nicstar.c 74 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830
  1. /*
  2. * nicstar.c
  3. *
  4. * Device driver supporting CBR for IDT 77201/77211 "NICStAR" based cards.
  5. *
  6. * IMPORTANT: The included file nicstarmac.c was NOT WRITTEN BY ME.
  7. * It was taken from the frle-0.22 device driver.
  8. * As the file doesn't have a copyright notice, in the file
  9. * nicstarmac.copyright I put the copyright notice from the
  10. * frle-0.22 device driver.
  11. * Some code is based on the nicstar driver by M. Welsh.
  12. *
  13. * Author: Rui Prior (rprior@inescn.pt)
  14. * PowerPC support by Jay Talbott (jay_talbott@mcg.mot.com) April 1999
  15. *
  16. *
  17. * (C) INESC 1999
  18. */
  19. /*
  20. * IMPORTANT INFORMATION
  21. *
  22. * There are currently three types of spinlocks:
  23. *
  24. * 1 - Per card interrupt spinlock (to protect structures and such)
  25. * 2 - Per SCQ scq spinlock
  26. * 3 - Per card resource spinlock (to access registers, etc.)
  27. *
  28. * These must NEVER be grabbed in reverse order.
  29. *
  30. */
  31. /* Header files */
  32. #include <linux/module.h>
  33. #include <linux/kernel.h>
  34. #include <linux/skbuff.h>
  35. #include <linux/atmdev.h>
  36. #include <linux/atm.h>
  37. #include <linux/pci.h>
  38. #include <linux/types.h>
  39. #include <linux/string.h>
  40. #include <linux/delay.h>
  41. #include <linux/init.h>
  42. #include <linux/sched.h>
  43. #include <linux/timer.h>
  44. #include <linux/interrupt.h>
  45. #include <linux/bitops.h>
  46. #include <linux/slab.h>
  47. #include <asm/io.h>
  48. #include <asm/uaccess.h>
  49. #include <asm/atomic.h>
  50. #include "nicstar.h"
  51. #ifdef CONFIG_ATM_NICSTAR_USE_SUNI
  52. #include "suni.h"
  53. #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
  54. #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
  55. #include "idt77105.h"
  56. #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */
  57. #if BITS_PER_LONG != 32
  58. # error FIXME: this driver requires a 32-bit platform
  59. #endif
  60. /* Additional code */
  61. #include "nicstarmac.c"
  62. /* Configurable parameters */
  63. #undef PHY_LOOPBACK
  64. #undef TX_DEBUG
  65. #undef RX_DEBUG
  66. #undef GENERAL_DEBUG
  67. #undef EXTRA_DEBUG
  68. #undef NS_USE_DESTRUCTORS /* For now keep this undefined unless you know
  69. you're going to use only raw ATM */
  70. /* Do not touch these */
  71. #ifdef TX_DEBUG
  72. #define TXPRINTK(args...) printk(args)
  73. #else
  74. #define TXPRINTK(args...)
  75. #endif /* TX_DEBUG */
  76. #ifdef RX_DEBUG
  77. #define RXPRINTK(args...) printk(args)
  78. #else
  79. #define RXPRINTK(args...)
  80. #endif /* RX_DEBUG */
  81. #ifdef GENERAL_DEBUG
  82. #define PRINTK(args...) printk(args)
  83. #else
  84. #define PRINTK(args...)
  85. #endif /* GENERAL_DEBUG */
  86. #ifdef EXTRA_DEBUG
  87. #define XPRINTK(args...) printk(args)
  88. #else
  89. #define XPRINTK(args...)
  90. #endif /* EXTRA_DEBUG */
  91. /* Macros */
  92. #define CMD_BUSY(card) (readl((card)->membase + STAT) & NS_STAT_CMDBZ)
  93. #define NS_DELAY mdelay(1)
  94. #define ALIGN_BUS_ADDR(addr, alignment) \
  95. ((((u32) (addr)) + (((u32) (alignment)) - 1)) & ~(((u32) (alignment)) - 1))
  96. #define ALIGN_ADDRESS(addr, alignment) \
  97. bus_to_virt(ALIGN_BUS_ADDR(virt_to_bus(addr), alignment))
  98. #undef CEIL
  99. #ifndef ATM_SKB
  100. #define ATM_SKB(s) (&(s)->atm)
  101. #endif
  102. /* Function declarations */
  103. static u32 ns_read_sram(ns_dev * card, u32 sram_address);
  104. static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value,
  105. int count);
  106. static int __devinit ns_init_card(int i, struct pci_dev *pcidev);
  107. static void __devinit ns_init_card_error(ns_dev * card, int error);
  108. static scq_info *get_scq(int size, u32 scd);
  109. static void free_scq(scq_info * scq, struct atm_vcc *vcc);
  110. static void push_rxbufs(ns_dev *, struct sk_buff *);
  111. static irqreturn_t ns_irq_handler(int irq, void *dev_id);
  112. static int ns_open(struct atm_vcc *vcc);
  113. static void ns_close(struct atm_vcc *vcc);
  114. static void fill_tst(ns_dev * card, int n, vc_map * vc);
  115. static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb);
  116. static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd,
  117. struct sk_buff *skb);
  118. static void process_tsq(ns_dev * card);
  119. static void drain_scq(ns_dev * card, scq_info * scq, int pos);
  120. static void process_rsq(ns_dev * card);
  121. static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe);
  122. #ifdef NS_USE_DESTRUCTORS
  123. static void ns_sb_destructor(struct sk_buff *sb);
  124. static void ns_lb_destructor(struct sk_buff *lb);
  125. static void ns_hb_destructor(struct sk_buff *hb);
  126. #endif /* NS_USE_DESTRUCTORS */
  127. static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb);
  128. static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count);
  129. static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb);
  130. static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb);
  131. static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb);
  132. static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page);
  133. static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg);
  134. static void which_list(ns_dev * card, struct sk_buff *skb);
  135. static void ns_poll(unsigned long arg);
  136. static int ns_parse_mac(char *mac, unsigned char *esi);
  137. static short ns_h2i(char c);
  138. static void ns_phy_put(struct atm_dev *dev, unsigned char value,
  139. unsigned long addr);
  140. static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr);
  141. /* Global variables */
  142. static struct ns_dev *cards[NS_MAX_CARDS];
  143. static unsigned num_cards;
  144. static struct atmdev_ops atm_ops = {
  145. .open = ns_open,
  146. .close = ns_close,
  147. .ioctl = ns_ioctl,
  148. .send = ns_send,
  149. .phy_put = ns_phy_put,
  150. .phy_get = ns_phy_get,
  151. .proc_read = ns_proc_read,
  152. .owner = THIS_MODULE,
  153. };
  154. static struct timer_list ns_timer;
  155. static char *mac[NS_MAX_CARDS];
  156. module_param_array(mac, charp, NULL, 0);
  157. MODULE_LICENSE("GPL");
  158. /* Functions */
  159. static int __devinit nicstar_init_one(struct pci_dev *pcidev,
  160. const struct pci_device_id *ent)
  161. {
  162. static int index = -1;
  163. unsigned int error;
  164. index++;
  165. cards[index] = NULL;
  166. error = ns_init_card(index, pcidev);
  167. if (error) {
  168. cards[index--] = NULL; /* don't increment index */
  169. goto err_out;
  170. }
  171. return 0;
  172. err_out:
  173. return -ENODEV;
  174. }
  175. static void __devexit nicstar_remove_one(struct pci_dev *pcidev)
  176. {
  177. int i, j;
  178. ns_dev *card = pci_get_drvdata(pcidev);
  179. struct sk_buff *hb;
  180. struct sk_buff *iovb;
  181. struct sk_buff *lb;
  182. struct sk_buff *sb;
  183. i = card->index;
  184. if (cards[i] == NULL)
  185. return;
  186. if (card->atmdev->phy && card->atmdev->phy->stop)
  187. card->atmdev->phy->stop(card->atmdev);
  188. /* Stop everything */
  189. writel(0x00000000, card->membase + CFG);
  190. /* De-register device */
  191. atm_dev_deregister(card->atmdev);
  192. /* Disable PCI device */
  193. pci_disable_device(pcidev);
  194. /* Free up resources */
  195. j = 0;
  196. PRINTK("nicstar%d: freeing %d huge buffers.\n", i, card->hbpool.count);
  197. while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL) {
  198. dev_kfree_skb_any(hb);
  199. j++;
  200. }
  201. PRINTK("nicstar%d: %d huge buffers freed.\n", i, j);
  202. j = 0;
  203. PRINTK("nicstar%d: freeing %d iovec buffers.\n", i,
  204. card->iovpool.count);
  205. while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL) {
  206. dev_kfree_skb_any(iovb);
  207. j++;
  208. }
  209. PRINTK("nicstar%d: %d iovec buffers freed.\n", i, j);
  210. while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
  211. dev_kfree_skb_any(lb);
  212. while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
  213. dev_kfree_skb_any(sb);
  214. free_scq(card->scq0, NULL);
  215. for (j = 0; j < NS_FRSCD_NUM; j++) {
  216. if (card->scd2vc[j] != NULL)
  217. free_scq(card->scd2vc[j]->scq, card->scd2vc[j]->tx_vcc);
  218. }
  219. kfree(card->rsq.org);
  220. kfree(card->tsq.org);
  221. free_irq(card->pcidev->irq, card);
  222. iounmap(card->membase);
  223. kfree(card);
  224. }
  225. static struct pci_device_id nicstar_pci_tbl[] __devinitdata = {
  226. {PCI_VENDOR_ID_IDT, PCI_DEVICE_ID_IDT_IDT77201,
  227. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  228. {0,} /* terminate list */
  229. };
  230. MODULE_DEVICE_TABLE(pci, nicstar_pci_tbl);
  231. static struct pci_driver nicstar_driver = {
  232. .name = "nicstar",
  233. .id_table = nicstar_pci_tbl,
  234. .probe = nicstar_init_one,
  235. .remove = __devexit_p(nicstar_remove_one),
  236. };
  237. static int __init nicstar_init(void)
  238. {
  239. unsigned error = 0; /* Initialized to remove compile warning */
  240. XPRINTK("nicstar: nicstar_init() called.\n");
  241. error = pci_register_driver(&nicstar_driver);
  242. TXPRINTK("nicstar: TX debug enabled.\n");
  243. RXPRINTK("nicstar: RX debug enabled.\n");
  244. PRINTK("nicstar: General debug enabled.\n");
  245. #ifdef PHY_LOOPBACK
  246. printk("nicstar: using PHY loopback.\n");
  247. #endif /* PHY_LOOPBACK */
  248. XPRINTK("nicstar: nicstar_init() returned.\n");
  249. if (!error) {
  250. init_timer(&ns_timer);
  251. ns_timer.expires = jiffies + NS_POLL_PERIOD;
  252. ns_timer.data = 0UL;
  253. ns_timer.function = ns_poll;
  254. add_timer(&ns_timer);
  255. }
  256. return error;
  257. }
  258. static void __exit nicstar_cleanup(void)
  259. {
  260. XPRINTK("nicstar: nicstar_cleanup() called.\n");
  261. del_timer(&ns_timer);
  262. pci_unregister_driver(&nicstar_driver);
  263. XPRINTK("nicstar: nicstar_cleanup() returned.\n");
  264. }
  265. static u32 ns_read_sram(ns_dev * card, u32 sram_address)
  266. {
  267. unsigned long flags;
  268. u32 data;
  269. sram_address <<= 2;
  270. sram_address &= 0x0007FFFC; /* address must be dword aligned */
  271. sram_address |= 0x50000000; /* SRAM read command */
  272. spin_lock_irqsave(&card->res_lock, flags);
  273. while (CMD_BUSY(card)) ;
  274. writel(sram_address, card->membase + CMD);
  275. while (CMD_BUSY(card)) ;
  276. data = readl(card->membase + DR0);
  277. spin_unlock_irqrestore(&card->res_lock, flags);
  278. return data;
  279. }
  280. static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value,
  281. int count)
  282. {
  283. unsigned long flags;
  284. int i, c;
  285. count--; /* count range now is 0..3 instead of 1..4 */
  286. c = count;
  287. c <<= 2; /* to use increments of 4 */
  288. spin_lock_irqsave(&card->res_lock, flags);
  289. while (CMD_BUSY(card)) ;
  290. for (i = 0; i <= c; i += 4)
  291. writel(*(value++), card->membase + i);
  292. /* Note: DR# registers are the first 4 dwords in nicstar's memspace,
  293. so card->membase + DR0 == card->membase */
  294. sram_address <<= 2;
  295. sram_address &= 0x0007FFFC;
  296. sram_address |= (0x40000000 | count);
  297. writel(sram_address, card->membase + CMD);
  298. spin_unlock_irqrestore(&card->res_lock, flags);
  299. }
  300. static int __devinit ns_init_card(int i, struct pci_dev *pcidev)
  301. {
  302. int j;
  303. struct ns_dev *card = NULL;
  304. unsigned char pci_latency;
  305. unsigned error;
  306. u32 data;
  307. u32 u32d[4];
  308. u32 ns_cfg_rctsize;
  309. int bcount;
  310. unsigned long membase;
  311. error = 0;
  312. if (pci_enable_device(pcidev)) {
  313. printk("nicstar%d: can't enable PCI device\n", i);
  314. error = 2;
  315. ns_init_card_error(card, error);
  316. return error;
  317. }
  318. if ((card = kmalloc(sizeof(ns_dev), GFP_KERNEL)) == NULL) {
  319. printk
  320. ("nicstar%d: can't allocate memory for device structure.\n",
  321. i);
  322. error = 2;
  323. ns_init_card_error(card, error);
  324. return error;
  325. }
  326. cards[i] = card;
  327. spin_lock_init(&card->int_lock);
  328. spin_lock_init(&card->res_lock);
  329. pci_set_drvdata(pcidev, card);
  330. card->index = i;
  331. card->atmdev = NULL;
  332. card->pcidev = pcidev;
  333. membase = pci_resource_start(pcidev, 1);
  334. card->membase = ioremap(membase, NS_IOREMAP_SIZE);
  335. if (!card->membase) {
  336. printk("nicstar%d: can't ioremap() membase.\n", i);
  337. error = 3;
  338. ns_init_card_error(card, error);
  339. return error;
  340. }
  341. PRINTK("nicstar%d: membase at 0x%x.\n", i, card->membase);
  342. pci_set_master(pcidev);
  343. if (pci_read_config_byte(pcidev, PCI_LATENCY_TIMER, &pci_latency) != 0) {
  344. printk("nicstar%d: can't read PCI latency timer.\n", i);
  345. error = 6;
  346. ns_init_card_error(card, error);
  347. return error;
  348. }
  349. #ifdef NS_PCI_LATENCY
  350. if (pci_latency < NS_PCI_LATENCY) {
  351. PRINTK("nicstar%d: setting PCI latency timer to %d.\n", i,
  352. NS_PCI_LATENCY);
  353. for (j = 1; j < 4; j++) {
  354. if (pci_write_config_byte
  355. (pcidev, PCI_LATENCY_TIMER, NS_PCI_LATENCY) != 0)
  356. break;
  357. }
  358. if (j == 4) {
  359. printk
  360. ("nicstar%d: can't set PCI latency timer to %d.\n",
  361. i, NS_PCI_LATENCY);
  362. error = 7;
  363. ns_init_card_error(card, error);
  364. return error;
  365. }
  366. }
  367. #endif /* NS_PCI_LATENCY */
  368. /* Clear timer overflow */
  369. data = readl(card->membase + STAT);
  370. if (data & NS_STAT_TMROF)
  371. writel(NS_STAT_TMROF, card->membase + STAT);
  372. /* Software reset */
  373. writel(NS_CFG_SWRST, card->membase + CFG);
  374. NS_DELAY;
  375. writel(0x00000000, card->membase + CFG);
  376. /* PHY reset */
  377. writel(0x00000008, card->membase + GP);
  378. NS_DELAY;
  379. writel(0x00000001, card->membase + GP);
  380. NS_DELAY;
  381. while (CMD_BUSY(card)) ;
  382. writel(NS_CMD_WRITE_UTILITY | 0x00000100, card->membase + CMD); /* Sync UTOPIA with SAR clock */
  383. NS_DELAY;
  384. /* Detect PHY type */
  385. while (CMD_BUSY(card)) ;
  386. writel(NS_CMD_READ_UTILITY | 0x00000200, card->membase + CMD);
  387. while (CMD_BUSY(card)) ;
  388. data = readl(card->membase + DR0);
  389. switch (data) {
  390. case 0x00000009:
  391. printk("nicstar%d: PHY seems to be 25 Mbps.\n", i);
  392. card->max_pcr = ATM_25_PCR;
  393. while (CMD_BUSY(card)) ;
  394. writel(0x00000008, card->membase + DR0);
  395. writel(NS_CMD_WRITE_UTILITY | 0x00000200, card->membase + CMD);
  396. /* Clear an eventual pending interrupt */
  397. writel(NS_STAT_SFBQF, card->membase + STAT);
  398. #ifdef PHY_LOOPBACK
  399. while (CMD_BUSY(card)) ;
  400. writel(0x00000022, card->membase + DR0);
  401. writel(NS_CMD_WRITE_UTILITY | 0x00000202, card->membase + CMD);
  402. #endif /* PHY_LOOPBACK */
  403. break;
  404. case 0x00000030:
  405. case 0x00000031:
  406. printk("nicstar%d: PHY seems to be 155 Mbps.\n", i);
  407. card->max_pcr = ATM_OC3_PCR;
  408. #ifdef PHY_LOOPBACK
  409. while (CMD_BUSY(card)) ;
  410. writel(0x00000002, card->membase + DR0);
  411. writel(NS_CMD_WRITE_UTILITY | 0x00000205, card->membase + CMD);
  412. #endif /* PHY_LOOPBACK */
  413. break;
  414. default:
  415. printk("nicstar%d: unknown PHY type (0x%08X).\n", i, data);
  416. error = 8;
  417. ns_init_card_error(card, error);
  418. return error;
  419. }
  420. writel(0x00000000, card->membase + GP);
  421. /* Determine SRAM size */
  422. data = 0x76543210;
  423. ns_write_sram(card, 0x1C003, &data, 1);
  424. data = 0x89ABCDEF;
  425. ns_write_sram(card, 0x14003, &data, 1);
  426. if (ns_read_sram(card, 0x14003) == 0x89ABCDEF &&
  427. ns_read_sram(card, 0x1C003) == 0x76543210)
  428. card->sram_size = 128;
  429. else
  430. card->sram_size = 32;
  431. PRINTK("nicstar%d: %dK x 32bit SRAM size.\n", i, card->sram_size);
  432. card->rct_size = NS_MAX_RCTSIZE;
  433. #if (NS_MAX_RCTSIZE == 4096)
  434. if (card->sram_size == 128)
  435. printk
  436. ("nicstar%d: limiting maximum VCI. See NS_MAX_RCTSIZE in nicstar.h\n",
  437. i);
  438. #elif (NS_MAX_RCTSIZE == 16384)
  439. if (card->sram_size == 32) {
  440. printk
  441. ("nicstar%d: wasting memory. See NS_MAX_RCTSIZE in nicstar.h\n",
  442. i);
  443. card->rct_size = 4096;
  444. }
  445. #else
  446. #error NS_MAX_RCTSIZE must be either 4096 or 16384 in nicstar.c
  447. #endif
  448. card->vpibits = NS_VPIBITS;
  449. if (card->rct_size == 4096)
  450. card->vcibits = 12 - NS_VPIBITS;
  451. else /* card->rct_size == 16384 */
  452. card->vcibits = 14 - NS_VPIBITS;
  453. /* Initialize the nicstar eeprom/eprom stuff, for the MAC addr */
  454. if (mac[i] == NULL)
  455. nicstar_init_eprom(card->membase);
  456. /* Set the VPI/VCI MSb mask to zero so we can receive OAM cells */
  457. writel(0x00000000, card->membase + VPM);
  458. /* Initialize TSQ */
  459. card->tsq.org = kmalloc(NS_TSQSIZE + NS_TSQ_ALIGNMENT, GFP_KERNEL);
  460. if (card->tsq.org == NULL) {
  461. printk("nicstar%d: can't allocate TSQ.\n", i);
  462. error = 10;
  463. ns_init_card_error(card, error);
  464. return error;
  465. }
  466. card->tsq.base =
  467. (ns_tsi *) ALIGN_ADDRESS(card->tsq.org, NS_TSQ_ALIGNMENT);
  468. card->tsq.next = card->tsq.base;
  469. card->tsq.last = card->tsq.base + (NS_TSQ_NUM_ENTRIES - 1);
  470. for (j = 0; j < NS_TSQ_NUM_ENTRIES; j++)
  471. ns_tsi_init(card->tsq.base + j);
  472. writel(0x00000000, card->membase + TSQH);
  473. writel((u32) virt_to_bus(card->tsq.base), card->membase + TSQB);
  474. PRINTK("nicstar%d: TSQ base at 0x%x 0x%x 0x%x.\n", i,
  475. (u32) card->tsq.base, (u32) virt_to_bus(card->tsq.base),
  476. readl(card->membase + TSQB));
  477. /* Initialize RSQ */
  478. card->rsq.org = kmalloc(NS_RSQSIZE + NS_RSQ_ALIGNMENT, GFP_KERNEL);
  479. if (card->rsq.org == NULL) {
  480. printk("nicstar%d: can't allocate RSQ.\n", i);
  481. error = 11;
  482. ns_init_card_error(card, error);
  483. return error;
  484. }
  485. card->rsq.base =
  486. (ns_rsqe *) ALIGN_ADDRESS(card->rsq.org, NS_RSQ_ALIGNMENT);
  487. card->rsq.next = card->rsq.base;
  488. card->rsq.last = card->rsq.base + (NS_RSQ_NUM_ENTRIES - 1);
  489. for (j = 0; j < NS_RSQ_NUM_ENTRIES; j++)
  490. ns_rsqe_init(card->rsq.base + j);
  491. writel(0x00000000, card->membase + RSQH);
  492. writel((u32) virt_to_bus(card->rsq.base), card->membase + RSQB);
  493. PRINTK("nicstar%d: RSQ base at 0x%x.\n", i, (u32) card->rsq.base);
  494. /* Initialize SCQ0, the only VBR SCQ used */
  495. card->scq1 = NULL;
  496. card->scq2 = NULL;
  497. card->scq0 = get_scq(VBR_SCQSIZE, NS_VRSCD0);
  498. if (card->scq0 == NULL) {
  499. printk("nicstar%d: can't get SCQ0.\n", i);
  500. error = 12;
  501. ns_init_card_error(card, error);
  502. return error;
  503. }
  504. u32d[0] = (u32) virt_to_bus(card->scq0->base);
  505. u32d[1] = (u32) 0x00000000;
  506. u32d[2] = (u32) 0xffffffff;
  507. u32d[3] = (u32) 0x00000000;
  508. ns_write_sram(card, NS_VRSCD0, u32d, 4);
  509. ns_write_sram(card, NS_VRSCD1, u32d, 4); /* These last two won't be used */
  510. ns_write_sram(card, NS_VRSCD2, u32d, 4); /* but are initialized, just in case... */
  511. card->scq0->scd = NS_VRSCD0;
  512. PRINTK("nicstar%d: VBR-SCQ0 base at 0x%x.\n", i,
  513. (u32) card->scq0->base);
  514. /* Initialize TSTs */
  515. card->tst_addr = NS_TST0;
  516. card->tst_free_entries = NS_TST_NUM_ENTRIES;
  517. data = NS_TST_OPCODE_VARIABLE;
  518. for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
  519. ns_write_sram(card, NS_TST0 + j, &data, 1);
  520. data = ns_tste_make(NS_TST_OPCODE_END, NS_TST0);
  521. ns_write_sram(card, NS_TST0 + NS_TST_NUM_ENTRIES, &data, 1);
  522. for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
  523. ns_write_sram(card, NS_TST1 + j, &data, 1);
  524. data = ns_tste_make(NS_TST_OPCODE_END, NS_TST1);
  525. ns_write_sram(card, NS_TST1 + NS_TST_NUM_ENTRIES, &data, 1);
  526. for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
  527. card->tste2vc[j] = NULL;
  528. writel(NS_TST0 << 2, card->membase + TSTB);
  529. /* Initialize RCT. AAL type is set on opening the VC. */
  530. #ifdef RCQ_SUPPORT
  531. u32d[0] = NS_RCTE_RAWCELLINTEN;
  532. #else
  533. u32d[0] = 0x00000000;
  534. #endif /* RCQ_SUPPORT */
  535. u32d[1] = 0x00000000;
  536. u32d[2] = 0x00000000;
  537. u32d[3] = 0xFFFFFFFF;
  538. for (j = 0; j < card->rct_size; j++)
  539. ns_write_sram(card, j * 4, u32d, 4);
  540. memset(card->vcmap, 0, NS_MAX_RCTSIZE * sizeof(vc_map));
  541. for (j = 0; j < NS_FRSCD_NUM; j++)
  542. card->scd2vc[j] = NULL;
  543. /* Initialize buffer levels */
  544. card->sbnr.min = MIN_SB;
  545. card->sbnr.init = NUM_SB;
  546. card->sbnr.max = MAX_SB;
  547. card->lbnr.min = MIN_LB;
  548. card->lbnr.init = NUM_LB;
  549. card->lbnr.max = MAX_LB;
  550. card->iovnr.min = MIN_IOVB;
  551. card->iovnr.init = NUM_IOVB;
  552. card->iovnr.max = MAX_IOVB;
  553. card->hbnr.min = MIN_HB;
  554. card->hbnr.init = NUM_HB;
  555. card->hbnr.max = MAX_HB;
  556. card->sm_handle = 0x00000000;
  557. card->sm_addr = 0x00000000;
  558. card->lg_handle = 0x00000000;
  559. card->lg_addr = 0x00000000;
  560. card->efbie = 1; /* To prevent push_rxbufs from enabling the interrupt */
  561. /* Pre-allocate some huge buffers */
  562. skb_queue_head_init(&card->hbpool.queue);
  563. card->hbpool.count = 0;
  564. for (j = 0; j < NUM_HB; j++) {
  565. struct sk_buff *hb;
  566. hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
  567. if (hb == NULL) {
  568. printk
  569. ("nicstar%d: can't allocate %dth of %d huge buffers.\n",
  570. i, j, NUM_HB);
  571. error = 13;
  572. ns_init_card_error(card, error);
  573. return error;
  574. }
  575. NS_SKB_CB(hb)->buf_type = BUF_NONE;
  576. skb_queue_tail(&card->hbpool.queue, hb);
  577. card->hbpool.count++;
  578. }
  579. /* Allocate large buffers */
  580. skb_queue_head_init(&card->lbpool.queue);
  581. card->lbpool.count = 0; /* Not used */
  582. for (j = 0; j < NUM_LB; j++) {
  583. struct sk_buff *lb;
  584. lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
  585. if (lb == NULL) {
  586. printk
  587. ("nicstar%d: can't allocate %dth of %d large buffers.\n",
  588. i, j, NUM_LB);
  589. error = 14;
  590. ns_init_card_error(card, error);
  591. return error;
  592. }
  593. NS_SKB_CB(lb)->buf_type = BUF_LG;
  594. skb_queue_tail(&card->lbpool.queue, lb);
  595. skb_reserve(lb, NS_SMBUFSIZE);
  596. push_rxbufs(card, lb);
  597. /* Due to the implementation of push_rxbufs() this is 1, not 0 */
  598. if (j == 1) {
  599. card->rcbuf = lb;
  600. card->rawch = (u32) virt_to_bus(lb->data);
  601. }
  602. }
  603. /* Test for strange behaviour which leads to crashes */
  604. if ((bcount =
  605. ns_stat_lfbqc_get(readl(card->membase + STAT))) < card->lbnr.min) {
  606. printk
  607. ("nicstar%d: Strange... Just allocated %d large buffers and lfbqc = %d.\n",
  608. i, j, bcount);
  609. error = 14;
  610. ns_init_card_error(card, error);
  611. return error;
  612. }
  613. /* Allocate small buffers */
  614. skb_queue_head_init(&card->sbpool.queue);
  615. card->sbpool.count = 0; /* Not used */
  616. for (j = 0; j < NUM_SB; j++) {
  617. struct sk_buff *sb;
  618. sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
  619. if (sb == NULL) {
  620. printk
  621. ("nicstar%d: can't allocate %dth of %d small buffers.\n",
  622. i, j, NUM_SB);
  623. error = 15;
  624. ns_init_card_error(card, error);
  625. return error;
  626. }
  627. NS_SKB_CB(sb)->buf_type = BUF_SM;
  628. skb_queue_tail(&card->sbpool.queue, sb);
  629. skb_reserve(sb, NS_AAL0_HEADER);
  630. push_rxbufs(card, sb);
  631. }
  632. /* Test for strange behaviour which leads to crashes */
  633. if ((bcount =
  634. ns_stat_sfbqc_get(readl(card->membase + STAT))) < card->sbnr.min) {
  635. printk
  636. ("nicstar%d: Strange... Just allocated %d small buffers and sfbqc = %d.\n",
  637. i, j, bcount);
  638. error = 15;
  639. ns_init_card_error(card, error);
  640. return error;
  641. }
  642. /* Allocate iovec buffers */
  643. skb_queue_head_init(&card->iovpool.queue);
  644. card->iovpool.count = 0;
  645. for (j = 0; j < NUM_IOVB; j++) {
  646. struct sk_buff *iovb;
  647. iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
  648. if (iovb == NULL) {
  649. printk
  650. ("nicstar%d: can't allocate %dth of %d iovec buffers.\n",
  651. i, j, NUM_IOVB);
  652. error = 16;
  653. ns_init_card_error(card, error);
  654. return error;
  655. }
  656. NS_SKB_CB(iovb)->buf_type = BUF_NONE;
  657. skb_queue_tail(&card->iovpool.queue, iovb);
  658. card->iovpool.count++;
  659. }
  660. /* Configure NICStAR */
  661. if (card->rct_size == 4096)
  662. ns_cfg_rctsize = NS_CFG_RCTSIZE_4096_ENTRIES;
  663. else /* (card->rct_size == 16384) */
  664. ns_cfg_rctsize = NS_CFG_RCTSIZE_16384_ENTRIES;
  665. card->efbie = 1;
  666. card->intcnt = 0;
  667. if (request_irq
  668. (pcidev->irq, &ns_irq_handler, IRQF_DISABLED | IRQF_SHARED,
  669. "nicstar", card) != 0) {
  670. printk("nicstar%d: can't allocate IRQ %d.\n", i, pcidev->irq);
  671. error = 9;
  672. ns_init_card_error(card, error);
  673. return error;
  674. }
  675. /* Register device */
  676. card->atmdev = atm_dev_register("nicstar", &atm_ops, -1, NULL);
  677. if (card->atmdev == NULL) {
  678. printk("nicstar%d: can't register device.\n", i);
  679. error = 17;
  680. ns_init_card_error(card, error);
  681. return error;
  682. }
  683. if (ns_parse_mac(mac[i], card->atmdev->esi)) {
  684. nicstar_read_eprom(card->membase, NICSTAR_EPROM_MAC_ADDR_OFFSET,
  685. card->atmdev->esi, 6);
  686. if (memcmp(card->atmdev->esi, "\x00\x00\x00\x00\x00\x00", 6) ==
  687. 0) {
  688. nicstar_read_eprom(card->membase,
  689. NICSTAR_EPROM_MAC_ADDR_OFFSET_ALT,
  690. card->atmdev->esi, 6);
  691. }
  692. }
  693. printk("nicstar%d: MAC address %pM\n", i, card->atmdev->esi);
  694. card->atmdev->dev_data = card;
  695. card->atmdev->ci_range.vpi_bits = card->vpibits;
  696. card->atmdev->ci_range.vci_bits = card->vcibits;
  697. card->atmdev->link_rate = card->max_pcr;
  698. card->atmdev->phy = NULL;
  699. #ifdef CONFIG_ATM_NICSTAR_USE_SUNI
  700. if (card->max_pcr == ATM_OC3_PCR)
  701. suni_init(card->atmdev);
  702. #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
  703. #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
  704. if (card->max_pcr == ATM_25_PCR)
  705. idt77105_init(card->atmdev);
  706. #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */
  707. if (card->atmdev->phy && card->atmdev->phy->start)
  708. card->atmdev->phy->start(card->atmdev);
  709. writel(NS_CFG_RXPATH | NS_CFG_SMBUFSIZE | NS_CFG_LGBUFSIZE | NS_CFG_EFBIE | NS_CFG_RSQSIZE | NS_CFG_VPIBITS | ns_cfg_rctsize | NS_CFG_RXINT_NODELAY | NS_CFG_RAWIE | /* Only enabled if RCQ_SUPPORT */
  710. NS_CFG_RSQAFIE | NS_CFG_TXEN | NS_CFG_TXIE | NS_CFG_TSQFIE_OPT | /* Only enabled if ENABLE_TSQFIE */
  711. NS_CFG_PHYIE, card->membase + CFG);
  712. num_cards++;
  713. return error;
  714. }
  715. static void __devinit ns_init_card_error(ns_dev * card, int error)
  716. {
  717. if (error >= 17) {
  718. writel(0x00000000, card->membase + CFG);
  719. }
  720. if (error >= 16) {
  721. struct sk_buff *iovb;
  722. while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL)
  723. dev_kfree_skb_any(iovb);
  724. }
  725. if (error >= 15) {
  726. struct sk_buff *sb;
  727. while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
  728. dev_kfree_skb_any(sb);
  729. free_scq(card->scq0, NULL);
  730. }
  731. if (error >= 14) {
  732. struct sk_buff *lb;
  733. while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
  734. dev_kfree_skb_any(lb);
  735. }
  736. if (error >= 13) {
  737. struct sk_buff *hb;
  738. while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL)
  739. dev_kfree_skb_any(hb);
  740. }
  741. if (error >= 12) {
  742. kfree(card->rsq.org);
  743. }
  744. if (error >= 11) {
  745. kfree(card->tsq.org);
  746. }
  747. if (error >= 10) {
  748. free_irq(card->pcidev->irq, card);
  749. }
  750. if (error >= 4) {
  751. iounmap(card->membase);
  752. }
  753. if (error >= 3) {
  754. pci_disable_device(card->pcidev);
  755. kfree(card);
  756. }
  757. }
  758. static scq_info *get_scq(int size, u32 scd)
  759. {
  760. scq_info *scq;
  761. int i;
  762. if (size != VBR_SCQSIZE && size != CBR_SCQSIZE)
  763. return NULL;
  764. scq = kmalloc(sizeof(scq_info), GFP_KERNEL);
  765. if (scq == NULL)
  766. return NULL;
  767. scq->org = kmalloc(2 * size, GFP_KERNEL);
  768. if (scq->org == NULL) {
  769. kfree(scq);
  770. return NULL;
  771. }
  772. scq->skb = kmalloc(sizeof(struct sk_buff *) *
  773. (size / NS_SCQE_SIZE), GFP_KERNEL);
  774. if (scq->skb == NULL) {
  775. kfree(scq->org);
  776. kfree(scq);
  777. return NULL;
  778. }
  779. scq->num_entries = size / NS_SCQE_SIZE;
  780. scq->base = (ns_scqe *) ALIGN_ADDRESS(scq->org, size);
  781. scq->next = scq->base;
  782. scq->last = scq->base + (scq->num_entries - 1);
  783. scq->tail = scq->last;
  784. scq->scd = scd;
  785. scq->num_entries = size / NS_SCQE_SIZE;
  786. scq->tbd_count = 0;
  787. init_waitqueue_head(&scq->scqfull_waitq);
  788. scq->full = 0;
  789. spin_lock_init(&scq->lock);
  790. for (i = 0; i < scq->num_entries; i++)
  791. scq->skb[i] = NULL;
  792. return scq;
  793. }
  794. /* For variable rate SCQ vcc must be NULL */
  795. static void free_scq(scq_info * scq, struct atm_vcc *vcc)
  796. {
  797. int i;
  798. if (scq->num_entries == VBR_SCQ_NUM_ENTRIES)
  799. for (i = 0; i < scq->num_entries; i++) {
  800. if (scq->skb[i] != NULL) {
  801. vcc = ATM_SKB(scq->skb[i])->vcc;
  802. if (vcc->pop != NULL)
  803. vcc->pop(vcc, scq->skb[i]);
  804. else
  805. dev_kfree_skb_any(scq->skb[i]);
  806. }
  807. } else { /* vcc must be != NULL */
  808. if (vcc == NULL) {
  809. printk
  810. ("nicstar: free_scq() called with vcc == NULL for fixed rate scq.");
  811. for (i = 0; i < scq->num_entries; i++)
  812. dev_kfree_skb_any(scq->skb[i]);
  813. } else
  814. for (i = 0; i < scq->num_entries; i++) {
  815. if (scq->skb[i] != NULL) {
  816. if (vcc->pop != NULL)
  817. vcc->pop(vcc, scq->skb[i]);
  818. else
  819. dev_kfree_skb_any(scq->skb[i]);
  820. }
  821. }
  822. }
  823. kfree(scq->skb);
  824. kfree(scq->org);
  825. kfree(scq);
  826. }
  827. /* The handles passed must be pointers to the sk_buff containing the small
  828. or large buffer(s) cast to u32. */
  829. static void push_rxbufs(ns_dev * card, struct sk_buff *skb)
  830. {
  831. struct ns_skb_cb *cb = NS_SKB_CB(skb);
  832. u32 handle1, addr1;
  833. u32 handle2, addr2;
  834. u32 stat;
  835. unsigned long flags;
  836. /* *BARF* */
  837. handle2 = addr2 = 0;
  838. handle1 = (u32) skb;
  839. addr1 = (u32) virt_to_bus(skb->data);
  840. #ifdef GENERAL_DEBUG
  841. if (!addr1)
  842. printk("nicstar%d: push_rxbufs called with addr1 = 0.\n",
  843. card->index);
  844. #endif /* GENERAL_DEBUG */
  845. stat = readl(card->membase + STAT);
  846. card->sbfqc = ns_stat_sfbqc_get(stat);
  847. card->lbfqc = ns_stat_lfbqc_get(stat);
  848. if (cb->buf_type == BUF_SM) {
  849. if (!addr2) {
  850. if (card->sm_addr) {
  851. addr2 = card->sm_addr;
  852. handle2 = card->sm_handle;
  853. card->sm_addr = 0x00000000;
  854. card->sm_handle = 0x00000000;
  855. } else { /* (!sm_addr) */
  856. card->sm_addr = addr1;
  857. card->sm_handle = handle1;
  858. }
  859. }
  860. } else { /* buf_type == BUF_LG */
  861. if (!addr2) {
  862. if (card->lg_addr) {
  863. addr2 = card->lg_addr;
  864. handle2 = card->lg_handle;
  865. card->lg_addr = 0x00000000;
  866. card->lg_handle = 0x00000000;
  867. } else { /* (!lg_addr) */
  868. card->lg_addr = addr1;
  869. card->lg_handle = handle1;
  870. }
  871. }
  872. }
  873. if (addr2) {
  874. if (cb->buf_type == BUF_SM) {
  875. if (card->sbfqc >= card->sbnr.max) {
  876. skb_unlink((struct sk_buff *)handle1,
  877. &card->sbpool.queue);
  878. dev_kfree_skb_any((struct sk_buff *)handle1);
  879. skb_unlink((struct sk_buff *)handle2,
  880. &card->sbpool.queue);
  881. dev_kfree_skb_any((struct sk_buff *)handle2);
  882. return;
  883. } else
  884. card->sbfqc += 2;
  885. } else { /* (buf_type == BUF_LG) */
  886. if (card->lbfqc >= card->lbnr.max) {
  887. skb_unlink((struct sk_buff *)handle1,
  888. &card->lbpool.queue);
  889. dev_kfree_skb_any((struct sk_buff *)handle1);
  890. skb_unlink((struct sk_buff *)handle2,
  891. &card->lbpool.queue);
  892. dev_kfree_skb_any((struct sk_buff *)handle2);
  893. return;
  894. } else
  895. card->lbfqc += 2;
  896. }
  897. spin_lock_irqsave(&card->res_lock, flags);
  898. while (CMD_BUSY(card)) ;
  899. writel(addr2, card->membase + DR3);
  900. writel(handle2, card->membase + DR2);
  901. writel(addr1, card->membase + DR1);
  902. writel(handle1, card->membase + DR0);
  903. writel(NS_CMD_WRITE_FREEBUFQ | cb->buf_type,
  904. card->membase + CMD);
  905. spin_unlock_irqrestore(&card->res_lock, flags);
  906. XPRINTK("nicstar%d: Pushing %s buffers at 0x%x and 0x%x.\n",
  907. card->index,
  908. (cb->buf_type == BUF_SM ? "small" : "large"), addr1,
  909. addr2);
  910. }
  911. if (!card->efbie && card->sbfqc >= card->sbnr.min &&
  912. card->lbfqc >= card->lbnr.min) {
  913. card->efbie = 1;
  914. writel((readl(card->membase + CFG) | NS_CFG_EFBIE),
  915. card->membase + CFG);
  916. }
  917. return;
  918. }
  919. static irqreturn_t ns_irq_handler(int irq, void *dev_id)
  920. {
  921. u32 stat_r;
  922. ns_dev *card;
  923. struct atm_dev *dev;
  924. unsigned long flags;
  925. card = (ns_dev *) dev_id;
  926. dev = card->atmdev;
  927. card->intcnt++;
  928. PRINTK("nicstar%d: NICStAR generated an interrupt\n", card->index);
  929. spin_lock_irqsave(&card->int_lock, flags);
  930. stat_r = readl(card->membase + STAT);
  931. /* Transmit Status Indicator has been written to T. S. Queue */
  932. if (stat_r & NS_STAT_TSIF) {
  933. TXPRINTK("nicstar%d: TSI interrupt\n", card->index);
  934. process_tsq(card);
  935. writel(NS_STAT_TSIF, card->membase + STAT);
  936. }
  937. /* Incomplete CS-PDU has been transmitted */
  938. if (stat_r & NS_STAT_TXICP) {
  939. writel(NS_STAT_TXICP, card->membase + STAT);
  940. TXPRINTK("nicstar%d: Incomplete CS-PDU transmitted.\n",
  941. card->index);
  942. }
  943. /* Transmit Status Queue 7/8 full */
  944. if (stat_r & NS_STAT_TSQF) {
  945. writel(NS_STAT_TSQF, card->membase + STAT);
  946. PRINTK("nicstar%d: TSQ full.\n", card->index);
  947. process_tsq(card);
  948. }
  949. /* Timer overflow */
  950. if (stat_r & NS_STAT_TMROF) {
  951. writel(NS_STAT_TMROF, card->membase + STAT);
  952. PRINTK("nicstar%d: Timer overflow.\n", card->index);
  953. }
  954. /* PHY device interrupt signal active */
  955. if (stat_r & NS_STAT_PHYI) {
  956. writel(NS_STAT_PHYI, card->membase + STAT);
  957. PRINTK("nicstar%d: PHY interrupt.\n", card->index);
  958. if (dev->phy && dev->phy->interrupt) {
  959. dev->phy->interrupt(dev);
  960. }
  961. }
  962. /* Small Buffer Queue is full */
  963. if (stat_r & NS_STAT_SFBQF) {
  964. writel(NS_STAT_SFBQF, card->membase + STAT);
  965. printk("nicstar%d: Small free buffer queue is full.\n",
  966. card->index);
  967. }
  968. /* Large Buffer Queue is full */
  969. if (stat_r & NS_STAT_LFBQF) {
  970. writel(NS_STAT_LFBQF, card->membase + STAT);
  971. printk("nicstar%d: Large free buffer queue is full.\n",
  972. card->index);
  973. }
  974. /* Receive Status Queue is full */
  975. if (stat_r & NS_STAT_RSQF) {
  976. writel(NS_STAT_RSQF, card->membase + STAT);
  977. printk("nicstar%d: RSQ full.\n", card->index);
  978. process_rsq(card);
  979. }
  980. /* Complete CS-PDU received */
  981. if (stat_r & NS_STAT_EOPDU) {
  982. RXPRINTK("nicstar%d: End of CS-PDU received.\n", card->index);
  983. process_rsq(card);
  984. writel(NS_STAT_EOPDU, card->membase + STAT);
  985. }
  986. /* Raw cell received */
  987. if (stat_r & NS_STAT_RAWCF) {
  988. writel(NS_STAT_RAWCF, card->membase + STAT);
  989. #ifndef RCQ_SUPPORT
  990. printk("nicstar%d: Raw cell received and no support yet...\n",
  991. card->index);
  992. #endif /* RCQ_SUPPORT */
  993. /* NOTE: the following procedure may keep a raw cell pending until the
  994. next interrupt. As this preliminary support is only meant to
  995. avoid buffer leakage, this is not an issue. */
  996. while (readl(card->membase + RAWCT) != card->rawch) {
  997. ns_rcqe *rawcell;
  998. rawcell = (ns_rcqe *) bus_to_virt(card->rawch);
  999. if (ns_rcqe_islast(rawcell)) {
  1000. struct sk_buff *oldbuf;
  1001. oldbuf = card->rcbuf;
  1002. card->rcbuf =
  1003. (struct sk_buff *)
  1004. ns_rcqe_nextbufhandle(rawcell);
  1005. card->rawch =
  1006. (u32) virt_to_bus(card->rcbuf->data);
  1007. recycle_rx_buf(card, oldbuf);
  1008. } else
  1009. card->rawch += NS_RCQE_SIZE;
  1010. }
  1011. }
  1012. /* Small buffer queue is empty */
  1013. if (stat_r & NS_STAT_SFBQE) {
  1014. int i;
  1015. struct sk_buff *sb;
  1016. writel(NS_STAT_SFBQE, card->membase + STAT);
  1017. printk("nicstar%d: Small free buffer queue empty.\n",
  1018. card->index);
  1019. for (i = 0; i < card->sbnr.min; i++) {
  1020. sb = dev_alloc_skb(NS_SMSKBSIZE);
  1021. if (sb == NULL) {
  1022. writel(readl(card->membase + CFG) &
  1023. ~NS_CFG_EFBIE, card->membase + CFG);
  1024. card->efbie = 0;
  1025. break;
  1026. }
  1027. NS_SKB_CB(sb)->buf_type = BUF_SM;
  1028. skb_queue_tail(&card->sbpool.queue, sb);
  1029. skb_reserve(sb, NS_AAL0_HEADER);
  1030. push_rxbufs(card, sb);
  1031. }
  1032. card->sbfqc = i;
  1033. process_rsq(card);
  1034. }
  1035. /* Large buffer queue empty */
  1036. if (stat_r & NS_STAT_LFBQE) {
  1037. int i;
  1038. struct sk_buff *lb;
  1039. writel(NS_STAT_LFBQE, card->membase + STAT);
  1040. printk("nicstar%d: Large free buffer queue empty.\n",
  1041. card->index);
  1042. for (i = 0; i < card->lbnr.min; i++) {
  1043. lb = dev_alloc_skb(NS_LGSKBSIZE);
  1044. if (lb == NULL) {
  1045. writel(readl(card->membase + CFG) &
  1046. ~NS_CFG_EFBIE, card->membase + CFG);
  1047. card->efbie = 0;
  1048. break;
  1049. }
  1050. NS_SKB_CB(lb)->buf_type = BUF_LG;
  1051. skb_queue_tail(&card->lbpool.queue, lb);
  1052. skb_reserve(lb, NS_SMBUFSIZE);
  1053. push_rxbufs(card, lb);
  1054. }
  1055. card->lbfqc = i;
  1056. process_rsq(card);
  1057. }
  1058. /* Receive Status Queue is 7/8 full */
  1059. if (stat_r & NS_STAT_RSQAF) {
  1060. writel(NS_STAT_RSQAF, card->membase + STAT);
  1061. RXPRINTK("nicstar%d: RSQ almost full.\n", card->index);
  1062. process_rsq(card);
  1063. }
  1064. spin_unlock_irqrestore(&card->int_lock, flags);
  1065. PRINTK("nicstar%d: end of interrupt service\n", card->index);
  1066. return IRQ_HANDLED;
  1067. }
  1068. static int ns_open(struct atm_vcc *vcc)
  1069. {
  1070. ns_dev *card;
  1071. vc_map *vc;
  1072. unsigned long tmpl, modl;
  1073. int tcr, tcra; /* target cell rate, and absolute value */
  1074. int n = 0; /* Number of entries in the TST. Initialized to remove
  1075. the compiler warning. */
  1076. u32 u32d[4];
  1077. int frscdi = 0; /* Index of the SCD. Initialized to remove the compiler
  1078. warning. How I wish compilers were clever enough to
  1079. tell which variables can truly be used
  1080. uninitialized... */
  1081. int inuse; /* tx or rx vc already in use by another vcc */
  1082. short vpi = vcc->vpi;
  1083. int vci = vcc->vci;
  1084. card = (ns_dev *) vcc->dev->dev_data;
  1085. PRINTK("nicstar%d: opening vpi.vci %d.%d \n", card->index, (int)vpi,
  1086. vci);
  1087. if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) {
  1088. PRINTK("nicstar%d: unsupported AAL.\n", card->index);
  1089. return -EINVAL;
  1090. }
  1091. vc = &(card->vcmap[vpi << card->vcibits | vci]);
  1092. vcc->dev_data = vc;
  1093. inuse = 0;
  1094. if (vcc->qos.txtp.traffic_class != ATM_NONE && vc->tx)
  1095. inuse = 1;
  1096. if (vcc->qos.rxtp.traffic_class != ATM_NONE && vc->rx)
  1097. inuse += 2;
  1098. if (inuse) {
  1099. printk("nicstar%d: %s vci already in use.\n", card->index,
  1100. inuse == 1 ? "tx" : inuse == 2 ? "rx" : "tx and rx");
  1101. return -EINVAL;
  1102. }
  1103. set_bit(ATM_VF_ADDR, &vcc->flags);
  1104. /* NOTE: You are not allowed to modify an open connection's QOS. To change
  1105. that, remove the ATM_VF_PARTIAL flag checking. There may be other changes
  1106. needed to do that. */
  1107. if (!test_bit(ATM_VF_PARTIAL, &vcc->flags)) {
  1108. scq_info *scq;
  1109. set_bit(ATM_VF_PARTIAL, &vcc->flags);
  1110. if (vcc->qos.txtp.traffic_class == ATM_CBR) {
  1111. /* Check requested cell rate and availability of SCD */
  1112. if (vcc->qos.txtp.max_pcr == 0 && vcc->qos.txtp.pcr == 0
  1113. && vcc->qos.txtp.min_pcr == 0) {
  1114. PRINTK
  1115. ("nicstar%d: trying to open a CBR vc with cell rate = 0 \n",
  1116. card->index);
  1117. clear_bit(ATM_VF_PARTIAL, &vcc->flags);
  1118. clear_bit(ATM_VF_ADDR, &vcc->flags);
  1119. return -EINVAL;
  1120. }
  1121. tcr = atm_pcr_goal(&(vcc->qos.txtp));
  1122. tcra = tcr >= 0 ? tcr : -tcr;
  1123. PRINTK("nicstar%d: target cell rate = %d.\n",
  1124. card->index, vcc->qos.txtp.max_pcr);
  1125. tmpl =
  1126. (unsigned long)tcra *(unsigned long)
  1127. NS_TST_NUM_ENTRIES;
  1128. modl = tmpl % card->max_pcr;
  1129. n = (int)(tmpl / card->max_pcr);
  1130. if (tcr > 0) {
  1131. if (modl > 0)
  1132. n++;
  1133. } else if (tcr == 0) {
  1134. if ((n =
  1135. (card->tst_free_entries -
  1136. NS_TST_RESERVED)) <= 0) {
  1137. PRINTK
  1138. ("nicstar%d: no CBR bandwidth free.\n",
  1139. card->index);
  1140. clear_bit(ATM_VF_PARTIAL, &vcc->flags);
  1141. clear_bit(ATM_VF_ADDR, &vcc->flags);
  1142. return -EINVAL;
  1143. }
  1144. }
  1145. if (n == 0) {
  1146. printk
  1147. ("nicstar%d: selected bandwidth < granularity.\n",
  1148. card->index);
  1149. clear_bit(ATM_VF_PARTIAL, &vcc->flags);
  1150. clear_bit(ATM_VF_ADDR, &vcc->flags);
  1151. return -EINVAL;
  1152. }
  1153. if (n > (card->tst_free_entries - NS_TST_RESERVED)) {
  1154. PRINTK
  1155. ("nicstar%d: not enough free CBR bandwidth.\n",
  1156. card->index);
  1157. clear_bit(ATM_VF_PARTIAL, &vcc->flags);
  1158. clear_bit(ATM_VF_ADDR, &vcc->flags);
  1159. return -EINVAL;
  1160. } else
  1161. card->tst_free_entries -= n;
  1162. XPRINTK("nicstar%d: writing %d tst entries.\n",
  1163. card->index, n);
  1164. for (frscdi = 0; frscdi < NS_FRSCD_NUM; frscdi++) {
  1165. if (card->scd2vc[frscdi] == NULL) {
  1166. card->scd2vc[frscdi] = vc;
  1167. break;
  1168. }
  1169. }
  1170. if (frscdi == NS_FRSCD_NUM) {
  1171. PRINTK
  1172. ("nicstar%d: no SCD available for CBR channel.\n",
  1173. card->index);
  1174. card->tst_free_entries += n;
  1175. clear_bit(ATM_VF_PARTIAL, &vcc->flags);
  1176. clear_bit(ATM_VF_ADDR, &vcc->flags);
  1177. return -EBUSY;
  1178. }
  1179. vc->cbr_scd = NS_FRSCD + frscdi * NS_FRSCD_SIZE;
  1180. scq = get_scq(CBR_SCQSIZE, vc->cbr_scd);
  1181. if (scq == NULL) {
  1182. PRINTK("nicstar%d: can't get fixed rate SCQ.\n",
  1183. card->index);
  1184. card->scd2vc[frscdi] = NULL;
  1185. card->tst_free_entries += n;
  1186. clear_bit(ATM_VF_PARTIAL, &vcc->flags);
  1187. clear_bit(ATM_VF_ADDR, &vcc->flags);
  1188. return -ENOMEM;
  1189. }
  1190. vc->scq = scq;
  1191. u32d[0] = (u32) virt_to_bus(scq->base);
  1192. u32d[1] = (u32) 0x00000000;
  1193. u32d[2] = (u32) 0xffffffff;
  1194. u32d[3] = (u32) 0x00000000;
  1195. ns_write_sram(card, vc->cbr_scd, u32d, 4);
  1196. fill_tst(card, n, vc);
  1197. } else if (vcc->qos.txtp.traffic_class == ATM_UBR) {
  1198. vc->cbr_scd = 0x00000000;
  1199. vc->scq = card->scq0;
  1200. }
  1201. if (vcc->qos.txtp.traffic_class != ATM_NONE) {
  1202. vc->tx = 1;
  1203. vc->tx_vcc = vcc;
  1204. vc->tbd_count = 0;
  1205. }
  1206. if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
  1207. u32 status;
  1208. vc->rx = 1;
  1209. vc->rx_vcc = vcc;
  1210. vc->rx_iov = NULL;
  1211. /* Open the connection in hardware */
  1212. if (vcc->qos.aal == ATM_AAL5)
  1213. status = NS_RCTE_AAL5 | NS_RCTE_CONNECTOPEN;
  1214. else /* vcc->qos.aal == ATM_AAL0 */
  1215. status = NS_RCTE_AAL0 | NS_RCTE_CONNECTOPEN;
  1216. #ifdef RCQ_SUPPORT
  1217. status |= NS_RCTE_RAWCELLINTEN;
  1218. #endif /* RCQ_SUPPORT */
  1219. ns_write_sram(card,
  1220. NS_RCT +
  1221. (vpi << card->vcibits | vci) *
  1222. NS_RCT_ENTRY_SIZE, &status, 1);
  1223. }
  1224. }
  1225. set_bit(ATM_VF_READY, &vcc->flags);
  1226. return 0;
  1227. }
  1228. static void ns_close(struct atm_vcc *vcc)
  1229. {
  1230. vc_map *vc;
  1231. ns_dev *card;
  1232. u32 data;
  1233. int i;
  1234. vc = vcc->dev_data;
  1235. card = vcc->dev->dev_data;
  1236. PRINTK("nicstar%d: closing vpi.vci %d.%d \n", card->index,
  1237. (int)vcc->vpi, vcc->vci);
  1238. clear_bit(ATM_VF_READY, &vcc->flags);
  1239. if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
  1240. u32 addr;
  1241. unsigned long flags;
  1242. addr =
  1243. NS_RCT +
  1244. (vcc->vpi << card->vcibits | vcc->vci) * NS_RCT_ENTRY_SIZE;
  1245. spin_lock_irqsave(&card->res_lock, flags);
  1246. while (CMD_BUSY(card)) ;
  1247. writel(NS_CMD_CLOSE_CONNECTION | addr << 2,
  1248. card->membase + CMD);
  1249. spin_unlock_irqrestore(&card->res_lock, flags);
  1250. vc->rx = 0;
  1251. if (vc->rx_iov != NULL) {
  1252. struct sk_buff *iovb;
  1253. u32 stat;
  1254. stat = readl(card->membase + STAT);
  1255. card->sbfqc = ns_stat_sfbqc_get(stat);
  1256. card->lbfqc = ns_stat_lfbqc_get(stat);
  1257. PRINTK
  1258. ("nicstar%d: closing a VC with pending rx buffers.\n",
  1259. card->index);
  1260. iovb = vc->rx_iov;
  1261. recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
  1262. NS_SKB(iovb)->iovcnt);
  1263. NS_SKB(iovb)->iovcnt = 0;
  1264. NS_SKB(iovb)->vcc = NULL;
  1265. spin_lock_irqsave(&card->int_lock, flags);
  1266. recycle_iov_buf(card, iovb);
  1267. spin_unlock_irqrestore(&card->int_lock, flags);
  1268. vc->rx_iov = NULL;
  1269. }
  1270. }
  1271. if (vcc->qos.txtp.traffic_class != ATM_NONE) {
  1272. vc->tx = 0;
  1273. }
  1274. if (vcc->qos.txtp.traffic_class == ATM_CBR) {
  1275. unsigned long flags;
  1276. ns_scqe *scqep;
  1277. scq_info *scq;
  1278. scq = vc->scq;
  1279. for (;;) {
  1280. spin_lock_irqsave(&scq->lock, flags);
  1281. scqep = scq->next;
  1282. if (scqep == scq->base)
  1283. scqep = scq->last;
  1284. else
  1285. scqep--;
  1286. if (scqep == scq->tail) {
  1287. spin_unlock_irqrestore(&scq->lock, flags);
  1288. break;
  1289. }
  1290. /* If the last entry is not a TSR, place one in the SCQ in order to
  1291. be able to completely drain it and then close. */
  1292. if (!ns_scqe_is_tsr(scqep) && scq->tail != scq->next) {
  1293. ns_scqe tsr;
  1294. u32 scdi, scqi;
  1295. u32 data;
  1296. int index;
  1297. tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
  1298. scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
  1299. scqi = scq->next - scq->base;
  1300. tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
  1301. tsr.word_3 = 0x00000000;
  1302. tsr.word_4 = 0x00000000;
  1303. *scq->next = tsr;
  1304. index = (int)scqi;
  1305. scq->skb[index] = NULL;
  1306. if (scq->next == scq->last)
  1307. scq->next = scq->base;
  1308. else
  1309. scq->next++;
  1310. data = (u32) virt_to_bus(scq->next);
  1311. ns_write_sram(card, scq->scd, &data, 1);
  1312. }
  1313. spin_unlock_irqrestore(&scq->lock, flags);
  1314. schedule();
  1315. }
  1316. /* Free all TST entries */
  1317. data = NS_TST_OPCODE_VARIABLE;
  1318. for (i = 0; i < NS_TST_NUM_ENTRIES; i++) {
  1319. if (card->tste2vc[i] == vc) {
  1320. ns_write_sram(card, card->tst_addr + i, &data,
  1321. 1);
  1322. card->tste2vc[i] = NULL;
  1323. card->tst_free_entries++;
  1324. }
  1325. }
  1326. card->scd2vc[(vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE] = NULL;
  1327. free_scq(vc->scq, vcc);
  1328. }
  1329. /* remove all references to vcc before deleting it */
  1330. if (vcc->qos.txtp.traffic_class != ATM_NONE) {
  1331. unsigned long flags;
  1332. scq_info *scq = card->scq0;
  1333. spin_lock_irqsave(&scq->lock, flags);
  1334. for (i = 0; i < scq->num_entries; i++) {
  1335. if (scq->skb[i] && ATM_SKB(scq->skb[i])->vcc == vcc) {
  1336. ATM_SKB(scq->skb[i])->vcc = NULL;
  1337. atm_return(vcc, scq->skb[i]->truesize);
  1338. PRINTK
  1339. ("nicstar: deleted pending vcc mapping\n");
  1340. }
  1341. }
  1342. spin_unlock_irqrestore(&scq->lock, flags);
  1343. }
  1344. vcc->dev_data = NULL;
  1345. clear_bit(ATM_VF_PARTIAL, &vcc->flags);
  1346. clear_bit(ATM_VF_ADDR, &vcc->flags);
  1347. #ifdef RX_DEBUG
  1348. {
  1349. u32 stat, cfg;
  1350. stat = readl(card->membase + STAT);
  1351. cfg = readl(card->membase + CFG);
  1352. printk("STAT = 0x%08X CFG = 0x%08X \n", stat, cfg);
  1353. printk
  1354. ("TSQ: base = 0x%08X next = 0x%08X last = 0x%08X TSQT = 0x%08X \n",
  1355. (u32) card->tsq.base, (u32) card->tsq.next,
  1356. (u32) card->tsq.last, readl(card->membase + TSQT));
  1357. printk
  1358. ("RSQ: base = 0x%08X next = 0x%08X last = 0x%08X RSQT = 0x%08X \n",
  1359. (u32) card->rsq.base, (u32) card->rsq.next,
  1360. (u32) card->rsq.last, readl(card->membase + RSQT));
  1361. printk("Empty free buffer queue interrupt %s \n",
  1362. card->efbie ? "enabled" : "disabled");
  1363. printk("SBCNT = %d count = %d LBCNT = %d count = %d \n",
  1364. ns_stat_sfbqc_get(stat), card->sbpool.count,
  1365. ns_stat_lfbqc_get(stat), card->lbpool.count);
  1366. printk("hbpool.count = %d iovpool.count = %d \n",
  1367. card->hbpool.count, card->iovpool.count);
  1368. }
  1369. #endif /* RX_DEBUG */
  1370. }
  1371. static void fill_tst(ns_dev * card, int n, vc_map * vc)
  1372. {
  1373. u32 new_tst;
  1374. unsigned long cl;
  1375. int e, r;
  1376. u32 data;
  1377. /* It would be very complicated to keep the two TSTs synchronized while
  1378. assuring that writes are only made to the inactive TST. So, for now I
  1379. will use only one TST. If problems occur, I will change this again */
  1380. new_tst = card->tst_addr;
  1381. /* Fill procedure */
  1382. for (e = 0; e < NS_TST_NUM_ENTRIES; e++) {
  1383. if (card->tste2vc[e] == NULL)
  1384. break;
  1385. }
  1386. if (e == NS_TST_NUM_ENTRIES) {
  1387. printk("nicstar%d: No free TST entries found. \n", card->index);
  1388. return;
  1389. }
  1390. r = n;
  1391. cl = NS_TST_NUM_ENTRIES;
  1392. data = ns_tste_make(NS_TST_OPCODE_FIXED, vc->cbr_scd);
  1393. while (r > 0) {
  1394. if (cl >= NS_TST_NUM_ENTRIES && card->tste2vc[e] == NULL) {
  1395. card->tste2vc[e] = vc;
  1396. ns_write_sram(card, new_tst + e, &data, 1);
  1397. cl -= NS_TST_NUM_ENTRIES;
  1398. r--;
  1399. }
  1400. if (++e == NS_TST_NUM_ENTRIES) {
  1401. e = 0;
  1402. }
  1403. cl += n;
  1404. }
  1405. /* End of fill procedure */
  1406. data = ns_tste_make(NS_TST_OPCODE_END, new_tst);
  1407. ns_write_sram(card, new_tst + NS_TST_NUM_ENTRIES, &data, 1);
  1408. ns_write_sram(card, card->tst_addr + NS_TST_NUM_ENTRIES, &data, 1);
  1409. card->tst_addr = new_tst;
  1410. }
  1411. static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb)
  1412. {
  1413. ns_dev *card;
  1414. vc_map *vc;
  1415. scq_info *scq;
  1416. unsigned long buflen;
  1417. ns_scqe scqe;
  1418. u32 flags; /* TBD flags, not CPU flags */
  1419. card = vcc->dev->dev_data;
  1420. TXPRINTK("nicstar%d: ns_send() called.\n", card->index);
  1421. if ((vc = (vc_map *) vcc->dev_data) == NULL) {
  1422. printk("nicstar%d: vcc->dev_data == NULL on ns_send().\n",
  1423. card->index);
  1424. atomic_inc(&vcc->stats->tx_err);
  1425. dev_kfree_skb_any(skb);
  1426. return -EINVAL;
  1427. }
  1428. if (!vc->tx) {
  1429. printk("nicstar%d: Trying to transmit on a non-tx VC.\n",
  1430. card->index);
  1431. atomic_inc(&vcc->stats->tx_err);
  1432. dev_kfree_skb_any(skb);
  1433. return -EINVAL;
  1434. }
  1435. if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) {
  1436. printk("nicstar%d: Only AAL0 and AAL5 are supported.\n",
  1437. card->index);
  1438. atomic_inc(&vcc->stats->tx_err);
  1439. dev_kfree_skb_any(skb);
  1440. return -EINVAL;
  1441. }
  1442. if (skb_shinfo(skb)->nr_frags != 0) {
  1443. printk("nicstar%d: No scatter-gather yet.\n", card->index);
  1444. atomic_inc(&vcc->stats->tx_err);
  1445. dev_kfree_skb_any(skb);
  1446. return -EINVAL;
  1447. }
  1448. ATM_SKB(skb)->vcc = vcc;
  1449. if (vcc->qos.aal == ATM_AAL5) {
  1450. buflen = (skb->len + 47 + 8) / 48 * 48; /* Multiple of 48 */
  1451. flags = NS_TBD_AAL5;
  1452. scqe.word_2 = cpu_to_le32((u32) virt_to_bus(skb->data));
  1453. scqe.word_3 = cpu_to_le32((u32) skb->len);
  1454. scqe.word_4 =
  1455. ns_tbd_mkword_4(0, (u32) vcc->vpi, (u32) vcc->vci, 0,
  1456. ATM_SKB(skb)->
  1457. atm_options & ATM_ATMOPT_CLP ? 1 : 0);
  1458. flags |= NS_TBD_EOPDU;
  1459. } else { /* (vcc->qos.aal == ATM_AAL0) */
  1460. buflen = ATM_CELL_PAYLOAD; /* i.e., 48 bytes */
  1461. flags = NS_TBD_AAL0;
  1462. scqe.word_2 =
  1463. cpu_to_le32((u32) virt_to_bus(skb->data) + NS_AAL0_HEADER);
  1464. scqe.word_3 = cpu_to_le32(0x00000000);
  1465. if (*skb->data & 0x02) /* Payload type 1 - end of pdu */
  1466. flags |= NS_TBD_EOPDU;
  1467. scqe.word_4 =
  1468. cpu_to_le32(*((u32 *) skb->data) & ~NS_TBD_VC_MASK);
  1469. /* Force the VPI/VCI to be the same as in VCC struct */
  1470. scqe.word_4 |=
  1471. cpu_to_le32((((u32) vcc->
  1472. vpi) << NS_TBD_VPI_SHIFT | ((u32) vcc->
  1473. vci) <<
  1474. NS_TBD_VCI_SHIFT) & NS_TBD_VC_MASK);
  1475. }
  1476. if (vcc->qos.txtp.traffic_class == ATM_CBR) {
  1477. scqe.word_1 = ns_tbd_mkword_1_novbr(flags, (u32) buflen);
  1478. scq = ((vc_map *) vcc->dev_data)->scq;
  1479. } else {
  1480. scqe.word_1 =
  1481. ns_tbd_mkword_1(flags, (u32) 1, (u32) 1, (u32) buflen);
  1482. scq = card->scq0;
  1483. }
  1484. if (push_scqe(card, vc, scq, &scqe, skb) != 0) {
  1485. atomic_inc(&vcc->stats->tx_err);
  1486. dev_kfree_skb_any(skb);
  1487. return -EIO;
  1488. }
  1489. atomic_inc(&vcc->stats->tx);
  1490. return 0;
  1491. }
  1492. static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd,
  1493. struct sk_buff *skb)
  1494. {
  1495. unsigned long flags;
  1496. ns_scqe tsr;
  1497. u32 scdi, scqi;
  1498. int scq_is_vbr;
  1499. u32 data;
  1500. int index;
  1501. spin_lock_irqsave(&scq->lock, flags);
  1502. while (scq->tail == scq->next) {
  1503. if (in_interrupt()) {
  1504. spin_unlock_irqrestore(&scq->lock, flags);
  1505. printk("nicstar%d: Error pushing TBD.\n", card->index);
  1506. return 1;
  1507. }
  1508. scq->full = 1;
  1509. spin_unlock_irqrestore(&scq->lock, flags);
  1510. interruptible_sleep_on_timeout(&scq->scqfull_waitq,
  1511. SCQFULL_TIMEOUT);
  1512. spin_lock_irqsave(&scq->lock, flags);
  1513. if (scq->full) {
  1514. spin_unlock_irqrestore(&scq->lock, flags);
  1515. printk("nicstar%d: Timeout pushing TBD.\n",
  1516. card->index);
  1517. return 1;
  1518. }
  1519. }
  1520. *scq->next = *tbd;
  1521. index = (int)(scq->next - scq->base);
  1522. scq->skb[index] = skb;
  1523. XPRINTK("nicstar%d: sending skb at 0x%x (pos %d).\n",
  1524. card->index, (u32) skb, index);
  1525. XPRINTK("nicstar%d: TBD written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%x.\n",
  1526. card->index, le32_to_cpu(tbd->word_1), le32_to_cpu(tbd->word_2),
  1527. le32_to_cpu(tbd->word_3), le32_to_cpu(tbd->word_4),
  1528. (u32) scq->next);
  1529. if (scq->next == scq->last)
  1530. scq->next = scq->base;
  1531. else
  1532. scq->next++;
  1533. vc->tbd_count++;
  1534. if (scq->num_entries == VBR_SCQ_NUM_ENTRIES) {
  1535. scq->tbd_count++;
  1536. scq_is_vbr = 1;
  1537. } else
  1538. scq_is_vbr = 0;
  1539. if (vc->tbd_count >= MAX_TBD_PER_VC
  1540. || scq->tbd_count >= MAX_TBD_PER_SCQ) {
  1541. int has_run = 0;
  1542. while (scq->tail == scq->next) {
  1543. if (in_interrupt()) {
  1544. data = (u32) virt_to_bus(scq->next);
  1545. ns_write_sram(card, scq->scd, &data, 1);
  1546. spin_unlock_irqrestore(&scq->lock, flags);
  1547. printk("nicstar%d: Error pushing TSR.\n",
  1548. card->index);
  1549. return 0;
  1550. }
  1551. scq->full = 1;
  1552. if (has_run++)
  1553. break;
  1554. spin_unlock_irqrestore(&scq->lock, flags);
  1555. interruptible_sleep_on_timeout(&scq->scqfull_waitq,
  1556. SCQFULL_TIMEOUT);
  1557. spin_lock_irqsave(&scq->lock, flags);
  1558. }
  1559. if (!scq->full) {
  1560. tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
  1561. if (scq_is_vbr)
  1562. scdi = NS_TSR_SCDISVBR;
  1563. else
  1564. scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
  1565. scqi = scq->next - scq->base;
  1566. tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
  1567. tsr.word_3 = 0x00000000;
  1568. tsr.word_4 = 0x00000000;
  1569. *scq->next = tsr;
  1570. index = (int)scqi;
  1571. scq->skb[index] = NULL;
  1572. XPRINTK
  1573. ("nicstar%d: TSR written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%x.\n",
  1574. card->index, le32_to_cpu(tsr.word_1),
  1575. le32_to_cpu(tsr.word_2), le32_to_cpu(tsr.word_3),
  1576. le32_to_cpu(tsr.word_4), (u32) scq->next);
  1577. if (scq->next == scq->last)
  1578. scq->next = scq->base;
  1579. else
  1580. scq->next++;
  1581. vc->tbd_count = 0;
  1582. scq->tbd_count = 0;
  1583. } else
  1584. PRINTK("nicstar%d: Timeout pushing TSR.\n",
  1585. card->index);
  1586. }
  1587. data = (u32) virt_to_bus(scq->next);
  1588. ns_write_sram(card, scq->scd, &data, 1);
  1589. spin_unlock_irqrestore(&scq->lock, flags);
  1590. return 0;
  1591. }
  1592. static void process_tsq(ns_dev * card)
  1593. {
  1594. u32 scdi;
  1595. scq_info *scq;
  1596. ns_tsi *previous = NULL, *one_ahead, *two_ahead;
  1597. int serviced_entries; /* flag indicating at least on entry was serviced */
  1598. serviced_entries = 0;
  1599. if (card->tsq.next == card->tsq.last)
  1600. one_ahead = card->tsq.base;
  1601. else
  1602. one_ahead = card->tsq.next + 1;
  1603. if (one_ahead == card->tsq.last)
  1604. two_ahead = card->tsq.base;
  1605. else
  1606. two_ahead = one_ahead + 1;
  1607. while (!ns_tsi_isempty(card->tsq.next) || !ns_tsi_isempty(one_ahead) ||
  1608. !ns_tsi_isempty(two_ahead))
  1609. /* At most two empty, as stated in the 77201 errata */
  1610. {
  1611. serviced_entries = 1;
  1612. /* Skip the one or two possible empty entries */
  1613. while (ns_tsi_isempty(card->tsq.next)) {
  1614. if (card->tsq.next == card->tsq.last)
  1615. card->tsq.next = card->tsq.base;
  1616. else
  1617. card->tsq.next++;
  1618. }
  1619. if (!ns_tsi_tmrof(card->tsq.next)) {
  1620. scdi = ns_tsi_getscdindex(card->tsq.next);
  1621. if (scdi == NS_TSI_SCDISVBR)
  1622. scq = card->scq0;
  1623. else {
  1624. if (card->scd2vc[scdi] == NULL) {
  1625. printk
  1626. ("nicstar%d: could not find VC from SCD index.\n",
  1627. card->index);
  1628. ns_tsi_init(card->tsq.next);
  1629. return;
  1630. }
  1631. scq = card->scd2vc[scdi]->scq;
  1632. }
  1633. drain_scq(card, scq, ns_tsi_getscqpos(card->tsq.next));
  1634. scq->full = 0;
  1635. wake_up_interruptible(&(scq->scqfull_waitq));
  1636. }
  1637. ns_tsi_init(card->tsq.next);
  1638. previous = card->tsq.next;
  1639. if (card->tsq.next == card->tsq.last)
  1640. card->tsq.next = card->tsq.base;
  1641. else
  1642. card->tsq.next++;
  1643. if (card->tsq.next == card->tsq.last)
  1644. one_ahead = card->tsq.base;
  1645. else
  1646. one_ahead = card->tsq.next + 1;
  1647. if (one_ahead == card->tsq.last)
  1648. two_ahead = card->tsq.base;
  1649. else
  1650. two_ahead = one_ahead + 1;
  1651. }
  1652. if (serviced_entries) {
  1653. writel((((u32) previous) - ((u32) card->tsq.base)),
  1654. card->membase + TSQH);
  1655. }
  1656. }
  1657. static void drain_scq(ns_dev * card, scq_info * scq, int pos)
  1658. {
  1659. struct atm_vcc *vcc;
  1660. struct sk_buff *skb;
  1661. int i;
  1662. unsigned long flags;
  1663. XPRINTK("nicstar%d: drain_scq() called, scq at 0x%x, pos %d.\n",
  1664. card->index, (u32) scq, pos);
  1665. if (pos >= scq->num_entries) {
  1666. printk("nicstar%d: Bad index on drain_scq().\n", card->index);
  1667. return;
  1668. }
  1669. spin_lock_irqsave(&scq->lock, flags);
  1670. i = (int)(scq->tail - scq->base);
  1671. if (++i == scq->num_entries)
  1672. i = 0;
  1673. while (i != pos) {
  1674. skb = scq->skb[i];
  1675. XPRINTK("nicstar%d: freeing skb at 0x%x (index %d).\n",
  1676. card->index, (u32) skb, i);
  1677. if (skb != NULL) {
  1678. vcc = ATM_SKB(skb)->vcc;
  1679. if (vcc && vcc->pop != NULL) {
  1680. vcc->pop(vcc, skb);
  1681. } else {
  1682. dev_kfree_skb_irq(skb);
  1683. }
  1684. scq->skb[i] = NULL;
  1685. }
  1686. if (++i == scq->num_entries)
  1687. i = 0;
  1688. }
  1689. scq->tail = scq->base + pos;
  1690. spin_unlock_irqrestore(&scq->lock, flags);
  1691. }
  1692. static void process_rsq(ns_dev * card)
  1693. {
  1694. ns_rsqe *previous;
  1695. if (!ns_rsqe_valid(card->rsq.next))
  1696. return;
  1697. do {
  1698. dequeue_rx(card, card->rsq.next);
  1699. ns_rsqe_init(card->rsq.next);
  1700. previous = card->rsq.next;
  1701. if (card->rsq.next == card->rsq.last)
  1702. card->rsq.next = card->rsq.base;
  1703. else
  1704. card->rsq.next++;
  1705. } while (ns_rsqe_valid(card->rsq.next));
  1706. writel((((u32) previous) - ((u32) card->rsq.base)),
  1707. card->membase + RSQH);
  1708. }
  1709. static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe)
  1710. {
  1711. u32 vpi, vci;
  1712. vc_map *vc;
  1713. struct sk_buff *iovb;
  1714. struct iovec *iov;
  1715. struct atm_vcc *vcc;
  1716. struct sk_buff *skb;
  1717. unsigned short aal5_len;
  1718. int len;
  1719. u32 stat;
  1720. stat = readl(card->membase + STAT);
  1721. card->sbfqc = ns_stat_sfbqc_get(stat);
  1722. card->lbfqc = ns_stat_lfbqc_get(stat);
  1723. skb = (struct sk_buff *)le32_to_cpu(rsqe->buffer_handle);
  1724. vpi = ns_rsqe_vpi(rsqe);
  1725. vci = ns_rsqe_vci(rsqe);
  1726. if (vpi >= 1UL << card->vpibits || vci >= 1UL << card->vcibits) {
  1727. printk("nicstar%d: SDU received for out-of-range vc %d.%d.\n",
  1728. card->index, vpi, vci);
  1729. recycle_rx_buf(card, skb);
  1730. return;
  1731. }
  1732. vc = &(card->vcmap[vpi << card->vcibits | vci]);
  1733. if (!vc->rx) {
  1734. RXPRINTK("nicstar%d: SDU received on non-rx vc %d.%d.\n",
  1735. card->index, vpi, vci);
  1736. recycle_rx_buf(card, skb);
  1737. return;
  1738. }
  1739. vcc = vc->rx_vcc;
  1740. if (vcc->qos.aal == ATM_AAL0) {
  1741. struct sk_buff *sb;
  1742. unsigned char *cell;
  1743. int i;
  1744. cell = skb->data;
  1745. for (i = ns_rsqe_cellcount(rsqe); i; i--) {
  1746. if ((sb = dev_alloc_skb(NS_SMSKBSIZE)) == NULL) {
  1747. printk
  1748. ("nicstar%d: Can't allocate buffers for aal0.\n",
  1749. card->index);
  1750. atomic_add(i, &vcc->stats->rx_drop);
  1751. break;
  1752. }
  1753. if (!atm_charge(vcc, sb->truesize)) {
  1754. RXPRINTK
  1755. ("nicstar%d: atm_charge() dropped aal0 packets.\n",
  1756. card->index);
  1757. atomic_add(i - 1, &vcc->stats->rx_drop); /* already increased by 1 */
  1758. dev_kfree_skb_any(sb);
  1759. break;
  1760. }
  1761. /* Rebuild the header */
  1762. *((u32 *) sb->data) = le32_to_cpu(rsqe->word_1) << 4 |
  1763. (ns_rsqe_clp(rsqe) ? 0x00000001 : 0x00000000);
  1764. if (i == 1 && ns_rsqe_eopdu(rsqe))
  1765. *((u32 *) sb->data) |= 0x00000002;
  1766. skb_put(sb, NS_AAL0_HEADER);
  1767. memcpy(skb_tail_pointer(sb), cell, ATM_CELL_PAYLOAD);
  1768. skb_put(sb, ATM_CELL_PAYLOAD);
  1769. ATM_SKB(sb)->vcc = vcc;
  1770. __net_timestamp(sb);
  1771. vcc->push(vcc, sb);
  1772. atomic_inc(&vcc->stats->rx);
  1773. cell += ATM_CELL_PAYLOAD;
  1774. }
  1775. recycle_rx_buf(card, skb);
  1776. return;
  1777. }
  1778. /* To reach this point, the AAL layer can only be AAL5 */
  1779. if ((iovb = vc->rx_iov) == NULL) {
  1780. iovb = skb_dequeue(&(card->iovpool.queue));
  1781. if (iovb == NULL) { /* No buffers in the queue */
  1782. iovb = alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC);
  1783. if (iovb == NULL) {
  1784. printk("nicstar%d: Out of iovec buffers.\n",
  1785. card->index);
  1786. atomic_inc(&vcc->stats->rx_drop);
  1787. recycle_rx_buf(card, skb);
  1788. return;
  1789. }
  1790. NS_SKB_CB(iovb)->buf_type = BUF_NONE;
  1791. } else if (--card->iovpool.count < card->iovnr.min) {
  1792. struct sk_buff *new_iovb;
  1793. if ((new_iovb =
  1794. alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC)) != NULL) {
  1795. NS_SKB_CB(iovb)->buf_type = BUF_NONE;
  1796. skb_queue_tail(&card->iovpool.queue, new_iovb);
  1797. card->iovpool.count++;
  1798. }
  1799. }
  1800. vc->rx_iov = iovb;
  1801. NS_SKB(iovb)->iovcnt = 0;
  1802. iovb->len = 0;
  1803. iovb->data = iovb->head;
  1804. skb_reset_tail_pointer(iovb);
  1805. NS_SKB(iovb)->vcc = vcc;
  1806. /* IMPORTANT: a pointer to the sk_buff containing the small or large
  1807. buffer is stored as iovec base, NOT a pointer to the
  1808. small or large buffer itself. */
  1809. } else if (NS_SKB(iovb)->iovcnt >= NS_MAX_IOVECS) {
  1810. printk("nicstar%d: received too big AAL5 SDU.\n", card->index);
  1811. atomic_inc(&vcc->stats->rx_err);
  1812. recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
  1813. NS_MAX_IOVECS);
  1814. NS_SKB(iovb)->iovcnt = 0;
  1815. iovb->len = 0;
  1816. iovb->data = iovb->head;
  1817. skb_reset_tail_pointer(iovb);
  1818. NS_SKB(iovb)->vcc = vcc;
  1819. }
  1820. iov = &((struct iovec *)iovb->data)[NS_SKB(iovb)->iovcnt++];
  1821. iov->iov_base = (void *)skb;
  1822. iov->iov_len = ns_rsqe_cellcount(rsqe) * 48;
  1823. iovb->len += iov->iov_len;
  1824. if (NS_SKB(iovb)->iovcnt == 1) {
  1825. if (NS_SKB_CB(skb)->buf_type != BUF_SM) {
  1826. printk
  1827. ("nicstar%d: Expected a small buffer, and this is not one.\n",
  1828. card->index);
  1829. which_list(card, skb);
  1830. atomic_inc(&vcc->stats->rx_err);
  1831. recycle_rx_buf(card, skb);
  1832. vc->rx_iov = NULL;
  1833. recycle_iov_buf(card, iovb);
  1834. return;
  1835. }
  1836. } else { /* NS_SKB(iovb)->iovcnt >= 2 */
  1837. if (NS_SKB_CB(skb)->buf_type != BUF_LG) {
  1838. printk
  1839. ("nicstar%d: Expected a large buffer, and this is not one.\n",
  1840. card->index);
  1841. which_list(card, skb);
  1842. atomic_inc(&vcc->stats->rx_err);
  1843. recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
  1844. NS_SKB(iovb)->iovcnt);
  1845. vc->rx_iov = NULL;
  1846. recycle_iov_buf(card, iovb);
  1847. return;
  1848. }
  1849. }
  1850. if (ns_rsqe_eopdu(rsqe)) {
  1851. /* This works correctly regardless of the endianness of the host */
  1852. unsigned char *L1L2 = (unsigned char *)((u32) skb->data +
  1853. iov->iov_len - 6);
  1854. aal5_len = L1L2[0] << 8 | L1L2[1];
  1855. len = (aal5_len == 0x0000) ? 0x10000 : aal5_len;
  1856. if (ns_rsqe_crcerr(rsqe) ||
  1857. len + 8 > iovb->len || len + (47 + 8) < iovb->len) {
  1858. printk("nicstar%d: AAL5 CRC error", card->index);
  1859. if (len + 8 > iovb->len || len + (47 + 8) < iovb->len)
  1860. printk(" - PDU size mismatch.\n");
  1861. else
  1862. printk(".\n");
  1863. atomic_inc(&vcc->stats->rx_err);
  1864. recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
  1865. NS_SKB(iovb)->iovcnt);
  1866. vc->rx_iov = NULL;
  1867. recycle_iov_buf(card, iovb);
  1868. return;
  1869. }
  1870. /* By this point we (hopefully) have a complete SDU without errors. */
  1871. if (NS_SKB(iovb)->iovcnt == 1) { /* Just a small buffer */
  1872. /* skb points to a small buffer */
  1873. if (!atm_charge(vcc, skb->truesize)) {
  1874. push_rxbufs(card, skb);
  1875. atomic_inc(&vcc->stats->rx_drop);
  1876. } else {
  1877. skb_put(skb, len);
  1878. dequeue_sm_buf(card, skb);
  1879. #ifdef NS_USE_DESTRUCTORS
  1880. skb->destructor = ns_sb_destructor;
  1881. #endif /* NS_USE_DESTRUCTORS */
  1882. ATM_SKB(skb)->vcc = vcc;
  1883. __net_timestamp(skb);
  1884. vcc->push(vcc, skb);
  1885. atomic_inc(&vcc->stats->rx);
  1886. }
  1887. } else if (NS_SKB(iovb)->iovcnt == 2) { /* One small plus one large buffer */
  1888. struct sk_buff *sb;
  1889. sb = (struct sk_buff *)(iov - 1)->iov_base;
  1890. /* skb points to a large buffer */
  1891. if (len <= NS_SMBUFSIZE) {
  1892. if (!atm_charge(vcc, sb->truesize)) {
  1893. push_rxbufs(card, sb);
  1894. atomic_inc(&vcc->stats->rx_drop);
  1895. } else {
  1896. skb_put(sb, len);
  1897. dequeue_sm_buf(card, sb);
  1898. #ifdef NS_USE_DESTRUCTORS
  1899. sb->destructor = ns_sb_destructor;
  1900. #endif /* NS_USE_DESTRUCTORS */
  1901. ATM_SKB(sb)->vcc = vcc;
  1902. __net_timestamp(sb);
  1903. vcc->push(vcc, sb);
  1904. atomic_inc(&vcc->stats->rx);
  1905. }
  1906. push_rxbufs(card, skb);
  1907. } else { /* len > NS_SMBUFSIZE, the usual case */
  1908. if (!atm_charge(vcc, skb->truesize)) {
  1909. push_rxbufs(card, skb);
  1910. atomic_inc(&vcc->stats->rx_drop);
  1911. } else {
  1912. dequeue_lg_buf(card, skb);
  1913. #ifdef NS_USE_DESTRUCTORS
  1914. skb->destructor = ns_lb_destructor;
  1915. #endif /* NS_USE_DESTRUCTORS */
  1916. skb_push(skb, NS_SMBUFSIZE);
  1917. skb_copy_from_linear_data(sb, skb->data,
  1918. NS_SMBUFSIZE);
  1919. skb_put(skb, len - NS_SMBUFSIZE);
  1920. ATM_SKB(skb)->vcc = vcc;
  1921. __net_timestamp(skb);
  1922. vcc->push(vcc, skb);
  1923. atomic_inc(&vcc->stats->rx);
  1924. }
  1925. push_rxbufs(card, sb);
  1926. }
  1927. } else { /* Must push a huge buffer */
  1928. struct sk_buff *hb, *sb, *lb;
  1929. int remaining, tocopy;
  1930. int j;
  1931. hb = skb_dequeue(&(card->hbpool.queue));
  1932. if (hb == NULL) { /* No buffers in the queue */
  1933. hb = dev_alloc_skb(NS_HBUFSIZE);
  1934. if (hb == NULL) {
  1935. printk
  1936. ("nicstar%d: Out of huge buffers.\n",
  1937. card->index);
  1938. atomic_inc(&vcc->stats->rx_drop);
  1939. recycle_iovec_rx_bufs(card,
  1940. (struct iovec *)
  1941. iovb->data,
  1942. NS_SKB(iovb)->
  1943. iovcnt);
  1944. vc->rx_iov = NULL;
  1945. recycle_iov_buf(card, iovb);
  1946. return;
  1947. } else if (card->hbpool.count < card->hbnr.min) {
  1948. struct sk_buff *new_hb;
  1949. if ((new_hb =
  1950. dev_alloc_skb(NS_HBUFSIZE)) !=
  1951. NULL) {
  1952. skb_queue_tail(&card->hbpool.
  1953. queue, new_hb);
  1954. card->hbpool.count++;
  1955. }
  1956. }
  1957. NS_SKB_CB(hb)->buf_type = BUF_NONE;
  1958. } else if (--card->hbpool.count < card->hbnr.min) {
  1959. struct sk_buff *new_hb;
  1960. if ((new_hb =
  1961. dev_alloc_skb(NS_HBUFSIZE)) != NULL) {
  1962. NS_SKB_CB(new_hb)->buf_type = BUF_NONE;
  1963. skb_queue_tail(&card->hbpool.queue,
  1964. new_hb);
  1965. card->hbpool.count++;
  1966. }
  1967. if (card->hbpool.count < card->hbnr.min) {
  1968. if ((new_hb =
  1969. dev_alloc_skb(NS_HBUFSIZE)) !=
  1970. NULL) {
  1971. NS_SKB_CB(new_hb)->buf_type =
  1972. BUF_NONE;
  1973. skb_queue_tail(&card->hbpool.
  1974. queue, new_hb);
  1975. card->hbpool.count++;
  1976. }
  1977. }
  1978. }
  1979. iov = (struct iovec *)iovb->data;
  1980. if (!atm_charge(vcc, hb->truesize)) {
  1981. recycle_iovec_rx_bufs(card, iov,
  1982. NS_SKB(iovb)->iovcnt);
  1983. if (card->hbpool.count < card->hbnr.max) {
  1984. skb_queue_tail(&card->hbpool.queue, hb);
  1985. card->hbpool.count++;
  1986. } else
  1987. dev_kfree_skb_any(hb);
  1988. atomic_inc(&vcc->stats->rx_drop);
  1989. } else {
  1990. /* Copy the small buffer to the huge buffer */
  1991. sb = (struct sk_buff *)iov->iov_base;
  1992. skb_copy_from_linear_data(sb, hb->data,
  1993. iov->iov_len);
  1994. skb_put(hb, iov->iov_len);
  1995. remaining = len - iov->iov_len;
  1996. iov++;
  1997. /* Free the small buffer */
  1998. push_rxbufs(card, sb);
  1999. /* Copy all large buffers to the huge buffer and free them */
  2000. for (j = 1; j < NS_SKB(iovb)->iovcnt; j++) {
  2001. lb = (struct sk_buff *)iov->iov_base;
  2002. tocopy =
  2003. min_t(int, remaining, iov->iov_len);
  2004. skb_copy_from_linear_data(lb,
  2005. skb_tail_pointer
  2006. (hb), tocopy);
  2007. skb_put(hb, tocopy);
  2008. iov++;
  2009. remaining -= tocopy;
  2010. push_rxbufs(card, lb);
  2011. }
  2012. #ifdef EXTRA_DEBUG
  2013. if (remaining != 0 || hb->len != len)
  2014. printk
  2015. ("nicstar%d: Huge buffer len mismatch.\n",
  2016. card->index);
  2017. #endif /* EXTRA_DEBUG */
  2018. ATM_SKB(hb)->vcc = vcc;
  2019. #ifdef NS_USE_DESTRUCTORS
  2020. hb->destructor = ns_hb_destructor;
  2021. #endif /* NS_USE_DESTRUCTORS */
  2022. __net_timestamp(hb);
  2023. vcc->push(vcc, hb);
  2024. atomic_inc(&vcc->stats->rx);
  2025. }
  2026. }
  2027. vc->rx_iov = NULL;
  2028. recycle_iov_buf(card, iovb);
  2029. }
  2030. }
  2031. #ifdef NS_USE_DESTRUCTORS
  2032. static void ns_sb_destructor(struct sk_buff *sb)
  2033. {
  2034. ns_dev *card;
  2035. u32 stat;
  2036. card = (ns_dev *) ATM_SKB(sb)->vcc->dev->dev_data;
  2037. stat = readl(card->membase + STAT);
  2038. card->sbfqc = ns_stat_sfbqc_get(stat);
  2039. card->lbfqc = ns_stat_lfbqc_get(stat);
  2040. do {
  2041. sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
  2042. if (sb == NULL)
  2043. break;
  2044. NS_SKB_CB(sb)->buf_type = BUF_SM;
  2045. skb_queue_tail(&card->sbpool.queue, sb);
  2046. skb_reserve(sb, NS_AAL0_HEADER);
  2047. push_rxbufs(card, sb);
  2048. } while (card->sbfqc < card->sbnr.min);
  2049. }
  2050. static void ns_lb_destructor(struct sk_buff *lb)
  2051. {
  2052. ns_dev *card;
  2053. u32 stat;
  2054. card = (ns_dev *) ATM_SKB(lb)->vcc->dev->dev_data;
  2055. stat = readl(card->membase + STAT);
  2056. card->sbfqc = ns_stat_sfbqc_get(stat);
  2057. card->lbfqc = ns_stat_lfbqc_get(stat);
  2058. do {
  2059. lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
  2060. if (lb == NULL)
  2061. break;
  2062. NS_SKB_CB(lb)->buf_type = BUF_LG;
  2063. skb_queue_tail(&card->lbpool.queue, lb);
  2064. skb_reserve(lb, NS_SMBUFSIZE);
  2065. push_rxbufs(card, lb);
  2066. } while (card->lbfqc < card->lbnr.min);
  2067. }
  2068. static void ns_hb_destructor(struct sk_buff *hb)
  2069. {
  2070. ns_dev *card;
  2071. card = (ns_dev *) ATM_SKB(hb)->vcc->dev->dev_data;
  2072. while (card->hbpool.count < card->hbnr.init) {
  2073. hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
  2074. if (hb == NULL)
  2075. break;
  2076. NS_SKB_CB(hb)->buf_type = BUF_NONE;
  2077. skb_queue_tail(&card->hbpool.queue, hb);
  2078. card->hbpool.count++;
  2079. }
  2080. }
  2081. #endif /* NS_USE_DESTRUCTORS */
  2082. static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb)
  2083. {
  2084. struct ns_skb_cb *cb = NS_SKB_CB(skb);
  2085. if (unlikely(cb->buf_type == BUF_NONE)) {
  2086. printk("nicstar%d: What kind of rx buffer is this?\n",
  2087. card->index);
  2088. dev_kfree_skb_any(skb);
  2089. } else
  2090. push_rxbufs(card, skb);
  2091. }
  2092. static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count)
  2093. {
  2094. while (count-- > 0)
  2095. recycle_rx_buf(card, (struct sk_buff *)(iov++)->iov_base);
  2096. }
  2097. static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb)
  2098. {
  2099. if (card->iovpool.count < card->iovnr.max) {
  2100. skb_queue_tail(&card->iovpool.queue, iovb);
  2101. card->iovpool.count++;
  2102. } else
  2103. dev_kfree_skb_any(iovb);
  2104. }
  2105. static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb)
  2106. {
  2107. skb_unlink(sb, &card->sbpool.queue);
  2108. #ifdef NS_USE_DESTRUCTORS
  2109. if (card->sbfqc < card->sbnr.min)
  2110. #else
  2111. if (card->sbfqc < card->sbnr.init) {
  2112. struct sk_buff *new_sb;
  2113. if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) {
  2114. NS_SKB_CB(new_sb)->buf_type = BUF_SM;
  2115. skb_queue_tail(&card->sbpool.queue, new_sb);
  2116. skb_reserve(new_sb, NS_AAL0_HEADER);
  2117. push_rxbufs(card, new_sb);
  2118. }
  2119. }
  2120. if (card->sbfqc < card->sbnr.init)
  2121. #endif /* NS_USE_DESTRUCTORS */
  2122. {
  2123. struct sk_buff *new_sb;
  2124. if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) {
  2125. NS_SKB_CB(new_sb)->buf_type = BUF_SM;
  2126. skb_queue_tail(&card->sbpool.queue, new_sb);
  2127. skb_reserve(new_sb, NS_AAL0_HEADER);
  2128. push_rxbufs(card, new_sb);
  2129. }
  2130. }
  2131. }
  2132. static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb)
  2133. {
  2134. skb_unlink(lb, &card->lbpool.queue);
  2135. #ifdef NS_USE_DESTRUCTORS
  2136. if (card->lbfqc < card->lbnr.min)
  2137. #else
  2138. if (card->lbfqc < card->lbnr.init) {
  2139. struct sk_buff *new_lb;
  2140. if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) {
  2141. NS_SKB_CB(new_lb)->buf_type = BUF_LG;
  2142. skb_queue_tail(&card->lbpool.queue, new_lb);
  2143. skb_reserve(new_lb, NS_SMBUFSIZE);
  2144. push_rxbufs(card, new_lb);
  2145. }
  2146. }
  2147. if (card->lbfqc < card->lbnr.init)
  2148. #endif /* NS_USE_DESTRUCTORS */
  2149. {
  2150. struct sk_buff *new_lb;
  2151. if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) {
  2152. NS_SKB_CB(new_lb)->buf_type = BUF_LG;
  2153. skb_queue_tail(&card->lbpool.queue, new_lb);
  2154. skb_reserve(new_lb, NS_SMBUFSIZE);
  2155. push_rxbufs(card, new_lb);
  2156. }
  2157. }
  2158. }
  2159. static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page)
  2160. {
  2161. u32 stat;
  2162. ns_dev *card;
  2163. int left;
  2164. left = (int)*pos;
  2165. card = (ns_dev *) dev->dev_data;
  2166. stat = readl(card->membase + STAT);
  2167. if (!left--)
  2168. return sprintf(page, "Pool count min init max \n");
  2169. if (!left--)
  2170. return sprintf(page, "Small %5d %5d %5d %5d \n",
  2171. ns_stat_sfbqc_get(stat), card->sbnr.min,
  2172. card->sbnr.init, card->sbnr.max);
  2173. if (!left--)
  2174. return sprintf(page, "Large %5d %5d %5d %5d \n",
  2175. ns_stat_lfbqc_get(stat), card->lbnr.min,
  2176. card->lbnr.init, card->lbnr.max);
  2177. if (!left--)
  2178. return sprintf(page, "Huge %5d %5d %5d %5d \n",
  2179. card->hbpool.count, card->hbnr.min,
  2180. card->hbnr.init, card->hbnr.max);
  2181. if (!left--)
  2182. return sprintf(page, "Iovec %5d %5d %5d %5d \n",
  2183. card->iovpool.count, card->iovnr.min,
  2184. card->iovnr.init, card->iovnr.max);
  2185. if (!left--) {
  2186. int retval;
  2187. retval =
  2188. sprintf(page, "Interrupt counter: %u \n", card->intcnt);
  2189. card->intcnt = 0;
  2190. return retval;
  2191. }
  2192. #if 0
  2193. /* Dump 25.6 Mbps PHY registers */
  2194. /* Now there's a 25.6 Mbps PHY driver this code isn't needed. I left it
  2195. here just in case it's needed for debugging. */
  2196. if (card->max_pcr == ATM_25_PCR && !left--) {
  2197. u32 phy_regs[4];
  2198. u32 i;
  2199. for (i = 0; i < 4; i++) {
  2200. while (CMD_BUSY(card)) ;
  2201. writel(NS_CMD_READ_UTILITY | 0x00000200 | i,
  2202. card->membase + CMD);
  2203. while (CMD_BUSY(card)) ;
  2204. phy_regs[i] = readl(card->membase + DR0) & 0x000000FF;
  2205. }
  2206. return sprintf(page, "PHY regs: 0x%02X 0x%02X 0x%02X 0x%02X \n",
  2207. phy_regs[0], phy_regs[1], phy_regs[2],
  2208. phy_regs[3]);
  2209. }
  2210. #endif /* 0 - Dump 25.6 Mbps PHY registers */
  2211. #if 0
  2212. /* Dump TST */
  2213. if (left-- < NS_TST_NUM_ENTRIES) {
  2214. if (card->tste2vc[left + 1] == NULL)
  2215. return sprintf(page, "%5d - VBR/UBR \n", left + 1);
  2216. else
  2217. return sprintf(page, "%5d - %d %d \n", left + 1,
  2218. card->tste2vc[left + 1]->tx_vcc->vpi,
  2219. card->tste2vc[left + 1]->tx_vcc->vci);
  2220. }
  2221. #endif /* 0 */
  2222. return 0;
  2223. }
  2224. static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg)
  2225. {
  2226. ns_dev *card;
  2227. pool_levels pl;
  2228. long btype;
  2229. unsigned long flags;
  2230. card = dev->dev_data;
  2231. switch (cmd) {
  2232. case NS_GETPSTAT:
  2233. if (get_user
  2234. (pl.buftype, &((pool_levels __user *) arg)->buftype))
  2235. return -EFAULT;
  2236. switch (pl.buftype) {
  2237. case NS_BUFTYPE_SMALL:
  2238. pl.count =
  2239. ns_stat_sfbqc_get(readl(card->membase + STAT));
  2240. pl.level.min = card->sbnr.min;
  2241. pl.level.init = card->sbnr.init;
  2242. pl.level.max = card->sbnr.max;
  2243. break;
  2244. case NS_BUFTYPE_LARGE:
  2245. pl.count =
  2246. ns_stat_lfbqc_get(readl(card->membase + STAT));
  2247. pl.level.min = card->lbnr.min;
  2248. pl.level.init = card->lbnr.init;
  2249. pl.level.max = card->lbnr.max;
  2250. break;
  2251. case NS_BUFTYPE_HUGE:
  2252. pl.count = card->hbpool.count;
  2253. pl.level.min = card->hbnr.min;
  2254. pl.level.init = card->hbnr.init;
  2255. pl.level.max = card->hbnr.max;
  2256. break;
  2257. case NS_BUFTYPE_IOVEC:
  2258. pl.count = card->iovpool.count;
  2259. pl.level.min = card->iovnr.min;
  2260. pl.level.init = card->iovnr.init;
  2261. pl.level.max = card->iovnr.max;
  2262. break;
  2263. default:
  2264. return -ENOIOCTLCMD;
  2265. }
  2266. if (!copy_to_user((pool_levels __user *) arg, &pl, sizeof(pl)))
  2267. return (sizeof(pl));
  2268. else
  2269. return -EFAULT;
  2270. case NS_SETBUFLEV:
  2271. if (!capable(CAP_NET_ADMIN))
  2272. return -EPERM;
  2273. if (copy_from_user(&pl, (pool_levels __user *) arg, sizeof(pl)))
  2274. return -EFAULT;
  2275. if (pl.level.min >= pl.level.init
  2276. || pl.level.init >= pl.level.max)
  2277. return -EINVAL;
  2278. if (pl.level.min == 0)
  2279. return -EINVAL;
  2280. switch (pl.buftype) {
  2281. case NS_BUFTYPE_SMALL:
  2282. if (pl.level.max > TOP_SB)
  2283. return -EINVAL;
  2284. card->sbnr.min = pl.level.min;
  2285. card->sbnr.init = pl.level.init;
  2286. card->sbnr.max = pl.level.max;
  2287. break;
  2288. case NS_BUFTYPE_LARGE:
  2289. if (pl.level.max > TOP_LB)
  2290. return -EINVAL;
  2291. card->lbnr.min = pl.level.min;
  2292. card->lbnr.init = pl.level.init;
  2293. card->lbnr.max = pl.level.max;
  2294. break;
  2295. case NS_BUFTYPE_HUGE:
  2296. if (pl.level.max > TOP_HB)
  2297. return -EINVAL;
  2298. card->hbnr.min = pl.level.min;
  2299. card->hbnr.init = pl.level.init;
  2300. card->hbnr.max = pl.level.max;
  2301. break;
  2302. case NS_BUFTYPE_IOVEC:
  2303. if (pl.level.max > TOP_IOVB)
  2304. return -EINVAL;
  2305. card->iovnr.min = pl.level.min;
  2306. card->iovnr.init = pl.level.init;
  2307. card->iovnr.max = pl.level.max;
  2308. break;
  2309. default:
  2310. return -EINVAL;
  2311. }
  2312. return 0;
  2313. case NS_ADJBUFLEV:
  2314. if (!capable(CAP_NET_ADMIN))
  2315. return -EPERM;
  2316. btype = (long)arg; /* a long is the same size as a pointer or bigger */
  2317. switch (btype) {
  2318. case NS_BUFTYPE_SMALL:
  2319. while (card->sbfqc < card->sbnr.init) {
  2320. struct sk_buff *sb;
  2321. sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
  2322. if (sb == NULL)
  2323. return -ENOMEM;
  2324. NS_SKB_CB(sb)->buf_type = BUF_SM;
  2325. skb_queue_tail(&card->sbpool.queue, sb);
  2326. skb_reserve(sb, NS_AAL0_HEADER);
  2327. push_rxbufs(card, sb);
  2328. }
  2329. break;
  2330. case NS_BUFTYPE_LARGE:
  2331. while (card->lbfqc < card->lbnr.init) {
  2332. struct sk_buff *lb;
  2333. lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
  2334. if (lb == NULL)
  2335. return -ENOMEM;
  2336. NS_SKB_CB(lb)->buf_type = BUF_LG;
  2337. skb_queue_tail(&card->lbpool.queue, lb);
  2338. skb_reserve(lb, NS_SMBUFSIZE);
  2339. push_rxbufs(card, lb);
  2340. }
  2341. break;
  2342. case NS_BUFTYPE_HUGE:
  2343. while (card->hbpool.count > card->hbnr.init) {
  2344. struct sk_buff *hb;
  2345. spin_lock_irqsave(&card->int_lock, flags);
  2346. hb = skb_dequeue(&card->hbpool.queue);
  2347. card->hbpool.count--;
  2348. spin_unlock_irqrestore(&card->int_lock, flags);
  2349. if (hb == NULL)
  2350. printk
  2351. ("nicstar%d: huge buffer count inconsistent.\n",
  2352. card->index);
  2353. else
  2354. dev_kfree_skb_any(hb);
  2355. }
  2356. while (card->hbpool.count < card->hbnr.init) {
  2357. struct sk_buff *hb;
  2358. hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
  2359. if (hb == NULL)
  2360. return -ENOMEM;
  2361. NS_SKB_CB(hb)->buf_type = BUF_NONE;
  2362. spin_lock_irqsave(&card->int_lock, flags);
  2363. skb_queue_tail(&card->hbpool.queue, hb);
  2364. card->hbpool.count++;
  2365. spin_unlock_irqrestore(&card->int_lock, flags);
  2366. }
  2367. break;
  2368. case NS_BUFTYPE_IOVEC:
  2369. while (card->iovpool.count > card->iovnr.init) {
  2370. struct sk_buff *iovb;
  2371. spin_lock_irqsave(&card->int_lock, flags);
  2372. iovb = skb_dequeue(&card->iovpool.queue);
  2373. card->iovpool.count--;
  2374. spin_unlock_irqrestore(&card->int_lock, flags);
  2375. if (iovb == NULL)
  2376. printk
  2377. ("nicstar%d: iovec buffer count inconsistent.\n",
  2378. card->index);
  2379. else
  2380. dev_kfree_skb_any(iovb);
  2381. }
  2382. while (card->iovpool.count < card->iovnr.init) {
  2383. struct sk_buff *iovb;
  2384. iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
  2385. if (iovb == NULL)
  2386. return -ENOMEM;
  2387. NS_SKB_CB(iovb)->buf_type = BUF_NONE;
  2388. spin_lock_irqsave(&card->int_lock, flags);
  2389. skb_queue_tail(&card->iovpool.queue, iovb);
  2390. card->iovpool.count++;
  2391. spin_unlock_irqrestore(&card->int_lock, flags);
  2392. }
  2393. break;
  2394. default:
  2395. return -EINVAL;
  2396. }
  2397. return 0;
  2398. default:
  2399. if (dev->phy && dev->phy->ioctl) {
  2400. return dev->phy->ioctl(dev, cmd, arg);
  2401. } else {
  2402. printk("nicstar%d: %s == NULL \n", card->index,
  2403. dev->phy ? "dev->phy->ioctl" : "dev->phy");
  2404. return -ENOIOCTLCMD;
  2405. }
  2406. }
  2407. }
  2408. static void which_list(ns_dev * card, struct sk_buff *skb)
  2409. {
  2410. printk("skb buf_type: 0x%08x\n", NS_SKB_CB(skb)->buf_type);
  2411. }
  2412. static void ns_poll(unsigned long arg)
  2413. {
  2414. int i;
  2415. ns_dev *card;
  2416. unsigned long flags;
  2417. u32 stat_r, stat_w;
  2418. PRINTK("nicstar: Entering ns_poll().\n");
  2419. for (i = 0; i < num_cards; i++) {
  2420. card = cards[i];
  2421. if (spin_is_locked(&card->int_lock)) {
  2422. /* Probably it isn't worth spinning */
  2423. continue;
  2424. }
  2425. spin_lock_irqsave(&card->int_lock, flags);
  2426. stat_w = 0;
  2427. stat_r = readl(card->membase + STAT);
  2428. if (stat_r & NS_STAT_TSIF)
  2429. stat_w |= NS_STAT_TSIF;
  2430. if (stat_r & NS_STAT_EOPDU)
  2431. stat_w |= NS_STAT_EOPDU;
  2432. process_tsq(card);
  2433. process_rsq(card);
  2434. writel(stat_w, card->membase + STAT);
  2435. spin_unlock_irqrestore(&card->int_lock, flags);
  2436. }
  2437. mod_timer(&ns_timer, jiffies + NS_POLL_PERIOD);
  2438. PRINTK("nicstar: Leaving ns_poll().\n");
  2439. }
  2440. static int ns_parse_mac(char *mac, unsigned char *esi)
  2441. {
  2442. int i, j;
  2443. short byte1, byte0;
  2444. if (mac == NULL || esi == NULL)
  2445. return -1;
  2446. j = 0;
  2447. for (i = 0; i < 6; i++) {
  2448. if ((byte1 = ns_h2i(mac[j++])) < 0)
  2449. return -1;
  2450. if ((byte0 = ns_h2i(mac[j++])) < 0)
  2451. return -1;
  2452. esi[i] = (unsigned char)(byte1 * 16 + byte0);
  2453. if (i < 5) {
  2454. if (mac[j++] != ':')
  2455. return -1;
  2456. }
  2457. }
  2458. return 0;
  2459. }
  2460. static short ns_h2i(char c)
  2461. {
  2462. if (c >= '0' && c <= '9')
  2463. return (short)(c - '0');
  2464. if (c >= 'A' && c <= 'F')
  2465. return (short)(c - 'A' + 10);
  2466. if (c >= 'a' && c <= 'f')
  2467. return (short)(c - 'a' + 10);
  2468. return -1;
  2469. }
  2470. static void ns_phy_put(struct atm_dev *dev, unsigned char value,
  2471. unsigned long addr)
  2472. {
  2473. ns_dev *card;
  2474. unsigned long flags;
  2475. card = dev->dev_data;
  2476. spin_lock_irqsave(&card->res_lock, flags);
  2477. while (CMD_BUSY(card)) ;
  2478. writel((unsigned long)value, card->membase + DR0);
  2479. writel(NS_CMD_WRITE_UTILITY | 0x00000200 | (addr & 0x000000FF),
  2480. card->membase + CMD);
  2481. spin_unlock_irqrestore(&card->res_lock, flags);
  2482. }
  2483. static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr)
  2484. {
  2485. ns_dev *card;
  2486. unsigned long flags;
  2487. unsigned long data;
  2488. card = dev->dev_data;
  2489. spin_lock_irqsave(&card->res_lock, flags);
  2490. while (CMD_BUSY(card)) ;
  2491. writel(NS_CMD_READ_UTILITY | 0x00000200 | (addr & 0x000000FF),
  2492. card->membase + CMD);
  2493. while (CMD_BUSY(card)) ;
  2494. data = readl(card->membase + DR0) & 0x000000FF;
  2495. spin_unlock_irqrestore(&card->res_lock, flags);
  2496. return (unsigned char)data;
  2497. }
  2498. module_init(nicstar_init);
  2499. module_exit(nicstar_cleanup);