relocation.c 113 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788
  1. /*
  2. * Copyright (C) 2009 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/writeback.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/rbtree.h>
  23. #include <linux/slab.h>
  24. #include "ctree.h"
  25. #include "disk-io.h"
  26. #include "transaction.h"
  27. #include "volumes.h"
  28. #include "locking.h"
  29. #include "btrfs_inode.h"
  30. #include "async-thread.h"
  31. #include "free-space-cache.h"
  32. #include "inode-map.h"
  33. #include "qgroup.h"
  34. /*
  35. * backref_node, mapping_node and tree_block start with this
  36. */
  37. struct tree_entry {
  38. struct rb_node rb_node;
  39. u64 bytenr;
  40. };
  41. /*
  42. * present a tree block in the backref cache
  43. */
  44. struct backref_node {
  45. struct rb_node rb_node;
  46. u64 bytenr;
  47. u64 new_bytenr;
  48. /* objectid of tree block owner, can be not uptodate */
  49. u64 owner;
  50. /* link to pending, changed or detached list */
  51. struct list_head list;
  52. /* list of upper level blocks reference this block */
  53. struct list_head upper;
  54. /* list of child blocks in the cache */
  55. struct list_head lower;
  56. /* NULL if this node is not tree root */
  57. struct btrfs_root *root;
  58. /* extent buffer got by COW the block */
  59. struct extent_buffer *eb;
  60. /* level of tree block */
  61. unsigned int level:8;
  62. /* is the block in non-reference counted tree */
  63. unsigned int cowonly:1;
  64. /* 1 if no child node in the cache */
  65. unsigned int lowest:1;
  66. /* is the extent buffer locked */
  67. unsigned int locked:1;
  68. /* has the block been processed */
  69. unsigned int processed:1;
  70. /* have backrefs of this block been checked */
  71. unsigned int checked:1;
  72. /*
  73. * 1 if corresponding block has been cowed but some upper
  74. * level block pointers may not point to the new location
  75. */
  76. unsigned int pending:1;
  77. /*
  78. * 1 if the backref node isn't connected to any other
  79. * backref node.
  80. */
  81. unsigned int detached:1;
  82. };
  83. /*
  84. * present a block pointer in the backref cache
  85. */
  86. struct backref_edge {
  87. struct list_head list[2];
  88. struct backref_node *node[2];
  89. };
  90. #define LOWER 0
  91. #define UPPER 1
  92. #define RELOCATION_RESERVED_NODES 256
  93. struct backref_cache {
  94. /* red black tree of all backref nodes in the cache */
  95. struct rb_root rb_root;
  96. /* for passing backref nodes to btrfs_reloc_cow_block */
  97. struct backref_node *path[BTRFS_MAX_LEVEL];
  98. /*
  99. * list of blocks that have been cowed but some block
  100. * pointers in upper level blocks may not reflect the
  101. * new location
  102. */
  103. struct list_head pending[BTRFS_MAX_LEVEL];
  104. /* list of backref nodes with no child node */
  105. struct list_head leaves;
  106. /* list of blocks that have been cowed in current transaction */
  107. struct list_head changed;
  108. /* list of detached backref node. */
  109. struct list_head detached;
  110. u64 last_trans;
  111. int nr_nodes;
  112. int nr_edges;
  113. };
  114. /*
  115. * map address of tree root to tree
  116. */
  117. struct mapping_node {
  118. struct rb_node rb_node;
  119. u64 bytenr;
  120. void *data;
  121. };
  122. struct mapping_tree {
  123. struct rb_root rb_root;
  124. spinlock_t lock;
  125. };
  126. /*
  127. * present a tree block to process
  128. */
  129. struct tree_block {
  130. struct rb_node rb_node;
  131. u64 bytenr;
  132. struct btrfs_key key;
  133. unsigned int level:8;
  134. unsigned int key_ready:1;
  135. };
  136. #define MAX_EXTENTS 128
  137. struct file_extent_cluster {
  138. u64 start;
  139. u64 end;
  140. u64 boundary[MAX_EXTENTS];
  141. unsigned int nr;
  142. };
  143. struct reloc_control {
  144. /* block group to relocate */
  145. struct btrfs_block_group_cache *block_group;
  146. /* extent tree */
  147. struct btrfs_root *extent_root;
  148. /* inode for moving data */
  149. struct inode *data_inode;
  150. struct btrfs_block_rsv *block_rsv;
  151. struct backref_cache backref_cache;
  152. struct file_extent_cluster cluster;
  153. /* tree blocks have been processed */
  154. struct extent_io_tree processed_blocks;
  155. /* map start of tree root to corresponding reloc tree */
  156. struct mapping_tree reloc_root_tree;
  157. /* list of reloc trees */
  158. struct list_head reloc_roots;
  159. /* size of metadata reservation for merging reloc trees */
  160. u64 merging_rsv_size;
  161. /* size of relocated tree nodes */
  162. u64 nodes_relocated;
  163. /* reserved size for block group relocation*/
  164. u64 reserved_bytes;
  165. u64 search_start;
  166. u64 extents_found;
  167. unsigned int stage:8;
  168. unsigned int create_reloc_tree:1;
  169. unsigned int merge_reloc_tree:1;
  170. unsigned int found_file_extent:1;
  171. };
  172. /* stages of data relocation */
  173. #define MOVE_DATA_EXTENTS 0
  174. #define UPDATE_DATA_PTRS 1
  175. static void remove_backref_node(struct backref_cache *cache,
  176. struct backref_node *node);
  177. static void __mark_block_processed(struct reloc_control *rc,
  178. struct backref_node *node);
  179. static void mapping_tree_init(struct mapping_tree *tree)
  180. {
  181. tree->rb_root = RB_ROOT;
  182. spin_lock_init(&tree->lock);
  183. }
  184. static void backref_cache_init(struct backref_cache *cache)
  185. {
  186. int i;
  187. cache->rb_root = RB_ROOT;
  188. for (i = 0; i < BTRFS_MAX_LEVEL; i++)
  189. INIT_LIST_HEAD(&cache->pending[i]);
  190. INIT_LIST_HEAD(&cache->changed);
  191. INIT_LIST_HEAD(&cache->detached);
  192. INIT_LIST_HEAD(&cache->leaves);
  193. }
  194. static void backref_cache_cleanup(struct backref_cache *cache)
  195. {
  196. struct backref_node *node;
  197. int i;
  198. while (!list_empty(&cache->detached)) {
  199. node = list_entry(cache->detached.next,
  200. struct backref_node, list);
  201. remove_backref_node(cache, node);
  202. }
  203. while (!list_empty(&cache->leaves)) {
  204. node = list_entry(cache->leaves.next,
  205. struct backref_node, lower);
  206. remove_backref_node(cache, node);
  207. }
  208. cache->last_trans = 0;
  209. for (i = 0; i < BTRFS_MAX_LEVEL; i++)
  210. ASSERT(list_empty(&cache->pending[i]));
  211. ASSERT(list_empty(&cache->changed));
  212. ASSERT(list_empty(&cache->detached));
  213. ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
  214. ASSERT(!cache->nr_nodes);
  215. ASSERT(!cache->nr_edges);
  216. }
  217. static struct backref_node *alloc_backref_node(struct backref_cache *cache)
  218. {
  219. struct backref_node *node;
  220. node = kzalloc(sizeof(*node), GFP_NOFS);
  221. if (node) {
  222. INIT_LIST_HEAD(&node->list);
  223. INIT_LIST_HEAD(&node->upper);
  224. INIT_LIST_HEAD(&node->lower);
  225. RB_CLEAR_NODE(&node->rb_node);
  226. cache->nr_nodes++;
  227. }
  228. return node;
  229. }
  230. static void free_backref_node(struct backref_cache *cache,
  231. struct backref_node *node)
  232. {
  233. if (node) {
  234. cache->nr_nodes--;
  235. kfree(node);
  236. }
  237. }
  238. static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
  239. {
  240. struct backref_edge *edge;
  241. edge = kzalloc(sizeof(*edge), GFP_NOFS);
  242. if (edge)
  243. cache->nr_edges++;
  244. return edge;
  245. }
  246. static void free_backref_edge(struct backref_cache *cache,
  247. struct backref_edge *edge)
  248. {
  249. if (edge) {
  250. cache->nr_edges--;
  251. kfree(edge);
  252. }
  253. }
  254. static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
  255. struct rb_node *node)
  256. {
  257. struct rb_node **p = &root->rb_node;
  258. struct rb_node *parent = NULL;
  259. struct tree_entry *entry;
  260. while (*p) {
  261. parent = *p;
  262. entry = rb_entry(parent, struct tree_entry, rb_node);
  263. if (bytenr < entry->bytenr)
  264. p = &(*p)->rb_left;
  265. else if (bytenr > entry->bytenr)
  266. p = &(*p)->rb_right;
  267. else
  268. return parent;
  269. }
  270. rb_link_node(node, parent, p);
  271. rb_insert_color(node, root);
  272. return NULL;
  273. }
  274. static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
  275. {
  276. struct rb_node *n = root->rb_node;
  277. struct tree_entry *entry;
  278. while (n) {
  279. entry = rb_entry(n, struct tree_entry, rb_node);
  280. if (bytenr < entry->bytenr)
  281. n = n->rb_left;
  282. else if (bytenr > entry->bytenr)
  283. n = n->rb_right;
  284. else
  285. return n;
  286. }
  287. return NULL;
  288. }
  289. static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
  290. {
  291. struct btrfs_fs_info *fs_info = NULL;
  292. struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
  293. rb_node);
  294. if (bnode->root)
  295. fs_info = bnode->root->fs_info;
  296. btrfs_panic(fs_info, errno,
  297. "Inconsistency in backref cache found at offset %llu",
  298. bytenr);
  299. }
  300. /*
  301. * walk up backref nodes until reach node presents tree root
  302. */
  303. static struct backref_node *walk_up_backref(struct backref_node *node,
  304. struct backref_edge *edges[],
  305. int *index)
  306. {
  307. struct backref_edge *edge;
  308. int idx = *index;
  309. while (!list_empty(&node->upper)) {
  310. edge = list_entry(node->upper.next,
  311. struct backref_edge, list[LOWER]);
  312. edges[idx++] = edge;
  313. node = edge->node[UPPER];
  314. }
  315. BUG_ON(node->detached);
  316. *index = idx;
  317. return node;
  318. }
  319. /*
  320. * walk down backref nodes to find start of next reference path
  321. */
  322. static struct backref_node *walk_down_backref(struct backref_edge *edges[],
  323. int *index)
  324. {
  325. struct backref_edge *edge;
  326. struct backref_node *lower;
  327. int idx = *index;
  328. while (idx > 0) {
  329. edge = edges[idx - 1];
  330. lower = edge->node[LOWER];
  331. if (list_is_last(&edge->list[LOWER], &lower->upper)) {
  332. idx--;
  333. continue;
  334. }
  335. edge = list_entry(edge->list[LOWER].next,
  336. struct backref_edge, list[LOWER]);
  337. edges[idx - 1] = edge;
  338. *index = idx;
  339. return edge->node[UPPER];
  340. }
  341. *index = 0;
  342. return NULL;
  343. }
  344. static void unlock_node_buffer(struct backref_node *node)
  345. {
  346. if (node->locked) {
  347. btrfs_tree_unlock(node->eb);
  348. node->locked = 0;
  349. }
  350. }
  351. static void drop_node_buffer(struct backref_node *node)
  352. {
  353. if (node->eb) {
  354. unlock_node_buffer(node);
  355. free_extent_buffer(node->eb);
  356. node->eb = NULL;
  357. }
  358. }
  359. static void drop_backref_node(struct backref_cache *tree,
  360. struct backref_node *node)
  361. {
  362. BUG_ON(!list_empty(&node->upper));
  363. drop_node_buffer(node);
  364. list_del(&node->list);
  365. list_del(&node->lower);
  366. if (!RB_EMPTY_NODE(&node->rb_node))
  367. rb_erase(&node->rb_node, &tree->rb_root);
  368. free_backref_node(tree, node);
  369. }
  370. /*
  371. * remove a backref node from the backref cache
  372. */
  373. static void remove_backref_node(struct backref_cache *cache,
  374. struct backref_node *node)
  375. {
  376. struct backref_node *upper;
  377. struct backref_edge *edge;
  378. if (!node)
  379. return;
  380. BUG_ON(!node->lowest && !node->detached);
  381. while (!list_empty(&node->upper)) {
  382. edge = list_entry(node->upper.next, struct backref_edge,
  383. list[LOWER]);
  384. upper = edge->node[UPPER];
  385. list_del(&edge->list[LOWER]);
  386. list_del(&edge->list[UPPER]);
  387. free_backref_edge(cache, edge);
  388. if (RB_EMPTY_NODE(&upper->rb_node)) {
  389. BUG_ON(!list_empty(&node->upper));
  390. drop_backref_node(cache, node);
  391. node = upper;
  392. node->lowest = 1;
  393. continue;
  394. }
  395. /*
  396. * add the node to leaf node list if no other
  397. * child block cached.
  398. */
  399. if (list_empty(&upper->lower)) {
  400. list_add_tail(&upper->lower, &cache->leaves);
  401. upper->lowest = 1;
  402. }
  403. }
  404. drop_backref_node(cache, node);
  405. }
  406. static void update_backref_node(struct backref_cache *cache,
  407. struct backref_node *node, u64 bytenr)
  408. {
  409. struct rb_node *rb_node;
  410. rb_erase(&node->rb_node, &cache->rb_root);
  411. node->bytenr = bytenr;
  412. rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
  413. if (rb_node)
  414. backref_tree_panic(rb_node, -EEXIST, bytenr);
  415. }
  416. /*
  417. * update backref cache after a transaction commit
  418. */
  419. static int update_backref_cache(struct btrfs_trans_handle *trans,
  420. struct backref_cache *cache)
  421. {
  422. struct backref_node *node;
  423. int level = 0;
  424. if (cache->last_trans == 0) {
  425. cache->last_trans = trans->transid;
  426. return 0;
  427. }
  428. if (cache->last_trans == trans->transid)
  429. return 0;
  430. /*
  431. * detached nodes are used to avoid unnecessary backref
  432. * lookup. transaction commit changes the extent tree.
  433. * so the detached nodes are no longer useful.
  434. */
  435. while (!list_empty(&cache->detached)) {
  436. node = list_entry(cache->detached.next,
  437. struct backref_node, list);
  438. remove_backref_node(cache, node);
  439. }
  440. while (!list_empty(&cache->changed)) {
  441. node = list_entry(cache->changed.next,
  442. struct backref_node, list);
  443. list_del_init(&node->list);
  444. BUG_ON(node->pending);
  445. update_backref_node(cache, node, node->new_bytenr);
  446. }
  447. /*
  448. * some nodes can be left in the pending list if there were
  449. * errors during processing the pending nodes.
  450. */
  451. for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
  452. list_for_each_entry(node, &cache->pending[level], list) {
  453. BUG_ON(!node->pending);
  454. if (node->bytenr == node->new_bytenr)
  455. continue;
  456. update_backref_node(cache, node, node->new_bytenr);
  457. }
  458. }
  459. cache->last_trans = 0;
  460. return 1;
  461. }
  462. static int should_ignore_root(struct btrfs_root *root)
  463. {
  464. struct btrfs_root *reloc_root;
  465. if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
  466. return 0;
  467. reloc_root = root->reloc_root;
  468. if (!reloc_root)
  469. return 0;
  470. if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
  471. root->fs_info->running_transaction->transid - 1)
  472. return 0;
  473. /*
  474. * if there is reloc tree and it was created in previous
  475. * transaction backref lookup can find the reloc tree,
  476. * so backref node for the fs tree root is useless for
  477. * relocation.
  478. */
  479. return 1;
  480. }
  481. /*
  482. * find reloc tree by address of tree root
  483. */
  484. static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
  485. u64 bytenr)
  486. {
  487. struct rb_node *rb_node;
  488. struct mapping_node *node;
  489. struct btrfs_root *root = NULL;
  490. spin_lock(&rc->reloc_root_tree.lock);
  491. rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
  492. if (rb_node) {
  493. node = rb_entry(rb_node, struct mapping_node, rb_node);
  494. root = (struct btrfs_root *)node->data;
  495. }
  496. spin_unlock(&rc->reloc_root_tree.lock);
  497. return root;
  498. }
  499. static int is_cowonly_root(u64 root_objectid)
  500. {
  501. if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
  502. root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
  503. root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
  504. root_objectid == BTRFS_DEV_TREE_OBJECTID ||
  505. root_objectid == BTRFS_TREE_LOG_OBJECTID ||
  506. root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
  507. root_objectid == BTRFS_UUID_TREE_OBJECTID ||
  508. root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
  509. root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
  510. return 1;
  511. return 0;
  512. }
  513. static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
  514. u64 root_objectid)
  515. {
  516. struct btrfs_key key;
  517. key.objectid = root_objectid;
  518. key.type = BTRFS_ROOT_ITEM_KEY;
  519. if (is_cowonly_root(root_objectid))
  520. key.offset = 0;
  521. else
  522. key.offset = (u64)-1;
  523. return btrfs_get_fs_root(fs_info, &key, false);
  524. }
  525. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  526. static noinline_for_stack
  527. struct btrfs_root *find_tree_root(struct reloc_control *rc,
  528. struct extent_buffer *leaf,
  529. struct btrfs_extent_ref_v0 *ref0)
  530. {
  531. struct btrfs_root *root;
  532. u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
  533. u64 generation = btrfs_ref_generation_v0(leaf, ref0);
  534. BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
  535. root = read_fs_root(rc->extent_root->fs_info, root_objectid);
  536. BUG_ON(IS_ERR(root));
  537. if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
  538. generation != btrfs_root_generation(&root->root_item))
  539. return NULL;
  540. return root;
  541. }
  542. #endif
  543. static noinline_for_stack
  544. int find_inline_backref(struct extent_buffer *leaf, int slot,
  545. unsigned long *ptr, unsigned long *end)
  546. {
  547. struct btrfs_key key;
  548. struct btrfs_extent_item *ei;
  549. struct btrfs_tree_block_info *bi;
  550. u32 item_size;
  551. btrfs_item_key_to_cpu(leaf, &key, slot);
  552. item_size = btrfs_item_size_nr(leaf, slot);
  553. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  554. if (item_size < sizeof(*ei)) {
  555. WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
  556. return 1;
  557. }
  558. #endif
  559. ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
  560. WARN_ON(!(btrfs_extent_flags(leaf, ei) &
  561. BTRFS_EXTENT_FLAG_TREE_BLOCK));
  562. if (key.type == BTRFS_EXTENT_ITEM_KEY &&
  563. item_size <= sizeof(*ei) + sizeof(*bi)) {
  564. WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
  565. return 1;
  566. }
  567. if (key.type == BTRFS_METADATA_ITEM_KEY &&
  568. item_size <= sizeof(*ei)) {
  569. WARN_ON(item_size < sizeof(*ei));
  570. return 1;
  571. }
  572. if (key.type == BTRFS_EXTENT_ITEM_KEY) {
  573. bi = (struct btrfs_tree_block_info *)(ei + 1);
  574. *ptr = (unsigned long)(bi + 1);
  575. } else {
  576. *ptr = (unsigned long)(ei + 1);
  577. }
  578. *end = (unsigned long)ei + item_size;
  579. return 0;
  580. }
  581. /*
  582. * build backref tree for a given tree block. root of the backref tree
  583. * corresponds the tree block, leaves of the backref tree correspond
  584. * roots of b-trees that reference the tree block.
  585. *
  586. * the basic idea of this function is check backrefs of a given block
  587. * to find upper level blocks that reference the block, and then check
  588. * backrefs of these upper level blocks recursively. the recursion stop
  589. * when tree root is reached or backrefs for the block is cached.
  590. *
  591. * NOTE: if we find backrefs for a block are cached, we know backrefs
  592. * for all upper level blocks that directly/indirectly reference the
  593. * block are also cached.
  594. */
  595. static noinline_for_stack
  596. struct backref_node *build_backref_tree(struct reloc_control *rc,
  597. struct btrfs_key *node_key,
  598. int level, u64 bytenr)
  599. {
  600. struct backref_cache *cache = &rc->backref_cache;
  601. struct btrfs_path *path1;
  602. struct btrfs_path *path2;
  603. struct extent_buffer *eb;
  604. struct btrfs_root *root;
  605. struct backref_node *cur;
  606. struct backref_node *upper;
  607. struct backref_node *lower;
  608. struct backref_node *node = NULL;
  609. struct backref_node *exist = NULL;
  610. struct backref_edge *edge;
  611. struct rb_node *rb_node;
  612. struct btrfs_key key;
  613. unsigned long end;
  614. unsigned long ptr;
  615. LIST_HEAD(list);
  616. LIST_HEAD(useless);
  617. int cowonly;
  618. int ret;
  619. int err = 0;
  620. bool need_check = true;
  621. path1 = btrfs_alloc_path();
  622. path2 = btrfs_alloc_path();
  623. if (!path1 || !path2) {
  624. err = -ENOMEM;
  625. goto out;
  626. }
  627. path1->reada = READA_FORWARD;
  628. path2->reada = READA_FORWARD;
  629. node = alloc_backref_node(cache);
  630. if (!node) {
  631. err = -ENOMEM;
  632. goto out;
  633. }
  634. node->bytenr = bytenr;
  635. node->level = level;
  636. node->lowest = 1;
  637. cur = node;
  638. again:
  639. end = 0;
  640. ptr = 0;
  641. key.objectid = cur->bytenr;
  642. key.type = BTRFS_METADATA_ITEM_KEY;
  643. key.offset = (u64)-1;
  644. path1->search_commit_root = 1;
  645. path1->skip_locking = 1;
  646. ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
  647. 0, 0);
  648. if (ret < 0) {
  649. err = ret;
  650. goto out;
  651. }
  652. ASSERT(ret);
  653. ASSERT(path1->slots[0]);
  654. path1->slots[0]--;
  655. WARN_ON(cur->checked);
  656. if (!list_empty(&cur->upper)) {
  657. /*
  658. * the backref was added previously when processing
  659. * backref of type BTRFS_TREE_BLOCK_REF_KEY
  660. */
  661. ASSERT(list_is_singular(&cur->upper));
  662. edge = list_entry(cur->upper.next, struct backref_edge,
  663. list[LOWER]);
  664. ASSERT(list_empty(&edge->list[UPPER]));
  665. exist = edge->node[UPPER];
  666. /*
  667. * add the upper level block to pending list if we need
  668. * check its backrefs
  669. */
  670. if (!exist->checked)
  671. list_add_tail(&edge->list[UPPER], &list);
  672. } else {
  673. exist = NULL;
  674. }
  675. while (1) {
  676. cond_resched();
  677. eb = path1->nodes[0];
  678. if (ptr >= end) {
  679. if (path1->slots[0] >= btrfs_header_nritems(eb)) {
  680. ret = btrfs_next_leaf(rc->extent_root, path1);
  681. if (ret < 0) {
  682. err = ret;
  683. goto out;
  684. }
  685. if (ret > 0)
  686. break;
  687. eb = path1->nodes[0];
  688. }
  689. btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
  690. if (key.objectid != cur->bytenr) {
  691. WARN_ON(exist);
  692. break;
  693. }
  694. if (key.type == BTRFS_EXTENT_ITEM_KEY ||
  695. key.type == BTRFS_METADATA_ITEM_KEY) {
  696. ret = find_inline_backref(eb, path1->slots[0],
  697. &ptr, &end);
  698. if (ret)
  699. goto next;
  700. }
  701. }
  702. if (ptr < end) {
  703. /* update key for inline back ref */
  704. struct btrfs_extent_inline_ref *iref;
  705. iref = (struct btrfs_extent_inline_ref *)ptr;
  706. key.type = btrfs_extent_inline_ref_type(eb, iref);
  707. key.offset = btrfs_extent_inline_ref_offset(eb, iref);
  708. WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
  709. key.type != BTRFS_SHARED_BLOCK_REF_KEY);
  710. }
  711. if (exist &&
  712. ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
  713. exist->owner == key.offset) ||
  714. (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
  715. exist->bytenr == key.offset))) {
  716. exist = NULL;
  717. goto next;
  718. }
  719. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  720. if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
  721. key.type == BTRFS_EXTENT_REF_V0_KEY) {
  722. if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
  723. struct btrfs_extent_ref_v0 *ref0;
  724. ref0 = btrfs_item_ptr(eb, path1->slots[0],
  725. struct btrfs_extent_ref_v0);
  726. if (key.objectid == key.offset) {
  727. root = find_tree_root(rc, eb, ref0);
  728. if (root && !should_ignore_root(root))
  729. cur->root = root;
  730. else
  731. list_add(&cur->list, &useless);
  732. break;
  733. }
  734. if (is_cowonly_root(btrfs_ref_root_v0(eb,
  735. ref0)))
  736. cur->cowonly = 1;
  737. }
  738. #else
  739. ASSERT(key.type != BTRFS_EXTENT_REF_V0_KEY);
  740. if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
  741. #endif
  742. if (key.objectid == key.offset) {
  743. /*
  744. * only root blocks of reloc trees use
  745. * backref of this type.
  746. */
  747. root = find_reloc_root(rc, cur->bytenr);
  748. ASSERT(root);
  749. cur->root = root;
  750. break;
  751. }
  752. edge = alloc_backref_edge(cache);
  753. if (!edge) {
  754. err = -ENOMEM;
  755. goto out;
  756. }
  757. rb_node = tree_search(&cache->rb_root, key.offset);
  758. if (!rb_node) {
  759. upper = alloc_backref_node(cache);
  760. if (!upper) {
  761. free_backref_edge(cache, edge);
  762. err = -ENOMEM;
  763. goto out;
  764. }
  765. upper->bytenr = key.offset;
  766. upper->level = cur->level + 1;
  767. /*
  768. * backrefs for the upper level block isn't
  769. * cached, add the block to pending list
  770. */
  771. list_add_tail(&edge->list[UPPER], &list);
  772. } else {
  773. upper = rb_entry(rb_node, struct backref_node,
  774. rb_node);
  775. ASSERT(upper->checked);
  776. INIT_LIST_HEAD(&edge->list[UPPER]);
  777. }
  778. list_add_tail(&edge->list[LOWER], &cur->upper);
  779. edge->node[LOWER] = cur;
  780. edge->node[UPPER] = upper;
  781. goto next;
  782. } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
  783. goto next;
  784. }
  785. /* key.type == BTRFS_TREE_BLOCK_REF_KEY */
  786. root = read_fs_root(rc->extent_root->fs_info, key.offset);
  787. if (IS_ERR(root)) {
  788. err = PTR_ERR(root);
  789. goto out;
  790. }
  791. if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
  792. cur->cowonly = 1;
  793. if (btrfs_root_level(&root->root_item) == cur->level) {
  794. /* tree root */
  795. ASSERT(btrfs_root_bytenr(&root->root_item) ==
  796. cur->bytenr);
  797. if (should_ignore_root(root))
  798. list_add(&cur->list, &useless);
  799. else
  800. cur->root = root;
  801. break;
  802. }
  803. level = cur->level + 1;
  804. /*
  805. * searching the tree to find upper level blocks
  806. * reference the block.
  807. */
  808. path2->search_commit_root = 1;
  809. path2->skip_locking = 1;
  810. path2->lowest_level = level;
  811. ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
  812. path2->lowest_level = 0;
  813. if (ret < 0) {
  814. err = ret;
  815. goto out;
  816. }
  817. if (ret > 0 && path2->slots[level] > 0)
  818. path2->slots[level]--;
  819. eb = path2->nodes[level];
  820. if (btrfs_node_blockptr(eb, path2->slots[level]) !=
  821. cur->bytenr) {
  822. btrfs_err(root->fs_info,
  823. "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
  824. cur->bytenr, level - 1, root->objectid,
  825. node_key->objectid, node_key->type,
  826. node_key->offset);
  827. err = -ENOENT;
  828. goto out;
  829. }
  830. lower = cur;
  831. need_check = true;
  832. for (; level < BTRFS_MAX_LEVEL; level++) {
  833. if (!path2->nodes[level]) {
  834. ASSERT(btrfs_root_bytenr(&root->root_item) ==
  835. lower->bytenr);
  836. if (should_ignore_root(root))
  837. list_add(&lower->list, &useless);
  838. else
  839. lower->root = root;
  840. break;
  841. }
  842. edge = alloc_backref_edge(cache);
  843. if (!edge) {
  844. err = -ENOMEM;
  845. goto out;
  846. }
  847. eb = path2->nodes[level];
  848. rb_node = tree_search(&cache->rb_root, eb->start);
  849. if (!rb_node) {
  850. upper = alloc_backref_node(cache);
  851. if (!upper) {
  852. free_backref_edge(cache, edge);
  853. err = -ENOMEM;
  854. goto out;
  855. }
  856. upper->bytenr = eb->start;
  857. upper->owner = btrfs_header_owner(eb);
  858. upper->level = lower->level + 1;
  859. if (!test_bit(BTRFS_ROOT_REF_COWS,
  860. &root->state))
  861. upper->cowonly = 1;
  862. /*
  863. * if we know the block isn't shared
  864. * we can void checking its backrefs.
  865. */
  866. if (btrfs_block_can_be_shared(root, eb))
  867. upper->checked = 0;
  868. else
  869. upper->checked = 1;
  870. /*
  871. * add the block to pending list if we
  872. * need check its backrefs, we only do this once
  873. * while walking up a tree as we will catch
  874. * anything else later on.
  875. */
  876. if (!upper->checked && need_check) {
  877. need_check = false;
  878. list_add_tail(&edge->list[UPPER],
  879. &list);
  880. } else {
  881. if (upper->checked)
  882. need_check = true;
  883. INIT_LIST_HEAD(&edge->list[UPPER]);
  884. }
  885. } else {
  886. upper = rb_entry(rb_node, struct backref_node,
  887. rb_node);
  888. ASSERT(upper->checked);
  889. INIT_LIST_HEAD(&edge->list[UPPER]);
  890. if (!upper->owner)
  891. upper->owner = btrfs_header_owner(eb);
  892. }
  893. list_add_tail(&edge->list[LOWER], &lower->upper);
  894. edge->node[LOWER] = lower;
  895. edge->node[UPPER] = upper;
  896. if (rb_node)
  897. break;
  898. lower = upper;
  899. upper = NULL;
  900. }
  901. btrfs_release_path(path2);
  902. next:
  903. if (ptr < end) {
  904. ptr += btrfs_extent_inline_ref_size(key.type);
  905. if (ptr >= end) {
  906. WARN_ON(ptr > end);
  907. ptr = 0;
  908. end = 0;
  909. }
  910. }
  911. if (ptr >= end)
  912. path1->slots[0]++;
  913. }
  914. btrfs_release_path(path1);
  915. cur->checked = 1;
  916. WARN_ON(exist);
  917. /* the pending list isn't empty, take the first block to process */
  918. if (!list_empty(&list)) {
  919. edge = list_entry(list.next, struct backref_edge, list[UPPER]);
  920. list_del_init(&edge->list[UPPER]);
  921. cur = edge->node[UPPER];
  922. goto again;
  923. }
  924. /*
  925. * everything goes well, connect backref nodes and insert backref nodes
  926. * into the cache.
  927. */
  928. ASSERT(node->checked);
  929. cowonly = node->cowonly;
  930. if (!cowonly) {
  931. rb_node = tree_insert(&cache->rb_root, node->bytenr,
  932. &node->rb_node);
  933. if (rb_node)
  934. backref_tree_panic(rb_node, -EEXIST, node->bytenr);
  935. list_add_tail(&node->lower, &cache->leaves);
  936. }
  937. list_for_each_entry(edge, &node->upper, list[LOWER])
  938. list_add_tail(&edge->list[UPPER], &list);
  939. while (!list_empty(&list)) {
  940. edge = list_entry(list.next, struct backref_edge, list[UPPER]);
  941. list_del_init(&edge->list[UPPER]);
  942. upper = edge->node[UPPER];
  943. if (upper->detached) {
  944. list_del(&edge->list[LOWER]);
  945. lower = edge->node[LOWER];
  946. free_backref_edge(cache, edge);
  947. if (list_empty(&lower->upper))
  948. list_add(&lower->list, &useless);
  949. continue;
  950. }
  951. if (!RB_EMPTY_NODE(&upper->rb_node)) {
  952. if (upper->lowest) {
  953. list_del_init(&upper->lower);
  954. upper->lowest = 0;
  955. }
  956. list_add_tail(&edge->list[UPPER], &upper->lower);
  957. continue;
  958. }
  959. if (!upper->checked) {
  960. /*
  961. * Still want to blow up for developers since this is a
  962. * logic bug.
  963. */
  964. ASSERT(0);
  965. err = -EINVAL;
  966. goto out;
  967. }
  968. if (cowonly != upper->cowonly) {
  969. ASSERT(0);
  970. err = -EINVAL;
  971. goto out;
  972. }
  973. if (!cowonly) {
  974. rb_node = tree_insert(&cache->rb_root, upper->bytenr,
  975. &upper->rb_node);
  976. if (rb_node)
  977. backref_tree_panic(rb_node, -EEXIST,
  978. upper->bytenr);
  979. }
  980. list_add_tail(&edge->list[UPPER], &upper->lower);
  981. list_for_each_entry(edge, &upper->upper, list[LOWER])
  982. list_add_tail(&edge->list[UPPER], &list);
  983. }
  984. /*
  985. * process useless backref nodes. backref nodes for tree leaves
  986. * are deleted from the cache. backref nodes for upper level
  987. * tree blocks are left in the cache to avoid unnecessary backref
  988. * lookup.
  989. */
  990. while (!list_empty(&useless)) {
  991. upper = list_entry(useless.next, struct backref_node, list);
  992. list_del_init(&upper->list);
  993. ASSERT(list_empty(&upper->upper));
  994. if (upper == node)
  995. node = NULL;
  996. if (upper->lowest) {
  997. list_del_init(&upper->lower);
  998. upper->lowest = 0;
  999. }
  1000. while (!list_empty(&upper->lower)) {
  1001. edge = list_entry(upper->lower.next,
  1002. struct backref_edge, list[UPPER]);
  1003. list_del(&edge->list[UPPER]);
  1004. list_del(&edge->list[LOWER]);
  1005. lower = edge->node[LOWER];
  1006. free_backref_edge(cache, edge);
  1007. if (list_empty(&lower->upper))
  1008. list_add(&lower->list, &useless);
  1009. }
  1010. __mark_block_processed(rc, upper);
  1011. if (upper->level > 0) {
  1012. list_add(&upper->list, &cache->detached);
  1013. upper->detached = 1;
  1014. } else {
  1015. rb_erase(&upper->rb_node, &cache->rb_root);
  1016. free_backref_node(cache, upper);
  1017. }
  1018. }
  1019. out:
  1020. btrfs_free_path(path1);
  1021. btrfs_free_path(path2);
  1022. if (err) {
  1023. while (!list_empty(&useless)) {
  1024. lower = list_entry(useless.next,
  1025. struct backref_node, list);
  1026. list_del_init(&lower->list);
  1027. }
  1028. while (!list_empty(&list)) {
  1029. edge = list_first_entry(&list, struct backref_edge,
  1030. list[UPPER]);
  1031. list_del(&edge->list[UPPER]);
  1032. list_del(&edge->list[LOWER]);
  1033. lower = edge->node[LOWER];
  1034. upper = edge->node[UPPER];
  1035. free_backref_edge(cache, edge);
  1036. /*
  1037. * Lower is no longer linked to any upper backref nodes
  1038. * and isn't in the cache, we can free it ourselves.
  1039. */
  1040. if (list_empty(&lower->upper) &&
  1041. RB_EMPTY_NODE(&lower->rb_node))
  1042. list_add(&lower->list, &useless);
  1043. if (!RB_EMPTY_NODE(&upper->rb_node))
  1044. continue;
  1045. /* Add this guy's upper edges to the list to process */
  1046. list_for_each_entry(edge, &upper->upper, list[LOWER])
  1047. list_add_tail(&edge->list[UPPER], &list);
  1048. if (list_empty(&upper->upper))
  1049. list_add(&upper->list, &useless);
  1050. }
  1051. while (!list_empty(&useless)) {
  1052. lower = list_entry(useless.next,
  1053. struct backref_node, list);
  1054. list_del_init(&lower->list);
  1055. if (lower == node)
  1056. node = NULL;
  1057. free_backref_node(cache, lower);
  1058. }
  1059. free_backref_node(cache, node);
  1060. return ERR_PTR(err);
  1061. }
  1062. ASSERT(!node || !node->detached);
  1063. return node;
  1064. }
  1065. /*
  1066. * helper to add backref node for the newly created snapshot.
  1067. * the backref node is created by cloning backref node that
  1068. * corresponds to root of source tree
  1069. */
  1070. static int clone_backref_node(struct btrfs_trans_handle *trans,
  1071. struct reloc_control *rc,
  1072. struct btrfs_root *src,
  1073. struct btrfs_root *dest)
  1074. {
  1075. struct btrfs_root *reloc_root = src->reloc_root;
  1076. struct backref_cache *cache = &rc->backref_cache;
  1077. struct backref_node *node = NULL;
  1078. struct backref_node *new_node;
  1079. struct backref_edge *edge;
  1080. struct backref_edge *new_edge;
  1081. struct rb_node *rb_node;
  1082. if (cache->last_trans > 0)
  1083. update_backref_cache(trans, cache);
  1084. rb_node = tree_search(&cache->rb_root, src->commit_root->start);
  1085. if (rb_node) {
  1086. node = rb_entry(rb_node, struct backref_node, rb_node);
  1087. if (node->detached)
  1088. node = NULL;
  1089. else
  1090. BUG_ON(node->new_bytenr != reloc_root->node->start);
  1091. }
  1092. if (!node) {
  1093. rb_node = tree_search(&cache->rb_root,
  1094. reloc_root->commit_root->start);
  1095. if (rb_node) {
  1096. node = rb_entry(rb_node, struct backref_node,
  1097. rb_node);
  1098. BUG_ON(node->detached);
  1099. }
  1100. }
  1101. if (!node)
  1102. return 0;
  1103. new_node = alloc_backref_node(cache);
  1104. if (!new_node)
  1105. return -ENOMEM;
  1106. new_node->bytenr = dest->node->start;
  1107. new_node->level = node->level;
  1108. new_node->lowest = node->lowest;
  1109. new_node->checked = 1;
  1110. new_node->root = dest;
  1111. if (!node->lowest) {
  1112. list_for_each_entry(edge, &node->lower, list[UPPER]) {
  1113. new_edge = alloc_backref_edge(cache);
  1114. if (!new_edge)
  1115. goto fail;
  1116. new_edge->node[UPPER] = new_node;
  1117. new_edge->node[LOWER] = edge->node[LOWER];
  1118. list_add_tail(&new_edge->list[UPPER],
  1119. &new_node->lower);
  1120. }
  1121. } else {
  1122. list_add_tail(&new_node->lower, &cache->leaves);
  1123. }
  1124. rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
  1125. &new_node->rb_node);
  1126. if (rb_node)
  1127. backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
  1128. if (!new_node->lowest) {
  1129. list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
  1130. list_add_tail(&new_edge->list[LOWER],
  1131. &new_edge->node[LOWER]->upper);
  1132. }
  1133. }
  1134. return 0;
  1135. fail:
  1136. while (!list_empty(&new_node->lower)) {
  1137. new_edge = list_entry(new_node->lower.next,
  1138. struct backref_edge, list[UPPER]);
  1139. list_del(&new_edge->list[UPPER]);
  1140. free_backref_edge(cache, new_edge);
  1141. }
  1142. free_backref_node(cache, new_node);
  1143. return -ENOMEM;
  1144. }
  1145. /*
  1146. * helper to add 'address of tree root -> reloc tree' mapping
  1147. */
  1148. static int __must_check __add_reloc_root(struct btrfs_root *root)
  1149. {
  1150. struct btrfs_fs_info *fs_info = root->fs_info;
  1151. struct rb_node *rb_node;
  1152. struct mapping_node *node;
  1153. struct reloc_control *rc = fs_info->reloc_ctl;
  1154. node = kmalloc(sizeof(*node), GFP_NOFS);
  1155. if (!node)
  1156. return -ENOMEM;
  1157. node->bytenr = root->node->start;
  1158. node->data = root;
  1159. spin_lock(&rc->reloc_root_tree.lock);
  1160. rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
  1161. node->bytenr, &node->rb_node);
  1162. spin_unlock(&rc->reloc_root_tree.lock);
  1163. if (rb_node) {
  1164. btrfs_panic(fs_info, -EEXIST,
  1165. "Duplicate root found for start=%llu while inserting into relocation tree",
  1166. node->bytenr);
  1167. kfree(node);
  1168. return -EEXIST;
  1169. }
  1170. list_add_tail(&root->root_list, &rc->reloc_roots);
  1171. return 0;
  1172. }
  1173. /*
  1174. * helper to delete the 'address of tree root -> reloc tree'
  1175. * mapping
  1176. */
  1177. static void __del_reloc_root(struct btrfs_root *root)
  1178. {
  1179. struct btrfs_fs_info *fs_info = root->fs_info;
  1180. struct rb_node *rb_node;
  1181. struct mapping_node *node = NULL;
  1182. struct reloc_control *rc = fs_info->reloc_ctl;
  1183. spin_lock(&rc->reloc_root_tree.lock);
  1184. rb_node = tree_search(&rc->reloc_root_tree.rb_root,
  1185. root->node->start);
  1186. if (rb_node) {
  1187. node = rb_entry(rb_node, struct mapping_node, rb_node);
  1188. rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
  1189. }
  1190. spin_unlock(&rc->reloc_root_tree.lock);
  1191. if (!node)
  1192. return;
  1193. BUG_ON((struct btrfs_root *)node->data != root);
  1194. spin_lock(&fs_info->trans_lock);
  1195. list_del_init(&root->root_list);
  1196. spin_unlock(&fs_info->trans_lock);
  1197. kfree(node);
  1198. }
  1199. /*
  1200. * helper to update the 'address of tree root -> reloc tree'
  1201. * mapping
  1202. */
  1203. static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
  1204. {
  1205. struct btrfs_fs_info *fs_info = root->fs_info;
  1206. struct rb_node *rb_node;
  1207. struct mapping_node *node = NULL;
  1208. struct reloc_control *rc = fs_info->reloc_ctl;
  1209. spin_lock(&rc->reloc_root_tree.lock);
  1210. rb_node = tree_search(&rc->reloc_root_tree.rb_root,
  1211. root->node->start);
  1212. if (rb_node) {
  1213. node = rb_entry(rb_node, struct mapping_node, rb_node);
  1214. rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
  1215. }
  1216. spin_unlock(&rc->reloc_root_tree.lock);
  1217. if (!node)
  1218. return 0;
  1219. BUG_ON((struct btrfs_root *)node->data != root);
  1220. spin_lock(&rc->reloc_root_tree.lock);
  1221. node->bytenr = new_bytenr;
  1222. rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
  1223. node->bytenr, &node->rb_node);
  1224. spin_unlock(&rc->reloc_root_tree.lock);
  1225. if (rb_node)
  1226. backref_tree_panic(rb_node, -EEXIST, node->bytenr);
  1227. return 0;
  1228. }
  1229. static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
  1230. struct btrfs_root *root, u64 objectid)
  1231. {
  1232. struct btrfs_fs_info *fs_info = root->fs_info;
  1233. struct btrfs_root *reloc_root;
  1234. struct extent_buffer *eb;
  1235. struct btrfs_root_item *root_item;
  1236. struct btrfs_key root_key;
  1237. u64 last_snap = 0;
  1238. int ret;
  1239. root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
  1240. BUG_ON(!root_item);
  1241. root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
  1242. root_key.type = BTRFS_ROOT_ITEM_KEY;
  1243. root_key.offset = objectid;
  1244. if (root->root_key.objectid == objectid) {
  1245. /* called by btrfs_init_reloc_root */
  1246. ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
  1247. BTRFS_TREE_RELOC_OBJECTID);
  1248. BUG_ON(ret);
  1249. last_snap = btrfs_root_last_snapshot(&root->root_item);
  1250. btrfs_set_root_last_snapshot(&root->root_item,
  1251. trans->transid - 1);
  1252. } else {
  1253. /*
  1254. * called by btrfs_reloc_post_snapshot_hook.
  1255. * the source tree is a reloc tree, all tree blocks
  1256. * modified after it was created have RELOC flag
  1257. * set in their headers. so it's OK to not update
  1258. * the 'last_snapshot'.
  1259. */
  1260. ret = btrfs_copy_root(trans, root, root->node, &eb,
  1261. BTRFS_TREE_RELOC_OBJECTID);
  1262. BUG_ON(ret);
  1263. }
  1264. memcpy(root_item, &root->root_item, sizeof(*root_item));
  1265. btrfs_set_root_bytenr(root_item, eb->start);
  1266. btrfs_set_root_level(root_item, btrfs_header_level(eb));
  1267. btrfs_set_root_generation(root_item, trans->transid);
  1268. if (root->root_key.objectid == objectid) {
  1269. btrfs_set_root_refs(root_item, 0);
  1270. memset(&root_item->drop_progress, 0,
  1271. sizeof(struct btrfs_disk_key));
  1272. root_item->drop_level = 0;
  1273. /*
  1274. * abuse rtransid, it is safe because it is impossible to
  1275. * receive data into a relocation tree.
  1276. */
  1277. btrfs_set_root_rtransid(root_item, last_snap);
  1278. btrfs_set_root_otransid(root_item, trans->transid);
  1279. }
  1280. btrfs_tree_unlock(eb);
  1281. free_extent_buffer(eb);
  1282. ret = btrfs_insert_root(trans, fs_info->tree_root,
  1283. &root_key, root_item);
  1284. BUG_ON(ret);
  1285. kfree(root_item);
  1286. reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
  1287. BUG_ON(IS_ERR(reloc_root));
  1288. reloc_root->last_trans = trans->transid;
  1289. return reloc_root;
  1290. }
  1291. /*
  1292. * create reloc tree for a given fs tree. reloc tree is just a
  1293. * snapshot of the fs tree with special root objectid.
  1294. */
  1295. int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
  1296. struct btrfs_root *root)
  1297. {
  1298. struct btrfs_fs_info *fs_info = root->fs_info;
  1299. struct btrfs_root *reloc_root;
  1300. struct reloc_control *rc = fs_info->reloc_ctl;
  1301. struct btrfs_block_rsv *rsv;
  1302. int clear_rsv = 0;
  1303. int ret;
  1304. if (root->reloc_root) {
  1305. reloc_root = root->reloc_root;
  1306. reloc_root->last_trans = trans->transid;
  1307. return 0;
  1308. }
  1309. if (!rc || !rc->create_reloc_tree ||
  1310. root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  1311. return 0;
  1312. if (!trans->reloc_reserved) {
  1313. rsv = trans->block_rsv;
  1314. trans->block_rsv = rc->block_rsv;
  1315. clear_rsv = 1;
  1316. }
  1317. reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
  1318. if (clear_rsv)
  1319. trans->block_rsv = rsv;
  1320. ret = __add_reloc_root(reloc_root);
  1321. BUG_ON(ret < 0);
  1322. root->reloc_root = reloc_root;
  1323. return 0;
  1324. }
  1325. /*
  1326. * update root item of reloc tree
  1327. */
  1328. int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
  1329. struct btrfs_root *root)
  1330. {
  1331. struct btrfs_fs_info *fs_info = root->fs_info;
  1332. struct btrfs_root *reloc_root;
  1333. struct btrfs_root_item *root_item;
  1334. int ret;
  1335. if (!root->reloc_root)
  1336. goto out;
  1337. reloc_root = root->reloc_root;
  1338. root_item = &reloc_root->root_item;
  1339. if (fs_info->reloc_ctl->merge_reloc_tree &&
  1340. btrfs_root_refs(root_item) == 0) {
  1341. root->reloc_root = NULL;
  1342. __del_reloc_root(reloc_root);
  1343. }
  1344. if (reloc_root->commit_root != reloc_root->node) {
  1345. btrfs_set_root_node(root_item, reloc_root->node);
  1346. free_extent_buffer(reloc_root->commit_root);
  1347. reloc_root->commit_root = btrfs_root_node(reloc_root);
  1348. }
  1349. ret = btrfs_update_root(trans, fs_info->tree_root,
  1350. &reloc_root->root_key, root_item);
  1351. BUG_ON(ret);
  1352. out:
  1353. return 0;
  1354. }
  1355. /*
  1356. * helper to find first cached inode with inode number >= objectid
  1357. * in a subvolume
  1358. */
  1359. static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
  1360. {
  1361. struct rb_node *node;
  1362. struct rb_node *prev;
  1363. struct btrfs_inode *entry;
  1364. struct inode *inode;
  1365. spin_lock(&root->inode_lock);
  1366. again:
  1367. node = root->inode_tree.rb_node;
  1368. prev = NULL;
  1369. while (node) {
  1370. prev = node;
  1371. entry = rb_entry(node, struct btrfs_inode, rb_node);
  1372. if (objectid < btrfs_ino(&entry->vfs_inode))
  1373. node = node->rb_left;
  1374. else if (objectid > btrfs_ino(&entry->vfs_inode))
  1375. node = node->rb_right;
  1376. else
  1377. break;
  1378. }
  1379. if (!node) {
  1380. while (prev) {
  1381. entry = rb_entry(prev, struct btrfs_inode, rb_node);
  1382. if (objectid <= btrfs_ino(&entry->vfs_inode)) {
  1383. node = prev;
  1384. break;
  1385. }
  1386. prev = rb_next(prev);
  1387. }
  1388. }
  1389. while (node) {
  1390. entry = rb_entry(node, struct btrfs_inode, rb_node);
  1391. inode = igrab(&entry->vfs_inode);
  1392. if (inode) {
  1393. spin_unlock(&root->inode_lock);
  1394. return inode;
  1395. }
  1396. objectid = btrfs_ino(&entry->vfs_inode) + 1;
  1397. if (cond_resched_lock(&root->inode_lock))
  1398. goto again;
  1399. node = rb_next(node);
  1400. }
  1401. spin_unlock(&root->inode_lock);
  1402. return NULL;
  1403. }
  1404. static int in_block_group(u64 bytenr,
  1405. struct btrfs_block_group_cache *block_group)
  1406. {
  1407. if (bytenr >= block_group->key.objectid &&
  1408. bytenr < block_group->key.objectid + block_group->key.offset)
  1409. return 1;
  1410. return 0;
  1411. }
  1412. /*
  1413. * get new location of data
  1414. */
  1415. static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
  1416. u64 bytenr, u64 num_bytes)
  1417. {
  1418. struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
  1419. struct btrfs_path *path;
  1420. struct btrfs_file_extent_item *fi;
  1421. struct extent_buffer *leaf;
  1422. int ret;
  1423. path = btrfs_alloc_path();
  1424. if (!path)
  1425. return -ENOMEM;
  1426. bytenr -= BTRFS_I(reloc_inode)->index_cnt;
  1427. ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
  1428. bytenr, 0);
  1429. if (ret < 0)
  1430. goto out;
  1431. if (ret > 0) {
  1432. ret = -ENOENT;
  1433. goto out;
  1434. }
  1435. leaf = path->nodes[0];
  1436. fi = btrfs_item_ptr(leaf, path->slots[0],
  1437. struct btrfs_file_extent_item);
  1438. BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
  1439. btrfs_file_extent_compression(leaf, fi) ||
  1440. btrfs_file_extent_encryption(leaf, fi) ||
  1441. btrfs_file_extent_other_encoding(leaf, fi));
  1442. if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
  1443. ret = -EINVAL;
  1444. goto out;
  1445. }
  1446. *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  1447. ret = 0;
  1448. out:
  1449. btrfs_free_path(path);
  1450. return ret;
  1451. }
  1452. /*
  1453. * update file extent items in the tree leaf to point to
  1454. * the new locations.
  1455. */
  1456. static noinline_for_stack
  1457. int replace_file_extents(struct btrfs_trans_handle *trans,
  1458. struct reloc_control *rc,
  1459. struct btrfs_root *root,
  1460. struct extent_buffer *leaf)
  1461. {
  1462. struct btrfs_fs_info *fs_info = root->fs_info;
  1463. struct btrfs_key key;
  1464. struct btrfs_file_extent_item *fi;
  1465. struct inode *inode = NULL;
  1466. u64 parent;
  1467. u64 bytenr;
  1468. u64 new_bytenr = 0;
  1469. u64 num_bytes;
  1470. u64 end;
  1471. u32 nritems;
  1472. u32 i;
  1473. int ret = 0;
  1474. int first = 1;
  1475. int dirty = 0;
  1476. if (rc->stage != UPDATE_DATA_PTRS)
  1477. return 0;
  1478. /* reloc trees always use full backref */
  1479. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  1480. parent = leaf->start;
  1481. else
  1482. parent = 0;
  1483. nritems = btrfs_header_nritems(leaf);
  1484. for (i = 0; i < nritems; i++) {
  1485. cond_resched();
  1486. btrfs_item_key_to_cpu(leaf, &key, i);
  1487. if (key.type != BTRFS_EXTENT_DATA_KEY)
  1488. continue;
  1489. fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
  1490. if (btrfs_file_extent_type(leaf, fi) ==
  1491. BTRFS_FILE_EXTENT_INLINE)
  1492. continue;
  1493. bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  1494. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  1495. if (bytenr == 0)
  1496. continue;
  1497. if (!in_block_group(bytenr, rc->block_group))
  1498. continue;
  1499. /*
  1500. * if we are modifying block in fs tree, wait for readpage
  1501. * to complete and drop the extent cache
  1502. */
  1503. if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
  1504. if (first) {
  1505. inode = find_next_inode(root, key.objectid);
  1506. first = 0;
  1507. } else if (inode && btrfs_ino(inode) < key.objectid) {
  1508. btrfs_add_delayed_iput(inode);
  1509. inode = find_next_inode(root, key.objectid);
  1510. }
  1511. if (inode && btrfs_ino(inode) == key.objectid) {
  1512. end = key.offset +
  1513. btrfs_file_extent_num_bytes(leaf, fi);
  1514. WARN_ON(!IS_ALIGNED(key.offset,
  1515. fs_info->sectorsize));
  1516. WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
  1517. end--;
  1518. ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
  1519. key.offset, end);
  1520. if (!ret)
  1521. continue;
  1522. btrfs_drop_extent_cache(inode, key.offset, end,
  1523. 1);
  1524. unlock_extent(&BTRFS_I(inode)->io_tree,
  1525. key.offset, end);
  1526. }
  1527. }
  1528. ret = get_new_location(rc->data_inode, &new_bytenr,
  1529. bytenr, num_bytes);
  1530. if (ret) {
  1531. /*
  1532. * Don't have to abort since we've not changed anything
  1533. * in the file extent yet.
  1534. */
  1535. break;
  1536. }
  1537. btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
  1538. dirty = 1;
  1539. key.offset -= btrfs_file_extent_offset(leaf, fi);
  1540. ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
  1541. num_bytes, parent,
  1542. btrfs_header_owner(leaf),
  1543. key.objectid, key.offset);
  1544. if (ret) {
  1545. btrfs_abort_transaction(trans, ret);
  1546. break;
  1547. }
  1548. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1549. parent, btrfs_header_owner(leaf),
  1550. key.objectid, key.offset);
  1551. if (ret) {
  1552. btrfs_abort_transaction(trans, ret);
  1553. break;
  1554. }
  1555. }
  1556. if (dirty)
  1557. btrfs_mark_buffer_dirty(leaf);
  1558. if (inode)
  1559. btrfs_add_delayed_iput(inode);
  1560. return ret;
  1561. }
  1562. static noinline_for_stack
  1563. int memcmp_node_keys(struct extent_buffer *eb, int slot,
  1564. struct btrfs_path *path, int level)
  1565. {
  1566. struct btrfs_disk_key key1;
  1567. struct btrfs_disk_key key2;
  1568. btrfs_node_key(eb, &key1, slot);
  1569. btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
  1570. return memcmp(&key1, &key2, sizeof(key1));
  1571. }
  1572. /*
  1573. * try to replace tree blocks in fs tree with the new blocks
  1574. * in reloc tree. tree blocks haven't been modified since the
  1575. * reloc tree was create can be replaced.
  1576. *
  1577. * if a block was replaced, level of the block + 1 is returned.
  1578. * if no block got replaced, 0 is returned. if there are other
  1579. * errors, a negative error number is returned.
  1580. */
  1581. static noinline_for_stack
  1582. int replace_path(struct btrfs_trans_handle *trans,
  1583. struct btrfs_root *dest, struct btrfs_root *src,
  1584. struct btrfs_path *path, struct btrfs_key *next_key,
  1585. int lowest_level, int max_level)
  1586. {
  1587. struct btrfs_fs_info *fs_info = dest->fs_info;
  1588. struct extent_buffer *eb;
  1589. struct extent_buffer *parent;
  1590. struct btrfs_key key;
  1591. u64 old_bytenr;
  1592. u64 new_bytenr;
  1593. u64 old_ptr_gen;
  1594. u64 new_ptr_gen;
  1595. u64 last_snapshot;
  1596. u32 blocksize;
  1597. int cow = 0;
  1598. int level;
  1599. int ret;
  1600. int slot;
  1601. BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
  1602. BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
  1603. last_snapshot = btrfs_root_last_snapshot(&src->root_item);
  1604. again:
  1605. slot = path->slots[lowest_level];
  1606. btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
  1607. eb = btrfs_lock_root_node(dest);
  1608. btrfs_set_lock_blocking(eb);
  1609. level = btrfs_header_level(eb);
  1610. if (level < lowest_level) {
  1611. btrfs_tree_unlock(eb);
  1612. free_extent_buffer(eb);
  1613. return 0;
  1614. }
  1615. if (cow) {
  1616. ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
  1617. BUG_ON(ret);
  1618. }
  1619. btrfs_set_lock_blocking(eb);
  1620. if (next_key) {
  1621. next_key->objectid = (u64)-1;
  1622. next_key->type = (u8)-1;
  1623. next_key->offset = (u64)-1;
  1624. }
  1625. parent = eb;
  1626. while (1) {
  1627. level = btrfs_header_level(parent);
  1628. BUG_ON(level < lowest_level);
  1629. ret = btrfs_bin_search(parent, &key, level, &slot);
  1630. if (ret && slot > 0)
  1631. slot--;
  1632. if (next_key && slot + 1 < btrfs_header_nritems(parent))
  1633. btrfs_node_key_to_cpu(parent, next_key, slot + 1);
  1634. old_bytenr = btrfs_node_blockptr(parent, slot);
  1635. blocksize = fs_info->nodesize;
  1636. old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
  1637. if (level <= max_level) {
  1638. eb = path->nodes[level];
  1639. new_bytenr = btrfs_node_blockptr(eb,
  1640. path->slots[level]);
  1641. new_ptr_gen = btrfs_node_ptr_generation(eb,
  1642. path->slots[level]);
  1643. } else {
  1644. new_bytenr = 0;
  1645. new_ptr_gen = 0;
  1646. }
  1647. if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
  1648. ret = level;
  1649. break;
  1650. }
  1651. if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
  1652. memcmp_node_keys(parent, slot, path, level)) {
  1653. if (level <= lowest_level) {
  1654. ret = 0;
  1655. break;
  1656. }
  1657. eb = read_tree_block(dest, old_bytenr, old_ptr_gen);
  1658. if (IS_ERR(eb)) {
  1659. ret = PTR_ERR(eb);
  1660. break;
  1661. } else if (!extent_buffer_uptodate(eb)) {
  1662. ret = -EIO;
  1663. free_extent_buffer(eb);
  1664. break;
  1665. }
  1666. btrfs_tree_lock(eb);
  1667. if (cow) {
  1668. ret = btrfs_cow_block(trans, dest, eb, parent,
  1669. slot, &eb);
  1670. BUG_ON(ret);
  1671. }
  1672. btrfs_set_lock_blocking(eb);
  1673. btrfs_tree_unlock(parent);
  1674. free_extent_buffer(parent);
  1675. parent = eb;
  1676. continue;
  1677. }
  1678. if (!cow) {
  1679. btrfs_tree_unlock(parent);
  1680. free_extent_buffer(parent);
  1681. cow = 1;
  1682. goto again;
  1683. }
  1684. btrfs_node_key_to_cpu(path->nodes[level], &key,
  1685. path->slots[level]);
  1686. btrfs_release_path(path);
  1687. path->lowest_level = level;
  1688. ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
  1689. path->lowest_level = 0;
  1690. BUG_ON(ret);
  1691. /*
  1692. * Info qgroup to trace both subtrees.
  1693. *
  1694. * We must trace both trees.
  1695. * 1) Tree reloc subtree
  1696. * If not traced, we will leak data numbers
  1697. * 2) Fs subtree
  1698. * If not traced, we will double count old data
  1699. * and tree block numbers, if current trans doesn't free
  1700. * data reloc tree inode.
  1701. */
  1702. ret = btrfs_qgroup_trace_subtree(trans, src, parent,
  1703. btrfs_header_generation(parent),
  1704. btrfs_header_level(parent));
  1705. if (ret < 0)
  1706. break;
  1707. ret = btrfs_qgroup_trace_subtree(trans, dest,
  1708. path->nodes[level],
  1709. btrfs_header_generation(path->nodes[level]),
  1710. btrfs_header_level(path->nodes[level]));
  1711. if (ret < 0)
  1712. break;
  1713. /*
  1714. * swap blocks in fs tree and reloc tree.
  1715. */
  1716. btrfs_set_node_blockptr(parent, slot, new_bytenr);
  1717. btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
  1718. btrfs_mark_buffer_dirty(parent);
  1719. btrfs_set_node_blockptr(path->nodes[level],
  1720. path->slots[level], old_bytenr);
  1721. btrfs_set_node_ptr_generation(path->nodes[level],
  1722. path->slots[level], old_ptr_gen);
  1723. btrfs_mark_buffer_dirty(path->nodes[level]);
  1724. ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
  1725. path->nodes[level]->start,
  1726. src->root_key.objectid, level - 1, 0);
  1727. BUG_ON(ret);
  1728. ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
  1729. 0, dest->root_key.objectid, level - 1,
  1730. 0);
  1731. BUG_ON(ret);
  1732. ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
  1733. path->nodes[level]->start,
  1734. src->root_key.objectid, level - 1, 0);
  1735. BUG_ON(ret);
  1736. ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
  1737. 0, dest->root_key.objectid, level - 1,
  1738. 0);
  1739. BUG_ON(ret);
  1740. btrfs_unlock_up_safe(path, 0);
  1741. ret = level;
  1742. break;
  1743. }
  1744. btrfs_tree_unlock(parent);
  1745. free_extent_buffer(parent);
  1746. return ret;
  1747. }
  1748. /*
  1749. * helper to find next relocated block in reloc tree
  1750. */
  1751. static noinline_for_stack
  1752. int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
  1753. int *level)
  1754. {
  1755. struct extent_buffer *eb;
  1756. int i;
  1757. u64 last_snapshot;
  1758. u32 nritems;
  1759. last_snapshot = btrfs_root_last_snapshot(&root->root_item);
  1760. for (i = 0; i < *level; i++) {
  1761. free_extent_buffer(path->nodes[i]);
  1762. path->nodes[i] = NULL;
  1763. }
  1764. for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
  1765. eb = path->nodes[i];
  1766. nritems = btrfs_header_nritems(eb);
  1767. while (path->slots[i] + 1 < nritems) {
  1768. path->slots[i]++;
  1769. if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
  1770. last_snapshot)
  1771. continue;
  1772. *level = i;
  1773. return 0;
  1774. }
  1775. free_extent_buffer(path->nodes[i]);
  1776. path->nodes[i] = NULL;
  1777. }
  1778. return 1;
  1779. }
  1780. /*
  1781. * walk down reloc tree to find relocated block of lowest level
  1782. */
  1783. static noinline_for_stack
  1784. int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
  1785. int *level)
  1786. {
  1787. struct extent_buffer *eb = NULL;
  1788. int i;
  1789. u64 bytenr;
  1790. u64 ptr_gen = 0;
  1791. u64 last_snapshot;
  1792. u32 nritems;
  1793. last_snapshot = btrfs_root_last_snapshot(&root->root_item);
  1794. for (i = *level; i > 0; i--) {
  1795. eb = path->nodes[i];
  1796. nritems = btrfs_header_nritems(eb);
  1797. while (path->slots[i] < nritems) {
  1798. ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
  1799. if (ptr_gen > last_snapshot)
  1800. break;
  1801. path->slots[i]++;
  1802. }
  1803. if (path->slots[i] >= nritems) {
  1804. if (i == *level)
  1805. break;
  1806. *level = i + 1;
  1807. return 0;
  1808. }
  1809. if (i == 1) {
  1810. *level = i;
  1811. return 0;
  1812. }
  1813. bytenr = btrfs_node_blockptr(eb, path->slots[i]);
  1814. eb = read_tree_block(root, bytenr, ptr_gen);
  1815. if (IS_ERR(eb)) {
  1816. return PTR_ERR(eb);
  1817. } else if (!extent_buffer_uptodate(eb)) {
  1818. free_extent_buffer(eb);
  1819. return -EIO;
  1820. }
  1821. BUG_ON(btrfs_header_level(eb) != i - 1);
  1822. path->nodes[i - 1] = eb;
  1823. path->slots[i - 1] = 0;
  1824. }
  1825. return 1;
  1826. }
  1827. /*
  1828. * invalidate extent cache for file extents whose key in range of
  1829. * [min_key, max_key)
  1830. */
  1831. static int invalidate_extent_cache(struct btrfs_root *root,
  1832. struct btrfs_key *min_key,
  1833. struct btrfs_key *max_key)
  1834. {
  1835. struct btrfs_fs_info *fs_info = root->fs_info;
  1836. struct inode *inode = NULL;
  1837. u64 objectid;
  1838. u64 start, end;
  1839. u64 ino;
  1840. objectid = min_key->objectid;
  1841. while (1) {
  1842. cond_resched();
  1843. iput(inode);
  1844. if (objectid > max_key->objectid)
  1845. break;
  1846. inode = find_next_inode(root, objectid);
  1847. if (!inode)
  1848. break;
  1849. ino = btrfs_ino(inode);
  1850. if (ino > max_key->objectid) {
  1851. iput(inode);
  1852. break;
  1853. }
  1854. objectid = ino + 1;
  1855. if (!S_ISREG(inode->i_mode))
  1856. continue;
  1857. if (unlikely(min_key->objectid == ino)) {
  1858. if (min_key->type > BTRFS_EXTENT_DATA_KEY)
  1859. continue;
  1860. if (min_key->type < BTRFS_EXTENT_DATA_KEY)
  1861. start = 0;
  1862. else {
  1863. start = min_key->offset;
  1864. WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
  1865. }
  1866. } else {
  1867. start = 0;
  1868. }
  1869. if (unlikely(max_key->objectid == ino)) {
  1870. if (max_key->type < BTRFS_EXTENT_DATA_KEY)
  1871. continue;
  1872. if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
  1873. end = (u64)-1;
  1874. } else {
  1875. if (max_key->offset == 0)
  1876. continue;
  1877. end = max_key->offset;
  1878. WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
  1879. end--;
  1880. }
  1881. } else {
  1882. end = (u64)-1;
  1883. }
  1884. /* the lock_extent waits for readpage to complete */
  1885. lock_extent(&BTRFS_I(inode)->io_tree, start, end);
  1886. btrfs_drop_extent_cache(inode, start, end, 1);
  1887. unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
  1888. }
  1889. return 0;
  1890. }
  1891. static int find_next_key(struct btrfs_path *path, int level,
  1892. struct btrfs_key *key)
  1893. {
  1894. while (level < BTRFS_MAX_LEVEL) {
  1895. if (!path->nodes[level])
  1896. break;
  1897. if (path->slots[level] + 1 <
  1898. btrfs_header_nritems(path->nodes[level])) {
  1899. btrfs_node_key_to_cpu(path->nodes[level], key,
  1900. path->slots[level] + 1);
  1901. return 0;
  1902. }
  1903. level++;
  1904. }
  1905. return 1;
  1906. }
  1907. /*
  1908. * merge the relocated tree blocks in reloc tree with corresponding
  1909. * fs tree.
  1910. */
  1911. static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
  1912. struct btrfs_root *root)
  1913. {
  1914. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  1915. LIST_HEAD(inode_list);
  1916. struct btrfs_key key;
  1917. struct btrfs_key next_key;
  1918. struct btrfs_trans_handle *trans = NULL;
  1919. struct btrfs_root *reloc_root;
  1920. struct btrfs_root_item *root_item;
  1921. struct btrfs_path *path;
  1922. struct extent_buffer *leaf;
  1923. int level;
  1924. int max_level;
  1925. int replaced = 0;
  1926. int ret;
  1927. int err = 0;
  1928. u32 min_reserved;
  1929. path = btrfs_alloc_path();
  1930. if (!path)
  1931. return -ENOMEM;
  1932. path->reada = READA_FORWARD;
  1933. reloc_root = root->reloc_root;
  1934. root_item = &reloc_root->root_item;
  1935. if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
  1936. level = btrfs_root_level(root_item);
  1937. extent_buffer_get(reloc_root->node);
  1938. path->nodes[level] = reloc_root->node;
  1939. path->slots[level] = 0;
  1940. } else {
  1941. btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
  1942. level = root_item->drop_level;
  1943. BUG_ON(level == 0);
  1944. path->lowest_level = level;
  1945. ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
  1946. path->lowest_level = 0;
  1947. if (ret < 0) {
  1948. btrfs_free_path(path);
  1949. return ret;
  1950. }
  1951. btrfs_node_key_to_cpu(path->nodes[level], &next_key,
  1952. path->slots[level]);
  1953. WARN_ON(memcmp(&key, &next_key, sizeof(key)));
  1954. btrfs_unlock_up_safe(path, 0);
  1955. }
  1956. min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
  1957. memset(&next_key, 0, sizeof(next_key));
  1958. while (1) {
  1959. ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
  1960. BTRFS_RESERVE_FLUSH_ALL);
  1961. if (ret) {
  1962. err = ret;
  1963. goto out;
  1964. }
  1965. trans = btrfs_start_transaction(root, 0);
  1966. if (IS_ERR(trans)) {
  1967. err = PTR_ERR(trans);
  1968. trans = NULL;
  1969. goto out;
  1970. }
  1971. trans->block_rsv = rc->block_rsv;
  1972. replaced = 0;
  1973. max_level = level;
  1974. ret = walk_down_reloc_tree(reloc_root, path, &level);
  1975. if (ret < 0) {
  1976. err = ret;
  1977. goto out;
  1978. }
  1979. if (ret > 0)
  1980. break;
  1981. if (!find_next_key(path, level, &key) &&
  1982. btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
  1983. ret = 0;
  1984. } else {
  1985. ret = replace_path(trans, root, reloc_root, path,
  1986. &next_key, level, max_level);
  1987. }
  1988. if (ret < 0) {
  1989. err = ret;
  1990. goto out;
  1991. }
  1992. if (ret > 0) {
  1993. level = ret;
  1994. btrfs_node_key_to_cpu(path->nodes[level], &key,
  1995. path->slots[level]);
  1996. replaced = 1;
  1997. }
  1998. ret = walk_up_reloc_tree(reloc_root, path, &level);
  1999. if (ret > 0)
  2000. break;
  2001. BUG_ON(level == 0);
  2002. /*
  2003. * save the merging progress in the drop_progress.
  2004. * this is OK since root refs == 1 in this case.
  2005. */
  2006. btrfs_node_key(path->nodes[level], &root_item->drop_progress,
  2007. path->slots[level]);
  2008. root_item->drop_level = level;
  2009. btrfs_end_transaction_throttle(trans, root);
  2010. trans = NULL;
  2011. btrfs_btree_balance_dirty(root);
  2012. if (replaced && rc->stage == UPDATE_DATA_PTRS)
  2013. invalidate_extent_cache(root, &key, &next_key);
  2014. }
  2015. /*
  2016. * handle the case only one block in the fs tree need to be
  2017. * relocated and the block is tree root.
  2018. */
  2019. leaf = btrfs_lock_root_node(root);
  2020. ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
  2021. btrfs_tree_unlock(leaf);
  2022. free_extent_buffer(leaf);
  2023. if (ret < 0)
  2024. err = ret;
  2025. out:
  2026. btrfs_free_path(path);
  2027. if (err == 0) {
  2028. memset(&root_item->drop_progress, 0,
  2029. sizeof(root_item->drop_progress));
  2030. root_item->drop_level = 0;
  2031. btrfs_set_root_refs(root_item, 0);
  2032. btrfs_update_reloc_root(trans, root);
  2033. }
  2034. if (trans)
  2035. btrfs_end_transaction_throttle(trans, root);
  2036. btrfs_btree_balance_dirty(root);
  2037. if (replaced && rc->stage == UPDATE_DATA_PTRS)
  2038. invalidate_extent_cache(root, &key, &next_key);
  2039. return err;
  2040. }
  2041. static noinline_for_stack
  2042. int prepare_to_merge(struct reloc_control *rc, int err)
  2043. {
  2044. struct btrfs_root *root = rc->extent_root;
  2045. struct btrfs_fs_info *fs_info = root->fs_info;
  2046. struct btrfs_root *reloc_root;
  2047. struct btrfs_trans_handle *trans;
  2048. LIST_HEAD(reloc_roots);
  2049. u64 num_bytes = 0;
  2050. int ret;
  2051. mutex_lock(&fs_info->reloc_mutex);
  2052. rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
  2053. rc->merging_rsv_size += rc->nodes_relocated * 2;
  2054. mutex_unlock(&fs_info->reloc_mutex);
  2055. again:
  2056. if (!err) {
  2057. num_bytes = rc->merging_rsv_size;
  2058. ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
  2059. BTRFS_RESERVE_FLUSH_ALL);
  2060. if (ret)
  2061. err = ret;
  2062. }
  2063. trans = btrfs_join_transaction(rc->extent_root);
  2064. if (IS_ERR(trans)) {
  2065. if (!err)
  2066. btrfs_block_rsv_release(rc->extent_root,
  2067. rc->block_rsv, num_bytes);
  2068. return PTR_ERR(trans);
  2069. }
  2070. if (!err) {
  2071. if (num_bytes != rc->merging_rsv_size) {
  2072. btrfs_end_transaction(trans, rc->extent_root);
  2073. btrfs_block_rsv_release(rc->extent_root,
  2074. rc->block_rsv, num_bytes);
  2075. goto again;
  2076. }
  2077. }
  2078. rc->merge_reloc_tree = 1;
  2079. while (!list_empty(&rc->reloc_roots)) {
  2080. reloc_root = list_entry(rc->reloc_roots.next,
  2081. struct btrfs_root, root_list);
  2082. list_del_init(&reloc_root->root_list);
  2083. root = read_fs_root(fs_info, reloc_root->root_key.offset);
  2084. BUG_ON(IS_ERR(root));
  2085. BUG_ON(root->reloc_root != reloc_root);
  2086. /*
  2087. * set reference count to 1, so btrfs_recover_relocation
  2088. * knows it should resumes merging
  2089. */
  2090. if (!err)
  2091. btrfs_set_root_refs(&reloc_root->root_item, 1);
  2092. btrfs_update_reloc_root(trans, root);
  2093. list_add(&reloc_root->root_list, &reloc_roots);
  2094. }
  2095. list_splice(&reloc_roots, &rc->reloc_roots);
  2096. if (!err)
  2097. btrfs_commit_transaction(trans, rc->extent_root);
  2098. else
  2099. btrfs_end_transaction(trans, rc->extent_root);
  2100. return err;
  2101. }
  2102. static noinline_for_stack
  2103. void free_reloc_roots(struct list_head *list)
  2104. {
  2105. struct btrfs_root *reloc_root;
  2106. while (!list_empty(list)) {
  2107. reloc_root = list_entry(list->next, struct btrfs_root,
  2108. root_list);
  2109. free_extent_buffer(reloc_root->node);
  2110. free_extent_buffer(reloc_root->commit_root);
  2111. reloc_root->node = NULL;
  2112. reloc_root->commit_root = NULL;
  2113. __del_reloc_root(reloc_root);
  2114. }
  2115. }
  2116. static noinline_for_stack
  2117. void merge_reloc_roots(struct reloc_control *rc)
  2118. {
  2119. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  2120. struct btrfs_root *root;
  2121. struct btrfs_root *reloc_root;
  2122. u64 last_snap;
  2123. u64 otransid;
  2124. u64 objectid;
  2125. LIST_HEAD(reloc_roots);
  2126. int found = 0;
  2127. int ret = 0;
  2128. again:
  2129. root = rc->extent_root;
  2130. /*
  2131. * this serializes us with btrfs_record_root_in_transaction,
  2132. * we have to make sure nobody is in the middle of
  2133. * adding their roots to the list while we are
  2134. * doing this splice
  2135. */
  2136. mutex_lock(&fs_info->reloc_mutex);
  2137. list_splice_init(&rc->reloc_roots, &reloc_roots);
  2138. mutex_unlock(&fs_info->reloc_mutex);
  2139. while (!list_empty(&reloc_roots)) {
  2140. found = 1;
  2141. reloc_root = list_entry(reloc_roots.next,
  2142. struct btrfs_root, root_list);
  2143. if (btrfs_root_refs(&reloc_root->root_item) > 0) {
  2144. root = read_fs_root(fs_info,
  2145. reloc_root->root_key.offset);
  2146. BUG_ON(IS_ERR(root));
  2147. BUG_ON(root->reloc_root != reloc_root);
  2148. ret = merge_reloc_root(rc, root);
  2149. if (ret) {
  2150. if (list_empty(&reloc_root->root_list))
  2151. list_add_tail(&reloc_root->root_list,
  2152. &reloc_roots);
  2153. goto out;
  2154. }
  2155. } else {
  2156. list_del_init(&reloc_root->root_list);
  2157. }
  2158. /*
  2159. * we keep the old last snapshot transid in rtranid when we
  2160. * created the relocation tree.
  2161. */
  2162. last_snap = btrfs_root_rtransid(&reloc_root->root_item);
  2163. otransid = btrfs_root_otransid(&reloc_root->root_item);
  2164. objectid = reloc_root->root_key.offset;
  2165. ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
  2166. if (ret < 0) {
  2167. if (list_empty(&reloc_root->root_list))
  2168. list_add_tail(&reloc_root->root_list,
  2169. &reloc_roots);
  2170. goto out;
  2171. }
  2172. }
  2173. if (found) {
  2174. found = 0;
  2175. goto again;
  2176. }
  2177. out:
  2178. if (ret) {
  2179. btrfs_handle_fs_error(fs_info, ret, NULL);
  2180. if (!list_empty(&reloc_roots))
  2181. free_reloc_roots(&reloc_roots);
  2182. /* new reloc root may be added */
  2183. mutex_lock(&fs_info->reloc_mutex);
  2184. list_splice_init(&rc->reloc_roots, &reloc_roots);
  2185. mutex_unlock(&fs_info->reloc_mutex);
  2186. if (!list_empty(&reloc_roots))
  2187. free_reloc_roots(&reloc_roots);
  2188. }
  2189. BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
  2190. }
  2191. static void free_block_list(struct rb_root *blocks)
  2192. {
  2193. struct tree_block *block;
  2194. struct rb_node *rb_node;
  2195. while ((rb_node = rb_first(blocks))) {
  2196. block = rb_entry(rb_node, struct tree_block, rb_node);
  2197. rb_erase(rb_node, blocks);
  2198. kfree(block);
  2199. }
  2200. }
  2201. static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
  2202. struct btrfs_root *reloc_root)
  2203. {
  2204. struct btrfs_fs_info *fs_info = reloc_root->fs_info;
  2205. struct btrfs_root *root;
  2206. if (reloc_root->last_trans == trans->transid)
  2207. return 0;
  2208. root = read_fs_root(fs_info, reloc_root->root_key.offset);
  2209. BUG_ON(IS_ERR(root));
  2210. BUG_ON(root->reloc_root != reloc_root);
  2211. return btrfs_record_root_in_trans(trans, root);
  2212. }
  2213. static noinline_for_stack
  2214. struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
  2215. struct reloc_control *rc,
  2216. struct backref_node *node,
  2217. struct backref_edge *edges[])
  2218. {
  2219. struct backref_node *next;
  2220. struct btrfs_root *root;
  2221. int index = 0;
  2222. next = node;
  2223. while (1) {
  2224. cond_resched();
  2225. next = walk_up_backref(next, edges, &index);
  2226. root = next->root;
  2227. BUG_ON(!root);
  2228. BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
  2229. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  2230. record_reloc_root_in_trans(trans, root);
  2231. break;
  2232. }
  2233. btrfs_record_root_in_trans(trans, root);
  2234. root = root->reloc_root;
  2235. if (next->new_bytenr != root->node->start) {
  2236. BUG_ON(next->new_bytenr);
  2237. BUG_ON(!list_empty(&next->list));
  2238. next->new_bytenr = root->node->start;
  2239. next->root = root;
  2240. list_add_tail(&next->list,
  2241. &rc->backref_cache.changed);
  2242. __mark_block_processed(rc, next);
  2243. break;
  2244. }
  2245. WARN_ON(1);
  2246. root = NULL;
  2247. next = walk_down_backref(edges, &index);
  2248. if (!next || next->level <= node->level)
  2249. break;
  2250. }
  2251. if (!root)
  2252. return NULL;
  2253. next = node;
  2254. /* setup backref node path for btrfs_reloc_cow_block */
  2255. while (1) {
  2256. rc->backref_cache.path[next->level] = next;
  2257. if (--index < 0)
  2258. break;
  2259. next = edges[index]->node[UPPER];
  2260. }
  2261. return root;
  2262. }
  2263. /*
  2264. * select a tree root for relocation. return NULL if the block
  2265. * is reference counted. we should use do_relocation() in this
  2266. * case. return a tree root pointer if the block isn't reference
  2267. * counted. return -ENOENT if the block is root of reloc tree.
  2268. */
  2269. static noinline_for_stack
  2270. struct btrfs_root *select_one_root(struct backref_node *node)
  2271. {
  2272. struct backref_node *next;
  2273. struct btrfs_root *root;
  2274. struct btrfs_root *fs_root = NULL;
  2275. struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
  2276. int index = 0;
  2277. next = node;
  2278. while (1) {
  2279. cond_resched();
  2280. next = walk_up_backref(next, edges, &index);
  2281. root = next->root;
  2282. BUG_ON(!root);
  2283. /* no other choice for non-references counted tree */
  2284. if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
  2285. return root;
  2286. if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
  2287. fs_root = root;
  2288. if (next != node)
  2289. return NULL;
  2290. next = walk_down_backref(edges, &index);
  2291. if (!next || next->level <= node->level)
  2292. break;
  2293. }
  2294. if (!fs_root)
  2295. return ERR_PTR(-ENOENT);
  2296. return fs_root;
  2297. }
  2298. static noinline_for_stack
  2299. u64 calcu_metadata_size(struct reloc_control *rc,
  2300. struct backref_node *node, int reserve)
  2301. {
  2302. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  2303. struct backref_node *next = node;
  2304. struct backref_edge *edge;
  2305. struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
  2306. u64 num_bytes = 0;
  2307. int index = 0;
  2308. BUG_ON(reserve && node->processed);
  2309. while (next) {
  2310. cond_resched();
  2311. while (1) {
  2312. if (next->processed && (reserve || next != node))
  2313. break;
  2314. num_bytes += fs_info->nodesize;
  2315. if (list_empty(&next->upper))
  2316. break;
  2317. edge = list_entry(next->upper.next,
  2318. struct backref_edge, list[LOWER]);
  2319. edges[index++] = edge;
  2320. next = edge->node[UPPER];
  2321. }
  2322. next = walk_down_backref(edges, &index);
  2323. }
  2324. return num_bytes;
  2325. }
  2326. static int reserve_metadata_space(struct btrfs_trans_handle *trans,
  2327. struct reloc_control *rc,
  2328. struct backref_node *node)
  2329. {
  2330. struct btrfs_root *root = rc->extent_root;
  2331. struct btrfs_fs_info *fs_info = root->fs_info;
  2332. u64 num_bytes;
  2333. int ret;
  2334. u64 tmp;
  2335. num_bytes = calcu_metadata_size(rc, node, 1) * 2;
  2336. trans->block_rsv = rc->block_rsv;
  2337. rc->reserved_bytes += num_bytes;
  2338. /*
  2339. * We are under a transaction here so we can only do limited flushing.
  2340. * If we get an enospc just kick back -EAGAIN so we know to drop the
  2341. * transaction and try to refill when we can flush all the things.
  2342. */
  2343. ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
  2344. BTRFS_RESERVE_FLUSH_LIMIT);
  2345. if (ret) {
  2346. tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
  2347. while (tmp <= rc->reserved_bytes)
  2348. tmp <<= 1;
  2349. /*
  2350. * only one thread can access block_rsv at this point,
  2351. * so we don't need hold lock to protect block_rsv.
  2352. * we expand more reservation size here to allow enough
  2353. * space for relocation and we will return eailer in
  2354. * enospc case.
  2355. */
  2356. rc->block_rsv->size = tmp + fs_info->nodesize *
  2357. RELOCATION_RESERVED_NODES;
  2358. return -EAGAIN;
  2359. }
  2360. return 0;
  2361. }
  2362. /*
  2363. * relocate a block tree, and then update pointers in upper level
  2364. * blocks that reference the block to point to the new location.
  2365. *
  2366. * if called by link_to_upper, the block has already been relocated.
  2367. * in that case this function just updates pointers.
  2368. */
  2369. static int do_relocation(struct btrfs_trans_handle *trans,
  2370. struct reloc_control *rc,
  2371. struct backref_node *node,
  2372. struct btrfs_key *key,
  2373. struct btrfs_path *path, int lowest)
  2374. {
  2375. struct backref_node *upper;
  2376. struct backref_edge *edge;
  2377. struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
  2378. struct btrfs_root *root;
  2379. struct extent_buffer *eb;
  2380. u32 blocksize;
  2381. u64 bytenr;
  2382. u64 generation;
  2383. int slot;
  2384. int ret;
  2385. int err = 0;
  2386. BUG_ON(lowest && node->eb);
  2387. path->lowest_level = node->level + 1;
  2388. rc->backref_cache.path[node->level] = node;
  2389. list_for_each_entry(edge, &node->upper, list[LOWER]) {
  2390. cond_resched();
  2391. upper = edge->node[UPPER];
  2392. root = select_reloc_root(trans, rc, upper, edges);
  2393. BUG_ON(!root);
  2394. if (upper->eb && !upper->locked) {
  2395. if (!lowest) {
  2396. ret = btrfs_bin_search(upper->eb, key,
  2397. upper->level, &slot);
  2398. BUG_ON(ret);
  2399. bytenr = btrfs_node_blockptr(upper->eb, slot);
  2400. if (node->eb->start == bytenr)
  2401. goto next;
  2402. }
  2403. drop_node_buffer(upper);
  2404. }
  2405. if (!upper->eb) {
  2406. ret = btrfs_search_slot(trans, root, key, path, 0, 1);
  2407. if (ret) {
  2408. if (ret < 0)
  2409. err = ret;
  2410. else
  2411. err = -ENOENT;
  2412. btrfs_release_path(path);
  2413. break;
  2414. }
  2415. if (!upper->eb) {
  2416. upper->eb = path->nodes[upper->level];
  2417. path->nodes[upper->level] = NULL;
  2418. } else {
  2419. BUG_ON(upper->eb != path->nodes[upper->level]);
  2420. }
  2421. upper->locked = 1;
  2422. path->locks[upper->level] = 0;
  2423. slot = path->slots[upper->level];
  2424. btrfs_release_path(path);
  2425. } else {
  2426. ret = btrfs_bin_search(upper->eb, key, upper->level,
  2427. &slot);
  2428. BUG_ON(ret);
  2429. }
  2430. bytenr = btrfs_node_blockptr(upper->eb, slot);
  2431. if (lowest) {
  2432. if (bytenr != node->bytenr) {
  2433. btrfs_err(root->fs_info,
  2434. "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
  2435. bytenr, node->bytenr, slot,
  2436. upper->eb->start);
  2437. err = -EIO;
  2438. goto next;
  2439. }
  2440. } else {
  2441. if (node->eb->start == bytenr)
  2442. goto next;
  2443. }
  2444. blocksize = root->fs_info->nodesize;
  2445. generation = btrfs_node_ptr_generation(upper->eb, slot);
  2446. eb = read_tree_block(root, bytenr, generation);
  2447. if (IS_ERR(eb)) {
  2448. err = PTR_ERR(eb);
  2449. goto next;
  2450. } else if (!extent_buffer_uptodate(eb)) {
  2451. free_extent_buffer(eb);
  2452. err = -EIO;
  2453. goto next;
  2454. }
  2455. btrfs_tree_lock(eb);
  2456. btrfs_set_lock_blocking(eb);
  2457. if (!node->eb) {
  2458. ret = btrfs_cow_block(trans, root, eb, upper->eb,
  2459. slot, &eb);
  2460. btrfs_tree_unlock(eb);
  2461. free_extent_buffer(eb);
  2462. if (ret < 0) {
  2463. err = ret;
  2464. goto next;
  2465. }
  2466. BUG_ON(node->eb != eb);
  2467. } else {
  2468. btrfs_set_node_blockptr(upper->eb, slot,
  2469. node->eb->start);
  2470. btrfs_set_node_ptr_generation(upper->eb, slot,
  2471. trans->transid);
  2472. btrfs_mark_buffer_dirty(upper->eb);
  2473. ret = btrfs_inc_extent_ref(trans, root,
  2474. node->eb->start, blocksize,
  2475. upper->eb->start,
  2476. btrfs_header_owner(upper->eb),
  2477. node->level, 0);
  2478. BUG_ON(ret);
  2479. ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
  2480. BUG_ON(ret);
  2481. }
  2482. next:
  2483. if (!upper->pending)
  2484. drop_node_buffer(upper);
  2485. else
  2486. unlock_node_buffer(upper);
  2487. if (err)
  2488. break;
  2489. }
  2490. if (!err && node->pending) {
  2491. drop_node_buffer(node);
  2492. list_move_tail(&node->list, &rc->backref_cache.changed);
  2493. node->pending = 0;
  2494. }
  2495. path->lowest_level = 0;
  2496. BUG_ON(err == -ENOSPC);
  2497. return err;
  2498. }
  2499. static int link_to_upper(struct btrfs_trans_handle *trans,
  2500. struct reloc_control *rc,
  2501. struct backref_node *node,
  2502. struct btrfs_path *path)
  2503. {
  2504. struct btrfs_key key;
  2505. btrfs_node_key_to_cpu(node->eb, &key, 0);
  2506. return do_relocation(trans, rc, node, &key, path, 0);
  2507. }
  2508. static int finish_pending_nodes(struct btrfs_trans_handle *trans,
  2509. struct reloc_control *rc,
  2510. struct btrfs_path *path, int err)
  2511. {
  2512. LIST_HEAD(list);
  2513. struct backref_cache *cache = &rc->backref_cache;
  2514. struct backref_node *node;
  2515. int level;
  2516. int ret;
  2517. for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
  2518. while (!list_empty(&cache->pending[level])) {
  2519. node = list_entry(cache->pending[level].next,
  2520. struct backref_node, list);
  2521. list_move_tail(&node->list, &list);
  2522. BUG_ON(!node->pending);
  2523. if (!err) {
  2524. ret = link_to_upper(trans, rc, node, path);
  2525. if (ret < 0)
  2526. err = ret;
  2527. }
  2528. }
  2529. list_splice_init(&list, &cache->pending[level]);
  2530. }
  2531. return err;
  2532. }
  2533. static void mark_block_processed(struct reloc_control *rc,
  2534. u64 bytenr, u32 blocksize)
  2535. {
  2536. set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
  2537. EXTENT_DIRTY);
  2538. }
  2539. static void __mark_block_processed(struct reloc_control *rc,
  2540. struct backref_node *node)
  2541. {
  2542. u32 blocksize;
  2543. if (node->level == 0 ||
  2544. in_block_group(node->bytenr, rc->block_group)) {
  2545. blocksize = rc->extent_root->fs_info->nodesize;
  2546. mark_block_processed(rc, node->bytenr, blocksize);
  2547. }
  2548. node->processed = 1;
  2549. }
  2550. /*
  2551. * mark a block and all blocks directly/indirectly reference the block
  2552. * as processed.
  2553. */
  2554. static void update_processed_blocks(struct reloc_control *rc,
  2555. struct backref_node *node)
  2556. {
  2557. struct backref_node *next = node;
  2558. struct backref_edge *edge;
  2559. struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
  2560. int index = 0;
  2561. while (next) {
  2562. cond_resched();
  2563. while (1) {
  2564. if (next->processed)
  2565. break;
  2566. __mark_block_processed(rc, next);
  2567. if (list_empty(&next->upper))
  2568. break;
  2569. edge = list_entry(next->upper.next,
  2570. struct backref_edge, list[LOWER]);
  2571. edges[index++] = edge;
  2572. next = edge->node[UPPER];
  2573. }
  2574. next = walk_down_backref(edges, &index);
  2575. }
  2576. }
  2577. static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
  2578. {
  2579. u32 blocksize = rc->extent_root->fs_info->nodesize;
  2580. if (test_range_bit(&rc->processed_blocks, bytenr,
  2581. bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
  2582. return 1;
  2583. return 0;
  2584. }
  2585. static int get_tree_block_key(struct reloc_control *rc,
  2586. struct tree_block *block)
  2587. {
  2588. struct extent_buffer *eb;
  2589. BUG_ON(block->key_ready);
  2590. eb = read_tree_block(rc->extent_root, block->bytenr,
  2591. block->key.offset);
  2592. if (IS_ERR(eb)) {
  2593. return PTR_ERR(eb);
  2594. } else if (!extent_buffer_uptodate(eb)) {
  2595. free_extent_buffer(eb);
  2596. return -EIO;
  2597. }
  2598. WARN_ON(btrfs_header_level(eb) != block->level);
  2599. if (block->level == 0)
  2600. btrfs_item_key_to_cpu(eb, &block->key, 0);
  2601. else
  2602. btrfs_node_key_to_cpu(eb, &block->key, 0);
  2603. free_extent_buffer(eb);
  2604. block->key_ready = 1;
  2605. return 0;
  2606. }
  2607. /*
  2608. * helper function to relocate a tree block
  2609. */
  2610. static int relocate_tree_block(struct btrfs_trans_handle *trans,
  2611. struct reloc_control *rc,
  2612. struct backref_node *node,
  2613. struct btrfs_key *key,
  2614. struct btrfs_path *path)
  2615. {
  2616. struct btrfs_root *root;
  2617. int ret = 0;
  2618. if (!node)
  2619. return 0;
  2620. BUG_ON(node->processed);
  2621. root = select_one_root(node);
  2622. if (root == ERR_PTR(-ENOENT)) {
  2623. update_processed_blocks(rc, node);
  2624. goto out;
  2625. }
  2626. if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
  2627. ret = reserve_metadata_space(trans, rc, node);
  2628. if (ret)
  2629. goto out;
  2630. }
  2631. if (root) {
  2632. if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
  2633. BUG_ON(node->new_bytenr);
  2634. BUG_ON(!list_empty(&node->list));
  2635. btrfs_record_root_in_trans(trans, root);
  2636. root = root->reloc_root;
  2637. node->new_bytenr = root->node->start;
  2638. node->root = root;
  2639. list_add_tail(&node->list, &rc->backref_cache.changed);
  2640. } else {
  2641. path->lowest_level = node->level;
  2642. ret = btrfs_search_slot(trans, root, key, path, 0, 1);
  2643. btrfs_release_path(path);
  2644. if (ret > 0)
  2645. ret = 0;
  2646. }
  2647. if (!ret)
  2648. update_processed_blocks(rc, node);
  2649. } else {
  2650. ret = do_relocation(trans, rc, node, key, path, 1);
  2651. }
  2652. out:
  2653. if (ret || node->level == 0 || node->cowonly)
  2654. remove_backref_node(&rc->backref_cache, node);
  2655. return ret;
  2656. }
  2657. /*
  2658. * relocate a list of blocks
  2659. */
  2660. static noinline_for_stack
  2661. int relocate_tree_blocks(struct btrfs_trans_handle *trans,
  2662. struct reloc_control *rc, struct rb_root *blocks)
  2663. {
  2664. struct backref_node *node;
  2665. struct btrfs_path *path;
  2666. struct tree_block *block;
  2667. struct rb_node *rb_node;
  2668. int ret;
  2669. int err = 0;
  2670. path = btrfs_alloc_path();
  2671. if (!path) {
  2672. err = -ENOMEM;
  2673. goto out_free_blocks;
  2674. }
  2675. rb_node = rb_first(blocks);
  2676. while (rb_node) {
  2677. block = rb_entry(rb_node, struct tree_block, rb_node);
  2678. if (!block->key_ready)
  2679. readahead_tree_block(rc->extent_root, block->bytenr);
  2680. rb_node = rb_next(rb_node);
  2681. }
  2682. rb_node = rb_first(blocks);
  2683. while (rb_node) {
  2684. block = rb_entry(rb_node, struct tree_block, rb_node);
  2685. if (!block->key_ready) {
  2686. err = get_tree_block_key(rc, block);
  2687. if (err)
  2688. goto out_free_path;
  2689. }
  2690. rb_node = rb_next(rb_node);
  2691. }
  2692. rb_node = rb_first(blocks);
  2693. while (rb_node) {
  2694. block = rb_entry(rb_node, struct tree_block, rb_node);
  2695. node = build_backref_tree(rc, &block->key,
  2696. block->level, block->bytenr);
  2697. if (IS_ERR(node)) {
  2698. err = PTR_ERR(node);
  2699. goto out;
  2700. }
  2701. ret = relocate_tree_block(trans, rc, node, &block->key,
  2702. path);
  2703. if (ret < 0) {
  2704. if (ret != -EAGAIN || rb_node == rb_first(blocks))
  2705. err = ret;
  2706. goto out;
  2707. }
  2708. rb_node = rb_next(rb_node);
  2709. }
  2710. out:
  2711. err = finish_pending_nodes(trans, rc, path, err);
  2712. out_free_path:
  2713. btrfs_free_path(path);
  2714. out_free_blocks:
  2715. free_block_list(blocks);
  2716. return err;
  2717. }
  2718. static noinline_for_stack
  2719. int prealloc_file_extent_cluster(struct inode *inode,
  2720. struct file_extent_cluster *cluster)
  2721. {
  2722. u64 alloc_hint = 0;
  2723. u64 start;
  2724. u64 end;
  2725. u64 offset = BTRFS_I(inode)->index_cnt;
  2726. u64 num_bytes;
  2727. int nr = 0;
  2728. int ret = 0;
  2729. u64 prealloc_start = cluster->start - offset;
  2730. u64 prealloc_end = cluster->end - offset;
  2731. u64 cur_offset;
  2732. BUG_ON(cluster->start != cluster->boundary[0]);
  2733. inode_lock(inode);
  2734. ret = btrfs_check_data_free_space(inode, prealloc_start,
  2735. prealloc_end + 1 - prealloc_start);
  2736. if (ret)
  2737. goto out;
  2738. cur_offset = prealloc_start;
  2739. while (nr < cluster->nr) {
  2740. start = cluster->boundary[nr] - offset;
  2741. if (nr + 1 < cluster->nr)
  2742. end = cluster->boundary[nr + 1] - 1 - offset;
  2743. else
  2744. end = cluster->end - offset;
  2745. lock_extent(&BTRFS_I(inode)->io_tree, start, end);
  2746. num_bytes = end + 1 - start;
  2747. if (cur_offset < start)
  2748. btrfs_free_reserved_data_space(inode, cur_offset,
  2749. start - cur_offset);
  2750. ret = btrfs_prealloc_file_range(inode, 0, start,
  2751. num_bytes, num_bytes,
  2752. end + 1, &alloc_hint);
  2753. cur_offset = end + 1;
  2754. unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
  2755. if (ret)
  2756. break;
  2757. nr++;
  2758. }
  2759. if (cur_offset < prealloc_end)
  2760. btrfs_free_reserved_data_space(inode, cur_offset,
  2761. prealloc_end + 1 - cur_offset);
  2762. out:
  2763. inode_unlock(inode);
  2764. return ret;
  2765. }
  2766. static noinline_for_stack
  2767. int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
  2768. u64 block_start)
  2769. {
  2770. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  2771. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  2772. struct extent_map *em;
  2773. int ret = 0;
  2774. em = alloc_extent_map();
  2775. if (!em)
  2776. return -ENOMEM;
  2777. em->start = start;
  2778. em->len = end + 1 - start;
  2779. em->block_len = em->len;
  2780. em->block_start = block_start;
  2781. em->bdev = fs_info->fs_devices->latest_bdev;
  2782. set_bit(EXTENT_FLAG_PINNED, &em->flags);
  2783. lock_extent(&BTRFS_I(inode)->io_tree, start, end);
  2784. while (1) {
  2785. write_lock(&em_tree->lock);
  2786. ret = add_extent_mapping(em_tree, em, 0);
  2787. write_unlock(&em_tree->lock);
  2788. if (ret != -EEXIST) {
  2789. free_extent_map(em);
  2790. break;
  2791. }
  2792. btrfs_drop_extent_cache(inode, start, end, 0);
  2793. }
  2794. unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
  2795. return ret;
  2796. }
  2797. static int relocate_file_extent_cluster(struct inode *inode,
  2798. struct file_extent_cluster *cluster)
  2799. {
  2800. u64 page_start;
  2801. u64 page_end;
  2802. u64 offset = BTRFS_I(inode)->index_cnt;
  2803. unsigned long index;
  2804. unsigned long last_index;
  2805. struct page *page;
  2806. struct file_ra_state *ra;
  2807. gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
  2808. int nr = 0;
  2809. int ret = 0;
  2810. if (!cluster->nr)
  2811. return 0;
  2812. ra = kzalloc(sizeof(*ra), GFP_NOFS);
  2813. if (!ra)
  2814. return -ENOMEM;
  2815. ret = prealloc_file_extent_cluster(inode, cluster);
  2816. if (ret)
  2817. goto out;
  2818. file_ra_state_init(ra, inode->i_mapping);
  2819. ret = setup_extent_mapping(inode, cluster->start - offset,
  2820. cluster->end - offset, cluster->start);
  2821. if (ret)
  2822. goto out;
  2823. index = (cluster->start - offset) >> PAGE_SHIFT;
  2824. last_index = (cluster->end - offset) >> PAGE_SHIFT;
  2825. while (index <= last_index) {
  2826. ret = btrfs_delalloc_reserve_metadata(inode, PAGE_SIZE);
  2827. if (ret)
  2828. goto out;
  2829. page = find_lock_page(inode->i_mapping, index);
  2830. if (!page) {
  2831. page_cache_sync_readahead(inode->i_mapping,
  2832. ra, NULL, index,
  2833. last_index + 1 - index);
  2834. page = find_or_create_page(inode->i_mapping, index,
  2835. mask);
  2836. if (!page) {
  2837. btrfs_delalloc_release_metadata(inode,
  2838. PAGE_SIZE);
  2839. ret = -ENOMEM;
  2840. goto out;
  2841. }
  2842. }
  2843. if (PageReadahead(page)) {
  2844. page_cache_async_readahead(inode->i_mapping,
  2845. ra, NULL, page, index,
  2846. last_index + 1 - index);
  2847. }
  2848. if (!PageUptodate(page)) {
  2849. btrfs_readpage(NULL, page);
  2850. lock_page(page);
  2851. if (!PageUptodate(page)) {
  2852. unlock_page(page);
  2853. put_page(page);
  2854. btrfs_delalloc_release_metadata(inode,
  2855. PAGE_SIZE);
  2856. ret = -EIO;
  2857. goto out;
  2858. }
  2859. }
  2860. page_start = page_offset(page);
  2861. page_end = page_start + PAGE_SIZE - 1;
  2862. lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
  2863. set_page_extent_mapped(page);
  2864. if (nr < cluster->nr &&
  2865. page_start + offset == cluster->boundary[nr]) {
  2866. set_extent_bits(&BTRFS_I(inode)->io_tree,
  2867. page_start, page_end,
  2868. EXTENT_BOUNDARY);
  2869. nr++;
  2870. }
  2871. btrfs_set_extent_delalloc(inode, page_start, page_end, NULL, 0);
  2872. set_page_dirty(page);
  2873. unlock_extent(&BTRFS_I(inode)->io_tree,
  2874. page_start, page_end);
  2875. unlock_page(page);
  2876. put_page(page);
  2877. index++;
  2878. balance_dirty_pages_ratelimited(inode->i_mapping);
  2879. btrfs_throttle(BTRFS_I(inode)->root);
  2880. }
  2881. WARN_ON(nr != cluster->nr);
  2882. out:
  2883. kfree(ra);
  2884. return ret;
  2885. }
  2886. static noinline_for_stack
  2887. int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
  2888. struct file_extent_cluster *cluster)
  2889. {
  2890. int ret;
  2891. if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
  2892. ret = relocate_file_extent_cluster(inode, cluster);
  2893. if (ret)
  2894. return ret;
  2895. cluster->nr = 0;
  2896. }
  2897. if (!cluster->nr)
  2898. cluster->start = extent_key->objectid;
  2899. else
  2900. BUG_ON(cluster->nr >= MAX_EXTENTS);
  2901. cluster->end = extent_key->objectid + extent_key->offset - 1;
  2902. cluster->boundary[cluster->nr] = extent_key->objectid;
  2903. cluster->nr++;
  2904. if (cluster->nr >= MAX_EXTENTS) {
  2905. ret = relocate_file_extent_cluster(inode, cluster);
  2906. if (ret)
  2907. return ret;
  2908. cluster->nr = 0;
  2909. }
  2910. return 0;
  2911. }
  2912. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  2913. static int get_ref_objectid_v0(struct reloc_control *rc,
  2914. struct btrfs_path *path,
  2915. struct btrfs_key *extent_key,
  2916. u64 *ref_objectid, int *path_change)
  2917. {
  2918. struct btrfs_key key;
  2919. struct extent_buffer *leaf;
  2920. struct btrfs_extent_ref_v0 *ref0;
  2921. int ret;
  2922. int slot;
  2923. leaf = path->nodes[0];
  2924. slot = path->slots[0];
  2925. while (1) {
  2926. if (slot >= btrfs_header_nritems(leaf)) {
  2927. ret = btrfs_next_leaf(rc->extent_root, path);
  2928. if (ret < 0)
  2929. return ret;
  2930. BUG_ON(ret > 0);
  2931. leaf = path->nodes[0];
  2932. slot = path->slots[0];
  2933. if (path_change)
  2934. *path_change = 1;
  2935. }
  2936. btrfs_item_key_to_cpu(leaf, &key, slot);
  2937. if (key.objectid != extent_key->objectid)
  2938. return -ENOENT;
  2939. if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
  2940. slot++;
  2941. continue;
  2942. }
  2943. ref0 = btrfs_item_ptr(leaf, slot,
  2944. struct btrfs_extent_ref_v0);
  2945. *ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
  2946. break;
  2947. }
  2948. return 0;
  2949. }
  2950. #endif
  2951. /*
  2952. * helper to add a tree block to the list.
  2953. * the major work is getting the generation and level of the block
  2954. */
  2955. static int add_tree_block(struct reloc_control *rc,
  2956. struct btrfs_key *extent_key,
  2957. struct btrfs_path *path,
  2958. struct rb_root *blocks)
  2959. {
  2960. struct extent_buffer *eb;
  2961. struct btrfs_extent_item *ei;
  2962. struct btrfs_tree_block_info *bi;
  2963. struct tree_block *block;
  2964. struct rb_node *rb_node;
  2965. u32 item_size;
  2966. int level = -1;
  2967. u64 generation;
  2968. eb = path->nodes[0];
  2969. item_size = btrfs_item_size_nr(eb, path->slots[0]);
  2970. if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
  2971. item_size >= sizeof(*ei) + sizeof(*bi)) {
  2972. ei = btrfs_item_ptr(eb, path->slots[0],
  2973. struct btrfs_extent_item);
  2974. if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
  2975. bi = (struct btrfs_tree_block_info *)(ei + 1);
  2976. level = btrfs_tree_block_level(eb, bi);
  2977. } else {
  2978. level = (int)extent_key->offset;
  2979. }
  2980. generation = btrfs_extent_generation(eb, ei);
  2981. } else {
  2982. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  2983. u64 ref_owner;
  2984. int ret;
  2985. BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
  2986. ret = get_ref_objectid_v0(rc, path, extent_key,
  2987. &ref_owner, NULL);
  2988. if (ret < 0)
  2989. return ret;
  2990. BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
  2991. level = (int)ref_owner;
  2992. /* FIXME: get real generation */
  2993. generation = 0;
  2994. #else
  2995. BUG();
  2996. #endif
  2997. }
  2998. btrfs_release_path(path);
  2999. BUG_ON(level == -1);
  3000. block = kmalloc(sizeof(*block), GFP_NOFS);
  3001. if (!block)
  3002. return -ENOMEM;
  3003. block->bytenr = extent_key->objectid;
  3004. block->key.objectid = rc->extent_root->fs_info->nodesize;
  3005. block->key.offset = generation;
  3006. block->level = level;
  3007. block->key_ready = 0;
  3008. rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
  3009. if (rb_node)
  3010. backref_tree_panic(rb_node, -EEXIST, block->bytenr);
  3011. return 0;
  3012. }
  3013. /*
  3014. * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
  3015. */
  3016. static int __add_tree_block(struct reloc_control *rc,
  3017. u64 bytenr, u32 blocksize,
  3018. struct rb_root *blocks)
  3019. {
  3020. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3021. struct btrfs_path *path;
  3022. struct btrfs_key key;
  3023. int ret;
  3024. bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
  3025. if (tree_block_processed(bytenr, rc))
  3026. return 0;
  3027. if (tree_search(blocks, bytenr))
  3028. return 0;
  3029. path = btrfs_alloc_path();
  3030. if (!path)
  3031. return -ENOMEM;
  3032. again:
  3033. key.objectid = bytenr;
  3034. if (skinny) {
  3035. key.type = BTRFS_METADATA_ITEM_KEY;
  3036. key.offset = (u64)-1;
  3037. } else {
  3038. key.type = BTRFS_EXTENT_ITEM_KEY;
  3039. key.offset = blocksize;
  3040. }
  3041. path->search_commit_root = 1;
  3042. path->skip_locking = 1;
  3043. ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
  3044. if (ret < 0)
  3045. goto out;
  3046. if (ret > 0 && skinny) {
  3047. if (path->slots[0]) {
  3048. path->slots[0]--;
  3049. btrfs_item_key_to_cpu(path->nodes[0], &key,
  3050. path->slots[0]);
  3051. if (key.objectid == bytenr &&
  3052. (key.type == BTRFS_METADATA_ITEM_KEY ||
  3053. (key.type == BTRFS_EXTENT_ITEM_KEY &&
  3054. key.offset == blocksize)))
  3055. ret = 0;
  3056. }
  3057. if (ret) {
  3058. skinny = false;
  3059. btrfs_release_path(path);
  3060. goto again;
  3061. }
  3062. }
  3063. BUG_ON(ret);
  3064. ret = add_tree_block(rc, &key, path, blocks);
  3065. out:
  3066. btrfs_free_path(path);
  3067. return ret;
  3068. }
  3069. /*
  3070. * helper to check if the block use full backrefs for pointers in it
  3071. */
  3072. static int block_use_full_backref(struct reloc_control *rc,
  3073. struct extent_buffer *eb)
  3074. {
  3075. u64 flags;
  3076. int ret;
  3077. if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
  3078. btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
  3079. return 1;
  3080. ret = btrfs_lookup_extent_info(NULL, rc->extent_root,
  3081. eb->start, btrfs_header_level(eb), 1,
  3082. NULL, &flags);
  3083. BUG_ON(ret);
  3084. if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
  3085. ret = 1;
  3086. else
  3087. ret = 0;
  3088. return ret;
  3089. }
  3090. static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
  3091. struct btrfs_block_group_cache *block_group,
  3092. struct inode *inode,
  3093. u64 ino)
  3094. {
  3095. struct btrfs_key key;
  3096. struct btrfs_root *root = fs_info->tree_root;
  3097. struct btrfs_trans_handle *trans;
  3098. int ret = 0;
  3099. if (inode)
  3100. goto truncate;
  3101. key.objectid = ino;
  3102. key.type = BTRFS_INODE_ITEM_KEY;
  3103. key.offset = 0;
  3104. inode = btrfs_iget(fs_info->sb, &key, root, NULL);
  3105. if (IS_ERR(inode) || is_bad_inode(inode)) {
  3106. if (!IS_ERR(inode))
  3107. iput(inode);
  3108. return -ENOENT;
  3109. }
  3110. truncate:
  3111. ret = btrfs_check_trunc_cache_free_space(root,
  3112. &fs_info->global_block_rsv);
  3113. if (ret)
  3114. goto out;
  3115. trans = btrfs_join_transaction(root);
  3116. if (IS_ERR(trans)) {
  3117. ret = PTR_ERR(trans);
  3118. goto out;
  3119. }
  3120. ret = btrfs_truncate_free_space_cache(root, trans, block_group, inode);
  3121. btrfs_end_transaction(trans, root);
  3122. btrfs_btree_balance_dirty(root);
  3123. out:
  3124. iput(inode);
  3125. return ret;
  3126. }
  3127. /*
  3128. * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
  3129. * this function scans fs tree to find blocks reference the data extent
  3130. */
  3131. static int find_data_references(struct reloc_control *rc,
  3132. struct btrfs_key *extent_key,
  3133. struct extent_buffer *leaf,
  3134. struct btrfs_extent_data_ref *ref,
  3135. struct rb_root *blocks)
  3136. {
  3137. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3138. struct btrfs_path *path;
  3139. struct tree_block *block;
  3140. struct btrfs_root *root;
  3141. struct btrfs_file_extent_item *fi;
  3142. struct rb_node *rb_node;
  3143. struct btrfs_key key;
  3144. u64 ref_root;
  3145. u64 ref_objectid;
  3146. u64 ref_offset;
  3147. u32 ref_count;
  3148. u32 nritems;
  3149. int err = 0;
  3150. int added = 0;
  3151. int counted;
  3152. int ret;
  3153. ref_root = btrfs_extent_data_ref_root(leaf, ref);
  3154. ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
  3155. ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
  3156. ref_count = btrfs_extent_data_ref_count(leaf, ref);
  3157. /*
  3158. * This is an extent belonging to the free space cache, lets just delete
  3159. * it and redo the search.
  3160. */
  3161. if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
  3162. ret = delete_block_group_cache(fs_info, rc->block_group,
  3163. NULL, ref_objectid);
  3164. if (ret != -ENOENT)
  3165. return ret;
  3166. ret = 0;
  3167. }
  3168. path = btrfs_alloc_path();
  3169. if (!path)
  3170. return -ENOMEM;
  3171. path->reada = READA_FORWARD;
  3172. root = read_fs_root(fs_info, ref_root);
  3173. if (IS_ERR(root)) {
  3174. err = PTR_ERR(root);
  3175. goto out;
  3176. }
  3177. key.objectid = ref_objectid;
  3178. key.type = BTRFS_EXTENT_DATA_KEY;
  3179. if (ref_offset > ((u64)-1 << 32))
  3180. key.offset = 0;
  3181. else
  3182. key.offset = ref_offset;
  3183. path->search_commit_root = 1;
  3184. path->skip_locking = 1;
  3185. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3186. if (ret < 0) {
  3187. err = ret;
  3188. goto out;
  3189. }
  3190. leaf = path->nodes[0];
  3191. nritems = btrfs_header_nritems(leaf);
  3192. /*
  3193. * the references in tree blocks that use full backrefs
  3194. * are not counted in
  3195. */
  3196. if (block_use_full_backref(rc, leaf))
  3197. counted = 0;
  3198. else
  3199. counted = 1;
  3200. rb_node = tree_search(blocks, leaf->start);
  3201. if (rb_node) {
  3202. if (counted)
  3203. added = 1;
  3204. else
  3205. path->slots[0] = nritems;
  3206. }
  3207. while (ref_count > 0) {
  3208. while (path->slots[0] >= nritems) {
  3209. ret = btrfs_next_leaf(root, path);
  3210. if (ret < 0) {
  3211. err = ret;
  3212. goto out;
  3213. }
  3214. if (WARN_ON(ret > 0))
  3215. goto out;
  3216. leaf = path->nodes[0];
  3217. nritems = btrfs_header_nritems(leaf);
  3218. added = 0;
  3219. if (block_use_full_backref(rc, leaf))
  3220. counted = 0;
  3221. else
  3222. counted = 1;
  3223. rb_node = tree_search(blocks, leaf->start);
  3224. if (rb_node) {
  3225. if (counted)
  3226. added = 1;
  3227. else
  3228. path->slots[0] = nritems;
  3229. }
  3230. }
  3231. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  3232. if (WARN_ON(key.objectid != ref_objectid ||
  3233. key.type != BTRFS_EXTENT_DATA_KEY))
  3234. break;
  3235. fi = btrfs_item_ptr(leaf, path->slots[0],
  3236. struct btrfs_file_extent_item);
  3237. if (btrfs_file_extent_type(leaf, fi) ==
  3238. BTRFS_FILE_EXTENT_INLINE)
  3239. goto next;
  3240. if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
  3241. extent_key->objectid)
  3242. goto next;
  3243. key.offset -= btrfs_file_extent_offset(leaf, fi);
  3244. if (key.offset != ref_offset)
  3245. goto next;
  3246. if (counted)
  3247. ref_count--;
  3248. if (added)
  3249. goto next;
  3250. if (!tree_block_processed(leaf->start, rc)) {
  3251. block = kmalloc(sizeof(*block), GFP_NOFS);
  3252. if (!block) {
  3253. err = -ENOMEM;
  3254. break;
  3255. }
  3256. block->bytenr = leaf->start;
  3257. btrfs_item_key_to_cpu(leaf, &block->key, 0);
  3258. block->level = 0;
  3259. block->key_ready = 1;
  3260. rb_node = tree_insert(blocks, block->bytenr,
  3261. &block->rb_node);
  3262. if (rb_node)
  3263. backref_tree_panic(rb_node, -EEXIST,
  3264. block->bytenr);
  3265. }
  3266. if (counted)
  3267. added = 1;
  3268. else
  3269. path->slots[0] = nritems;
  3270. next:
  3271. path->slots[0]++;
  3272. }
  3273. out:
  3274. btrfs_free_path(path);
  3275. return err;
  3276. }
  3277. /*
  3278. * helper to find all tree blocks that reference a given data extent
  3279. */
  3280. static noinline_for_stack
  3281. int add_data_references(struct reloc_control *rc,
  3282. struct btrfs_key *extent_key,
  3283. struct btrfs_path *path,
  3284. struct rb_root *blocks)
  3285. {
  3286. struct btrfs_key key;
  3287. struct extent_buffer *eb;
  3288. struct btrfs_extent_data_ref *dref;
  3289. struct btrfs_extent_inline_ref *iref;
  3290. unsigned long ptr;
  3291. unsigned long end;
  3292. u32 blocksize = rc->extent_root->fs_info->nodesize;
  3293. int ret = 0;
  3294. int err = 0;
  3295. eb = path->nodes[0];
  3296. ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
  3297. end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
  3298. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  3299. if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
  3300. ptr = end;
  3301. else
  3302. #endif
  3303. ptr += sizeof(struct btrfs_extent_item);
  3304. while (ptr < end) {
  3305. iref = (struct btrfs_extent_inline_ref *)ptr;
  3306. key.type = btrfs_extent_inline_ref_type(eb, iref);
  3307. if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
  3308. key.offset = btrfs_extent_inline_ref_offset(eb, iref);
  3309. ret = __add_tree_block(rc, key.offset, blocksize,
  3310. blocks);
  3311. } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
  3312. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  3313. ret = find_data_references(rc, extent_key,
  3314. eb, dref, blocks);
  3315. } else {
  3316. BUG();
  3317. }
  3318. if (ret) {
  3319. err = ret;
  3320. goto out;
  3321. }
  3322. ptr += btrfs_extent_inline_ref_size(key.type);
  3323. }
  3324. WARN_ON(ptr > end);
  3325. while (1) {
  3326. cond_resched();
  3327. eb = path->nodes[0];
  3328. if (path->slots[0] >= btrfs_header_nritems(eb)) {
  3329. ret = btrfs_next_leaf(rc->extent_root, path);
  3330. if (ret < 0) {
  3331. err = ret;
  3332. break;
  3333. }
  3334. if (ret > 0)
  3335. break;
  3336. eb = path->nodes[0];
  3337. }
  3338. btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
  3339. if (key.objectid != extent_key->objectid)
  3340. break;
  3341. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  3342. if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
  3343. key.type == BTRFS_EXTENT_REF_V0_KEY) {
  3344. #else
  3345. BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
  3346. if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
  3347. #endif
  3348. ret = __add_tree_block(rc, key.offset, blocksize,
  3349. blocks);
  3350. } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
  3351. dref = btrfs_item_ptr(eb, path->slots[0],
  3352. struct btrfs_extent_data_ref);
  3353. ret = find_data_references(rc, extent_key,
  3354. eb, dref, blocks);
  3355. } else {
  3356. ret = 0;
  3357. }
  3358. if (ret) {
  3359. err = ret;
  3360. break;
  3361. }
  3362. path->slots[0]++;
  3363. }
  3364. out:
  3365. btrfs_release_path(path);
  3366. if (err)
  3367. free_block_list(blocks);
  3368. return err;
  3369. }
  3370. /*
  3371. * helper to find next unprocessed extent
  3372. */
  3373. static noinline_for_stack
  3374. int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
  3375. struct btrfs_key *extent_key)
  3376. {
  3377. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3378. struct btrfs_key key;
  3379. struct extent_buffer *leaf;
  3380. u64 start, end, last;
  3381. int ret;
  3382. last = rc->block_group->key.objectid + rc->block_group->key.offset;
  3383. while (1) {
  3384. cond_resched();
  3385. if (rc->search_start >= last) {
  3386. ret = 1;
  3387. break;
  3388. }
  3389. key.objectid = rc->search_start;
  3390. key.type = BTRFS_EXTENT_ITEM_KEY;
  3391. key.offset = 0;
  3392. path->search_commit_root = 1;
  3393. path->skip_locking = 1;
  3394. ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
  3395. 0, 0);
  3396. if (ret < 0)
  3397. break;
  3398. next:
  3399. leaf = path->nodes[0];
  3400. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  3401. ret = btrfs_next_leaf(rc->extent_root, path);
  3402. if (ret != 0)
  3403. break;
  3404. leaf = path->nodes[0];
  3405. }
  3406. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  3407. if (key.objectid >= last) {
  3408. ret = 1;
  3409. break;
  3410. }
  3411. if (key.type != BTRFS_EXTENT_ITEM_KEY &&
  3412. key.type != BTRFS_METADATA_ITEM_KEY) {
  3413. path->slots[0]++;
  3414. goto next;
  3415. }
  3416. if (key.type == BTRFS_EXTENT_ITEM_KEY &&
  3417. key.objectid + key.offset <= rc->search_start) {
  3418. path->slots[0]++;
  3419. goto next;
  3420. }
  3421. if (key.type == BTRFS_METADATA_ITEM_KEY &&
  3422. key.objectid + fs_info->nodesize <=
  3423. rc->search_start) {
  3424. path->slots[0]++;
  3425. goto next;
  3426. }
  3427. ret = find_first_extent_bit(&rc->processed_blocks,
  3428. key.objectid, &start, &end,
  3429. EXTENT_DIRTY, NULL);
  3430. if (ret == 0 && start <= key.objectid) {
  3431. btrfs_release_path(path);
  3432. rc->search_start = end + 1;
  3433. } else {
  3434. if (key.type == BTRFS_EXTENT_ITEM_KEY)
  3435. rc->search_start = key.objectid + key.offset;
  3436. else
  3437. rc->search_start = key.objectid +
  3438. fs_info->nodesize;
  3439. memcpy(extent_key, &key, sizeof(key));
  3440. return 0;
  3441. }
  3442. }
  3443. btrfs_release_path(path);
  3444. return ret;
  3445. }
  3446. static void set_reloc_control(struct reloc_control *rc)
  3447. {
  3448. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3449. mutex_lock(&fs_info->reloc_mutex);
  3450. fs_info->reloc_ctl = rc;
  3451. mutex_unlock(&fs_info->reloc_mutex);
  3452. }
  3453. static void unset_reloc_control(struct reloc_control *rc)
  3454. {
  3455. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3456. mutex_lock(&fs_info->reloc_mutex);
  3457. fs_info->reloc_ctl = NULL;
  3458. mutex_unlock(&fs_info->reloc_mutex);
  3459. }
  3460. static int check_extent_flags(u64 flags)
  3461. {
  3462. if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
  3463. (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
  3464. return 1;
  3465. if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
  3466. !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
  3467. return 1;
  3468. if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
  3469. (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  3470. return 1;
  3471. return 0;
  3472. }
  3473. static noinline_for_stack
  3474. int prepare_to_relocate(struct reloc_control *rc)
  3475. {
  3476. struct btrfs_trans_handle *trans;
  3477. int ret;
  3478. rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root,
  3479. BTRFS_BLOCK_RSV_TEMP);
  3480. if (!rc->block_rsv)
  3481. return -ENOMEM;
  3482. memset(&rc->cluster, 0, sizeof(rc->cluster));
  3483. rc->search_start = rc->block_group->key.objectid;
  3484. rc->extents_found = 0;
  3485. rc->nodes_relocated = 0;
  3486. rc->merging_rsv_size = 0;
  3487. rc->reserved_bytes = 0;
  3488. rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
  3489. RELOCATION_RESERVED_NODES;
  3490. ret = btrfs_block_rsv_refill(rc->extent_root,
  3491. rc->block_rsv, rc->block_rsv->size,
  3492. BTRFS_RESERVE_FLUSH_ALL);
  3493. if (ret)
  3494. return ret;
  3495. rc->create_reloc_tree = 1;
  3496. set_reloc_control(rc);
  3497. trans = btrfs_join_transaction(rc->extent_root);
  3498. if (IS_ERR(trans)) {
  3499. unset_reloc_control(rc);
  3500. /*
  3501. * extent tree is not a ref_cow tree and has no reloc_root to
  3502. * cleanup. And callers are responsible to free the above
  3503. * block rsv.
  3504. */
  3505. return PTR_ERR(trans);
  3506. }
  3507. btrfs_commit_transaction(trans, rc->extent_root);
  3508. return 0;
  3509. }
  3510. static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
  3511. {
  3512. struct rb_root blocks = RB_ROOT;
  3513. struct btrfs_key key;
  3514. struct btrfs_trans_handle *trans = NULL;
  3515. struct btrfs_path *path;
  3516. struct btrfs_extent_item *ei;
  3517. u64 flags;
  3518. u32 item_size;
  3519. int ret;
  3520. int err = 0;
  3521. int progress = 0;
  3522. path = btrfs_alloc_path();
  3523. if (!path)
  3524. return -ENOMEM;
  3525. path->reada = READA_FORWARD;
  3526. ret = prepare_to_relocate(rc);
  3527. if (ret) {
  3528. err = ret;
  3529. goto out_free;
  3530. }
  3531. while (1) {
  3532. rc->reserved_bytes = 0;
  3533. ret = btrfs_block_rsv_refill(rc->extent_root,
  3534. rc->block_rsv, rc->block_rsv->size,
  3535. BTRFS_RESERVE_FLUSH_ALL);
  3536. if (ret) {
  3537. err = ret;
  3538. break;
  3539. }
  3540. progress++;
  3541. trans = btrfs_start_transaction(rc->extent_root, 0);
  3542. if (IS_ERR(trans)) {
  3543. err = PTR_ERR(trans);
  3544. trans = NULL;
  3545. break;
  3546. }
  3547. restart:
  3548. if (update_backref_cache(trans, &rc->backref_cache)) {
  3549. btrfs_end_transaction(trans, rc->extent_root);
  3550. continue;
  3551. }
  3552. ret = find_next_extent(rc, path, &key);
  3553. if (ret < 0)
  3554. err = ret;
  3555. if (ret != 0)
  3556. break;
  3557. rc->extents_found++;
  3558. ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
  3559. struct btrfs_extent_item);
  3560. item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
  3561. if (item_size >= sizeof(*ei)) {
  3562. flags = btrfs_extent_flags(path->nodes[0], ei);
  3563. ret = check_extent_flags(flags);
  3564. BUG_ON(ret);
  3565. } else {
  3566. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  3567. u64 ref_owner;
  3568. int path_change = 0;
  3569. BUG_ON(item_size !=
  3570. sizeof(struct btrfs_extent_item_v0));
  3571. ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
  3572. &path_change);
  3573. if (ret < 0) {
  3574. err = ret;
  3575. break;
  3576. }
  3577. if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
  3578. flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
  3579. else
  3580. flags = BTRFS_EXTENT_FLAG_DATA;
  3581. if (path_change) {
  3582. btrfs_release_path(path);
  3583. path->search_commit_root = 1;
  3584. path->skip_locking = 1;
  3585. ret = btrfs_search_slot(NULL, rc->extent_root,
  3586. &key, path, 0, 0);
  3587. if (ret < 0) {
  3588. err = ret;
  3589. break;
  3590. }
  3591. BUG_ON(ret > 0);
  3592. }
  3593. #else
  3594. BUG();
  3595. #endif
  3596. }
  3597. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  3598. ret = add_tree_block(rc, &key, path, &blocks);
  3599. } else if (rc->stage == UPDATE_DATA_PTRS &&
  3600. (flags & BTRFS_EXTENT_FLAG_DATA)) {
  3601. ret = add_data_references(rc, &key, path, &blocks);
  3602. } else {
  3603. btrfs_release_path(path);
  3604. ret = 0;
  3605. }
  3606. if (ret < 0) {
  3607. err = ret;
  3608. break;
  3609. }
  3610. if (!RB_EMPTY_ROOT(&blocks)) {
  3611. ret = relocate_tree_blocks(trans, rc, &blocks);
  3612. if (ret < 0) {
  3613. /*
  3614. * if we fail to relocate tree blocks, force to update
  3615. * backref cache when committing transaction.
  3616. */
  3617. rc->backref_cache.last_trans = trans->transid - 1;
  3618. if (ret != -EAGAIN) {
  3619. err = ret;
  3620. break;
  3621. }
  3622. rc->extents_found--;
  3623. rc->search_start = key.objectid;
  3624. }
  3625. }
  3626. btrfs_end_transaction_throttle(trans, rc->extent_root);
  3627. btrfs_btree_balance_dirty(rc->extent_root);
  3628. trans = NULL;
  3629. if (rc->stage == MOVE_DATA_EXTENTS &&
  3630. (flags & BTRFS_EXTENT_FLAG_DATA)) {
  3631. rc->found_file_extent = 1;
  3632. ret = relocate_data_extent(rc->data_inode,
  3633. &key, &rc->cluster);
  3634. if (ret < 0) {
  3635. err = ret;
  3636. break;
  3637. }
  3638. }
  3639. }
  3640. if (trans && progress && err == -ENOSPC) {
  3641. ret = btrfs_force_chunk_alloc(trans, rc->extent_root,
  3642. rc->block_group->flags);
  3643. if (ret == 1) {
  3644. err = 0;
  3645. progress = 0;
  3646. goto restart;
  3647. }
  3648. }
  3649. btrfs_release_path(path);
  3650. clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
  3651. if (trans) {
  3652. btrfs_end_transaction_throttle(trans, rc->extent_root);
  3653. btrfs_btree_balance_dirty(rc->extent_root);
  3654. }
  3655. if (!err) {
  3656. ret = relocate_file_extent_cluster(rc->data_inode,
  3657. &rc->cluster);
  3658. if (ret < 0)
  3659. err = ret;
  3660. }
  3661. rc->create_reloc_tree = 0;
  3662. set_reloc_control(rc);
  3663. backref_cache_cleanup(&rc->backref_cache);
  3664. btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
  3665. err = prepare_to_merge(rc, err);
  3666. merge_reloc_roots(rc);
  3667. rc->merge_reloc_tree = 0;
  3668. unset_reloc_control(rc);
  3669. btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
  3670. /* get rid of pinned extents */
  3671. trans = btrfs_join_transaction(rc->extent_root);
  3672. if (IS_ERR(trans)) {
  3673. err = PTR_ERR(trans);
  3674. goto out_free;
  3675. }
  3676. btrfs_commit_transaction(trans, rc->extent_root);
  3677. out_free:
  3678. btrfs_free_block_rsv(rc->extent_root, rc->block_rsv);
  3679. btrfs_free_path(path);
  3680. return err;
  3681. }
  3682. static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
  3683. struct btrfs_root *root, u64 objectid)
  3684. {
  3685. struct btrfs_path *path;
  3686. struct btrfs_inode_item *item;
  3687. struct extent_buffer *leaf;
  3688. int ret;
  3689. path = btrfs_alloc_path();
  3690. if (!path)
  3691. return -ENOMEM;
  3692. ret = btrfs_insert_empty_inode(trans, root, path, objectid);
  3693. if (ret)
  3694. goto out;
  3695. leaf = path->nodes[0];
  3696. item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
  3697. memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
  3698. btrfs_set_inode_generation(leaf, item, 1);
  3699. btrfs_set_inode_size(leaf, item, 0);
  3700. btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
  3701. btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
  3702. BTRFS_INODE_PREALLOC);
  3703. btrfs_mark_buffer_dirty(leaf);
  3704. out:
  3705. btrfs_free_path(path);
  3706. return ret;
  3707. }
  3708. /*
  3709. * helper to create inode for data relocation.
  3710. * the inode is in data relocation tree and its link count is 0
  3711. */
  3712. static noinline_for_stack
  3713. struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
  3714. struct btrfs_block_group_cache *group)
  3715. {
  3716. struct inode *inode = NULL;
  3717. struct btrfs_trans_handle *trans;
  3718. struct btrfs_root *root;
  3719. struct btrfs_key key;
  3720. u64 objectid;
  3721. int err = 0;
  3722. root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
  3723. if (IS_ERR(root))
  3724. return ERR_CAST(root);
  3725. trans = btrfs_start_transaction(root, 6);
  3726. if (IS_ERR(trans))
  3727. return ERR_CAST(trans);
  3728. err = btrfs_find_free_objectid(root, &objectid);
  3729. if (err)
  3730. goto out;
  3731. err = __insert_orphan_inode(trans, root, objectid);
  3732. BUG_ON(err);
  3733. key.objectid = objectid;
  3734. key.type = BTRFS_INODE_ITEM_KEY;
  3735. key.offset = 0;
  3736. inode = btrfs_iget(fs_info->sb, &key, root, NULL);
  3737. BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
  3738. BTRFS_I(inode)->index_cnt = group->key.objectid;
  3739. err = btrfs_orphan_add(trans, inode);
  3740. out:
  3741. btrfs_end_transaction(trans, root);
  3742. btrfs_btree_balance_dirty(root);
  3743. if (err) {
  3744. if (inode)
  3745. iput(inode);
  3746. inode = ERR_PTR(err);
  3747. }
  3748. return inode;
  3749. }
  3750. static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
  3751. {
  3752. struct reloc_control *rc;
  3753. rc = kzalloc(sizeof(*rc), GFP_NOFS);
  3754. if (!rc)
  3755. return NULL;
  3756. INIT_LIST_HEAD(&rc->reloc_roots);
  3757. backref_cache_init(&rc->backref_cache);
  3758. mapping_tree_init(&rc->reloc_root_tree);
  3759. extent_io_tree_init(&rc->processed_blocks,
  3760. fs_info->btree_inode->i_mapping);
  3761. return rc;
  3762. }
  3763. /*
  3764. * Print the block group being relocated
  3765. */
  3766. static void describe_relocation(struct btrfs_fs_info *fs_info,
  3767. struct btrfs_block_group_cache *block_group)
  3768. {
  3769. char buf[128]; /* prefixed by a '|' that'll be dropped */
  3770. u64 flags = block_group->flags;
  3771. /* Shouldn't happen */
  3772. if (!flags) {
  3773. strcpy(buf, "|NONE");
  3774. } else {
  3775. char *bp = buf;
  3776. #define DESCRIBE_FLAG(f, d) \
  3777. if (flags & BTRFS_BLOCK_GROUP_##f) { \
  3778. bp += snprintf(bp, buf - bp + sizeof(buf), "|%s", d); \
  3779. flags &= ~BTRFS_BLOCK_GROUP_##f; \
  3780. }
  3781. DESCRIBE_FLAG(DATA, "data");
  3782. DESCRIBE_FLAG(SYSTEM, "system");
  3783. DESCRIBE_FLAG(METADATA, "metadata");
  3784. DESCRIBE_FLAG(RAID0, "raid0");
  3785. DESCRIBE_FLAG(RAID1, "raid1");
  3786. DESCRIBE_FLAG(DUP, "dup");
  3787. DESCRIBE_FLAG(RAID10, "raid10");
  3788. DESCRIBE_FLAG(RAID5, "raid5");
  3789. DESCRIBE_FLAG(RAID6, "raid6");
  3790. if (flags)
  3791. snprintf(buf, buf - bp + sizeof(buf), "|0x%llx", flags);
  3792. #undef DESCRIBE_FLAG
  3793. }
  3794. btrfs_info(fs_info,
  3795. "relocating block group %llu flags %s",
  3796. block_group->key.objectid, buf + 1);
  3797. }
  3798. /*
  3799. * function to relocate all extents in a block group.
  3800. */
  3801. int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
  3802. {
  3803. struct btrfs_root *extent_root = fs_info->extent_root;
  3804. struct reloc_control *rc;
  3805. struct inode *inode;
  3806. struct btrfs_path *path;
  3807. int ret;
  3808. int rw = 0;
  3809. int err = 0;
  3810. rc = alloc_reloc_control(fs_info);
  3811. if (!rc)
  3812. return -ENOMEM;
  3813. rc->extent_root = extent_root;
  3814. rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
  3815. BUG_ON(!rc->block_group);
  3816. ret = btrfs_inc_block_group_ro(extent_root, rc->block_group);
  3817. if (ret) {
  3818. err = ret;
  3819. goto out;
  3820. }
  3821. rw = 1;
  3822. path = btrfs_alloc_path();
  3823. if (!path) {
  3824. err = -ENOMEM;
  3825. goto out;
  3826. }
  3827. inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
  3828. path);
  3829. btrfs_free_path(path);
  3830. if (!IS_ERR(inode))
  3831. ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
  3832. else
  3833. ret = PTR_ERR(inode);
  3834. if (ret && ret != -ENOENT) {
  3835. err = ret;
  3836. goto out;
  3837. }
  3838. rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
  3839. if (IS_ERR(rc->data_inode)) {
  3840. err = PTR_ERR(rc->data_inode);
  3841. rc->data_inode = NULL;
  3842. goto out;
  3843. }
  3844. describe_relocation(fs_info, rc->block_group);
  3845. btrfs_wait_block_group_reservations(rc->block_group);
  3846. btrfs_wait_nocow_writers(rc->block_group);
  3847. btrfs_wait_ordered_roots(fs_info, -1,
  3848. rc->block_group->key.objectid,
  3849. rc->block_group->key.offset);
  3850. while (1) {
  3851. mutex_lock(&fs_info->cleaner_mutex);
  3852. ret = relocate_block_group(rc);
  3853. mutex_unlock(&fs_info->cleaner_mutex);
  3854. if (ret < 0) {
  3855. err = ret;
  3856. goto out;
  3857. }
  3858. if (rc->extents_found == 0)
  3859. break;
  3860. btrfs_info(fs_info, "found %llu extents", rc->extents_found);
  3861. if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
  3862. ret = btrfs_wait_ordered_range(rc->data_inode, 0,
  3863. (u64)-1);
  3864. if (ret) {
  3865. err = ret;
  3866. goto out;
  3867. }
  3868. invalidate_mapping_pages(rc->data_inode->i_mapping,
  3869. 0, -1);
  3870. rc->stage = UPDATE_DATA_PTRS;
  3871. }
  3872. }
  3873. WARN_ON(rc->block_group->pinned > 0);
  3874. WARN_ON(rc->block_group->reserved > 0);
  3875. WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
  3876. out:
  3877. if (err && rw)
  3878. btrfs_dec_block_group_ro(extent_root, rc->block_group);
  3879. iput(rc->data_inode);
  3880. btrfs_put_block_group(rc->block_group);
  3881. kfree(rc);
  3882. return err;
  3883. }
  3884. static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
  3885. {
  3886. struct btrfs_fs_info *fs_info = root->fs_info;
  3887. struct btrfs_trans_handle *trans;
  3888. int ret, err;
  3889. trans = btrfs_start_transaction(fs_info->tree_root, 0);
  3890. if (IS_ERR(trans))
  3891. return PTR_ERR(trans);
  3892. memset(&root->root_item.drop_progress, 0,
  3893. sizeof(root->root_item.drop_progress));
  3894. root->root_item.drop_level = 0;
  3895. btrfs_set_root_refs(&root->root_item, 0);
  3896. ret = btrfs_update_root(trans, fs_info->tree_root,
  3897. &root->root_key, &root->root_item);
  3898. err = btrfs_end_transaction(trans, fs_info->tree_root);
  3899. if (err)
  3900. return err;
  3901. return ret;
  3902. }
  3903. /*
  3904. * recover relocation interrupted by system crash.
  3905. *
  3906. * this function resumes merging reloc trees with corresponding fs trees.
  3907. * this is important for keeping the sharing of tree blocks
  3908. */
  3909. int btrfs_recover_relocation(struct btrfs_root *root)
  3910. {
  3911. struct btrfs_fs_info *fs_info = root->fs_info;
  3912. LIST_HEAD(reloc_roots);
  3913. struct btrfs_key key;
  3914. struct btrfs_root *fs_root;
  3915. struct btrfs_root *reloc_root;
  3916. struct btrfs_path *path;
  3917. struct extent_buffer *leaf;
  3918. struct reloc_control *rc = NULL;
  3919. struct btrfs_trans_handle *trans;
  3920. int ret;
  3921. int err = 0;
  3922. path = btrfs_alloc_path();
  3923. if (!path)
  3924. return -ENOMEM;
  3925. path->reada = READA_BACK;
  3926. key.objectid = BTRFS_TREE_RELOC_OBJECTID;
  3927. key.type = BTRFS_ROOT_ITEM_KEY;
  3928. key.offset = (u64)-1;
  3929. while (1) {
  3930. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
  3931. path, 0, 0);
  3932. if (ret < 0) {
  3933. err = ret;
  3934. goto out;
  3935. }
  3936. if (ret > 0) {
  3937. if (path->slots[0] == 0)
  3938. break;
  3939. path->slots[0]--;
  3940. }
  3941. leaf = path->nodes[0];
  3942. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  3943. btrfs_release_path(path);
  3944. if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
  3945. key.type != BTRFS_ROOT_ITEM_KEY)
  3946. break;
  3947. reloc_root = btrfs_read_fs_root(root, &key);
  3948. if (IS_ERR(reloc_root)) {
  3949. err = PTR_ERR(reloc_root);
  3950. goto out;
  3951. }
  3952. list_add(&reloc_root->root_list, &reloc_roots);
  3953. if (btrfs_root_refs(&reloc_root->root_item) > 0) {
  3954. fs_root = read_fs_root(fs_info,
  3955. reloc_root->root_key.offset);
  3956. if (IS_ERR(fs_root)) {
  3957. ret = PTR_ERR(fs_root);
  3958. if (ret != -ENOENT) {
  3959. err = ret;
  3960. goto out;
  3961. }
  3962. ret = mark_garbage_root(reloc_root);
  3963. if (ret < 0) {
  3964. err = ret;
  3965. goto out;
  3966. }
  3967. }
  3968. }
  3969. if (key.offset == 0)
  3970. break;
  3971. key.offset--;
  3972. }
  3973. btrfs_release_path(path);
  3974. if (list_empty(&reloc_roots))
  3975. goto out;
  3976. rc = alloc_reloc_control(fs_info);
  3977. if (!rc) {
  3978. err = -ENOMEM;
  3979. goto out;
  3980. }
  3981. rc->extent_root = fs_info->extent_root;
  3982. set_reloc_control(rc);
  3983. trans = btrfs_join_transaction(rc->extent_root);
  3984. if (IS_ERR(trans)) {
  3985. unset_reloc_control(rc);
  3986. err = PTR_ERR(trans);
  3987. goto out_free;
  3988. }
  3989. rc->merge_reloc_tree = 1;
  3990. while (!list_empty(&reloc_roots)) {
  3991. reloc_root = list_entry(reloc_roots.next,
  3992. struct btrfs_root, root_list);
  3993. list_del(&reloc_root->root_list);
  3994. if (btrfs_root_refs(&reloc_root->root_item) == 0) {
  3995. list_add_tail(&reloc_root->root_list,
  3996. &rc->reloc_roots);
  3997. continue;
  3998. }
  3999. fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
  4000. if (IS_ERR(fs_root)) {
  4001. err = PTR_ERR(fs_root);
  4002. goto out_free;
  4003. }
  4004. err = __add_reloc_root(reloc_root);
  4005. BUG_ON(err < 0); /* -ENOMEM or logic error */
  4006. fs_root->reloc_root = reloc_root;
  4007. }
  4008. err = btrfs_commit_transaction(trans, rc->extent_root);
  4009. if (err)
  4010. goto out_free;
  4011. merge_reloc_roots(rc);
  4012. unset_reloc_control(rc);
  4013. trans = btrfs_join_transaction(rc->extent_root);
  4014. if (IS_ERR(trans)) {
  4015. err = PTR_ERR(trans);
  4016. goto out_free;
  4017. }
  4018. err = btrfs_commit_transaction(trans, rc->extent_root);
  4019. out_free:
  4020. kfree(rc);
  4021. out:
  4022. if (!list_empty(&reloc_roots))
  4023. free_reloc_roots(&reloc_roots);
  4024. btrfs_free_path(path);
  4025. if (err == 0) {
  4026. /* cleanup orphan inode in data relocation tree */
  4027. fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
  4028. if (IS_ERR(fs_root))
  4029. err = PTR_ERR(fs_root);
  4030. else
  4031. err = btrfs_orphan_cleanup(fs_root);
  4032. }
  4033. return err;
  4034. }
  4035. /*
  4036. * helper to add ordered checksum for data relocation.
  4037. *
  4038. * cloning checksum properly handles the nodatasum extents.
  4039. * it also saves CPU time to re-calculate the checksum.
  4040. */
  4041. int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
  4042. {
  4043. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  4044. struct btrfs_ordered_sum *sums;
  4045. struct btrfs_ordered_extent *ordered;
  4046. int ret;
  4047. u64 disk_bytenr;
  4048. u64 new_bytenr;
  4049. LIST_HEAD(list);
  4050. ordered = btrfs_lookup_ordered_extent(inode, file_pos);
  4051. BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
  4052. disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
  4053. ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
  4054. disk_bytenr + len - 1, &list, 0);
  4055. if (ret)
  4056. goto out;
  4057. while (!list_empty(&list)) {
  4058. sums = list_entry(list.next, struct btrfs_ordered_sum, list);
  4059. list_del_init(&sums->list);
  4060. /*
  4061. * We need to offset the new_bytenr based on where the csum is.
  4062. * We need to do this because we will read in entire prealloc
  4063. * extents but we may have written to say the middle of the
  4064. * prealloc extent, so we need to make sure the csum goes with
  4065. * the right disk offset.
  4066. *
  4067. * We can do this because the data reloc inode refers strictly
  4068. * to the on disk bytes, so we don't have to worry about
  4069. * disk_len vs real len like with real inodes since it's all
  4070. * disk length.
  4071. */
  4072. new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
  4073. sums->bytenr = new_bytenr;
  4074. btrfs_add_ordered_sum(inode, ordered, sums);
  4075. }
  4076. out:
  4077. btrfs_put_ordered_extent(ordered);
  4078. return ret;
  4079. }
  4080. int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
  4081. struct btrfs_root *root, struct extent_buffer *buf,
  4082. struct extent_buffer *cow)
  4083. {
  4084. struct btrfs_fs_info *fs_info = root->fs_info;
  4085. struct reloc_control *rc;
  4086. struct backref_node *node;
  4087. int first_cow = 0;
  4088. int level;
  4089. int ret = 0;
  4090. rc = fs_info->reloc_ctl;
  4091. if (!rc)
  4092. return 0;
  4093. BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
  4094. root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
  4095. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  4096. if (buf == root->node)
  4097. __update_reloc_root(root, cow->start);
  4098. }
  4099. level = btrfs_header_level(buf);
  4100. if (btrfs_header_generation(buf) <=
  4101. btrfs_root_last_snapshot(&root->root_item))
  4102. first_cow = 1;
  4103. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
  4104. rc->create_reloc_tree) {
  4105. WARN_ON(!first_cow && level == 0);
  4106. node = rc->backref_cache.path[level];
  4107. BUG_ON(node->bytenr != buf->start &&
  4108. node->new_bytenr != buf->start);
  4109. drop_node_buffer(node);
  4110. extent_buffer_get(cow);
  4111. node->eb = cow;
  4112. node->new_bytenr = cow->start;
  4113. if (!node->pending) {
  4114. list_move_tail(&node->list,
  4115. &rc->backref_cache.pending[level]);
  4116. node->pending = 1;
  4117. }
  4118. if (first_cow)
  4119. __mark_block_processed(rc, node);
  4120. if (first_cow && level > 0)
  4121. rc->nodes_relocated += buf->len;
  4122. }
  4123. if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
  4124. ret = replace_file_extents(trans, rc, root, cow);
  4125. return ret;
  4126. }
  4127. /*
  4128. * called before creating snapshot. it calculates metadata reservation
  4129. * required for relocating tree blocks in the snapshot
  4130. */
  4131. void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
  4132. u64 *bytes_to_reserve)
  4133. {
  4134. struct btrfs_root *root;
  4135. struct reloc_control *rc;
  4136. root = pending->root;
  4137. if (!root->reloc_root)
  4138. return;
  4139. rc = root->fs_info->reloc_ctl;
  4140. if (!rc->merge_reloc_tree)
  4141. return;
  4142. root = root->reloc_root;
  4143. BUG_ON(btrfs_root_refs(&root->root_item) == 0);
  4144. /*
  4145. * relocation is in the stage of merging trees. the space
  4146. * used by merging a reloc tree is twice the size of
  4147. * relocated tree nodes in the worst case. half for cowing
  4148. * the reloc tree, half for cowing the fs tree. the space
  4149. * used by cowing the reloc tree will be freed after the
  4150. * tree is dropped. if we create snapshot, cowing the fs
  4151. * tree may use more space than it frees. so we need
  4152. * reserve extra space.
  4153. */
  4154. *bytes_to_reserve += rc->nodes_relocated;
  4155. }
  4156. /*
  4157. * called after snapshot is created. migrate block reservation
  4158. * and create reloc root for the newly created snapshot
  4159. */
  4160. int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
  4161. struct btrfs_pending_snapshot *pending)
  4162. {
  4163. struct btrfs_root *root = pending->root;
  4164. struct btrfs_root *reloc_root;
  4165. struct btrfs_root *new_root;
  4166. struct reloc_control *rc;
  4167. int ret;
  4168. if (!root->reloc_root)
  4169. return 0;
  4170. rc = root->fs_info->reloc_ctl;
  4171. rc->merging_rsv_size += rc->nodes_relocated;
  4172. if (rc->merge_reloc_tree) {
  4173. ret = btrfs_block_rsv_migrate(&pending->block_rsv,
  4174. rc->block_rsv,
  4175. rc->nodes_relocated, 1);
  4176. if (ret)
  4177. return ret;
  4178. }
  4179. new_root = pending->snap;
  4180. reloc_root = create_reloc_root(trans, root->reloc_root,
  4181. new_root->root_key.objectid);
  4182. if (IS_ERR(reloc_root))
  4183. return PTR_ERR(reloc_root);
  4184. ret = __add_reloc_root(reloc_root);
  4185. BUG_ON(ret < 0);
  4186. new_root->reloc_root = reloc_root;
  4187. if (rc->create_reloc_tree)
  4188. ret = clone_backref_node(trans, rc, root, reloc_root);
  4189. return ret;
  4190. }