fork.c 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/personality.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/sem.h>
  21. #include <linux/file.h>
  22. #include <linux/fdtable.h>
  23. #include <linux/iocontext.h>
  24. #include <linux/key.h>
  25. #include <linux/binfmts.h>
  26. #include <linux/mman.h>
  27. #include <linux/mmu_notifier.h>
  28. #include <linux/fs.h>
  29. #include <linux/nsproxy.h>
  30. #include <linux/capability.h>
  31. #include <linux/cpu.h>
  32. #include <linux/cgroup.h>
  33. #include <linux/security.h>
  34. #include <linux/hugetlb.h>
  35. #include <linux/swap.h>
  36. #include <linux/syscalls.h>
  37. #include <linux/jiffies.h>
  38. #include <linux/futex.h>
  39. #include <linux/compat.h>
  40. #include <linux/kthread.h>
  41. #include <linux/task_io_accounting_ops.h>
  42. #include <linux/rcupdate.h>
  43. #include <linux/ptrace.h>
  44. #include <linux/mount.h>
  45. #include <linux/audit.h>
  46. #include <linux/memcontrol.h>
  47. #include <linux/ftrace.h>
  48. #include <linux/profile.h>
  49. #include <linux/rmap.h>
  50. #include <linux/ksm.h>
  51. #include <linux/acct.h>
  52. #include <linux/tsacct_kern.h>
  53. #include <linux/cn_proc.h>
  54. #include <linux/freezer.h>
  55. #include <linux/delayacct.h>
  56. #include <linux/taskstats_kern.h>
  57. #include <linux/random.h>
  58. #include <linux/tty.h>
  59. #include <linux/blkdev.h>
  60. #include <linux/fs_struct.h>
  61. #include <linux/magic.h>
  62. #include <linux/perf_event.h>
  63. #include <linux/posix-timers.h>
  64. #include <linux/user-return-notifier.h>
  65. #include <linux/oom.h>
  66. #include <linux/khugepaged.h>
  67. #include <asm/pgtable.h>
  68. #include <asm/pgalloc.h>
  69. #include <asm/uaccess.h>
  70. #include <asm/mmu_context.h>
  71. #include <asm/cacheflush.h>
  72. #include <asm/tlbflush.h>
  73. #include <trace/events/sched.h>
  74. /*
  75. * Protected counters by write_lock_irq(&tasklist_lock)
  76. */
  77. unsigned long total_forks; /* Handle normal Linux uptimes. */
  78. int nr_threads; /* The idle threads do not count.. */
  79. int max_threads; /* tunable limit on nr_threads */
  80. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  81. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  82. #ifdef CONFIG_PROVE_RCU
  83. int lockdep_tasklist_lock_is_held(void)
  84. {
  85. return lockdep_is_held(&tasklist_lock);
  86. }
  87. EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
  88. #endif /* #ifdef CONFIG_PROVE_RCU */
  89. int nr_processes(void)
  90. {
  91. int cpu;
  92. int total = 0;
  93. for_each_possible_cpu(cpu)
  94. total += per_cpu(process_counts, cpu);
  95. return total;
  96. }
  97. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  98. # define alloc_task_struct_node(node) \
  99. kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
  100. # define free_task_struct(tsk) \
  101. kmem_cache_free(task_struct_cachep, (tsk))
  102. static struct kmem_cache *task_struct_cachep;
  103. #endif
  104. #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
  105. static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
  106. int node)
  107. {
  108. #ifdef CONFIG_DEBUG_STACK_USAGE
  109. gfp_t mask = GFP_KERNEL | __GFP_ZERO;
  110. #else
  111. gfp_t mask = GFP_KERNEL;
  112. #endif
  113. struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
  114. return page ? page_address(page) : NULL;
  115. }
  116. static inline void free_thread_info(struct thread_info *ti)
  117. {
  118. free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
  119. }
  120. #endif
  121. /* SLAB cache for signal_struct structures (tsk->signal) */
  122. static struct kmem_cache *signal_cachep;
  123. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  124. struct kmem_cache *sighand_cachep;
  125. /* SLAB cache for files_struct structures (tsk->files) */
  126. struct kmem_cache *files_cachep;
  127. /* SLAB cache for fs_struct structures (tsk->fs) */
  128. struct kmem_cache *fs_cachep;
  129. /* SLAB cache for vm_area_struct structures */
  130. struct kmem_cache *vm_area_cachep;
  131. /* SLAB cache for mm_struct structures (tsk->mm) */
  132. static struct kmem_cache *mm_cachep;
  133. static void account_kernel_stack(struct thread_info *ti, int account)
  134. {
  135. struct zone *zone = page_zone(virt_to_page(ti));
  136. mod_zone_page_state(zone, NR_KERNEL_STACK, account);
  137. }
  138. void free_task(struct task_struct *tsk)
  139. {
  140. prop_local_destroy_single(&tsk->dirties);
  141. account_kernel_stack(tsk->stack, -1);
  142. free_thread_info(tsk->stack);
  143. rt_mutex_debug_task_free(tsk);
  144. ftrace_graph_exit_task(tsk);
  145. free_task_struct(tsk);
  146. }
  147. EXPORT_SYMBOL(free_task);
  148. static inline void free_signal_struct(struct signal_struct *sig)
  149. {
  150. taskstats_tgid_free(sig);
  151. sched_autogroup_exit(sig);
  152. kmem_cache_free(signal_cachep, sig);
  153. }
  154. static inline void put_signal_struct(struct signal_struct *sig)
  155. {
  156. if (atomic_dec_and_test(&sig->sigcnt))
  157. free_signal_struct(sig);
  158. }
  159. void __put_task_struct(struct task_struct *tsk)
  160. {
  161. WARN_ON(!tsk->exit_state);
  162. WARN_ON(atomic_read(&tsk->usage));
  163. WARN_ON(tsk == current);
  164. exit_creds(tsk);
  165. delayacct_tsk_free(tsk);
  166. put_signal_struct(tsk->signal);
  167. if (!profile_handoff_task(tsk))
  168. free_task(tsk);
  169. }
  170. EXPORT_SYMBOL_GPL(__put_task_struct);
  171. /*
  172. * macro override instead of weak attribute alias, to workaround
  173. * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
  174. */
  175. #ifndef arch_task_cache_init
  176. #define arch_task_cache_init()
  177. #endif
  178. void __init fork_init(unsigned long mempages)
  179. {
  180. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  181. #ifndef ARCH_MIN_TASKALIGN
  182. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  183. #endif
  184. /* create a slab on which task_structs can be allocated */
  185. task_struct_cachep =
  186. kmem_cache_create("task_struct", sizeof(struct task_struct),
  187. ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
  188. #endif
  189. /* do the arch specific task caches init */
  190. arch_task_cache_init();
  191. /*
  192. * The default maximum number of threads is set to a safe
  193. * value: the thread structures can take up at most half
  194. * of memory.
  195. */
  196. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  197. /*
  198. * we need to allow at least 20 threads to boot a system
  199. */
  200. if(max_threads < 20)
  201. max_threads = 20;
  202. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  203. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  204. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  205. init_task.signal->rlim[RLIMIT_NPROC];
  206. }
  207. int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
  208. struct task_struct *src)
  209. {
  210. *dst = *src;
  211. return 0;
  212. }
  213. static struct task_struct *dup_task_struct(struct task_struct *orig)
  214. {
  215. struct task_struct *tsk;
  216. struct thread_info *ti;
  217. unsigned long *stackend;
  218. int node = tsk_fork_get_node(orig);
  219. int err;
  220. prepare_to_copy(orig);
  221. tsk = alloc_task_struct_node(node);
  222. if (!tsk)
  223. return NULL;
  224. ti = alloc_thread_info_node(tsk, node);
  225. if (!ti) {
  226. free_task_struct(tsk);
  227. return NULL;
  228. }
  229. err = arch_dup_task_struct(tsk, orig);
  230. if (err)
  231. goto out;
  232. tsk->stack = ti;
  233. err = prop_local_init_single(&tsk->dirties);
  234. if (err)
  235. goto out;
  236. setup_thread_stack(tsk, orig);
  237. clear_user_return_notifier(tsk);
  238. clear_tsk_need_resched(tsk);
  239. stackend = end_of_stack(tsk);
  240. *stackend = STACK_END_MAGIC; /* for overflow detection */
  241. #ifdef CONFIG_CC_STACKPROTECTOR
  242. tsk->stack_canary = get_random_int();
  243. #endif
  244. /* One for us, one for whoever does the "release_task()" (usually parent) */
  245. atomic_set(&tsk->usage,2);
  246. #ifdef CONFIG_BLK_DEV_IO_TRACE
  247. tsk->btrace_seq = 0;
  248. #endif
  249. tsk->splice_pipe = NULL;
  250. account_kernel_stack(ti, 1);
  251. return tsk;
  252. out:
  253. free_thread_info(ti);
  254. free_task_struct(tsk);
  255. return NULL;
  256. }
  257. #ifdef CONFIG_MMU
  258. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  259. {
  260. struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
  261. struct rb_node **rb_link, *rb_parent;
  262. int retval;
  263. unsigned long charge;
  264. struct mempolicy *pol;
  265. down_write(&oldmm->mmap_sem);
  266. flush_cache_dup_mm(oldmm);
  267. /*
  268. * Not linked in yet - no deadlock potential:
  269. */
  270. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  271. mm->locked_vm = 0;
  272. mm->mmap = NULL;
  273. mm->mmap_cache = NULL;
  274. mm->free_area_cache = oldmm->mmap_base;
  275. mm->cached_hole_size = ~0UL;
  276. mm->map_count = 0;
  277. cpumask_clear(mm_cpumask(mm));
  278. mm->mm_rb = RB_ROOT;
  279. rb_link = &mm->mm_rb.rb_node;
  280. rb_parent = NULL;
  281. pprev = &mm->mmap;
  282. retval = ksm_fork(mm, oldmm);
  283. if (retval)
  284. goto out;
  285. retval = khugepaged_fork(mm, oldmm);
  286. if (retval)
  287. goto out;
  288. prev = NULL;
  289. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  290. struct file *file;
  291. if (mpnt->vm_flags & VM_DONTCOPY) {
  292. long pages = vma_pages(mpnt);
  293. mm->total_vm -= pages;
  294. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  295. -pages);
  296. continue;
  297. }
  298. charge = 0;
  299. if (mpnt->vm_flags & VM_ACCOUNT) {
  300. unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
  301. if (security_vm_enough_memory(len))
  302. goto fail_nomem;
  303. charge = len;
  304. }
  305. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  306. if (!tmp)
  307. goto fail_nomem;
  308. *tmp = *mpnt;
  309. INIT_LIST_HEAD(&tmp->anon_vma_chain);
  310. pol = mpol_dup(vma_policy(mpnt));
  311. retval = PTR_ERR(pol);
  312. if (IS_ERR(pol))
  313. goto fail_nomem_policy;
  314. vma_set_policy(tmp, pol);
  315. tmp->vm_mm = mm;
  316. if (anon_vma_fork(tmp, mpnt))
  317. goto fail_nomem_anon_vma_fork;
  318. tmp->vm_flags &= ~VM_LOCKED;
  319. tmp->vm_next = tmp->vm_prev = NULL;
  320. file = tmp->vm_file;
  321. if (file) {
  322. struct inode *inode = file->f_path.dentry->d_inode;
  323. struct address_space *mapping = file->f_mapping;
  324. get_file(file);
  325. if (tmp->vm_flags & VM_DENYWRITE)
  326. atomic_dec(&inode->i_writecount);
  327. mutex_lock(&mapping->i_mmap_mutex);
  328. if (tmp->vm_flags & VM_SHARED)
  329. mapping->i_mmap_writable++;
  330. flush_dcache_mmap_lock(mapping);
  331. /* insert tmp into the share list, just after mpnt */
  332. vma_prio_tree_add(tmp, mpnt);
  333. flush_dcache_mmap_unlock(mapping);
  334. mutex_unlock(&mapping->i_mmap_mutex);
  335. }
  336. /*
  337. * Clear hugetlb-related page reserves for children. This only
  338. * affects MAP_PRIVATE mappings. Faults generated by the child
  339. * are not guaranteed to succeed, even if read-only
  340. */
  341. if (is_vm_hugetlb_page(tmp))
  342. reset_vma_resv_huge_pages(tmp);
  343. /*
  344. * Link in the new vma and copy the page table entries.
  345. */
  346. *pprev = tmp;
  347. pprev = &tmp->vm_next;
  348. tmp->vm_prev = prev;
  349. prev = tmp;
  350. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  351. rb_link = &tmp->vm_rb.rb_right;
  352. rb_parent = &tmp->vm_rb;
  353. mm->map_count++;
  354. retval = copy_page_range(mm, oldmm, mpnt);
  355. if (tmp->vm_ops && tmp->vm_ops->open)
  356. tmp->vm_ops->open(tmp);
  357. if (retval)
  358. goto out;
  359. }
  360. /* a new mm has just been created */
  361. arch_dup_mmap(oldmm, mm);
  362. retval = 0;
  363. out:
  364. up_write(&mm->mmap_sem);
  365. flush_tlb_mm(oldmm);
  366. up_write(&oldmm->mmap_sem);
  367. return retval;
  368. fail_nomem_anon_vma_fork:
  369. mpol_put(pol);
  370. fail_nomem_policy:
  371. kmem_cache_free(vm_area_cachep, tmp);
  372. fail_nomem:
  373. retval = -ENOMEM;
  374. vm_unacct_memory(charge);
  375. goto out;
  376. }
  377. static inline int mm_alloc_pgd(struct mm_struct * mm)
  378. {
  379. mm->pgd = pgd_alloc(mm);
  380. if (unlikely(!mm->pgd))
  381. return -ENOMEM;
  382. return 0;
  383. }
  384. static inline void mm_free_pgd(struct mm_struct * mm)
  385. {
  386. pgd_free(mm, mm->pgd);
  387. }
  388. #else
  389. #define dup_mmap(mm, oldmm) (0)
  390. #define mm_alloc_pgd(mm) (0)
  391. #define mm_free_pgd(mm)
  392. #endif /* CONFIG_MMU */
  393. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  394. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  395. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  396. static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
  397. static int __init coredump_filter_setup(char *s)
  398. {
  399. default_dump_filter =
  400. (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
  401. MMF_DUMP_FILTER_MASK;
  402. return 1;
  403. }
  404. __setup("coredump_filter=", coredump_filter_setup);
  405. #include <linux/init_task.h>
  406. static void mm_init_aio(struct mm_struct *mm)
  407. {
  408. #ifdef CONFIG_AIO
  409. spin_lock_init(&mm->ioctx_lock);
  410. INIT_HLIST_HEAD(&mm->ioctx_list);
  411. #endif
  412. }
  413. static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
  414. {
  415. atomic_set(&mm->mm_users, 1);
  416. atomic_set(&mm->mm_count, 1);
  417. init_rwsem(&mm->mmap_sem);
  418. INIT_LIST_HEAD(&mm->mmlist);
  419. mm->flags = (current->mm) ?
  420. (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
  421. mm->core_state = NULL;
  422. mm->nr_ptes = 0;
  423. memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
  424. spin_lock_init(&mm->page_table_lock);
  425. mm->free_area_cache = TASK_UNMAPPED_BASE;
  426. mm->cached_hole_size = ~0UL;
  427. mm_init_aio(mm);
  428. mm_init_owner(mm, p);
  429. atomic_set(&mm->oom_disable_count, 0);
  430. if (likely(!mm_alloc_pgd(mm))) {
  431. mm->def_flags = 0;
  432. mmu_notifier_mm_init(mm);
  433. return mm;
  434. }
  435. free_mm(mm);
  436. return NULL;
  437. }
  438. /*
  439. * Allocate and initialize an mm_struct.
  440. */
  441. struct mm_struct * mm_alloc(void)
  442. {
  443. struct mm_struct * mm;
  444. mm = allocate_mm();
  445. if (!mm)
  446. return NULL;
  447. memset(mm, 0, sizeof(*mm));
  448. mm_init_cpumask(mm);
  449. return mm_init(mm, current);
  450. }
  451. /*
  452. * Called when the last reference to the mm
  453. * is dropped: either by a lazy thread or by
  454. * mmput. Free the page directory and the mm.
  455. */
  456. void __mmdrop(struct mm_struct *mm)
  457. {
  458. BUG_ON(mm == &init_mm);
  459. mm_free_pgd(mm);
  460. destroy_context(mm);
  461. mmu_notifier_mm_destroy(mm);
  462. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  463. VM_BUG_ON(mm->pmd_huge_pte);
  464. #endif
  465. free_mm(mm);
  466. }
  467. EXPORT_SYMBOL_GPL(__mmdrop);
  468. /*
  469. * Decrement the use count and release all resources for an mm.
  470. */
  471. void mmput(struct mm_struct *mm)
  472. {
  473. might_sleep();
  474. if (atomic_dec_and_test(&mm->mm_users)) {
  475. exit_aio(mm);
  476. ksm_exit(mm);
  477. khugepaged_exit(mm); /* must run before exit_mmap */
  478. exit_mmap(mm);
  479. set_mm_exe_file(mm, NULL);
  480. if (!list_empty(&mm->mmlist)) {
  481. spin_lock(&mmlist_lock);
  482. list_del(&mm->mmlist);
  483. spin_unlock(&mmlist_lock);
  484. }
  485. put_swap_token(mm);
  486. if (mm->binfmt)
  487. module_put(mm->binfmt->module);
  488. mmdrop(mm);
  489. }
  490. }
  491. EXPORT_SYMBOL_GPL(mmput);
  492. /*
  493. * We added or removed a vma mapping the executable. The vmas are only mapped
  494. * during exec and are not mapped with the mmap system call.
  495. * Callers must hold down_write() on the mm's mmap_sem for these
  496. */
  497. void added_exe_file_vma(struct mm_struct *mm)
  498. {
  499. mm->num_exe_file_vmas++;
  500. }
  501. void removed_exe_file_vma(struct mm_struct *mm)
  502. {
  503. mm->num_exe_file_vmas--;
  504. if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
  505. fput(mm->exe_file);
  506. mm->exe_file = NULL;
  507. }
  508. }
  509. void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
  510. {
  511. if (new_exe_file)
  512. get_file(new_exe_file);
  513. if (mm->exe_file)
  514. fput(mm->exe_file);
  515. mm->exe_file = new_exe_file;
  516. mm->num_exe_file_vmas = 0;
  517. }
  518. struct file *get_mm_exe_file(struct mm_struct *mm)
  519. {
  520. struct file *exe_file;
  521. /* We need mmap_sem to protect against races with removal of
  522. * VM_EXECUTABLE vmas */
  523. down_read(&mm->mmap_sem);
  524. exe_file = mm->exe_file;
  525. if (exe_file)
  526. get_file(exe_file);
  527. up_read(&mm->mmap_sem);
  528. return exe_file;
  529. }
  530. static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
  531. {
  532. /* It's safe to write the exe_file pointer without exe_file_lock because
  533. * this is called during fork when the task is not yet in /proc */
  534. newmm->exe_file = get_mm_exe_file(oldmm);
  535. }
  536. /**
  537. * get_task_mm - acquire a reference to the task's mm
  538. *
  539. * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
  540. * this kernel workthread has transiently adopted a user mm with use_mm,
  541. * to do its AIO) is not set and if so returns a reference to it, after
  542. * bumping up the use count. User must release the mm via mmput()
  543. * after use. Typically used by /proc and ptrace.
  544. */
  545. struct mm_struct *get_task_mm(struct task_struct *task)
  546. {
  547. struct mm_struct *mm;
  548. task_lock(task);
  549. mm = task->mm;
  550. if (mm) {
  551. if (task->flags & PF_KTHREAD)
  552. mm = NULL;
  553. else
  554. atomic_inc(&mm->mm_users);
  555. }
  556. task_unlock(task);
  557. return mm;
  558. }
  559. EXPORT_SYMBOL_GPL(get_task_mm);
  560. /* Please note the differences between mmput and mm_release.
  561. * mmput is called whenever we stop holding onto a mm_struct,
  562. * error success whatever.
  563. *
  564. * mm_release is called after a mm_struct has been removed
  565. * from the current process.
  566. *
  567. * This difference is important for error handling, when we
  568. * only half set up a mm_struct for a new process and need to restore
  569. * the old one. Because we mmput the new mm_struct before
  570. * restoring the old one. . .
  571. * Eric Biederman 10 January 1998
  572. */
  573. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  574. {
  575. struct completion *vfork_done = tsk->vfork_done;
  576. /* Get rid of any futexes when releasing the mm */
  577. #ifdef CONFIG_FUTEX
  578. if (unlikely(tsk->robust_list)) {
  579. exit_robust_list(tsk);
  580. tsk->robust_list = NULL;
  581. }
  582. #ifdef CONFIG_COMPAT
  583. if (unlikely(tsk->compat_robust_list)) {
  584. compat_exit_robust_list(tsk);
  585. tsk->compat_robust_list = NULL;
  586. }
  587. #endif
  588. if (unlikely(!list_empty(&tsk->pi_state_list)))
  589. exit_pi_state_list(tsk);
  590. #endif
  591. /* Get rid of any cached register state */
  592. deactivate_mm(tsk, mm);
  593. /* notify parent sleeping on vfork() */
  594. if (vfork_done) {
  595. tsk->vfork_done = NULL;
  596. complete(vfork_done);
  597. }
  598. /*
  599. * If we're exiting normally, clear a user-space tid field if
  600. * requested. We leave this alone when dying by signal, to leave
  601. * the value intact in a core dump, and to save the unnecessary
  602. * trouble otherwise. Userland only wants this done for a sys_exit.
  603. */
  604. if (tsk->clear_child_tid) {
  605. if (!(tsk->flags & PF_SIGNALED) &&
  606. atomic_read(&mm->mm_users) > 1) {
  607. /*
  608. * We don't check the error code - if userspace has
  609. * not set up a proper pointer then tough luck.
  610. */
  611. put_user(0, tsk->clear_child_tid);
  612. sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
  613. 1, NULL, NULL, 0);
  614. }
  615. tsk->clear_child_tid = NULL;
  616. }
  617. }
  618. /*
  619. * Allocate a new mm structure and copy contents from the
  620. * mm structure of the passed in task structure.
  621. */
  622. struct mm_struct *dup_mm(struct task_struct *tsk)
  623. {
  624. struct mm_struct *mm, *oldmm = current->mm;
  625. int err;
  626. if (!oldmm)
  627. return NULL;
  628. mm = allocate_mm();
  629. if (!mm)
  630. goto fail_nomem;
  631. memcpy(mm, oldmm, sizeof(*mm));
  632. mm_init_cpumask(mm);
  633. /* Initializing for Swap token stuff */
  634. mm->token_priority = 0;
  635. mm->last_interval = 0;
  636. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  637. mm->pmd_huge_pte = NULL;
  638. #endif
  639. if (!mm_init(mm, tsk))
  640. goto fail_nomem;
  641. if (init_new_context(tsk, mm))
  642. goto fail_nocontext;
  643. dup_mm_exe_file(oldmm, mm);
  644. err = dup_mmap(mm, oldmm);
  645. if (err)
  646. goto free_pt;
  647. mm->hiwater_rss = get_mm_rss(mm);
  648. mm->hiwater_vm = mm->total_vm;
  649. if (mm->binfmt && !try_module_get(mm->binfmt->module))
  650. goto free_pt;
  651. return mm;
  652. free_pt:
  653. /* don't put binfmt in mmput, we haven't got module yet */
  654. mm->binfmt = NULL;
  655. mmput(mm);
  656. fail_nomem:
  657. return NULL;
  658. fail_nocontext:
  659. /*
  660. * If init_new_context() failed, we cannot use mmput() to free the mm
  661. * because it calls destroy_context()
  662. */
  663. mm_free_pgd(mm);
  664. free_mm(mm);
  665. return NULL;
  666. }
  667. static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
  668. {
  669. struct mm_struct * mm, *oldmm;
  670. int retval;
  671. tsk->min_flt = tsk->maj_flt = 0;
  672. tsk->nvcsw = tsk->nivcsw = 0;
  673. #ifdef CONFIG_DETECT_HUNG_TASK
  674. tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
  675. #endif
  676. tsk->mm = NULL;
  677. tsk->active_mm = NULL;
  678. /*
  679. * Are we cloning a kernel thread?
  680. *
  681. * We need to steal a active VM for that..
  682. */
  683. oldmm = current->mm;
  684. if (!oldmm)
  685. return 0;
  686. if (clone_flags & CLONE_VM) {
  687. atomic_inc(&oldmm->mm_users);
  688. mm = oldmm;
  689. goto good_mm;
  690. }
  691. retval = -ENOMEM;
  692. mm = dup_mm(tsk);
  693. if (!mm)
  694. goto fail_nomem;
  695. good_mm:
  696. /* Initializing for Swap token stuff */
  697. mm->token_priority = 0;
  698. mm->last_interval = 0;
  699. if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
  700. atomic_inc(&mm->oom_disable_count);
  701. tsk->mm = mm;
  702. tsk->active_mm = mm;
  703. return 0;
  704. fail_nomem:
  705. return retval;
  706. }
  707. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  708. {
  709. struct fs_struct *fs = current->fs;
  710. if (clone_flags & CLONE_FS) {
  711. /* tsk->fs is already what we want */
  712. spin_lock(&fs->lock);
  713. if (fs->in_exec) {
  714. spin_unlock(&fs->lock);
  715. return -EAGAIN;
  716. }
  717. fs->users++;
  718. spin_unlock(&fs->lock);
  719. return 0;
  720. }
  721. tsk->fs = copy_fs_struct(fs);
  722. if (!tsk->fs)
  723. return -ENOMEM;
  724. return 0;
  725. }
  726. static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
  727. {
  728. struct files_struct *oldf, *newf;
  729. int error = 0;
  730. /*
  731. * A background process may not have any files ...
  732. */
  733. oldf = current->files;
  734. if (!oldf)
  735. goto out;
  736. if (clone_flags & CLONE_FILES) {
  737. atomic_inc(&oldf->count);
  738. goto out;
  739. }
  740. newf = dup_fd(oldf, &error);
  741. if (!newf)
  742. goto out;
  743. tsk->files = newf;
  744. error = 0;
  745. out:
  746. return error;
  747. }
  748. static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
  749. {
  750. #ifdef CONFIG_BLOCK
  751. struct io_context *ioc = current->io_context;
  752. if (!ioc)
  753. return 0;
  754. /*
  755. * Share io context with parent, if CLONE_IO is set
  756. */
  757. if (clone_flags & CLONE_IO) {
  758. tsk->io_context = ioc_task_link(ioc);
  759. if (unlikely(!tsk->io_context))
  760. return -ENOMEM;
  761. } else if (ioprio_valid(ioc->ioprio)) {
  762. tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
  763. if (unlikely(!tsk->io_context))
  764. return -ENOMEM;
  765. tsk->io_context->ioprio = ioc->ioprio;
  766. }
  767. #endif
  768. return 0;
  769. }
  770. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  771. {
  772. struct sighand_struct *sig;
  773. if (clone_flags & CLONE_SIGHAND) {
  774. atomic_inc(&current->sighand->count);
  775. return 0;
  776. }
  777. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  778. rcu_assign_pointer(tsk->sighand, sig);
  779. if (!sig)
  780. return -ENOMEM;
  781. atomic_set(&sig->count, 1);
  782. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  783. return 0;
  784. }
  785. void __cleanup_sighand(struct sighand_struct *sighand)
  786. {
  787. if (atomic_dec_and_test(&sighand->count))
  788. kmem_cache_free(sighand_cachep, sighand);
  789. }
  790. /*
  791. * Initialize POSIX timer handling for a thread group.
  792. */
  793. static void posix_cpu_timers_init_group(struct signal_struct *sig)
  794. {
  795. unsigned long cpu_limit;
  796. /* Thread group counters. */
  797. thread_group_cputime_init(sig);
  798. cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
  799. if (cpu_limit != RLIM_INFINITY) {
  800. sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
  801. sig->cputimer.running = 1;
  802. }
  803. /* The timer lists. */
  804. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  805. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  806. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  807. }
  808. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  809. {
  810. struct signal_struct *sig;
  811. if (clone_flags & CLONE_THREAD)
  812. return 0;
  813. sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
  814. tsk->signal = sig;
  815. if (!sig)
  816. return -ENOMEM;
  817. sig->nr_threads = 1;
  818. atomic_set(&sig->live, 1);
  819. atomic_set(&sig->sigcnt, 1);
  820. init_waitqueue_head(&sig->wait_chldexit);
  821. if (clone_flags & CLONE_NEWPID)
  822. sig->flags |= SIGNAL_UNKILLABLE;
  823. sig->curr_target = tsk;
  824. init_sigpending(&sig->shared_pending);
  825. INIT_LIST_HEAD(&sig->posix_timers);
  826. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  827. sig->real_timer.function = it_real_fn;
  828. task_lock(current->group_leader);
  829. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  830. task_unlock(current->group_leader);
  831. posix_cpu_timers_init_group(sig);
  832. tty_audit_fork(sig);
  833. sched_autogroup_fork(sig);
  834. #ifdef CONFIG_CGROUPS
  835. init_rwsem(&sig->threadgroup_fork_lock);
  836. #endif
  837. sig->oom_adj = current->signal->oom_adj;
  838. sig->oom_score_adj = current->signal->oom_score_adj;
  839. sig->oom_score_adj_min = current->signal->oom_score_adj_min;
  840. mutex_init(&sig->cred_guard_mutex);
  841. return 0;
  842. }
  843. static void copy_flags(unsigned long clone_flags, struct task_struct *p)
  844. {
  845. unsigned long new_flags = p->flags;
  846. new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
  847. new_flags |= PF_FORKNOEXEC;
  848. new_flags |= PF_STARTING;
  849. p->flags = new_flags;
  850. clear_freeze_flag(p);
  851. }
  852. SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
  853. {
  854. current->clear_child_tid = tidptr;
  855. return task_pid_vnr(current);
  856. }
  857. static void rt_mutex_init_task(struct task_struct *p)
  858. {
  859. raw_spin_lock_init(&p->pi_lock);
  860. #ifdef CONFIG_RT_MUTEXES
  861. plist_head_init(&p->pi_waiters);
  862. p->pi_blocked_on = NULL;
  863. #endif
  864. }
  865. #ifdef CONFIG_MM_OWNER
  866. void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
  867. {
  868. mm->owner = p;
  869. }
  870. #endif /* CONFIG_MM_OWNER */
  871. /*
  872. * Initialize POSIX timer handling for a single task.
  873. */
  874. static void posix_cpu_timers_init(struct task_struct *tsk)
  875. {
  876. tsk->cputime_expires.prof_exp = cputime_zero;
  877. tsk->cputime_expires.virt_exp = cputime_zero;
  878. tsk->cputime_expires.sched_exp = 0;
  879. INIT_LIST_HEAD(&tsk->cpu_timers[0]);
  880. INIT_LIST_HEAD(&tsk->cpu_timers[1]);
  881. INIT_LIST_HEAD(&tsk->cpu_timers[2]);
  882. }
  883. /*
  884. * This creates a new process as a copy of the old one,
  885. * but does not actually start it yet.
  886. *
  887. * It copies the registers, and all the appropriate
  888. * parts of the process environment (as per the clone
  889. * flags). The actual kick-off is left to the caller.
  890. */
  891. static struct task_struct *copy_process(unsigned long clone_flags,
  892. unsigned long stack_start,
  893. struct pt_regs *regs,
  894. unsigned long stack_size,
  895. int __user *child_tidptr,
  896. struct pid *pid,
  897. int trace)
  898. {
  899. int retval;
  900. struct task_struct *p;
  901. int cgroup_callbacks_done = 0;
  902. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  903. return ERR_PTR(-EINVAL);
  904. /*
  905. * Thread groups must share signals as well, and detached threads
  906. * can only be started up within the thread group.
  907. */
  908. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  909. return ERR_PTR(-EINVAL);
  910. /*
  911. * Shared signal handlers imply shared VM. By way of the above,
  912. * thread groups also imply shared VM. Blocking this case allows
  913. * for various simplifications in other code.
  914. */
  915. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  916. return ERR_PTR(-EINVAL);
  917. /*
  918. * Siblings of global init remain as zombies on exit since they are
  919. * not reaped by their parent (swapper). To solve this and to avoid
  920. * multi-rooted process trees, prevent global and container-inits
  921. * from creating siblings.
  922. */
  923. if ((clone_flags & CLONE_PARENT) &&
  924. current->signal->flags & SIGNAL_UNKILLABLE)
  925. return ERR_PTR(-EINVAL);
  926. retval = security_task_create(clone_flags);
  927. if (retval)
  928. goto fork_out;
  929. retval = -ENOMEM;
  930. p = dup_task_struct(current);
  931. if (!p)
  932. goto fork_out;
  933. ftrace_graph_init_task(p);
  934. rt_mutex_init_task(p);
  935. #ifdef CONFIG_PROVE_LOCKING
  936. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  937. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  938. #endif
  939. retval = -EAGAIN;
  940. if (atomic_read(&p->real_cred->user->processes) >=
  941. task_rlimit(p, RLIMIT_NPROC)) {
  942. if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
  943. p->real_cred->user != INIT_USER)
  944. goto bad_fork_free;
  945. }
  946. retval = copy_creds(p, clone_flags);
  947. if (retval < 0)
  948. goto bad_fork_free;
  949. /*
  950. * If multiple threads are within copy_process(), then this check
  951. * triggers too late. This doesn't hurt, the check is only there
  952. * to stop root fork bombs.
  953. */
  954. retval = -EAGAIN;
  955. if (nr_threads >= max_threads)
  956. goto bad_fork_cleanup_count;
  957. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  958. goto bad_fork_cleanup_count;
  959. p->did_exec = 0;
  960. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  961. copy_flags(clone_flags, p);
  962. INIT_LIST_HEAD(&p->children);
  963. INIT_LIST_HEAD(&p->sibling);
  964. rcu_copy_process(p);
  965. p->vfork_done = NULL;
  966. spin_lock_init(&p->alloc_lock);
  967. init_sigpending(&p->pending);
  968. p->utime = cputime_zero;
  969. p->stime = cputime_zero;
  970. p->gtime = cputime_zero;
  971. p->utimescaled = cputime_zero;
  972. p->stimescaled = cputime_zero;
  973. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  974. p->prev_utime = cputime_zero;
  975. p->prev_stime = cputime_zero;
  976. #endif
  977. #if defined(SPLIT_RSS_COUNTING)
  978. memset(&p->rss_stat, 0, sizeof(p->rss_stat));
  979. #endif
  980. p->default_timer_slack_ns = current->timer_slack_ns;
  981. task_io_accounting_init(&p->ioac);
  982. acct_clear_integrals(p);
  983. posix_cpu_timers_init(p);
  984. do_posix_clock_monotonic_gettime(&p->start_time);
  985. p->real_start_time = p->start_time;
  986. monotonic_to_bootbased(&p->real_start_time);
  987. p->io_context = NULL;
  988. p->audit_context = NULL;
  989. if (clone_flags & CLONE_THREAD)
  990. threadgroup_fork_read_lock(current);
  991. cgroup_fork(p);
  992. #ifdef CONFIG_NUMA
  993. p->mempolicy = mpol_dup(p->mempolicy);
  994. if (IS_ERR(p->mempolicy)) {
  995. retval = PTR_ERR(p->mempolicy);
  996. p->mempolicy = NULL;
  997. goto bad_fork_cleanup_cgroup;
  998. }
  999. mpol_fix_fork_child_flag(p);
  1000. #endif
  1001. #ifdef CONFIG_TRACE_IRQFLAGS
  1002. p->irq_events = 0;
  1003. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1004. p->hardirqs_enabled = 1;
  1005. #else
  1006. p->hardirqs_enabled = 0;
  1007. #endif
  1008. p->hardirq_enable_ip = 0;
  1009. p->hardirq_enable_event = 0;
  1010. p->hardirq_disable_ip = _THIS_IP_;
  1011. p->hardirq_disable_event = 0;
  1012. p->softirqs_enabled = 1;
  1013. p->softirq_enable_ip = _THIS_IP_;
  1014. p->softirq_enable_event = 0;
  1015. p->softirq_disable_ip = 0;
  1016. p->softirq_disable_event = 0;
  1017. p->hardirq_context = 0;
  1018. p->softirq_context = 0;
  1019. #endif
  1020. #ifdef CONFIG_LOCKDEP
  1021. p->lockdep_depth = 0; /* no locks held yet */
  1022. p->curr_chain_key = 0;
  1023. p->lockdep_recursion = 0;
  1024. #endif
  1025. #ifdef CONFIG_DEBUG_MUTEXES
  1026. p->blocked_on = NULL; /* not blocked yet */
  1027. #endif
  1028. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  1029. p->memcg_batch.do_batch = 0;
  1030. p->memcg_batch.memcg = NULL;
  1031. #endif
  1032. /* Perform scheduler related setup. Assign this task to a CPU. */
  1033. sched_fork(p);
  1034. retval = perf_event_init_task(p);
  1035. if (retval)
  1036. goto bad_fork_cleanup_policy;
  1037. if ((retval = audit_alloc(p)))
  1038. goto bad_fork_cleanup_policy;
  1039. /* copy all the process information */
  1040. if ((retval = copy_semundo(clone_flags, p)))
  1041. goto bad_fork_cleanup_audit;
  1042. if ((retval = copy_files(clone_flags, p)))
  1043. goto bad_fork_cleanup_semundo;
  1044. if ((retval = copy_fs(clone_flags, p)))
  1045. goto bad_fork_cleanup_files;
  1046. if ((retval = copy_sighand(clone_flags, p)))
  1047. goto bad_fork_cleanup_fs;
  1048. if ((retval = copy_signal(clone_flags, p)))
  1049. goto bad_fork_cleanup_sighand;
  1050. if ((retval = copy_mm(clone_flags, p)))
  1051. goto bad_fork_cleanup_signal;
  1052. if ((retval = copy_namespaces(clone_flags, p)))
  1053. goto bad_fork_cleanup_mm;
  1054. if ((retval = copy_io(clone_flags, p)))
  1055. goto bad_fork_cleanup_namespaces;
  1056. retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
  1057. if (retval)
  1058. goto bad_fork_cleanup_io;
  1059. if (pid != &init_struct_pid) {
  1060. retval = -ENOMEM;
  1061. pid = alloc_pid(p->nsproxy->pid_ns);
  1062. if (!pid)
  1063. goto bad_fork_cleanup_io;
  1064. }
  1065. p->pid = pid_nr(pid);
  1066. p->tgid = p->pid;
  1067. if (clone_flags & CLONE_THREAD)
  1068. p->tgid = current->tgid;
  1069. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  1070. /*
  1071. * Clear TID on mm_release()?
  1072. */
  1073. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
  1074. #ifdef CONFIG_BLOCK
  1075. p->plug = NULL;
  1076. #endif
  1077. #ifdef CONFIG_FUTEX
  1078. p->robust_list = NULL;
  1079. #ifdef CONFIG_COMPAT
  1080. p->compat_robust_list = NULL;
  1081. #endif
  1082. INIT_LIST_HEAD(&p->pi_state_list);
  1083. p->pi_state_cache = NULL;
  1084. #endif
  1085. /*
  1086. * sigaltstack should be cleared when sharing the same VM
  1087. */
  1088. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  1089. p->sas_ss_sp = p->sas_ss_size = 0;
  1090. /*
  1091. * Syscall tracing and stepping should be turned off in the
  1092. * child regardless of CLONE_PTRACE.
  1093. */
  1094. user_disable_single_step(p);
  1095. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  1096. #ifdef TIF_SYSCALL_EMU
  1097. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1098. #endif
  1099. clear_all_latency_tracing(p);
  1100. /* ok, now we should be set up.. */
  1101. p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
  1102. p->pdeath_signal = 0;
  1103. p->exit_state = 0;
  1104. /*
  1105. * Ok, make it visible to the rest of the system.
  1106. * We dont wake it up yet.
  1107. */
  1108. p->group_leader = p;
  1109. INIT_LIST_HEAD(&p->thread_group);
  1110. /* Now that the task is set up, run cgroup callbacks if
  1111. * necessary. We need to run them before the task is visible
  1112. * on the tasklist. */
  1113. cgroup_fork_callbacks(p);
  1114. cgroup_callbacks_done = 1;
  1115. /* Need tasklist lock for parent etc handling! */
  1116. write_lock_irq(&tasklist_lock);
  1117. /* CLONE_PARENT re-uses the old parent */
  1118. if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
  1119. p->real_parent = current->real_parent;
  1120. p->parent_exec_id = current->parent_exec_id;
  1121. } else {
  1122. p->real_parent = current;
  1123. p->parent_exec_id = current->self_exec_id;
  1124. }
  1125. spin_lock(&current->sighand->siglock);
  1126. /*
  1127. * Process group and session signals need to be delivered to just the
  1128. * parent before the fork or both the parent and the child after the
  1129. * fork. Restart if a signal comes in before we add the new process to
  1130. * it's process group.
  1131. * A fatal signal pending means that current will exit, so the new
  1132. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1133. */
  1134. recalc_sigpending();
  1135. if (signal_pending(current)) {
  1136. spin_unlock(&current->sighand->siglock);
  1137. write_unlock_irq(&tasklist_lock);
  1138. retval = -ERESTARTNOINTR;
  1139. goto bad_fork_free_pid;
  1140. }
  1141. if (clone_flags & CLONE_THREAD) {
  1142. current->signal->nr_threads++;
  1143. atomic_inc(&current->signal->live);
  1144. atomic_inc(&current->signal->sigcnt);
  1145. p->group_leader = current->group_leader;
  1146. list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
  1147. }
  1148. if (likely(p->pid)) {
  1149. ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
  1150. if (thread_group_leader(p)) {
  1151. if (is_child_reaper(pid))
  1152. p->nsproxy->pid_ns->child_reaper = p;
  1153. p->signal->leader_pid = pid;
  1154. p->signal->tty = tty_kref_get(current->signal->tty);
  1155. attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1156. attach_pid(p, PIDTYPE_SID, task_session(current));
  1157. list_add_tail(&p->sibling, &p->real_parent->children);
  1158. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1159. __this_cpu_inc(process_counts);
  1160. }
  1161. attach_pid(p, PIDTYPE_PID, pid);
  1162. nr_threads++;
  1163. }
  1164. total_forks++;
  1165. spin_unlock(&current->sighand->siglock);
  1166. write_unlock_irq(&tasklist_lock);
  1167. proc_fork_connector(p);
  1168. cgroup_post_fork(p);
  1169. if (clone_flags & CLONE_THREAD)
  1170. threadgroup_fork_read_unlock(current);
  1171. perf_event_fork(p);
  1172. return p;
  1173. bad_fork_free_pid:
  1174. if (pid != &init_struct_pid)
  1175. free_pid(pid);
  1176. bad_fork_cleanup_io:
  1177. if (p->io_context)
  1178. exit_io_context(p);
  1179. bad_fork_cleanup_namespaces:
  1180. exit_task_namespaces(p);
  1181. bad_fork_cleanup_mm:
  1182. if (p->mm) {
  1183. task_lock(p);
  1184. if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
  1185. atomic_dec(&p->mm->oom_disable_count);
  1186. task_unlock(p);
  1187. mmput(p->mm);
  1188. }
  1189. bad_fork_cleanup_signal:
  1190. if (!(clone_flags & CLONE_THREAD))
  1191. free_signal_struct(p->signal);
  1192. bad_fork_cleanup_sighand:
  1193. __cleanup_sighand(p->sighand);
  1194. bad_fork_cleanup_fs:
  1195. exit_fs(p); /* blocking */
  1196. bad_fork_cleanup_files:
  1197. exit_files(p); /* blocking */
  1198. bad_fork_cleanup_semundo:
  1199. exit_sem(p);
  1200. bad_fork_cleanup_audit:
  1201. audit_free(p);
  1202. bad_fork_cleanup_policy:
  1203. perf_event_free_task(p);
  1204. #ifdef CONFIG_NUMA
  1205. mpol_put(p->mempolicy);
  1206. bad_fork_cleanup_cgroup:
  1207. #endif
  1208. if (clone_flags & CLONE_THREAD)
  1209. threadgroup_fork_read_unlock(current);
  1210. cgroup_exit(p, cgroup_callbacks_done);
  1211. delayacct_tsk_free(p);
  1212. module_put(task_thread_info(p)->exec_domain->module);
  1213. bad_fork_cleanup_count:
  1214. atomic_dec(&p->cred->user->processes);
  1215. exit_creds(p);
  1216. bad_fork_free:
  1217. free_task(p);
  1218. fork_out:
  1219. return ERR_PTR(retval);
  1220. }
  1221. noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
  1222. {
  1223. memset(regs, 0, sizeof(struct pt_regs));
  1224. return regs;
  1225. }
  1226. static inline void init_idle_pids(struct pid_link *links)
  1227. {
  1228. enum pid_type type;
  1229. for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
  1230. INIT_HLIST_NODE(&links[type].node); /* not really needed */
  1231. links[type].pid = &init_struct_pid;
  1232. }
  1233. }
  1234. struct task_struct * __cpuinit fork_idle(int cpu)
  1235. {
  1236. struct task_struct *task;
  1237. struct pt_regs regs;
  1238. task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
  1239. &init_struct_pid, 0);
  1240. if (!IS_ERR(task)) {
  1241. init_idle_pids(task->pids);
  1242. init_idle(task, cpu);
  1243. }
  1244. return task;
  1245. }
  1246. /*
  1247. * Ok, this is the main fork-routine.
  1248. *
  1249. * It copies the process, and if successful kick-starts
  1250. * it and waits for it to finish using the VM if required.
  1251. */
  1252. long do_fork(unsigned long clone_flags,
  1253. unsigned long stack_start,
  1254. struct pt_regs *regs,
  1255. unsigned long stack_size,
  1256. int __user *parent_tidptr,
  1257. int __user *child_tidptr)
  1258. {
  1259. struct task_struct *p;
  1260. int trace = 0;
  1261. long nr;
  1262. /*
  1263. * Do some preliminary argument and permissions checking before we
  1264. * actually start allocating stuff
  1265. */
  1266. if (clone_flags & CLONE_NEWUSER) {
  1267. if (clone_flags & CLONE_THREAD)
  1268. return -EINVAL;
  1269. /* hopefully this check will go away when userns support is
  1270. * complete
  1271. */
  1272. if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
  1273. !capable(CAP_SETGID))
  1274. return -EPERM;
  1275. }
  1276. /*
  1277. * Determine whether and which event to report to ptracer. When
  1278. * called from kernel_thread or CLONE_UNTRACED is explicitly
  1279. * requested, no event is reported; otherwise, report if the event
  1280. * for the type of forking is enabled.
  1281. */
  1282. if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
  1283. if (clone_flags & CLONE_VFORK)
  1284. trace = PTRACE_EVENT_VFORK;
  1285. else if ((clone_flags & CSIGNAL) != SIGCHLD)
  1286. trace = PTRACE_EVENT_CLONE;
  1287. else
  1288. trace = PTRACE_EVENT_FORK;
  1289. if (likely(!ptrace_event_enabled(current, trace)))
  1290. trace = 0;
  1291. }
  1292. p = copy_process(clone_flags, stack_start, regs, stack_size,
  1293. child_tidptr, NULL, trace);
  1294. /*
  1295. * Do this prior waking up the new thread - the thread pointer
  1296. * might get invalid after that point, if the thread exits quickly.
  1297. */
  1298. if (!IS_ERR(p)) {
  1299. struct completion vfork;
  1300. trace_sched_process_fork(current, p);
  1301. nr = task_pid_vnr(p);
  1302. if (clone_flags & CLONE_PARENT_SETTID)
  1303. put_user(nr, parent_tidptr);
  1304. if (clone_flags & CLONE_VFORK) {
  1305. p->vfork_done = &vfork;
  1306. init_completion(&vfork);
  1307. }
  1308. audit_finish_fork(p);
  1309. /*
  1310. * We set PF_STARTING at creation in case tracing wants to
  1311. * use this to distinguish a fully live task from one that
  1312. * hasn't finished SIGSTOP raising yet. Now we clear it
  1313. * and set the child going.
  1314. */
  1315. p->flags &= ~PF_STARTING;
  1316. wake_up_new_task(p);
  1317. /* forking complete and child started to run, tell ptracer */
  1318. if (unlikely(trace))
  1319. ptrace_event(trace, nr);
  1320. if (clone_flags & CLONE_VFORK) {
  1321. freezer_do_not_count();
  1322. wait_for_completion(&vfork);
  1323. freezer_count();
  1324. ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
  1325. }
  1326. } else {
  1327. nr = PTR_ERR(p);
  1328. }
  1329. return nr;
  1330. }
  1331. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1332. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1333. #endif
  1334. static void sighand_ctor(void *data)
  1335. {
  1336. struct sighand_struct *sighand = data;
  1337. spin_lock_init(&sighand->siglock);
  1338. init_waitqueue_head(&sighand->signalfd_wqh);
  1339. }
  1340. void __init proc_caches_init(void)
  1341. {
  1342. sighand_cachep = kmem_cache_create("sighand_cache",
  1343. sizeof(struct sighand_struct), 0,
  1344. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
  1345. SLAB_NOTRACK, sighand_ctor);
  1346. signal_cachep = kmem_cache_create("signal_cache",
  1347. sizeof(struct signal_struct), 0,
  1348. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1349. files_cachep = kmem_cache_create("files_cache",
  1350. sizeof(struct files_struct), 0,
  1351. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1352. fs_cachep = kmem_cache_create("fs_cache",
  1353. sizeof(struct fs_struct), 0,
  1354. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1355. /*
  1356. * FIXME! The "sizeof(struct mm_struct)" currently includes the
  1357. * whole struct cpumask for the OFFSTACK case. We could change
  1358. * this to *only* allocate as much of it as required by the
  1359. * maximum number of CPU's we can ever have. The cpumask_allocation
  1360. * is at the end of the structure, exactly for that reason.
  1361. */
  1362. mm_cachep = kmem_cache_create("mm_struct",
  1363. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1364. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1365. vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
  1366. mmap_init();
  1367. nsproxy_cache_init();
  1368. }
  1369. /*
  1370. * Check constraints on flags passed to the unshare system call.
  1371. */
  1372. static int check_unshare_flags(unsigned long unshare_flags)
  1373. {
  1374. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1375. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1376. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
  1377. return -EINVAL;
  1378. /*
  1379. * Not implemented, but pretend it works if there is nothing to
  1380. * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
  1381. * needs to unshare vm.
  1382. */
  1383. if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
  1384. /* FIXME: get_task_mm() increments ->mm_users */
  1385. if (atomic_read(&current->mm->mm_users) > 1)
  1386. return -EINVAL;
  1387. }
  1388. return 0;
  1389. }
  1390. /*
  1391. * Unshare the filesystem structure if it is being shared
  1392. */
  1393. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1394. {
  1395. struct fs_struct *fs = current->fs;
  1396. if (!(unshare_flags & CLONE_FS) || !fs)
  1397. return 0;
  1398. /* don't need lock here; in the worst case we'll do useless copy */
  1399. if (fs->users == 1)
  1400. return 0;
  1401. *new_fsp = copy_fs_struct(fs);
  1402. if (!*new_fsp)
  1403. return -ENOMEM;
  1404. return 0;
  1405. }
  1406. /*
  1407. * Unshare file descriptor table if it is being shared
  1408. */
  1409. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1410. {
  1411. struct files_struct *fd = current->files;
  1412. int error = 0;
  1413. if ((unshare_flags & CLONE_FILES) &&
  1414. (fd && atomic_read(&fd->count) > 1)) {
  1415. *new_fdp = dup_fd(fd, &error);
  1416. if (!*new_fdp)
  1417. return error;
  1418. }
  1419. return 0;
  1420. }
  1421. /*
  1422. * unshare allows a process to 'unshare' part of the process
  1423. * context which was originally shared using clone. copy_*
  1424. * functions used by do_fork() cannot be used here directly
  1425. * because they modify an inactive task_struct that is being
  1426. * constructed. Here we are modifying the current, active,
  1427. * task_struct.
  1428. */
  1429. SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
  1430. {
  1431. struct fs_struct *fs, *new_fs = NULL;
  1432. struct files_struct *fd, *new_fd = NULL;
  1433. struct nsproxy *new_nsproxy = NULL;
  1434. int do_sysvsem = 0;
  1435. int err;
  1436. err = check_unshare_flags(unshare_flags);
  1437. if (err)
  1438. goto bad_unshare_out;
  1439. /*
  1440. * If unsharing namespace, must also unshare filesystem information.
  1441. */
  1442. if (unshare_flags & CLONE_NEWNS)
  1443. unshare_flags |= CLONE_FS;
  1444. /*
  1445. * CLONE_NEWIPC must also detach from the undolist: after switching
  1446. * to a new ipc namespace, the semaphore arrays from the old
  1447. * namespace are unreachable.
  1448. */
  1449. if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
  1450. do_sysvsem = 1;
  1451. if ((err = unshare_fs(unshare_flags, &new_fs)))
  1452. goto bad_unshare_out;
  1453. if ((err = unshare_fd(unshare_flags, &new_fd)))
  1454. goto bad_unshare_cleanup_fs;
  1455. if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
  1456. new_fs)))
  1457. goto bad_unshare_cleanup_fd;
  1458. if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
  1459. if (do_sysvsem) {
  1460. /*
  1461. * CLONE_SYSVSEM is equivalent to sys_exit().
  1462. */
  1463. exit_sem(current);
  1464. }
  1465. if (new_nsproxy) {
  1466. switch_task_namespaces(current, new_nsproxy);
  1467. new_nsproxy = NULL;
  1468. }
  1469. task_lock(current);
  1470. if (new_fs) {
  1471. fs = current->fs;
  1472. spin_lock(&fs->lock);
  1473. current->fs = new_fs;
  1474. if (--fs->users)
  1475. new_fs = NULL;
  1476. else
  1477. new_fs = fs;
  1478. spin_unlock(&fs->lock);
  1479. }
  1480. if (new_fd) {
  1481. fd = current->files;
  1482. current->files = new_fd;
  1483. new_fd = fd;
  1484. }
  1485. task_unlock(current);
  1486. }
  1487. if (new_nsproxy)
  1488. put_nsproxy(new_nsproxy);
  1489. bad_unshare_cleanup_fd:
  1490. if (new_fd)
  1491. put_files_struct(new_fd);
  1492. bad_unshare_cleanup_fs:
  1493. if (new_fs)
  1494. free_fs_struct(new_fs);
  1495. bad_unshare_out:
  1496. return err;
  1497. }
  1498. /*
  1499. * Helper to unshare the files of the current task.
  1500. * We don't want to expose copy_files internals to
  1501. * the exec layer of the kernel.
  1502. */
  1503. int unshare_files(struct files_struct **displaced)
  1504. {
  1505. struct task_struct *task = current;
  1506. struct files_struct *copy = NULL;
  1507. int error;
  1508. error = unshare_fd(CLONE_FILES, &copy);
  1509. if (error || !copy) {
  1510. *displaced = NULL;
  1511. return error;
  1512. }
  1513. *displaced = task->files;
  1514. task_lock(task);
  1515. task->files = copy;
  1516. task_unlock(task);
  1517. return 0;
  1518. }