVE);
  5098. info.state |= (1<<MD_DISK_SYNC);
  5099. }
  5100. if (test_bit(WriteMostly, &rdev->flags))
  5101. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  5102. } else {
  5103. info.major = info.minor = 0;
  5104. info.raid_disk = -1;
  5105. info.state = (1<<MD_DISK_REMOVED);
  5106. }
  5107. rcu_read_unlock();
  5108. if (copy_to_user(arg, &info, sizeof(info)))
  5109. return -EFAULT;
  5110. return 0;
  5111. }
  5112. static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
  5113. {
  5114. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  5115. struct md_rdev *rdev;
  5116. dev_t dev = MKDEV(info->major,info->minor);
  5117. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  5118. return -EOVERFLOW;
  5119. if (!mddev->raid_disks) {
  5120. int err;
  5121. /* expecting a device which has a superblock */
  5122. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  5123. if (IS_ERR(rdev)) {
  5124. printk(KERN_WARNING
  5125. "md: md_import_device returned %ld\n",
  5126. PTR_ERR(rdev));
  5127. return PTR_ERR(rdev);
  5128. }
  5129. if (!list_empty(&mddev->disks)) {
  5130. struct md_rdev *rdev0
  5131. = list_entry(mddev->disks.next,
  5132. struct md_rdev, same_set);
  5133. err = super_types[mddev->major_version]
  5134. .load_super(rdev, rdev0, mddev->minor_version);
  5135. if (err < 0) {
  5136. printk(KERN_WARNING
  5137. "md: %s has different UUID to %s\n",
  5138. bdevname(rdev->bdev,b),
  5139. bdevname(rdev0->bdev,b2));
  5140. export_rdev(rdev);
  5141. return -EINVAL;
  5142. }
  5143. }
  5144. err = bind_rdev_to_array(rdev, mddev);
  5145. if (err)
  5146. export_rdev(rdev);
  5147. return err;
  5148. }
  5149. /*
  5150. * add_new_disk can be used once the array is assembled
  5151. * to add "hot spares". They must already have a superblock
  5152. * written
  5153. */
  5154. if (mddev->pers) {
  5155. int err;
  5156. if (!mddev->pers->hot_add_disk) {
  5157. printk(KERN_WARNING
  5158. "%s: personality does not support diskops!\n",
  5159. mdname(mddev));
  5160. return -EINVAL;
  5161. }
  5162. if (mddev->persistent)
  5163. rdev = md_import_device(dev, mddev->major_version,
  5164. mddev->minor_version);
  5165. else
  5166. rdev = md_import_device(dev, -1, -1);
  5167. if (IS_ERR(rdev)) {
  5168. printk(KERN_WARNING
  5169. "md: md_import_device returned %ld\n",
  5170. PTR_ERR(rdev));
  5171. return PTR_ERR(rdev);
  5172. }
  5173. /* set saved_raid_disk if appropriate */
  5174. if (!mddev->persistent) {
  5175. if (info->state & (1<<MD_DISK_SYNC) &&
  5176. info->raid_disk < mddev->raid_disks) {
  5177. rdev->raid_disk = info->raid_disk;
  5178. set_bit(In_sync, &rdev->flags);
  5179. clear_bit(Bitmap_sync, &rdev->flags);
  5180. } else
  5181. rdev->raid_disk = -1;
  5182. rdev->saved_raid_disk = rdev->raid_disk;
  5183. } else
  5184. super_types[mddev->major_version].
  5185. validate_super(mddev, rdev);
  5186. if ((info->state & (1<<MD_DISK_SYNC)) &&
  5187. rdev->raid_disk != info->raid_disk) {
  5188. /* This was a hot-add request, but events doesn't
  5189. * match, so reject it.
  5190. */
  5191. export_rdev(rdev);
  5192. return -EINVAL;
  5193. }
  5194. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  5195. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5196. set_bit(WriteMostly, &rdev->flags);
  5197. else
  5198. clear_bit(WriteMostly, &rdev->flags);
  5199. rdev->raid_disk = -1;
  5200. err = bind_rdev_to_array(rdev, mddev);
  5201. if (!err && !mddev->pers->hot_remove_disk) {
  5202. /* If there is hot_add_disk but no hot_remove_disk
  5203. * then added disks for geometry changes,
  5204. * and should be added immediately.
  5205. */
  5206. super_types[mddev->major_version].
  5207. validate_super(mddev, rdev);
  5208. err = mddev->pers->hot_add_disk(mddev, rdev);
  5209. if (err)
  5210. unbind_rdev_from_array(rdev);
  5211. }
  5212. if (err)
  5213. export_rdev(rdev);
  5214. else
  5215. sysfs_notify_dirent_safe(rdev->sysfs_state);
  5216. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5217. if (mddev->degraded)
  5218. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5219. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5220. if (!err)
  5221. md_new_event(mddev);
  5222. md_wakeup_thread(mddev->thread);
  5223. return err;
  5224. }
  5225. /* otherwise, add_new_disk is only allowed
  5226. * for major_version==0 superblocks
  5227. */
  5228. if (mddev->major_version != 0) {
  5229. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  5230. mdname(mddev));
  5231. return -EINVAL;
  5232. }
  5233. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  5234. int err;
  5235. rdev = md_import_device(dev, -1, 0);
  5236. if (IS_ERR(rdev)) {
  5237. printk(KERN_WARNING
  5238. "md: error, md_import_device() returned %ld\n",
  5239. PTR_ERR(rdev));
  5240. return PTR_ERR(rdev);
  5241. }
  5242. rdev->desc_nr = info->number;
  5243. if (info->raid_disk < mddev->raid_disks)
  5244. rdev->raid_disk = info->raid_disk;
  5245. else
  5246. rdev->raid_disk = -1;
  5247. if (rdev->raid_disk < mddev->raid_disks)
  5248. if (info->state & (1<<MD_DISK_SYNC))
  5249. set_bit(In_sync, &rdev->flags);
  5250. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5251. set_bit(WriteMostly, &rdev->flags);
  5252. if (!mddev->persistent) {
  5253. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  5254. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5255. } else
  5256. rdev->sb_start = calc_dev_sboffset(rdev);
  5257. rdev->sectors = rdev->sb_start;
  5258. err = bind_rdev_to_array(rdev, mddev);
  5259. if (err) {
  5260. export_rdev(rdev);
  5261. return err;
  5262. }
  5263. }
  5264. return 0;
  5265. }
  5266. static int hot_remove_disk(struct mddev *mddev, dev_t dev)
  5267. {
  5268. char b[BDEVNAME_SIZE];
  5269. struct md_rdev *rdev;
  5270. rdev = find_rdev(mddev, dev);
  5271. if (!rdev)
  5272. return -ENXIO;
  5273. clear_bit(Blocked, &rdev->flags);
  5274. remove_and_add_spares(mddev, rdev);
  5275. if (rdev->raid_disk >= 0)
  5276. goto busy;
  5277. kick_rdev_from_array(rdev);
  5278. md_update_sb(mddev, 1);
  5279. md_new_event(mddev);
  5280. return 0;
  5281. busy:
  5282. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  5283. bdevname(rdev->bdev,b), mdname(mddev));
  5284. return -EBUSY;
  5285. }
  5286. static int hot_add_disk(struct mddev *mddev, dev_t dev)
  5287. {
  5288. char b[BDEVNAME_SIZE];
  5289. int err;
  5290. struct md_rdev *rdev;
  5291. if (!mddev->pers)
  5292. return -ENODEV;
  5293. if (mddev->major_version != 0) {
  5294. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  5295. " version-0 superblocks.\n",
  5296. mdname(mddev));
  5297. return -EINVAL;
  5298. }
  5299. if (!mddev->pers->hot_add_disk) {
  5300. printk(KERN_WARNING
  5301. "%s: personality does not support diskops!\n",
  5302. mdname(mddev));
  5303. return -EINVAL;
  5304. }
  5305. rdev = md_import_device(dev, -1, 0);
  5306. if (IS_ERR(rdev)) {
  5307. printk(KERN_WARNING
  5308. "md: error, md_import_device() returned %ld\n",
  5309. PTR_ERR(rdev));
  5310. return -EINVAL;
  5311. }
  5312. if (mddev->persistent)
  5313. rdev->sb_start = calc_dev_sboffset(rdev);
  5314. else
  5315. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5316. rdev->sectors = rdev->sb_start;
  5317. if (test_bit(Faulty, &rdev->flags)) {
  5318. printk(KERN_WARNING
  5319. "md: can not hot-add faulty %s disk to %s!\n",
  5320. bdevname(rdev->bdev,b), mdname(mddev));
  5321. err = -EINVAL;
  5322. goto abort_export;
  5323. }
  5324. clear_bit(In_sync, &rdev->flags);
  5325. rdev->desc_nr = -1;
  5326. rdev->saved_raid_disk = -1;
  5327. err = bind_rdev_to_array(rdev, mddev);
  5328. if (err)
  5329. goto abort_export;
  5330. /*
  5331. * The rest should better be atomic, we can have disk failures
  5332. * noticed in interrupt contexts ...
  5333. */
  5334. rdev->raid_disk = -1;
  5335. md_update_sb(mddev, 1);
  5336. /*
  5337. * Kick recovery, maybe this spare has to be added to the
  5338. * array immediately.
  5339. */
  5340. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5341. md_wakeup_thread(mddev->thread);
  5342. md_new_event(mddev);
  5343. return 0;
  5344. abort_export:
  5345. export_rdev(rdev);
  5346. return err;
  5347. }
  5348. static int set_bitmap_file(struct mddev *mddev, int fd)
  5349. {
  5350. int err = 0;
  5351. if (mddev->pers) {
  5352. if (!mddev->pers->quiesce || !mddev->thread)
  5353. return -EBUSY;
  5354. if (mddev->recovery || mddev->sync_thread)
  5355. return -EBUSY;
  5356. /* we should be able to change the bitmap.. */
  5357. }
  5358. if (fd >= 0) {
  5359. struct inode *inode;
  5360. struct file *f;
  5361. if (mddev->bitmap || mddev->bitmap_info.file)
  5362. return -EEXIST; /* cannot add when bitmap is present */
  5363. f = fget(fd);
  5364. if (f == NULL) {
  5365. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  5366. mdname(mddev));
  5367. return -EBADF;
  5368. }
  5369. inode = f->f_mapping->host;
  5370. if (!S_ISREG(inode->i_mode)) {
  5371. printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
  5372. mdname(mddev));
  5373. err = -EBADF;
  5374. } else if (!(f->f_mode & FMODE_WRITE)) {
  5375. printk(KERN_ERR "%s: error: bitmap file must open for write\n",
  5376. mdname(mddev));
  5377. err = -EBADF;
  5378. } else if (atomic_read(&inode->i_writecount) != 1) {
  5379. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  5380. mdname(mddev));
  5381. err = -EBUSY;
  5382. }
  5383. if (err) {
  5384. fput(f);
  5385. return err;
  5386. }
  5387. mddev->bitmap_info.file = f;
  5388. mddev->bitmap_info.offset = 0; /* file overrides offset */
  5389. } else if (mddev->bitmap == NULL)
  5390. return -ENOENT; /* cannot remove what isn't there */
  5391. err = 0;
  5392. if (mddev->pers) {
  5393. mddev->pers->quiesce(mddev, 1);
  5394. if (fd >= 0) {
  5395. err = bitmap_create(mddev);
  5396. if (!err)
  5397. err = bitmap_load(mddev);
  5398. }
  5399. if (fd < 0 || err) {
  5400. bitmap_destroy(mddev);
  5401. fd = -1; /* make sure to put the file */
  5402. }
  5403. mddev->pers->quiesce(mddev, 0);
  5404. }
  5405. if (fd < 0) {
  5406. struct file *f = mddev->bitmap_info.file;
  5407. if (f) {
  5408. spin_lock(&mddev->lock);
  5409. mddev->bitmap_info.file = NULL;
  5410. spin_unlock(&mddev->lock);
  5411. fput(f);
  5412. }
  5413. }
  5414. return err;
  5415. }
  5416. /*
  5417. * set_array_info is used two different ways
  5418. * The original usage is when creating a new array.
  5419. * In this usage, raid_disks is > 0 and it together with
  5420. * level, size, not_persistent,layout,chunksize determine the
  5421. * shape of the array.
  5422. * This will always create an array with a type-0.90.0 superblock.
  5423. * The newer usage is when assembling an array.
  5424. * In this case raid_disks will be 0, and the major_version field is
  5425. * use to determine which style super-blocks are to be found on the devices.
  5426. * The minor and patch _version numbers are also kept incase the
  5427. * super_block handler wishes to interpret them.
  5428. */
  5429. static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5430. {
  5431. if (info->raid_disks == 0) {
  5432. /* just setting version number for superblock loading */
  5433. if (info->major_version < 0 ||
  5434. info->major_version >= ARRAY_SIZE(super_types) ||
  5435. super_types[info->major_version].name == NULL) {
  5436. /* maybe try to auto-load a module? */
  5437. printk(KERN_INFO
  5438. "md: superblock version %d not known\n",
  5439. info->major_version);
  5440. return -EINVAL;
  5441. }
  5442. mddev->major_version = info->major_version;
  5443. mddev->minor_version = info->minor_version;
  5444. mddev->patch_version = info->patch_version;
  5445. mddev->persistent = !info->not_persistent;
  5446. /* ensure mddev_put doesn't delete this now that there
  5447. * is some minimal configuration.
  5448. */
  5449. mddev->ctime = get_seconds();
  5450. return 0;
  5451. }
  5452. mddev->major_version = MD_MAJOR_VERSION;
  5453. mddev->minor_version = MD_MINOR_VERSION;
  5454. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  5455. mddev->ctime = get_seconds();
  5456. mddev->level = info->level;
  5457. mddev->clevel[0] = 0;
  5458. mddev->dev_sectors = 2 * (sector_t)info->size;
  5459. mddev->raid_disks = info->raid_disks;
  5460. /* don't set md_minor, it is determined by which /dev/md* was
  5461. * openned
  5462. */
  5463. if (info->state & (1<<MD_SB_CLEAN))
  5464. mddev->recovery_cp = MaxSector;
  5465. else
  5466. mddev->recovery_cp = 0;
  5467. mddev->persistent = ! info->not_persistent;
  5468. mddev->external = 0;
  5469. mddev->layout = info->layout;
  5470. mddev->chunk_sectors = info->chunk_size >> 9;
  5471. mddev->max_disks = MD_SB_DISKS;
  5472. if (mddev->persistent)
  5473. mddev->flags = 0;
  5474. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5475. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  5476. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  5477. mddev->bitmap_info.offset = 0;
  5478. mddev->reshape_position = MaxSector;
  5479. /*
  5480. * Generate a 128 bit UUID
  5481. */
  5482. get_random_bytes(mddev->uuid, 16);
  5483. mddev->new_level = mddev->level;
  5484. mddev->new_chunk_sectors = mddev->chunk_sectors;
  5485. mddev->new_layout = mddev->layout;
  5486. mddev->delta_disks = 0;
  5487. mddev->reshape_backwards = 0;
  5488. return 0;
  5489. }
  5490. void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
  5491. {
  5492. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  5493. if (mddev->external_size)
  5494. return;
  5495. mddev->array_sectors = array_sectors;
  5496. }
  5497. EXPORT_SYMBOL(md_set_array_sectors);
  5498. static int update_size(struct mddev *mddev, sector_t num_sectors)
  5499. {
  5500. struct md_rdev *rdev;
  5501. int rv;
  5502. int fit = (num_sectors == 0);
  5503. if (mddev->pers->resize == NULL)
  5504. return -EINVAL;
  5505. /* The "num_sectors" is the number of sectors of each device that
  5506. * is used. This can only make sense for arrays with redundancy.
  5507. * linear and raid0 always use whatever space is available. We can only
  5508. * consider changing this number if no resync or reconstruction is
  5509. * happening, and if the new size is acceptable. It must fit before the
  5510. * sb_start or, if that is <data_offset, it must fit before the size
  5511. * of each device. If num_sectors is zero, we find the largest size
  5512. * that fits.
  5513. */
  5514. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  5515. mddev->sync_thread)
  5516. return -EBUSY;
  5517. if (mddev->ro)
  5518. return -EROFS;
  5519. rdev_for_each(rdev, mddev) {
  5520. sector_t avail = rdev->sectors;
  5521. if (fit && (num_sectors == 0 || num_sectors > avail))
  5522. num_sectors = avail;
  5523. if (avail < num_sectors)
  5524. return -ENOSPC;
  5525. }
  5526. rv = mddev->pers->resize(mddev, num_sectors);
  5527. if (!rv)
  5528. revalidate_disk(mddev->gendisk);
  5529. return rv;
  5530. }
  5531. static int update_raid_disks(struct mddev *mddev, int raid_disks)
  5532. {
  5533. int rv;
  5534. struct md_rdev *rdev;
  5535. /* change the number of raid disks */
  5536. if (mddev->pers->check_reshape == NULL)
  5537. return -EINVAL;
  5538. if (mddev->ro)
  5539. return -EROFS;
  5540. if (raid_disks <= 0 ||
  5541. (mddev->max_disks && raid_disks >= mddev->max_disks))
  5542. return -EINVAL;
  5543. if (mddev->sync_thread ||
  5544. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  5545. mddev->reshape_position != MaxSector)
  5546. return -EBUSY;
  5547. rdev_for_each(rdev, mddev) {
  5548. if (mddev->raid_disks < raid_disks &&
  5549. rdev->data_offset < rdev->new_data_offset)
  5550. return -EINVAL;
  5551. if (mddev->raid_disks > raid_disks &&
  5552. rdev->data_offset > rdev->new_data_offset)
  5553. return -EINVAL;
  5554. }
  5555. mddev->delta_disks = raid_disks - mddev->raid_disks;
  5556. if (mddev->delta_disks < 0)
  5557. mddev->reshape_backwards = 1;
  5558. else if (mddev->delta_disks > 0)
  5559. mddev->reshape_backwards = 0;
  5560. rv = mddev->pers->check_reshape(mddev);
  5561. if (rv < 0) {
  5562. mddev->delta_disks = 0;
  5563. mddev->reshape_backwards = 0;
  5564. }
  5565. return rv;
  5566. }
  5567. /*
  5568. * update_array_info is used to change the configuration of an
  5569. * on-line array.
  5570. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  5571. * fields in the info are checked against the array.
  5572. * Any differences that cannot be handled will cause an error.
  5573. * Normally, only one change can be managed at a time.
  5574. */
  5575. static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5576. {
  5577. int rv = 0;
  5578. int cnt = 0;
  5579. int state = 0;
  5580. /* calculate expected state,ignoring low bits */
  5581. if (mddev->bitmap && mddev->bitmap_info.offset)
  5582. state |= (1 << MD_SB_BITMAP_PRESENT);
  5583. if (mddev->major_version != info->major_version ||
  5584. mddev->minor_version != info->minor_version ||
  5585. /* mddev->patch_version != info->patch_version || */
  5586. mddev->ctime != info->ctime ||
  5587. mddev->level != info->level ||
  5588. /* mddev->layout != info->layout || */
  5589. !mddev->persistent != info->not_persistent||
  5590. mddev->chunk_sectors != info->chunk_size >> 9 ||
  5591. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  5592. ((state^info->state) & 0xfffffe00)
  5593. )
  5594. return -EINVAL;
  5595. /* Check there is only one change */
  5596. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5597. cnt++;
  5598. if (mddev->raid_disks != info->raid_disks)
  5599. cnt++;
  5600. if (mddev->layout != info->layout)
  5601. cnt++;
  5602. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  5603. cnt++;
  5604. if (cnt == 0)
  5605. return 0;
  5606. if (cnt > 1)
  5607. return -EINVAL;
  5608. if (mddev->layout != info->layout) {
  5609. /* Change layout
  5610. * we don't need to do anything at the md level, the
  5611. * personality will take care of it all.
  5612. */
  5613. if (mddev->pers->check_reshape == NULL)
  5614. return -EINVAL;
  5615. else {
  5616. mddev->new_layout = info->layout;
  5617. rv = mddev->pers->check_reshape(mddev);
  5618. if (rv)
  5619. mddev->new_layout = mddev->layout;
  5620. return rv;
  5621. }
  5622. }
  5623. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5624. rv = update_size(mddev, (sector_t)info->size * 2);
  5625. if (mddev->raid_disks != info->raid_disks)
  5626. rv = update_raid_disks(mddev, info->raid_disks);
  5627. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  5628. if (mddev->pers->quiesce == NULL || mddev->thread == NULL)
  5629. return -EINVAL;
  5630. if (mddev->recovery || mddev->sync_thread)
  5631. return -EBUSY;
  5632. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  5633. /* add the bitmap */
  5634. if (mddev->bitmap)
  5635. return -EEXIST;
  5636. if (mddev->bitmap_info.default_offset == 0)
  5637. return -EINVAL;
  5638. mddev->bitmap_info.offset =
  5639. mddev->bitmap_info.default_offset;
  5640. mddev->bitmap_info.space =
  5641. mddev->bitmap_info.default_space;
  5642. mddev->pers->quiesce(mddev, 1);
  5643. rv = bitmap_create(mddev);
  5644. if (!rv)
  5645. rv = bitmap_load(mddev);
  5646. if (rv)
  5647. bitmap_destroy(mddev);
  5648. mddev->pers->quiesce(mddev, 0);
  5649. } else {
  5650. /* remove the bitmap */
  5651. if (!mddev->bitmap)
  5652. return -ENOENT;
  5653. if (mddev->bitmap->storage.file)
  5654. return -EINVAL;
  5655. mddev->pers->quiesce(mddev, 1);
  5656. bitmap_destroy(mddev);
  5657. mddev->pers->quiesce(mddev, 0);
  5658. mddev->bitmap_info.offset = 0;
  5659. }
  5660. }
  5661. md_update_sb(mddev, 1);
  5662. return rv;
  5663. }
  5664. static int set_disk_faulty(struct mddev *mddev, dev_t dev)
  5665. {
  5666. struct md_rdev *rdev;
  5667. int err = 0;
  5668. if (mddev->pers == NULL)
  5669. return -ENODEV;
  5670. rcu_read_lock();
  5671. rdev = find_rdev_rcu(mddev, dev);
  5672. if (!rdev)
  5673. err = -ENODEV;
  5674. else {
  5675. md_error(mddev, rdev);
  5676. if (!test_bit(Faulty, &rdev->flags))
  5677. err = -EBUSY;
  5678. }
  5679. rcu_read_unlock();
  5680. return err;
  5681. }
  5682. /*
  5683. * We have a problem here : there is no easy way to give a CHS
  5684. * virtual geometry. We currently pretend that we have a 2 heads
  5685. * 4 sectors (with a BIG number of cylinders...). This drives
  5686. * dosfs just mad... ;-)
  5687. */
  5688. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  5689. {
  5690. struct mddev *mddev = bdev->bd_disk->private_data;
  5691. geo->heads = 2;
  5692. geo->sectors = 4;
  5693. geo->cylinders = mddev->array_sectors / 8;
  5694. return 0;
  5695. }
  5696. static inline bool md_ioctl_valid(unsigned int cmd)
  5697. {
  5698. switch (cmd) {
  5699. case ADD_NEW_DISK:
  5700. case BLKROSET:
  5701. case GET_ARRAY_INFO:
  5702. case GET_BITMAP_FILE:
  5703. case GET_DISK_INFO:
  5704. case HOT_ADD_DISK:
  5705. case HOT_REMOVE_DISK:
  5706. case RAID_AUTORUN:
  5707. case RAID_VERSION:
  5708. case RESTART_ARRAY_RW:
  5709. case RUN_ARRAY:
  5710. case SET_ARRAY_INFO:
  5711. case SET_BITMAP_FILE:
  5712. case SET_DISK_FAULTY:
  5713. case STOP_ARRAY:
  5714. case STOP_ARRAY_RO:
  5715. return true;
  5716. default:
  5717. return false;
  5718. }
  5719. }
  5720. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  5721. unsigned int cmd, unsigned long arg)
  5722. {
  5723. int err = 0;
  5724. void __user *argp = (void __user *)arg;
  5725. struct mddev *mddev = NULL;
  5726. int ro;
  5727. if (!md_ioctl_valid(cmd))
  5728. return -ENOTTY;
  5729. switch (cmd) {
  5730. case RAID_VERSION:
  5731. case GET_ARRAY_INFO:
  5732. case GET_DISK_INFO:
  5733. break;
  5734. default:
  5735. if (!capable(CAP_SYS_ADMIN))
  5736. return -EACCES;
  5737. }
  5738. /*
  5739. * Commands dealing with the RAID driver but not any
  5740. * particular array:
  5741. */
  5742. switch (cmd) {
  5743. case RAID_VERSION:
  5744. err = get_version(argp);
  5745. goto out;
  5746. #ifndef MODULE
  5747. case RAID_AUTORUN:
  5748. err = 0;
  5749. autostart_arrays(arg);
  5750. goto out;
  5751. #endif
  5752. default:;
  5753. }
  5754. /*
  5755. * Commands creating/starting a new array:
  5756. */
  5757. mddev = bdev->bd_disk->private_data;
  5758. if (!mddev) {
  5759. BUG();
  5760. goto out;
  5761. }
  5762. /* Some actions do not requires the mutex */
  5763. switch (cmd) {
  5764. case GET_ARRAY_INFO:
  5765. if (!mddev->raid_disks && !mddev->external)
  5766. err = -ENODEV;
  5767. else
  5768. err = get_array_info(mddev, argp);
  5769. goto out;
  5770. case GET_DISK_INFO:
  5771. if (!mddev->raid_disks && !mddev->external)
  5772. err = -ENODEV;
  5773. else
  5774. err = get_disk_info(mddev, argp);
  5775. goto out;
  5776. case SET_DISK_FAULTY:
  5777. err = set_disk_faulty(mddev, new_decode_dev(arg));
  5778. goto out;
  5779. case GET_BITMAP_FILE:
  5780. err = get_bitmap_file(mddev, argp);
  5781. goto out;
  5782. }
  5783. if (cmd == ADD_NEW_DISK)
  5784. /* need to ensure md_delayed_delete() has completed */
  5785. flush_workqueue(md_misc_wq);
  5786. if (cmd == HOT_REMOVE_DISK)
  5787. /* need to ensure recovery thread has run */
  5788. wait_event_interruptible_timeout(mddev->sb_wait,
  5789. !test_bit(MD_RECOVERY_NEEDED,
  5790. &mddev->flags),
  5791. msecs_to_jiffies(5000));
  5792. if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
  5793. /* Need to flush page cache, and ensure no-one else opens
  5794. * and writes
  5795. */
  5796. mutex_lock(&mddev->open_mutex);
  5797. if (mddev->pers && atomic_read(&mddev->openers) > 1) {
  5798. mutex_unlock(&mddev->open_mutex);
  5799. err = -EBUSY;
  5800. goto out;
  5801. }
  5802. set_bit(MD_STILL_CLOSED, &mddev->flags);
  5803. mutex_unlock(&mddev->open_mutex);
  5804. sync_blockdev(bdev);
  5805. }
  5806. err = mddev_lock(mddev);
  5807. if (err) {
  5808. printk(KERN_INFO
  5809. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  5810. err, cmd);
  5811. goto out;
  5812. }
  5813. if (cmd == SET_ARRAY_INFO) {
  5814. mdu_array_info_t info;
  5815. if (!arg)
  5816. memset(&info, 0, sizeof(info));
  5817. else if (copy_from_user(&info, argp, sizeof(info))) {
  5818. err = -EFAULT;
  5819. goto unlock;
  5820. }
  5821. if (mddev->pers) {
  5822. err = update_array_info(mddev, &info);
  5823. if (err) {
  5824. printk(KERN_WARNING "md: couldn't update"
  5825. " array info. %d\n", err);
  5826. goto unlock;
  5827. }
  5828. goto unlock;
  5829. }
  5830. if (!list_empty(&mddev->disks)) {
  5831. printk(KERN_WARNING
  5832. "md: array %s already has disks!\n",
  5833. mdname(mddev));
  5834. err = -EBUSY;
  5835. goto unlock;
  5836. }
  5837. if (mddev->raid_disks) {
  5838. printk(KERN_WARNING
  5839. "md: array %s already initialised!\n",
  5840. mdname(mddev));
  5841. err = -EBUSY;
  5842. goto unlock;
  5843. }
  5844. err = set_array_info(mddev, &info);
  5845. if (err) {
  5846. printk(KERN_WARNING "md: couldn't set"
  5847. " array info. %d\n", err);
  5848. goto unlock;
  5849. }
  5850. goto unlock;
  5851. }
  5852. /*
  5853. * Commands querying/configuring an existing array:
  5854. */
  5855. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  5856. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  5857. if ((!mddev->raid_disks && !mddev->external)
  5858. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  5859. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  5860. && cmd != GET_BITMAP_FILE) {
  5861. err = -ENODEV;
  5862. goto unlock;
  5863. }
  5864. /*
  5865. * Commands even a read-only array can execute:
  5866. */
  5867. switch (cmd) {
  5868. case RESTART_ARRAY_RW:
  5869. err = restart_array(mddev);
  5870. goto unlock;
  5871. case STOP_ARRAY:
  5872. err = do_md_stop(mddev, 0, bdev);
  5873. goto unlock;
  5874. case STOP_ARRAY_RO:
  5875. err = md_set_readonly(mddev, bdev);
  5876. goto unlock;
  5877. case HOT_REMOVE_DISK:
  5878. err = hot_remove_disk(mddev, new_decode_dev(arg));
  5879. goto unlock;
  5880. case ADD_NEW_DISK:
  5881. /* We can support ADD_NEW_DISK on read-only arrays
  5882. * on if we are re-adding a preexisting device.
  5883. * So require mddev->pers and MD_DISK_SYNC.
  5884. */
  5885. if (mddev->pers) {
  5886. mdu_disk_info_t info;
  5887. if (copy_from_user(&info, argp, sizeof(info)))
  5888. err = -EFAULT;
  5889. else if (!(info.state & (1<<MD_DISK_SYNC)))
  5890. /* Need to clear read-only for this */
  5891. break;
  5892. else
  5893. err = add_new_disk(mddev, &info);
  5894. goto unlock;
  5895. }
  5896. break;
  5897. case BLKROSET:
  5898. if (get_user(ro, (int __user *)(arg))) {
  5899. err = -EFAULT;
  5900. goto unlock;
  5901. }
  5902. err = -EINVAL;
  5903. /* if the bdev is going readonly the value of mddev->ro
  5904. * does not matter, no writes are coming
  5905. */
  5906. if (ro)
  5907. goto unlock;
  5908. /* are we are already prepared for writes? */
  5909. if (mddev->ro != 1)
  5910. goto unlock;
  5911. /* transitioning to readauto need only happen for
  5912. * arrays that call md_write_start
  5913. */
  5914. if (mddev->pers) {
  5915. err = restart_array(mddev);
  5916. if (err == 0) {
  5917. mddev->ro = 2;
  5918. set_disk_ro(mddev->gendisk, 0);
  5919. }
  5920. }
  5921. goto unlock;
  5922. }
  5923. /*
  5924. * The remaining ioctls are changing the state of the
  5925. * superblock, so we do not allow them on read-only arrays.
  5926. */
  5927. if (mddev->ro && mddev->pers) {
  5928. if (mddev->ro == 2) {
  5929. mddev->ro = 0;
  5930. sysfs_notify_dirent_safe(mddev->sysfs_state);
  5931. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5932. /* mddev_unlock will wake thread */
  5933. /* If a device failed while we were read-only, we
  5934. * need to make sure the metadata is updated now.
  5935. */
  5936. if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  5937. mddev_unlock(mddev);
  5938. wait_event(mddev->sb_wait,
  5939. !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
  5940. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  5941. mddev_lock_nointr(mddev);
  5942. }
  5943. } else {
  5944. err = -EROFS;
  5945. goto unlock;
  5946. }
  5947. }
  5948. switch (cmd) {
  5949. case ADD_NEW_DISK:
  5950. {
  5951. mdu_disk_info_t info;
  5952. if (copy_from_user(&info, argp, sizeof(info)))
  5953. err = -EFAULT;
  5954. else
  5955. err = add_new_disk(mddev, &info);
  5956. goto unlock;
  5957. }
  5958. case HOT_ADD_DISK:
  5959. err = hot_add_disk(mddev, new_decode_dev(arg));
  5960. goto unlock;
  5961. case RUN_ARRAY:
  5962. err = do_md_run(mddev);
  5963. goto unlock;
  5964. case SET_BITMAP_FILE:
  5965. err = set_bitmap_file(mddev, (int)arg);
  5966. goto unlock;
  5967. default:
  5968. err = -EINVAL;
  5969. goto unlock;
  5970. }
  5971. unlock:
  5972. if (mddev->hold_active == UNTIL_IOCTL &&
  5973. err != -EINVAL)
  5974. mddev->hold_active = 0;
  5975. mddev_unlock(mddev);
  5976. out:
  5977. return err;
  5978. }
  5979. #ifdef CONFIG_COMPAT
  5980. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  5981. unsigned int cmd, unsigned long arg)
  5982. {
  5983. switch (cmd) {
  5984. case HOT_REMOVE_DISK:
  5985. case HOT_ADD_DISK:
  5986. case SET_DISK_FAULTY:
  5987. case SET_BITMAP_FILE:
  5988. /* These take in integer arg, do not convert */
  5989. break;
  5990. default:
  5991. arg = (unsigned long)compat_ptr(arg);
  5992. break;
  5993. }
  5994. return md_ioctl(bdev, mode, cmd, arg);
  5995. }
  5996. #endif /* CONFIG_COMPAT */
  5997. static int md_open(struct block_device *bdev, fmode_t mode)
  5998. {
  5999. /*
  6000. * Succeed if we can lock the mddev, which confirms that
  6001. * it isn't being stopped right now.
  6002. */
  6003. struct mddev *mddev = mddev_find(bdev->bd_dev);
  6004. int err;
  6005. if (!mddev)
  6006. return -ENODEV;
  6007. if (mddev->gendisk != bdev->bd_disk) {
  6008. /* we are racing with mddev_put which is discarding this
  6009. * bd_disk.
  6010. */
  6011. mddev_put(mddev);
  6012. /* Wait until bdev->bd_disk is definitely gone */
  6013. flush_workqueue(md_misc_wq);
  6014. /* Then retry the open from the top */
  6015. return -ERESTARTSYS;
  6016. }
  6017. BUG_ON(mddev != bdev->bd_disk->private_data);
  6018. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  6019. goto out;
  6020. err = 0;
  6021. atomic_inc(&mddev->openers);
  6022. clear_bit(MD_STILL_CLOSED, &mddev->flags);
  6023. mutex_unlock(&mddev->open_mutex);
  6024. check_disk_change(bdev);
  6025. out:
  6026. return err;
  6027. }
  6028. static void md_release(struct gendisk *disk, fmode_t mode)
  6029. {
  6030. struct mddev *mddev = disk->private_data;
  6031. BUG_ON(!mddev);
  6032. atomic_dec(&mddev->openers);
  6033. mddev_put(mddev);
  6034. }
  6035. static int md_media_changed(struct gendisk *disk)
  6036. {
  6037. struct mddev *mddev = disk->private_data;
  6038. return mddev->changed;
  6039. }
  6040. static int md_revalidate(struct gendisk *disk)
  6041. {
  6042. struct mddev *mddev = disk->private_data;
  6043. mddev->changed = 0;
  6044. return 0;
  6045. }
  6046. static const struct block_device_operations md_fops =
  6047. {
  6048. .owner = THIS_MODULE,
  6049. .open = md_open,
  6050. .release = md_release,
  6051. .ioctl = md_ioctl,
  6052. #ifdef CONFIG_COMPAT
  6053. .compat_ioctl = md_compat_ioctl,
  6054. #endif
  6055. .getgeo = md_getgeo,
  6056. .media_changed = md_media_changed,
  6057. .revalidate_disk= md_revalidate,
  6058. };
  6059. static int md_thread(void *arg)
  6060. {
  6061. struct md_thread *thread = arg;
  6062. /*
  6063. * md_thread is a 'system-thread', it's priority should be very
  6064. * high. We avoid resource deadlocks individually in each
  6065. * raid personality. (RAID5 does preallocation) We also use RR and
  6066. * the very same RT priority as kswapd, thus we will never get
  6067. * into a priority inversion deadlock.
  6068. *
  6069. * we definitely have to have equal or higher priority than
  6070. * bdflush, otherwise bdflush will deadlock if there are too
  6071. * many dirty RAID5 blocks.
  6072. */
  6073. allow_signal(SIGKILL);
  6074. while (!kthread_should_stop()) {
  6075. /* We need to wait INTERRUPTIBLE so that
  6076. * we don't add to the load-average.
  6077. * That means we need to be sure no signals are
  6078. * pending
  6079. */
  6080. if (signal_pending(current))
  6081. flush_signals(current);
  6082. wait_event_interruptible_timeout
  6083. (thread->wqueue,
  6084. test_bit(THREAD_WAKEUP, &thread->flags)
  6085. || kthread_should_stop(),
  6086. thread->timeout);
  6087. clear_bit(THREAD_WAKEUP, &thread->flags);
  6088. if (!kthread_should_stop())
  6089. thread->run(thread);
  6090. }
  6091. return 0;
  6092. }
  6093. void md_wakeup_thread(struct md_thread *thread)
  6094. {
  6095. if (thread) {
  6096. pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
  6097. set_bit(THREAD_WAKEUP, &thread->flags);
  6098. wake_up(&thread->wqueue);
  6099. }
  6100. }
  6101. EXPORT_SYMBOL(md_wakeup_thread);
  6102. struct md_thread *md_register_thread(void (*run) (struct md_thread *),
  6103. struct mddev *mddev, const char *name)
  6104. {
  6105. struct md_thread *thread;
  6106. thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
  6107. if (!thread)
  6108. return NULL;
  6109. init_waitqueue_head(&thread->wqueue);
  6110. thread->run = run;
  6111. thread->mddev = mddev;
  6112. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  6113. thread->tsk = kthread_run(md_thread, thread,
  6114. "%s_%s",
  6115. mdname(thread->mddev),
  6116. name);
  6117. if (IS_ERR(thread->tsk)) {
  6118. kfree(thread);
  6119. return NULL;
  6120. }
  6121. return thread;
  6122. }
  6123. EXPORT_SYMBOL(md_register_thread);
  6124. void md_unregister_thread(struct md_thread **threadp)
  6125. {
  6126. struct md_thread *thread = *threadp;
  6127. if (!thread)
  6128. return;
  6129. pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  6130. /* Locking ensures that mddev_unlock does not wake_up a
  6131. * non-existent thread
  6132. */
  6133. spin_lock(&pers_lock);
  6134. *threadp = NULL;
  6135. spin_unlock(&pers_lock);
  6136. kthread_stop(thread->tsk);
  6137. kfree(thread);
  6138. }
  6139. EXPORT_SYMBOL(md_unregister_thread);
  6140. void md_error(struct mddev *mddev, struct md_rdev *rdev)
  6141. {
  6142. if (!rdev || test_bit(Faulty, &rdev->flags))
  6143. return;
  6144. if (!mddev->pers || !mddev->pers->error_handler)
  6145. return;
  6146. mddev->pers->error_handler(mddev,rdev);
  6147. if (mddev->degraded)
  6148. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6149. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6150. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6151. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6152. md_wakeup_thread(mddev->thread);
  6153. if (mddev->event_work.func)
  6154. queue_work(md_misc_wq, &mddev->event_work);
  6155. md_new_event_inintr(mddev);
  6156. }
  6157. EXPORT_SYMBOL(md_error);
  6158. /* seq_file implementation /proc/mdstat */
  6159. static void status_unused(struct seq_file *seq)
  6160. {
  6161. int i = 0;
  6162. struct md_rdev *rdev;
  6163. seq_printf(seq, "unused devices: ");
  6164. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  6165. char b[BDEVNAME_SIZE];
  6166. i++;
  6167. seq_printf(seq, "%s ",
  6168. bdevname(rdev->bdev,b));
  6169. }
  6170. if (!i)
  6171. seq_printf(seq, "<none>");
  6172. seq_printf(seq, "\n");
  6173. }
  6174. static void status_resync(struct seq_file *seq, struct mddev *mddev)
  6175. {
  6176. sector_t max_sectors, resync, res;
  6177. unsigned long dt, db;
  6178. sector_t rt;
  6179. int scale;
  6180. unsigned int per_milli;
  6181. if (mddev->curr_resync <= 3)
  6182. resync = 0;
  6183. else
  6184. resync = mddev->curr_resync
  6185. - atomic_read(&mddev->recovery_active);
  6186. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  6187. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6188. max_sectors = mddev->resync_max_sectors;
  6189. else
  6190. max_sectors = mddev->dev_sectors;
  6191. WARN_ON(max_sectors == 0);
  6192. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  6193. * in a sector_t, and (max_sectors>>scale) will fit in a
  6194. * u32, as those are the requirements for sector_div.
  6195. * Thus 'scale' must be at least 10
  6196. */
  6197. scale = 10;
  6198. if (sizeof(sector_t) > sizeof(unsigned long)) {
  6199. while ( max_sectors/2 > (1ULL<<(scale+32)))
  6200. scale++;
  6201. }
  6202. res = (resync>>scale)*1000;
  6203. sector_div(res, (u32)((max_sectors>>scale)+1));
  6204. per_milli = res;
  6205. {
  6206. int i, x = per_milli/50, y = 20-x;
  6207. seq_printf(seq, "[");
  6208. for (i = 0; i < x; i++)
  6209. seq_printf(seq, "=");
  6210. seq_printf(seq, ">");
  6211. for (i = 0; i < y; i++)
  6212. seq_printf(seq, ".");
  6213. seq_printf(seq, "] ");
  6214. }
  6215. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  6216. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  6217. "reshape" :
  6218. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  6219. "check" :
  6220. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  6221. "resync" : "recovery"))),
  6222. per_milli/10, per_milli % 10,
  6223. (unsigned long long) resync/2,
  6224. (unsigned long long) max_sectors/2);
  6225. /*
  6226. * dt: time from mark until now
  6227. * db: blocks written from mark until now
  6228. * rt: remaining time
  6229. *
  6230. * rt is a sector_t, so could be 32bit or 64bit.
  6231. * So we divide before multiply in case it is 32bit and close
  6232. * to the limit.
  6233. * We scale the divisor (db) by 32 to avoid losing precision
  6234. * near the end of resync when the number of remaining sectors
  6235. * is close to 'db'.
  6236. * We then divide rt by 32 after multiplying by db to compensate.
  6237. * The '+1' avoids division by zero if db is very small.
  6238. */
  6239. dt = ((jiffies - mddev->resync_mark) / HZ);
  6240. if (!dt) dt++;
  6241. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  6242. - mddev->resync_mark_cnt;
  6243. rt = max_sectors - resync; /* number of remaining sectors */
  6244. sector_div(rt, db/32+1);
  6245. rt *= dt;
  6246. rt >>= 5;
  6247. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  6248. ((unsigned long)rt % 60)/6);
  6249. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  6250. }
  6251. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  6252. {
  6253. struct list_head *tmp;
  6254. loff_t l = *pos;
  6255. struct mddev *mddev;
  6256. if (l >= 0x10000)
  6257. return NULL;
  6258. if (!l--)
  6259. /* header */
  6260. return (void*)1;
  6261. spin_lock(&all_mddevs_lock);
  6262. list_for_each(tmp,&all_mddevs)
  6263. if (!l--) {
  6264. mddev = list_entry(tmp, struct mddev, all_mddevs);
  6265. mddev_get(mddev);
  6266. spin_unlock(&all_mddevs_lock);
  6267. return mddev;
  6268. }
  6269. spin_unlock(&all_mddevs_lock);
  6270. if (!l--)
  6271. return (void*)2;/* tail */
  6272. return NULL;
  6273. }
  6274. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  6275. {
  6276. struct list_head *tmp;
  6277. struct mddev *next_mddev, *mddev = v;
  6278. ++*pos;
  6279. if (v == (void*)2)
  6280. return NULL;
  6281. spin_lock(&all_mddevs_lock);
  6282. if (v == (void*)1)
  6283. tmp = all_mddevs.next;
  6284. else
  6285. tmp = mddev->all_mddevs.next;
  6286. if (tmp != &all_mddevs)
  6287. next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
  6288. else {
  6289. next_mddev = (void*)2;
  6290. *pos = 0x10000;
  6291. }
  6292. spin_unlock(&all_mddevs_lock);
  6293. if (v != (void*)1)
  6294. mddev_put(mddev);
  6295. return next_mddev;
  6296. }
  6297. static void md_seq_stop(struct seq_file *seq, void *v)
  6298. {
  6299. struct mddev *mddev = v;
  6300. if (mddev && v != (void*)1 && v != (void*)2)
  6301. mddev_put(mddev);
  6302. }
  6303. static int md_seq_show(struct seq_file *seq, void *v)
  6304. {
  6305. struct mddev *mddev = v;
  6306. sector_t sectors;
  6307. struct md_rdev *rdev;
  6308. if (v == (void*)1) {
  6309. struct md_personality *pers;
  6310. seq_printf(seq, "Personalities : ");
  6311. spin_lock(&pers_lock);
  6312. list_for_each_entry(pers, &pers_list, list)
  6313. seq_printf(seq, "[%s] ", pers->name);
  6314. spin_unlock(&pers_lock);
  6315. seq_printf(seq, "\n");
  6316. seq->poll_event = atomic_read(&md_event_count);
  6317. return 0;
  6318. }
  6319. if (v == (void*)2) {
  6320. status_unused(seq);
  6321. return 0;
  6322. }
  6323. spin_lock(&mddev->lock);
  6324. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  6325. seq_printf(seq, "%s : %sactive", mdname(mddev),
  6326. mddev->pers ? "" : "in");
  6327. if (mddev->pers) {
  6328. if (mddev->ro==1)
  6329. seq_printf(seq, " (read-only)");
  6330. if (mddev->ro==2)
  6331. seq_printf(seq, " (auto-read-only)");
  6332. seq_printf(seq, " %s", mddev->pers->name);
  6333. }
  6334. sectors = 0;
  6335. rcu_read_lock();
  6336. rdev_for_each_rcu(rdev, mddev) {
  6337. char b[BDEVNAME_SIZE];
  6338. seq_printf(seq, " %s[%d]",
  6339. bdevname(rdev->bdev,b), rdev->desc_nr);
  6340. if (test_bit(WriteMostly, &rdev->flags))
  6341. seq_printf(seq, "(W)");
  6342. if (test_bit(Faulty, &rdev->flags)) {
  6343. seq_printf(seq, "(F)");
  6344. continue;
  6345. }
  6346. if (rdev->raid_disk < 0)
  6347. seq_printf(seq, "(S)"); /* spare */
  6348. if (test_bit(Replacement, &rdev->flags))
  6349. seq_printf(seq, "(R)");
  6350. sectors += rdev->sectors;
  6351. }
  6352. rcu_read_unlock();
  6353. if (!list_empty(&mddev->disks)) {
  6354. if (mddev->pers)
  6355. seq_printf(seq, "\n %llu blocks",
  6356. (unsigned long long)
  6357. mddev->array_sectors / 2);
  6358. else
  6359. seq_printf(seq, "\n %llu blocks",
  6360. (unsigned long long)sectors / 2);
  6361. }
  6362. if (mddev->persistent) {
  6363. if (mddev->major_version != 0 ||
  6364. mddev->minor_version != 90) {
  6365. seq_printf(seq," super %d.%d",
  6366. mddev->major_version,
  6367. mddev->minor_version);
  6368. }
  6369. } else if (mddev->external)
  6370. seq_printf(seq, " super external:%s",
  6371. mddev->metadata_type);
  6372. else
  6373. seq_printf(seq, " super non-persistent");
  6374. if (mddev->pers) {
  6375. mddev->pers->status(seq, mddev);
  6376. seq_printf(seq, "\n ");
  6377. if (mddev->pers->sync_request) {
  6378. if (mddev->curr_resync > 2) {
  6379. status_resync(seq, mddev);
  6380. seq_printf(seq, "\n ");
  6381. } else if (mddev->curr_resync >= 1)
  6382. seq_printf(seq, "\tresync=DELAYED\n ");
  6383. else if (mddev->recovery_cp < MaxSector)
  6384. seq_printf(seq, "\tresync=PENDING\n ");
  6385. }
  6386. } else
  6387. seq_printf(seq, "\n ");
  6388. bitmap_status(seq, mddev->bitmap);
  6389. seq_printf(seq, "\n");
  6390. }
  6391. spin_unlock(&mddev->lock);
  6392. return 0;
  6393. }
  6394. static const struct seq_operations md_seq_ops = {
  6395. .start = md_seq_start,
  6396. .next = md_seq_next,
  6397. .stop = md_seq_stop,
  6398. .show = md_seq_show,
  6399. };
  6400. static int md_seq_open(struct inode *inode, struct file *file)
  6401. {
  6402. struct seq_file *seq;
  6403. int error;
  6404. error = seq_open(file, &md_seq_ops);
  6405. if (error)
  6406. return error;
  6407. seq = file->private_data;
  6408. seq->poll_event = atomic_read(&md_event_count);
  6409. return error;
  6410. }
  6411. static int md_unloading;
  6412. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  6413. {
  6414. struct seq_file *seq = filp->private_data;
  6415. int mask;
  6416. if (md_unloading)
  6417. return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
  6418. poll_wait(filp, &md_event_waiters, wait);
  6419. /* always allow read */
  6420. mask = POLLIN | POLLRDNORM;
  6421. if (seq->poll_event != atomic_read(&md_event_count))
  6422. mask |= POLLERR | POLLPRI;
  6423. return mask;
  6424. }
  6425. static const struct file_operations md_seq_fops = {
  6426. .owner = THIS_MODULE,
  6427. .open = md_seq_open,
  6428. .read = seq_read,
  6429. .llseek = seq_lseek,
  6430. .release = seq_release_private,
  6431. .poll = mdstat_poll,
  6432. };
  6433. int register_md_personality(struct md_personality *p)
  6434. {
  6435. printk(KERN_INFO "md: %s personality registered for level %d\n",
  6436. p->name, p->level);
  6437. spin_lock(&pers_lock);
  6438. list_add_tail(&p->list, &pers_list);
  6439. spin_unlock(&pers_lock);
  6440. return 0;
  6441. }
  6442. EXPORT_SYMBOL(register_md_personality);
  6443. int unregister_md_personality(struct md_personality *p)
  6444. {
  6445. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  6446. spin_lock(&pers_lock);
  6447. list_del_init(&p->list);
  6448. spin_unlock(&pers_lock);
  6449. return 0;
  6450. }
  6451. EXPORT_SYMBOL(unregister_md_personality);
  6452. static int is_mddev_idle(struct mddev *mddev, int init)
  6453. {
  6454. struct md_rdev *rdev;
  6455. int idle;
  6456. int curr_events;
  6457. idle = 1;
  6458. rcu_read_lock();
  6459. rdev_for_each_rcu(rdev, mddev) {
  6460. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  6461. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  6462. (int)part_stat_read(&disk->part0, sectors[1]) -
  6463. atomic_read(&disk->sync_io);
  6464. /* sync IO will cause sync_io to increase before the disk_stats
  6465. * as sync_io is counted when a request starts, and
  6466. * disk_stats is counted when it completes.
  6467. * So resync activity will cause curr_events to be smaller than
  6468. * when there was no such activity.
  6469. * non-sync IO will cause disk_stat to increase without
  6470. * increasing sync_io so curr_events will (eventually)
  6471. * be larger than it was before. Once it becomes
  6472. * substantially larger, the test below will cause
  6473. * the array to appear non-idle, and resync will slow
  6474. * down.
  6475. * If there is a lot of outstanding resync activity when
  6476. * we set last_event to curr_events, then all that activity
  6477. * completing might cause the array to appear non-idle
  6478. * and resync will be slowed down even though there might
  6479. * not have been non-resync activity. This will only
  6480. * happen once though. 'last_events' will soon reflect
  6481. * the state where there is little or no outstanding
  6482. * resync requests, and further resync activity will
  6483. * always make curr_events less than last_events.
  6484. *
  6485. */
  6486. if (init || curr_events - rdev->last_events > 64) {
  6487. rdev->last_events = curr_events;
  6488. idle = 0;
  6489. }
  6490. }
  6491. rcu_read_unlock();
  6492. return idle;
  6493. }
  6494. void md_done_sync(struct mddev *mddev, int blocks, int ok)
  6495. {
  6496. /* another "blocks" (512byte) blocks have been synced */
  6497. atomic_sub(blocks, &mddev->recovery_active);
  6498. wake_up(&mddev->recovery_wait);
  6499. if (!ok) {
  6500. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6501. set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
  6502. md_wakeup_thread(mddev->thread);
  6503. // stop recovery, signal do_sync ....
  6504. }
  6505. }
  6506. EXPORT_SYMBOL(md_done_sync);
  6507. /* md_write_start(mddev, bi)
  6508. * If we need to update some array metadata (e.g. 'active' flag
  6509. * in superblock) before writing, schedule a superblock update
  6510. * and wait for it to complete.
  6511. */
  6512. void md_write_start(struct mddev *mddev, struct bio *bi)
  6513. {
  6514. int did_change = 0;
  6515. if (bio_data_dir(bi) != WRITE)
  6516. return;
  6517. BUG_ON(mddev->ro == 1);
  6518. if (mddev->ro == 2) {
  6519. /* need to switch to read/write */
  6520. mddev->ro = 0;
  6521. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6522. md_wakeup_thread(mddev->thread);
  6523. md_wakeup_thread(mddev->sync_thread);
  6524. did_change = 1;
  6525. }
  6526. atomic_inc(&mddev->writes_pending);
  6527. if (mddev->safemode == 1)
  6528. mddev->safemode = 0;
  6529. if (mddev->in_sync) {
  6530. spin_lock(&mddev->lock);
  6531. if (mddev->in_sync) {
  6532. mddev->in_sync = 0;
  6533. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6534. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6535. md_wakeup_thread(mddev->thread);
  6536. did_change = 1;
  6537. }
  6538. spin_unlock(&mddev->lock);
  6539. }
  6540. if (did_change)
  6541. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6542. wait_event(mddev->sb_wait,
  6543. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6544. }
  6545. EXPORT_SYMBOL(md_write_start);
  6546. void md_write_end(struct mddev *mddev)
  6547. {
  6548. if (atomic_dec_and_test(&mddev->writes_pending)) {
  6549. if (mddev->safemode == 2)
  6550. md_wakeup_thread(mddev->thread);
  6551. else if (mddev->safemode_delay)
  6552. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  6553. }
  6554. }
  6555. EXPORT_SYMBOL(md_write_end);
  6556. /* md_allow_write(mddev)
  6557. * Calling this ensures that the array is marked 'active' so that writes
  6558. * may proceed without blocking. It is important to call this before
  6559. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  6560. * Must be called with mddev_lock held.
  6561. *
  6562. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  6563. * is dropped, so return -EAGAIN after notifying userspace.
  6564. */
  6565. int md_allow_write(struct mddev *mddev)
  6566. {
  6567. if (!mddev->pers)
  6568. return 0;
  6569. if (mddev->ro)
  6570. return 0;
  6571. if (!mddev->pers->sync_request)
  6572. return 0;
  6573. spin_lock(&mddev->lock);
  6574. if (mddev->in_sync) {
  6575. mddev->in_sync = 0;
  6576. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6577. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6578. if (mddev->safemode_delay &&
  6579. mddev->safemode == 0)
  6580. mddev->safemode = 1;
  6581. spin_unlock(&mddev->lock);
  6582. md_update_sb(mddev, 0);
  6583. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6584. } else
  6585. spin_unlock(&mddev->lock);
  6586. if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  6587. return -EAGAIN;
  6588. else
  6589. return 0;
  6590. }
  6591. EXPORT_SYMBOL_GPL(md_allow_write);
  6592. #define SYNC_MARKS 10
  6593. #define SYNC_MARK_STEP (3*HZ)
  6594. #define UPDATE_FREQUENCY (5*60*HZ)
  6595. void md_do_sync(struct md_thread *thread)
  6596. {
  6597. struct mddev *mddev = thread->mddev;
  6598. struct mddev *mddev2;
  6599. unsigned int currspeed = 0,
  6600. window;
  6601. sector_t max_sectors,j, io_sectors, recovery_done;
  6602. unsigned long mark[SYNC_MARKS];
  6603. unsigned long update_time;
  6604. sector_t mark_cnt[SYNC_MARKS];
  6605. int last_mark,m;
  6606. struct list_head *tmp;
  6607. sector_t last_check;
  6608. int skipped = 0;
  6609. struct md_rdev *rdev;
  6610. char *desc, *action = NULL;
  6611. struct blk_plug plug;
  6612. /* just incase thread restarts... */
  6613. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6614. return;
  6615. if (mddev->ro) {/* never try to sync a read-only array */
  6616. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6617. return;
  6618. }
  6619. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6620. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
  6621. desc = "data-check";
  6622. action = "check";
  6623. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6624. desc = "requested-resync";
  6625. action = "repair";
  6626. } else
  6627. desc = "resync";
  6628. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6629. desc = "reshape";
  6630. else
  6631. desc = "recovery";
  6632. mddev->last_sync_action = action ?: desc;
  6633. /* we overload curr_resync somewhat here.
  6634. * 0 == not engaged in resync at all
  6635. * 2 == checking that there is no conflict with another sync
  6636. * 1 == like 2, but have yielded to allow conflicting resync to
  6637. * commense
  6638. * other == active in resync - this many blocks
  6639. *
  6640. * Before starting a resync we must have set curr_resync to
  6641. * 2, and then checked that every "conflicting" array has curr_resync
  6642. * less than ours. When we find one that is the same or higher
  6643. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  6644. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  6645. * This will mean we have to start checking from the beginning again.
  6646. *
  6647. */
  6648. do {
  6649. mddev->curr_resync = 2;
  6650. try_again:
  6651. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6652. goto skip;
  6653. for_each_mddev(mddev2, tmp) {
  6654. if (mddev2 == mddev)
  6655. continue;
  6656. if (!mddev->parallel_resync
  6657. && mddev2->curr_resync
  6658. && match_mddev_units(mddev, mddev2)) {
  6659. DEFINE_WAIT(wq);
  6660. if (mddev < mddev2 && mddev->curr_resync == 2) {
  6661. /* arbitrarily yield */
  6662. mddev->curr_resync = 1;
  6663. wake_up(&resync_wait);
  6664. }
  6665. if (mddev > mddev2 && mddev->curr_resync == 1)
  6666. /* no need to wait here, we can wait the next
  6667. * time 'round when curr_resync == 2
  6668. */
  6669. continue;
  6670. /* We need to wait 'interruptible' so as not to
  6671. * contribute to the load average, and not to
  6672. * be caught by 'softlockup'
  6673. */
  6674. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  6675. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  6676. mddev2->curr_resync >= mddev->curr_resync) {
  6677. printk(KERN_INFO "md: delaying %s of %s"
  6678. " until %s has finished (they"
  6679. " share one or more physical units)\n",
  6680. desc, mdname(mddev), mdname(mddev2));
  6681. mddev_put(mddev2);
  6682. if (signal_pending(current))
  6683. flush_signals(current);
  6684. schedule();
  6685. finish_wait(&resync_wait, &wq);
  6686. goto try_again;
  6687. }
  6688. finish_wait(&resync_wait, &wq);
  6689. }
  6690. }
  6691. } while (mddev->curr_resync < 2);
  6692. j = 0;
  6693. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6694. /* resync follows the size requested by the personality,
  6695. * which defaults to physical size, but can be virtual size
  6696. */
  6697. max_sectors = mddev->resync_max_sectors;
  6698. atomic64_set(&mddev->resync_mismatches, 0);
  6699. /* we don't use the checkpoint if there's a bitmap */
  6700. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6701. j = mddev->resync_min;
  6702. else if (!mddev->bitmap)
  6703. j = mddev->recovery_cp;
  6704. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6705. max_sectors = mddev->resync_max_sectors;
  6706. else {
  6707. /* recovery follows the physical size of devices */
  6708. max_sectors = mddev->dev_sectors;
  6709. j = MaxSector;
  6710. rcu_read_lock();
  6711. rdev_for_each_rcu(rdev, mddev)
  6712. if (rdev->raid_disk >= 0 &&
  6713. !test_bit(Faulty, &rdev->flags) &&
  6714. !test_bit(In_sync, &rdev->flags) &&
  6715. rdev->recovery_offset < j)
  6716. j = rdev->recovery_offset;
  6717. rcu_read_unlock();
  6718. /* If there is a bitmap, we need to make sure all
  6719. * writes that started before we added a spare
  6720. * complete before we start doing a recovery.
  6721. * Otherwise the write might complete and (via
  6722. * bitmap_endwrite) set a bit in the bitmap after the
  6723. * recovery has checked that bit and skipped that
  6724. * region.
  6725. */
  6726. if (mddev->bitmap) {
  6727. mddev->pers->quiesce(mddev, 1);
  6728. mddev->pers->quiesce(mddev, 0);
  6729. }
  6730. }
  6731. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  6732. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  6733. " %d KB/sec/disk.\n", speed_min(mddev));
  6734. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  6735. "(but not more than %d KB/sec) for %s.\n",
  6736. speed_max(mddev), desc);
  6737. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  6738. io_sectors = 0;
  6739. for (m = 0; m < SYNC_MARKS; m++) {
  6740. mark[m] = jiffies;
  6741. mark_cnt[m] = io_sectors;
  6742. }
  6743. last_mark = 0;
  6744. mddev->resync_mark = mark[last_mark];
  6745. mddev->resync_mark_cnt = mark_cnt[last_mark];
  6746. /*
  6747. * Tune reconstruction:
  6748. */
  6749. window = 32*(PAGE_SIZE/512);
  6750. printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
  6751. window/2, (unsigned long long)max_sectors/2);
  6752. atomic_set(&mddev->recovery_active, 0);
  6753. last_check = 0;
  6754. if (j>2) {
  6755. printk(KERN_INFO
  6756. "md: resuming %s of %s from checkpoint.\n",
  6757. desc, mdname(mddev));
  6758. mddev->curr_resync = j;
  6759. } else
  6760. mddev->curr_resync = 3; /* no longer delayed */
  6761. mddev->curr_resync_completed = j;
  6762. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6763. md_new_event(mddev);
  6764. update_time = jiffies;
  6765. blk_start_plug(&plug);
  6766. while (j < max_sectors) {
  6767. sector_t sectors;
  6768. skipped = 0;
  6769. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6770. ((mddev->curr_resync > mddev->curr_resync_completed &&
  6771. (mddev->curr_resync - mddev->curr_resync_completed)
  6772. > (max_sectors >> 4)) ||
  6773. time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
  6774. (j - mddev->curr_resync_completed)*2
  6775. >= mddev->resync_max - mddev->curr_resync_completed
  6776. )) {
  6777. /* time to update curr_resync_completed */
  6778. wait_event(mddev->recovery_wait,
  6779. atomic_read(&mddev->recovery_active) == 0);
  6780. mddev->curr_resync_completed = j;
  6781. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
  6782. j > mddev->recovery_cp)
  6783. mddev->recovery_cp = j;
  6784. update_time = jiffies;
  6785. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6786. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6787. }
  6788. while (j >= mddev->resync_max &&
  6789. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6790. /* As this condition is controlled by user-space,
  6791. * we can block indefinitely, so use '_interruptible'
  6792. * to avoid triggering warnings.
  6793. */
  6794. flush_signals(current); /* just in case */
  6795. wait_event_interruptible(mddev->recovery_wait,
  6796. mddev->resync_max > j
  6797. || test_bit(MD_RECOVERY_INTR,
  6798. &mddev->recovery));
  6799. }
  6800. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6801. break;
  6802. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  6803. currspeed < speed_min(mddev));
  6804. if (sectors == 0) {
  6805. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6806. break;
  6807. }
  6808. if (!skipped) { /* actual IO requested */
  6809. io_sectors += sectors;
  6810. atomic_add(sectors, &mddev->recovery_active);
  6811. }
  6812. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6813. break;
  6814. j += sectors;
  6815. if (j > 2)
  6816. mddev->curr_resync = j;
  6817. mddev->curr_mark_cnt = io_sectors;
  6818. if (last_check == 0)
  6819. /* this is the earliest that rebuild will be
  6820. * visible in /proc/mdstat
  6821. */
  6822. md_new_event(mddev);
  6823. if (last_check + window > io_sectors || j == max_sectors)
  6824. continue;
  6825. last_check = io_sectors;
  6826. repeat:
  6827. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  6828. /* step marks */
  6829. int next = (last_mark+1) % SYNC_MARKS;
  6830. mddev->resync_mark = mark[next];
  6831. mddev->resync_mark_cnt = mark_cnt[next];
  6832. mark[next] = jiffies;
  6833. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  6834. last_mark = next;
  6835. }
  6836. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6837. break;
  6838. /*
  6839. * this loop exits only if either when we are slower than
  6840. * the 'hard' speed limit, or the system was IO-idle for
  6841. * a jiffy.
  6842. * the system might be non-idle CPU-wise, but we only care
  6843. * about not overloading the IO subsystem. (things like an
  6844. * e2fsck being done on the RAID array should execute fast)
  6845. */
  6846. cond_resched();
  6847. recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
  6848. currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
  6849. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  6850. if (currspeed > speed_min(mddev)) {
  6851. if ((currspeed > speed_max(mddev)) ||
  6852. !is_mddev_idle(mddev, 0)) {
  6853. msleep(500);
  6854. goto repeat;
  6855. }
  6856. }
  6857. }
  6858. printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
  6859. test_bit(MD_RECOVERY_INTR, &mddev->recovery)
  6860. ? "interrupted" : "done");
  6861. /*
  6862. * this also signals 'finished resyncing' to md_stop
  6863. */
  6864. blk_finish_plug(&plug);
  6865. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  6866. /* tell personality that we are finished */
  6867. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  6868. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  6869. mddev->curr_resync > 2) {
  6870. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6871. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6872. if (mddev->curr_resync >= mddev->recovery_cp) {
  6873. printk(KERN_INFO
  6874. "md: checkpointing %s of %s.\n",
  6875. desc, mdname(mddev));
  6876. if (test_bit(MD_RECOVERY_ERROR,
  6877. &mddev->recovery))
  6878. mddev->recovery_cp =
  6879. mddev->curr_resync_completed;
  6880. else
  6881. mddev->recovery_cp =
  6882. mddev->curr_resync;
  6883. }
  6884. } else
  6885. mddev->recovery_cp = MaxSector;
  6886. } else {
  6887. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6888. mddev->curr_resync = MaxSector;
  6889. rcu_read_lock();
  6890. rdev_for_each_rcu(rdev, mddev)
  6891. if (rdev->raid_disk >= 0 &&
  6892. mddev->delta_disks >= 0 &&
  6893. !test_bit(Faulty, &rdev->flags) &&
  6894. !test_bit(In_sync, &rdev->flags) &&
  6895. rdev->recovery_offset < mddev->curr_resync)
  6896. rdev->recovery_offset = mddev->curr_resync;
  6897. rcu_read_unlock();
  6898. }
  6899. }
  6900. skip:
  6901. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6902. spin_lock(&mddev->lock);
  6903. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6904. /* We completed so min/max setting can be forgotten if used. */
  6905. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6906. mddev->resync_min = 0;
  6907. mddev->resync_max = MaxSector;
  6908. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6909. mddev->resync_min = mddev->curr_resync_completed;
  6910. mddev->curr_resync = 0;
  6911. spin_unlock(&mddev->lock);
  6912. wake_up(&resync_wait);
  6913. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6914. md_wakeup_thread(mddev->thread);
  6915. return;
  6916. }
  6917. EXPORT_SYMBOL_GPL(md_do_sync);
  6918. static int remove_and_add_spares(struct mddev *mddev,
  6919. struct md_rdev *this)
  6920. {
  6921. struct md_rdev *rdev;
  6922. int spares = 0;
  6923. int removed = 0;
  6924. rdev_for_each(rdev, mddev)
  6925. if ((this == NULL || rdev == this) &&
  6926. rdev->raid_disk >= 0 &&
  6927. !test_bit(Blocked, &rdev->flags) &&
  6928. (test_bit(Faulty, &rdev->flags) ||
  6929. ! test_bit(In_sync, &rdev->flags)) &&
  6930. atomic_read(&rdev->nr_pending)==0) {
  6931. if (mddev->pers->hot_remove_disk(
  6932. mddev, rdev) == 0) {
  6933. sysfs_unlink_rdev(mddev, rdev);
  6934. rdev->raid_disk = -1;
  6935. removed++;
  6936. }
  6937. }
  6938. if (removed && mddev->kobj.sd)
  6939. sysfs_notify(&mddev->kobj, NULL, "degraded");
  6940. if (this)
  6941. goto no_add;
  6942. rdev_for_each(rdev, mddev) {
  6943. if (rdev->raid_disk >= 0 &&
  6944. !test_bit(In_sync, &rdev->flags) &&
  6945. !test_bit(Faulty, &rdev->flags))
  6946. spares++;
  6947. if (rdev->raid_disk >= 0)
  6948. continue;
  6949. if (test_bit(Faulty, &rdev->flags))
  6950. continue;
  6951. if (mddev->ro &&
  6952. ! (rdev->saved_raid_disk >= 0 &&
  6953. !test_bit(Bitmap_sync, &rdev->flags)))
  6954. continue;
  6955. if (rdev->saved_raid_disk < 0)
  6956. rdev->recovery_offset = 0;
  6957. if (mddev->pers->
  6958. hot_add_disk(mddev, rdev) == 0) {
  6959. if (sysfs_link_rdev(mddev, rdev))
  6960. /* failure here is OK */;
  6961. spares++;
  6962. md_new_event(mddev);
  6963. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6964. }
  6965. }
  6966. no_add:
  6967. if (removed)
  6968. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6969. return spares;
  6970. }
  6971. static void md_start_sync(struct work_struct *ws)
  6972. {
  6973. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  6974. mddev->sync_thread = md_register_thread(md_do_sync,
  6975. mddev,
  6976. "resync");
  6977. if (!mddev->sync_thread) {
  6978. printk(KERN_ERR "%s: could not start resync"
  6979. " thread...\n",
  6980. mdname(mddev));
  6981. /* leave the spares where they are, it shouldn't hurt */
  6982. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6983. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6984. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6985. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6986. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6987. wake_up(&resync_wait);
  6988. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  6989. &mddev->recovery))
  6990. if (mddev->sysfs_action)
  6991. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6992. } else
  6993. md_wakeup_thread(mddev->sync_thread);
  6994. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6995. md_new_event(mddev);
  6996. }
  6997. /*
  6998. * This routine is regularly called by all per-raid-array threads to
  6999. * deal with generic issues like resync and super-block update.
  7000. * Raid personalities that don't have a thread (linear/raid0) do not
  7001. * need this as they never do any recovery or update the superblock.
  7002. *
  7003. * It does not do any resync itself, but rather "forks" off other threads
  7004. * to do that as needed.
  7005. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  7006. * "->recovery" and create a thread at ->sync_thread.
  7007. * When the thread finishes it sets MD_RECOVERY_DONE
  7008. * and wakeups up this thread which will reap the thread and finish up.
  7009. * This thread also removes any faulty devices (with nr_pending == 0).
  7010. *
  7011. * The overall approach is:
  7012. * 1/ if the superblock needs updating, update it.
  7013. * 2/ If a recovery thread is running, don't do anything else.
  7014. * 3/ If recovery has finished, clean up, possibly marking spares active.
  7015. * 4/ If there are any faulty devices, remove them.
  7016. * 5/ If array is degraded, try to add spares devices
  7017. * 6/ If array has spares or is not in-sync, start a resync thread.
  7018. */
  7019. void md_check_recovery(struct mddev *mddev)
  7020. {
  7021. if (mddev->suspended)
  7022. return;
  7023. if (mddev->bitmap)
  7024. bitmap_daemon_work(mddev);
  7025. if (signal_pending(current)) {
  7026. if (mddev->pers->sync_request && !mddev->external) {
  7027. printk(KERN_INFO "md: %s in immediate safe mode\n",
  7028. mdname(mddev));
  7029. mddev->safemode = 2;
  7030. }
  7031. flush_signals(current);
  7032. }
  7033. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  7034. return;
  7035. if ( ! (
  7036. (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
  7037. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  7038. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  7039. (mddev->external == 0 && mddev->safemode == 1) ||
  7040. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  7041. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  7042. ))
  7043. return;
  7044. if (mddev_trylock(mddev)) {
  7045. int spares = 0;
  7046. if (mddev->ro) {
  7047. /* On a read-only array we can:
  7048. * - remove failed devices
  7049. * - add already-in_sync devices if the array itself
  7050. * is in-sync.
  7051. * As we only add devices that are already in-sync,
  7052. * we can activate the spares immediately.
  7053. */
  7054. remove_and_add_spares(mddev, NULL);
  7055. /* There is no thread, but we need to call
  7056. * ->spare_active and clear saved_raid_disk
  7057. */
  7058. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  7059. md_reap_sync_thread(mddev);
  7060. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  7061. goto unlock;
  7062. }
  7063. if (!mddev->external) {
  7064. int did_change = 0;
  7065. spin_lock(&mddev->lock);
  7066. if (mddev->safemode &&
  7067. !atomic_read(&mddev->writes_pending) &&
  7068. !mddev->in_sync &&
  7069. mddev->recovery_cp == MaxSector) {
  7070. mddev->in_sync = 1;
  7071. did_change = 1;
  7072. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  7073. }
  7074. if (mddev->safemode == 1)
  7075. mddev->safemode = 0;
  7076. spin_unlock(&mddev->lock);
  7077. if (did_change)
  7078. sysfs_notify_dirent_safe(mddev->sysfs_state);
  7079. }
  7080. if (mddev->flags & MD_UPDATE_SB_FLAGS)
  7081. md_update_sb(mddev, 0);
  7082. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  7083. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  7084. /* resync/recovery still happening */
  7085. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  7086. goto unlock;
  7087. }
  7088. if (mddev->sync_thread) {
  7089. md_reap_sync_thread(mddev);
  7090. goto unlock;
  7091. }
  7092. /* Set RUNNING before clearing NEEDED to avoid
  7093. * any transients in the value of "sync_action".
  7094. */
  7095. mddev->curr_resync_completed = 0;
  7096. spin_lock(&mddev->lock);
  7097. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7098. spin_unlock(&mddev->lock);
  7099. /* Clear some bits that don't mean anything, but
  7100. * might be left set
  7101. */
  7102. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  7103. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  7104. if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  7105. test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  7106. goto not_running;
  7107. /* no recovery is running.
  7108. * remove any failed drives, then
  7109. * add spares if possible.
  7110. * Spares are also removed and re-added, to allow
  7111. * the personality to fail the re-add.
  7112. */
  7113. if (mddev->reshape_position != MaxSector) {
  7114. if (mddev->pers->check_reshape == NULL ||
  7115. mddev->pers->check_reshape(mddev) != 0)
  7116. /* Cannot proceed */
  7117. goto not_running;
  7118. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7119. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7120. } else if ((spares = remove_and_add_spares(mddev, NULL))) {
  7121. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7122. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7123. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7124. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7125. } else if (mddev->recovery_cp < MaxSector) {
  7126. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7127. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7128. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  7129. /* nothing to be done ... */
  7130. goto not_running;
  7131. if (mddev->pers->sync_request) {
  7132. if (spares) {
  7133. /* We are adding a device or devices to an array
  7134. * which has the bitmap stored on all devices.
  7135. * So make sure all bitmap pages get written
  7136. */
  7137. bitmap_write_all(mddev->bitmap);
  7138. }
  7139. INIT_WORK(&mddev->del_work, md_start_sync);
  7140. queue_work(md_misc_wq, &mddev->del_work);
  7141. goto unlock;
  7142. }
  7143. not_running:
  7144. if (!mddev->sync_thread) {
  7145. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7146. wake_up(&resync_wait);
  7147. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  7148. &mddev->recovery))
  7149. if (mddev->sysfs_action)
  7150. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7151. }
  7152. unlock:
  7153. wake_up(&mddev->sb_wait);
  7154. mddev_unlock(mddev);
  7155. }
  7156. }
  7157. EXPORT_SYMBOL(md_check_recovery);
  7158. void md_reap_sync_thread(struct mddev *mddev)
  7159. {
  7160. struct md_rdev *rdev;
  7161. /* resync has finished, collect result */
  7162. md_unregister_thread(&mddev->sync_thread);
  7163. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  7164. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  7165. /* success...*/
  7166. /* activate any spares */
  7167. if (mddev->pers->spare_active(mddev)) {
  7168. sysfs_notify(&mddev->kobj, NULL,
  7169. "degraded");
  7170. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7171. }
  7172. }
  7173. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  7174. mddev->pers->finish_reshape)
  7175. mddev->pers->finish_reshape(mddev);
  7176. /* If array is no-longer degraded, then any saved_raid_disk
  7177. * information must be scrapped.
  7178. */
  7179. if (!mddev->degraded)
  7180. rdev_for_each(rdev, mddev)
  7181. rdev->saved_raid_disk = -1;
  7182. md_update_sb(mddev, 1);
  7183. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7184. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7185. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7186. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7187. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7188. wake_up(&resync_wait);
  7189. /* flag recovery needed just to double check */
  7190. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  7191. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7192. md_new_event(mddev);
  7193. if (mddev->event_work.func)
  7194. queue_work(md_misc_wq, &mddev->event_work);
  7195. }
  7196. EXPORT_SYMBOL(md_reap_sync_thread);
  7197. void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
  7198. {
  7199. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7200. wait_event_timeout(rdev->blocked_wait,
  7201. !test_bit(Blocked, &rdev->flags) &&
  7202. !test_bit(BlockedBadBlocks, &rdev->flags),
  7203. msecs_to_jiffies(5000));
  7204. rdev_dec_pending(rdev, mddev);
  7205. }
  7206. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  7207. void md_finish_reshape(struct mddev *mddev)
  7208. {
  7209. /* called be personality module when reshape completes. */
  7210. struct md_rdev *rdev;
  7211. rdev_for_each(rdev, mddev) {
  7212. if (rdev->data_offset > rdev->new_data_offset)
  7213. rdev->sectors += rdev->data_offset - rdev->new_data_offset;
  7214. else
  7215. rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
  7216. rdev->data_offset = rdev->new_data_offset;
  7217. }
  7218. }
  7219. EXPORT_SYMBOL(md_finish_reshape);
  7220. /* Bad block management.
  7221. * We can record which blocks on each device are 'bad' and so just
  7222. * fail those blocks, or that stripe, rather than the whole device.
  7223. * Entries in the bad-block table are 64bits wide. This comprises:
  7224. * Length of bad-range, in sectors: 0-511 for lengths 1-512
  7225. * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
  7226. * A 'shift' can be set so that larger blocks are tracked and
  7227. * consequently larger devices can be covered.
  7228. * 'Acknowledged' flag - 1 bit. - the most significant bit.
  7229. *
  7230. * Locking of the bad-block table uses a seqlock so md_is_badblock
  7231. * might need to retry if it is very unlucky.
  7232. * We will sometimes want to check for bad blocks in a bi_end_io function,
  7233. * so we use the write_seqlock_irq variant.
  7234. *
  7235. * When looking for a bad block we specify a range and want to
  7236. * know if any block in the range is bad. So we binary-search
  7237. * to the last range that starts at-or-before the given endpoint,
  7238. * (or "before the sector after the target range")
  7239. * then see if it ends after the given start.
  7240. * We return
  7241. * 0 if there are no known bad blocks in the range
  7242. * 1 if there are known bad block which are all acknowledged
  7243. * -1 if there are bad blocks which have not yet been acknowledged in metadata.
  7244. * plus the start/length of the first bad section we overlap.
  7245. */
  7246. int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
  7247. sector_t *first_bad, int *bad_sectors)
  7248. {
  7249. int hi;
  7250. int lo;
  7251. u64 *p = bb->page;
  7252. int rv;
  7253. sector_t target = s + sectors;
  7254. unsigned seq;
  7255. if (bb->shift > 0) {
  7256. /* round the start down, and the end up */
  7257. s >>= bb->shift;
  7258. target += (1<<bb->shift) - 1;
  7259. target >>= bb->shift;
  7260. sectors = target - s;
  7261. }
  7262. /* 'target' is now the first block after the bad range */
  7263. retry:
  7264. seq = read_seqbegin(&bb->lock);
  7265. lo = 0;
  7266. rv = 0;
  7267. hi = bb->count;
  7268. /* Binary search between lo and hi for 'target'
  7269. * i.e. for the last range that starts before 'target'
  7270. */
  7271. /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
  7272. * are known not to be the last range before target.
  7273. * VARIANT: hi-lo is the number of possible
  7274. * ranges, and decreases until it reaches 1
  7275. */
  7276. while (hi - lo > 1) {
  7277. int mid = (lo + hi) / 2;
  7278. sector_t a = BB_OFFSET(p[mid]);
  7279. if (a < target)
  7280. /* This could still be the one, earlier ranges
  7281. * could not. */
  7282. lo = mid;
  7283. else
  7284. /* This and later ranges are definitely out. */
  7285. hi = mid;
  7286. }
  7287. /* 'lo' might be the last that started before target, but 'hi' isn't */
  7288. if (hi > lo) {
  7289. /* need to check all range that end after 's' to see if
  7290. * any are unacknowledged.
  7291. */
  7292. while (lo >= 0 &&
  7293. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7294. if (BB_OFFSET(p[lo]) < target) {
  7295. /* starts before the end, and finishes after
  7296. * the start, so they must overlap
  7297. */
  7298. if (rv != -1 && BB_ACK(p[lo]))
  7299. rv = 1;
  7300. else
  7301. rv = -1;
  7302. *first_bad = BB_OFFSET(p[lo]);
  7303. *bad_sectors = BB_LEN(p[lo]);
  7304. }
  7305. lo--;
  7306. }
  7307. }
  7308. if (read_seqretry(&bb->lock, seq))
  7309. goto retry;
  7310. return rv;
  7311. }
  7312. EXPORT_SYMBOL_GPL(md_is_badblock);
  7313. /*
  7314. * Add a range of bad blocks to the table.
  7315. * This might extend the table, or might contract it
  7316. * if two adjacent ranges can be merged.
  7317. * We binary-search to find the 'insertion' point, then
  7318. * decide how best to handle it.
  7319. */
  7320. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  7321. int acknowledged)
  7322. {
  7323. u64 *p;
  7324. int lo, hi;
  7325. int rv = 1;
  7326. unsigned long flags;
  7327. if (bb->shift < 0)
  7328. /* badblocks are disabled */
  7329. return 0;
  7330. if (bb->shift) {
  7331. /* round the start down, and the end up */
  7332. sector_t next = s + sectors;
  7333. s >>= bb->shift;
  7334. next += (1<<bb->shift) - 1;
  7335. next >>= bb->shift;
  7336. sectors = next - s;
  7337. }
  7338. write_seqlock_irqsave(&bb->lock, flags);
  7339. p = bb->page;
  7340. lo = 0;
  7341. hi = bb->count;
  7342. /* Find the last range that starts at-or-before 's' */
  7343. while (hi - lo > 1) {
  7344. int mid = (lo + hi) / 2;
  7345. sector_t a = BB_OFFSET(p[mid]);
  7346. if (a <= s)
  7347. lo = mid;
  7348. else
  7349. hi = mid;
  7350. }
  7351. if (hi > lo && BB_OFFSET(p[lo]) > s)
  7352. hi = lo;
  7353. if (hi > lo) {
  7354. /* we found a range that might merge with the start
  7355. * of our new range
  7356. */
  7357. sector_t a = BB_OFFSET(p[lo]);
  7358. sector_t e = a + BB_LEN(p[lo]);
  7359. int ack = BB_ACK(p[lo]);
  7360. if (e >= s) {
  7361. /* Yes, we can merge with a previous range */
  7362. if (s == a && s + sectors >= e)
  7363. /* new range covers old */
  7364. ack = acknowledged;
  7365. else
  7366. ack = ack && acknowledged;
  7367. if (e < s + sectors)
  7368. e = s + sectors;
  7369. if (e - a <= BB_MAX_LEN) {
  7370. p[lo] = BB_MAKE(a, e-a, ack);
  7371. s = e;
  7372. } else {
  7373. /* does not all fit in one range,
  7374. * make p[lo] maximal
  7375. */
  7376. if (BB_LEN(p[lo]) != BB_MAX_LEN)
  7377. p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
  7378. s = a + BB_MAX_LEN;
  7379. }
  7380. sectors = e - s;
  7381. }
  7382. }
  7383. if (sectors && hi < bb->count) {
  7384. /* 'hi' points to the first range that starts after 's'.
  7385. * Maybe we can merge with the start of that range */
  7386. sector_t a = BB_OFFSET(p[hi]);
  7387. sector_t e = a + BB_LEN(p[hi]);
  7388. int ack = BB_ACK(p[hi]);
  7389. if (a <= s + sectors) {
  7390. /* merging is possible */
  7391. if (e <= s + sectors) {
  7392. /* full overlap */
  7393. e = s + sectors;
  7394. ack = acknowledged;
  7395. } else
  7396. ack = ack && acknowledged;
  7397. a = s;
  7398. if (e - a <= BB_MAX_LEN) {
  7399. p[hi] = BB_MAKE(a, e-a, ack);
  7400. s = e;
  7401. } else {
  7402. p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
  7403. s = a + BB_MAX_LEN;
  7404. }
  7405. sectors = e - s;
  7406. lo = hi;
  7407. hi++;
  7408. }
  7409. }
  7410. if (sectors == 0 && hi < bb->count) {
  7411. /* we might be able to combine lo and hi */
  7412. /* Note: 's' is at the end of 'lo' */
  7413. sector_t a = BB_OFFSET(p[hi]);
  7414. int lolen = BB_LEN(p[lo]);
  7415. int hilen = BB_LEN(p[hi]);
  7416. int newlen = lolen + hilen - (s - a);
  7417. if (s >= a && newlen < BB_MAX_LEN) {
  7418. /* yes, we can combine them */
  7419. int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
  7420. p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
  7421. memmove(p + hi, p + hi + 1,
  7422. (bb->count - hi - 1) * 8);
  7423. bb->count--;
  7424. }
  7425. }
  7426. while (sectors) {
  7427. /* didn't merge (it all).
  7428. * Need to add a range just before 'hi' */
  7429. if (bb->count >= MD_MAX_BADBLOCKS) {
  7430. /* No room for more */
  7431. rv = 0;
  7432. break;
  7433. } else {
  7434. int this_sectors = sectors;
  7435. memmove(p + hi + 1, p + hi,
  7436. (bb->count - hi) * 8);
  7437. bb->count++;
  7438. if (this_sectors > BB_MAX_LEN)
  7439. this_sectors = BB_MAX_LEN;
  7440. p[hi] = BB_MAKE(s, this_sectors, acknowledged);
  7441. sectors -= this_sectors;
  7442. s += this_sectors;
  7443. }
  7444. }
  7445. bb->changed = 1;
  7446. if (!acknowledged)
  7447. bb->unacked_exist = 1;
  7448. write_sequnlock_irqrestore(&bb->lock, flags);
  7449. return rv;
  7450. }
  7451. int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7452. int is_new)
  7453. {
  7454. int rv;
  7455. if (is_new)
  7456. s += rdev->new_data_offset;
  7457. else
  7458. s += rdev->data_offset;
  7459. rv = md_set_badblocks(&rdev->badblocks,
  7460. s, sectors, 0);
  7461. if (rv) {
  7462. /* Make sure they get written out promptly */
  7463. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7464. set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
  7465. md_wakeup_thread(rdev->mddev->thread);
  7466. }
  7467. return rv;
  7468. }
  7469. EXPORT_SYMBOL_GPL(rdev_set_badblocks);
  7470. /*
  7471. * Remove a range of bad blocks from the table.
  7472. * This may involve extending the table if we spilt a region,
  7473. * but it must not fail. So if the table becomes full, we just
  7474. * drop the remove request.
  7475. */
  7476. static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
  7477. {
  7478. u64 *p;
  7479. int lo, hi;
  7480. sector_t target = s + sectors;
  7481. int rv = 0;
  7482. if (bb->shift > 0) {
  7483. /* When clearing we round the start up and the end down.
  7484. * This should not matter as the shift should align with
  7485. * the block size and no rounding should ever be needed.
  7486. * However it is better the think a block is bad when it
  7487. * isn't than to think a block is not bad when it is.
  7488. */
  7489. s += (1<<bb->shift) - 1;
  7490. s >>= bb->shift;
  7491. target >>= bb->shift;
  7492. sectors = target - s;
  7493. }
  7494. write_seqlock_irq(&bb->lock);
  7495. p = bb->page;
  7496. lo = 0;
  7497. hi = bb->count;
  7498. /* Find the last range that starts before 'target' */
  7499. while (hi - lo > 1) {
  7500. int mid = (lo + hi) / 2;
  7501. sector_t a = BB_OFFSET(p[mid]);
  7502. if (a < target)
  7503. lo = mid;
  7504. else
  7505. hi = mid;
  7506. }
  7507. if (hi > lo) {
  7508. /* p[lo] is the last range that could overlap the
  7509. * current range. Earlier ranges could also overlap,
  7510. * but only this one can overlap the end of the range.
  7511. */
  7512. if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
  7513. /* Partial overlap, leave the tail of this range */
  7514. int ack = BB_ACK(p[lo]);
  7515. sector_t a = BB_OFFSET(p[lo]);
  7516. sector_t end = a + BB_LEN(p[lo]);
  7517. if (a < s) {
  7518. /* we need to split this range */
  7519. if (bb->count >= MD_MAX_BADBLOCKS) {
  7520. rv = -ENOSPC;
  7521. goto out;
  7522. }
  7523. memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
  7524. bb->count++;
  7525. p[lo] = BB_MAKE(a, s-a, ack);
  7526. lo++;
  7527. }
  7528. p[lo] = BB_MAKE(target, end - target, ack);
  7529. /* there is no longer an overlap */
  7530. hi = lo;
  7531. lo--;
  7532. }
  7533. while (lo >= 0 &&
  7534. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7535. /* This range does overlap */
  7536. if (BB_OFFSET(p[lo]) < s) {
  7537. /* Keep the early parts of this range. */
  7538. int ack = BB_ACK(p[lo]);
  7539. sector_t start = BB_OFFSET(p[lo]);
  7540. p[lo] = BB_MAKE(start, s - start, ack);
  7541. /* now low doesn't overlap, so.. */
  7542. break;
  7543. }
  7544. lo--;
  7545. }
  7546. /* 'lo' is strictly before, 'hi' is strictly after,
  7547. * anything between needs to be discarded
  7548. */
  7549. if (hi - lo > 1) {
  7550. memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
  7551. bb->count -= (hi - lo - 1);
  7552. }
  7553. }
  7554. bb->changed = 1;
  7555. out:
  7556. write_sequnlock_irq(&bb->lock);
  7557. return rv;
  7558. }
  7559. int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7560. int is_new)
  7561. {
  7562. if (is_new)
  7563. s += rdev->new_data_offset;
  7564. else
  7565. s += rdev->data_offset;
  7566. return md_clear_badblocks(&rdev->badblocks,
  7567. s, sectors);
  7568. }
  7569. EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
  7570. /*
  7571. * Acknowledge all bad blocks in a list.
  7572. * This only succeeds if ->changed is clear. It is used by
  7573. * in-kernel metadata updates
  7574. */
  7575. void md_ack_all_badblocks(struct badblocks *bb)
  7576. {
  7577. if (bb->page == NULL || bb->changed)
  7578. /* no point even trying */
  7579. return;
  7580. write_seqlock_irq(&bb->lock);
  7581. if (bb->changed == 0 && bb->unacked_exist) {
  7582. u64 *p = bb->page;
  7583. int i;
  7584. for (i = 0; i < bb->count ; i++) {
  7585. if (!BB_ACK(p[i])) {
  7586. sector_t start = BB_OFFSET(p[i]);
  7587. int len = BB_LEN(p[i]);
  7588. p[i] = BB_MAKE(start, len, 1);
  7589. }
  7590. }
  7591. bb->unacked_exist = 0;
  7592. }
  7593. write_sequnlock_irq(&bb->lock);
  7594. }
  7595. EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
  7596. /* sysfs access to bad-blocks list.
  7597. * We present two files.
  7598. * 'bad-blocks' lists sector numbers and lengths of ranges that
  7599. * are recorded as bad. The list is truncated to fit within
  7600. * the one-page limit of sysfs.
  7601. * Writing "sector length" to this file adds an acknowledged
  7602. * bad block list.
  7603. * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
  7604. * been acknowledged. Writing to this file adds bad blocks
  7605. * without acknowledging them. This is largely for testing.
  7606. */
  7607. static ssize_t
  7608. badblocks_show(struct badblocks *bb, char *page, int unack)
  7609. {
  7610. size_t len;
  7611. int i;
  7612. u64 *p = bb->page;
  7613. unsigned seq;
  7614. if (bb->shift < 0)
  7615. return 0;
  7616. retry:
  7617. seq = read_seqbegin(&bb->lock);
  7618. len = 0;
  7619. i = 0;
  7620. while (len < PAGE_SIZE && i < bb->count) {
  7621. sector_t s = BB_OFFSET(p[i]);
  7622. unsigned int length = BB_LEN(p[i]);
  7623. int ack = BB_ACK(p[i]);
  7624. i++;
  7625. if (unack && ack)
  7626. continue;
  7627. len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
  7628. (unsigned long long)s << bb->shift,
  7629. length << bb->shift);
  7630. }
  7631. if (unack && len == 0)
  7632. bb->unacked_exist = 0;
  7633. if (read_seqretry(&bb->lock, seq))
  7634. goto retry;
  7635. return len;
  7636. }
  7637. #define DO_DEBUG 1
  7638. static ssize_t
  7639. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
  7640. {
  7641. unsigned long long sector;
  7642. int length;
  7643. char newline;
  7644. #ifdef DO_DEBUG
  7645. /* Allow clearing via sysfs *only* for testing/debugging.
  7646. * Normally only a successful write may clear a badblock
  7647. */
  7648. int clear = 0;
  7649. if (page[0] == '-') {
  7650. clear = 1;
  7651. page++;
  7652. }
  7653. #endif /* DO_DEBUG */
  7654. switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
  7655. case 3:
  7656. if (newline != '\n')
  7657. return -EINVAL;
  7658. case 2:
  7659. if (length <= 0)
  7660. return -EINVAL;
  7661. break;
  7662. default:
  7663. return -EINVAL;
  7664. }
  7665. #ifdef DO_DEBUG
  7666. if (clear) {
  7667. md_clear_badblocks(bb, sector, length);
  7668. return len;
  7669. }
  7670. #endif /* DO_DEBUG */
  7671. if (md_set_badblocks(bb, sector, length, !unack))
  7672. return len;
  7673. else
  7674. return -ENOSPC;
  7675. }
  7676. static int md_notify_reboot(struct notifier_block *this,
  7677. unsigned long code, void *x)
  7678. {
  7679. struct list_head *tmp;
  7680. struct mddev *mddev;
  7681. int need_delay = 0;
  7682. for_each_mddev(mddev, tmp) {
  7683. if (mddev_trylock(mddev)) {
  7684. if (mddev->pers)
  7685. __md_stop_writes(mddev);
  7686. if (mddev->persistent)
  7687. mddev->safemode = 2;
  7688. mddev_unlock(mddev);
  7689. }
  7690. need_delay = 1;
  7691. }
  7692. /*
  7693. * certain more exotic SCSI devices are known to be
  7694. * volatile wrt too early system reboots. While the
  7695. * right place to handle this issue is the given
  7696. * driver, we do want to have a safe RAID driver ...
  7697. */
  7698. if (need_delay)
  7699. mdelay(1000*1);
  7700. return NOTIFY_DONE;
  7701. }
  7702. static struct notifier_block md_notifier = {
  7703. .notifier_call = md_notify_reboot,
  7704. .next = NULL,
  7705. .priority = INT_MAX, /* before any real devices */
  7706. };
  7707. static void md_geninit(void)
  7708. {
  7709. pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  7710. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  7711. }
  7712. static int __init md_init(void)
  7713. {
  7714. int ret = -ENOMEM;
  7715. md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
  7716. if (!md_wq)
  7717. goto err_wq;
  7718. md_misc_wq = alloc_workqueue("md_misc", 0, 0);
  7719. if (!md_misc_wq)
  7720. goto err_misc_wq;
  7721. if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
  7722. goto err_md;
  7723. if ((ret = register_blkdev(0, "mdp")) < 0)
  7724. goto err_mdp;
  7725. mdp_major = ret;
  7726. blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
  7727. md_probe, NULL, NULL);
  7728. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  7729. md_probe, NULL, NULL);
  7730. register_reboot_notifier(&md_notifier);
  7731. raid_table_header = register_sysctl_table(raid_root_table);
  7732. md_geninit();
  7733. return 0;
  7734. err_mdp:
  7735. unregister_blkdev(MD_MAJOR, "md");
  7736. err_md:
  7737. destroy_workqueue(md_misc_wq);
  7738. err_misc_wq:
  7739. destroy_workqueue(md_wq);
  7740. err_wq:
  7741. return ret;
  7742. }
  7743. #ifndef MODULE
  7744. /*
  7745. * Searches all registered partitions for autorun RAID arrays
  7746. * at boot time.
  7747. */
  7748. static LIST_HEAD(all_detected_devices);
  7749. struct detected_devices_node {
  7750. struct list_head list;
  7751. dev_t dev;
  7752. };
  7753. void md_autodetect_dev(dev_t dev)
  7754. {
  7755. struct detected_devices_node *node_detected_dev;
  7756. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  7757. if (node_detected_dev) {
  7758. node_detected_dev->dev = dev;
  7759. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  7760. } else {
  7761. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  7762. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  7763. }
  7764. }
  7765. static void autostart_arrays(int part)
  7766. {
  7767. struct md_rdev *rdev;
  7768. struct detected_devices_node *node_detected_dev;
  7769. dev_t dev;
  7770. int i_scanned, i_passed;
  7771. i_scanned = 0;
  7772. i_passed = 0;
  7773. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  7774. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  7775. i_scanned++;
  7776. node_detected_dev = list_entry(all_detected_devices.next,
  7777. struct detected_devices_node, list);
  7778. list_del(&node_detected_dev->list);
  7779. dev = node_detected_dev->dev;
  7780. kfree(node_detected_dev);
  7781. rdev = md_import_device(dev,0, 90);
  7782. if (IS_ERR(rdev))
  7783. continue;
  7784. if (test_bit(Faulty, &rdev->flags))
  7785. continue;
  7786. set_bit(AutoDetected, &rdev->flags);
  7787. list_add(&rdev->same_set, &pending_raid_disks);
  7788. i_passed++;
  7789. }
  7790. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  7791. i_scanned, i_passed);
  7792. autorun_devices(part);
  7793. }
  7794. #endif /* !MODULE */
  7795. static __exit void md_exit(void)
  7796. {
  7797. struct mddev *mddev;
  7798. struct list_head *tmp;
  7799. int delay = 1;
  7800. blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
  7801. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  7802. unregister_blkdev(MD_MAJOR,"md");
  7803. unregister_blkdev(mdp_major, "mdp");
  7804. unregister_reboot_notifier(&md_notifier);
  7805. unregister_sysctl_table(raid_table_header);
  7806. /* We cannot unload the modules while some process is
  7807. * waiting for us in select() or poll() - wake them up
  7808. */
  7809. md_unloading = 1;
  7810. while (waitqueue_active(&md_event_waiters)) {
  7811. /* not safe to leave yet */
  7812. wake_up(&md_event_waiters);
  7813. msleep(delay);
  7814. delay += delay;
  7815. }
  7816. remove_proc_entry("mdstat", NULL);
  7817. for_each_mddev(mddev, tmp) {
  7818. export_array(mddev);
  7819. mddev->hold_active = 0;
  7820. }
  7821. destroy_workqueue(md_misc_wq);
  7822. destroy_workqueue(md_wq);
  7823. }
  7824. subsys_initcall(md_init);
  7825. module_exit(md_exit)
  7826. static int get_ro(char *buffer, struct kernel_param *kp)
  7827. {
  7828. return sprintf(buffer, "%d", start_readonly);
  7829. }
  7830. static int set_ro(const char *val, struct kernel_param *kp)
  7831. {
  7832. char *e;
  7833. int num = simple_strtoul(val, &e, 10);
  7834. if (*val && (*e == '\0' || *e == '\n')) {
  7835. start_readonly = num;
  7836. return 0;
  7837. }
  7838. return -EINVAL;
  7839. }
  7840. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  7841. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  7842. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  7843. MODULE_LICENSE("GPL");
  7844. MODULE_DESCRIPTION("MD RAID framework");
  7845. MODULE_ALIAS("md");
  7846. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);