disk-io.c 82 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <asm/unaligned.h>
  32. #include "compat.h"
  33. #include "ctree.h"
  34. #include "disk-io.h"
  35. #include "transaction.h"
  36. #include "btrfs_inode.h"
  37. #include "volumes.h"
  38. #include "print-tree.h"
  39. #include "async-thread.h"
  40. #include "locking.h"
  41. #include "tree-log.h"
  42. #include "free-space-cache.h"
  43. #include "inode-map.h"
  44. static struct extent_io_ops btree_extent_io_ops;
  45. static void end_workqueue_fn(struct btrfs_work *work);
  46. static void free_fs_root(struct btrfs_root *root);
  47. static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  48. int read_only);
  49. static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
  50. static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
  51. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  52. struct btrfs_root *root);
  53. static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
  54. static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  55. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  56. struct extent_io_tree *dirty_pages,
  57. int mark);
  58. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  59. struct extent_io_tree *pinned_extents);
  60. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  61. /*
  62. * end_io_wq structs are used to do processing in task context when an IO is
  63. * complete. This is used during reads to verify checksums, and it is used
  64. * by writes to insert metadata for new file extents after IO is complete.
  65. */
  66. struct end_io_wq {
  67. struct bio *bio;
  68. bio_end_io_t *end_io;
  69. void *private;
  70. struct btrfs_fs_info *info;
  71. int error;
  72. int metadata;
  73. struct list_head list;
  74. struct btrfs_work work;
  75. };
  76. /*
  77. * async submit bios are used to offload expensive checksumming
  78. * onto the worker threads. They checksum file and metadata bios
  79. * just before they are sent down the IO stack.
  80. */
  81. struct async_submit_bio {
  82. struct inode *inode;
  83. struct bio *bio;
  84. struct list_head list;
  85. extent_submit_bio_hook_t *submit_bio_start;
  86. extent_submit_bio_hook_t *submit_bio_done;
  87. int rw;
  88. int mirror_num;
  89. unsigned long bio_flags;
  90. /*
  91. * bio_offset is optional, can be used if the pages in the bio
  92. * can't tell us where in the file the bio should go
  93. */
  94. u64 bio_offset;
  95. struct btrfs_work work;
  96. };
  97. /* These are used to set the lockdep class on the extent buffer locks.
  98. * The class is set by the readpage_end_io_hook after the buffer has
  99. * passed csum validation but before the pages are unlocked.
  100. *
  101. * The lockdep class is also set by btrfs_init_new_buffer on freshly
  102. * allocated blocks.
  103. *
  104. * The class is based on the level in the tree block, which allows lockdep
  105. * to know that lower nodes nest inside the locks of higher nodes.
  106. *
  107. * We also add a check to make sure the highest level of the tree is
  108. * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
  109. * code needs update as well.
  110. */
  111. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  112. # if BTRFS_MAX_LEVEL != 8
  113. # error
  114. # endif
  115. static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
  116. static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
  117. /* leaf */
  118. "btrfs-extent-00",
  119. "btrfs-extent-01",
  120. "btrfs-extent-02",
  121. "btrfs-extent-03",
  122. "btrfs-extent-04",
  123. "btrfs-extent-05",
  124. "btrfs-extent-06",
  125. "btrfs-extent-07",
  126. /* highest possible level */
  127. "btrfs-extent-08",
  128. };
  129. #endif
  130. /*
  131. * extents on the btree inode are pretty simple, there's one extent
  132. * that covers the entire device
  133. */
  134. static struct extent_map *btree_get_extent(struct inode *inode,
  135. struct page *page, size_t page_offset, u64 start, u64 len,
  136. int create)
  137. {
  138. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  139. struct extent_map *em;
  140. int ret;
  141. read_lock(&em_tree->lock);
  142. em = lookup_extent_mapping(em_tree, start, len);
  143. if (em) {
  144. em->bdev =
  145. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  146. read_unlock(&em_tree->lock);
  147. goto out;
  148. }
  149. read_unlock(&em_tree->lock);
  150. em = alloc_extent_map(GFP_NOFS);
  151. if (!em) {
  152. em = ERR_PTR(-ENOMEM);
  153. goto out;
  154. }
  155. em->start = 0;
  156. em->len = (u64)-1;
  157. em->block_len = (u64)-1;
  158. em->block_start = 0;
  159. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  160. write_lock(&em_tree->lock);
  161. ret = add_extent_mapping(em_tree, em);
  162. if (ret == -EEXIST) {
  163. u64 failed_start = em->start;
  164. u64 failed_len = em->len;
  165. free_extent_map(em);
  166. em = lookup_extent_mapping(em_tree, start, len);
  167. if (em) {
  168. ret = 0;
  169. } else {
  170. em = lookup_extent_mapping(em_tree, failed_start,
  171. failed_len);
  172. ret = -EIO;
  173. }
  174. } else if (ret) {
  175. free_extent_map(em);
  176. em = NULL;
  177. }
  178. write_unlock(&em_tree->lock);
  179. if (ret)
  180. em = ERR_PTR(ret);
  181. out:
  182. return em;
  183. }
  184. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  185. {
  186. return crc32c(seed, data, len);
  187. }
  188. void btrfs_csum_final(u32 crc, char *result)
  189. {
  190. put_unaligned_le32(~crc, result);
  191. }
  192. /*
  193. * compute the csum for a btree block, and either verify it or write it
  194. * into the csum field of the block.
  195. */
  196. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  197. int verify)
  198. {
  199. u16 csum_size =
  200. btrfs_super_csum_size(&root->fs_info->super_copy);
  201. char *result = NULL;
  202. unsigned long len;
  203. unsigned long cur_len;
  204. unsigned long offset = BTRFS_CSUM_SIZE;
  205. char *map_token = NULL;
  206. char *kaddr;
  207. unsigned long map_start;
  208. unsigned long map_len;
  209. int err;
  210. u32 crc = ~(u32)0;
  211. unsigned long inline_result;
  212. len = buf->len - offset;
  213. while (len > 0) {
  214. err = map_private_extent_buffer(buf, offset, 32,
  215. &map_token, &kaddr,
  216. &map_start, &map_len, KM_USER0);
  217. if (err)
  218. return 1;
  219. cur_len = min(len, map_len - (offset - map_start));
  220. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  221. crc, cur_len);
  222. len -= cur_len;
  223. offset += cur_len;
  224. unmap_extent_buffer(buf, map_token, KM_USER0);
  225. }
  226. if (csum_size > sizeof(inline_result)) {
  227. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  228. if (!result)
  229. return 1;
  230. } else {
  231. result = (char *)&inline_result;
  232. }
  233. btrfs_csum_final(crc, result);
  234. if (verify) {
  235. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  236. u32 val;
  237. u32 found = 0;
  238. memcpy(&found, result, csum_size);
  239. read_extent_buffer(buf, &val, 0, csum_size);
  240. if (printk_ratelimit()) {
  241. printk(KERN_INFO "btrfs: %s checksum verify "
  242. "failed on %llu wanted %X found %X "
  243. "level %d\n",
  244. root->fs_info->sb->s_id,
  245. (unsigned long long)buf->start, val, found,
  246. btrfs_header_level(buf));
  247. }
  248. if (result != (char *)&inline_result)
  249. kfree(result);
  250. return 1;
  251. }
  252. } else {
  253. write_extent_buffer(buf, result, 0, csum_size);
  254. }
  255. if (result != (char *)&inline_result)
  256. kfree(result);
  257. return 0;
  258. }
  259. /*
  260. * we can't consider a given block up to date unless the transid of the
  261. * block matches the transid in the parent node's pointer. This is how we
  262. * detect blocks that either didn't get written at all or got written
  263. * in the wrong place.
  264. */
  265. static int verify_parent_transid(struct extent_io_tree *io_tree,
  266. struct extent_buffer *eb, u64 parent_transid)
  267. {
  268. struct extent_state *cached_state = NULL;
  269. int ret;
  270. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  271. return 0;
  272. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  273. 0, &cached_state, GFP_NOFS);
  274. if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
  275. btrfs_header_generation(eb) == parent_transid) {
  276. ret = 0;
  277. goto out;
  278. }
  279. if (printk_ratelimit()) {
  280. printk("parent transid verify failed on %llu wanted %llu "
  281. "found %llu\n",
  282. (unsigned long long)eb->start,
  283. (unsigned long long)parent_transid,
  284. (unsigned long long)btrfs_header_generation(eb));
  285. }
  286. ret = 1;
  287. clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
  288. out:
  289. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  290. &cached_state, GFP_NOFS);
  291. return ret;
  292. }
  293. /*
  294. * helper to read a given tree block, doing retries as required when
  295. * the checksums don't match and we have alternate mirrors to try.
  296. */
  297. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  298. struct extent_buffer *eb,
  299. u64 start, u64 parent_transid)
  300. {
  301. struct extent_io_tree *io_tree;
  302. int ret;
  303. int num_copies = 0;
  304. int mirror_num = 0;
  305. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  306. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  307. while (1) {
  308. ret = read_extent_buffer_pages(io_tree, eb, start, 1,
  309. btree_get_extent, mirror_num);
  310. if (!ret &&
  311. !verify_parent_transid(io_tree, eb, parent_transid))
  312. return ret;
  313. /*
  314. * This buffer's crc is fine, but its contents are corrupted, so
  315. * there is no reason to read the other copies, they won't be
  316. * any less wrong.
  317. */
  318. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  319. return ret;
  320. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  321. eb->start, eb->len);
  322. if (num_copies == 1)
  323. return ret;
  324. mirror_num++;
  325. if (mirror_num > num_copies)
  326. return ret;
  327. }
  328. return -EIO;
  329. }
  330. /*
  331. * checksum a dirty tree block before IO. This has extra checks to make sure
  332. * we only fill in the checksum field in the first page of a multi-page block
  333. */
  334. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  335. {
  336. struct extent_io_tree *tree;
  337. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  338. u64 found_start;
  339. unsigned long len;
  340. struct extent_buffer *eb;
  341. int ret;
  342. tree = &BTRFS_I(page->mapping->host)->io_tree;
  343. if (page->private == EXTENT_PAGE_PRIVATE) {
  344. WARN_ON(1);
  345. goto out;
  346. }
  347. if (!page->private) {
  348. WARN_ON(1);
  349. goto out;
  350. }
  351. len = page->private >> 2;
  352. WARN_ON(len == 0);
  353. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  354. if (eb == NULL) {
  355. WARN_ON(1);
  356. goto out;
  357. }
  358. ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
  359. btrfs_header_generation(eb));
  360. BUG_ON(ret);
  361. WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
  362. found_start = btrfs_header_bytenr(eb);
  363. if (found_start != start) {
  364. WARN_ON(1);
  365. goto err;
  366. }
  367. if (eb->first_page != page) {
  368. WARN_ON(1);
  369. goto err;
  370. }
  371. if (!PageUptodate(page)) {
  372. WARN_ON(1);
  373. goto err;
  374. }
  375. csum_tree_block(root, eb, 0);
  376. err:
  377. free_extent_buffer(eb);
  378. out:
  379. return 0;
  380. }
  381. static int check_tree_block_fsid(struct btrfs_root *root,
  382. struct extent_buffer *eb)
  383. {
  384. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  385. u8 fsid[BTRFS_UUID_SIZE];
  386. int ret = 1;
  387. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  388. BTRFS_FSID_SIZE);
  389. while (fs_devices) {
  390. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  391. ret = 0;
  392. break;
  393. }
  394. fs_devices = fs_devices->seed;
  395. }
  396. return ret;
  397. }
  398. #define CORRUPT(reason, eb, root, slot) \
  399. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  400. "root=%llu, slot=%d\n", reason, \
  401. (unsigned long long)btrfs_header_bytenr(eb), \
  402. (unsigned long long)root->objectid, slot)
  403. static noinline int check_leaf(struct btrfs_root *root,
  404. struct extent_buffer *leaf)
  405. {
  406. struct btrfs_key key;
  407. struct btrfs_key leaf_key;
  408. u32 nritems = btrfs_header_nritems(leaf);
  409. int slot;
  410. if (nritems == 0)
  411. return 0;
  412. /* Check the 0 item */
  413. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  414. BTRFS_LEAF_DATA_SIZE(root)) {
  415. CORRUPT("invalid item offset size pair", leaf, root, 0);
  416. return -EIO;
  417. }
  418. /*
  419. * Check to make sure each items keys are in the correct order and their
  420. * offsets make sense. We only have to loop through nritems-1 because
  421. * we check the current slot against the next slot, which verifies the
  422. * next slot's offset+size makes sense and that the current's slot
  423. * offset is correct.
  424. */
  425. for (slot = 0; slot < nritems - 1; slot++) {
  426. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  427. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  428. /* Make sure the keys are in the right order */
  429. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  430. CORRUPT("bad key order", leaf, root, slot);
  431. return -EIO;
  432. }
  433. /*
  434. * Make sure the offset and ends are right, remember that the
  435. * item data starts at the end of the leaf and grows towards the
  436. * front.
  437. */
  438. if (btrfs_item_offset_nr(leaf, slot) !=
  439. btrfs_item_end_nr(leaf, slot + 1)) {
  440. CORRUPT("slot offset bad", leaf, root, slot);
  441. return -EIO;
  442. }
  443. /*
  444. * Check to make sure that we don't point outside of the leaf,
  445. * just incase all the items are consistent to eachother, but
  446. * all point outside of the leaf.
  447. */
  448. if (btrfs_item_end_nr(leaf, slot) >
  449. BTRFS_LEAF_DATA_SIZE(root)) {
  450. CORRUPT("slot end outside of leaf", leaf, root, slot);
  451. return -EIO;
  452. }
  453. }
  454. return 0;
  455. }
  456. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  457. void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
  458. {
  459. lockdep_set_class_and_name(&eb->lock,
  460. &btrfs_eb_class[level],
  461. btrfs_eb_name[level]);
  462. }
  463. #endif
  464. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  465. struct extent_state *state)
  466. {
  467. struct extent_io_tree *tree;
  468. u64 found_start;
  469. int found_level;
  470. unsigned long len;
  471. struct extent_buffer *eb;
  472. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  473. int ret = 0;
  474. tree = &BTRFS_I(page->mapping->host)->io_tree;
  475. if (page->private == EXTENT_PAGE_PRIVATE)
  476. goto out;
  477. if (!page->private)
  478. goto out;
  479. len = page->private >> 2;
  480. WARN_ON(len == 0);
  481. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  482. if (eb == NULL) {
  483. ret = -EIO;
  484. goto out;
  485. }
  486. found_start = btrfs_header_bytenr(eb);
  487. if (found_start != start) {
  488. if (printk_ratelimit()) {
  489. printk(KERN_INFO "btrfs bad tree block start "
  490. "%llu %llu\n",
  491. (unsigned long long)found_start,
  492. (unsigned long long)eb->start);
  493. }
  494. ret = -EIO;
  495. goto err;
  496. }
  497. if (eb->first_page != page) {
  498. printk(KERN_INFO "btrfs bad first page %lu %lu\n",
  499. eb->first_page->index, page->index);
  500. WARN_ON(1);
  501. ret = -EIO;
  502. goto err;
  503. }
  504. if (check_tree_block_fsid(root, eb)) {
  505. if (printk_ratelimit()) {
  506. printk(KERN_INFO "btrfs bad fsid on block %llu\n",
  507. (unsigned long long)eb->start);
  508. }
  509. ret = -EIO;
  510. goto err;
  511. }
  512. found_level = btrfs_header_level(eb);
  513. btrfs_set_buffer_lockdep_class(eb, found_level);
  514. ret = csum_tree_block(root, eb, 1);
  515. if (ret) {
  516. ret = -EIO;
  517. goto err;
  518. }
  519. /*
  520. * If this is a leaf block and it is corrupt, set the corrupt bit so
  521. * that we don't try and read the other copies of this block, just
  522. * return -EIO.
  523. */
  524. if (found_level == 0 && check_leaf(root, eb)) {
  525. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  526. ret = -EIO;
  527. }
  528. end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
  529. end = eb->start + end - 1;
  530. err:
  531. free_extent_buffer(eb);
  532. out:
  533. return ret;
  534. }
  535. static void end_workqueue_bio(struct bio *bio, int err)
  536. {
  537. struct end_io_wq *end_io_wq = bio->bi_private;
  538. struct btrfs_fs_info *fs_info;
  539. fs_info = end_io_wq->info;
  540. end_io_wq->error = err;
  541. end_io_wq->work.func = end_workqueue_fn;
  542. end_io_wq->work.flags = 0;
  543. if (bio->bi_rw & REQ_WRITE) {
  544. if (end_io_wq->metadata == 1)
  545. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  546. &end_io_wq->work);
  547. else if (end_io_wq->metadata == 2)
  548. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  549. &end_io_wq->work);
  550. else
  551. btrfs_queue_worker(&fs_info->endio_write_workers,
  552. &end_io_wq->work);
  553. } else {
  554. if (end_io_wq->metadata)
  555. btrfs_queue_worker(&fs_info->endio_meta_workers,
  556. &end_io_wq->work);
  557. else
  558. btrfs_queue_worker(&fs_info->endio_workers,
  559. &end_io_wq->work);
  560. }
  561. }
  562. /*
  563. * For the metadata arg you want
  564. *
  565. * 0 - if data
  566. * 1 - if normal metadta
  567. * 2 - if writing to the free space cache area
  568. */
  569. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  570. int metadata)
  571. {
  572. struct end_io_wq *end_io_wq;
  573. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  574. if (!end_io_wq)
  575. return -ENOMEM;
  576. end_io_wq->private = bio->bi_private;
  577. end_io_wq->end_io = bio->bi_end_io;
  578. end_io_wq->info = info;
  579. end_io_wq->error = 0;
  580. end_io_wq->bio = bio;
  581. end_io_wq->metadata = metadata;
  582. bio->bi_private = end_io_wq;
  583. bio->bi_end_io = end_workqueue_bio;
  584. return 0;
  585. }
  586. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  587. {
  588. unsigned long limit = min_t(unsigned long,
  589. info->workers.max_workers,
  590. info->fs_devices->open_devices);
  591. return 256 * limit;
  592. }
  593. int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
  594. {
  595. return atomic_read(&info->nr_async_bios) >
  596. btrfs_async_submit_limit(info);
  597. }
  598. static void run_one_async_start(struct btrfs_work *work)
  599. {
  600. struct async_submit_bio *async;
  601. async = container_of(work, struct async_submit_bio, work);
  602. async->submit_bio_start(async->inode, async->rw, async->bio,
  603. async->mirror_num, async->bio_flags,
  604. async->bio_offset);
  605. }
  606. static void run_one_async_done(struct btrfs_work *work)
  607. {
  608. struct btrfs_fs_info *fs_info;
  609. struct async_submit_bio *async;
  610. int limit;
  611. async = container_of(work, struct async_submit_bio, work);
  612. fs_info = BTRFS_I(async->inode)->root->fs_info;
  613. limit = btrfs_async_submit_limit(fs_info);
  614. limit = limit * 2 / 3;
  615. atomic_dec(&fs_info->nr_async_submits);
  616. if (atomic_read(&fs_info->nr_async_submits) < limit &&
  617. waitqueue_active(&fs_info->async_submit_wait))
  618. wake_up(&fs_info->async_submit_wait);
  619. async->submit_bio_done(async->inode, async->rw, async->bio,
  620. async->mirror_num, async->bio_flags,
  621. async->bio_offset);
  622. }
  623. static void run_one_async_free(struct btrfs_work *work)
  624. {
  625. struct async_submit_bio *async;
  626. async = container_of(work, struct async_submit_bio, work);
  627. kfree(async);
  628. }
  629. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  630. int rw, struct bio *bio, int mirror_num,
  631. unsigned long bio_flags,
  632. u64 bio_offset,
  633. extent_submit_bio_hook_t *submit_bio_start,
  634. extent_submit_bio_hook_t *submit_bio_done)
  635. {
  636. struct async_submit_bio *async;
  637. async = kmalloc(sizeof(*async), GFP_NOFS);
  638. if (!async)
  639. return -ENOMEM;
  640. async->inode = inode;
  641. async->rw = rw;
  642. async->bio = bio;
  643. async->mirror_num = mirror_num;
  644. async->submit_bio_start = submit_bio_start;
  645. async->submit_bio_done = submit_bio_done;
  646. async->work.func = run_one_async_start;
  647. async->work.ordered_func = run_one_async_done;
  648. async->work.ordered_free = run_one_async_free;
  649. async->work.flags = 0;
  650. async->bio_flags = bio_flags;
  651. async->bio_offset = bio_offset;
  652. atomic_inc(&fs_info->nr_async_submits);
  653. if (rw & REQ_SYNC)
  654. btrfs_set_work_high_prio(&async->work);
  655. btrfs_queue_worker(&fs_info->workers, &async->work);
  656. while (atomic_read(&fs_info->async_submit_draining) &&
  657. atomic_read(&fs_info->nr_async_submits)) {
  658. wait_event(fs_info->async_submit_wait,
  659. (atomic_read(&fs_info->nr_async_submits) == 0));
  660. }
  661. return 0;
  662. }
  663. static int btree_csum_one_bio(struct bio *bio)
  664. {
  665. struct bio_vec *bvec = bio->bi_io_vec;
  666. int bio_index = 0;
  667. struct btrfs_root *root;
  668. WARN_ON(bio->bi_vcnt <= 0);
  669. while (bio_index < bio->bi_vcnt) {
  670. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  671. csum_dirty_buffer(root, bvec->bv_page);
  672. bio_index++;
  673. bvec++;
  674. }
  675. return 0;
  676. }
  677. static int __btree_submit_bio_start(struct inode *inode, int rw,
  678. struct bio *bio, int mirror_num,
  679. unsigned long bio_flags,
  680. u64 bio_offset)
  681. {
  682. /*
  683. * when we're called for a write, we're already in the async
  684. * submission context. Just jump into btrfs_map_bio
  685. */
  686. btree_csum_one_bio(bio);
  687. return 0;
  688. }
  689. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  690. int mirror_num, unsigned long bio_flags,
  691. u64 bio_offset)
  692. {
  693. /*
  694. * when we're called for a write, we're already in the async
  695. * submission context. Just jump into btrfs_map_bio
  696. */
  697. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  698. }
  699. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  700. int mirror_num, unsigned long bio_flags,
  701. u64 bio_offset)
  702. {
  703. int ret;
  704. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  705. bio, 1);
  706. BUG_ON(ret);
  707. if (!(rw & REQ_WRITE)) {
  708. /*
  709. * called for a read, do the setup so that checksum validation
  710. * can happen in the async kernel threads
  711. */
  712. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  713. mirror_num, 0);
  714. }
  715. /*
  716. * kthread helpers are used to submit writes so that checksumming
  717. * can happen in parallel across all CPUs
  718. */
  719. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  720. inode, rw, bio, mirror_num, 0,
  721. bio_offset,
  722. __btree_submit_bio_start,
  723. __btree_submit_bio_done);
  724. }
  725. #ifdef CONFIG_MIGRATION
  726. static int btree_migratepage(struct address_space *mapping,
  727. struct page *newpage, struct page *page)
  728. {
  729. /*
  730. * we can't safely write a btree page from here,
  731. * we haven't done the locking hook
  732. */
  733. if (PageDirty(page))
  734. return -EAGAIN;
  735. /*
  736. * Buffers may be managed in a filesystem specific way.
  737. * We must have no buffers or drop them.
  738. */
  739. if (page_has_private(page) &&
  740. !try_to_release_page(page, GFP_KERNEL))
  741. return -EAGAIN;
  742. return migrate_page(mapping, newpage, page);
  743. }
  744. #endif
  745. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  746. {
  747. struct extent_io_tree *tree;
  748. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  749. struct extent_buffer *eb;
  750. int was_dirty;
  751. tree = &BTRFS_I(page->mapping->host)->io_tree;
  752. if (!(current->flags & PF_MEMALLOC)) {
  753. return extent_write_full_page(tree, page,
  754. btree_get_extent, wbc);
  755. }
  756. redirty_page_for_writepage(wbc, page);
  757. eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
  758. WARN_ON(!eb);
  759. was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
  760. if (!was_dirty) {
  761. spin_lock(&root->fs_info->delalloc_lock);
  762. root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
  763. spin_unlock(&root->fs_info->delalloc_lock);
  764. }
  765. free_extent_buffer(eb);
  766. unlock_page(page);
  767. return 0;
  768. }
  769. static int btree_writepages(struct address_space *mapping,
  770. struct writeback_control *wbc)
  771. {
  772. struct extent_io_tree *tree;
  773. tree = &BTRFS_I(mapping->host)->io_tree;
  774. if (wbc->sync_mode == WB_SYNC_NONE) {
  775. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  776. u64 num_dirty;
  777. unsigned long thresh = 32 * 1024 * 1024;
  778. if (wbc->for_kupdate)
  779. return 0;
  780. /* this is a bit racy, but that's ok */
  781. num_dirty = root->fs_info->dirty_metadata_bytes;
  782. if (num_dirty < thresh)
  783. return 0;
  784. }
  785. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  786. }
  787. static int btree_readpage(struct file *file, struct page *page)
  788. {
  789. struct extent_io_tree *tree;
  790. tree = &BTRFS_I(page->mapping->host)->io_tree;
  791. return extent_read_full_page(tree, page, btree_get_extent);
  792. }
  793. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  794. {
  795. struct extent_io_tree *tree;
  796. struct extent_map_tree *map;
  797. int ret;
  798. if (PageWriteback(page) || PageDirty(page))
  799. return 0;
  800. tree = &BTRFS_I(page->mapping->host)->io_tree;
  801. map = &BTRFS_I(page->mapping->host)->extent_tree;
  802. ret = try_release_extent_state(map, tree, page, gfp_flags);
  803. if (!ret)
  804. return 0;
  805. ret = try_release_extent_buffer(tree, page);
  806. if (ret == 1) {
  807. ClearPagePrivate(page);
  808. set_page_private(page, 0);
  809. page_cache_release(page);
  810. }
  811. return ret;
  812. }
  813. static void btree_invalidatepage(struct page *page, unsigned long offset)
  814. {
  815. struct extent_io_tree *tree;
  816. tree = &BTRFS_I(page->mapping->host)->io_tree;
  817. extent_invalidatepage(tree, page, offset);
  818. btree_releasepage(page, GFP_NOFS);
  819. if (PagePrivate(page)) {
  820. printk(KERN_WARNING "btrfs warning page private not zero "
  821. "on page %llu\n", (unsigned long long)page_offset(page));
  822. ClearPagePrivate(page);
  823. set_page_private(page, 0);
  824. page_cache_release(page);
  825. }
  826. }
  827. static const struct address_space_operations btree_aops = {
  828. .readpage = btree_readpage,
  829. .writepage = btree_writepage,
  830. .writepages = btree_writepages,
  831. .releasepage = btree_releasepage,
  832. .invalidatepage = btree_invalidatepage,
  833. #ifdef CONFIG_MIGRATION
  834. .migratepage = btree_migratepage,
  835. #endif
  836. };
  837. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  838. u64 parent_transid)
  839. {
  840. struct extent_buffer *buf = NULL;
  841. struct inode *btree_inode = root->fs_info->btree_inode;
  842. int ret = 0;
  843. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  844. if (!buf)
  845. return 0;
  846. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  847. buf, 0, 0, btree_get_extent, 0);
  848. free_extent_buffer(buf);
  849. return ret;
  850. }
  851. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  852. u64 bytenr, u32 blocksize)
  853. {
  854. struct inode *btree_inode = root->fs_info->btree_inode;
  855. struct extent_buffer *eb;
  856. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  857. bytenr, blocksize, GFP_NOFS);
  858. return eb;
  859. }
  860. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  861. u64 bytenr, u32 blocksize)
  862. {
  863. struct inode *btree_inode = root->fs_info->btree_inode;
  864. struct extent_buffer *eb;
  865. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  866. bytenr, blocksize, NULL, GFP_NOFS);
  867. return eb;
  868. }
  869. int btrfs_write_tree_block(struct extent_buffer *buf)
  870. {
  871. return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
  872. buf->start + buf->len - 1);
  873. }
  874. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  875. {
  876. return filemap_fdatawait_range(buf->first_page->mapping,
  877. buf->start, buf->start + buf->len - 1);
  878. }
  879. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  880. u32 blocksize, u64 parent_transid)
  881. {
  882. struct extent_buffer *buf = NULL;
  883. int ret;
  884. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  885. if (!buf)
  886. return NULL;
  887. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  888. if (ret == 0)
  889. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  890. return buf;
  891. }
  892. int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  893. struct extent_buffer *buf)
  894. {
  895. struct inode *btree_inode = root->fs_info->btree_inode;
  896. if (btrfs_header_generation(buf) ==
  897. root->fs_info->running_transaction->transid) {
  898. btrfs_assert_tree_locked(buf);
  899. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  900. spin_lock(&root->fs_info->delalloc_lock);
  901. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  902. root->fs_info->dirty_metadata_bytes -= buf->len;
  903. else
  904. WARN_ON(1);
  905. spin_unlock(&root->fs_info->delalloc_lock);
  906. }
  907. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  908. btrfs_set_lock_blocking(buf);
  909. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  910. buf);
  911. }
  912. return 0;
  913. }
  914. static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  915. u32 stripesize, struct btrfs_root *root,
  916. struct btrfs_fs_info *fs_info,
  917. u64 objectid)
  918. {
  919. root->node = NULL;
  920. root->commit_root = NULL;
  921. root->sectorsize = sectorsize;
  922. root->nodesize = nodesize;
  923. root->leafsize = leafsize;
  924. root->stripesize = stripesize;
  925. root->ref_cows = 0;
  926. root->track_dirty = 0;
  927. root->in_radix = 0;
  928. root->orphan_item_inserted = 0;
  929. root->orphan_cleanup_state = 0;
  930. root->fs_info = fs_info;
  931. root->objectid = objectid;
  932. root->last_trans = 0;
  933. root->highest_objectid = 0;
  934. root->name = NULL;
  935. root->in_sysfs = 0;
  936. root->inode_tree = RB_ROOT;
  937. root->block_rsv = NULL;
  938. root->orphan_block_rsv = NULL;
  939. INIT_LIST_HEAD(&root->dirty_list);
  940. INIT_LIST_HEAD(&root->orphan_list);
  941. INIT_LIST_HEAD(&root->root_list);
  942. spin_lock_init(&root->node_lock);
  943. spin_lock_init(&root->orphan_lock);
  944. spin_lock_init(&root->inode_lock);
  945. spin_lock_init(&root->accounting_lock);
  946. mutex_init(&root->objectid_mutex);
  947. mutex_init(&root->log_mutex);
  948. init_waitqueue_head(&root->log_writer_wait);
  949. init_waitqueue_head(&root->log_commit_wait[0]);
  950. init_waitqueue_head(&root->log_commit_wait[1]);
  951. atomic_set(&root->log_commit[0], 0);
  952. atomic_set(&root->log_commit[1], 0);
  953. atomic_set(&root->log_writers, 0);
  954. root->log_batch = 0;
  955. root->log_transid = 0;
  956. root->last_log_commit = 0;
  957. extent_io_tree_init(&root->dirty_log_pages,
  958. fs_info->btree_inode->i_mapping, GFP_NOFS);
  959. memset(&root->root_key, 0, sizeof(root->root_key));
  960. memset(&root->root_item, 0, sizeof(root->root_item));
  961. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  962. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  963. root->defrag_trans_start = fs_info->generation;
  964. init_completion(&root->kobj_unregister);
  965. root->defrag_running = 0;
  966. root->root_key.objectid = objectid;
  967. root->anon_super.s_root = NULL;
  968. root->anon_super.s_dev = 0;
  969. INIT_LIST_HEAD(&root->anon_super.s_list);
  970. INIT_LIST_HEAD(&root->anon_super.s_instances);
  971. init_rwsem(&root->anon_super.s_umount);
  972. return 0;
  973. }
  974. static int find_and_setup_root(struct btrfs_root *tree_root,
  975. struct btrfs_fs_info *fs_info,
  976. u64 objectid,
  977. struct btrfs_root *root)
  978. {
  979. int ret;
  980. u32 blocksize;
  981. u64 generation;
  982. __setup_root(tree_root->nodesize, tree_root->leafsize,
  983. tree_root->sectorsize, tree_root->stripesize,
  984. root, fs_info, objectid);
  985. ret = btrfs_find_last_root(tree_root, objectid,
  986. &root->root_item, &root->root_key);
  987. if (ret > 0)
  988. return -ENOENT;
  989. BUG_ON(ret);
  990. generation = btrfs_root_generation(&root->root_item);
  991. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  992. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  993. blocksize, generation);
  994. if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
  995. free_extent_buffer(root->node);
  996. return -EIO;
  997. }
  998. root->commit_root = btrfs_root_node(root);
  999. return 0;
  1000. }
  1001. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1002. struct btrfs_fs_info *fs_info)
  1003. {
  1004. struct btrfs_root *root;
  1005. struct btrfs_root *tree_root = fs_info->tree_root;
  1006. struct extent_buffer *leaf;
  1007. root = kzalloc(sizeof(*root), GFP_NOFS);
  1008. if (!root)
  1009. return ERR_PTR(-ENOMEM);
  1010. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1011. tree_root->sectorsize, tree_root->stripesize,
  1012. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1013. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1014. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1015. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1016. /*
  1017. * log trees do not get reference counted because they go away
  1018. * before a real commit is actually done. They do store pointers
  1019. * to file data extents, and those reference counts still get
  1020. * updated (along with back refs to the log tree).
  1021. */
  1022. root->ref_cows = 0;
  1023. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1024. BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
  1025. if (IS_ERR(leaf)) {
  1026. kfree(root);
  1027. return ERR_CAST(leaf);
  1028. }
  1029. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1030. btrfs_set_header_bytenr(leaf, leaf->start);
  1031. btrfs_set_header_generation(leaf, trans->transid);
  1032. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1033. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1034. root->node = leaf;
  1035. write_extent_buffer(root->node, root->fs_info->fsid,
  1036. (unsigned long)btrfs_header_fsid(root->node),
  1037. BTRFS_FSID_SIZE);
  1038. btrfs_mark_buffer_dirty(root->node);
  1039. btrfs_tree_unlock(root->node);
  1040. return root;
  1041. }
  1042. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1043. struct btrfs_fs_info *fs_info)
  1044. {
  1045. struct btrfs_root *log_root;
  1046. log_root = alloc_log_tree(trans, fs_info);
  1047. if (IS_ERR(log_root))
  1048. return PTR_ERR(log_root);
  1049. WARN_ON(fs_info->log_root_tree);
  1050. fs_info->log_root_tree = log_root;
  1051. return 0;
  1052. }
  1053. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1054. struct btrfs_root *root)
  1055. {
  1056. struct btrfs_root *log_root;
  1057. struct btrfs_inode_item *inode_item;
  1058. log_root = alloc_log_tree(trans, root->fs_info);
  1059. if (IS_ERR(log_root))
  1060. return PTR_ERR(log_root);
  1061. log_root->last_trans = trans->transid;
  1062. log_root->root_key.offset = root->root_key.objectid;
  1063. inode_item = &log_root->root_item.inode;
  1064. inode_item->generation = cpu_to_le64(1);
  1065. inode_item->size = cpu_to_le64(3);
  1066. inode_item->nlink = cpu_to_le32(1);
  1067. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1068. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1069. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1070. WARN_ON(root->log_root);
  1071. root->log_root = log_root;
  1072. root->log_transid = 0;
  1073. root->last_log_commit = 0;
  1074. return 0;
  1075. }
  1076. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1077. struct btrfs_key *location)
  1078. {
  1079. struct btrfs_root *root;
  1080. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1081. struct btrfs_path *path;
  1082. struct extent_buffer *l;
  1083. u64 generation;
  1084. u32 blocksize;
  1085. int ret = 0;
  1086. root = kzalloc(sizeof(*root), GFP_NOFS);
  1087. if (!root)
  1088. return ERR_PTR(-ENOMEM);
  1089. if (location->offset == (u64)-1) {
  1090. ret = find_and_setup_root(tree_root, fs_info,
  1091. location->objectid, root);
  1092. if (ret) {
  1093. kfree(root);
  1094. return ERR_PTR(ret);
  1095. }
  1096. goto out;
  1097. }
  1098. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1099. tree_root->sectorsize, tree_root->stripesize,
  1100. root, fs_info, location->objectid);
  1101. path = btrfs_alloc_path();
  1102. if (!path) {
  1103. kfree(root);
  1104. return ERR_PTR(-ENOMEM);
  1105. }
  1106. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1107. if (ret == 0) {
  1108. l = path->nodes[0];
  1109. read_extent_buffer(l, &root->root_item,
  1110. btrfs_item_ptr_offset(l, path->slots[0]),
  1111. sizeof(root->root_item));
  1112. memcpy(&root->root_key, location, sizeof(*location));
  1113. }
  1114. btrfs_free_path(path);
  1115. if (ret) {
  1116. kfree(root);
  1117. if (ret > 0)
  1118. ret = -ENOENT;
  1119. return ERR_PTR(ret);
  1120. }
  1121. generation = btrfs_root_generation(&root->root_item);
  1122. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1123. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1124. blocksize, generation);
  1125. root->commit_root = btrfs_root_node(root);
  1126. BUG_ON(!root->node);
  1127. out:
  1128. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1129. root->ref_cows = 1;
  1130. btrfs_check_and_init_root_item(&root->root_item);
  1131. }
  1132. return root;
  1133. }
  1134. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1135. u64 root_objectid)
  1136. {
  1137. struct btrfs_root *root;
  1138. if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
  1139. return fs_info->tree_root;
  1140. if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1141. return fs_info->extent_root;
  1142. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1143. (unsigned long)root_objectid);
  1144. return root;
  1145. }
  1146. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1147. struct btrfs_key *location)
  1148. {
  1149. struct btrfs_root *root;
  1150. int ret;
  1151. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1152. return fs_info->tree_root;
  1153. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1154. return fs_info->extent_root;
  1155. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1156. return fs_info->chunk_root;
  1157. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1158. return fs_info->dev_root;
  1159. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1160. return fs_info->csum_root;
  1161. again:
  1162. spin_lock(&fs_info->fs_roots_radix_lock);
  1163. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1164. (unsigned long)location->objectid);
  1165. spin_unlock(&fs_info->fs_roots_radix_lock);
  1166. if (root)
  1167. return root;
  1168. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1169. if (IS_ERR(root))
  1170. return root;
  1171. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1172. if (!root->free_ino_ctl)
  1173. goto fail;
  1174. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1175. GFP_NOFS);
  1176. if (!root->free_ino_pinned)
  1177. goto fail;
  1178. btrfs_init_free_ino_ctl(root);
  1179. mutex_init(&root->fs_commit_mutex);
  1180. spin_lock_init(&root->cache_lock);
  1181. init_waitqueue_head(&root->cache_wait);
  1182. set_anon_super(&root->anon_super, NULL);
  1183. if (btrfs_root_refs(&root->root_item) == 0) {
  1184. ret = -ENOENT;
  1185. goto fail;
  1186. }
  1187. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1188. if (ret < 0)
  1189. goto fail;
  1190. if (ret == 0)
  1191. root->orphan_item_inserted = 1;
  1192. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1193. if (ret)
  1194. goto fail;
  1195. spin_lock(&fs_info->fs_roots_radix_lock);
  1196. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1197. (unsigned long)root->root_key.objectid,
  1198. root);
  1199. if (ret == 0)
  1200. root->in_radix = 1;
  1201. spin_unlock(&fs_info->fs_roots_radix_lock);
  1202. radix_tree_preload_end();
  1203. if (ret) {
  1204. if (ret == -EEXIST) {
  1205. free_fs_root(root);
  1206. goto again;
  1207. }
  1208. goto fail;
  1209. }
  1210. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1211. root->root_key.objectid);
  1212. WARN_ON(ret);
  1213. return root;
  1214. fail:
  1215. free_fs_root(root);
  1216. return ERR_PTR(ret);
  1217. }
  1218. struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
  1219. struct btrfs_key *location,
  1220. const char *name, int namelen)
  1221. {
  1222. return btrfs_read_fs_root_no_name(fs_info, location);
  1223. #if 0
  1224. struct btrfs_root *root;
  1225. int ret;
  1226. root = btrfs_read_fs_root_no_name(fs_info, location);
  1227. if (!root)
  1228. return NULL;
  1229. if (root->in_sysfs)
  1230. return root;
  1231. ret = btrfs_set_root_name(root, name, namelen);
  1232. if (ret) {
  1233. free_extent_buffer(root->node);
  1234. kfree(root);
  1235. return ERR_PTR(ret);
  1236. }
  1237. ret = btrfs_sysfs_add_root(root);
  1238. if (ret) {
  1239. free_extent_buffer(root->node);
  1240. kfree(root->name);
  1241. kfree(root);
  1242. return ERR_PTR(ret);
  1243. }
  1244. root->in_sysfs = 1;
  1245. return root;
  1246. #endif
  1247. }
  1248. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1249. {
  1250. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1251. int ret = 0;
  1252. struct btrfs_device *device;
  1253. struct backing_dev_info *bdi;
  1254. list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
  1255. if (!device->bdev)
  1256. continue;
  1257. bdi = blk_get_backing_dev_info(device->bdev);
  1258. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1259. ret = 1;
  1260. break;
  1261. }
  1262. }
  1263. return ret;
  1264. }
  1265. /*
  1266. * If this fails, caller must call bdi_destroy() to get rid of the
  1267. * bdi again.
  1268. */
  1269. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1270. {
  1271. int err;
  1272. bdi->capabilities = BDI_CAP_MAP_COPY;
  1273. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1274. if (err)
  1275. return err;
  1276. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1277. bdi->congested_fn = btrfs_congested_fn;
  1278. bdi->congested_data = info;
  1279. return 0;
  1280. }
  1281. static int bio_ready_for_csum(struct bio *bio)
  1282. {
  1283. u64 length = 0;
  1284. u64 buf_len = 0;
  1285. u64 start = 0;
  1286. struct page *page;
  1287. struct extent_io_tree *io_tree = NULL;
  1288. struct bio_vec *bvec;
  1289. int i;
  1290. int ret;
  1291. bio_for_each_segment(bvec, bio, i) {
  1292. page = bvec->bv_page;
  1293. if (page->private == EXTENT_PAGE_PRIVATE) {
  1294. length += bvec->bv_len;
  1295. continue;
  1296. }
  1297. if (!page->private) {
  1298. length += bvec->bv_len;
  1299. continue;
  1300. }
  1301. length = bvec->bv_len;
  1302. buf_len = page->private >> 2;
  1303. start = page_offset(page) + bvec->bv_offset;
  1304. io_tree = &BTRFS_I(page->mapping->host)->io_tree;
  1305. }
  1306. /* are we fully contained in this bio? */
  1307. if (buf_len <= length)
  1308. return 1;
  1309. ret = extent_range_uptodate(io_tree, start + length,
  1310. start + buf_len - 1);
  1311. return ret;
  1312. }
  1313. /*
  1314. * called by the kthread helper functions to finally call the bio end_io
  1315. * functions. This is where read checksum verification actually happens
  1316. */
  1317. static void end_workqueue_fn(struct btrfs_work *work)
  1318. {
  1319. struct bio *bio;
  1320. struct end_io_wq *end_io_wq;
  1321. struct btrfs_fs_info *fs_info;
  1322. int error;
  1323. end_io_wq = container_of(work, struct end_io_wq, work);
  1324. bio = end_io_wq->bio;
  1325. fs_info = end_io_wq->info;
  1326. /* metadata bio reads are special because the whole tree block must
  1327. * be checksummed at once. This makes sure the entire block is in
  1328. * ram and up to date before trying to verify things. For
  1329. * blocksize <= pagesize, it is basically a noop
  1330. */
  1331. if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
  1332. !bio_ready_for_csum(bio)) {
  1333. btrfs_queue_worker(&fs_info->endio_meta_workers,
  1334. &end_io_wq->work);
  1335. return;
  1336. }
  1337. error = end_io_wq->error;
  1338. bio->bi_private = end_io_wq->private;
  1339. bio->bi_end_io = end_io_wq->end_io;
  1340. kfree(end_io_wq);
  1341. bio_endio(bio, error);
  1342. }
  1343. static int cleaner_kthread(void *arg)
  1344. {
  1345. struct btrfs_root *root = arg;
  1346. do {
  1347. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1348. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1349. mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1350. btrfs_run_delayed_iputs(root);
  1351. btrfs_clean_old_snapshots(root);
  1352. mutex_unlock(&root->fs_info->cleaner_mutex);
  1353. }
  1354. if (freezing(current)) {
  1355. refrigerator();
  1356. } else {
  1357. set_current_state(TASK_INTERRUPTIBLE);
  1358. if (!kthread_should_stop())
  1359. schedule();
  1360. __set_current_state(TASK_RUNNING);
  1361. }
  1362. } while (!kthread_should_stop());
  1363. return 0;
  1364. }
  1365. static int transaction_kthread(void *arg)
  1366. {
  1367. struct btrfs_root *root = arg;
  1368. struct btrfs_trans_handle *trans;
  1369. struct btrfs_transaction *cur;
  1370. u64 transid;
  1371. unsigned long now;
  1372. unsigned long delay;
  1373. int ret;
  1374. do {
  1375. delay = HZ * 30;
  1376. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1377. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1378. spin_lock(&root->fs_info->new_trans_lock);
  1379. cur = root->fs_info->running_transaction;
  1380. if (!cur) {
  1381. spin_unlock(&root->fs_info->new_trans_lock);
  1382. goto sleep;
  1383. }
  1384. now = get_seconds();
  1385. if (!cur->blocked &&
  1386. (now < cur->start_time || now - cur->start_time < 30)) {
  1387. spin_unlock(&root->fs_info->new_trans_lock);
  1388. delay = HZ * 5;
  1389. goto sleep;
  1390. }
  1391. transid = cur->transid;
  1392. spin_unlock(&root->fs_info->new_trans_lock);
  1393. trans = btrfs_join_transaction(root, 1);
  1394. BUG_ON(IS_ERR(trans));
  1395. if (transid == trans->transid) {
  1396. ret = btrfs_commit_transaction(trans, root);
  1397. BUG_ON(ret);
  1398. } else {
  1399. btrfs_end_transaction(trans, root);
  1400. }
  1401. sleep:
  1402. wake_up_process(root->fs_info->cleaner_kthread);
  1403. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1404. if (freezing(current)) {
  1405. refrigerator();
  1406. } else {
  1407. set_current_state(TASK_INTERRUPTIBLE);
  1408. if (!kthread_should_stop() &&
  1409. !btrfs_transaction_blocked(root->fs_info))
  1410. schedule_timeout(delay);
  1411. __set_current_state(TASK_RUNNING);
  1412. }
  1413. } while (!kthread_should_stop());
  1414. return 0;
  1415. }
  1416. struct btrfs_root *open_ctree(struct super_block *sb,
  1417. struct btrfs_fs_devices *fs_devices,
  1418. char *options)
  1419. {
  1420. u32 sectorsize;
  1421. u32 nodesize;
  1422. u32 leafsize;
  1423. u32 blocksize;
  1424. u32 stripesize;
  1425. u64 generation;
  1426. u64 features;
  1427. struct btrfs_key location;
  1428. struct buffer_head *bh;
  1429. struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
  1430. GFP_NOFS);
  1431. struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
  1432. GFP_NOFS);
  1433. struct btrfs_root *tree_root = btrfs_sb(sb);
  1434. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1435. struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
  1436. GFP_NOFS);
  1437. struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
  1438. GFP_NOFS);
  1439. struct btrfs_root *log_tree_root;
  1440. int ret;
  1441. int err = -EINVAL;
  1442. struct btrfs_super_block *disk_super;
  1443. if (!extent_root || !tree_root || !fs_info ||
  1444. !chunk_root || !dev_root || !csum_root) {
  1445. err = -ENOMEM;
  1446. goto fail;
  1447. }
  1448. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1449. if (ret) {
  1450. err = ret;
  1451. goto fail;
  1452. }
  1453. ret = setup_bdi(fs_info, &fs_info->bdi);
  1454. if (ret) {
  1455. err = ret;
  1456. goto fail_srcu;
  1457. }
  1458. fs_info->btree_inode = new_inode(sb);
  1459. if (!fs_info->btree_inode) {
  1460. err = -ENOMEM;
  1461. goto fail_bdi;
  1462. }
  1463. fs_info->btree_inode->i_mapping->flags &= ~__GFP_FS;
  1464. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1465. INIT_LIST_HEAD(&fs_info->trans_list);
  1466. INIT_LIST_HEAD(&fs_info->dead_roots);
  1467. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1468. INIT_LIST_HEAD(&fs_info->hashers);
  1469. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1470. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1471. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1472. spin_lock_init(&fs_info->delalloc_lock);
  1473. spin_lock_init(&fs_info->new_trans_lock);
  1474. spin_lock_init(&fs_info->ref_cache_lock);
  1475. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1476. spin_lock_init(&fs_info->delayed_iput_lock);
  1477. init_completion(&fs_info->kobj_unregister);
  1478. fs_info->tree_root = tree_root;
  1479. fs_info->extent_root = extent_root;
  1480. fs_info->csum_root = csum_root;
  1481. fs_info->chunk_root = chunk_root;
  1482. fs_info->dev_root = dev_root;
  1483. fs_info->fs_devices = fs_devices;
  1484. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1485. INIT_LIST_HEAD(&fs_info->space_info);
  1486. btrfs_mapping_init(&fs_info->mapping_tree);
  1487. btrfs_init_block_rsv(&fs_info->global_block_rsv);
  1488. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
  1489. btrfs_init_block_rsv(&fs_info->trans_block_rsv);
  1490. btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
  1491. btrfs_init_block_rsv(&fs_info->empty_block_rsv);
  1492. INIT_LIST_HEAD(&fs_info->durable_block_rsv_list);
  1493. mutex_init(&fs_info->durable_block_rsv_mutex);
  1494. atomic_set(&fs_info->nr_async_submits, 0);
  1495. atomic_set(&fs_info->async_delalloc_pages, 0);
  1496. atomic_set(&fs_info->async_submit_draining, 0);
  1497. atomic_set(&fs_info->nr_async_bios, 0);
  1498. fs_info->sb = sb;
  1499. fs_info->max_inline = 8192 * 1024;
  1500. fs_info->metadata_ratio = 0;
  1501. fs_info->thread_pool_size = min_t(unsigned long,
  1502. num_online_cpus() + 2, 8);
  1503. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1504. spin_lock_init(&fs_info->ordered_extent_lock);
  1505. sb->s_blocksize = 4096;
  1506. sb->s_blocksize_bits = blksize_bits(4096);
  1507. sb->s_bdi = &fs_info->bdi;
  1508. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1509. fs_info->btree_inode->i_nlink = 1;
  1510. /*
  1511. * we set the i_size on the btree inode to the max possible int.
  1512. * the real end of the address space is determined by all of
  1513. * the devices in the system
  1514. */
  1515. fs_info->btree_inode->i_size = OFFSET_MAX;
  1516. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1517. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1518. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1519. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1520. fs_info->btree_inode->i_mapping,
  1521. GFP_NOFS);
  1522. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
  1523. GFP_NOFS);
  1524. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1525. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1526. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1527. sizeof(struct btrfs_key));
  1528. BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
  1529. insert_inode_hash(fs_info->btree_inode);
  1530. spin_lock_init(&fs_info->block_group_cache_lock);
  1531. fs_info->block_group_cache_tree = RB_ROOT;
  1532. extent_io_tree_init(&fs_info->freed_extents[0],
  1533. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1534. extent_io_tree_init(&fs_info->freed_extents[1],
  1535. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1536. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1537. fs_info->do_barriers = 1;
  1538. mutex_init(&fs_info->trans_mutex);
  1539. mutex_init(&fs_info->ordered_operations_mutex);
  1540. mutex_init(&fs_info->tree_log_mutex);
  1541. mutex_init(&fs_info->chunk_mutex);
  1542. mutex_init(&fs_info->transaction_kthread_mutex);
  1543. mutex_init(&fs_info->cleaner_mutex);
  1544. mutex_init(&fs_info->volume_mutex);
  1545. init_rwsem(&fs_info->extent_commit_sem);
  1546. init_rwsem(&fs_info->cleanup_work_sem);
  1547. init_rwsem(&fs_info->subvol_sem);
  1548. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1549. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1550. init_waitqueue_head(&fs_info->transaction_throttle);
  1551. init_waitqueue_head(&fs_info->transaction_wait);
  1552. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1553. init_waitqueue_head(&fs_info->async_submit_wait);
  1554. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1555. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1556. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1557. if (!bh) {
  1558. err = -EINVAL;
  1559. goto fail_iput;
  1560. }
  1561. memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
  1562. memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
  1563. sizeof(fs_info->super_for_commit));
  1564. brelse(bh);
  1565. memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
  1566. disk_super = &fs_info->super_copy;
  1567. if (!btrfs_super_root(disk_super))
  1568. goto fail_iput;
  1569. /* check FS state, whether FS is broken. */
  1570. fs_info->fs_state |= btrfs_super_flags(disk_super);
  1571. btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  1572. /*
  1573. * In the long term, we'll store the compression type in the super
  1574. * block, and it'll be used for per file compression control.
  1575. */
  1576. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  1577. ret = btrfs_parse_options(tree_root, options);
  1578. if (ret) {
  1579. err = ret;
  1580. goto fail_iput;
  1581. }
  1582. features = btrfs_super_incompat_flags(disk_super) &
  1583. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1584. if (features) {
  1585. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1586. "unsupported optional features (%Lx).\n",
  1587. (unsigned long long)features);
  1588. err = -EINVAL;
  1589. goto fail_iput;
  1590. }
  1591. features = btrfs_super_incompat_flags(disk_super);
  1592. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1593. if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
  1594. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  1595. btrfs_set_super_incompat_flags(disk_super, features);
  1596. features = btrfs_super_compat_ro_flags(disk_super) &
  1597. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1598. if (!(sb->s_flags & MS_RDONLY) && features) {
  1599. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1600. "unsupported option features (%Lx).\n",
  1601. (unsigned long long)features);
  1602. err = -EINVAL;
  1603. goto fail_iput;
  1604. }
  1605. btrfs_init_workers(&fs_info->generic_worker,
  1606. "genwork", 1, NULL);
  1607. btrfs_init_workers(&fs_info->workers, "worker",
  1608. fs_info->thread_pool_size,
  1609. &fs_info->generic_worker);
  1610. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1611. fs_info->thread_pool_size,
  1612. &fs_info->generic_worker);
  1613. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1614. min_t(u64, fs_devices->num_devices,
  1615. fs_info->thread_pool_size),
  1616. &fs_info->generic_worker);
  1617. /* a higher idle thresh on the submit workers makes it much more
  1618. * likely that bios will be send down in a sane order to the
  1619. * devices
  1620. */
  1621. fs_info->submit_workers.idle_thresh = 64;
  1622. fs_info->workers.idle_thresh = 16;
  1623. fs_info->workers.ordered = 1;
  1624. fs_info->delalloc_workers.idle_thresh = 2;
  1625. fs_info->delalloc_workers.ordered = 1;
  1626. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  1627. &fs_info->generic_worker);
  1628. btrfs_init_workers(&fs_info->endio_workers, "endio",
  1629. fs_info->thread_pool_size,
  1630. &fs_info->generic_worker);
  1631. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  1632. fs_info->thread_pool_size,
  1633. &fs_info->generic_worker);
  1634. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  1635. "endio-meta-write", fs_info->thread_pool_size,
  1636. &fs_info->generic_worker);
  1637. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  1638. fs_info->thread_pool_size,
  1639. &fs_info->generic_worker);
  1640. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  1641. 1, &fs_info->generic_worker);
  1642. /*
  1643. * endios are largely parallel and should have a very
  1644. * low idle thresh
  1645. */
  1646. fs_info->endio_workers.idle_thresh = 4;
  1647. fs_info->endio_meta_workers.idle_thresh = 4;
  1648. fs_info->endio_write_workers.idle_thresh = 2;
  1649. fs_info->endio_meta_write_workers.idle_thresh = 2;
  1650. btrfs_start_workers(&fs_info->workers, 1);
  1651. btrfs_start_workers(&fs_info->generic_worker, 1);
  1652. btrfs_start_workers(&fs_info->submit_workers, 1);
  1653. btrfs_start_workers(&fs_info->delalloc_workers, 1);
  1654. btrfs_start_workers(&fs_info->fixup_workers, 1);
  1655. btrfs_start_workers(&fs_info->endio_workers, 1);
  1656. btrfs_start_workers(&fs_info->endio_meta_workers, 1);
  1657. btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
  1658. btrfs_start_workers(&fs_info->endio_write_workers, 1);
  1659. btrfs_start_workers(&fs_info->endio_freespace_worker, 1);
  1660. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  1661. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  1662. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  1663. nodesize = btrfs_super_nodesize(disk_super);
  1664. leafsize = btrfs_super_leafsize(disk_super);
  1665. sectorsize = btrfs_super_sectorsize(disk_super);
  1666. stripesize = btrfs_super_stripesize(disk_super);
  1667. tree_root->nodesize = nodesize;
  1668. tree_root->leafsize = leafsize;
  1669. tree_root->sectorsize = sectorsize;
  1670. tree_root->stripesize = stripesize;
  1671. sb->s_blocksize = sectorsize;
  1672. sb->s_blocksize_bits = blksize_bits(sectorsize);
  1673. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  1674. sizeof(disk_super->magic))) {
  1675. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  1676. goto fail_sb_buffer;
  1677. }
  1678. mutex_lock(&fs_info->chunk_mutex);
  1679. ret = btrfs_read_sys_array(tree_root);
  1680. mutex_unlock(&fs_info->chunk_mutex);
  1681. if (ret) {
  1682. printk(KERN_WARNING "btrfs: failed to read the system "
  1683. "array on %s\n", sb->s_id);
  1684. goto fail_sb_buffer;
  1685. }
  1686. blocksize = btrfs_level_size(tree_root,
  1687. btrfs_super_chunk_root_level(disk_super));
  1688. generation = btrfs_super_chunk_root_generation(disk_super);
  1689. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1690. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  1691. chunk_root->node = read_tree_block(chunk_root,
  1692. btrfs_super_chunk_root(disk_super),
  1693. blocksize, generation);
  1694. BUG_ON(!chunk_root->node);
  1695. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  1696. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  1697. sb->s_id);
  1698. goto fail_chunk_root;
  1699. }
  1700. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  1701. chunk_root->commit_root = btrfs_root_node(chunk_root);
  1702. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  1703. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  1704. BTRFS_UUID_SIZE);
  1705. mutex_lock(&fs_info->chunk_mutex);
  1706. ret = btrfs_read_chunk_tree(chunk_root);
  1707. mutex_unlock(&fs_info->chunk_mutex);
  1708. if (ret) {
  1709. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  1710. sb->s_id);
  1711. goto fail_chunk_root;
  1712. }
  1713. btrfs_close_extra_devices(fs_devices);
  1714. blocksize = btrfs_level_size(tree_root,
  1715. btrfs_super_root_level(disk_super));
  1716. generation = btrfs_super_generation(disk_super);
  1717. tree_root->node = read_tree_block(tree_root,
  1718. btrfs_super_root(disk_super),
  1719. blocksize, generation);
  1720. if (!tree_root->node)
  1721. goto fail_chunk_root;
  1722. if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  1723. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  1724. sb->s_id);
  1725. goto fail_tree_root;
  1726. }
  1727. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  1728. tree_root->commit_root = btrfs_root_node(tree_root);
  1729. ret = find_and_setup_root(tree_root, fs_info,
  1730. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  1731. if (ret)
  1732. goto fail_tree_root;
  1733. extent_root->track_dirty = 1;
  1734. ret = find_and_setup_root(tree_root, fs_info,
  1735. BTRFS_DEV_TREE_OBJECTID, dev_root);
  1736. if (ret)
  1737. goto fail_extent_root;
  1738. dev_root->track_dirty = 1;
  1739. ret = find_and_setup_root(tree_root, fs_info,
  1740. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  1741. if (ret)
  1742. goto fail_dev_root;
  1743. csum_root->track_dirty = 1;
  1744. fs_info->generation = generation;
  1745. fs_info->last_trans_committed = generation;
  1746. fs_info->data_alloc_profile = (u64)-1;
  1747. fs_info->metadata_alloc_profile = (u64)-1;
  1748. fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
  1749. ret = btrfs_init_space_info(fs_info);
  1750. if (ret) {
  1751. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  1752. goto fail_block_groups;
  1753. }
  1754. ret = btrfs_read_block_groups(extent_root);
  1755. if (ret) {
  1756. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  1757. goto fail_block_groups;
  1758. }
  1759. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  1760. "btrfs-cleaner");
  1761. if (IS_ERR(fs_info->cleaner_kthread))
  1762. goto fail_block_groups;
  1763. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  1764. tree_root,
  1765. "btrfs-transaction");
  1766. if (IS_ERR(fs_info->transaction_kthread))
  1767. goto fail_cleaner;
  1768. if (!btrfs_test_opt(tree_root, SSD) &&
  1769. !btrfs_test_opt(tree_root, NOSSD) &&
  1770. !fs_info->fs_devices->rotating) {
  1771. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  1772. "mode\n");
  1773. btrfs_set_opt(fs_info->mount_opt, SSD);
  1774. }
  1775. /* do not make disk changes in broken FS */
  1776. if (btrfs_super_log_root(disk_super) != 0 &&
  1777. !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
  1778. u64 bytenr = btrfs_super_log_root(disk_super);
  1779. if (fs_devices->rw_devices == 0) {
  1780. printk(KERN_WARNING "Btrfs log replay required "
  1781. "on RO media\n");
  1782. err = -EIO;
  1783. goto fail_trans_kthread;
  1784. }
  1785. blocksize =
  1786. btrfs_level_size(tree_root,
  1787. btrfs_super_log_root_level(disk_super));
  1788. log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
  1789. if (!log_tree_root) {
  1790. err = -ENOMEM;
  1791. goto fail_trans_kthread;
  1792. }
  1793. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1794. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1795. log_tree_root->node = read_tree_block(tree_root, bytenr,
  1796. blocksize,
  1797. generation + 1);
  1798. ret = btrfs_recover_log_trees(log_tree_root);
  1799. BUG_ON(ret);
  1800. if (sb->s_flags & MS_RDONLY) {
  1801. ret = btrfs_commit_super(tree_root);
  1802. BUG_ON(ret);
  1803. }
  1804. }
  1805. ret = btrfs_find_orphan_roots(tree_root);
  1806. BUG_ON(ret);
  1807. if (!(sb->s_flags & MS_RDONLY)) {
  1808. ret = btrfs_cleanup_fs_roots(fs_info);
  1809. BUG_ON(ret);
  1810. ret = btrfs_recover_relocation(tree_root);
  1811. if (ret < 0) {
  1812. printk(KERN_WARNING
  1813. "btrfs: failed to recover relocation\n");
  1814. err = -EINVAL;
  1815. goto fail_trans_kthread;
  1816. }
  1817. }
  1818. location.objectid = BTRFS_FS_TREE_OBJECTID;
  1819. location.type = BTRFS_ROOT_ITEM_KEY;
  1820. location.offset = (u64)-1;
  1821. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  1822. if (!fs_info->fs_root)
  1823. goto fail_trans_kthread;
  1824. if (IS_ERR(fs_info->fs_root)) {
  1825. err = PTR_ERR(fs_info->fs_root);
  1826. goto fail_trans_kthread;
  1827. }
  1828. if (!(sb->s_flags & MS_RDONLY)) {
  1829. down_read(&fs_info->cleanup_work_sem);
  1830. err = btrfs_orphan_cleanup(fs_info->fs_root);
  1831. if (!err)
  1832. err = btrfs_orphan_cleanup(fs_info->tree_root);
  1833. up_read(&fs_info->cleanup_work_sem);
  1834. if (err) {
  1835. close_ctree(tree_root);
  1836. return ERR_PTR(err);
  1837. }
  1838. }
  1839. return tree_root;
  1840. fail_trans_kthread:
  1841. kthread_stop(fs_info->transaction_kthread);
  1842. fail_cleaner:
  1843. kthread_stop(fs_info->cleaner_kthread);
  1844. /*
  1845. * make sure we're done with the btree inode before we stop our
  1846. * kthreads
  1847. */
  1848. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  1849. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1850. fail_block_groups:
  1851. btrfs_free_block_groups(fs_info);
  1852. free_extent_buffer(csum_root->node);
  1853. free_extent_buffer(csum_root->commit_root);
  1854. fail_dev_root:
  1855. free_extent_buffer(dev_root->node);
  1856. free_extent_buffer(dev_root->commit_root);
  1857. fail_extent_root:
  1858. free_extent_buffer(extent_root->node);
  1859. free_extent_buffer(extent_root->commit_root);
  1860. fail_tree_root:
  1861. free_extent_buffer(tree_root->node);
  1862. free_extent_buffer(tree_root->commit_root);
  1863. fail_chunk_root:
  1864. free_extent_buffer(chunk_root->node);
  1865. free_extent_buffer(chunk_root->commit_root);
  1866. fail_sb_buffer:
  1867. btrfs_stop_workers(&fs_info->generic_worker);
  1868. btrfs_stop_workers(&fs_info->fixup_workers);
  1869. btrfs_stop_workers(&fs_info->delalloc_workers);
  1870. btrfs_stop_workers(&fs_info->workers);
  1871. btrfs_stop_workers(&fs_info->endio_workers);
  1872. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1873. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1874. btrfs_stop_workers(&fs_info->endio_write_workers);
  1875. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  1876. btrfs_stop_workers(&fs_info->submit_workers);
  1877. fail_iput:
  1878. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1879. iput(fs_info->btree_inode);
  1880. btrfs_close_devices(fs_info->fs_devices);
  1881. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  1882. fail_bdi:
  1883. bdi_destroy(&fs_info->bdi);
  1884. fail_srcu:
  1885. cleanup_srcu_struct(&fs_info->subvol_srcu);
  1886. fail:
  1887. kfree(extent_root);
  1888. kfree(tree_root);
  1889. kfree(fs_info);
  1890. kfree(chunk_root);
  1891. kfree(dev_root);
  1892. kfree(csum_root);
  1893. return ERR_PTR(err);
  1894. }
  1895. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  1896. {
  1897. char b[BDEVNAME_SIZE];
  1898. if (uptodate) {
  1899. set_buffer_uptodate(bh);
  1900. } else {
  1901. if (printk_ratelimit()) {
  1902. printk(KERN_WARNING "lost page write due to "
  1903. "I/O error on %s\n",
  1904. bdevname(bh->b_bdev, b));
  1905. }
  1906. /* note, we dont' set_buffer_write_io_error because we have
  1907. * our own ways of dealing with the IO errors
  1908. */
  1909. clear_buffer_uptodate(bh);
  1910. }
  1911. unlock_buffer(bh);
  1912. put_bh(bh);
  1913. }
  1914. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  1915. {
  1916. struct buffer_head *bh;
  1917. struct buffer_head *latest = NULL;
  1918. struct btrfs_super_block *super;
  1919. int i;
  1920. u64 transid = 0;
  1921. u64 bytenr;
  1922. /* we would like to check all the supers, but that would make
  1923. * a btrfs mount succeed after a mkfs from a different FS.
  1924. * So, we need to add a special mount option to scan for
  1925. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  1926. */
  1927. for (i = 0; i < 1; i++) {
  1928. bytenr = btrfs_sb_offset(i);
  1929. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  1930. break;
  1931. bh = __bread(bdev, bytenr / 4096, 4096);
  1932. if (!bh)
  1933. continue;
  1934. super = (struct btrfs_super_block *)bh->b_data;
  1935. if (btrfs_super_bytenr(super) != bytenr ||
  1936. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  1937. sizeof(super->magic))) {
  1938. brelse(bh);
  1939. continue;
  1940. }
  1941. if (!latest || btrfs_super_generation(super) > transid) {
  1942. brelse(latest);
  1943. latest = bh;
  1944. transid = btrfs_super_generation(super);
  1945. } else {
  1946. brelse(bh);
  1947. }
  1948. }
  1949. return latest;
  1950. }
  1951. /*
  1952. * this should be called twice, once with wait == 0 and
  1953. * once with wait == 1. When wait == 0 is done, all the buffer heads
  1954. * we write are pinned.
  1955. *
  1956. * They are released when wait == 1 is done.
  1957. * max_mirrors must be the same for both runs, and it indicates how
  1958. * many supers on this one device should be written.
  1959. *
  1960. * max_mirrors == 0 means to write them all.
  1961. */
  1962. static int write_dev_supers(struct btrfs_device *device,
  1963. struct btrfs_super_block *sb,
  1964. int do_barriers, int wait, int max_mirrors)
  1965. {
  1966. struct buffer_head *bh;
  1967. int i;
  1968. int ret;
  1969. int errors = 0;
  1970. u32 crc;
  1971. u64 bytenr;
  1972. int last_barrier = 0;
  1973. if (max_mirrors == 0)
  1974. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  1975. /* make sure only the last submit_bh does a barrier */
  1976. if (do_barriers) {
  1977. for (i = 0; i < max_mirrors; i++) {
  1978. bytenr = btrfs_sb_offset(i);
  1979. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  1980. device->total_bytes)
  1981. break;
  1982. last_barrier = i;
  1983. }
  1984. }
  1985. for (i = 0; i < max_mirrors; i++) {
  1986. bytenr = btrfs_sb_offset(i);
  1987. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  1988. break;
  1989. if (wait) {
  1990. bh = __find_get_block(device->bdev, bytenr / 4096,
  1991. BTRFS_SUPER_INFO_SIZE);
  1992. BUG_ON(!bh);
  1993. wait_on_buffer(bh);
  1994. if (!buffer_uptodate(bh))
  1995. errors++;
  1996. /* drop our reference */
  1997. brelse(bh);
  1998. /* drop the reference from the wait == 0 run */
  1999. brelse(bh);
  2000. continue;
  2001. } else {
  2002. btrfs_set_super_bytenr(sb, bytenr);
  2003. crc = ~(u32)0;
  2004. crc = btrfs_csum_data(NULL, (char *)sb +
  2005. BTRFS_CSUM_SIZE, crc,
  2006. BTRFS_SUPER_INFO_SIZE -
  2007. BTRFS_CSUM_SIZE);
  2008. btrfs_csum_final(crc, sb->csum);
  2009. /*
  2010. * one reference for us, and we leave it for the
  2011. * caller
  2012. */
  2013. bh = __getblk(device->bdev, bytenr / 4096,
  2014. BTRFS_SUPER_INFO_SIZE);
  2015. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2016. /* one reference for submit_bh */
  2017. get_bh(bh);
  2018. set_buffer_uptodate(bh);
  2019. lock_buffer(bh);
  2020. bh->b_end_io = btrfs_end_buffer_write_sync;
  2021. }
  2022. if (i == last_barrier && do_barriers)
  2023. ret = submit_bh(WRITE_FLUSH_FUA, bh);
  2024. else
  2025. ret = submit_bh(WRITE_SYNC, bh);
  2026. if (ret)
  2027. errors++;
  2028. }
  2029. return errors < i ? 0 : -1;
  2030. }
  2031. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2032. {
  2033. struct list_head *head;
  2034. struct btrfs_device *dev;
  2035. struct btrfs_super_block *sb;
  2036. struct btrfs_dev_item *dev_item;
  2037. int ret;
  2038. int do_barriers;
  2039. int max_errors;
  2040. int total_errors = 0;
  2041. u64 flags;
  2042. max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
  2043. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2044. sb = &root->fs_info->super_for_commit;
  2045. dev_item = &sb->dev_item;
  2046. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2047. head = &root->fs_info->fs_devices->devices;
  2048. list_for_each_entry(dev, head, dev_list) {
  2049. if (!dev->bdev) {
  2050. total_errors++;
  2051. continue;
  2052. }
  2053. if (!dev->in_fs_metadata || !dev->writeable)
  2054. continue;
  2055. btrfs_set_stack_device_generation(dev_item, 0);
  2056. btrfs_set_stack_device_type(dev_item, dev->type);
  2057. btrfs_set_stack_device_id(dev_item, dev->devid);
  2058. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2059. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2060. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2061. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2062. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2063. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2064. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2065. flags = btrfs_super_flags(sb);
  2066. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2067. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2068. if (ret)
  2069. total_errors++;
  2070. }
  2071. if (total_errors > max_errors) {
  2072. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2073. total_errors);
  2074. BUG();
  2075. }
  2076. total_errors = 0;
  2077. list_for_each_entry(dev, head, dev_list) {
  2078. if (!dev->bdev)
  2079. continue;
  2080. if (!dev->in_fs_metadata || !dev->writeable)
  2081. continue;
  2082. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2083. if (ret)
  2084. total_errors++;
  2085. }
  2086. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2087. if (total_errors > max_errors) {
  2088. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2089. total_errors);
  2090. BUG();
  2091. }
  2092. return 0;
  2093. }
  2094. int write_ctree_super(struct btrfs_trans_handle *trans,
  2095. struct btrfs_root *root, int max_mirrors)
  2096. {
  2097. int ret;
  2098. ret = write_all_supers(root, max_mirrors);
  2099. return ret;
  2100. }
  2101. int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2102. {
  2103. spin_lock(&fs_info->fs_roots_radix_lock);
  2104. radix_tree_delete(&fs_info->fs_roots_radix,
  2105. (unsigned long)root->root_key.objectid);
  2106. spin_unlock(&fs_info->fs_roots_radix_lock);
  2107. if (btrfs_root_refs(&root->root_item) == 0)
  2108. synchronize_srcu(&fs_info->subvol_srcu);
  2109. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  2110. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  2111. free_fs_root(root);
  2112. return 0;
  2113. }
  2114. static void free_fs_root(struct btrfs_root *root)
  2115. {
  2116. iput(root->cache_inode);
  2117. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2118. if (root->anon_super.s_dev) {
  2119. down_write(&root->anon_super.s_umount);
  2120. kill_anon_super(&root->anon_super);
  2121. }
  2122. free_extent_buffer(root->node);
  2123. free_extent_buffer(root->commit_root);
  2124. kfree(root->free_ino_ctl);
  2125. kfree(root->free_ino_pinned);
  2126. kfree(root->name);
  2127. kfree(root);
  2128. }
  2129. static int del_fs_roots(struct btrfs_fs_info *fs_info)
  2130. {
  2131. int ret;
  2132. struct btrfs_root *gang[8];
  2133. int i;
  2134. while (!list_empty(&fs_info->dead_roots)) {
  2135. gang[0] = list_entry(fs_info->dead_roots.next,
  2136. struct btrfs_root, root_list);
  2137. list_del(&gang[0]->root_list);
  2138. if (gang[0]->in_radix) {
  2139. btrfs_free_fs_root(fs_info, gang[0]);
  2140. } else {
  2141. free_extent_buffer(gang[0]->node);
  2142. free_extent_buffer(gang[0]->commit_root);
  2143. kfree(gang[0]);
  2144. }
  2145. }
  2146. while (1) {
  2147. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2148. (void **)gang, 0,
  2149. ARRAY_SIZE(gang));
  2150. if (!ret)
  2151. break;
  2152. for (i = 0; i < ret; i++)
  2153. btrfs_free_fs_root(fs_info, gang[i]);
  2154. }
  2155. return 0;
  2156. }
  2157. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2158. {
  2159. u64 root_objectid = 0;
  2160. struct btrfs_root *gang[8];
  2161. int i;
  2162. int ret;
  2163. while (1) {
  2164. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2165. (void **)gang, root_objectid,
  2166. ARRAY_SIZE(gang));
  2167. if (!ret)
  2168. break;
  2169. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2170. for (i = 0; i < ret; i++) {
  2171. int err;
  2172. root_objectid = gang[i]->root_key.objectid;
  2173. err = btrfs_orphan_cleanup(gang[i]);
  2174. if (err)
  2175. return err;
  2176. }
  2177. root_objectid++;
  2178. }
  2179. return 0;
  2180. }
  2181. int btrfs_commit_super(struct btrfs_root *root)
  2182. {
  2183. struct btrfs_trans_handle *trans;
  2184. int ret;
  2185. mutex_lock(&root->fs_info->cleaner_mutex);
  2186. btrfs_run_delayed_iputs(root);
  2187. btrfs_clean_old_snapshots(root);
  2188. mutex_unlock(&root->fs_info->cleaner_mutex);
  2189. /* wait until ongoing cleanup work done */
  2190. down_write(&root->fs_info->cleanup_work_sem);
  2191. up_write(&root->fs_info->cleanup_work_sem);
  2192. trans = btrfs_join_transaction(root, 1);
  2193. if (IS_ERR(trans))
  2194. return PTR_ERR(trans);
  2195. ret = btrfs_commit_transaction(trans, root);
  2196. BUG_ON(ret);
  2197. /* run commit again to drop the original snapshot */
  2198. trans = btrfs_join_transaction(root, 1);
  2199. if (IS_ERR(trans))
  2200. return PTR_ERR(trans);
  2201. btrfs_commit_transaction(trans, root);
  2202. ret = btrfs_write_and_wait_transaction(NULL, root);
  2203. BUG_ON(ret);
  2204. ret = write_ctree_super(NULL, root, 0);
  2205. return ret;
  2206. }
  2207. int close_ctree(struct btrfs_root *root)
  2208. {
  2209. struct btrfs_fs_info *fs_info = root->fs_info;
  2210. int ret;
  2211. fs_info->closing = 1;
  2212. smp_mb();
  2213. btrfs_put_block_group_cache(fs_info);
  2214. /*
  2215. * Here come 2 situations when btrfs is broken to flip readonly:
  2216. *
  2217. * 1. when btrfs flips readonly somewhere else before
  2218. * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
  2219. * and btrfs will skip to write sb directly to keep
  2220. * ERROR state on disk.
  2221. *
  2222. * 2. when btrfs flips readonly just in btrfs_commit_super,
  2223. * and in such case, btrfs cannot write sb via btrfs_commit_super,
  2224. * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
  2225. * btrfs will cleanup all FS resources first and write sb then.
  2226. */
  2227. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2228. ret = btrfs_commit_super(root);
  2229. if (ret)
  2230. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2231. }
  2232. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
  2233. ret = btrfs_error_commit_super(root);
  2234. if (ret)
  2235. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2236. }
  2237. kthread_stop(root->fs_info->transaction_kthread);
  2238. kthread_stop(root->fs_info->cleaner_kthread);
  2239. fs_info->closing = 2;
  2240. smp_mb();
  2241. if (fs_info->delalloc_bytes) {
  2242. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  2243. (unsigned long long)fs_info->delalloc_bytes);
  2244. }
  2245. if (fs_info->total_ref_cache_size) {
  2246. printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
  2247. (unsigned long long)fs_info->total_ref_cache_size);
  2248. }
  2249. free_extent_buffer(fs_info->extent_root->node);
  2250. free_extent_buffer(fs_info->extent_root->commit_root);
  2251. free_extent_buffer(fs_info->tree_root->node);
  2252. free_extent_buffer(fs_info->tree_root->commit_root);
  2253. free_extent_buffer(root->fs_info->chunk_root->node);
  2254. free_extent_buffer(root->fs_info->chunk_root->commit_root);
  2255. free_extent_buffer(root->fs_info->dev_root->node);
  2256. free_extent_buffer(root->fs_info->dev_root->commit_root);
  2257. free_extent_buffer(root->fs_info->csum_root->node);
  2258. free_extent_buffer(root->fs_info->csum_root->commit_root);
  2259. btrfs_free_block_groups(root->fs_info);
  2260. del_fs_roots(fs_info);
  2261. iput(fs_info->btree_inode);
  2262. btrfs_stop_workers(&fs_info->generic_worker);
  2263. btrfs_stop_workers(&fs_info->fixup_workers);
  2264. btrfs_stop_workers(&fs_info->delalloc_workers);
  2265. btrfs_stop_workers(&fs_info->workers);
  2266. btrfs_stop_workers(&fs_info->endio_workers);
  2267. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2268. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2269. btrfs_stop_workers(&fs_info->endio_write_workers);
  2270. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2271. btrfs_stop_workers(&fs_info->submit_workers);
  2272. btrfs_close_devices(fs_info->fs_devices);
  2273. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2274. bdi_destroy(&fs_info->bdi);
  2275. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2276. kfree(fs_info->extent_root);
  2277. kfree(fs_info->tree_root);
  2278. kfree(fs_info->chunk_root);
  2279. kfree(fs_info->dev_root);
  2280. kfree(fs_info->csum_root);
  2281. kfree(fs_info);
  2282. return 0;
  2283. }
  2284. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
  2285. {
  2286. int ret;
  2287. struct inode *btree_inode = buf->first_page->mapping->host;
  2288. ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
  2289. NULL);
  2290. if (!ret)
  2291. return ret;
  2292. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2293. parent_transid);
  2294. return !ret;
  2295. }
  2296. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2297. {
  2298. struct inode *btree_inode = buf->first_page->mapping->host;
  2299. return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
  2300. buf);
  2301. }
  2302. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2303. {
  2304. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2305. u64 transid = btrfs_header_generation(buf);
  2306. struct inode *btree_inode = root->fs_info->btree_inode;
  2307. int was_dirty;
  2308. btrfs_assert_tree_locked(buf);
  2309. if (transid != root->fs_info->generation) {
  2310. printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2311. "found %llu running %llu\n",
  2312. (unsigned long long)buf->start,
  2313. (unsigned long long)transid,
  2314. (unsigned long long)root->fs_info->generation);
  2315. WARN_ON(1);
  2316. }
  2317. was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  2318. buf);
  2319. if (!was_dirty) {
  2320. spin_lock(&root->fs_info->delalloc_lock);
  2321. root->fs_info->dirty_metadata_bytes += buf->len;
  2322. spin_unlock(&root->fs_info->delalloc_lock);
  2323. }
  2324. }
  2325. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2326. {
  2327. /*
  2328. * looks as though older kernels can get into trouble with
  2329. * this code, they end up stuck in balance_dirty_pages forever
  2330. */
  2331. u64 num_dirty;
  2332. unsigned long thresh = 32 * 1024 * 1024;
  2333. if (current->flags & PF_MEMALLOC)
  2334. return;
  2335. num_dirty = root->fs_info->dirty_metadata_bytes;
  2336. if (num_dirty > thresh) {
  2337. balance_dirty_pages_ratelimited_nr(
  2338. root->fs_info->btree_inode->i_mapping, 1);
  2339. }
  2340. return;
  2341. }
  2342. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  2343. {
  2344. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2345. int ret;
  2346. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  2347. if (ret == 0)
  2348. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  2349. return ret;
  2350. }
  2351. int btree_lock_page_hook(struct page *page)
  2352. {
  2353. struct inode *inode = page->mapping->host;
  2354. struct btrfs_root *root = BTRFS_I(inode)->root;
  2355. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  2356. struct extent_buffer *eb;
  2357. unsigned long len;
  2358. u64 bytenr = page_offset(page);
  2359. if (page->private == EXTENT_PAGE_PRIVATE)
  2360. goto out;
  2361. len = page->private >> 2;
  2362. eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
  2363. if (!eb)
  2364. goto out;
  2365. btrfs_tree_lock(eb);
  2366. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  2367. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
  2368. spin_lock(&root->fs_info->delalloc_lock);
  2369. if (root->fs_info->dirty_metadata_bytes >= eb->len)
  2370. root->fs_info->dirty_metadata_bytes -= eb->len;
  2371. else
  2372. WARN_ON(1);
  2373. spin_unlock(&root->fs_info->delalloc_lock);
  2374. }
  2375. btrfs_tree_unlock(eb);
  2376. free_extent_buffer(eb);
  2377. out:
  2378. lock_page(page);
  2379. return 0;
  2380. }
  2381. static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  2382. int read_only)
  2383. {
  2384. if (read_only)
  2385. return;
  2386. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
  2387. printk(KERN_WARNING "warning: mount fs with errors, "
  2388. "running btrfsck is recommended\n");
  2389. }
  2390. int btrfs_error_commit_super(struct btrfs_root *root)
  2391. {
  2392. int ret;
  2393. mutex_lock(&root->fs_info->cleaner_mutex);
  2394. btrfs_run_delayed_iputs(root);
  2395. mutex_unlock(&root->fs_info->cleaner_mutex);
  2396. down_write(&root->fs_info->cleanup_work_sem);
  2397. up_write(&root->fs_info->cleanup_work_sem);
  2398. /* cleanup FS via transaction */
  2399. btrfs_cleanup_transaction(root);
  2400. ret = write_ctree_super(NULL, root, 0);
  2401. return ret;
  2402. }
  2403. static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
  2404. {
  2405. struct btrfs_inode *btrfs_inode;
  2406. struct list_head splice;
  2407. INIT_LIST_HEAD(&splice);
  2408. mutex_lock(&root->fs_info->ordered_operations_mutex);
  2409. spin_lock(&root->fs_info->ordered_extent_lock);
  2410. list_splice_init(&root->fs_info->ordered_operations, &splice);
  2411. while (!list_empty(&splice)) {
  2412. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  2413. ordered_operations);
  2414. list_del_init(&btrfs_inode->ordered_operations);
  2415. btrfs_invalidate_inodes(btrfs_inode->root);
  2416. }
  2417. spin_unlock(&root->fs_info->ordered_extent_lock);
  2418. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  2419. return 0;
  2420. }
  2421. static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
  2422. {
  2423. struct list_head splice;
  2424. struct btrfs_ordered_extent *ordered;
  2425. struct inode *inode;
  2426. INIT_LIST_HEAD(&splice);
  2427. spin_lock(&root->fs_info->ordered_extent_lock);
  2428. list_splice_init(&root->fs_info->ordered_extents, &splice);
  2429. while (!list_empty(&splice)) {
  2430. ordered = list_entry(splice.next, struct btrfs_ordered_extent,
  2431. root_extent_list);
  2432. list_del_init(&ordered->root_extent_list);
  2433. atomic_inc(&ordered->refs);
  2434. /* the inode may be getting freed (in sys_unlink path). */
  2435. inode = igrab(ordered->inode);
  2436. spin_unlock(&root->fs_info->ordered_extent_lock);
  2437. if (inode)
  2438. iput(inode);
  2439. atomic_set(&ordered->refs, 1);
  2440. btrfs_put_ordered_extent(ordered);
  2441. spin_lock(&root->fs_info->ordered_extent_lock);
  2442. }
  2443. spin_unlock(&root->fs_info->ordered_extent_lock);
  2444. return 0;
  2445. }
  2446. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  2447. struct btrfs_root *root)
  2448. {
  2449. struct rb_node *node;
  2450. struct btrfs_delayed_ref_root *delayed_refs;
  2451. struct btrfs_delayed_ref_node *ref;
  2452. int ret = 0;
  2453. delayed_refs = &trans->delayed_refs;
  2454. spin_lock(&delayed_refs->lock);
  2455. if (delayed_refs->num_entries == 0) {
  2456. spin_unlock(&delayed_refs->lock);
  2457. printk(KERN_INFO "delayed_refs has NO entry\n");
  2458. return ret;
  2459. }
  2460. node = rb_first(&delayed_refs->root);
  2461. while (node) {
  2462. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  2463. node = rb_next(node);
  2464. ref->in_tree = 0;
  2465. rb_erase(&ref->rb_node, &delayed_refs->root);
  2466. delayed_refs->num_entries--;
  2467. atomic_set(&ref->refs, 1);
  2468. if (btrfs_delayed_ref_is_head(ref)) {
  2469. struct btrfs_delayed_ref_head *head;
  2470. head = btrfs_delayed_node_to_head(ref);
  2471. mutex_lock(&head->mutex);
  2472. kfree(head->extent_op);
  2473. delayed_refs->num_heads--;
  2474. if (list_empty(&head->cluster))
  2475. delayed_refs->num_heads_ready--;
  2476. list_del_init(&head->cluster);
  2477. mutex_unlock(&head->mutex);
  2478. }
  2479. spin_unlock(&delayed_refs->lock);
  2480. btrfs_put_delayed_ref(ref);
  2481. cond_resched();
  2482. spin_lock(&delayed_refs->lock);
  2483. }
  2484. spin_unlock(&delayed_refs->lock);
  2485. return ret;
  2486. }
  2487. static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
  2488. {
  2489. struct btrfs_pending_snapshot *snapshot;
  2490. struct list_head splice;
  2491. INIT_LIST_HEAD(&splice);
  2492. list_splice_init(&t->pending_snapshots, &splice);
  2493. while (!list_empty(&splice)) {
  2494. snapshot = list_entry(splice.next,
  2495. struct btrfs_pending_snapshot,
  2496. list);
  2497. list_del_init(&snapshot->list);
  2498. kfree(snapshot);
  2499. }
  2500. return 0;
  2501. }
  2502. static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  2503. {
  2504. struct btrfs_inode *btrfs_inode;
  2505. struct list_head splice;
  2506. INIT_LIST_HEAD(&splice);
  2507. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  2508. spin_lock(&root->fs_info->delalloc_lock);
  2509. while (!list_empty(&splice)) {
  2510. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  2511. delalloc_inodes);
  2512. list_del_init(&btrfs_inode->delalloc_inodes);
  2513. btrfs_invalidate_inodes(btrfs_inode->root);
  2514. }
  2515. spin_unlock(&root->fs_info->delalloc_lock);
  2516. return 0;
  2517. }
  2518. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  2519. struct extent_io_tree *dirty_pages,
  2520. int mark)
  2521. {
  2522. int ret;
  2523. struct page *page;
  2524. struct inode *btree_inode = root->fs_info->btree_inode;
  2525. struct extent_buffer *eb;
  2526. u64 start = 0;
  2527. u64 end;
  2528. u64 offset;
  2529. unsigned long index;
  2530. while (1) {
  2531. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  2532. mark);
  2533. if (ret)
  2534. break;
  2535. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  2536. while (start <= end) {
  2537. index = start >> PAGE_CACHE_SHIFT;
  2538. start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
  2539. page = find_get_page(btree_inode->i_mapping, index);
  2540. if (!page)
  2541. continue;
  2542. offset = page_offset(page);
  2543. spin_lock(&dirty_pages->buffer_lock);
  2544. eb = radix_tree_lookup(
  2545. &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
  2546. offset >> PAGE_CACHE_SHIFT);
  2547. spin_unlock(&dirty_pages->buffer_lock);
  2548. if (eb) {
  2549. ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  2550. &eb->bflags);
  2551. atomic_set(&eb->refs, 1);
  2552. }
  2553. if (PageWriteback(page))
  2554. end_page_writeback(page);
  2555. lock_page(page);
  2556. if (PageDirty(page)) {
  2557. clear_page_dirty_for_io(page);
  2558. spin_lock_irq(&page->mapping->tree_lock);
  2559. radix_tree_tag_clear(&page->mapping->page_tree,
  2560. page_index(page),
  2561. PAGECACHE_TAG_DIRTY);
  2562. spin_unlock_irq(&page->mapping->tree_lock);
  2563. }
  2564. page->mapping->a_ops->invalidatepage(page, 0);
  2565. unlock_page(page);
  2566. }
  2567. }
  2568. return ret;
  2569. }
  2570. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  2571. struct extent_io_tree *pinned_extents)
  2572. {
  2573. struct extent_io_tree *unpin;
  2574. u64 start;
  2575. u64 end;
  2576. int ret;
  2577. unpin = pinned_extents;
  2578. while (1) {
  2579. ret = find_first_extent_bit(unpin, 0, &start, &end,
  2580. EXTENT_DIRTY);
  2581. if (ret)
  2582. break;
  2583. /* opt_discard */
  2584. if (btrfs_test_opt(root, DISCARD))
  2585. ret = btrfs_error_discard_extent(root, start,
  2586. end + 1 - start,
  2587. NULL);
  2588. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  2589. btrfs_error_unpin_extent_range(root, start, end);
  2590. cond_resched();
  2591. }
  2592. return 0;
  2593. }
  2594. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  2595. {
  2596. struct btrfs_transaction *t;
  2597. LIST_HEAD(list);
  2598. WARN_ON(1);
  2599. mutex_lock(&root->fs_info->trans_mutex);
  2600. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  2601. list_splice_init(&root->fs_info->trans_list, &list);
  2602. while (!list_empty(&list)) {
  2603. t = list_entry(list.next, struct btrfs_transaction, list);
  2604. if (!t)
  2605. break;
  2606. btrfs_destroy_ordered_operations(root);
  2607. btrfs_destroy_ordered_extents(root);
  2608. btrfs_destroy_delayed_refs(t, root);
  2609. btrfs_block_rsv_release(root,
  2610. &root->fs_info->trans_block_rsv,
  2611. t->dirty_pages.dirty_bytes);
  2612. /* FIXME: cleanup wait for commit */
  2613. t->in_commit = 1;
  2614. t->blocked = 1;
  2615. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  2616. wake_up(&root->fs_info->transaction_blocked_wait);
  2617. t->blocked = 0;
  2618. if (waitqueue_active(&root->fs_info->transaction_wait))
  2619. wake_up(&root->fs_info->transaction_wait);
  2620. mutex_unlock(&root->fs_info->trans_mutex);
  2621. mutex_lock(&root->fs_info->trans_mutex);
  2622. t->commit_done = 1;
  2623. if (waitqueue_active(&t->commit_wait))
  2624. wake_up(&t->commit_wait);
  2625. mutex_unlock(&root->fs_info->trans_mutex);
  2626. mutex_lock(&root->fs_info->trans_mutex);
  2627. btrfs_destroy_pending_snapshots(t);
  2628. btrfs_destroy_delalloc_inodes(root);
  2629. spin_lock(&root->fs_info->new_trans_lock);
  2630. root->fs_info->running_transaction = NULL;
  2631. spin_unlock(&root->fs_info->new_trans_lock);
  2632. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  2633. EXTENT_DIRTY);
  2634. btrfs_destroy_pinned_extent(root,
  2635. root->fs_info->pinned_extents);
  2636. atomic_set(&t->use_count, 0);
  2637. list_del_init(&t->list);
  2638. memset(t, 0, sizeof(*t));
  2639. kmem_cache_free(btrfs_transaction_cachep, t);
  2640. }
  2641. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  2642. mutex_unlock(&root->fs_info->trans_mutex);
  2643. return 0;
  2644. }
  2645. static struct extent_io_ops btree_extent_io_ops = {
  2646. .write_cache_pages_lock_hook = btree_lock_page_hook,
  2647. .readpage_end_io_hook = btree_readpage_end_io_hook,
  2648. .submit_bio_hook = btree_submit_bio_hook,
  2649. /* note we're sharing with inode.c for the merge bio hook */
  2650. .merge_bio_hook = btrfs_merge_bio_hook,
  2651. };