md.c 233 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/fs.h>
  31. #include <linux/poll.h>
  32. #include <linux/ctype.h>
  33. #include <linux/string.h>
  34. #include <linux/hdreg.h>
  35. #include <linux/proc_fs.h>
  36. #include <linux/random.h>
  37. #include <linux/module.h>
  38. #include <linux/reboot.h>
  39. #include <linux/file.h>
  40. #include <linux/compat.h>
  41. #include <linux/delay.h>
  42. #include <linux/raid/md_p.h>
  43. #include <linux/raid/md_u.h>
  44. #include <linux/slab.h>
  45. #include "md.h"
  46. #include "bitmap.h"
  47. #include "md-cluster.h"
  48. #ifndef MODULE
  49. static void autostart_arrays(int part);
  50. #endif
  51. /* pers_list is a list of registered personalities protected
  52. * by pers_lock.
  53. * pers_lock does extra service to protect accesses to
  54. * mddev->thread when the mutex cannot be held.
  55. */
  56. static LIST_HEAD(pers_list);
  57. static DEFINE_SPINLOCK(pers_lock);
  58. struct md_cluster_operations *md_cluster_ops;
  59. EXPORT_SYMBOL(md_cluster_ops);
  60. struct module *md_cluster_mod;
  61. EXPORT_SYMBOL(md_cluster_mod);
  62. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  63. static struct workqueue_struct *md_wq;
  64. static struct workqueue_struct *md_misc_wq;
  65. static int remove_and_add_spares(struct mddev *mddev,
  66. struct md_rdev *this);
  67. static void mddev_detach(struct mddev *mddev);
  68. /*
  69. * Default number of read corrections we'll attempt on an rdev
  70. * before ejecting it from the array. We divide the read error
  71. * count by 2 for every hour elapsed between read errors.
  72. */
  73. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  74. /*
  75. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  76. * is 1000 KB/sec, so the extra system load does not show up that much.
  77. * Increase it if you want to have more _guaranteed_ speed. Note that
  78. * the RAID driver will use the maximum available bandwidth if the IO
  79. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  80. * speed limit - in case reconstruction slows down your system despite
  81. * idle IO detection.
  82. *
  83. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  84. * or /sys/block/mdX/md/sync_speed_{min,max}
  85. */
  86. static int sysctl_speed_limit_min = 1000;
  87. static int sysctl_speed_limit_max = 200000;
  88. static inline int speed_min(struct mddev *mddev)
  89. {
  90. return mddev->sync_speed_min ?
  91. mddev->sync_speed_min : sysctl_speed_limit_min;
  92. }
  93. static inline int speed_max(struct mddev *mddev)
  94. {
  95. return mddev->sync_speed_max ?
  96. mddev->sync_speed_max : sysctl_speed_limit_max;
  97. }
  98. static struct ctl_table_header *raid_table_header;
  99. static struct ctl_table raid_table[] = {
  100. {
  101. .procname = "speed_limit_min",
  102. .data = &sysctl_speed_limit_min,
  103. .maxlen = sizeof(int),
  104. .mode = S_IRUGO|S_IWUSR,
  105. .proc_handler = proc_dointvec,
  106. },
  107. {
  108. .procname = "speed_limit_max",
  109. .data = &sysctl_speed_limit_max,
  110. .maxlen = sizeof(int),
  111. .mode = S_IRUGO|S_IWUSR,
  112. .proc_handler = proc_dointvec,
  113. },
  114. { }
  115. };
  116. static struct ctl_table raid_dir_table[] = {
  117. {
  118. .procname = "raid",
  119. .maxlen = 0,
  120. .mode = S_IRUGO|S_IXUGO,
  121. .child = raid_table,
  122. },
  123. { }
  124. };
  125. static struct ctl_table raid_root_table[] = {
  126. {
  127. .procname = "dev",
  128. .maxlen = 0,
  129. .mode = 0555,
  130. .child = raid_dir_table,
  131. },
  132. { }
  133. };
  134. static const struct block_device_operations md_fops;
  135. static int start_readonly;
  136. /* bio_clone_mddev
  137. * like bio_clone, but with a local bio set
  138. */
  139. struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
  140. struct mddev *mddev)
  141. {
  142. struct bio *b;
  143. if (!mddev || !mddev->bio_set)
  144. return bio_alloc(gfp_mask, nr_iovecs);
  145. b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
  146. if (!b)
  147. return NULL;
  148. return b;
  149. }
  150. EXPORT_SYMBOL_GPL(bio_alloc_mddev);
  151. struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
  152. struct mddev *mddev)
  153. {
  154. if (!mddev || !mddev->bio_set)
  155. return bio_clone(bio, gfp_mask);
  156. return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
  157. }
  158. EXPORT_SYMBOL_GPL(bio_clone_mddev);
  159. /*
  160. * We have a system wide 'event count' that is incremented
  161. * on any 'interesting' event, and readers of /proc/mdstat
  162. * can use 'poll' or 'select' to find out when the event
  163. * count increases.
  164. *
  165. * Events are:
  166. * start array, stop array, error, add device, remove device,
  167. * start build, activate spare
  168. */
  169. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  170. static atomic_t md_event_count;
  171. void md_new_event(struct mddev *mddev)
  172. {
  173. atomic_inc(&md_event_count);
  174. wake_up(&md_event_waiters);
  175. }
  176. EXPORT_SYMBOL_GPL(md_new_event);
  177. /* Alternate version that can be called from interrupts
  178. * when calling sysfs_notify isn't needed.
  179. */
  180. static void md_new_event_inintr(struct mddev *mddev)
  181. {
  182. atomic_inc(&md_event_count);
  183. wake_up(&md_event_waiters);
  184. }
  185. /*
  186. * Enables to iterate over all existing md arrays
  187. * all_mddevs_lock protects this list.
  188. */
  189. static LIST_HEAD(all_mddevs);
  190. static DEFINE_SPINLOCK(all_mddevs_lock);
  191. /*
  192. * iterates through all used mddevs in the system.
  193. * We take care to grab the all_mddevs_lock whenever navigating
  194. * the list, and to always hold a refcount when unlocked.
  195. * Any code which breaks out of this loop while own
  196. * a reference to the current mddev and must mddev_put it.
  197. */
  198. #define for_each_mddev(_mddev,_tmp) \
  199. \
  200. for (({ spin_lock(&all_mddevs_lock); \
  201. _tmp = all_mddevs.next; \
  202. _mddev = NULL;}); \
  203. ({ if (_tmp != &all_mddevs) \
  204. mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
  205. spin_unlock(&all_mddevs_lock); \
  206. if (_mddev) mddev_put(_mddev); \
  207. _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
  208. _tmp != &all_mddevs;}); \
  209. ({ spin_lock(&all_mddevs_lock); \
  210. _tmp = _tmp->next;}) \
  211. )
  212. /* Rather than calling directly into the personality make_request function,
  213. * IO requests come here first so that we can check if the device is
  214. * being suspended pending a reconfiguration.
  215. * We hold a refcount over the call to ->make_request. By the time that
  216. * call has finished, the bio has been linked into some internal structure
  217. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  218. */
  219. static void md_make_request(struct request_queue *q, struct bio *bio)
  220. {
  221. const int rw = bio_data_dir(bio);
  222. struct mddev *mddev = q->queuedata;
  223. unsigned int sectors;
  224. int cpu;
  225. if (mddev == NULL || mddev->pers == NULL
  226. || !mddev->ready) {
  227. bio_io_error(bio);
  228. return;
  229. }
  230. if (mddev->ro == 1 && unlikely(rw == WRITE)) {
  231. bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
  232. return;
  233. }
  234. smp_rmb(); /* Ensure implications of 'active' are visible */
  235. rcu_read_lock();
  236. if (mddev->suspended) {
  237. DEFINE_WAIT(__wait);
  238. for (;;) {
  239. prepare_to_wait(&mddev->sb_wait, &__wait,
  240. TASK_UNINTERRUPTIBLE);
  241. if (!mddev->suspended)
  242. break;
  243. rcu_read_unlock();
  244. schedule();
  245. rcu_read_lock();
  246. }
  247. finish_wait(&mddev->sb_wait, &__wait);
  248. }
  249. atomic_inc(&mddev->active_io);
  250. rcu_read_unlock();
  251. /*
  252. * save the sectors now since our bio can
  253. * go away inside make_request
  254. */
  255. sectors = bio_sectors(bio);
  256. mddev->pers->make_request(mddev, bio);
  257. cpu = part_stat_lock();
  258. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  259. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
  260. part_stat_unlock();
  261. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  262. wake_up(&mddev->sb_wait);
  263. }
  264. /* mddev_suspend makes sure no new requests are submitted
  265. * to the device, and that any requests that have been submitted
  266. * are completely handled.
  267. * Once mddev_detach() is called and completes, the module will be
  268. * completely unused.
  269. */
  270. void mddev_suspend(struct mddev *mddev)
  271. {
  272. BUG_ON(mddev->suspended);
  273. mddev->suspended = 1;
  274. synchronize_rcu();
  275. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  276. mddev->pers->quiesce(mddev, 1);
  277. del_timer_sync(&mddev->safemode_timer);
  278. }
  279. EXPORT_SYMBOL_GPL(mddev_suspend);
  280. void mddev_resume(struct mddev *mddev)
  281. {
  282. mddev->suspended = 0;
  283. wake_up(&mddev->sb_wait);
  284. mddev->pers->quiesce(mddev, 0);
  285. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  286. md_wakeup_thread(mddev->thread);
  287. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  288. }
  289. EXPORT_SYMBOL_GPL(mddev_resume);
  290. int mddev_congested(struct mddev *mddev, int bits)
  291. {
  292. struct md_personality *pers = mddev->pers;
  293. int ret = 0;
  294. rcu_read_lock();
  295. if (mddev->suspended)
  296. ret = 1;
  297. else if (pers && pers->congested)
  298. ret = pers->congested(mddev, bits);
  299. rcu_read_unlock();
  300. return ret;
  301. }
  302. EXPORT_SYMBOL_GPL(mddev_congested);
  303. static int md_congested(void *data, int bits)
  304. {
  305. struct mddev *mddev = data;
  306. return mddev_congested(mddev, bits);
  307. }
  308. static int md_mergeable_bvec(struct request_queue *q,
  309. struct bvec_merge_data *bvm,
  310. struct bio_vec *biovec)
  311. {
  312. struct mddev *mddev = q->queuedata;
  313. int ret;
  314. rcu_read_lock();
  315. if (mddev->suspended) {
  316. /* Must always allow one vec */
  317. if (bvm->bi_size == 0)
  318. ret = biovec->bv_len;
  319. else
  320. ret = 0;
  321. } else {
  322. struct md_personality *pers = mddev->pers;
  323. if (pers && pers->mergeable_bvec)
  324. ret = pers->mergeable_bvec(mddev, bvm, biovec);
  325. else
  326. ret = biovec->bv_len;
  327. }
  328. rcu_read_unlock();
  329. return ret;
  330. }
  331. /*
  332. * Generic flush handling for md
  333. */
  334. static void md_end_flush(struct bio *bio, int err)
  335. {
  336. struct md_rdev *rdev = bio->bi_private;
  337. struct mddev *mddev = rdev->mddev;
  338. rdev_dec_pending(rdev, mddev);
  339. if (atomic_dec_and_test(&mddev->flush_pending)) {
  340. /* The pre-request flush has finished */
  341. queue_work(md_wq, &mddev->flush_work);
  342. }
  343. bio_put(bio);
  344. }
  345. static void md_submit_flush_data(struct work_struct *ws);
  346. static void submit_flushes(struct work_struct *ws)
  347. {
  348. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  349. struct md_rdev *rdev;
  350. INIT_WORK(&mddev->flush_work, md_submit_flush_data);
  351. atomic_set(&mddev->flush_pending, 1);
  352. rcu_read_lock();
  353. rdev_for_each_rcu(rdev, mddev)
  354. if (rdev->raid_disk >= 0 &&
  355. !test_bit(Faulty, &rdev->flags)) {
  356. /* Take two references, one is dropped
  357. * when request finishes, one after
  358. * we reclaim rcu_read_lock
  359. */
  360. struct bio *bi;
  361. atomic_inc(&rdev->nr_pending);
  362. atomic_inc(&rdev->nr_pending);
  363. rcu_read_unlock();
  364. bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
  365. bi->bi_end_io = md_end_flush;
  366. bi->bi_private = rdev;
  367. bi->bi_bdev = rdev->bdev;
  368. atomic_inc(&mddev->flush_pending);
  369. submit_bio(WRITE_FLUSH, bi);
  370. rcu_read_lock();
  371. rdev_dec_pending(rdev, mddev);
  372. }
  373. rcu_read_unlock();
  374. if (atomic_dec_and_test(&mddev->flush_pending))
  375. queue_work(md_wq, &mddev->flush_work);
  376. }
  377. static void md_submit_flush_data(struct work_struct *ws)
  378. {
  379. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  380. struct bio *bio = mddev->flush_bio;
  381. if (bio->bi_iter.bi_size == 0)
  382. /* an empty barrier - all done */
  383. bio_endio(bio, 0);
  384. else {
  385. bio->bi_rw &= ~REQ_FLUSH;
  386. mddev->pers->make_request(mddev, bio);
  387. }
  388. mddev->flush_bio = NULL;
  389. wake_up(&mddev->sb_wait);
  390. }
  391. void md_flush_request(struct mddev *mddev, struct bio *bio)
  392. {
  393. spin_lock_irq(&mddev->lock);
  394. wait_event_lock_irq(mddev->sb_wait,
  395. !mddev->flush_bio,
  396. mddev->lock);
  397. mddev->flush_bio = bio;
  398. spin_unlock_irq(&mddev->lock);
  399. INIT_WORK(&mddev->flush_work, submit_flushes);
  400. queue_work(md_wq, &mddev->flush_work);
  401. }
  402. EXPORT_SYMBOL(md_flush_request);
  403. void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
  404. {
  405. struct mddev *mddev = cb->data;
  406. md_wakeup_thread(mddev->thread);
  407. kfree(cb);
  408. }
  409. EXPORT_SYMBOL(md_unplug);
  410. static inline struct mddev *mddev_get(struct mddev *mddev)
  411. {
  412. atomic_inc(&mddev->active);
  413. return mddev;
  414. }
  415. static void mddev_delayed_delete(struct work_struct *ws);
  416. static void mddev_put(struct mddev *mddev)
  417. {
  418. struct bio_set *bs = NULL;
  419. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  420. return;
  421. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  422. mddev->ctime == 0 && !mddev->hold_active) {
  423. /* Array is not configured at all, and not held active,
  424. * so destroy it */
  425. list_del_init(&mddev->all_mddevs);
  426. bs = mddev->bio_set;
  427. mddev->bio_set = NULL;
  428. if (mddev->gendisk) {
  429. /* We did a probe so need to clean up. Call
  430. * queue_work inside the spinlock so that
  431. * flush_workqueue() after mddev_find will
  432. * succeed in waiting for the work to be done.
  433. */
  434. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  435. queue_work(md_misc_wq, &mddev->del_work);
  436. } else
  437. kfree(mddev);
  438. }
  439. spin_unlock(&all_mddevs_lock);
  440. if (bs)
  441. bioset_free(bs);
  442. }
  443. void mddev_init(struct mddev *mddev)
  444. {
  445. mutex_init(&mddev->open_mutex);
  446. mutex_init(&mddev->reconfig_mutex);
  447. mutex_init(&mddev->bitmap_info.mutex);
  448. INIT_LIST_HEAD(&mddev->disks);
  449. INIT_LIST_HEAD(&mddev->all_mddevs);
  450. init_timer(&mddev->safemode_timer);
  451. atomic_set(&mddev->active, 1);
  452. atomic_set(&mddev->openers, 0);
  453. atomic_set(&mddev->active_io, 0);
  454. spin_lock_init(&mddev->lock);
  455. atomic_set(&mddev->flush_pending, 0);
  456. init_waitqueue_head(&mddev->sb_wait);
  457. init_waitqueue_head(&mddev->recovery_wait);
  458. mddev->reshape_position = MaxSector;
  459. mddev->reshape_backwards = 0;
  460. mddev->last_sync_action = "none";
  461. mddev->resync_min = 0;
  462. mddev->resync_max = MaxSector;
  463. mddev->level = LEVEL_NONE;
  464. }
  465. EXPORT_SYMBOL_GPL(mddev_init);
  466. static struct mddev *mddev_find(dev_t unit)
  467. {
  468. struct mddev *mddev, *new = NULL;
  469. if (unit && MAJOR(unit) != MD_MAJOR)
  470. unit &= ~((1<<MdpMinorShift)-1);
  471. retry:
  472. spin_lock(&all_mddevs_lock);
  473. if (unit) {
  474. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  475. if (mddev->unit == unit) {
  476. mddev_get(mddev);
  477. spin_unlock(&all_mddevs_lock);
  478. kfree(new);
  479. return mddev;
  480. }
  481. if (new) {
  482. list_add(&new->all_mddevs, &all_mddevs);
  483. spin_unlock(&all_mddevs_lock);
  484. new->hold_active = UNTIL_IOCTL;
  485. return new;
  486. }
  487. } else if (new) {
  488. /* find an unused unit number */
  489. static int next_minor = 512;
  490. int start = next_minor;
  491. int is_free = 0;
  492. int dev = 0;
  493. while (!is_free) {
  494. dev = MKDEV(MD_MAJOR, next_minor);
  495. next_minor++;
  496. if (next_minor > MINORMASK)
  497. next_minor = 0;
  498. if (next_minor == start) {
  499. /* Oh dear, all in use. */
  500. spin_unlock(&all_mddevs_lock);
  501. kfree(new);
  502. return NULL;
  503. }
  504. is_free = 1;
  505. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  506. if (mddev->unit == dev) {
  507. is_free = 0;
  508. break;
  509. }
  510. }
  511. new->unit = dev;
  512. new->md_minor = MINOR(dev);
  513. new->hold_active = UNTIL_STOP;
  514. list_add(&new->all_mddevs, &all_mddevs);
  515. spin_unlock(&all_mddevs_lock);
  516. return new;
  517. }
  518. spin_unlock(&all_mddevs_lock);
  519. new = kzalloc(sizeof(*new), GFP_KERNEL);
  520. if (!new)
  521. return NULL;
  522. new->unit = unit;
  523. if (MAJOR(unit) == MD_MAJOR)
  524. new->md_minor = MINOR(unit);
  525. else
  526. new->md_minor = MINOR(unit) >> MdpMinorShift;
  527. mddev_init(new);
  528. goto retry;
  529. }
  530. static struct attribute_group md_redundancy_group;
  531. void mddev_unlock(struct mddev *mddev)
  532. {
  533. if (mddev->to_remove) {
  534. /* These cannot be removed under reconfig_mutex as
  535. * an access to the files will try to take reconfig_mutex
  536. * while holding the file unremovable, which leads to
  537. * a deadlock.
  538. * So hold set sysfs_active while the remove in happeing,
  539. * and anything else which might set ->to_remove or my
  540. * otherwise change the sysfs namespace will fail with
  541. * -EBUSY if sysfs_active is still set.
  542. * We set sysfs_active under reconfig_mutex and elsewhere
  543. * test it under the same mutex to ensure its correct value
  544. * is seen.
  545. */
  546. struct attribute_group *to_remove = mddev->to_remove;
  547. mddev->to_remove = NULL;
  548. mddev->sysfs_active = 1;
  549. mutex_unlock(&mddev->reconfig_mutex);
  550. if (mddev->kobj.sd) {
  551. if (to_remove != &md_redundancy_group)
  552. sysfs_remove_group(&mddev->kobj, to_remove);
  553. if (mddev->pers == NULL ||
  554. mddev->pers->sync_request == NULL) {
  555. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  556. if (mddev->sysfs_action)
  557. sysfs_put(mddev->sysfs_action);
  558. mddev->sysfs_action = NULL;
  559. }
  560. }
  561. mddev->sysfs_active = 0;
  562. } else
  563. mutex_unlock(&mddev->reconfig_mutex);
  564. /* As we've dropped the mutex we need a spinlock to
  565. * make sure the thread doesn't disappear
  566. */
  567. spin_lock(&pers_lock);
  568. md_wakeup_thread(mddev->thread);
  569. spin_unlock(&pers_lock);
  570. }
  571. EXPORT_SYMBOL_GPL(mddev_unlock);
  572. struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
  573. {
  574. struct md_rdev *rdev;
  575. rdev_for_each_rcu(rdev, mddev)
  576. if (rdev->desc_nr == nr)
  577. return rdev;
  578. return NULL;
  579. }
  580. EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
  581. static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
  582. {
  583. struct md_rdev *rdev;
  584. rdev_for_each(rdev, mddev)
  585. if (rdev->bdev->bd_dev == dev)
  586. return rdev;
  587. return NULL;
  588. }
  589. static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
  590. {
  591. struct md_rdev *rdev;
  592. rdev_for_each_rcu(rdev, mddev)
  593. if (rdev->bdev->bd_dev == dev)
  594. return rdev;
  595. return NULL;
  596. }
  597. static struct md_personality *find_pers(int level, char *clevel)
  598. {
  599. struct md_personality *pers;
  600. list_for_each_entry(pers, &pers_list, list) {
  601. if (level != LEVEL_NONE && pers->level == level)
  602. return pers;
  603. if (strcmp(pers->name, clevel)==0)
  604. return pers;
  605. }
  606. return NULL;
  607. }
  608. /* return the offset of the super block in 512byte sectors */
  609. static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
  610. {
  611. sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
  612. return MD_NEW_SIZE_SECTORS(num_sectors);
  613. }
  614. static int alloc_disk_sb(struct md_rdev *rdev)
  615. {
  616. rdev->sb_page = alloc_page(GFP_KERNEL);
  617. if (!rdev->sb_page) {
  618. printk(KERN_ALERT "md: out of memory.\n");
  619. return -ENOMEM;
  620. }
  621. return 0;
  622. }
  623. void md_rdev_clear(struct md_rdev *rdev)
  624. {
  625. if (rdev->sb_page) {
  626. put_page(rdev->sb_page);
  627. rdev->sb_loaded = 0;
  628. rdev->sb_page = NULL;
  629. rdev->sb_start = 0;
  630. rdev->sectors = 0;
  631. }
  632. if (rdev->bb_page) {
  633. put_page(rdev->bb_page);
  634. rdev->bb_page = NULL;
  635. }
  636. kfree(rdev->badblocks.page);
  637. rdev->badblocks.page = NULL;
  638. }
  639. EXPORT_SYMBOL_GPL(md_rdev_clear);
  640. static void super_written(struct bio *bio, int error)
  641. {
  642. struct md_rdev *rdev = bio->bi_private;
  643. struct mddev *mddev = rdev->mddev;
  644. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  645. printk("md: super_written gets error=%d, uptodate=%d\n",
  646. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  647. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  648. md_error(mddev, rdev);
  649. }
  650. if (atomic_dec_and_test(&mddev->pending_writes))
  651. wake_up(&mddev->sb_wait);
  652. bio_put(bio);
  653. }
  654. void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
  655. sector_t sector, int size, struct page *page)
  656. {
  657. /* write first size bytes of page to sector of rdev
  658. * Increment mddev->pending_writes before returning
  659. * and decrement it on completion, waking up sb_wait
  660. * if zero is reached.
  661. * If an error occurred, call md_error
  662. */
  663. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
  664. bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
  665. bio->bi_iter.bi_sector = sector;
  666. bio_add_page(bio, page, size, 0);
  667. bio->bi_private = rdev;
  668. bio->bi_end_io = super_written;
  669. atomic_inc(&mddev->pending_writes);
  670. submit_bio(WRITE_FLUSH_FUA, bio);
  671. }
  672. void md_super_wait(struct mddev *mddev)
  673. {
  674. /* wait for all superblock writes that were scheduled to complete */
  675. wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
  676. }
  677. int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
  678. struct page *page, int rw, bool metadata_op)
  679. {
  680. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
  681. int ret;
  682. bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
  683. rdev->meta_bdev : rdev->bdev;
  684. if (metadata_op)
  685. bio->bi_iter.bi_sector = sector + rdev->sb_start;
  686. else if (rdev->mddev->reshape_position != MaxSector &&
  687. (rdev->mddev->reshape_backwards ==
  688. (sector >= rdev->mddev->reshape_position)))
  689. bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
  690. else
  691. bio->bi_iter.bi_sector = sector + rdev->data_offset;
  692. bio_add_page(bio, page, size, 0);
  693. submit_bio_wait(rw, bio);
  694. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  695. bio_put(bio);
  696. return ret;
  697. }
  698. EXPORT_SYMBOL_GPL(sync_page_io);
  699. static int read_disk_sb(struct md_rdev *rdev, int size)
  700. {
  701. char b[BDEVNAME_SIZE];
  702. if (rdev->sb_loaded)
  703. return 0;
  704. if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
  705. goto fail;
  706. rdev->sb_loaded = 1;
  707. return 0;
  708. fail:
  709. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  710. bdevname(rdev->bdev,b));
  711. return -EINVAL;
  712. }
  713. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  714. {
  715. return sb1->set_uuid0 == sb2->set_uuid0 &&
  716. sb1->set_uuid1 == sb2->set_uuid1 &&
  717. sb1->set_uuid2 == sb2->set_uuid2 &&
  718. sb1->set_uuid3 == sb2->set_uuid3;
  719. }
  720. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  721. {
  722. int ret;
  723. mdp_super_t *tmp1, *tmp2;
  724. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  725. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  726. if (!tmp1 || !tmp2) {
  727. ret = 0;
  728. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  729. goto abort;
  730. }
  731. *tmp1 = *sb1;
  732. *tmp2 = *sb2;
  733. /*
  734. * nr_disks is not constant
  735. */
  736. tmp1->nr_disks = 0;
  737. tmp2->nr_disks = 0;
  738. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  739. abort:
  740. kfree(tmp1);
  741. kfree(tmp2);
  742. return ret;
  743. }
  744. static u32 md_csum_fold(u32 csum)
  745. {
  746. csum = (csum & 0xffff) + (csum >> 16);
  747. return (csum & 0xffff) + (csum >> 16);
  748. }
  749. static unsigned int calc_sb_csum(mdp_super_t *sb)
  750. {
  751. u64 newcsum = 0;
  752. u32 *sb32 = (u32*)sb;
  753. int i;
  754. unsigned int disk_csum, csum;
  755. disk_csum = sb->sb_csum;
  756. sb->sb_csum = 0;
  757. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  758. newcsum += sb32[i];
  759. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  760. #ifdef CONFIG_ALPHA
  761. /* This used to use csum_partial, which was wrong for several
  762. * reasons including that different results are returned on
  763. * different architectures. It isn't critical that we get exactly
  764. * the same return value as before (we always csum_fold before
  765. * testing, and that removes any differences). However as we
  766. * know that csum_partial always returned a 16bit value on
  767. * alphas, do a fold to maximise conformity to previous behaviour.
  768. */
  769. sb->sb_csum = md_csum_fold(disk_csum);
  770. #else
  771. sb->sb_csum = disk_csum;
  772. #endif
  773. return csum;
  774. }
  775. /*
  776. * Handle superblock details.
  777. * We want to be able to handle multiple superblock formats
  778. * so we have a common interface to them all, and an array of
  779. * different handlers.
  780. * We rely on user-space to write the initial superblock, and support
  781. * reading and updating of superblocks.
  782. * Interface methods are:
  783. * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
  784. * loads and validates a superblock on dev.
  785. * if refdev != NULL, compare superblocks on both devices
  786. * Return:
  787. * 0 - dev has a superblock that is compatible with refdev
  788. * 1 - dev has a superblock that is compatible and newer than refdev
  789. * so dev should be used as the refdev in future
  790. * -EINVAL superblock incompatible or invalid
  791. * -othererror e.g. -EIO
  792. *
  793. * int validate_super(struct mddev *mddev, struct md_rdev *dev)
  794. * Verify that dev is acceptable into mddev.
  795. * The first time, mddev->raid_disks will be 0, and data from
  796. * dev should be merged in. Subsequent calls check that dev
  797. * is new enough. Return 0 or -EINVAL
  798. *
  799. * void sync_super(struct mddev *mddev, struct md_rdev *dev)
  800. * Update the superblock for rdev with data in mddev
  801. * This does not write to disc.
  802. *
  803. */
  804. struct super_type {
  805. char *name;
  806. struct module *owner;
  807. int (*load_super)(struct md_rdev *rdev,
  808. struct md_rdev *refdev,
  809. int minor_version);
  810. int (*validate_super)(struct mddev *mddev,
  811. struct md_rdev *rdev);
  812. void (*sync_super)(struct mddev *mddev,
  813. struct md_rdev *rdev);
  814. unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
  815. sector_t num_sectors);
  816. int (*allow_new_offset)(struct md_rdev *rdev,
  817. unsigned long long new_offset);
  818. };
  819. /*
  820. * Check that the given mddev has no bitmap.
  821. *
  822. * This function is called from the run method of all personalities that do not
  823. * support bitmaps. It prints an error message and returns non-zero if mddev
  824. * has a bitmap. Otherwise, it returns 0.
  825. *
  826. */
  827. int md_check_no_bitmap(struct mddev *mddev)
  828. {
  829. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  830. return 0;
  831. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  832. mdname(mddev), mddev->pers->name);
  833. return 1;
  834. }
  835. EXPORT_SYMBOL(md_check_no_bitmap);
  836. /*
  837. * load_super for 0.90.0
  838. */
  839. static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  840. {
  841. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  842. mdp_super_t *sb;
  843. int ret;
  844. /*
  845. * Calculate the position of the superblock (512byte sectors),
  846. * it's at the end of the disk.
  847. *
  848. * It also happens to be a multiple of 4Kb.
  849. */
  850. rdev->sb_start = calc_dev_sboffset(rdev);
  851. ret = read_disk_sb(rdev, MD_SB_BYTES);
  852. if (ret) return ret;
  853. ret = -EINVAL;
  854. bdevname(rdev->bdev, b);
  855. sb = page_address(rdev->sb_page);
  856. if (sb->md_magic != MD_SB_MAGIC) {
  857. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  858. b);
  859. goto abort;
  860. }
  861. if (sb->major_version != 0 ||
  862. sb->minor_version < 90 ||
  863. sb->minor_version > 91) {
  864. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  865. sb->major_version, sb->minor_version,
  866. b);
  867. goto abort;
  868. }
  869. if (sb->raid_disks <= 0)
  870. goto abort;
  871. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  872. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  873. b);
  874. goto abort;
  875. }
  876. rdev->preferred_minor = sb->md_minor;
  877. rdev->data_offset = 0;
  878. rdev->new_data_offset = 0;
  879. rdev->sb_size = MD_SB_BYTES;
  880. rdev->badblocks.shift = -1;
  881. if (sb->level == LEVEL_MULTIPATH)
  882. rdev->desc_nr = -1;
  883. else
  884. rdev->desc_nr = sb->this_disk.number;
  885. if (!refdev) {
  886. ret = 1;
  887. } else {
  888. __u64 ev1, ev2;
  889. mdp_super_t *refsb = page_address(refdev->sb_page);
  890. if (!uuid_equal(refsb, sb)) {
  891. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  892. b, bdevname(refdev->bdev,b2));
  893. goto abort;
  894. }
  895. if (!sb_equal(refsb, sb)) {
  896. printk(KERN_WARNING "md: %s has same UUID"
  897. " but different superblock to %s\n",
  898. b, bdevname(refdev->bdev, b2));
  899. goto abort;
  900. }
  901. ev1 = md_event(sb);
  902. ev2 = md_event(refsb);
  903. if (ev1 > ev2)
  904. ret = 1;
  905. else
  906. ret = 0;
  907. }
  908. rdev->sectors = rdev->sb_start;
  909. /* Limit to 4TB as metadata cannot record more than that.
  910. * (not needed for Linear and RAID0 as metadata doesn't
  911. * record this size)
  912. */
  913. if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
  914. rdev->sectors = (2ULL << 32) - 2;
  915. if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
  916. /* "this cannot possibly happen" ... */
  917. ret = -EINVAL;
  918. abort:
  919. return ret;
  920. }
  921. /*
  922. * validate_super for 0.90.0
  923. */
  924. static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
  925. {
  926. mdp_disk_t *desc;
  927. mdp_super_t *sb = page_address(rdev->sb_page);
  928. __u64 ev1 = md_event(sb);
  929. rdev->raid_disk = -1;
  930. clear_bit(Faulty, &rdev->flags);
  931. clear_bit(In_sync, &rdev->flags);
  932. clear_bit(Bitmap_sync, &rdev->flags);
  933. clear_bit(WriteMostly, &rdev->flags);
  934. if (mddev->raid_disks == 0) {
  935. mddev->major_version = 0;
  936. mddev->minor_version = sb->minor_version;
  937. mddev->patch_version = sb->patch_version;
  938. mddev->external = 0;
  939. mddev->chunk_sectors = sb->chunk_size >> 9;
  940. mddev->ctime = sb->ctime;
  941. mddev->utime = sb->utime;
  942. mddev->level = sb->level;
  943. mddev->clevel[0] = 0;
  944. mddev->layout = sb->layout;
  945. mddev->raid_disks = sb->raid_disks;
  946. mddev->dev_sectors = ((sector_t)sb->size) * 2;
  947. mddev->events = ev1;
  948. mddev->bitmap_info.offset = 0;
  949. mddev->bitmap_info.space = 0;
  950. /* bitmap can use 60 K after the 4K superblocks */
  951. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  952. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  953. mddev->reshape_backwards = 0;
  954. if (mddev->minor_version >= 91) {
  955. mddev->reshape_position = sb->reshape_position;
  956. mddev->delta_disks = sb->delta_disks;
  957. mddev->new_level = sb->new_level;
  958. mddev->new_layout = sb->new_layout;
  959. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  960. if (mddev->delta_disks < 0)
  961. mddev->reshape_backwards = 1;
  962. } else {
  963. mddev->reshape_position = MaxSector;
  964. mddev->delta_disks = 0;
  965. mddev->new_level = mddev->level;
  966. mddev->new_layout = mddev->layout;
  967. mddev->new_chunk_sectors = mddev->chunk_sectors;
  968. }
  969. if (sb->state & (1<<MD_SB_CLEAN))
  970. mddev->recovery_cp = MaxSector;
  971. else {
  972. if (sb->events_hi == sb->cp_events_hi &&
  973. sb->events_lo == sb->cp_events_lo) {
  974. mddev->recovery_cp = sb->recovery_cp;
  975. } else
  976. mddev->recovery_cp = 0;
  977. }
  978. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  979. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  980. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  981. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  982. mddev->max_disks = MD_SB_DISKS;
  983. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  984. mddev->bitmap_info.file == NULL) {
  985. mddev->bitmap_info.offset =
  986. mddev->bitmap_info.default_offset;
  987. mddev->bitmap_info.space =
  988. mddev->bitmap_info.default_space;
  989. }
  990. } else if (mddev->pers == NULL) {
  991. /* Insist on good event counter while assembling, except
  992. * for spares (which don't need an event count) */
  993. ++ev1;
  994. if (sb->disks[rdev->desc_nr].state & (
  995. (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
  996. if (ev1 < mddev->events)
  997. return -EINVAL;
  998. } else if (mddev->bitmap) {
  999. /* if adding to array with a bitmap, then we can accept an
  1000. * older device ... but not too old.
  1001. */
  1002. if (ev1 < mddev->bitmap->events_cleared)
  1003. return 0;
  1004. if (ev1 < mddev->events)
  1005. set_bit(Bitmap_sync, &rdev->flags);
  1006. } else {
  1007. if (ev1 < mddev->events)
  1008. /* just a hot-add of a new device, leave raid_disk at -1 */
  1009. return 0;
  1010. }
  1011. if (mddev->level != LEVEL_MULTIPATH) {
  1012. desc = sb->disks + rdev->desc_nr;
  1013. if (desc->state & (1<<MD_DISK_FAULTY))
  1014. set_bit(Faulty, &rdev->flags);
  1015. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  1016. desc->raid_disk < mddev->raid_disks */) {
  1017. set_bit(In_sync, &rdev->flags);
  1018. rdev->raid_disk = desc->raid_disk;
  1019. rdev->saved_raid_disk = desc->raid_disk;
  1020. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  1021. /* active but not in sync implies recovery up to
  1022. * reshape position. We don't know exactly where
  1023. * that is, so set to zero for now */
  1024. if (mddev->minor_version >= 91) {
  1025. rdev->recovery_offset = 0;
  1026. rdev->raid_disk = desc->raid_disk;
  1027. }
  1028. }
  1029. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  1030. set_bit(WriteMostly, &rdev->flags);
  1031. } else /* MULTIPATH are always insync */
  1032. set_bit(In_sync, &rdev->flags);
  1033. return 0;
  1034. }
  1035. /*
  1036. * sync_super for 0.90.0
  1037. */
  1038. static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
  1039. {
  1040. mdp_super_t *sb;
  1041. struct md_rdev *rdev2;
  1042. int next_spare = mddev->raid_disks;
  1043. /* make rdev->sb match mddev data..
  1044. *
  1045. * 1/ zero out disks
  1046. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  1047. * 3/ any empty disks < next_spare become removed
  1048. *
  1049. * disks[0] gets initialised to REMOVED because
  1050. * we cannot be sure from other fields if it has
  1051. * been initialised or not.
  1052. */
  1053. int i;
  1054. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  1055. rdev->sb_size = MD_SB_BYTES;
  1056. sb = page_address(rdev->sb_page);
  1057. memset(sb, 0, sizeof(*sb));
  1058. sb->md_magic = MD_SB_MAGIC;
  1059. sb->major_version = mddev->major_version;
  1060. sb->patch_version = mddev->patch_version;
  1061. sb->gvalid_words = 0; /* ignored */
  1062. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  1063. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  1064. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  1065. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  1066. sb->ctime = mddev->ctime;
  1067. sb->level = mddev->level;
  1068. sb->size = mddev->dev_sectors / 2;
  1069. sb->raid_disks = mddev->raid_disks;
  1070. sb->md_minor = mddev->md_minor;
  1071. sb->not_persistent = 0;
  1072. sb->utime = mddev->utime;
  1073. sb->state = 0;
  1074. sb->events_hi = (mddev->events>>32);
  1075. sb->events_lo = (u32)mddev->events;
  1076. if (mddev->reshape_position == MaxSector)
  1077. sb->minor_version = 90;
  1078. else {
  1079. sb->minor_version = 91;
  1080. sb->reshape_position = mddev->reshape_position;
  1081. sb->new_level = mddev->new_level;
  1082. sb->delta_disks = mddev->delta_disks;
  1083. sb->new_layout = mddev->new_layout;
  1084. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1085. }
  1086. mddev->minor_version = sb->minor_version;
  1087. if (mddev->in_sync)
  1088. {
  1089. sb->recovery_cp = mddev->recovery_cp;
  1090. sb->cp_events_hi = (mddev->events>>32);
  1091. sb->cp_events_lo = (u32)mddev->events;
  1092. if (mddev->recovery_cp == MaxSector)
  1093. sb->state = (1<< MD_SB_CLEAN);
  1094. } else
  1095. sb->recovery_cp = 0;
  1096. sb->layout = mddev->layout;
  1097. sb->chunk_size = mddev->chunk_sectors << 9;
  1098. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1099. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1100. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1101. rdev_for_each(rdev2, mddev) {
  1102. mdp_disk_t *d;
  1103. int desc_nr;
  1104. int is_active = test_bit(In_sync, &rdev2->flags);
  1105. if (rdev2->raid_disk >= 0 &&
  1106. sb->minor_version >= 91)
  1107. /* we have nowhere to store the recovery_offset,
  1108. * but if it is not below the reshape_position,
  1109. * we can piggy-back on that.
  1110. */
  1111. is_active = 1;
  1112. if (rdev2->raid_disk < 0 ||
  1113. test_bit(Faulty, &rdev2->flags))
  1114. is_active = 0;
  1115. if (is_active)
  1116. desc_nr = rdev2->raid_disk;
  1117. else
  1118. desc_nr = next_spare++;
  1119. rdev2->desc_nr = desc_nr;
  1120. d = &sb->disks[rdev2->desc_nr];
  1121. nr_disks++;
  1122. d->number = rdev2->desc_nr;
  1123. d->major = MAJOR(rdev2->bdev->bd_dev);
  1124. d->minor = MINOR(rdev2->bdev->bd_dev);
  1125. if (is_active)
  1126. d->raid_disk = rdev2->raid_disk;
  1127. else
  1128. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1129. if (test_bit(Faulty, &rdev2->flags))
  1130. d->state = (1<<MD_DISK_FAULTY);
  1131. else if (is_active) {
  1132. d->state = (1<<MD_DISK_ACTIVE);
  1133. if (test_bit(In_sync, &rdev2->flags))
  1134. d->state |= (1<<MD_DISK_SYNC);
  1135. active++;
  1136. working++;
  1137. } else {
  1138. d->state = 0;
  1139. spare++;
  1140. working++;
  1141. }
  1142. if (test_bit(WriteMostly, &rdev2->flags))
  1143. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1144. }
  1145. /* now set the "removed" and "faulty" bits on any missing devices */
  1146. for (i=0 ; i < mddev->raid_disks ; i++) {
  1147. mdp_disk_t *d = &sb->disks[i];
  1148. if (d->state == 0 && d->number == 0) {
  1149. d->number = i;
  1150. d->raid_disk = i;
  1151. d->state = (1<<MD_DISK_REMOVED);
  1152. d->state |= (1<<MD_DISK_FAULTY);
  1153. failed++;
  1154. }
  1155. }
  1156. sb->nr_disks = nr_disks;
  1157. sb->active_disks = active;
  1158. sb->working_disks = working;
  1159. sb->failed_disks = failed;
  1160. sb->spare_disks = spare;
  1161. sb->this_disk = sb->disks[rdev->desc_nr];
  1162. sb->sb_csum = calc_sb_csum(sb);
  1163. }
  1164. /*
  1165. * rdev_size_change for 0.90.0
  1166. */
  1167. static unsigned long long
  1168. super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1169. {
  1170. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1171. return 0; /* component must fit device */
  1172. if (rdev->mddev->bitmap_info.offset)
  1173. return 0; /* can't move bitmap */
  1174. rdev->sb_start = calc_dev_sboffset(rdev);
  1175. if (!num_sectors || num_sectors > rdev->sb_start)
  1176. num_sectors = rdev->sb_start;
  1177. /* Limit to 4TB as metadata cannot record more than that.
  1178. * 4TB == 2^32 KB, or 2*2^32 sectors.
  1179. */
  1180. if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
  1181. num_sectors = (2ULL << 32) - 2;
  1182. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1183. rdev->sb_page);
  1184. md_super_wait(rdev->mddev);
  1185. return num_sectors;
  1186. }
  1187. static int
  1188. super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
  1189. {
  1190. /* non-zero offset changes not possible with v0.90 */
  1191. return new_offset == 0;
  1192. }
  1193. /*
  1194. * version 1 superblock
  1195. */
  1196. static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
  1197. {
  1198. __le32 disk_csum;
  1199. u32 csum;
  1200. unsigned long long newcsum;
  1201. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1202. __le32 *isuper = (__le32*)sb;
  1203. disk_csum = sb->sb_csum;
  1204. sb->sb_csum = 0;
  1205. newcsum = 0;
  1206. for (; size >= 4; size -= 4)
  1207. newcsum += le32_to_cpu(*isuper++);
  1208. if (size == 2)
  1209. newcsum += le16_to_cpu(*(__le16*) isuper);
  1210. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1211. sb->sb_csum = disk_csum;
  1212. return cpu_to_le32(csum);
  1213. }
  1214. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  1215. int acknowledged);
  1216. static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  1217. {
  1218. struct mdp_superblock_1 *sb;
  1219. int ret;
  1220. sector_t sb_start;
  1221. sector_t sectors;
  1222. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1223. int bmask;
  1224. /*
  1225. * Calculate the position of the superblock in 512byte sectors.
  1226. * It is always aligned to a 4K boundary and
  1227. * depeding on minor_version, it can be:
  1228. * 0: At least 8K, but less than 12K, from end of device
  1229. * 1: At start of device
  1230. * 2: 4K from start of device.
  1231. */
  1232. switch(minor_version) {
  1233. case 0:
  1234. sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
  1235. sb_start -= 8*2;
  1236. sb_start &= ~(sector_t)(4*2-1);
  1237. break;
  1238. case 1:
  1239. sb_start = 0;
  1240. break;
  1241. case 2:
  1242. sb_start = 8;
  1243. break;
  1244. default:
  1245. return -EINVAL;
  1246. }
  1247. rdev->sb_start = sb_start;
  1248. /* superblock is rarely larger than 1K, but it can be larger,
  1249. * and it is safe to read 4k, so we do that
  1250. */
  1251. ret = read_disk_sb(rdev, 4096);
  1252. if (ret) return ret;
  1253. sb = page_address(rdev->sb_page);
  1254. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1255. sb->major_version != cpu_to_le32(1) ||
  1256. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1257. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1258. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1259. return -EINVAL;
  1260. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1261. printk("md: invalid superblock checksum on %s\n",
  1262. bdevname(rdev->bdev,b));
  1263. return -EINVAL;
  1264. }
  1265. if (le64_to_cpu(sb->data_size) < 10) {
  1266. printk("md: data_size too small on %s\n",
  1267. bdevname(rdev->bdev,b));
  1268. return -EINVAL;
  1269. }
  1270. if (sb->pad0 ||
  1271. sb->pad3[0] ||
  1272. memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
  1273. /* Some padding is non-zero, might be a new feature */
  1274. return -EINVAL;
  1275. rdev->preferred_minor = 0xffff;
  1276. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1277. rdev->new_data_offset = rdev->data_offset;
  1278. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
  1279. (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
  1280. rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
  1281. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1282. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1283. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1284. if (rdev->sb_size & bmask)
  1285. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1286. if (minor_version
  1287. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1288. return -EINVAL;
  1289. if (minor_version
  1290. && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
  1291. return -EINVAL;
  1292. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1293. rdev->desc_nr = -1;
  1294. else
  1295. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1296. if (!rdev->bb_page) {
  1297. rdev->bb_page = alloc_page(GFP_KERNEL);
  1298. if (!rdev->bb_page)
  1299. return -ENOMEM;
  1300. }
  1301. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
  1302. rdev->badblocks.count == 0) {
  1303. /* need to load the bad block list.
  1304. * Currently we limit it to one page.
  1305. */
  1306. s32 offset;
  1307. sector_t bb_sector;
  1308. u64 *bbp;
  1309. int i;
  1310. int sectors = le16_to_cpu(sb->bblog_size);
  1311. if (sectors > (PAGE_SIZE / 512))
  1312. return -EINVAL;
  1313. offset = le32_to_cpu(sb->bblog_offset);
  1314. if (offset == 0)
  1315. return -EINVAL;
  1316. bb_sector = (long long)offset;
  1317. if (!sync_page_io(rdev, bb_sector, sectors << 9,
  1318. rdev->bb_page, READ, true))
  1319. return -EIO;
  1320. bbp = (u64 *)page_address(rdev->bb_page);
  1321. rdev->badblocks.shift = sb->bblog_shift;
  1322. for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
  1323. u64 bb = le64_to_cpu(*bbp);
  1324. int count = bb & (0x3ff);
  1325. u64 sector = bb >> 10;
  1326. sector <<= sb->bblog_shift;
  1327. count <<= sb->bblog_shift;
  1328. if (bb + 1 == 0)
  1329. break;
  1330. if (md_set_badblocks(&rdev->badblocks,
  1331. sector, count, 1) == 0)
  1332. return -EINVAL;
  1333. }
  1334. } else if (sb->bblog_offset != 0)
  1335. rdev->badblocks.shift = 0;
  1336. if (!refdev) {
  1337. ret = 1;
  1338. } else {
  1339. __u64 ev1, ev2;
  1340. struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
  1341. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1342. sb->level != refsb->level ||
  1343. sb->layout != refsb->layout ||
  1344. sb->chunksize != refsb->chunksize) {
  1345. printk(KERN_WARNING "md: %s has strangely different"
  1346. " superblock to %s\n",
  1347. bdevname(rdev->bdev,b),
  1348. bdevname(refdev->bdev,b2));
  1349. return -EINVAL;
  1350. }
  1351. ev1 = le64_to_cpu(sb->events);
  1352. ev2 = le64_to_cpu(refsb->events);
  1353. if (ev1 > ev2)
  1354. ret = 1;
  1355. else
  1356. ret = 0;
  1357. }
  1358. if (minor_version) {
  1359. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
  1360. sectors -= rdev->data_offset;
  1361. } else
  1362. sectors = rdev->sb_start;
  1363. if (sectors < le64_to_cpu(sb->data_size))
  1364. return -EINVAL;
  1365. rdev->sectors = le64_to_cpu(sb->data_size);
  1366. return ret;
  1367. }
  1368. static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
  1369. {
  1370. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  1371. __u64 ev1 = le64_to_cpu(sb->events);
  1372. rdev->raid_disk = -1;
  1373. clear_bit(Faulty, &rdev->flags);
  1374. clear_bit(In_sync, &rdev->flags);
  1375. clear_bit(Bitmap_sync, &rdev->flags);
  1376. clear_bit(WriteMostly, &rdev->flags);
  1377. if (mddev->raid_disks == 0) {
  1378. mddev->major_version = 1;
  1379. mddev->patch_version = 0;
  1380. mddev->external = 0;
  1381. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1382. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1383. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1384. mddev->level = le32_to_cpu(sb->level);
  1385. mddev->clevel[0] = 0;
  1386. mddev->layout = le32_to_cpu(sb->layout);
  1387. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1388. mddev->dev_sectors = le64_to_cpu(sb->size);
  1389. mddev->events = ev1;
  1390. mddev->bitmap_info.offset = 0;
  1391. mddev->bitmap_info.space = 0;
  1392. /* Default location for bitmap is 1K after superblock
  1393. * using 3K - total of 4K
  1394. */
  1395. mddev->bitmap_info.default_offset = 1024 >> 9;
  1396. mddev->bitmap_info.default_space = (4096-1024) >> 9;
  1397. mddev->reshape_backwards = 0;
  1398. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1399. memcpy(mddev->uuid, sb->set_uuid, 16);
  1400. mddev->max_disks = (4096-256)/2;
  1401. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1402. mddev->bitmap_info.file == NULL) {
  1403. mddev->bitmap_info.offset =
  1404. (__s32)le32_to_cpu(sb->bitmap_offset);
  1405. /* Metadata doesn't record how much space is available.
  1406. * For 1.0, we assume we can use up to the superblock
  1407. * if before, else to 4K beyond superblock.
  1408. * For others, assume no change is possible.
  1409. */
  1410. if (mddev->minor_version > 0)
  1411. mddev->bitmap_info.space = 0;
  1412. else if (mddev->bitmap_info.offset > 0)
  1413. mddev->bitmap_info.space =
  1414. 8 - mddev->bitmap_info.offset;
  1415. else
  1416. mddev->bitmap_info.space =
  1417. -mddev->bitmap_info.offset;
  1418. }
  1419. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1420. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1421. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1422. mddev->new_level = le32_to_cpu(sb->new_level);
  1423. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1424. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1425. if (mddev->delta_disks < 0 ||
  1426. (mddev->delta_disks == 0 &&
  1427. (le32_to_cpu(sb->feature_map)
  1428. & MD_FEATURE_RESHAPE_BACKWARDS)))
  1429. mddev->reshape_backwards = 1;
  1430. } else {
  1431. mddev->reshape_position = MaxSector;
  1432. mddev->delta_disks = 0;
  1433. mddev->new_level = mddev->level;
  1434. mddev->new_layout = mddev->layout;
  1435. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1436. }
  1437. } else if (mddev->pers == NULL) {
  1438. /* Insist of good event counter while assembling, except for
  1439. * spares (which don't need an event count) */
  1440. ++ev1;
  1441. if (rdev->desc_nr >= 0 &&
  1442. rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
  1443. le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
  1444. if (ev1 < mddev->events)
  1445. return -EINVAL;
  1446. } else if (mddev->bitmap) {
  1447. /* If adding to array with a bitmap, then we can accept an
  1448. * older device, but not too old.
  1449. */
  1450. if (ev1 < mddev->bitmap->events_cleared)
  1451. return 0;
  1452. if (ev1 < mddev->events)
  1453. set_bit(Bitmap_sync, &rdev->flags);
  1454. } else {
  1455. if (ev1 < mddev->events)
  1456. /* just a hot-add of a new device, leave raid_disk at -1 */
  1457. return 0;
  1458. }
  1459. if (mddev->level != LEVEL_MULTIPATH) {
  1460. int role;
  1461. if (rdev->desc_nr < 0 ||
  1462. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1463. role = 0xffff;
  1464. rdev->desc_nr = -1;
  1465. } else
  1466. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1467. switch(role) {
  1468. case 0xffff: /* spare */
  1469. break;
  1470. case 0xfffe: /* faulty */
  1471. set_bit(Faulty, &rdev->flags);
  1472. break;
  1473. default:
  1474. rdev->saved_raid_disk = role;
  1475. if ((le32_to_cpu(sb->feature_map) &
  1476. MD_FEATURE_RECOVERY_OFFSET)) {
  1477. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1478. if (!(le32_to_cpu(sb->feature_map) &
  1479. MD_FEATURE_RECOVERY_BITMAP))
  1480. rdev->saved_raid_disk = -1;
  1481. } else
  1482. set_bit(In_sync, &rdev->flags);
  1483. rdev->raid_disk = role;
  1484. break;
  1485. }
  1486. if (sb->devflags & WriteMostly1)
  1487. set_bit(WriteMostly, &rdev->flags);
  1488. if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
  1489. set_bit(Replacement, &rdev->flags);
  1490. } else /* MULTIPATH are always insync */
  1491. set_bit(In_sync, &rdev->flags);
  1492. return 0;
  1493. }
  1494. static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
  1495. {
  1496. struct mdp_superblock_1 *sb;
  1497. struct md_rdev *rdev2;
  1498. int max_dev, i;
  1499. /* make rdev->sb match mddev and rdev data. */
  1500. sb = page_address(rdev->sb_page);
  1501. sb->feature_map = 0;
  1502. sb->pad0 = 0;
  1503. sb->recovery_offset = cpu_to_le64(0);
  1504. memset(sb->pad3, 0, sizeof(sb->pad3));
  1505. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1506. sb->events = cpu_to_le64(mddev->events);
  1507. if (mddev->in_sync)
  1508. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1509. else
  1510. sb->resync_offset = cpu_to_le64(0);
  1511. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1512. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1513. sb->size = cpu_to_le64(mddev->dev_sectors);
  1514. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1515. sb->level = cpu_to_le32(mddev->level);
  1516. sb->layout = cpu_to_le32(mddev->layout);
  1517. if (test_bit(WriteMostly, &rdev->flags))
  1518. sb->devflags |= WriteMostly1;
  1519. else
  1520. sb->devflags &= ~WriteMostly1;
  1521. sb->data_offset = cpu_to_le64(rdev->data_offset);
  1522. sb->data_size = cpu_to_le64(rdev->sectors);
  1523. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1524. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1525. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1526. }
  1527. if (rdev->raid_disk >= 0 &&
  1528. !test_bit(In_sync, &rdev->flags)) {
  1529. sb->feature_map |=
  1530. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1531. sb->recovery_offset =
  1532. cpu_to_le64(rdev->recovery_offset);
  1533. if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
  1534. sb->feature_map |=
  1535. cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
  1536. }
  1537. if (test_bit(Replacement, &rdev->flags))
  1538. sb->feature_map |=
  1539. cpu_to_le32(MD_FEATURE_REPLACEMENT);
  1540. if (mddev->reshape_position != MaxSector) {
  1541. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1542. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1543. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1544. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1545. sb->new_level = cpu_to_le32(mddev->new_level);
  1546. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1547. if (mddev->delta_disks == 0 &&
  1548. mddev->reshape_backwards)
  1549. sb->feature_map
  1550. |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
  1551. if (rdev->new_data_offset != rdev->data_offset) {
  1552. sb->feature_map
  1553. |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
  1554. sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
  1555. - rdev->data_offset));
  1556. }
  1557. }
  1558. if (rdev->badblocks.count == 0)
  1559. /* Nothing to do for bad blocks*/ ;
  1560. else if (sb->bblog_offset == 0)
  1561. /* Cannot record bad blocks on this device */
  1562. md_error(mddev, rdev);
  1563. else {
  1564. struct badblocks *bb = &rdev->badblocks;
  1565. u64 *bbp = (u64 *)page_address(rdev->bb_page);
  1566. u64 *p = bb->page;
  1567. sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
  1568. if (bb->changed) {
  1569. unsigned seq;
  1570. retry:
  1571. seq = read_seqbegin(&bb->lock);
  1572. memset(bbp, 0xff, PAGE_SIZE);
  1573. for (i = 0 ; i < bb->count ; i++) {
  1574. u64 internal_bb = p[i];
  1575. u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
  1576. | BB_LEN(internal_bb));
  1577. bbp[i] = cpu_to_le64(store_bb);
  1578. }
  1579. bb->changed = 0;
  1580. if (read_seqretry(&bb->lock, seq))
  1581. goto retry;
  1582. bb->sector = (rdev->sb_start +
  1583. (int)le32_to_cpu(sb->bblog_offset));
  1584. bb->size = le16_to_cpu(sb->bblog_size);
  1585. }
  1586. }
  1587. max_dev = 0;
  1588. rdev_for_each(rdev2, mddev)
  1589. if (rdev2->desc_nr+1 > max_dev)
  1590. max_dev = rdev2->desc_nr+1;
  1591. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1592. int bmask;
  1593. sb->max_dev = cpu_to_le32(max_dev);
  1594. rdev->sb_size = max_dev * 2 + 256;
  1595. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1596. if (rdev->sb_size & bmask)
  1597. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1598. } else
  1599. max_dev = le32_to_cpu(sb->max_dev);
  1600. for (i=0; i<max_dev;i++)
  1601. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1602. rdev_for_each(rdev2, mddev) {
  1603. i = rdev2->desc_nr;
  1604. if (test_bit(Faulty, &rdev2->flags))
  1605. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1606. else if (test_bit(In_sync, &rdev2->flags))
  1607. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1608. else if (rdev2->raid_disk >= 0)
  1609. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1610. else
  1611. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1612. }
  1613. sb->sb_csum = calc_sb_1_csum(sb);
  1614. }
  1615. static unsigned long long
  1616. super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1617. {
  1618. struct mdp_superblock_1 *sb;
  1619. sector_t max_sectors;
  1620. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1621. return 0; /* component must fit device */
  1622. if (rdev->data_offset != rdev->new_data_offset)
  1623. return 0; /* too confusing */
  1624. if (rdev->sb_start < rdev->data_offset) {
  1625. /* minor versions 1 and 2; superblock before data */
  1626. max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
  1627. max_sectors -= rdev->data_offset;
  1628. if (!num_sectors || num_sectors > max_sectors)
  1629. num_sectors = max_sectors;
  1630. } else if (rdev->mddev->bitmap_info.offset) {
  1631. /* minor version 0 with bitmap we can't move */
  1632. return 0;
  1633. } else {
  1634. /* minor version 0; superblock after data */
  1635. sector_t sb_start;
  1636. sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
  1637. sb_start &= ~(sector_t)(4*2 - 1);
  1638. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1639. if (!num_sectors || num_sectors > max_sectors)
  1640. num_sectors = max_sectors;
  1641. rdev->sb_start = sb_start;
  1642. }
  1643. sb = page_address(rdev->sb_page);
  1644. sb->data_size = cpu_to_le64(num_sectors);
  1645. sb->super_offset = rdev->sb_start;
  1646. sb->sb_csum = calc_sb_1_csum(sb);
  1647. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1648. rdev->sb_page);
  1649. md_super_wait(rdev->mddev);
  1650. return num_sectors;
  1651. }
  1652. static int
  1653. super_1_allow_new_offset(struct md_rdev *rdev,
  1654. unsigned long long new_offset)
  1655. {
  1656. /* All necessary checks on new >= old have been done */
  1657. struct bitmap *bitmap;
  1658. if (new_offset >= rdev->data_offset)
  1659. return 1;
  1660. /* with 1.0 metadata, there is no metadata to tread on
  1661. * so we can always move back */
  1662. if (rdev->mddev->minor_version == 0)
  1663. return 1;
  1664. /* otherwise we must be sure not to step on
  1665. * any metadata, so stay:
  1666. * 36K beyond start of superblock
  1667. * beyond end of badblocks
  1668. * beyond write-intent bitmap
  1669. */
  1670. if (rdev->sb_start + (32+4)*2 > new_offset)
  1671. return 0;
  1672. bitmap = rdev->mddev->bitmap;
  1673. if (bitmap && !rdev->mddev->bitmap_info.file &&
  1674. rdev->sb_start + rdev->mddev->bitmap_info.offset +
  1675. bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
  1676. return 0;
  1677. if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
  1678. return 0;
  1679. return 1;
  1680. }
  1681. static struct super_type super_types[] = {
  1682. [0] = {
  1683. .name = "0.90.0",
  1684. .owner = THIS_MODULE,
  1685. .load_super = super_90_load,
  1686. .validate_super = super_90_validate,
  1687. .sync_super = super_90_sync,
  1688. .rdev_size_change = super_90_rdev_size_change,
  1689. .allow_new_offset = super_90_allow_new_offset,
  1690. },
  1691. [1] = {
  1692. .name = "md-1",
  1693. .owner = THIS_MODULE,
  1694. .load_super = super_1_load,
  1695. .validate_super = super_1_validate,
  1696. .sync_super = super_1_sync,
  1697. .rdev_size_change = super_1_rdev_size_change,
  1698. .allow_new_offset = super_1_allow_new_offset,
  1699. },
  1700. };
  1701. static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
  1702. {
  1703. if (mddev->sync_super) {
  1704. mddev->sync_super(mddev, rdev);
  1705. return;
  1706. }
  1707. BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
  1708. super_types[mddev->major_version].sync_super(mddev, rdev);
  1709. }
  1710. static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
  1711. {
  1712. struct md_rdev *rdev, *rdev2;
  1713. rcu_read_lock();
  1714. rdev_for_each_rcu(rdev, mddev1)
  1715. rdev_for_each_rcu(rdev2, mddev2)
  1716. if (rdev->bdev->bd_contains ==
  1717. rdev2->bdev->bd_contains) {
  1718. rcu_read_unlock();
  1719. return 1;
  1720. }
  1721. rcu_read_unlock();
  1722. return 0;
  1723. }
  1724. static LIST_HEAD(pending_raid_disks);
  1725. /*
  1726. * Try to register data integrity profile for an mddev
  1727. *
  1728. * This is called when an array is started and after a disk has been kicked
  1729. * from the array. It only succeeds if all working and active component devices
  1730. * are integrity capable with matching profiles.
  1731. */
  1732. int md_integrity_register(struct mddev *mddev)
  1733. {
  1734. struct md_rdev *rdev, *reference = NULL;
  1735. if (list_empty(&mddev->disks))
  1736. return 0; /* nothing to do */
  1737. if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
  1738. return 0; /* shouldn't register, or already is */
  1739. rdev_for_each(rdev, mddev) {
  1740. /* skip spares and non-functional disks */
  1741. if (test_bit(Faulty, &rdev->flags))
  1742. continue;
  1743. if (rdev->raid_disk < 0)
  1744. continue;
  1745. if (!reference) {
  1746. /* Use the first rdev as the reference */
  1747. reference = rdev;
  1748. continue;
  1749. }
  1750. /* does this rdev's profile match the reference profile? */
  1751. if (blk_integrity_compare(reference->bdev->bd_disk,
  1752. rdev->bdev->bd_disk) < 0)
  1753. return -EINVAL;
  1754. }
  1755. if (!reference || !bdev_get_integrity(reference->bdev))
  1756. return 0;
  1757. /*
  1758. * All component devices are integrity capable and have matching
  1759. * profiles, register the common profile for the md device.
  1760. */
  1761. if (blk_integrity_register(mddev->gendisk,
  1762. bdev_get_integrity(reference->bdev)) != 0) {
  1763. printk(KERN_ERR "md: failed to register integrity for %s\n",
  1764. mdname(mddev));
  1765. return -EINVAL;
  1766. }
  1767. printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
  1768. if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
  1769. printk(KERN_ERR "md: failed to create integrity pool for %s\n",
  1770. mdname(mddev));
  1771. return -EINVAL;
  1772. }
  1773. return 0;
  1774. }
  1775. EXPORT_SYMBOL(md_integrity_register);
  1776. /* Disable data integrity if non-capable/non-matching disk is being added */
  1777. void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
  1778. {
  1779. struct blk_integrity *bi_rdev;
  1780. struct blk_integrity *bi_mddev;
  1781. if (!mddev->gendisk)
  1782. return;
  1783. bi_rdev = bdev_get_integrity(rdev->bdev);
  1784. bi_mddev = blk_get_integrity(mddev->gendisk);
  1785. if (!bi_mddev) /* nothing to do */
  1786. return;
  1787. if (rdev->raid_disk < 0) /* skip spares */
  1788. return;
  1789. if (bi_rdev && blk_integrity_compare(mddev->gendisk,
  1790. rdev->bdev->bd_disk) >= 0)
  1791. return;
  1792. printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
  1793. blk_integrity_unregister(mddev->gendisk);
  1794. }
  1795. EXPORT_SYMBOL(md_integrity_add_rdev);
  1796. static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
  1797. {
  1798. char b[BDEVNAME_SIZE];
  1799. struct kobject *ko;
  1800. char *s;
  1801. int err;
  1802. /* prevent duplicates */
  1803. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1804. return -EEXIST;
  1805. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1806. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1807. rdev->sectors < mddev->dev_sectors)) {
  1808. if (mddev->pers) {
  1809. /* Cannot change size, so fail
  1810. * If mddev->level <= 0, then we don't care
  1811. * about aligning sizes (e.g. linear)
  1812. */
  1813. if (mddev->level > 0)
  1814. return -ENOSPC;
  1815. } else
  1816. mddev->dev_sectors = rdev->sectors;
  1817. }
  1818. /* Verify rdev->desc_nr is unique.
  1819. * If it is -1, assign a free number, else
  1820. * check number is not in use
  1821. */
  1822. rcu_read_lock();
  1823. if (rdev->desc_nr < 0) {
  1824. int choice = 0;
  1825. if (mddev->pers)
  1826. choice = mddev->raid_disks;
  1827. while (md_find_rdev_nr_rcu(mddev, choice))
  1828. choice++;
  1829. rdev->desc_nr = choice;
  1830. } else {
  1831. if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
  1832. rcu_read_unlock();
  1833. return -EBUSY;
  1834. }
  1835. }
  1836. rcu_read_unlock();
  1837. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1838. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1839. mdname(mddev), mddev->max_disks);
  1840. return -EBUSY;
  1841. }
  1842. bdevname(rdev->bdev,b);
  1843. while ( (s=strchr(b, '/')) != NULL)
  1844. *s = '!';
  1845. rdev->mddev = mddev;
  1846. printk(KERN_INFO "md: bind<%s>\n", b);
  1847. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1848. goto fail;
  1849. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1850. if (sysfs_create_link(&rdev->kobj, ko, "block"))
  1851. /* failure here is OK */;
  1852. rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
  1853. list_add_rcu(&rdev->same_set, &mddev->disks);
  1854. bd_link_disk_holder(rdev->bdev, mddev->gendisk);
  1855. /* May as well allow recovery to be retried once */
  1856. mddev->recovery_disabled++;
  1857. return 0;
  1858. fail:
  1859. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1860. b, mdname(mddev));
  1861. return err;
  1862. }
  1863. static void md_delayed_delete(struct work_struct *ws)
  1864. {
  1865. struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
  1866. kobject_del(&rdev->kobj);
  1867. kobject_put(&rdev->kobj);
  1868. }
  1869. static void unbind_rdev_from_array(struct md_rdev *rdev)
  1870. {
  1871. char b[BDEVNAME_SIZE];
  1872. bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
  1873. list_del_rcu(&rdev->same_set);
  1874. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1875. rdev->mddev = NULL;
  1876. sysfs_remove_link(&rdev->kobj, "block");
  1877. sysfs_put(rdev->sysfs_state);
  1878. rdev->sysfs_state = NULL;
  1879. rdev->badblocks.count = 0;
  1880. /* We need to delay this, otherwise we can deadlock when
  1881. * writing to 'remove' to "dev/state". We also need
  1882. * to delay it due to rcu usage.
  1883. */
  1884. synchronize_rcu();
  1885. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1886. kobject_get(&rdev->kobj);
  1887. queue_work(md_misc_wq, &rdev->del_work);
  1888. }
  1889. /*
  1890. * prevent the device from being mounted, repartitioned or
  1891. * otherwise reused by a RAID array (or any other kernel
  1892. * subsystem), by bd_claiming the device.
  1893. */
  1894. static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
  1895. {
  1896. int err = 0;
  1897. struct block_device *bdev;
  1898. char b[BDEVNAME_SIZE];
  1899. bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1900. shared ? (struct md_rdev *)lock_rdev : rdev);
  1901. if (IS_ERR(bdev)) {
  1902. printk(KERN_ERR "md: could not open %s.\n",
  1903. __bdevname(dev, b));
  1904. return PTR_ERR(bdev);
  1905. }
  1906. rdev->bdev = bdev;
  1907. return err;
  1908. }
  1909. static void unlock_rdev(struct md_rdev *rdev)
  1910. {
  1911. struct block_device *bdev = rdev->bdev;
  1912. rdev->bdev = NULL;
  1913. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1914. }
  1915. void md_autodetect_dev(dev_t dev);
  1916. static void export_rdev(struct md_rdev *rdev)
  1917. {
  1918. char b[BDEVNAME_SIZE];
  1919. printk(KERN_INFO "md: export_rdev(%s)\n",
  1920. bdevname(rdev->bdev,b));
  1921. md_rdev_clear(rdev);
  1922. #ifndef MODULE
  1923. if (test_bit(AutoDetected, &rdev->flags))
  1924. md_autodetect_dev(rdev->bdev->bd_dev);
  1925. #endif
  1926. unlock_rdev(rdev);
  1927. kobject_put(&rdev->kobj);
  1928. }
  1929. void md_kick_rdev_from_array(struct md_rdev *rdev)
  1930. {
  1931. unbind_rdev_from_array(rdev);
  1932. export_rdev(rdev);
  1933. }
  1934. EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
  1935. static void export_array(struct mddev *mddev)
  1936. {
  1937. struct md_rdev *rdev;
  1938. while (!list_empty(&mddev->disks)) {
  1939. rdev = list_first_entry(&mddev->disks, struct md_rdev,
  1940. same_set);
  1941. md_kick_rdev_from_array(rdev);
  1942. }
  1943. mddev->raid_disks = 0;
  1944. mddev->major_version = 0;
  1945. }
  1946. static void sync_sbs(struct mddev *mddev, int nospares)
  1947. {
  1948. /* Update each superblock (in-memory image), but
  1949. * if we are allowed to, skip spares which already
  1950. * have the right event counter, or have one earlier
  1951. * (which would mean they aren't being marked as dirty
  1952. * with the rest of the array)
  1953. */
  1954. struct md_rdev *rdev;
  1955. rdev_for_each(rdev, mddev) {
  1956. if (rdev->sb_events == mddev->events ||
  1957. (nospares &&
  1958. rdev->raid_disk < 0 &&
  1959. rdev->sb_events+1 == mddev->events)) {
  1960. /* Don't update this superblock */
  1961. rdev->sb_loaded = 2;
  1962. } else {
  1963. sync_super(mddev, rdev);
  1964. rdev->sb_loaded = 1;
  1965. }
  1966. }
  1967. }
  1968. void md_update_sb(struct mddev *mddev, int force_change)
  1969. {
  1970. struct md_rdev *rdev;
  1971. int sync_req;
  1972. int nospares = 0;
  1973. int any_badblocks_changed = 0;
  1974. if (mddev->ro) {
  1975. if (force_change)
  1976. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  1977. return;
  1978. }
  1979. repeat:
  1980. /* First make sure individual recovery_offsets are correct */
  1981. rdev_for_each(rdev, mddev) {
  1982. if (rdev->raid_disk >= 0 &&
  1983. mddev->delta_disks >= 0 &&
  1984. !test_bit(In_sync, &rdev->flags) &&
  1985. mddev->curr_resync_completed > rdev->recovery_offset)
  1986. rdev->recovery_offset = mddev->curr_resync_completed;
  1987. }
  1988. if (!mddev->persistent) {
  1989. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  1990. clear_bit(MD_CHANGE_DEVS, &mddev->flags);
  1991. if (!mddev->external) {
  1992. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1993. rdev_for_each(rdev, mddev) {
  1994. if (rdev->badblocks.changed) {
  1995. rdev->badblocks.changed = 0;
  1996. md_ack_all_badblocks(&rdev->badblocks);
  1997. md_error(mddev, rdev);
  1998. }
  1999. clear_bit(Blocked, &rdev->flags);
  2000. clear_bit(BlockedBadBlocks, &rdev->flags);
  2001. wake_up(&rdev->blocked_wait);
  2002. }
  2003. }
  2004. wake_up(&mddev->sb_wait);
  2005. return;
  2006. }
  2007. spin_lock(&mddev->lock);
  2008. mddev->utime = get_seconds();
  2009. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  2010. force_change = 1;
  2011. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2012. /* just a clean<-> dirty transition, possibly leave spares alone,
  2013. * though if events isn't the right even/odd, we will have to do
  2014. * spares after all
  2015. */
  2016. nospares = 1;
  2017. if (force_change)
  2018. nospares = 0;
  2019. if (mddev->degraded)
  2020. /* If the array is degraded, then skipping spares is both
  2021. * dangerous and fairly pointless.
  2022. * Dangerous because a device that was removed from the array
  2023. * might have a event_count that still looks up-to-date,
  2024. * so it can be re-added without a resync.
  2025. * Pointless because if there are any spares to skip,
  2026. * then a recovery will happen and soon that array won't
  2027. * be degraded any more and the spare can go back to sleep then.
  2028. */
  2029. nospares = 0;
  2030. sync_req = mddev->in_sync;
  2031. /* If this is just a dirty<->clean transition, and the array is clean
  2032. * and 'events' is odd, we can roll back to the previous clean state */
  2033. if (nospares
  2034. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  2035. && mddev->can_decrease_events
  2036. && mddev->events != 1) {
  2037. mddev->events--;
  2038. mddev->can_decrease_events = 0;
  2039. } else {
  2040. /* otherwise we have to go forward and ... */
  2041. mddev->events ++;
  2042. mddev->can_decrease_events = nospares;
  2043. }
  2044. /*
  2045. * This 64-bit counter should never wrap.
  2046. * Either we are in around ~1 trillion A.C., assuming
  2047. * 1 reboot per second, or we have a bug...
  2048. */
  2049. WARN_ON(mddev->events == 0);
  2050. rdev_for_each(rdev, mddev) {
  2051. if (rdev->badblocks.changed)
  2052. any_badblocks_changed++;
  2053. if (test_bit(Faulty, &rdev->flags))
  2054. set_bit(FaultRecorded, &rdev->flags);
  2055. }
  2056. sync_sbs(mddev, nospares);
  2057. spin_unlock(&mddev->lock);
  2058. pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
  2059. mdname(mddev), mddev->in_sync);
  2060. bitmap_update_sb(mddev->bitmap);
  2061. rdev_for_each(rdev, mddev) {
  2062. char b[BDEVNAME_SIZE];
  2063. if (rdev->sb_loaded != 1)
  2064. continue; /* no noise on spare devices */
  2065. if (!test_bit(Faulty, &rdev->flags)) {
  2066. md_super_write(mddev,rdev,
  2067. rdev->sb_start, rdev->sb_size,
  2068. rdev->sb_page);
  2069. pr_debug("md: (write) %s's sb offset: %llu\n",
  2070. bdevname(rdev->bdev, b),
  2071. (unsigned long long)rdev->sb_start);
  2072. rdev->sb_events = mddev->events;
  2073. if (rdev->badblocks.size) {
  2074. md_super_write(mddev, rdev,
  2075. rdev->badblocks.sector,
  2076. rdev->badblocks.size << 9,
  2077. rdev->bb_page);
  2078. rdev->badblocks.size = 0;
  2079. }
  2080. } else
  2081. pr_debug("md: %s (skipping faulty)\n",
  2082. bdevname(rdev->bdev, b));
  2083. if (mddev->level == LEVEL_MULTIPATH)
  2084. /* only need to write one superblock... */
  2085. break;
  2086. }
  2087. md_super_wait(mddev);
  2088. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  2089. spin_lock(&mddev->lock);
  2090. if (mddev->in_sync != sync_req ||
  2091. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  2092. /* have to write it out again */
  2093. spin_unlock(&mddev->lock);
  2094. goto repeat;
  2095. }
  2096. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2097. spin_unlock(&mddev->lock);
  2098. wake_up(&mddev->sb_wait);
  2099. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2100. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  2101. rdev_for_each(rdev, mddev) {
  2102. if (test_and_clear_bit(FaultRecorded, &rdev->flags))
  2103. clear_bit(Blocked, &rdev->flags);
  2104. if (any_badblocks_changed)
  2105. md_ack_all_badblocks(&rdev->badblocks);
  2106. clear_bit(BlockedBadBlocks, &rdev->flags);
  2107. wake_up(&rdev->blocked_wait);
  2108. }
  2109. }
  2110. EXPORT_SYMBOL(md_update_sb);
  2111. static int add_bound_rdev(struct md_rdev *rdev)
  2112. {
  2113. struct mddev *mddev = rdev->mddev;
  2114. int err = 0;
  2115. if (!mddev->pers->hot_remove_disk) {
  2116. /* If there is hot_add_disk but no hot_remove_disk
  2117. * then added disks for geometry changes,
  2118. * and should be added immediately.
  2119. */
  2120. super_types[mddev->major_version].
  2121. validate_super(mddev, rdev);
  2122. err = mddev->pers->hot_add_disk(mddev, rdev);
  2123. if (err) {
  2124. unbind_rdev_from_array(rdev);
  2125. export_rdev(rdev);
  2126. return err;
  2127. }
  2128. }
  2129. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2130. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  2131. if (mddev->degraded)
  2132. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  2133. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2134. md_new_event(mddev);
  2135. md_wakeup_thread(mddev->thread);
  2136. return 0;
  2137. }
  2138. /* words written to sysfs files may, or may not, be \n terminated.
  2139. * We want to accept with case. For this we use cmd_match.
  2140. */
  2141. static int cmd_match(const char *cmd, const char *str)
  2142. {
  2143. /* See if cmd, written into a sysfs file, matches
  2144. * str. They must either be the same, or cmd can
  2145. * have a trailing newline
  2146. */
  2147. while (*cmd && *str && *cmd == *str) {
  2148. cmd++;
  2149. str++;
  2150. }
  2151. if (*cmd == '\n')
  2152. cmd++;
  2153. if (*str || *cmd)
  2154. return 0;
  2155. return 1;
  2156. }
  2157. struct rdev_sysfs_entry {
  2158. struct attribute attr;
  2159. ssize_t (*show)(struct md_rdev *, char *);
  2160. ssize_t (*store)(struct md_rdev *, const char *, size_t);
  2161. };
  2162. static ssize_t
  2163. state_show(struct md_rdev *rdev, char *page)
  2164. {
  2165. char *sep = "";
  2166. size_t len = 0;
  2167. unsigned long flags = ACCESS_ONCE(rdev->flags);
  2168. if (test_bit(Faulty, &flags) ||
  2169. rdev->badblocks.unacked_exist) {
  2170. len+= sprintf(page+len, "%sfaulty",sep);
  2171. sep = ",";
  2172. }
  2173. if (test_bit(In_sync, &flags)) {
  2174. len += sprintf(page+len, "%sin_sync",sep);
  2175. sep = ",";
  2176. }
  2177. if (test_bit(WriteMostly, &flags)) {
  2178. len += sprintf(page+len, "%swrite_mostly",sep);
  2179. sep = ",";
  2180. }
  2181. if (test_bit(Blocked, &flags) ||
  2182. (rdev->badblocks.unacked_exist
  2183. && !test_bit(Faulty, &flags))) {
  2184. len += sprintf(page+len, "%sblocked", sep);
  2185. sep = ",";
  2186. }
  2187. if (!test_bit(Faulty, &flags) &&
  2188. !test_bit(In_sync, &flags)) {
  2189. len += sprintf(page+len, "%sspare", sep);
  2190. sep = ",";
  2191. }
  2192. if (test_bit(WriteErrorSeen, &flags)) {
  2193. len += sprintf(page+len, "%swrite_error", sep);
  2194. sep = ",";
  2195. }
  2196. if (test_bit(WantReplacement, &flags)) {
  2197. len += sprintf(page+len, "%swant_replacement", sep);
  2198. sep = ",";
  2199. }
  2200. if (test_bit(Replacement, &flags)) {
  2201. len += sprintf(page+len, "%sreplacement", sep);
  2202. sep = ",";
  2203. }
  2204. return len+sprintf(page+len, "\n");
  2205. }
  2206. static ssize_t
  2207. state_store(struct md_rdev *rdev, const char *buf, size_t len)
  2208. {
  2209. /* can write
  2210. * faulty - simulates an error
  2211. * remove - disconnects the device
  2212. * writemostly - sets write_mostly
  2213. * -writemostly - clears write_mostly
  2214. * blocked - sets the Blocked flags
  2215. * -blocked - clears the Blocked and possibly simulates an error
  2216. * insync - sets Insync providing device isn't active
  2217. * -insync - clear Insync for a device with a slot assigned,
  2218. * so that it gets rebuilt based on bitmap
  2219. * write_error - sets WriteErrorSeen
  2220. * -write_error - clears WriteErrorSeen
  2221. */
  2222. int err = -EINVAL;
  2223. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2224. md_error(rdev->mddev, rdev);
  2225. if (test_bit(Faulty, &rdev->flags))
  2226. err = 0;
  2227. else
  2228. err = -EBUSY;
  2229. } else if (cmd_match(buf, "remove")) {
  2230. if (rdev->raid_disk >= 0)
  2231. err = -EBUSY;
  2232. else {
  2233. struct mddev *mddev = rdev->mddev;
  2234. if (mddev_is_clustered(mddev))
  2235. md_cluster_ops->remove_disk(mddev, rdev);
  2236. md_kick_rdev_from_array(rdev);
  2237. if (mddev_is_clustered(mddev))
  2238. md_cluster_ops->metadata_update_start(mddev);
  2239. if (mddev->pers)
  2240. md_update_sb(mddev, 1);
  2241. md_new_event(mddev);
  2242. if (mddev_is_clustered(mddev))
  2243. md_cluster_ops->metadata_update_finish(mddev);
  2244. err = 0;
  2245. }
  2246. } else if (cmd_match(buf, "writemostly")) {
  2247. set_bit(WriteMostly, &rdev->flags);
  2248. err = 0;
  2249. } else if (cmd_match(buf, "-writemostly")) {
  2250. clear_bit(WriteMostly, &rdev->flags);
  2251. err = 0;
  2252. } else if (cmd_match(buf, "blocked")) {
  2253. set_bit(Blocked, &rdev->flags);
  2254. err = 0;
  2255. } else if (cmd_match(buf, "-blocked")) {
  2256. if (!test_bit(Faulty, &rdev->flags) &&
  2257. rdev->badblocks.unacked_exist) {
  2258. /* metadata handler doesn't understand badblocks,
  2259. * so we need to fail the device
  2260. */
  2261. md_error(rdev->mddev, rdev);
  2262. }
  2263. clear_bit(Blocked, &rdev->flags);
  2264. clear_bit(BlockedBadBlocks, &rdev->flags);
  2265. wake_up(&rdev->blocked_wait);
  2266. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2267. md_wakeup_thread(rdev->mddev->thread);
  2268. err = 0;
  2269. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2270. set_bit(In_sync, &rdev->flags);
  2271. err = 0;
  2272. } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
  2273. if (rdev->mddev->pers == NULL) {
  2274. clear_bit(In_sync, &rdev->flags);
  2275. rdev->saved_raid_disk = rdev->raid_disk;
  2276. rdev->raid_disk = -1;
  2277. err = 0;
  2278. }
  2279. } else if (cmd_match(buf, "write_error")) {
  2280. set_bit(WriteErrorSeen, &rdev->flags);
  2281. err = 0;
  2282. } else if (cmd_match(buf, "-write_error")) {
  2283. clear_bit(WriteErrorSeen, &rdev->flags);
  2284. err = 0;
  2285. } else if (cmd_match(buf, "want_replacement")) {
  2286. /* Any non-spare device that is not a replacement can
  2287. * become want_replacement at any time, but we then need to
  2288. * check if recovery is needed.
  2289. */
  2290. if (rdev->raid_disk >= 0 &&
  2291. !test_bit(Replacement, &rdev->flags))
  2292. set_bit(WantReplacement, &rdev->flags);
  2293. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2294. md_wakeup_thread(rdev->mddev->thread);
  2295. err = 0;
  2296. } else if (cmd_match(buf, "-want_replacement")) {
  2297. /* Clearing 'want_replacement' is always allowed.
  2298. * Once replacements starts it is too late though.
  2299. */
  2300. err = 0;
  2301. clear_bit(WantReplacement, &rdev->flags);
  2302. } else if (cmd_match(buf, "replacement")) {
  2303. /* Can only set a device as a replacement when array has not
  2304. * yet been started. Once running, replacement is automatic
  2305. * from spares, or by assigning 'slot'.
  2306. */
  2307. if (rdev->mddev->pers)
  2308. err = -EBUSY;
  2309. else {
  2310. set_bit(Replacement, &rdev->flags);
  2311. err = 0;
  2312. }
  2313. } else if (cmd_match(buf, "-replacement")) {
  2314. /* Similarly, can only clear Replacement before start */
  2315. if (rdev->mddev->pers)
  2316. err = -EBUSY;
  2317. else {
  2318. clear_bit(Replacement, &rdev->flags);
  2319. err = 0;
  2320. }
  2321. } else if (cmd_match(buf, "re-add")) {
  2322. if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
  2323. /* clear_bit is performed _after_ all the devices
  2324. * have their local Faulty bit cleared. If any writes
  2325. * happen in the meantime in the local node, they
  2326. * will land in the local bitmap, which will be synced
  2327. * by this node eventually
  2328. */
  2329. if (!mddev_is_clustered(rdev->mddev) ||
  2330. (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
  2331. clear_bit(Faulty, &rdev->flags);
  2332. err = add_bound_rdev(rdev);
  2333. }
  2334. } else
  2335. err = -EBUSY;
  2336. }
  2337. if (!err)
  2338. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2339. return err ? err : len;
  2340. }
  2341. static struct rdev_sysfs_entry rdev_state =
  2342. __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2343. static ssize_t
  2344. errors_show(struct md_rdev *rdev, char *page)
  2345. {
  2346. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2347. }
  2348. static ssize_t
  2349. errors_store(struct md_rdev *rdev, const char *buf, size_t len)
  2350. {
  2351. char *e;
  2352. unsigned long n = simple_strtoul(buf, &e, 10);
  2353. if (*buf && (*e == 0 || *e == '\n')) {
  2354. atomic_set(&rdev->corrected_errors, n);
  2355. return len;
  2356. }
  2357. return -EINVAL;
  2358. }
  2359. static struct rdev_sysfs_entry rdev_errors =
  2360. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2361. static ssize_t
  2362. slot_show(struct md_rdev *rdev, char *page)
  2363. {
  2364. if (rdev->raid_disk < 0)
  2365. return sprintf(page, "none\n");
  2366. else
  2367. return sprintf(page, "%d\n", rdev->raid_disk);
  2368. }
  2369. static ssize_t
  2370. slot_store(struct md_rdev *rdev, const char *buf, size_t len)
  2371. {
  2372. char *e;
  2373. int err;
  2374. int slot = simple_strtoul(buf, &e, 10);
  2375. if (strncmp(buf, "none", 4)==0)
  2376. slot = -1;
  2377. else if (e==buf || (*e && *e!= '\n'))
  2378. return -EINVAL;
  2379. if (rdev->mddev->pers && slot == -1) {
  2380. /* Setting 'slot' on an active array requires also
  2381. * updating the 'rd%d' link, and communicating
  2382. * with the personality with ->hot_*_disk.
  2383. * For now we only support removing
  2384. * failed/spare devices. This normally happens automatically,
  2385. * but not when the metadata is externally managed.
  2386. */
  2387. if (rdev->raid_disk == -1)
  2388. return -EEXIST;
  2389. /* personality does all needed checks */
  2390. if (rdev->mddev->pers->hot_remove_disk == NULL)
  2391. return -EINVAL;
  2392. clear_bit(Blocked, &rdev->flags);
  2393. remove_and_add_spares(rdev->mddev, rdev);
  2394. if (rdev->raid_disk >= 0)
  2395. return -EBUSY;
  2396. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2397. md_wakeup_thread(rdev->mddev->thread);
  2398. } else if (rdev->mddev->pers) {
  2399. /* Activating a spare .. or possibly reactivating
  2400. * if we ever get bitmaps working here.
  2401. */
  2402. if (rdev->raid_disk != -1)
  2403. return -EBUSY;
  2404. if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
  2405. return -EBUSY;
  2406. if (rdev->mddev->pers->hot_add_disk == NULL)
  2407. return -EINVAL;
  2408. if (slot >= rdev->mddev->raid_disks &&
  2409. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2410. return -ENOSPC;
  2411. rdev->raid_disk = slot;
  2412. if (test_bit(In_sync, &rdev->flags))
  2413. rdev->saved_raid_disk = slot;
  2414. else
  2415. rdev->saved_raid_disk = -1;
  2416. clear_bit(In_sync, &rdev->flags);
  2417. clear_bit(Bitmap_sync, &rdev->flags);
  2418. err = rdev->mddev->pers->
  2419. hot_add_disk(rdev->mddev, rdev);
  2420. if (err) {
  2421. rdev->raid_disk = -1;
  2422. return err;
  2423. } else
  2424. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2425. if (sysfs_link_rdev(rdev->mddev, rdev))
  2426. /* failure here is OK */;
  2427. /* don't wakeup anyone, leave that to userspace. */
  2428. } else {
  2429. if (slot >= rdev->mddev->raid_disks &&
  2430. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2431. return -ENOSPC;
  2432. rdev->raid_disk = slot;
  2433. /* assume it is working */
  2434. clear_bit(Faulty, &rdev->flags);
  2435. clear_bit(WriteMostly, &rdev->flags);
  2436. set_bit(In_sync, &rdev->flags);
  2437. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2438. }
  2439. return len;
  2440. }
  2441. static struct rdev_sysfs_entry rdev_slot =
  2442. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2443. static ssize_t
  2444. offset_show(struct md_rdev *rdev, char *page)
  2445. {
  2446. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2447. }
  2448. static ssize_t
  2449. offset_store(struct md_rdev *rdev, const char *buf, size_t len)
  2450. {
  2451. unsigned long long offset;
  2452. if (kstrtoull(buf, 10, &offset) < 0)
  2453. return -EINVAL;
  2454. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2455. return -EBUSY;
  2456. if (rdev->sectors && rdev->mddev->external)
  2457. /* Must set offset before size, so overlap checks
  2458. * can be sane */
  2459. return -EBUSY;
  2460. rdev->data_offset = offset;
  2461. rdev->new_data_offset = offset;
  2462. return len;
  2463. }
  2464. static struct rdev_sysfs_entry rdev_offset =
  2465. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2466. static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
  2467. {
  2468. return sprintf(page, "%llu\n",
  2469. (unsigned long long)rdev->new_data_offset);
  2470. }
  2471. static ssize_t new_offset_store(struct md_rdev *rdev,
  2472. const char *buf, size_t len)
  2473. {
  2474. unsigned long long new_offset;
  2475. struct mddev *mddev = rdev->mddev;
  2476. if (kstrtoull(buf, 10, &new_offset) < 0)
  2477. return -EINVAL;
  2478. if (mddev->sync_thread ||
  2479. test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
  2480. return -EBUSY;
  2481. if (new_offset == rdev->data_offset)
  2482. /* reset is always permitted */
  2483. ;
  2484. else if (new_offset > rdev->data_offset) {
  2485. /* must not push array size beyond rdev_sectors */
  2486. if (new_offset - rdev->data_offset
  2487. + mddev->dev_sectors > rdev->sectors)
  2488. return -E2BIG;
  2489. }
  2490. /* Metadata worries about other space details. */
  2491. /* decreasing the offset is inconsistent with a backwards
  2492. * reshape.
  2493. */
  2494. if (new_offset < rdev->data_offset &&
  2495. mddev->reshape_backwards)
  2496. return -EINVAL;
  2497. /* Increasing offset is inconsistent with forwards
  2498. * reshape. reshape_direction should be set to
  2499. * 'backwards' first.
  2500. */
  2501. if (new_offset > rdev->data_offset &&
  2502. !mddev->reshape_backwards)
  2503. return -EINVAL;
  2504. if (mddev->pers && mddev->persistent &&
  2505. !super_types[mddev->major_version]
  2506. .allow_new_offset(rdev, new_offset))
  2507. return -E2BIG;
  2508. rdev->new_data_offset = new_offset;
  2509. if (new_offset > rdev->data_offset)
  2510. mddev->reshape_backwards = 1;
  2511. else if (new_offset < rdev->data_offset)
  2512. mddev->reshape_backwards = 0;
  2513. return len;
  2514. }
  2515. static struct rdev_sysfs_entry rdev_new_offset =
  2516. __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
  2517. static ssize_t
  2518. rdev_size_show(struct md_rdev *rdev, char *page)
  2519. {
  2520. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2521. }
  2522. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2523. {
  2524. /* check if two start/length pairs overlap */
  2525. if (s1+l1 <= s2)
  2526. return 0;
  2527. if (s2+l2 <= s1)
  2528. return 0;
  2529. return 1;
  2530. }
  2531. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2532. {
  2533. unsigned long long blocks;
  2534. sector_t new;
  2535. if (kstrtoull(buf, 10, &blocks) < 0)
  2536. return -EINVAL;
  2537. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2538. return -EINVAL; /* sector conversion overflow */
  2539. new = blocks * 2;
  2540. if (new != blocks * 2)
  2541. return -EINVAL; /* unsigned long long to sector_t overflow */
  2542. *sectors = new;
  2543. return 0;
  2544. }
  2545. static ssize_t
  2546. rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
  2547. {
  2548. struct mddev *my_mddev = rdev->mddev;
  2549. sector_t oldsectors = rdev->sectors;
  2550. sector_t sectors;
  2551. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2552. return -EINVAL;
  2553. if (rdev->data_offset != rdev->new_data_offset)
  2554. return -EINVAL; /* too confusing */
  2555. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2556. if (my_mddev->persistent) {
  2557. sectors = super_types[my_mddev->major_version].
  2558. rdev_size_change(rdev, sectors);
  2559. if (!sectors)
  2560. return -EBUSY;
  2561. } else if (!sectors)
  2562. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  2563. rdev->data_offset;
  2564. if (!my_mddev->pers->resize)
  2565. /* Cannot change size for RAID0 or Linear etc */
  2566. return -EINVAL;
  2567. }
  2568. if (sectors < my_mddev->dev_sectors)
  2569. return -EINVAL; /* component must fit device */
  2570. rdev->sectors = sectors;
  2571. if (sectors > oldsectors && my_mddev->external) {
  2572. /* Need to check that all other rdevs with the same
  2573. * ->bdev do not overlap. 'rcu' is sufficient to walk
  2574. * the rdev lists safely.
  2575. * This check does not provide a hard guarantee, it
  2576. * just helps avoid dangerous mistakes.
  2577. */
  2578. struct mddev *mddev;
  2579. int overlap = 0;
  2580. struct list_head *tmp;
  2581. rcu_read_lock();
  2582. for_each_mddev(mddev, tmp) {
  2583. struct md_rdev *rdev2;
  2584. rdev_for_each(rdev2, mddev)
  2585. if (rdev->bdev == rdev2->bdev &&
  2586. rdev != rdev2 &&
  2587. overlaps(rdev->data_offset, rdev->sectors,
  2588. rdev2->data_offset,
  2589. rdev2->sectors)) {
  2590. overlap = 1;
  2591. break;
  2592. }
  2593. if (overlap) {
  2594. mddev_put(mddev);
  2595. break;
  2596. }
  2597. }
  2598. rcu_read_unlock();
  2599. if (overlap) {
  2600. /* Someone else could have slipped in a size
  2601. * change here, but doing so is just silly.
  2602. * We put oldsectors back because we *know* it is
  2603. * safe, and trust userspace not to race with
  2604. * itself
  2605. */
  2606. rdev->sectors = oldsectors;
  2607. return -EBUSY;
  2608. }
  2609. }
  2610. return len;
  2611. }
  2612. static struct rdev_sysfs_entry rdev_size =
  2613. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2614. static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
  2615. {
  2616. unsigned long long recovery_start = rdev->recovery_offset;
  2617. if (test_bit(In_sync, &rdev->flags) ||
  2618. recovery_start == MaxSector)
  2619. return sprintf(page, "none\n");
  2620. return sprintf(page, "%llu\n", recovery_start);
  2621. }
  2622. static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
  2623. {
  2624. unsigned long long recovery_start;
  2625. if (cmd_match(buf, "none"))
  2626. recovery_start = MaxSector;
  2627. else if (kstrtoull(buf, 10, &recovery_start))
  2628. return -EINVAL;
  2629. if (rdev->mddev->pers &&
  2630. rdev->raid_disk >= 0)
  2631. return -EBUSY;
  2632. rdev->recovery_offset = recovery_start;
  2633. if (recovery_start == MaxSector)
  2634. set_bit(In_sync, &rdev->flags);
  2635. else
  2636. clear_bit(In_sync, &rdev->flags);
  2637. return len;
  2638. }
  2639. static struct rdev_sysfs_entry rdev_recovery_start =
  2640. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2641. static ssize_t
  2642. badblocks_show(struct badblocks *bb, char *page, int unack);
  2643. static ssize_t
  2644. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
  2645. static ssize_t bb_show(struct md_rdev *rdev, char *page)
  2646. {
  2647. return badblocks_show(&rdev->badblocks, page, 0);
  2648. }
  2649. static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
  2650. {
  2651. int rv = badblocks_store(&rdev->badblocks, page, len, 0);
  2652. /* Maybe that ack was all we needed */
  2653. if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
  2654. wake_up(&rdev->blocked_wait);
  2655. return rv;
  2656. }
  2657. static struct rdev_sysfs_entry rdev_bad_blocks =
  2658. __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
  2659. static ssize_t ubb_show(struct md_rdev *rdev, char *page)
  2660. {
  2661. return badblocks_show(&rdev->badblocks, page, 1);
  2662. }
  2663. static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
  2664. {
  2665. return badblocks_store(&rdev->badblocks, page, len, 1);
  2666. }
  2667. static struct rdev_sysfs_entry rdev_unack_bad_blocks =
  2668. __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
  2669. static struct attribute *rdev_default_attrs[] = {
  2670. &rdev_state.attr,
  2671. &rdev_errors.attr,
  2672. &rdev_slot.attr,
  2673. &rdev_offset.attr,
  2674. &rdev_new_offset.attr,
  2675. &rdev_size.attr,
  2676. &rdev_recovery_start.attr,
  2677. &rdev_bad_blocks.attr,
  2678. &rdev_unack_bad_blocks.attr,
  2679. NULL,
  2680. };
  2681. static ssize_t
  2682. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2683. {
  2684. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2685. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2686. if (!entry->show)
  2687. return -EIO;
  2688. if (!rdev->mddev)
  2689. return -EBUSY;
  2690. return entry->show(rdev, page);
  2691. }
  2692. static ssize_t
  2693. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2694. const char *page, size_t length)
  2695. {
  2696. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2697. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2698. ssize_t rv;
  2699. struct mddev *mddev = rdev->mddev;
  2700. if (!entry->store)
  2701. return -EIO;
  2702. if (!capable(CAP_SYS_ADMIN))
  2703. return -EACCES;
  2704. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2705. if (!rv) {
  2706. if (rdev->mddev == NULL)
  2707. rv = -EBUSY;
  2708. else
  2709. rv = entry->store(rdev, page, length);
  2710. mddev_unlock(mddev);
  2711. }
  2712. return rv;
  2713. }
  2714. static void rdev_free(struct kobject *ko)
  2715. {
  2716. struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
  2717. kfree(rdev);
  2718. }
  2719. static const struct sysfs_ops rdev_sysfs_ops = {
  2720. .show = rdev_attr_show,
  2721. .store = rdev_attr_store,
  2722. };
  2723. static struct kobj_type rdev_ktype = {
  2724. .release = rdev_free,
  2725. .sysfs_ops = &rdev_sysfs_ops,
  2726. .default_attrs = rdev_default_attrs,
  2727. };
  2728. int md_rdev_init(struct md_rdev *rdev)
  2729. {
  2730. rdev->desc_nr = -1;
  2731. rdev->saved_raid_disk = -1;
  2732. rdev->raid_disk = -1;
  2733. rdev->flags = 0;
  2734. rdev->data_offset = 0;
  2735. rdev->new_data_offset = 0;
  2736. rdev->sb_events = 0;
  2737. rdev->last_read_error.tv_sec = 0;
  2738. rdev->last_read_error.tv_nsec = 0;
  2739. rdev->sb_loaded = 0;
  2740. rdev->bb_page = NULL;
  2741. atomic_set(&rdev->nr_pending, 0);
  2742. atomic_set(&rdev->read_errors, 0);
  2743. atomic_set(&rdev->corrected_errors, 0);
  2744. INIT_LIST_HEAD(&rdev->same_set);
  2745. init_waitqueue_head(&rdev->blocked_wait);
  2746. /* Add space to store bad block list.
  2747. * This reserves the space even on arrays where it cannot
  2748. * be used - I wonder if that matters
  2749. */
  2750. rdev->badblocks.count = 0;
  2751. rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
  2752. rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2753. seqlock_init(&rdev->badblocks.lock);
  2754. if (rdev->badblocks.page == NULL)
  2755. return -ENOMEM;
  2756. return 0;
  2757. }
  2758. EXPORT_SYMBOL_GPL(md_rdev_init);
  2759. /*
  2760. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2761. *
  2762. * mark the device faulty if:
  2763. *
  2764. * - the device is nonexistent (zero size)
  2765. * - the device has no valid superblock
  2766. *
  2767. * a faulty rdev _never_ has rdev->sb set.
  2768. */
  2769. static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
  2770. {
  2771. char b[BDEVNAME_SIZE];
  2772. int err;
  2773. struct md_rdev *rdev;
  2774. sector_t size;
  2775. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2776. if (!rdev) {
  2777. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2778. return ERR_PTR(-ENOMEM);
  2779. }
  2780. err = md_rdev_init(rdev);
  2781. if (err)
  2782. goto abort_free;
  2783. err = alloc_disk_sb(rdev);
  2784. if (err)
  2785. goto abort_free;
  2786. err = lock_rdev(rdev, newdev, super_format == -2);
  2787. if (err)
  2788. goto abort_free;
  2789. kobject_init(&rdev->kobj, &rdev_ktype);
  2790. size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
  2791. if (!size) {
  2792. printk(KERN_WARNING
  2793. "md: %s has zero or unknown size, marking faulty!\n",
  2794. bdevname(rdev->bdev,b));
  2795. err = -EINVAL;
  2796. goto abort_free;
  2797. }
  2798. if (super_format >= 0) {
  2799. err = super_types[super_format].
  2800. load_super(rdev, NULL, super_minor);
  2801. if (err == -EINVAL) {
  2802. printk(KERN_WARNING
  2803. "md: %s does not have a valid v%d.%d "
  2804. "superblock, not importing!\n",
  2805. bdevname(rdev->bdev,b),
  2806. super_format, super_minor);
  2807. goto abort_free;
  2808. }
  2809. if (err < 0) {
  2810. printk(KERN_WARNING
  2811. "md: could not read %s's sb, not importing!\n",
  2812. bdevname(rdev->bdev,b));
  2813. goto abort_free;
  2814. }
  2815. }
  2816. return rdev;
  2817. abort_free:
  2818. if (rdev->bdev)
  2819. unlock_rdev(rdev);
  2820. md_rdev_clear(rdev);
  2821. kfree(rdev);
  2822. return ERR_PTR(err);
  2823. }
  2824. /*
  2825. * Check a full RAID array for plausibility
  2826. */
  2827. static void analyze_sbs(struct mddev *mddev)
  2828. {
  2829. int i;
  2830. struct md_rdev *rdev, *freshest, *tmp;
  2831. char b[BDEVNAME_SIZE];
  2832. freshest = NULL;
  2833. rdev_for_each_safe(rdev, tmp, mddev)
  2834. switch (super_types[mddev->major_version].
  2835. load_super(rdev, freshest, mddev->minor_version)) {
  2836. case 1:
  2837. freshest = rdev;
  2838. break;
  2839. case 0:
  2840. break;
  2841. default:
  2842. printk( KERN_ERR \
  2843. "md: fatal superblock inconsistency in %s"
  2844. " -- removing from array\n",
  2845. bdevname(rdev->bdev,b));
  2846. md_kick_rdev_from_array(rdev);
  2847. }
  2848. super_types[mddev->major_version].
  2849. validate_super(mddev, freshest);
  2850. i = 0;
  2851. rdev_for_each_safe(rdev, tmp, mddev) {
  2852. if (mddev->max_disks &&
  2853. (rdev->desc_nr >= mddev->max_disks ||
  2854. i > mddev->max_disks)) {
  2855. printk(KERN_WARNING
  2856. "md: %s: %s: only %d devices permitted\n",
  2857. mdname(mddev), bdevname(rdev->bdev, b),
  2858. mddev->max_disks);
  2859. md_kick_rdev_from_array(rdev);
  2860. continue;
  2861. }
  2862. if (rdev != freshest) {
  2863. if (super_types[mddev->major_version].
  2864. validate_super(mddev, rdev)) {
  2865. printk(KERN_WARNING "md: kicking non-fresh %s"
  2866. " from array!\n",
  2867. bdevname(rdev->bdev,b));
  2868. md_kick_rdev_from_array(rdev);
  2869. continue;
  2870. }
  2871. /* No device should have a Candidate flag
  2872. * when reading devices
  2873. */
  2874. if (test_bit(Candidate, &rdev->flags)) {
  2875. pr_info("md: kicking Cluster Candidate %s from array!\n",
  2876. bdevname(rdev->bdev, b));
  2877. md_kick_rdev_from_array(rdev);
  2878. }
  2879. }
  2880. if (mddev->level == LEVEL_MULTIPATH) {
  2881. rdev->desc_nr = i++;
  2882. rdev->raid_disk = rdev->desc_nr;
  2883. set_bit(In_sync, &rdev->flags);
  2884. } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
  2885. rdev->raid_disk = -1;
  2886. clear_bit(In_sync, &rdev->flags);
  2887. }
  2888. }
  2889. }
  2890. /* Read a fixed-point number.
  2891. * Numbers in sysfs attributes should be in "standard" units where
  2892. * possible, so time should be in seconds.
  2893. * However we internally use a a much smaller unit such as
  2894. * milliseconds or jiffies.
  2895. * This function takes a decimal number with a possible fractional
  2896. * component, and produces an integer which is the result of
  2897. * multiplying that number by 10^'scale'.
  2898. * all without any floating-point arithmetic.
  2899. */
  2900. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  2901. {
  2902. unsigned long result = 0;
  2903. long decimals = -1;
  2904. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  2905. if (*cp == '.')
  2906. decimals = 0;
  2907. else if (decimals < scale) {
  2908. unsigned int value;
  2909. value = *cp - '0';
  2910. result = result * 10 + value;
  2911. if (decimals >= 0)
  2912. decimals++;
  2913. }
  2914. cp++;
  2915. }
  2916. if (*cp == '\n')
  2917. cp++;
  2918. if (*cp)
  2919. return -EINVAL;
  2920. if (decimals < 0)
  2921. decimals = 0;
  2922. while (decimals < scale) {
  2923. result *= 10;
  2924. decimals ++;
  2925. }
  2926. *res = result;
  2927. return 0;
  2928. }
  2929. static void md_safemode_timeout(unsigned long data);
  2930. static ssize_t
  2931. safe_delay_show(struct mddev *mddev, char *page)
  2932. {
  2933. int msec = (mddev->safemode_delay*1000)/HZ;
  2934. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  2935. }
  2936. static ssize_t
  2937. safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
  2938. {
  2939. unsigned long msec;
  2940. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  2941. return -EINVAL;
  2942. if (msec == 0)
  2943. mddev->safemode_delay = 0;
  2944. else {
  2945. unsigned long old_delay = mddev->safemode_delay;
  2946. unsigned long new_delay = (msec*HZ)/1000;
  2947. if (new_delay == 0)
  2948. new_delay = 1;
  2949. mddev->safemode_delay = new_delay;
  2950. if (new_delay < old_delay || old_delay == 0)
  2951. mod_timer(&mddev->safemode_timer, jiffies+1);
  2952. }
  2953. return len;
  2954. }
  2955. static struct md_sysfs_entry md_safe_delay =
  2956. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  2957. static ssize_t
  2958. level_show(struct mddev *mddev, char *page)
  2959. {
  2960. struct md_personality *p;
  2961. int ret;
  2962. spin_lock(&mddev->lock);
  2963. p = mddev->pers;
  2964. if (p)
  2965. ret = sprintf(page, "%s\n", p->name);
  2966. else if (mddev->clevel[0])
  2967. ret = sprintf(page, "%s\n", mddev->clevel);
  2968. else if (mddev->level != LEVEL_NONE)
  2969. ret = sprintf(page, "%d\n", mddev->level);
  2970. else
  2971. ret = 0;
  2972. spin_unlock(&mddev->lock);
  2973. return ret;
  2974. }
  2975. static ssize_t
  2976. level_store(struct mddev *mddev, const char *buf, size_t len)
  2977. {
  2978. char clevel[16];
  2979. ssize_t rv;
  2980. size_t slen = len;
  2981. struct md_personality *pers, *oldpers;
  2982. long level;
  2983. void *priv, *oldpriv;
  2984. struct md_rdev *rdev;
  2985. if (slen == 0 || slen >= sizeof(clevel))
  2986. return -EINVAL;
  2987. rv = mddev_lock(mddev);
  2988. if (rv)
  2989. return rv;
  2990. if (mddev->pers == NULL) {
  2991. strncpy(mddev->clevel, buf, slen);
  2992. if (mddev->clevel[slen-1] == '\n')
  2993. slen--;
  2994. mddev->clevel[slen] = 0;
  2995. mddev->level = LEVEL_NONE;
  2996. rv = len;
  2997. goto out_unlock;
  2998. }
  2999. rv = -EROFS;
  3000. if (mddev->ro)
  3001. goto out_unlock;
  3002. /* request to change the personality. Need to ensure:
  3003. * - array is not engaged in resync/recovery/reshape
  3004. * - old personality can be suspended
  3005. * - new personality will access other array.
  3006. */
  3007. rv = -EBUSY;
  3008. if (mddev->sync_thread ||
  3009. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3010. mddev->reshape_position != MaxSector ||
  3011. mddev->sysfs_active)
  3012. goto out_unlock;
  3013. rv = -EINVAL;
  3014. if (!mddev->pers->quiesce) {
  3015. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  3016. mdname(mddev), mddev->pers->name);
  3017. goto out_unlock;
  3018. }
  3019. /* Now find the new personality */
  3020. strncpy(clevel, buf, slen);
  3021. if (clevel[slen-1] == '\n')
  3022. slen--;
  3023. clevel[slen] = 0;
  3024. if (kstrtol(clevel, 10, &level))
  3025. level = LEVEL_NONE;
  3026. if (request_module("md-%s", clevel) != 0)
  3027. request_module("md-level-%s", clevel);
  3028. spin_lock(&pers_lock);
  3029. pers = find_pers(level, clevel);
  3030. if (!pers || !try_module_get(pers->owner)) {
  3031. spin_unlock(&pers_lock);
  3032. printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
  3033. rv = -EINVAL;
  3034. goto out_unlock;
  3035. }
  3036. spin_unlock(&pers_lock);
  3037. if (pers == mddev->pers) {
  3038. /* Nothing to do! */
  3039. module_put(pers->owner);
  3040. rv = len;
  3041. goto out_unlock;
  3042. }
  3043. if (!pers->takeover) {
  3044. module_put(pers->owner);
  3045. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  3046. mdname(mddev), clevel);
  3047. rv = -EINVAL;
  3048. goto out_unlock;
  3049. }
  3050. rdev_for_each(rdev, mddev)
  3051. rdev->new_raid_disk = rdev->raid_disk;
  3052. /* ->takeover must set new_* and/or delta_disks
  3053. * if it succeeds, and may set them when it fails.
  3054. */
  3055. priv = pers->takeover(mddev);
  3056. if (IS_ERR(priv)) {
  3057. mddev->new_level = mddev->level;
  3058. mddev->new_layout = mddev->layout;
  3059. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3060. mddev->raid_disks -= mddev->delta_disks;
  3061. mddev->delta_disks = 0;
  3062. mddev->reshape_backwards = 0;
  3063. module_put(pers->owner);
  3064. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  3065. mdname(mddev), clevel);
  3066. rv = PTR_ERR(priv);
  3067. goto out_unlock;
  3068. }
  3069. /* Looks like we have a winner */
  3070. mddev_suspend(mddev);
  3071. mddev_detach(mddev);
  3072. spin_lock(&mddev->lock);
  3073. oldpers = mddev->pers;
  3074. oldpriv = mddev->private;
  3075. mddev->pers = pers;
  3076. mddev->private = priv;
  3077. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3078. mddev->level = mddev->new_level;
  3079. mddev->layout = mddev->new_layout;
  3080. mddev->chunk_sectors = mddev->new_chunk_sectors;
  3081. mddev->delta_disks = 0;
  3082. mddev->reshape_backwards = 0;
  3083. mddev->degraded = 0;
  3084. spin_unlock(&mddev->lock);
  3085. if (oldpers->sync_request == NULL &&
  3086. mddev->external) {
  3087. /* We are converting from a no-redundancy array
  3088. * to a redundancy array and metadata is managed
  3089. * externally so we need to be sure that writes
  3090. * won't block due to a need to transition
  3091. * clean->dirty
  3092. * until external management is started.
  3093. */
  3094. mddev->in_sync = 0;
  3095. mddev->safemode_delay = 0;
  3096. mddev->safemode = 0;
  3097. }
  3098. oldpers->free(mddev, oldpriv);
  3099. if (oldpers->sync_request == NULL &&
  3100. pers->sync_request != NULL) {
  3101. /* need to add the md_redundancy_group */
  3102. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  3103. printk(KERN_WARNING
  3104. "md: cannot register extra attributes for %s\n",
  3105. mdname(mddev));
  3106. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
  3107. }
  3108. if (oldpers->sync_request != NULL &&
  3109. pers->sync_request == NULL) {
  3110. /* need to remove the md_redundancy_group */
  3111. if (mddev->to_remove == NULL)
  3112. mddev->to_remove = &md_redundancy_group;
  3113. }
  3114. rdev_for_each(rdev, mddev) {
  3115. if (rdev->raid_disk < 0)
  3116. continue;
  3117. if (rdev->new_raid_disk >= mddev->raid_disks)
  3118. rdev->new_raid_disk = -1;
  3119. if (rdev->new_raid_disk == rdev->raid_disk)
  3120. continue;
  3121. sysfs_unlink_rdev(mddev, rdev);
  3122. }
  3123. rdev_for_each(rdev, mddev) {
  3124. if (rdev->raid_disk < 0)
  3125. continue;
  3126. if (rdev->new_raid_disk == rdev->raid_disk)
  3127. continue;
  3128. rdev->raid_disk = rdev->new_raid_disk;
  3129. if (rdev->raid_disk < 0)
  3130. clear_bit(In_sync, &rdev->flags);
  3131. else {
  3132. if (sysfs_link_rdev(mddev, rdev))
  3133. printk(KERN_WARNING "md: cannot register rd%d"
  3134. " for %s after level change\n",
  3135. rdev->raid_disk, mdname(mddev));
  3136. }
  3137. }
  3138. if (pers->sync_request == NULL) {
  3139. /* this is now an array without redundancy, so
  3140. * it must always be in_sync
  3141. */
  3142. mddev->in_sync = 1;
  3143. del_timer_sync(&mddev->safemode_timer);
  3144. }
  3145. blk_set_stacking_limits(&mddev->queue->limits);
  3146. pers->run(mddev);
  3147. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3148. mddev_resume(mddev);
  3149. if (!mddev->thread)
  3150. md_update_sb(mddev, 1);
  3151. sysfs_notify(&mddev->kobj, NULL, "level");
  3152. md_new_event(mddev);
  3153. rv = len;
  3154. out_unlock:
  3155. mddev_unlock(mddev);
  3156. return rv;
  3157. }
  3158. static struct md_sysfs_entry md_level =
  3159. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  3160. static ssize_t
  3161. layout_show(struct mddev *mddev, char *page)
  3162. {
  3163. /* just a number, not meaningful for all levels */
  3164. if (mddev->reshape_position != MaxSector &&
  3165. mddev->layout != mddev->new_layout)
  3166. return sprintf(page, "%d (%d)\n",
  3167. mddev->new_layout, mddev->layout);
  3168. return sprintf(page, "%d\n", mddev->layout);
  3169. }
  3170. static ssize_t
  3171. layout_store(struct mddev *mddev, const char *buf, size_t len)
  3172. {
  3173. char *e;
  3174. unsigned long n = simple_strtoul(buf, &e, 10);
  3175. int err;
  3176. if (!*buf || (*e && *e != '\n'))
  3177. return -EINVAL;
  3178. err = mddev_lock(mddev);
  3179. if (err)
  3180. return err;
  3181. if (mddev->pers) {
  3182. if (mddev->pers->check_reshape == NULL)
  3183. err = -EBUSY;
  3184. else if (mddev->ro)
  3185. err = -EROFS;
  3186. else {
  3187. mddev->new_layout = n;
  3188. err = mddev->pers->check_reshape(mddev);
  3189. if (err)
  3190. mddev->new_layout = mddev->layout;
  3191. }
  3192. } else {
  3193. mddev->new_layout = n;
  3194. if (mddev->reshape_position == MaxSector)
  3195. mddev->layout = n;
  3196. }
  3197. mddev_unlock(mddev);
  3198. return err ?: len;
  3199. }
  3200. static struct md_sysfs_entry md_layout =
  3201. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  3202. static ssize_t
  3203. raid_disks_show(struct mddev *mddev, char *page)
  3204. {
  3205. if (mddev->raid_disks == 0)
  3206. return 0;
  3207. if (mddev->reshape_position != MaxSector &&
  3208. mddev->delta_disks != 0)
  3209. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  3210. mddev->raid_disks - mddev->delta_disks);
  3211. return sprintf(page, "%d\n", mddev->raid_disks);
  3212. }
  3213. static int update_raid_disks(struct mddev *mddev, int raid_disks);
  3214. static ssize_t
  3215. raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
  3216. {
  3217. char *e;
  3218. int err;
  3219. unsigned long n = simple_strtoul(buf, &e, 10);
  3220. if (!*buf || (*e && *e != '\n'))
  3221. return -EINVAL;
  3222. err = mddev_lock(mddev);
  3223. if (err)
  3224. return err;
  3225. if (mddev->pers)
  3226. err = update_raid_disks(mddev, n);
  3227. else if (mddev->reshape_position != MaxSector) {
  3228. struct md_rdev *rdev;
  3229. int olddisks = mddev->raid_disks - mddev->delta_disks;
  3230. err = -EINVAL;
  3231. rdev_for_each(rdev, mddev) {
  3232. if (olddisks < n &&
  3233. rdev->data_offset < rdev->new_data_offset)
  3234. goto out_unlock;
  3235. if (olddisks > n &&
  3236. rdev->data_offset > rdev->new_data_offset)
  3237. goto out_unlock;
  3238. }
  3239. err = 0;
  3240. mddev->delta_disks = n - olddisks;
  3241. mddev->raid_disks = n;
  3242. mddev->reshape_backwards = (mddev->delta_disks < 0);
  3243. } else
  3244. mddev->raid_disks = n;
  3245. out_unlock:
  3246. mddev_unlock(mddev);
  3247. return err ? err : len;
  3248. }
  3249. static struct md_sysfs_entry md_raid_disks =
  3250. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  3251. static ssize_t
  3252. chunk_size_show(struct mddev *mddev, char *page)
  3253. {
  3254. if (mddev->reshape_position != MaxSector &&
  3255. mddev->chunk_sectors != mddev->new_chunk_sectors)
  3256. return sprintf(page, "%d (%d)\n",
  3257. mddev->new_chunk_sectors << 9,
  3258. mddev->chunk_sectors << 9);
  3259. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  3260. }
  3261. static ssize_t
  3262. chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
  3263. {
  3264. int err;
  3265. char *e;
  3266. unsigned long n = simple_strtoul(buf, &e, 10);
  3267. if (!*buf || (*e && *e != '\n'))
  3268. return -EINVAL;
  3269. err = mddev_lock(mddev);
  3270. if (err)
  3271. return err;
  3272. if (mddev->pers) {
  3273. if (mddev->pers->check_reshape == NULL)
  3274. err = -EBUSY;
  3275. else if (mddev->ro)
  3276. err = -EROFS;
  3277. else {
  3278. mddev->new_chunk_sectors = n >> 9;
  3279. err = mddev->pers->check_reshape(mddev);
  3280. if (err)
  3281. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3282. }
  3283. } else {
  3284. mddev->new_chunk_sectors = n >> 9;
  3285. if (mddev->reshape_position == MaxSector)
  3286. mddev->chunk_sectors = n >> 9;
  3287. }
  3288. mddev_unlock(mddev);
  3289. return err ?: len;
  3290. }
  3291. static struct md_sysfs_entry md_chunk_size =
  3292. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  3293. static ssize_t
  3294. resync_start_show(struct mddev *mddev, char *page)
  3295. {
  3296. if (mddev->recovery_cp == MaxSector)
  3297. return sprintf(page, "none\n");
  3298. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  3299. }
  3300. static ssize_t
  3301. resync_start_store(struct mddev *mddev, const char *buf, size_t len)
  3302. {
  3303. int err;
  3304. char *e;
  3305. unsigned long long n = simple_strtoull(buf, &e, 10);
  3306. err = mddev_lock(mddev);
  3307. if (err)
  3308. return err;
  3309. if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3310. err = -EBUSY;
  3311. else if (cmd_match(buf, "none"))
  3312. n = MaxSector;
  3313. else if (!*buf || (*e && *e != '\n'))
  3314. err = -EINVAL;
  3315. if (!err) {
  3316. mddev->recovery_cp = n;
  3317. if (mddev->pers)
  3318. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3319. }
  3320. mddev_unlock(mddev);
  3321. return err ?: len;
  3322. }
  3323. static struct md_sysfs_entry md_resync_start =
  3324. __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
  3325. resync_start_show, resync_start_store);
  3326. /*
  3327. * The array state can be:
  3328. *
  3329. * clear
  3330. * No devices, no size, no level
  3331. * Equivalent to STOP_ARRAY ioctl
  3332. * inactive
  3333. * May have some settings, but array is not active
  3334. * all IO results in error
  3335. * When written, doesn't tear down array, but just stops it
  3336. * suspended (not supported yet)
  3337. * All IO requests will block. The array can be reconfigured.
  3338. * Writing this, if accepted, will block until array is quiescent
  3339. * readonly
  3340. * no resync can happen. no superblocks get written.
  3341. * write requests fail
  3342. * read-auto
  3343. * like readonly, but behaves like 'clean' on a write request.
  3344. *
  3345. * clean - no pending writes, but otherwise active.
  3346. * When written to inactive array, starts without resync
  3347. * If a write request arrives then
  3348. * if metadata is known, mark 'dirty' and switch to 'active'.
  3349. * if not known, block and switch to write-pending
  3350. * If written to an active array that has pending writes, then fails.
  3351. * active
  3352. * fully active: IO and resync can be happening.
  3353. * When written to inactive array, starts with resync
  3354. *
  3355. * write-pending
  3356. * clean, but writes are blocked waiting for 'active' to be written.
  3357. *
  3358. * active-idle
  3359. * like active, but no writes have been seen for a while (100msec).
  3360. *
  3361. */
  3362. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  3363. write_pending, active_idle, bad_word};
  3364. static char *array_states[] = {
  3365. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  3366. "write-pending", "active-idle", NULL };
  3367. static int match_word(const char *word, char **list)
  3368. {
  3369. int n;
  3370. for (n=0; list[n]; n++)
  3371. if (cmd_match(word, list[n]))
  3372. break;
  3373. return n;
  3374. }
  3375. static ssize_t
  3376. array_state_show(struct mddev *mddev, char *page)
  3377. {
  3378. enum array_state st = inactive;
  3379. if (mddev->pers)
  3380. switch(mddev->ro) {
  3381. case 1:
  3382. st = readonly;
  3383. break;
  3384. case 2:
  3385. st = read_auto;
  3386. break;
  3387. case 0:
  3388. if (mddev->in_sync)
  3389. st = clean;
  3390. else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  3391. st = write_pending;
  3392. else if (mddev->safemode)
  3393. st = active_idle;
  3394. else
  3395. st = active;
  3396. }
  3397. else {
  3398. if (list_empty(&mddev->disks) &&
  3399. mddev->raid_disks == 0 &&
  3400. mddev->dev_sectors == 0)
  3401. st = clear;
  3402. else
  3403. st = inactive;
  3404. }
  3405. return sprintf(page, "%s\n", array_states[st]);
  3406. }
  3407. static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
  3408. static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
  3409. static int do_md_run(struct mddev *mddev);
  3410. static int restart_array(struct mddev *mddev);
  3411. static ssize_t
  3412. array_state_store(struct mddev *mddev, const char *buf, size_t len)
  3413. {
  3414. int err;
  3415. enum array_state st = match_word(buf, array_states);
  3416. if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
  3417. /* don't take reconfig_mutex when toggling between
  3418. * clean and active
  3419. */
  3420. spin_lock(&mddev->lock);
  3421. if (st == active) {
  3422. restart_array(mddev);
  3423. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3424. wake_up(&mddev->sb_wait);
  3425. err = 0;
  3426. } else /* st == clean */ {
  3427. restart_array(mddev);
  3428. if (atomic_read(&mddev->writes_pending) == 0) {
  3429. if (mddev->in_sync == 0) {
  3430. mddev->in_sync = 1;
  3431. if (mddev->safemode == 1)
  3432. mddev->safemode = 0;
  3433. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3434. }
  3435. err = 0;
  3436. } else
  3437. err = -EBUSY;
  3438. }
  3439. spin_unlock(&mddev->lock);
  3440. return err;
  3441. }
  3442. err = mddev_lock(mddev);
  3443. if (err)
  3444. return err;
  3445. err = -EINVAL;
  3446. switch(st) {
  3447. case bad_word:
  3448. break;
  3449. case clear:
  3450. /* stopping an active array */
  3451. err = do_md_stop(mddev, 0, NULL);
  3452. break;
  3453. case inactive:
  3454. /* stopping an active array */
  3455. if (mddev->pers)
  3456. err = do_md_stop(mddev, 2, NULL);
  3457. else
  3458. err = 0; /* already inactive */
  3459. break;
  3460. case suspended:
  3461. break; /* not supported yet */
  3462. case readonly:
  3463. if (mddev->pers)
  3464. err = md_set_readonly(mddev, NULL);
  3465. else {
  3466. mddev->ro = 1;
  3467. set_disk_ro(mddev->gendisk, 1);
  3468. err = do_md_run(mddev);
  3469. }
  3470. break;
  3471. case read_auto:
  3472. if (mddev->pers) {
  3473. if (mddev->ro == 0)
  3474. err = md_set_readonly(mddev, NULL);
  3475. else if (mddev->ro == 1)
  3476. err = restart_array(mddev);
  3477. if (err == 0) {
  3478. mddev->ro = 2;
  3479. set_disk_ro(mddev->gendisk, 0);
  3480. }
  3481. } else {
  3482. mddev->ro = 2;
  3483. err = do_md_run(mddev);
  3484. }
  3485. break;
  3486. case clean:
  3487. if (mddev->pers) {
  3488. restart_array(mddev);
  3489. spin_lock(&mddev->lock);
  3490. if (atomic_read(&mddev->writes_pending) == 0) {
  3491. if (mddev->in_sync == 0) {
  3492. mddev->in_sync = 1;
  3493. if (mddev->safemode == 1)
  3494. mddev->safemode = 0;
  3495. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3496. }
  3497. err = 0;
  3498. } else
  3499. err = -EBUSY;
  3500. spin_unlock(&mddev->lock);
  3501. } else
  3502. err = -EINVAL;
  3503. break;
  3504. case active:
  3505. if (mddev->pers) {
  3506. restart_array(mddev);
  3507. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3508. wake_up(&mddev->sb_wait);
  3509. err = 0;
  3510. } else {
  3511. mddev->ro = 0;
  3512. set_disk_ro(mddev->gendisk, 0);
  3513. err = do_md_run(mddev);
  3514. }
  3515. break;
  3516. case write_pending:
  3517. case active_idle:
  3518. /* these cannot be set */
  3519. break;
  3520. }
  3521. if (!err) {
  3522. if (mddev->hold_active == UNTIL_IOCTL)
  3523. mddev->hold_active = 0;
  3524. sysfs_notify_dirent_safe(mddev->sysfs_state);
  3525. }
  3526. mddev_unlock(mddev);
  3527. return err ?: len;
  3528. }
  3529. static struct md_sysfs_entry md_array_state =
  3530. __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3531. static ssize_t
  3532. max_corrected_read_errors_show(struct mddev *mddev, char *page) {
  3533. return sprintf(page, "%d\n",
  3534. atomic_read(&mddev->max_corr_read_errors));
  3535. }
  3536. static ssize_t
  3537. max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
  3538. {
  3539. char *e;
  3540. unsigned long n = simple_strtoul(buf, &e, 10);
  3541. if (*buf && (*e == 0 || *e == '\n')) {
  3542. atomic_set(&mddev->max_corr_read_errors, n);
  3543. return len;
  3544. }
  3545. return -EINVAL;
  3546. }
  3547. static struct md_sysfs_entry max_corr_read_errors =
  3548. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3549. max_corrected_read_errors_store);
  3550. static ssize_t
  3551. null_show(struct mddev *mddev, char *page)
  3552. {
  3553. return -EINVAL;
  3554. }
  3555. static ssize_t
  3556. new_dev_store(struct mddev *mddev, const char *buf, size_t len)
  3557. {
  3558. /* buf must be %d:%d\n? giving major and minor numbers */
  3559. /* The new device is added to the array.
  3560. * If the array has a persistent superblock, we read the
  3561. * superblock to initialise info and check validity.
  3562. * Otherwise, only checking done is that in bind_rdev_to_array,
  3563. * which mainly checks size.
  3564. */
  3565. char *e;
  3566. int major = simple_strtoul(buf, &e, 10);
  3567. int minor;
  3568. dev_t dev;
  3569. struct md_rdev *rdev;
  3570. int err;
  3571. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3572. return -EINVAL;
  3573. minor = simple_strtoul(e+1, &e, 10);
  3574. if (*e && *e != '\n')
  3575. return -EINVAL;
  3576. dev = MKDEV(major, minor);
  3577. if (major != MAJOR(dev) ||
  3578. minor != MINOR(dev))
  3579. return -EOVERFLOW;
  3580. flush_workqueue(md_misc_wq);
  3581. err = mddev_lock(mddev);
  3582. if (err)
  3583. return err;
  3584. if (mddev->persistent) {
  3585. rdev = md_import_device(dev, mddev->major_version,
  3586. mddev->minor_version);
  3587. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3588. struct md_rdev *rdev0
  3589. = list_entry(mddev->disks.next,
  3590. struct md_rdev, same_set);
  3591. err = super_types[mddev->major_version]
  3592. .load_super(rdev, rdev0, mddev->minor_version);
  3593. if (err < 0)
  3594. goto out;
  3595. }
  3596. } else if (mddev->external)
  3597. rdev = md_import_device(dev, -2, -1);
  3598. else
  3599. rdev = md_import_device(dev, -1, -1);
  3600. if (IS_ERR(rdev))
  3601. return PTR_ERR(rdev);
  3602. err = bind_rdev_to_array(rdev, mddev);
  3603. out:
  3604. if (err)
  3605. export_rdev(rdev);
  3606. mddev_unlock(mddev);
  3607. return err ? err : len;
  3608. }
  3609. static struct md_sysfs_entry md_new_device =
  3610. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3611. static ssize_t
  3612. bitmap_store(struct mddev *mddev, const char *buf, size_t len)
  3613. {
  3614. char *end;
  3615. unsigned long chunk, end_chunk;
  3616. int err;
  3617. err = mddev_lock(mddev);
  3618. if (err)
  3619. return err;
  3620. if (!mddev->bitmap)
  3621. goto out;
  3622. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3623. while (*buf) {
  3624. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3625. if (buf == end) break;
  3626. if (*end == '-') { /* range */
  3627. buf = end + 1;
  3628. end_chunk = simple_strtoul(buf, &end, 0);
  3629. if (buf == end) break;
  3630. }
  3631. if (*end && !isspace(*end)) break;
  3632. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3633. buf = skip_spaces(end);
  3634. }
  3635. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3636. out:
  3637. mddev_unlock(mddev);
  3638. return len;
  3639. }
  3640. static struct md_sysfs_entry md_bitmap =
  3641. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3642. static ssize_t
  3643. size_show(struct mddev *mddev, char *page)
  3644. {
  3645. return sprintf(page, "%llu\n",
  3646. (unsigned long long)mddev->dev_sectors / 2);
  3647. }
  3648. static int update_size(struct mddev *mddev, sector_t num_sectors);
  3649. static ssize_t
  3650. size_store(struct mddev *mddev, const char *buf, size_t len)
  3651. {
  3652. /* If array is inactive, we can reduce the component size, but
  3653. * not increase it (except from 0).
  3654. * If array is active, we can try an on-line resize
  3655. */
  3656. sector_t sectors;
  3657. int err = strict_blocks_to_sectors(buf, &sectors);
  3658. if (err < 0)
  3659. return err;
  3660. err = mddev_lock(mddev);
  3661. if (err)
  3662. return err;
  3663. if (mddev->pers) {
  3664. if (mddev_is_clustered(mddev))
  3665. md_cluster_ops->metadata_update_start(mddev);
  3666. err = update_size(mddev, sectors);
  3667. md_update_sb(mddev, 1);
  3668. if (mddev_is_clustered(mddev))
  3669. md_cluster_ops->metadata_update_finish(mddev);
  3670. } else {
  3671. if (mddev->dev_sectors == 0 ||
  3672. mddev->dev_sectors > sectors)
  3673. mddev->dev_sectors = sectors;
  3674. else
  3675. err = -ENOSPC;
  3676. }
  3677. mddev_unlock(mddev);
  3678. return err ? err : len;
  3679. }
  3680. static struct md_sysfs_entry md_size =
  3681. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3682. /* Metadata version.
  3683. * This is one of
  3684. * 'none' for arrays with no metadata (good luck...)
  3685. * 'external' for arrays with externally managed metadata,
  3686. * or N.M for internally known formats
  3687. */
  3688. static ssize_t
  3689. metadata_show(struct mddev *mddev, char *page)
  3690. {
  3691. if (mddev->persistent)
  3692. return sprintf(page, "%d.%d\n",
  3693. mddev->major_version, mddev->minor_version);
  3694. else if (mddev->external)
  3695. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3696. else
  3697. return sprintf(page, "none\n");
  3698. }
  3699. static ssize_t
  3700. metadata_store(struct mddev *mddev, const char *buf, size_t len)
  3701. {
  3702. int major, minor;
  3703. char *e;
  3704. int err;
  3705. /* Changing the details of 'external' metadata is
  3706. * always permitted. Otherwise there must be
  3707. * no devices attached to the array.
  3708. */
  3709. err = mddev_lock(mddev);
  3710. if (err)
  3711. return err;
  3712. err = -EBUSY;
  3713. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3714. ;
  3715. else if (!list_empty(&mddev->disks))
  3716. goto out_unlock;
  3717. err = 0;
  3718. if (cmd_match(buf, "none")) {
  3719. mddev->persistent = 0;
  3720. mddev->external = 0;
  3721. mddev->major_version = 0;
  3722. mddev->minor_version = 90;
  3723. goto out_unlock;
  3724. }
  3725. if (strncmp(buf, "external:", 9) == 0) {
  3726. size_t namelen = len-9;
  3727. if (namelen >= sizeof(mddev->metadata_type))
  3728. namelen = sizeof(mddev->metadata_type)-1;
  3729. strncpy(mddev->metadata_type, buf+9, namelen);
  3730. mddev->metadata_type[namelen] = 0;
  3731. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3732. mddev->metadata_type[--namelen] = 0;
  3733. mddev->persistent = 0;
  3734. mddev->external = 1;
  3735. mddev->major_version = 0;
  3736. mddev->minor_version = 90;
  3737. goto out_unlock;
  3738. }
  3739. major = simple_strtoul(buf, &e, 10);
  3740. err = -EINVAL;
  3741. if (e==buf || *e != '.')
  3742. goto out_unlock;
  3743. buf = e+1;
  3744. minor = simple_strtoul(buf, &e, 10);
  3745. if (e==buf || (*e && *e != '\n') )
  3746. goto out_unlock;
  3747. err = -ENOENT;
  3748. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3749. goto out_unlock;
  3750. mddev->major_version = major;
  3751. mddev->minor_version = minor;
  3752. mddev->persistent = 1;
  3753. mddev->external = 0;
  3754. err = 0;
  3755. out_unlock:
  3756. mddev_unlock(mddev);
  3757. return err ?: len;
  3758. }
  3759. static struct md_sysfs_entry md_metadata =
  3760. __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3761. static ssize_t
  3762. action_show(struct mddev *mddev, char *page)
  3763. {
  3764. char *type = "idle";
  3765. unsigned long recovery = mddev->recovery;
  3766. if (test_bit(MD_RECOVERY_FROZEN, &recovery))
  3767. type = "frozen";
  3768. else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
  3769. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
  3770. if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
  3771. type = "reshape";
  3772. else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
  3773. if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
  3774. type = "resync";
  3775. else if (test_bit(MD_RECOVERY_CHECK, &recovery))
  3776. type = "check";
  3777. else
  3778. type = "repair";
  3779. } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
  3780. type = "recover";
  3781. }
  3782. return sprintf(page, "%s\n", type);
  3783. }
  3784. static ssize_t
  3785. action_store(struct mddev *mddev, const char *page, size_t len)
  3786. {
  3787. if (!mddev->pers || !mddev->pers->sync_request)
  3788. return -EINVAL;
  3789. if (cmd_match(page, "frozen"))
  3790. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3791. else
  3792. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3793. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3794. flush_workqueue(md_misc_wq);
  3795. if (mddev->sync_thread) {
  3796. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3797. if (mddev_lock(mddev) == 0) {
  3798. md_reap_sync_thread(mddev);
  3799. mddev_unlock(mddev);
  3800. }
  3801. }
  3802. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3803. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  3804. return -EBUSY;
  3805. else if (cmd_match(page, "resync"))
  3806. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3807. else if (cmd_match(page, "recover")) {
  3808. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3809. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3810. } else if (cmd_match(page, "reshape")) {
  3811. int err;
  3812. if (mddev->pers->start_reshape == NULL)
  3813. return -EINVAL;
  3814. err = mddev_lock(mddev);
  3815. if (!err) {
  3816. err = mddev->pers->start_reshape(mddev);
  3817. mddev_unlock(mddev);
  3818. }
  3819. if (err)
  3820. return err;
  3821. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3822. } else {
  3823. if (cmd_match(page, "check"))
  3824. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3825. else if (!cmd_match(page, "repair"))
  3826. return -EINVAL;
  3827. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3828. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3829. }
  3830. if (mddev->ro == 2) {
  3831. /* A write to sync_action is enough to justify
  3832. * canceling read-auto mode
  3833. */
  3834. mddev->ro = 0;
  3835. md_wakeup_thread(mddev->sync_thread);
  3836. }
  3837. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3838. md_wakeup_thread(mddev->thread);
  3839. sysfs_notify_dirent_safe(mddev->sysfs_action);
  3840. return len;
  3841. }
  3842. static struct md_sysfs_entry md_scan_mode =
  3843. __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3844. static ssize_t
  3845. last_sync_action_show(struct mddev *mddev, char *page)
  3846. {
  3847. return sprintf(page, "%s\n", mddev->last_sync_action);
  3848. }
  3849. static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
  3850. static ssize_t
  3851. mismatch_cnt_show(struct mddev *mddev, char *page)
  3852. {
  3853. return sprintf(page, "%llu\n",
  3854. (unsigned long long)
  3855. atomic64_read(&mddev->resync_mismatches));
  3856. }
  3857. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3858. static ssize_t
  3859. sync_min_show(struct mddev *mddev, char *page)
  3860. {
  3861. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3862. mddev->sync_speed_min ? "local": "system");
  3863. }
  3864. static ssize_t
  3865. sync_min_store(struct mddev *mddev, const char *buf, size_t len)
  3866. {
  3867. int min;
  3868. char *e;
  3869. if (strncmp(buf, "system", 6)==0) {
  3870. mddev->sync_speed_min = 0;
  3871. return len;
  3872. }
  3873. min = simple_strtoul(buf, &e, 10);
  3874. if (buf == e || (*e && *e != '\n') || min <= 0)
  3875. return -EINVAL;
  3876. mddev->sync_speed_min = min;
  3877. return len;
  3878. }
  3879. static struct md_sysfs_entry md_sync_min =
  3880. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3881. static ssize_t
  3882. sync_max_show(struct mddev *mddev, char *page)
  3883. {
  3884. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3885. mddev->sync_speed_max ? "local": "system");
  3886. }
  3887. static ssize_t
  3888. sync_max_store(struct mddev *mddev, const char *buf, size_t len)
  3889. {
  3890. int max;
  3891. char *e;
  3892. if (strncmp(buf, "system", 6)==0) {
  3893. mddev->sync_speed_max = 0;
  3894. return len;
  3895. }
  3896. max = simple_strtoul(buf, &e, 10);
  3897. if (buf == e || (*e && *e != '\n') || max <= 0)
  3898. return -EINVAL;
  3899. mddev->sync_speed_max = max;
  3900. return len;
  3901. }
  3902. static struct md_sysfs_entry md_sync_max =
  3903. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3904. static ssize_t
  3905. degraded_show(struct mddev *mddev, char *page)
  3906. {
  3907. return sprintf(page, "%d\n", mddev->degraded);
  3908. }
  3909. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3910. static ssize_t
  3911. sync_force_parallel_show(struct mddev *mddev, char *page)
  3912. {
  3913. return sprintf(page, "%d\n", mddev->parallel_resync);
  3914. }
  3915. static ssize_t
  3916. sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
  3917. {
  3918. long n;
  3919. if (kstrtol(buf, 10, &n))
  3920. return -EINVAL;
  3921. if (n != 0 && n != 1)
  3922. return -EINVAL;
  3923. mddev->parallel_resync = n;
  3924. if (mddev->sync_thread)
  3925. wake_up(&resync_wait);
  3926. return len;
  3927. }
  3928. /* force parallel resync, even with shared block devices */
  3929. static struct md_sysfs_entry md_sync_force_parallel =
  3930. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3931. sync_force_parallel_show, sync_force_parallel_store);
  3932. static ssize_t
  3933. sync_speed_show(struct mddev *mddev, char *page)
  3934. {
  3935. unsigned long resync, dt, db;
  3936. if (mddev->curr_resync == 0)
  3937. return sprintf(page, "none\n");
  3938. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3939. dt = (jiffies - mddev->resync_mark) / HZ;
  3940. if (!dt) dt++;
  3941. db = resync - mddev->resync_mark_cnt;
  3942. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3943. }
  3944. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3945. static ssize_t
  3946. sync_completed_show(struct mddev *mddev, char *page)
  3947. {
  3948. unsigned long long max_sectors, resync;
  3949. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3950. return sprintf(page, "none\n");
  3951. if (mddev->curr_resync == 1 ||
  3952. mddev->curr_resync == 2)
  3953. return sprintf(page, "delayed\n");
  3954. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  3955. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3956. max_sectors = mddev->resync_max_sectors;
  3957. else
  3958. max_sectors = mddev->dev_sectors;
  3959. resync = mddev->curr_resync_completed;
  3960. return sprintf(page, "%llu / %llu\n", resync, max_sectors);
  3961. }
  3962. static struct md_sysfs_entry md_sync_completed =
  3963. __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
  3964. static ssize_t
  3965. min_sync_show(struct mddev *mddev, char *page)
  3966. {
  3967. return sprintf(page, "%llu\n",
  3968. (unsigned long long)mddev->resync_min);
  3969. }
  3970. static ssize_t
  3971. min_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3972. {
  3973. unsigned long long min;
  3974. int err;
  3975. if (kstrtoull(buf, 10, &min))
  3976. return -EINVAL;
  3977. spin_lock(&mddev->lock);
  3978. err = -EINVAL;
  3979. if (min > mddev->resync_max)
  3980. goto out_unlock;
  3981. err = -EBUSY;
  3982. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3983. goto out_unlock;
  3984. /* Round down to multiple of 4K for safety */
  3985. mddev->resync_min = round_down(min, 8);
  3986. err = 0;
  3987. out_unlock:
  3988. spin_unlock(&mddev->lock);
  3989. return err ?: len;
  3990. }
  3991. static struct md_sysfs_entry md_min_sync =
  3992. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  3993. static ssize_t
  3994. max_sync_show(struct mddev *mddev, char *page)
  3995. {
  3996. if (mddev->resync_max == MaxSector)
  3997. return sprintf(page, "max\n");
  3998. else
  3999. return sprintf(page, "%llu\n",
  4000. (unsigned long long)mddev->resync_max);
  4001. }
  4002. static ssize_t
  4003. max_sync_store(struct mddev *mddev, const char *buf, size_t len)
  4004. {
  4005. int err;
  4006. spin_lock(&mddev->lock);
  4007. if (strncmp(buf, "max", 3) == 0)
  4008. mddev->resync_max = MaxSector;
  4009. else {
  4010. unsigned long long max;
  4011. int chunk;
  4012. err = -EINVAL;
  4013. if (kstrtoull(buf, 10, &max))
  4014. goto out_unlock;
  4015. if (max < mddev->resync_min)
  4016. goto out_unlock;
  4017. err = -EBUSY;
  4018. if (max < mddev->resync_max &&
  4019. mddev->ro == 0 &&
  4020. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  4021. goto out_unlock;
  4022. /* Must be a multiple of chunk_size */
  4023. chunk = mddev->chunk_sectors;
  4024. if (chunk) {
  4025. sector_t temp = max;
  4026. err = -EINVAL;
  4027. if (sector_div(temp, chunk))
  4028. goto out_unlock;
  4029. }
  4030. mddev->resync_max = max;
  4031. }
  4032. wake_up(&mddev->recovery_wait);
  4033. err = 0;
  4034. out_unlock:
  4035. spin_unlock(&mddev->lock);
  4036. return err ?: len;
  4037. }
  4038. static struct md_sysfs_entry md_max_sync =
  4039. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  4040. static ssize_t
  4041. suspend_lo_show(struct mddev *mddev, char *page)
  4042. {
  4043. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  4044. }
  4045. static ssize_t
  4046. suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
  4047. {
  4048. char *e;
  4049. unsigned long long new = simple_strtoull(buf, &e, 10);
  4050. unsigned long long old;
  4051. int err;
  4052. if (buf == e || (*e && *e != '\n'))
  4053. return -EINVAL;
  4054. err = mddev_lock(mddev);
  4055. if (err)
  4056. return err;
  4057. err = -EINVAL;
  4058. if (mddev->pers == NULL ||
  4059. mddev->pers->quiesce == NULL)
  4060. goto unlock;
  4061. old = mddev->suspend_lo;
  4062. mddev->suspend_lo = new;
  4063. if (new >= old)
  4064. /* Shrinking suspended region */
  4065. mddev->pers->quiesce(mddev, 2);
  4066. else {
  4067. /* Expanding suspended region - need to wait */
  4068. mddev->pers->quiesce(mddev, 1);
  4069. mddev->pers->quiesce(mddev, 0);
  4070. }
  4071. err = 0;
  4072. unlock:
  4073. mddev_unlock(mddev);
  4074. return err ?: len;
  4075. }
  4076. static struct md_sysfs_entry md_suspend_lo =
  4077. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  4078. static ssize_t
  4079. suspend_hi_show(struct mddev *mddev, char *page)
  4080. {
  4081. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  4082. }
  4083. static ssize_t
  4084. suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
  4085. {
  4086. char *e;
  4087. unsigned long long new = simple_strtoull(buf, &e, 10);
  4088. unsigned long long old;
  4089. int err;
  4090. if (buf == e || (*e && *e != '\n'))
  4091. return -EINVAL;
  4092. err = mddev_lock(mddev);
  4093. if (err)
  4094. return err;
  4095. err = -EINVAL;
  4096. if (mddev->pers == NULL ||
  4097. mddev->pers->quiesce == NULL)
  4098. goto unlock;
  4099. old = mddev->suspend_hi;
  4100. mddev->suspend_hi = new;
  4101. if (new <= old)
  4102. /* Shrinking suspended region */
  4103. mddev->pers->quiesce(mddev, 2);
  4104. else {
  4105. /* Expanding suspended region - need to wait */
  4106. mddev->pers->quiesce(mddev, 1);
  4107. mddev->pers->quiesce(mddev, 0);
  4108. }
  4109. err = 0;
  4110. unlock:
  4111. mddev_unlock(mddev);
  4112. return err ?: len;
  4113. }
  4114. static struct md_sysfs_entry md_suspend_hi =
  4115. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  4116. static ssize_t
  4117. reshape_position_show(struct mddev *mddev, char *page)
  4118. {
  4119. if (mddev->reshape_position != MaxSector)
  4120. return sprintf(page, "%llu\n",
  4121. (unsigned long long)mddev->reshape_position);
  4122. strcpy(page, "none\n");
  4123. return 5;
  4124. }
  4125. static ssize_t
  4126. reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
  4127. {
  4128. struct md_rdev *rdev;
  4129. char *e;
  4130. int err;
  4131. unsigned long long new = simple_strtoull(buf, &e, 10);
  4132. if (buf == e || (*e && *e != '\n'))
  4133. return -EINVAL;
  4134. err = mddev_lock(mddev);
  4135. if (err)
  4136. return err;
  4137. err = -EBUSY;
  4138. if (mddev->pers)
  4139. goto unlock;
  4140. mddev->reshape_position = new;
  4141. mddev->delta_disks = 0;
  4142. mddev->reshape_backwards = 0;
  4143. mddev->new_level = mddev->level;
  4144. mddev->new_layout = mddev->layout;
  4145. mddev->new_chunk_sectors = mddev->chunk_sectors;
  4146. rdev_for_each(rdev, mddev)
  4147. rdev->new_data_offset = rdev->data_offset;
  4148. err = 0;
  4149. unlock:
  4150. mddev_unlock(mddev);
  4151. return err ?: len;
  4152. }
  4153. static struct md_sysfs_entry md_reshape_position =
  4154. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  4155. reshape_position_store);
  4156. static ssize_t
  4157. reshape_direction_show(struct mddev *mddev, char *page)
  4158. {
  4159. return sprintf(page, "%s\n",
  4160. mddev->reshape_backwards ? "backwards" : "forwards");
  4161. }
  4162. static ssize_t
  4163. reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
  4164. {
  4165. int backwards = 0;
  4166. int err;
  4167. if (cmd_match(buf, "forwards"))
  4168. backwards = 0;
  4169. else if (cmd_match(buf, "backwards"))
  4170. backwards = 1;
  4171. else
  4172. return -EINVAL;
  4173. if (mddev->reshape_backwards == backwards)
  4174. return len;
  4175. err = mddev_lock(mddev);
  4176. if (err)
  4177. return err;
  4178. /* check if we are allowed to change */
  4179. if (mddev->delta_disks)
  4180. err = -EBUSY;
  4181. else if (mddev->persistent &&
  4182. mddev->major_version == 0)
  4183. err = -EINVAL;
  4184. else
  4185. mddev->reshape_backwards = backwards;
  4186. mddev_unlock(mddev);
  4187. return err ?: len;
  4188. }
  4189. static struct md_sysfs_entry md_reshape_direction =
  4190. __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
  4191. reshape_direction_store);
  4192. static ssize_t
  4193. array_size_show(struct mddev *mddev, char *page)
  4194. {
  4195. if (mddev->external_size)
  4196. return sprintf(page, "%llu\n",
  4197. (unsigned long long)mddev->array_sectors/2);
  4198. else
  4199. return sprintf(page, "default\n");
  4200. }
  4201. static ssize_t
  4202. array_size_store(struct mddev *mddev, const char *buf, size_t len)
  4203. {
  4204. sector_t sectors;
  4205. int err;
  4206. err = mddev_lock(mddev);
  4207. if (err)
  4208. return err;
  4209. if (strncmp(buf, "default", 7) == 0) {
  4210. if (mddev->pers)
  4211. sectors = mddev->pers->size(mddev, 0, 0);
  4212. else
  4213. sectors = mddev->array_sectors;
  4214. mddev->external_size = 0;
  4215. } else {
  4216. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  4217. err = -EINVAL;
  4218. else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  4219. err = -E2BIG;
  4220. else
  4221. mddev->external_size = 1;
  4222. }
  4223. if (!err) {
  4224. mddev->array_sectors = sectors;
  4225. if (mddev->pers) {
  4226. set_capacity(mddev->gendisk, mddev->array_sectors);
  4227. revalidate_disk(mddev->gendisk);
  4228. }
  4229. }
  4230. mddev_unlock(mddev);
  4231. return err ?: len;
  4232. }
  4233. static struct md_sysfs_entry md_array_size =
  4234. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  4235. array_size_store);
  4236. static struct attribute *md_default_attrs[] = {
  4237. &md_level.attr,
  4238. &md_layout.attr,
  4239. &md_raid_disks.attr,
  4240. &md_chunk_size.attr,
  4241. &md_size.attr,
  4242. &md_resync_start.attr,
  4243. &md_metadata.attr,
  4244. &md_new_device.attr,
  4245. &md_safe_delay.attr,
  4246. &md_array_state.attr,
  4247. &md_reshape_position.attr,
  4248. &md_reshape_direction.attr,
  4249. &md_array_size.attr,
  4250. &max_corr_read_errors.attr,
  4251. NULL,
  4252. };
  4253. static struct attribute *md_redundancy_attrs[] = {
  4254. &md_scan_mode.attr,
  4255. &md_last_scan_mode.attr,
  4256. &md_mismatches.attr,
  4257. &md_sync_min.attr,
  4258. &md_sync_max.attr,
  4259. &md_sync_speed.attr,
  4260. &md_sync_force_parallel.attr,
  4261. &md_sync_completed.attr,
  4262. &md_min_sync.attr,
  4263. &md_max_sync.attr,
  4264. &md_suspend_lo.attr,
  4265. &md_suspend_hi.attr,
  4266. &md_bitmap.attr,
  4267. &md_degraded.attr,
  4268. NULL,
  4269. };
  4270. static struct attribute_group md_redundancy_group = {
  4271. .name = NULL,
  4272. .attrs = md_redundancy_attrs,
  4273. };
  4274. static ssize_t
  4275. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  4276. {
  4277. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4278. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4279. ssize_t rv;
  4280. if (!entry->show)
  4281. return -EIO;
  4282. spin_lock(&all_mddevs_lock);
  4283. if (list_empty(&mddev->all_mddevs)) {
  4284. spin_unlock(&all_mddevs_lock);
  4285. return -EBUSY;
  4286. }
  4287. mddev_get(mddev);
  4288. spin_unlock(&all_mddevs_lock);
  4289. rv = entry->show(mddev, page);
  4290. mddev_put(mddev);
  4291. return rv;
  4292. }
  4293. static ssize_t
  4294. md_attr_store(struct kobject *kobj, struct attribute *attr,
  4295. const char *page, size_t length)
  4296. {
  4297. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4298. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4299. ssize_t rv;
  4300. if (!entry->store)
  4301. return -EIO;
  4302. if (!capable(CAP_SYS_ADMIN))
  4303. return -EACCES;
  4304. spin_lock(&all_mddevs_lock);
  4305. if (list_empty(&mddev->all_mddevs)) {
  4306. spin_unlock(&all_mddevs_lock);
  4307. return -EBUSY;
  4308. }
  4309. mddev_get(mddev);
  4310. spin_unlock(&all_mddevs_lock);
  4311. rv = entry->store(mddev, page, length);
  4312. mddev_put(mddev);
  4313. return rv;
  4314. }
  4315. static void md_free(struct kobject *ko)
  4316. {
  4317. struct mddev *mddev = container_of(ko, struct mddev, kobj);
  4318. if (mddev->sysfs_state)
  4319. sysfs_put(mddev->sysfs_state);
  4320. if (mddev->gendisk) {
  4321. del_gendisk(mddev->gendisk);
  4322. put_disk(mddev->gendisk);
  4323. }
  4324. if (mddev->queue)
  4325. blk_cleanup_queue(mddev->queue);
  4326. kfree(mddev);
  4327. }
  4328. static const struct sysfs_ops md_sysfs_ops = {
  4329. .show = md_attr_show,
  4330. .store = md_attr_store,
  4331. };
  4332. static struct kobj_type md_ktype = {
  4333. .release = md_free,
  4334. .sysfs_ops = &md_sysfs_ops,
  4335. .default_attrs = md_default_attrs,
  4336. };
  4337. int mdp_major = 0;
  4338. static void mddev_delayed_delete(struct work_struct *ws)
  4339. {
  4340. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  4341. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  4342. kobject_del(&mddev->kobj);
  4343. kobject_put(&mddev->kobj);
  4344. }
  4345. static int md_alloc(dev_t dev, char *name)
  4346. {
  4347. static DEFINE_MUTEX(disks_mutex);
  4348. struct mddev *mddev = mddev_find(dev);
  4349. struct gendisk *disk;
  4350. int partitioned;
  4351. int shift;
  4352. int unit;
  4353. int error;
  4354. if (!mddev)
  4355. return -ENODEV;
  4356. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  4357. shift = partitioned ? MdpMinorShift : 0;
  4358. unit = MINOR(mddev->unit) >> shift;
  4359. /* wait for any previous instance of this device to be
  4360. * completely removed (mddev_delayed_delete).
  4361. */
  4362. flush_workqueue(md_misc_wq);
  4363. mutex_lock(&disks_mutex);
  4364. error = -EEXIST;
  4365. if (mddev->gendisk)
  4366. goto abort;
  4367. if (name) {
  4368. /* Need to ensure that 'name' is not a duplicate.
  4369. */
  4370. struct mddev *mddev2;
  4371. spin_lock(&all_mddevs_lock);
  4372. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  4373. if (mddev2->gendisk &&
  4374. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  4375. spin_unlock(&all_mddevs_lock);
  4376. goto abort;
  4377. }
  4378. spin_unlock(&all_mddevs_lock);
  4379. }
  4380. error = -ENOMEM;
  4381. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  4382. if (!mddev->queue)
  4383. goto abort;
  4384. mddev->queue->queuedata = mddev;
  4385. blk_queue_make_request(mddev->queue, md_make_request);
  4386. blk_set_stacking_limits(&mddev->queue->limits);
  4387. disk = alloc_disk(1 << shift);
  4388. if (!disk) {
  4389. blk_cleanup_queue(mddev->queue);
  4390. mddev->queue = NULL;
  4391. goto abort;
  4392. }
  4393. disk->major = MAJOR(mddev->unit);
  4394. disk->first_minor = unit << shift;
  4395. if (name)
  4396. strcpy(disk->disk_name, name);
  4397. else if (partitioned)
  4398. sprintf(disk->disk_name, "md_d%d", unit);
  4399. else
  4400. sprintf(disk->disk_name, "md%d", unit);
  4401. disk->fops = &md_fops;
  4402. disk->private_data = mddev;
  4403. disk->queue = mddev->queue;
  4404. blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
  4405. /* Allow extended partitions. This makes the
  4406. * 'mdp' device redundant, but we can't really
  4407. * remove it now.
  4408. */
  4409. disk->flags |= GENHD_FL_EXT_DEVT;
  4410. mddev->gendisk = disk;
  4411. /* As soon as we call add_disk(), another thread could get
  4412. * through to md_open, so make sure it doesn't get too far
  4413. */
  4414. mutex_lock(&mddev->open_mutex);
  4415. add_disk(disk);
  4416. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  4417. &disk_to_dev(disk)->kobj, "%s", "md");
  4418. if (error) {
  4419. /* This isn't possible, but as kobject_init_and_add is marked
  4420. * __must_check, we must do something with the result
  4421. */
  4422. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  4423. disk->disk_name);
  4424. error = 0;
  4425. }
  4426. if (mddev->kobj.sd &&
  4427. sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  4428. printk(KERN_DEBUG "pointless warning\n");
  4429. mutex_unlock(&mddev->open_mutex);
  4430. abort:
  4431. mutex_unlock(&disks_mutex);
  4432. if (!error && mddev->kobj.sd) {
  4433. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  4434. mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
  4435. }
  4436. mddev_put(mddev);
  4437. return error;
  4438. }
  4439. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  4440. {
  4441. md_alloc(dev, NULL);
  4442. return NULL;
  4443. }
  4444. static int add_named_array(const char *val, struct kernel_param *kp)
  4445. {
  4446. /* val must be "md_*" where * is not all digits.
  4447. * We allocate an array with a large free minor number, and
  4448. * set the name to val. val must not already be an active name.
  4449. */
  4450. int len = strlen(val);
  4451. char buf[DISK_NAME_LEN];
  4452. while (len && val[len-1] == '\n')
  4453. len--;
  4454. if (len >= DISK_NAME_LEN)
  4455. return -E2BIG;
  4456. strlcpy(buf, val, len+1);
  4457. if (strncmp(buf, "md_", 3) != 0)
  4458. return -EINVAL;
  4459. return md_alloc(0, buf);
  4460. }
  4461. static void md_safemode_timeout(unsigned long data)
  4462. {
  4463. struct mddev *mddev = (struct mddev *) data;
  4464. if (!atomic_read(&mddev->writes_pending)) {
  4465. mddev->safemode = 1;
  4466. if (mddev->external)
  4467. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4468. }
  4469. md_wakeup_thread(mddev->thread);
  4470. }
  4471. static int start_dirty_degraded;
  4472. int md_run(struct mddev *mddev)
  4473. {
  4474. int err;
  4475. struct md_rdev *rdev;
  4476. struct md_personality *pers;
  4477. if (list_empty(&mddev->disks))
  4478. /* cannot run an array with no devices.. */
  4479. return -EINVAL;
  4480. if (mddev->pers)
  4481. return -EBUSY;
  4482. /* Cannot run until previous stop completes properly */
  4483. if (mddev->sysfs_active)
  4484. return -EBUSY;
  4485. /*
  4486. * Analyze all RAID superblock(s)
  4487. */
  4488. if (!mddev->raid_disks) {
  4489. if (!mddev->persistent)
  4490. return -EINVAL;
  4491. analyze_sbs(mddev);
  4492. }
  4493. if (mddev->level != LEVEL_NONE)
  4494. request_module("md-level-%d", mddev->level);
  4495. else if (mddev->clevel[0])
  4496. request_module("md-%s", mddev->clevel);
  4497. /*
  4498. * Drop all container device buffers, from now on
  4499. * the only valid external interface is through the md
  4500. * device.
  4501. */
  4502. rdev_for_each(rdev, mddev) {
  4503. if (test_bit(Faulty, &rdev->flags))
  4504. continue;
  4505. sync_blockdev(rdev->bdev);
  4506. invalidate_bdev(rdev->bdev);
  4507. /* perform some consistency tests on the device.
  4508. * We don't want the data to overlap the metadata,
  4509. * Internal Bitmap issues have been handled elsewhere.
  4510. */
  4511. if (rdev->meta_bdev) {
  4512. /* Nothing to check */;
  4513. } else if (rdev->data_offset < rdev->sb_start) {
  4514. if (mddev->dev_sectors &&
  4515. rdev->data_offset + mddev->dev_sectors
  4516. > rdev->sb_start) {
  4517. printk("md: %s: data overlaps metadata\n",
  4518. mdname(mddev));
  4519. return -EINVAL;
  4520. }
  4521. } else {
  4522. if (rdev->sb_start + rdev->sb_size/512
  4523. > rdev->data_offset) {
  4524. printk("md: %s: metadata overlaps data\n",
  4525. mdname(mddev));
  4526. return -EINVAL;
  4527. }
  4528. }
  4529. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4530. }
  4531. if (mddev->bio_set == NULL)
  4532. mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
  4533. spin_lock(&pers_lock);
  4534. pers = find_pers(mddev->level, mddev->clevel);
  4535. if (!pers || !try_module_get(pers->owner)) {
  4536. spin_unlock(&pers_lock);
  4537. if (mddev->level != LEVEL_NONE)
  4538. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  4539. mddev->level);
  4540. else
  4541. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  4542. mddev->clevel);
  4543. return -EINVAL;
  4544. }
  4545. spin_unlock(&pers_lock);
  4546. if (mddev->level != pers->level) {
  4547. mddev->level = pers->level;
  4548. mddev->new_level = pers->level;
  4549. }
  4550. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  4551. if (mddev->reshape_position != MaxSector &&
  4552. pers->start_reshape == NULL) {
  4553. /* This personality cannot handle reshaping... */
  4554. module_put(pers->owner);
  4555. return -EINVAL;
  4556. }
  4557. if (pers->sync_request) {
  4558. /* Warn if this is a potentially silly
  4559. * configuration.
  4560. */
  4561. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4562. struct md_rdev *rdev2;
  4563. int warned = 0;
  4564. rdev_for_each(rdev, mddev)
  4565. rdev_for_each(rdev2, mddev) {
  4566. if (rdev < rdev2 &&
  4567. rdev->bdev->bd_contains ==
  4568. rdev2->bdev->bd_contains) {
  4569. printk(KERN_WARNING
  4570. "%s: WARNING: %s appears to be"
  4571. " on the same physical disk as"
  4572. " %s.\n",
  4573. mdname(mddev),
  4574. bdevname(rdev->bdev,b),
  4575. bdevname(rdev2->bdev,b2));
  4576. warned = 1;
  4577. }
  4578. }
  4579. if (warned)
  4580. printk(KERN_WARNING
  4581. "True protection against single-disk"
  4582. " failure might be compromised.\n");
  4583. }
  4584. mddev->recovery = 0;
  4585. /* may be over-ridden by personality */
  4586. mddev->resync_max_sectors = mddev->dev_sectors;
  4587. mddev->ok_start_degraded = start_dirty_degraded;
  4588. if (start_readonly && mddev->ro == 0)
  4589. mddev->ro = 2; /* read-only, but switch on first write */
  4590. err = pers->run(mddev);
  4591. if (err)
  4592. printk(KERN_ERR "md: pers->run() failed ...\n");
  4593. else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
  4594. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  4595. " but 'external_size' not in effect?\n", __func__);
  4596. printk(KERN_ERR
  4597. "md: invalid array_size %llu > default size %llu\n",
  4598. (unsigned long long)mddev->array_sectors / 2,
  4599. (unsigned long long)pers->size(mddev, 0, 0) / 2);
  4600. err = -EINVAL;
  4601. }
  4602. if (err == 0 && pers->sync_request &&
  4603. (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
  4604. struct bitmap *bitmap;
  4605. bitmap = bitmap_create(mddev, -1);
  4606. if (IS_ERR(bitmap)) {
  4607. err = PTR_ERR(bitmap);
  4608. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  4609. mdname(mddev), err);
  4610. } else
  4611. mddev->bitmap = bitmap;
  4612. }
  4613. if (err) {
  4614. mddev_detach(mddev);
  4615. if (mddev->private)
  4616. pers->free(mddev, mddev->private);
  4617. module_put(pers->owner);
  4618. bitmap_destroy(mddev);
  4619. return err;
  4620. }
  4621. if (mddev->queue) {
  4622. mddev->queue->backing_dev_info.congested_data = mddev;
  4623. mddev->queue->backing_dev_info.congested_fn = md_congested;
  4624. blk_queue_merge_bvec(mddev->queue, md_mergeable_bvec);
  4625. }
  4626. if (pers->sync_request) {
  4627. if (mddev->kobj.sd &&
  4628. sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  4629. printk(KERN_WARNING
  4630. "md: cannot register extra attributes for %s\n",
  4631. mdname(mddev));
  4632. mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
  4633. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  4634. mddev->ro = 0;
  4635. atomic_set(&mddev->writes_pending,0);
  4636. atomic_set(&mddev->max_corr_read_errors,
  4637. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  4638. mddev->safemode = 0;
  4639. mddev->safemode_timer.function = md_safemode_timeout;
  4640. mddev->safemode_timer.data = (unsigned long) mddev;
  4641. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  4642. mddev->in_sync = 1;
  4643. smp_wmb();
  4644. spin_lock(&mddev->lock);
  4645. mddev->pers = pers;
  4646. mddev->ready = 1;
  4647. spin_unlock(&mddev->lock);
  4648. rdev_for_each(rdev, mddev)
  4649. if (rdev->raid_disk >= 0)
  4650. if (sysfs_link_rdev(mddev, rdev))
  4651. /* failure here is OK */;
  4652. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4653. if (mddev->flags & MD_UPDATE_SB_FLAGS)
  4654. md_update_sb(mddev, 0);
  4655. md_new_event(mddev);
  4656. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4657. sysfs_notify_dirent_safe(mddev->sysfs_action);
  4658. sysfs_notify(&mddev->kobj, NULL, "degraded");
  4659. return 0;
  4660. }
  4661. EXPORT_SYMBOL_GPL(md_run);
  4662. static int do_md_run(struct mddev *mddev)
  4663. {
  4664. int err;
  4665. err = md_run(mddev);
  4666. if (err)
  4667. goto out;
  4668. err = bitmap_load(mddev);
  4669. if (err) {
  4670. bitmap_destroy(mddev);
  4671. goto out;
  4672. }
  4673. md_wakeup_thread(mddev->thread);
  4674. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  4675. set_capacity(mddev->gendisk, mddev->array_sectors);
  4676. revalidate_disk(mddev->gendisk);
  4677. mddev->changed = 1;
  4678. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4679. out:
  4680. return err;
  4681. }
  4682. static int restart_array(struct mddev *mddev)
  4683. {
  4684. struct gendisk *disk = mddev->gendisk;
  4685. /* Complain if it has no devices */
  4686. if (list_empty(&mddev->disks))
  4687. return -ENXIO;
  4688. if (!mddev->pers)
  4689. return -EINVAL;
  4690. if (!mddev->ro)
  4691. return -EBUSY;
  4692. mddev->safemode = 0;
  4693. mddev->ro = 0;
  4694. set_disk_ro(disk, 0);
  4695. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4696. mdname(mddev));
  4697. /* Kick recovery or resync if necessary */
  4698. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4699. md_wakeup_thread(mddev->thread);
  4700. md_wakeup_thread(mddev->sync_thread);
  4701. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4702. return 0;
  4703. }
  4704. static void md_clean(struct mddev *mddev)
  4705. {
  4706. mddev->array_sectors = 0;
  4707. mddev->external_size = 0;
  4708. mddev->dev_sectors = 0;
  4709. mddev->raid_disks = 0;
  4710. mddev->recovery_cp = 0;
  4711. mddev->resync_min = 0;
  4712. mddev->resync_max = MaxSector;
  4713. mddev->reshape_position = MaxSector;
  4714. mddev->external = 0;
  4715. mddev->persistent = 0;
  4716. mddev->level = LEVEL_NONE;
  4717. mddev->clevel[0] = 0;
  4718. mddev->flags = 0;
  4719. mddev->ro = 0;
  4720. mddev->metadata_type[0] = 0;
  4721. mddev->chunk_sectors = 0;
  4722. mddev->ctime = mddev->utime = 0;
  4723. mddev->layout = 0;
  4724. mddev->max_disks = 0;
  4725. mddev->events = 0;
  4726. mddev->can_decrease_events = 0;
  4727. mddev->delta_disks = 0;
  4728. mddev->reshape_backwards = 0;
  4729. mddev->new_level = LEVEL_NONE;
  4730. mddev->new_layout = 0;
  4731. mddev->new_chunk_sectors = 0;
  4732. mddev->curr_resync = 0;
  4733. atomic64_set(&mddev->resync_mismatches, 0);
  4734. mddev->suspend_lo = mddev->suspend_hi = 0;
  4735. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4736. mddev->recovery = 0;
  4737. mddev->in_sync = 0;
  4738. mddev->changed = 0;
  4739. mddev->degraded = 0;
  4740. mddev->safemode = 0;
  4741. mddev->merge_check_needed = 0;
  4742. mddev->bitmap_info.offset = 0;
  4743. mddev->bitmap_info.default_offset = 0;
  4744. mddev->bitmap_info.default_space = 0;
  4745. mddev->bitmap_info.chunksize = 0;
  4746. mddev->bitmap_info.daemon_sleep = 0;
  4747. mddev->bitmap_info.max_write_behind = 0;
  4748. }
  4749. static void __md_stop_writes(struct mddev *mddev)
  4750. {
  4751. if (mddev_is_clustered(mddev))
  4752. md_cluster_ops->metadata_update_start(mddev);
  4753. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4754. flush_workqueue(md_misc_wq);
  4755. if (mddev->sync_thread) {
  4756. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4757. md_reap_sync_thread(mddev);
  4758. }
  4759. del_timer_sync(&mddev->safemode_timer);
  4760. bitmap_flush(mddev);
  4761. md_super_wait(mddev);
  4762. if (mddev->ro == 0 &&
  4763. (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
  4764. /* mark array as shutdown cleanly */
  4765. mddev->in_sync = 1;
  4766. md_update_sb(mddev, 1);
  4767. }
  4768. if (mddev_is_clustered(mddev))
  4769. md_cluster_ops->metadata_update_finish(mddev);
  4770. }
  4771. void md_stop_writes(struct mddev *mddev)
  4772. {
  4773. mddev_lock_nointr(mddev);
  4774. __md_stop_writes(mddev);
  4775. mddev_unlock(mddev);
  4776. }
  4777. EXPORT_SYMBOL_GPL(md_stop_writes);
  4778. static void mddev_detach(struct mddev *mddev)
  4779. {
  4780. struct bitmap *bitmap = mddev->bitmap;
  4781. /* wait for behind writes to complete */
  4782. if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
  4783. printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
  4784. mdname(mddev));
  4785. /* need to kick something here to make sure I/O goes? */
  4786. wait_event(bitmap->behind_wait,
  4787. atomic_read(&bitmap->behind_writes) == 0);
  4788. }
  4789. if (mddev->pers && mddev->pers->quiesce) {
  4790. mddev->pers->quiesce(mddev, 1);
  4791. mddev->pers->quiesce(mddev, 0);
  4792. }
  4793. md_unregister_thread(&mddev->thread);
  4794. if (mddev->queue)
  4795. blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
  4796. }
  4797. static void __md_stop(struct mddev *mddev)
  4798. {
  4799. struct md_personality *pers = mddev->pers;
  4800. mddev_detach(mddev);
  4801. spin_lock(&mddev->lock);
  4802. mddev->ready = 0;
  4803. mddev->pers = NULL;
  4804. spin_unlock(&mddev->lock);
  4805. pers->free(mddev, mddev->private);
  4806. if (pers->sync_request && mddev->to_remove == NULL)
  4807. mddev->to_remove = &md_redundancy_group;
  4808. module_put(pers->owner);
  4809. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4810. }
  4811. void md_stop(struct mddev *mddev)
  4812. {
  4813. /* stop the array and free an attached data structures.
  4814. * This is called from dm-raid
  4815. */
  4816. __md_stop(mddev);
  4817. bitmap_destroy(mddev);
  4818. if (mddev->bio_set)
  4819. bioset_free(mddev->bio_set);
  4820. }
  4821. EXPORT_SYMBOL_GPL(md_stop);
  4822. static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
  4823. {
  4824. int err = 0;
  4825. int did_freeze = 0;
  4826. if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
  4827. did_freeze = 1;
  4828. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4829. md_wakeup_thread(mddev->thread);
  4830. }
  4831. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  4832. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4833. if (mddev->sync_thread)
  4834. /* Thread might be blocked waiting for metadata update
  4835. * which will now never happen */
  4836. wake_up_process(mddev->sync_thread->tsk);
  4837. mddev_unlock(mddev);
  4838. wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
  4839. &mddev->recovery));
  4840. mddev_lock_nointr(mddev);
  4841. mutex_lock(&mddev->open_mutex);
  4842. if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
  4843. mddev->sync_thread ||
  4844. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  4845. (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
  4846. printk("md: %s still in use.\n",mdname(mddev));
  4847. if (did_freeze) {
  4848. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4849. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4850. md_wakeup_thread(mddev->thread);
  4851. }
  4852. err = -EBUSY;
  4853. goto out;
  4854. }
  4855. if (mddev->pers) {
  4856. __md_stop_writes(mddev);
  4857. err = -ENXIO;
  4858. if (mddev->ro==1)
  4859. goto out;
  4860. mddev->ro = 1;
  4861. set_disk_ro(mddev->gendisk, 1);
  4862. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4863. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4864. md_wakeup_thread(mddev->thread);
  4865. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4866. err = 0;
  4867. }
  4868. out:
  4869. mutex_unlock(&mddev->open_mutex);
  4870. return err;
  4871. }
  4872. /* mode:
  4873. * 0 - completely stop and dis-assemble array
  4874. * 2 - stop but do not disassemble array
  4875. */
  4876. static int do_md_stop(struct mddev *mddev, int mode,
  4877. struct block_device *bdev)
  4878. {
  4879. struct gendisk *disk = mddev->gendisk;
  4880. struct md_rdev *rdev;
  4881. int did_freeze = 0;
  4882. if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
  4883. did_freeze = 1;
  4884. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4885. md_wakeup_thread(mddev->thread);
  4886. }
  4887. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  4888. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4889. if (mddev->sync_thread)
  4890. /* Thread might be blocked waiting for metadata update
  4891. * which will now never happen */
  4892. wake_up_process(mddev->sync_thread->tsk);
  4893. mddev_unlock(mddev);
  4894. wait_event(resync_wait, (mddev->sync_thread == NULL &&
  4895. !test_bit(MD_RECOVERY_RUNNING,
  4896. &mddev->recovery)));
  4897. mddev_lock_nointr(mddev);
  4898. mutex_lock(&mddev->open_mutex);
  4899. if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
  4900. mddev->sysfs_active ||
  4901. mddev->sync_thread ||
  4902. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  4903. (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
  4904. printk("md: %s still in use.\n",mdname(mddev));
  4905. mutex_unlock(&mddev->open_mutex);
  4906. if (did_freeze) {
  4907. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4908. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4909. md_wakeup_thread(mddev->thread);
  4910. }
  4911. return -EBUSY;
  4912. }
  4913. if (mddev->pers) {
  4914. if (mddev->ro)
  4915. set_disk_ro(disk, 0);
  4916. __md_stop_writes(mddev);
  4917. __md_stop(mddev);
  4918. mddev->queue->merge_bvec_fn = NULL;
  4919. mddev->queue->backing_dev_info.congested_fn = NULL;
  4920. /* tell userspace to handle 'inactive' */
  4921. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4922. rdev_for_each(rdev, mddev)
  4923. if (rdev->raid_disk >= 0)
  4924. sysfs_unlink_rdev(mddev, rdev);
  4925. set_capacity(disk, 0);
  4926. mutex_unlock(&mddev->open_mutex);
  4927. mddev->changed = 1;
  4928. revalidate_disk(disk);
  4929. if (mddev->ro)
  4930. mddev->ro = 0;
  4931. } else
  4932. mutex_unlock(&mddev->open_mutex);
  4933. /*
  4934. * Free resources if final stop
  4935. */
  4936. if (mode == 0) {
  4937. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  4938. bitmap_destroy(mddev);
  4939. if (mddev->bitmap_info.file) {
  4940. struct file *f = mddev->bitmap_info.file;
  4941. spin_lock(&mddev->lock);
  4942. mddev->bitmap_info.file = NULL;
  4943. spin_unlock(&mddev->lock);
  4944. fput(f);
  4945. }
  4946. mddev->bitmap_info.offset = 0;
  4947. export_array(mddev);
  4948. md_clean(mddev);
  4949. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4950. if (mddev->hold_active == UNTIL_STOP)
  4951. mddev->hold_active = 0;
  4952. }
  4953. blk_integrity_unregister(disk);
  4954. md_new_event(mddev);
  4955. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4956. return 0;
  4957. }
  4958. #ifndef MODULE
  4959. static void autorun_array(struct mddev *mddev)
  4960. {
  4961. struct md_rdev *rdev;
  4962. int err;
  4963. if (list_empty(&mddev->disks))
  4964. return;
  4965. printk(KERN_INFO "md: running: ");
  4966. rdev_for_each(rdev, mddev) {
  4967. char b[BDEVNAME_SIZE];
  4968. printk("<%s>", bdevname(rdev->bdev,b));
  4969. }
  4970. printk("\n");
  4971. err = do_md_run(mddev);
  4972. if (err) {
  4973. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  4974. do_md_stop(mddev, 0, NULL);
  4975. }
  4976. }
  4977. /*
  4978. * lets try to run arrays based on all disks that have arrived
  4979. * until now. (those are in pending_raid_disks)
  4980. *
  4981. * the method: pick the first pending disk, collect all disks with
  4982. * the same UUID, remove all from the pending list and put them into
  4983. * the 'same_array' list. Then order this list based on superblock
  4984. * update time (freshest comes first), kick out 'old' disks and
  4985. * compare superblocks. If everything's fine then run it.
  4986. *
  4987. * If "unit" is allocated, then bump its reference count
  4988. */
  4989. static void autorun_devices(int part)
  4990. {
  4991. struct md_rdev *rdev0, *rdev, *tmp;
  4992. struct mddev *mddev;
  4993. char b[BDEVNAME_SIZE];
  4994. printk(KERN_INFO "md: autorun ...\n");
  4995. while (!list_empty(&pending_raid_disks)) {
  4996. int unit;
  4997. dev_t dev;
  4998. LIST_HEAD(candidates);
  4999. rdev0 = list_entry(pending_raid_disks.next,
  5000. struct md_rdev, same_set);
  5001. printk(KERN_INFO "md: considering %s ...\n",
  5002. bdevname(rdev0->bdev,b));
  5003. INIT_LIST_HEAD(&candidates);
  5004. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  5005. if (super_90_load(rdev, rdev0, 0) >= 0) {
  5006. printk(KERN_INFO "md: adding %s ...\n",
  5007. bdevname(rdev->bdev,b));
  5008. list_move(&rdev->same_set, &candidates);
  5009. }
  5010. /*
  5011. * now we have a set of devices, with all of them having
  5012. * mostly sane superblocks. It's time to allocate the
  5013. * mddev.
  5014. */
  5015. if (part) {
  5016. dev = MKDEV(mdp_major,
  5017. rdev0->preferred_minor << MdpMinorShift);
  5018. unit = MINOR(dev) >> MdpMinorShift;
  5019. } else {
  5020. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  5021. unit = MINOR(dev);
  5022. }
  5023. if (rdev0->preferred_minor != unit) {
  5024. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  5025. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  5026. break;
  5027. }
  5028. md_probe(dev, NULL, NULL);
  5029. mddev = mddev_find(dev);
  5030. if (!mddev || !mddev->gendisk) {
  5031. if (mddev)
  5032. mddev_put(mddev);
  5033. printk(KERN_ERR
  5034. "md: cannot allocate memory for md drive.\n");
  5035. break;
  5036. }
  5037. if (mddev_lock(mddev))
  5038. printk(KERN_WARNING "md: %s locked, cannot run\n",
  5039. mdname(mddev));
  5040. else if (mddev->raid_disks || mddev->major_version
  5041. || !list_empty(&mddev->disks)) {
  5042. printk(KERN_WARNING
  5043. "md: %s already running, cannot run %s\n",
  5044. mdname(mddev), bdevname(rdev0->bdev,b));
  5045. mddev_unlock(mddev);
  5046. } else {
  5047. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  5048. mddev->persistent = 1;
  5049. rdev_for_each_list(rdev, tmp, &candidates) {
  5050. list_del_init(&rdev->same_set);
  5051. if (bind_rdev_to_array(rdev, mddev))
  5052. export_rdev(rdev);
  5053. }
  5054. autorun_array(mddev);
  5055. mddev_unlock(mddev);
  5056. }
  5057. /* on success, candidates will be empty, on error
  5058. * it won't...
  5059. */
  5060. rdev_for_each_list(rdev, tmp, &candidates) {
  5061. list_del_init(&rdev->same_set);
  5062. export_rdev(rdev);
  5063. }
  5064. mddev_put(mddev);
  5065. }
  5066. printk(KERN_INFO "md: ... autorun DONE.\n");
  5067. }
  5068. #endif /* !MODULE */
  5069. static int get_version(void __user *arg)
  5070. {
  5071. mdu_version_t ver;
  5072. ver.major = MD_MAJOR_VERSION;
  5073. ver.minor = MD_MINOR_VERSION;
  5074. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  5075. if (copy_to_user(arg, &ver, sizeof(ver)))
  5076. return -EFAULT;
  5077. return 0;
  5078. }
  5079. static int get_array_info(struct mddev *mddev, void __user *arg)
  5080. {
  5081. mdu_array_info_t info;
  5082. int nr,working,insync,failed,spare;
  5083. struct md_rdev *rdev;
  5084. nr = working = insync = failed = spare = 0;
  5085. rcu_read_lock();
  5086. rdev_for_each_rcu(rdev, mddev) {
  5087. nr++;
  5088. if (test_bit(Faulty, &rdev->flags))
  5089. failed++;
  5090. else {
  5091. working++;
  5092. if (test_bit(In_sync, &rdev->flags))
  5093. insync++;
  5094. else
  5095. spare++;
  5096. }
  5097. }
  5098. rcu_read_unlock();
  5099. info.major_version = mddev->major_version;
  5100. info.minor_version = mddev->minor_version;
  5101. info.patch_version = MD_PATCHLEVEL_VERSION;
  5102. info.ctime = mddev->ctime;
  5103. info.level = mddev->level;
  5104. info.size = mddev->dev_sectors / 2;
  5105. if (info.size != mddev->dev_sectors / 2) /* overflow */
  5106. info.size = -1;
  5107. info.nr_disks = nr;
  5108. info.raid_disks = mddev->raid_disks;
  5109. info.md_minor = mddev->md_minor;
  5110. info.not_persistent= !mddev->persistent;
  5111. info.utime = mddev->utime;
  5112. info.state = 0;
  5113. if (mddev->in_sync)
  5114. info.state = (1<<MD_SB_CLEAN);
  5115. if (mddev->bitmap && mddev->bitmap_info.offset)
  5116. info.state |= (1<<MD_SB_BITMAP_PRESENT);
  5117. if (mddev_is_clustered(mddev))
  5118. info.state |= (1<<MD_SB_CLUSTERED);
  5119. info.active_disks = insync;
  5120. info.working_disks = working;
  5121. info.failed_disks = failed;
  5122. info.spare_disks = spare;
  5123. info.layout = mddev->layout;
  5124. info.chunk_size = mddev->chunk_sectors << 9;
  5125. if (copy_to_user(arg, &info, sizeof(info)))
  5126. return -EFAULT;
  5127. return 0;
  5128. }
  5129. static int get_bitmap_file(struct mddev *mddev, void __user * arg)
  5130. {
  5131. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  5132. char *ptr;
  5133. int err;
  5134. file = kmalloc(sizeof(*file), GFP_NOIO);
  5135. if (!file)
  5136. return -ENOMEM;
  5137. err = 0;
  5138. spin_lock(&mddev->lock);
  5139. /* bitmap disabled, zero the first byte and copy out */
  5140. if (!mddev->bitmap_info.file)
  5141. file->pathname[0] = '\0';
  5142. else if ((ptr = d_path(&mddev->bitmap_info.file->f_path,
  5143. file->pathname, sizeof(file->pathname))),
  5144. IS_ERR(ptr))
  5145. err = PTR_ERR(ptr);
  5146. else
  5147. memmove(file->pathname, ptr,
  5148. sizeof(file->pathname)-(ptr-file->pathname));
  5149. spin_unlock(&mddev->lock);
  5150. if (err == 0 &&
  5151. copy_to_user(arg, file, sizeof(*file)))
  5152. err = -EFAULT;
  5153. kfree(file);
  5154. return err;
  5155. }
  5156. static int get_disk_info(struct mddev *mddev, void __user * arg)
  5157. {
  5158. mdu_disk_info_t info;
  5159. struct md_rdev *rdev;
  5160. if (copy_from_user(&info, arg, sizeof(info)))
  5161. return -EFAULT;
  5162. rcu_read_lock();
  5163. rdev = md_find_rdev_nr_rcu(mddev, info.number);
  5164. if (rdev) {
  5165. info.major = MAJOR(rdev->bdev->bd_dev);
  5166. info.minor = MINOR(rdev->bdev->bd_dev);
  5167. info.raid_disk = rdev->raid_disk;
  5168. info.state = 0;
  5169. if (test_bit(Faulty, &rdev->flags))
  5170. info.state |= (1<<MD_DISK_FAULTY);
  5171. else if (test_bit(In_sync, &rdev->flags)) {
  5172. info.state |= (1<<MD_DISK_ACTIVE);
  5173. info.state |= (1<<MD_DISK_SYNC);
  5174. }
  5175. if (test_bit(WriteMostly, &rdev->flags))
  5176. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  5177. } else {
  5178. info.major = info.minor = 0;
  5179. info.raid_disk = -1;
  5180. info.state = (1<<MD_DISK_REMOVED);
  5181. }
  5182. rcu_read_unlock();
  5183. if (copy_to_user(arg, &info, sizeof(info)))
  5184. return -EFAULT;
  5185. return 0;
  5186. }
  5187. static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
  5188. {
  5189. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  5190. struct md_rdev *rdev;
  5191. dev_t dev = MKDEV(info->major,info->minor);
  5192. if (mddev_is_clustered(mddev) &&
  5193. !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
  5194. pr_err("%s: Cannot add to clustered mddev.\n",
  5195. mdname(mddev));
  5196. return -EINVAL;
  5197. }
  5198. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  5199. return -EOVERFLOW;
  5200. if (!mddev->raid_disks) {
  5201. int err;
  5202. /* expecting a device which has a superblock */
  5203. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  5204. if (IS_ERR(rdev)) {
  5205. printk(KERN_WARNING
  5206. "md: md_import_device returned %ld\n",
  5207. PTR_ERR(rdev));
  5208. return PTR_ERR(rdev);
  5209. }
  5210. if (!list_empty(&mddev->disks)) {
  5211. struct md_rdev *rdev0
  5212. = list_entry(mddev->disks.next,
  5213. struct md_rdev, same_set);
  5214. err = super_types[mddev->major_version]
  5215. .load_super(rdev, rdev0, mddev->minor_version);
  5216. if (err < 0) {
  5217. printk(KERN_WARNING
  5218. "md: %s has different UUID to %s\n",
  5219. bdevname(rdev->bdev,b),
  5220. bdevname(rdev0->bdev,b2));
  5221. export_rdev(rdev);
  5222. return -EINVAL;
  5223. }
  5224. }
  5225. err = bind_rdev_to_array(rdev, mddev);
  5226. if (err)
  5227. export_rdev(rdev);
  5228. return err;
  5229. }
  5230. /*
  5231. * add_new_disk can be used once the array is assembled
  5232. * to add "hot spares". They must already have a superblock
  5233. * written
  5234. */
  5235. if (mddev->pers) {
  5236. int err;
  5237. if (!mddev->pers->hot_add_disk) {
  5238. printk(KERN_WARNING
  5239. "%s: personality does not support diskops!\n",
  5240. mdname(mddev));
  5241. return -EINVAL;
  5242. }
  5243. if (mddev->persistent)
  5244. rdev = md_import_device(dev, mddev->major_version,
  5245. mddev->minor_version);
  5246. else
  5247. rdev = md_import_device(dev, -1, -1);
  5248. if (IS_ERR(rdev)) {
  5249. printk(KERN_WARNING
  5250. "md: md_import_device returned %ld\n",
  5251. PTR_ERR(rdev));
  5252. return PTR_ERR(rdev);
  5253. }
  5254. /* set saved_raid_disk if appropriate */
  5255. if (!mddev->persistent) {
  5256. if (info->state & (1<<MD_DISK_SYNC) &&
  5257. info->raid_disk < mddev->raid_disks) {
  5258. rdev->raid_disk = info->raid_disk;
  5259. set_bit(In_sync, &rdev->flags);
  5260. clear_bit(Bitmap_sync, &rdev->flags);
  5261. } else
  5262. rdev->raid_disk = -1;
  5263. rdev->saved_raid_disk = rdev->raid_disk;
  5264. } else
  5265. super_types[mddev->major_version].
  5266. validate_super(mddev, rdev);
  5267. if ((info->state & (1<<MD_DISK_SYNC)) &&
  5268. rdev->raid_disk != info->raid_disk) {
  5269. /* This was a hot-add request, but events doesn't
  5270. * match, so reject it.
  5271. */
  5272. export_rdev(rdev);
  5273. return -EINVAL;
  5274. }
  5275. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  5276. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5277. set_bit(WriteMostly, &rdev->flags);
  5278. else
  5279. clear_bit(WriteMostly, &rdev->flags);
  5280. /*
  5281. * check whether the device shows up in other nodes
  5282. */
  5283. if (mddev_is_clustered(mddev)) {
  5284. if (info->state & (1 << MD_DISK_CANDIDATE)) {
  5285. /* Through --cluster-confirm */
  5286. set_bit(Candidate, &rdev->flags);
  5287. err = md_cluster_ops->new_disk_ack(mddev, true);
  5288. if (err) {
  5289. export_rdev(rdev);
  5290. return err;
  5291. }
  5292. } else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
  5293. /* --add initiated by this node */
  5294. err = md_cluster_ops->add_new_disk_start(mddev, rdev);
  5295. if (err) {
  5296. md_cluster_ops->add_new_disk_finish(mddev);
  5297. export_rdev(rdev);
  5298. return err;
  5299. }
  5300. }
  5301. }
  5302. rdev->raid_disk = -1;
  5303. err = bind_rdev_to_array(rdev, mddev);
  5304. if (err)
  5305. export_rdev(rdev);
  5306. else
  5307. err = add_bound_rdev(rdev);
  5308. if (mddev_is_clustered(mddev) &&
  5309. (info->state & (1 << MD_DISK_CLUSTER_ADD)))
  5310. md_cluster_ops->add_new_disk_finish(mddev);
  5311. return err;
  5312. }
  5313. /* otherwise, add_new_disk is only allowed
  5314. * for major_version==0 superblocks
  5315. */
  5316. if (mddev->major_version != 0) {
  5317. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  5318. mdname(mddev));
  5319. return -EINVAL;
  5320. }
  5321. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  5322. int err;
  5323. rdev = md_import_device(dev, -1, 0);
  5324. if (IS_ERR(rdev)) {
  5325. printk(KERN_WARNING
  5326. "md: error, md_import_device() returned %ld\n",
  5327. PTR_ERR(rdev));
  5328. return PTR_ERR(rdev);
  5329. }
  5330. rdev->desc_nr = info->number;
  5331. if (info->raid_disk < mddev->raid_disks)
  5332. rdev->raid_disk = info->raid_disk;
  5333. else
  5334. rdev->raid_disk = -1;
  5335. if (rdev->raid_disk < mddev->raid_disks)
  5336. if (info->state & (1<<MD_DISK_SYNC))
  5337. set_bit(In_sync, &rdev->flags);
  5338. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5339. set_bit(WriteMostly, &rdev->flags);
  5340. if (!mddev->persistent) {
  5341. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  5342. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5343. } else
  5344. rdev->sb_start = calc_dev_sboffset(rdev);
  5345. rdev->sectors = rdev->sb_start;
  5346. err = bind_rdev_to_array(rdev, mddev);
  5347. if (err) {
  5348. export_rdev(rdev);
  5349. return err;
  5350. }
  5351. }
  5352. return 0;
  5353. }
  5354. static int hot_remove_disk(struct mddev *mddev, dev_t dev)
  5355. {
  5356. char b[BDEVNAME_SIZE];
  5357. struct md_rdev *rdev;
  5358. rdev = find_rdev(mddev, dev);
  5359. if (!rdev)
  5360. return -ENXIO;
  5361. if (mddev_is_clustered(mddev))
  5362. md_cluster_ops->metadata_update_start(mddev);
  5363. clear_bit(Blocked, &rdev->flags);
  5364. remove_and_add_spares(mddev, rdev);
  5365. if (rdev->raid_disk >= 0)
  5366. goto busy;
  5367. if (mddev_is_clustered(mddev))
  5368. md_cluster_ops->remove_disk(mddev, rdev);
  5369. md_kick_rdev_from_array(rdev);
  5370. md_update_sb(mddev, 1);
  5371. md_new_event(mddev);
  5372. if (mddev_is_clustered(mddev))
  5373. md_cluster_ops->metadata_update_finish(mddev);
  5374. return 0;
  5375. busy:
  5376. if (mddev_is_clustered(mddev))
  5377. md_cluster_ops->metadata_update_cancel(mddev);
  5378. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  5379. bdevname(rdev->bdev,b), mdname(mddev));
  5380. return -EBUSY;
  5381. }
  5382. static int hot_add_disk(struct mddev *mddev, dev_t dev)
  5383. {
  5384. char b[BDEVNAME_SIZE];
  5385. int err;
  5386. struct md_rdev *rdev;
  5387. if (!mddev->pers)
  5388. return -ENODEV;
  5389. if (mddev->major_version != 0) {
  5390. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  5391. " version-0 superblocks.\n",
  5392. mdname(mddev));
  5393. return -EINVAL;
  5394. }
  5395. if (!mddev->pers->hot_add_disk) {
  5396. printk(KERN_WARNING
  5397. "%s: personality does not support diskops!\n",
  5398. mdname(mddev));
  5399. return -EINVAL;
  5400. }
  5401. rdev = md_import_device(dev, -1, 0);
  5402. if (IS_ERR(rdev)) {
  5403. printk(KERN_WARNING
  5404. "md: error, md_import_device() returned %ld\n",
  5405. PTR_ERR(rdev));
  5406. return -EINVAL;
  5407. }
  5408. if (mddev->persistent)
  5409. rdev->sb_start = calc_dev_sboffset(rdev);
  5410. else
  5411. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5412. rdev->sectors = rdev->sb_start;
  5413. if (test_bit(Faulty, &rdev->flags)) {
  5414. printk(KERN_WARNING
  5415. "md: can not hot-add faulty %s disk to %s!\n",
  5416. bdevname(rdev->bdev,b), mdname(mddev));
  5417. err = -EINVAL;
  5418. goto abort_export;
  5419. }
  5420. if (mddev_is_clustered(mddev))
  5421. md_cluster_ops->metadata_update_start(mddev);
  5422. clear_bit(In_sync, &rdev->flags);
  5423. rdev->desc_nr = -1;
  5424. rdev->saved_raid_disk = -1;
  5425. err = bind_rdev_to_array(rdev, mddev);
  5426. if (err)
  5427. goto abort_clustered;
  5428. /*
  5429. * The rest should better be atomic, we can have disk failures
  5430. * noticed in interrupt contexts ...
  5431. */
  5432. rdev->raid_disk = -1;
  5433. md_update_sb(mddev, 1);
  5434. if (mddev_is_clustered(mddev))
  5435. md_cluster_ops->metadata_update_finish(mddev);
  5436. /*
  5437. * Kick recovery, maybe this spare has to be added to the
  5438. * array immediately.
  5439. */
  5440. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5441. md_wakeup_thread(mddev->thread);
  5442. md_new_event(mddev);
  5443. return 0;
  5444. abort_clustered:
  5445. if (mddev_is_clustered(mddev))
  5446. md_cluster_ops->metadata_update_cancel(mddev);
  5447. abort_export:
  5448. export_rdev(rdev);
  5449. return err;
  5450. }
  5451. static int set_bitmap_file(struct mddev *mddev, int fd)
  5452. {
  5453. int err = 0;
  5454. if (mddev->pers) {
  5455. if (!mddev->pers->quiesce || !mddev->thread)
  5456. return -EBUSY;
  5457. if (mddev->recovery || mddev->sync_thread)
  5458. return -EBUSY;
  5459. /* we should be able to change the bitmap.. */
  5460. }
  5461. if (fd >= 0) {
  5462. struct inode *inode;
  5463. struct file *f;
  5464. if (mddev->bitmap || mddev->bitmap_info.file)
  5465. return -EEXIST; /* cannot add when bitmap is present */
  5466. f = fget(fd);
  5467. if (f == NULL) {
  5468. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  5469. mdname(mddev));
  5470. return -EBADF;
  5471. }
  5472. inode = f->f_mapping->host;
  5473. if (!S_ISREG(inode->i_mode)) {
  5474. printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
  5475. mdname(mddev));
  5476. err = -EBADF;
  5477. } else if (!(f->f_mode & FMODE_WRITE)) {
  5478. printk(KERN_ERR "%s: error: bitmap file must open for write\n",
  5479. mdname(mddev));
  5480. err = -EBADF;
  5481. } else if (atomic_read(&inode->i_writecount) != 1) {
  5482. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  5483. mdname(mddev));
  5484. err = -EBUSY;
  5485. }
  5486. if (err) {
  5487. fput(f);
  5488. return err;
  5489. }
  5490. mddev->bitmap_info.file = f;
  5491. mddev->bitmap_info.offset = 0; /* file overrides offset */
  5492. } else if (mddev->bitmap == NULL)
  5493. return -ENOENT; /* cannot remove what isn't there */
  5494. err = 0;
  5495. if (mddev->pers) {
  5496. mddev->pers->quiesce(mddev, 1);
  5497. if (fd >= 0) {
  5498. struct bitmap *bitmap;
  5499. bitmap = bitmap_create(mddev, -1);
  5500. if (!IS_ERR(bitmap)) {
  5501. mddev->bitmap = bitmap;
  5502. err = bitmap_load(mddev);
  5503. } else
  5504. err = PTR_ERR(bitmap);
  5505. }
  5506. if (fd < 0 || err) {
  5507. bitmap_destroy(mddev);
  5508. fd = -1; /* make sure to put the file */
  5509. }
  5510. mddev->pers->quiesce(mddev, 0);
  5511. }
  5512. if (fd < 0) {
  5513. struct file *f = mddev->bitmap_info.file;
  5514. if (f) {
  5515. spin_lock(&mddev->lock);
  5516. mddev->bitmap_info.file = NULL;
  5517. spin_unlock(&mddev->lock);
  5518. fput(f);
  5519. }
  5520. }
  5521. return err;
  5522. }
  5523. /*
  5524. * set_array_info is used two different ways
  5525. * The original usage is when creating a new array.
  5526. * In this usage, raid_disks is > 0 and it together with
  5527. * level, size, not_persistent,layout,chunksize determine the
  5528. * shape of the array.
  5529. * This will always create an array with a type-0.90.0 superblock.
  5530. * The newer usage is when assembling an array.
  5531. * In this case raid_disks will be 0, and the major_version field is
  5532. * use to determine which style super-blocks are to be found on the devices.
  5533. * The minor and patch _version numbers are also kept incase the
  5534. * super_block handler wishes to interpret them.
  5535. */
  5536. static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5537. {
  5538. if (info->raid_disks == 0) {
  5539. /* just setting version number for superblock loading */
  5540. if (info->major_version < 0 ||
  5541. info->major_version >= ARRAY_SIZE(super_types) ||
  5542. super_types[info->major_version].name == NULL) {
  5543. /* maybe try to auto-load a module? */
  5544. printk(KERN_INFO
  5545. "md: superblock version %d not known\n",
  5546. info->major_version);
  5547. return -EINVAL;
  5548. }
  5549. mddev->major_version = info->major_version;
  5550. mddev->minor_version = info->minor_version;
  5551. mddev->patch_version = info->patch_version;
  5552. mddev->persistent = !info->not_persistent;
  5553. /* ensure mddev_put doesn't delete this now that there
  5554. * is some minimal configuration.
  5555. */
  5556. mddev->ctime = get_seconds();
  5557. return 0;
  5558. }
  5559. mddev->major_version = MD_MAJOR_VERSION;
  5560. mddev->minor_version = MD_MINOR_VERSION;
  5561. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  5562. mddev->ctime = get_seconds();
  5563. mddev->level = info->level;
  5564. mddev->clevel[0] = 0;
  5565. mddev->dev_sectors = 2 * (sector_t)info->size;
  5566. mddev->raid_disks = info->raid_disks;
  5567. /* don't set md_minor, it is determined by which /dev/md* was
  5568. * openned
  5569. */
  5570. if (info->state & (1<<MD_SB_CLEAN))
  5571. mddev->recovery_cp = MaxSector;
  5572. else
  5573. mddev->recovery_cp = 0;
  5574. mddev->persistent = ! info->not_persistent;
  5575. mddev->external = 0;
  5576. mddev->layout = info->layout;
  5577. mddev->chunk_sectors = info->chunk_size >> 9;
  5578. mddev->max_disks = MD_SB_DISKS;
  5579. if (mddev->persistent)
  5580. mddev->flags = 0;
  5581. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5582. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  5583. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  5584. mddev->bitmap_info.offset = 0;
  5585. mddev->reshape_position = MaxSector;
  5586. /*
  5587. * Generate a 128 bit UUID
  5588. */
  5589. get_random_bytes(mddev->uuid, 16);
  5590. mddev->new_level = mddev->level;
  5591. mddev->new_chunk_sectors = mddev->chunk_sectors;
  5592. mddev->new_layout = mddev->layout;
  5593. mddev->delta_disks = 0;
  5594. mddev->reshape_backwards = 0;
  5595. return 0;
  5596. }
  5597. void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
  5598. {
  5599. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  5600. if (mddev->external_size)
  5601. return;
  5602. mddev->array_sectors = array_sectors;
  5603. }
  5604. EXPORT_SYMBOL(md_set_array_sectors);
  5605. static int update_size(struct mddev *mddev, sector_t num_sectors)
  5606. {
  5607. struct md_rdev *rdev;
  5608. int rv;
  5609. int fit = (num_sectors == 0);
  5610. if (mddev->pers->resize == NULL)
  5611. return -EINVAL;
  5612. /* The "num_sectors" is the number of sectors of each device that
  5613. * is used. This can only make sense for arrays with redundancy.
  5614. * linear and raid0 always use whatever space is available. We can only
  5615. * consider changing this number if no resync or reconstruction is
  5616. * happening, and if the new size is acceptable. It must fit before the
  5617. * sb_start or, if that is <data_offset, it must fit before the size
  5618. * of each device. If num_sectors is zero, we find the largest size
  5619. * that fits.
  5620. */
  5621. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  5622. mddev->sync_thread)
  5623. return -EBUSY;
  5624. if (mddev->ro)
  5625. return -EROFS;
  5626. rdev_for_each(rdev, mddev) {
  5627. sector_t avail = rdev->sectors;
  5628. if (fit && (num_sectors == 0 || num_sectors > avail))
  5629. num_sectors = avail;
  5630. if (avail < num_sectors)
  5631. return -ENOSPC;
  5632. }
  5633. rv = mddev->pers->resize(mddev, num_sectors);
  5634. if (!rv)
  5635. revalidate_disk(mddev->gendisk);
  5636. return rv;
  5637. }
  5638. static int update_raid_disks(struct mddev *mddev, int raid_disks)
  5639. {
  5640. int rv;
  5641. struct md_rdev *rdev;
  5642. /* change the number of raid disks */
  5643. if (mddev->pers->check_reshape == NULL)
  5644. return -EINVAL;
  5645. if (mddev->ro)
  5646. return -EROFS;
  5647. if (raid_disks <= 0 ||
  5648. (mddev->max_disks && raid_disks >= mddev->max_disks))
  5649. return -EINVAL;
  5650. if (mddev->sync_thread ||
  5651. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  5652. mddev->reshape_position != MaxSector)
  5653. return -EBUSY;
  5654. rdev_for_each(rdev, mddev) {
  5655. if (mddev->raid_disks < raid_disks &&
  5656. rdev->data_offset < rdev->new_data_offset)
  5657. return -EINVAL;
  5658. if (mddev->raid_disks > raid_disks &&
  5659. rdev->data_offset > rdev->new_data_offset)
  5660. return -EINVAL;
  5661. }
  5662. mddev->delta_disks = raid_disks - mddev->raid_disks;
  5663. if (mddev->delta_disks < 0)
  5664. mddev->reshape_backwards = 1;
  5665. else if (mddev->delta_disks > 0)
  5666. mddev->reshape_backwards = 0;
  5667. rv = mddev->pers->check_reshape(mddev);
  5668. if (rv < 0) {
  5669. mddev->delta_disks = 0;
  5670. mddev->reshape_backwards = 0;
  5671. }
  5672. return rv;
  5673. }
  5674. /*
  5675. * update_array_info is used to change the configuration of an
  5676. * on-line array.
  5677. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  5678. * fields in the info are checked against the array.
  5679. * Any differences that cannot be handled will cause an error.
  5680. * Normally, only one change can be managed at a time.
  5681. */
  5682. static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5683. {
  5684. int rv = 0;
  5685. int cnt = 0;
  5686. int state = 0;
  5687. /* calculate expected state,ignoring low bits */
  5688. if (mddev->bitmap && mddev->bitmap_info.offset)
  5689. state |= (1 << MD_SB_BITMAP_PRESENT);
  5690. if (mddev->major_version != info->major_version ||
  5691. mddev->minor_version != info->minor_version ||
  5692. /* mddev->patch_version != info->patch_version || */
  5693. mddev->ctime != info->ctime ||
  5694. mddev->level != info->level ||
  5695. /* mddev->layout != info->layout || */
  5696. !mddev->persistent != info->not_persistent||
  5697. mddev->chunk_sectors != info->chunk_size >> 9 ||
  5698. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  5699. ((state^info->state) & 0xfffffe00)
  5700. )
  5701. return -EINVAL;
  5702. /* Check there is only one change */
  5703. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5704. cnt++;
  5705. if (mddev->raid_disks != info->raid_disks)
  5706. cnt++;
  5707. if (mddev->layout != info->layout)
  5708. cnt++;
  5709. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  5710. cnt++;
  5711. if (cnt == 0)
  5712. return 0;
  5713. if (cnt > 1)
  5714. return -EINVAL;
  5715. if (mddev->layout != info->layout) {
  5716. /* Change layout
  5717. * we don't need to do anything at the md level, the
  5718. * personality will take care of it all.
  5719. */
  5720. if (mddev->pers->check_reshape == NULL)
  5721. return -EINVAL;
  5722. else {
  5723. mddev->new_layout = info->layout;
  5724. rv = mddev->pers->check_reshape(mddev);
  5725. if (rv)
  5726. mddev->new_layout = mddev->layout;
  5727. return rv;
  5728. }
  5729. }
  5730. if (mddev_is_clustered(mddev))
  5731. md_cluster_ops->metadata_update_start(mddev);
  5732. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5733. rv = update_size(mddev, (sector_t)info->size * 2);
  5734. if (mddev->raid_disks != info->raid_disks)
  5735. rv = update_raid_disks(mddev, info->raid_disks);
  5736. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  5737. if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
  5738. rv = -EINVAL;
  5739. goto err;
  5740. }
  5741. if (mddev->recovery || mddev->sync_thread) {
  5742. rv = -EBUSY;
  5743. goto err;
  5744. }
  5745. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  5746. struct bitmap *bitmap;
  5747. /* add the bitmap */
  5748. if (mddev->bitmap) {
  5749. rv = -EEXIST;
  5750. goto err;
  5751. }
  5752. if (mddev->bitmap_info.default_offset == 0) {
  5753. rv = -EINVAL;
  5754. goto err;
  5755. }
  5756. mddev->bitmap_info.offset =
  5757. mddev->bitmap_info.default_offset;
  5758. mddev->bitmap_info.space =
  5759. mddev->bitmap_info.default_space;
  5760. mddev->pers->quiesce(mddev, 1);
  5761. bitmap = bitmap_create(mddev, -1);
  5762. if (!IS_ERR(bitmap)) {
  5763. mddev->bitmap = bitmap;
  5764. rv = bitmap_load(mddev);
  5765. } else
  5766. rv = PTR_ERR(bitmap);
  5767. if (rv)
  5768. bitmap_destroy(mddev);
  5769. mddev->pers->quiesce(mddev, 0);
  5770. } else {
  5771. /* remove the bitmap */
  5772. if (!mddev->bitmap) {
  5773. rv = -ENOENT;
  5774. goto err;
  5775. }
  5776. if (mddev->bitmap->storage.file) {
  5777. rv = -EINVAL;
  5778. goto err;
  5779. }
  5780. mddev->pers->quiesce(mddev, 1);
  5781. bitmap_destroy(mddev);
  5782. mddev->pers->quiesce(mddev, 0);
  5783. mddev->bitmap_info.offset = 0;
  5784. }
  5785. }
  5786. md_update_sb(mddev, 1);
  5787. if (mddev_is_clustered(mddev))
  5788. md_cluster_ops->metadata_update_finish(mddev);
  5789. return rv;
  5790. err:
  5791. if (mddev_is_clustered(mddev))
  5792. md_cluster_ops->metadata_update_cancel(mddev);
  5793. return rv;
  5794. }
  5795. static int set_disk_faulty(struct mddev *mddev, dev_t dev)
  5796. {
  5797. struct md_rdev *rdev;
  5798. int err = 0;
  5799. if (mddev->pers == NULL)
  5800. return -ENODEV;
  5801. rcu_read_lock();
  5802. rdev = find_rdev_rcu(mddev, dev);
  5803. if (!rdev)
  5804. err = -ENODEV;
  5805. else {
  5806. md_error(mddev, rdev);
  5807. if (!test_bit(Faulty, &rdev->flags))
  5808. err = -EBUSY;
  5809. }
  5810. rcu_read_unlock();
  5811. return err;
  5812. }
  5813. /*
  5814. * We have a problem here : there is no easy way to give a CHS
  5815. * virtual geometry. We currently pretend that we have a 2 heads
  5816. * 4 sectors (with a BIG number of cylinders...). This drives
  5817. * dosfs just mad... ;-)
  5818. */
  5819. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  5820. {
  5821. struct mddev *mddev = bdev->bd_disk->private_data;
  5822. geo->heads = 2;
  5823. geo->sectors = 4;
  5824. geo->cylinders = mddev->array_sectors / 8;
  5825. return 0;
  5826. }
  5827. static inline bool md_ioctl_valid(unsigned int cmd)
  5828. {
  5829. switch (cmd) {
  5830. case ADD_NEW_DISK:
  5831. case BLKROSET:
  5832. case GET_ARRAY_INFO:
  5833. case GET_BITMAP_FILE:
  5834. case GET_DISK_INFO:
  5835. case HOT_ADD_DISK:
  5836. case HOT_REMOVE_DISK:
  5837. case RAID_AUTORUN:
  5838. case RAID_VERSION:
  5839. case RESTART_ARRAY_RW:
  5840. case RUN_ARRAY:
  5841. case SET_ARRAY_INFO:
  5842. case SET_BITMAP_FILE:
  5843. case SET_DISK_FAULTY:
  5844. case STOP_ARRAY:
  5845. case STOP_ARRAY_RO:
  5846. case CLUSTERED_DISK_NACK:
  5847. return true;
  5848. default:
  5849. return false;
  5850. }
  5851. }
  5852. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  5853. unsigned int cmd, unsigned long arg)
  5854. {
  5855. int err = 0;
  5856. void __user *argp = (void __user *)arg;
  5857. struct mddev *mddev = NULL;
  5858. int ro;
  5859. if (!md_ioctl_valid(cmd))
  5860. return -ENOTTY;
  5861. switch (cmd) {
  5862. case RAID_VERSION:
  5863. case GET_ARRAY_INFO:
  5864. case GET_DISK_INFO:
  5865. break;
  5866. default:
  5867. if (!capable(CAP_SYS_ADMIN))
  5868. return -EACCES;
  5869. }
  5870. /*
  5871. * Commands dealing with the RAID driver but not any
  5872. * particular array:
  5873. */
  5874. switch (cmd) {
  5875. case RAID_VERSION:
  5876. err = get_version(argp);
  5877. goto out;
  5878. #ifndef MODULE
  5879. case RAID_AUTORUN:
  5880. err = 0;
  5881. autostart_arrays(arg);
  5882. goto out;
  5883. #endif
  5884. default:;
  5885. }
  5886. /*
  5887. * Commands creating/starting a new array:
  5888. */
  5889. mddev = bdev->bd_disk->private_data;
  5890. if (!mddev) {
  5891. BUG();
  5892. goto out;
  5893. }
  5894. /* Some actions do not requires the mutex */
  5895. switch (cmd) {
  5896. case GET_ARRAY_INFO:
  5897. if (!mddev->raid_disks && !mddev->external)
  5898. err = -ENODEV;
  5899. else
  5900. err = get_array_info(mddev, argp);
  5901. goto out;
  5902. case GET_DISK_INFO:
  5903. if (!mddev->raid_disks && !mddev->external)
  5904. err = -ENODEV;
  5905. else
  5906. err = get_disk_info(mddev, argp);
  5907. goto out;
  5908. case SET_DISK_FAULTY:
  5909. err = set_disk_faulty(mddev, new_decode_dev(arg));
  5910. goto out;
  5911. case GET_BITMAP_FILE:
  5912. err = get_bitmap_file(mddev, argp);
  5913. goto out;
  5914. }
  5915. if (cmd == ADD_NEW_DISK)
  5916. /* need to ensure md_delayed_delete() has completed */
  5917. flush_workqueue(md_misc_wq);
  5918. if (cmd == HOT_REMOVE_DISK)
  5919. /* need to ensure recovery thread has run */
  5920. wait_event_interruptible_timeout(mddev->sb_wait,
  5921. !test_bit(MD_RECOVERY_NEEDED,
  5922. &mddev->flags),
  5923. msecs_to_jiffies(5000));
  5924. if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
  5925. /* Need to flush page cache, and ensure no-one else opens
  5926. * and writes
  5927. */
  5928. mutex_lock(&mddev->open_mutex);
  5929. if (mddev->pers && atomic_read(&mddev->openers) > 1) {
  5930. mutex_unlock(&mddev->open_mutex);
  5931. err = -EBUSY;
  5932. goto out;
  5933. }
  5934. set_bit(MD_STILL_CLOSED, &mddev->flags);
  5935. mutex_unlock(&mddev->open_mutex);
  5936. sync_blockdev(bdev);
  5937. }
  5938. err = mddev_lock(mddev);
  5939. if (err) {
  5940. printk(KERN_INFO
  5941. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  5942. err, cmd);
  5943. goto out;
  5944. }
  5945. if (cmd == SET_ARRAY_INFO) {
  5946. mdu_array_info_t info;
  5947. if (!arg)
  5948. memset(&info, 0, sizeof(info));
  5949. else if (copy_from_user(&info, argp, sizeof(info))) {
  5950. err = -EFAULT;
  5951. goto unlock;
  5952. }
  5953. if (mddev->pers) {
  5954. err = update_array_info(mddev, &info);
  5955. if (err) {
  5956. printk(KERN_WARNING "md: couldn't update"
  5957. " array info. %d\n", err);
  5958. goto unlock;
  5959. }
  5960. goto unlock;
  5961. }
  5962. if (!list_empty(&mddev->disks)) {
  5963. printk(KERN_WARNING
  5964. "md: array %s already has disks!\n",
  5965. mdname(mddev));
  5966. err = -EBUSY;
  5967. goto unlock;
  5968. }
  5969. if (mddev->raid_disks) {
  5970. printk(KERN_WARNING
  5971. "md: array %s already initialised!\n",
  5972. mdname(mddev));
  5973. err = -EBUSY;
  5974. goto unlock;
  5975. }
  5976. err = set_array_info(mddev, &info);
  5977. if (err) {
  5978. printk(KERN_WARNING "md: couldn't set"
  5979. " array info. %d\n", err);
  5980. goto unlock;
  5981. }
  5982. goto unlock;
  5983. }
  5984. /*
  5985. * Commands querying/configuring an existing array:
  5986. */
  5987. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  5988. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  5989. if ((!mddev->raid_disks && !mddev->external)
  5990. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  5991. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  5992. && cmd != GET_BITMAP_FILE) {
  5993. err = -ENODEV;
  5994. goto unlock;
  5995. }
  5996. /*
  5997. * Commands even a read-only array can execute:
  5998. */
  5999. switch (cmd) {
  6000. case RESTART_ARRAY_RW:
  6001. err = restart_array(mddev);
  6002. goto unlock;
  6003. case STOP_ARRAY:
  6004. err = do_md_stop(mddev, 0, bdev);
  6005. goto unlock;
  6006. case STOP_ARRAY_RO:
  6007. err = md_set_readonly(mddev, bdev);
  6008. goto unlock;
  6009. case HOT_REMOVE_DISK:
  6010. err = hot_remove_disk(mddev, new_decode_dev(arg));
  6011. goto unlock;
  6012. case ADD_NEW_DISK:
  6013. /* We can support ADD_NEW_DISK on read-only arrays
  6014. * on if we are re-adding a preexisting device.
  6015. * So require mddev->pers and MD_DISK_SYNC.
  6016. */
  6017. if (mddev->pers) {
  6018. mdu_disk_info_t info;
  6019. if (copy_from_user(&info, argp, sizeof(info)))
  6020. err = -EFAULT;
  6021. else if (!(info.state & (1<<MD_DISK_SYNC)))
  6022. /* Need to clear read-only for this */
  6023. break;
  6024. else
  6025. err = add_new_disk(mddev, &info);
  6026. goto unlock;
  6027. }
  6028. break;
  6029. case BLKROSET:
  6030. if (get_user(ro, (int __user *)(arg))) {
  6031. err = -EFAULT;
  6032. goto unlock;
  6033. }
  6034. err = -EINVAL;
  6035. /* if the bdev is going readonly the value of mddev->ro
  6036. * does not matter, no writes are coming
  6037. */
  6038. if (ro)
  6039. goto unlock;
  6040. /* are we are already prepared for writes? */
  6041. if (mddev->ro != 1)
  6042. goto unlock;
  6043. /* transitioning to readauto need only happen for
  6044. * arrays that call md_write_start
  6045. */
  6046. if (mddev->pers) {
  6047. err = restart_array(mddev);
  6048. if (err == 0) {
  6049. mddev->ro = 2;
  6050. set_disk_ro(mddev->gendisk, 0);
  6051. }
  6052. }
  6053. goto unlock;
  6054. }
  6055. /*
  6056. * The remaining ioctls are changing the state of the
  6057. * superblock, so we do not allow them on read-only arrays.
  6058. */
  6059. if (mddev->ro && mddev->pers) {
  6060. if (mddev->ro == 2) {
  6061. mddev->ro = 0;
  6062. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6063. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6064. /* mddev_unlock will wake thread */
  6065. /* If a device failed while we were read-only, we
  6066. * need to make sure the metadata is updated now.
  6067. */
  6068. if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  6069. mddev_unlock(mddev);
  6070. wait_event(mddev->sb_wait,
  6071. !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
  6072. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6073. mddev_lock_nointr(mddev);
  6074. }
  6075. } else {
  6076. err = -EROFS;
  6077. goto unlock;
  6078. }
  6079. }
  6080. switch (cmd) {
  6081. case ADD_NEW_DISK:
  6082. {
  6083. mdu_disk_info_t info;
  6084. if (copy_from_user(&info, argp, sizeof(info)))
  6085. err = -EFAULT;
  6086. else
  6087. err = add_new_disk(mddev, &info);
  6088. goto unlock;
  6089. }
  6090. case CLUSTERED_DISK_NACK:
  6091. if (mddev_is_clustered(mddev))
  6092. md_cluster_ops->new_disk_ack(mddev, false);
  6093. else
  6094. err = -EINVAL;
  6095. goto unlock;
  6096. case HOT_ADD_DISK:
  6097. err = hot_add_disk(mddev, new_decode_dev(arg));
  6098. goto unlock;
  6099. case RUN_ARRAY:
  6100. err = do_md_run(mddev);
  6101. goto unlock;
  6102. case SET_BITMAP_FILE:
  6103. err = set_bitmap_file(mddev, (int)arg);
  6104. goto unlock;
  6105. default:
  6106. err = -EINVAL;
  6107. goto unlock;
  6108. }
  6109. unlock:
  6110. if (mddev->hold_active == UNTIL_IOCTL &&
  6111. err != -EINVAL)
  6112. mddev->hold_active = 0;
  6113. mddev_unlock(mddev);
  6114. out:
  6115. return err;
  6116. }
  6117. #ifdef CONFIG_COMPAT
  6118. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  6119. unsigned int cmd, unsigned long arg)
  6120. {
  6121. switch (cmd) {
  6122. case HOT_REMOVE_DISK:
  6123. case HOT_ADD_DISK:
  6124. case SET_DISK_FAULTY:
  6125. case SET_BITMAP_FILE:
  6126. /* These take in integer arg, do not convert */
  6127. break;
  6128. default:
  6129. arg = (unsigned long)compat_ptr(arg);
  6130. break;
  6131. }
  6132. return md_ioctl(bdev, mode, cmd, arg);
  6133. }
  6134. #endif /* CONFIG_COMPAT */
  6135. static int md_open(struct block_device *bdev, fmode_t mode)
  6136. {
  6137. /*
  6138. * Succeed if we can lock the mddev, which confirms that
  6139. * it isn't being stopped right now.
  6140. */
  6141. struct mddev *mddev = mddev_find(bdev->bd_dev);
  6142. int err;
  6143. if (!mddev)
  6144. return -ENODEV;
  6145. if (mddev->gendisk != bdev->bd_disk) {
  6146. /* we are racing with mddev_put which is discarding this
  6147. * bd_disk.
  6148. */
  6149. mddev_put(mddev);
  6150. /* Wait until bdev->bd_disk is definitely gone */
  6151. flush_workqueue(md_misc_wq);
  6152. /* Then retry the open from the top */
  6153. return -ERESTARTSYS;
  6154. }
  6155. BUG_ON(mddev != bdev->bd_disk->private_data);
  6156. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  6157. goto out;
  6158. err = 0;
  6159. atomic_inc(&mddev->openers);
  6160. clear_bit(MD_STILL_CLOSED, &mddev->flags);
  6161. mutex_unlock(&mddev->open_mutex);
  6162. check_disk_change(bdev);
  6163. out:
  6164. return err;
  6165. }
  6166. static void md_release(struct gendisk *disk, fmode_t mode)
  6167. {
  6168. struct mddev *mddev = disk->private_data;
  6169. BUG_ON(!mddev);
  6170. atomic_dec(&mddev->openers);
  6171. mddev_put(mddev);
  6172. }
  6173. static int md_media_changed(struct gendisk *disk)
  6174. {
  6175. struct mddev *mddev = disk->private_data;
  6176. return mddev->changed;
  6177. }
  6178. static int md_revalidate(struct gendisk *disk)
  6179. {
  6180. struct mddev *mddev = disk->private_data;
  6181. mddev->changed = 0;
  6182. return 0;
  6183. }
  6184. static const struct block_device_operations md_fops =
  6185. {
  6186. .owner = THIS_MODULE,
  6187. .open = md_open,
  6188. .release = md_release,
  6189. .ioctl = md_ioctl,
  6190. #ifdef CONFIG_COMPAT
  6191. .compat_ioctl = md_compat_ioctl,
  6192. #endif
  6193. .getgeo = md_getgeo,
  6194. .media_changed = md_media_changed,
  6195. .revalidate_disk= md_revalidate,
  6196. };
  6197. static int md_thread(void *arg)
  6198. {
  6199. struct md_thread *thread = arg;
  6200. /*
  6201. * md_thread is a 'system-thread', it's priority should be very
  6202. * high. We avoid resource deadlocks individually in each
  6203. * raid personality. (RAID5 does preallocation) We also use RR and
  6204. * the very same RT priority as kswapd, thus we will never get
  6205. * into a priority inversion deadlock.
  6206. *
  6207. * we definitely have to have equal or higher priority than
  6208. * bdflush, otherwise bdflush will deadlock if there are too
  6209. * many dirty RAID5 blocks.
  6210. */
  6211. allow_signal(SIGKILL);
  6212. while (!kthread_should_stop()) {
  6213. /* We need to wait INTERRUPTIBLE so that
  6214. * we don't add to the load-average.
  6215. * That means we need to be sure no signals are
  6216. * pending
  6217. */
  6218. if (signal_pending(current))
  6219. flush_signals(current);
  6220. wait_event_interruptible_timeout
  6221. (thread->wqueue,
  6222. test_bit(THREAD_WAKEUP, &thread->flags)
  6223. || kthread_should_stop(),
  6224. thread->timeout);
  6225. clear_bit(THREAD_WAKEUP, &thread->flags);
  6226. if (!kthread_should_stop())
  6227. thread->run(thread);
  6228. }
  6229. return 0;
  6230. }
  6231. void md_wakeup_thread(struct md_thread *thread)
  6232. {
  6233. if (thread) {
  6234. pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
  6235. set_bit(THREAD_WAKEUP, &thread->flags);
  6236. wake_up(&thread->wqueue);
  6237. }
  6238. }
  6239. EXPORT_SYMBOL(md_wakeup_thread);
  6240. struct md_thread *md_register_thread(void (*run) (struct md_thread *),
  6241. struct mddev *mddev, const char *name)
  6242. {
  6243. struct md_thread *thread;
  6244. thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
  6245. if (!thread)
  6246. return NULL;
  6247. init_waitqueue_head(&thread->wqueue);
  6248. thread->run = run;
  6249. thread->mddev = mddev;
  6250. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  6251. thread->tsk = kthread_run(md_thread, thread,
  6252. "%s_%s",
  6253. mdname(thread->mddev),
  6254. name);
  6255. if (IS_ERR(thread->tsk)) {
  6256. kfree(thread);
  6257. return NULL;
  6258. }
  6259. return thread;
  6260. }
  6261. EXPORT_SYMBOL(md_register_thread);
  6262. void md_unregister_thread(struct md_thread **threadp)
  6263. {
  6264. struct md_thread *thread = *threadp;
  6265. if (!thread)
  6266. return;
  6267. pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  6268. /* Locking ensures that mddev_unlock does not wake_up a
  6269. * non-existent thread
  6270. */
  6271. spin_lock(&pers_lock);
  6272. *threadp = NULL;
  6273. spin_unlock(&pers_lock);
  6274. kthread_stop(thread->tsk);
  6275. kfree(thread);
  6276. }
  6277. EXPORT_SYMBOL(md_unregister_thread);
  6278. void md_error(struct mddev *mddev, struct md_rdev *rdev)
  6279. {
  6280. if (!rdev || test_bit(Faulty, &rdev->flags))
  6281. return;
  6282. if (!mddev->pers || !mddev->pers->error_handler)
  6283. return;
  6284. mddev->pers->error_handler(mddev,rdev);
  6285. if (mddev->degraded)
  6286. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6287. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6288. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6289. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6290. md_wakeup_thread(mddev->thread);
  6291. if (mddev->event_work.func)
  6292. queue_work(md_misc_wq, &mddev->event_work);
  6293. md_new_event_inintr(mddev);
  6294. }
  6295. EXPORT_SYMBOL(md_error);
  6296. /* seq_file implementation /proc/mdstat */
  6297. static void status_unused(struct seq_file *seq)
  6298. {
  6299. int i = 0;
  6300. struct md_rdev *rdev;
  6301. seq_printf(seq, "unused devices: ");
  6302. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  6303. char b[BDEVNAME_SIZE];
  6304. i++;
  6305. seq_printf(seq, "%s ",
  6306. bdevname(rdev->bdev,b));
  6307. }
  6308. if (!i)
  6309. seq_printf(seq, "<none>");
  6310. seq_printf(seq, "\n");
  6311. }
  6312. static void status_resync(struct seq_file *seq, struct mddev *mddev)
  6313. {
  6314. sector_t max_sectors, resync, res;
  6315. unsigned long dt, db;
  6316. sector_t rt;
  6317. int scale;
  6318. unsigned int per_milli;
  6319. if (mddev->curr_resync <= 3)
  6320. resync = 0;
  6321. else
  6322. resync = mddev->curr_resync
  6323. - atomic_read(&mddev->recovery_active);
  6324. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  6325. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6326. max_sectors = mddev->resync_max_sectors;
  6327. else
  6328. max_sectors = mddev->dev_sectors;
  6329. WARN_ON(max_sectors == 0);
  6330. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  6331. * in a sector_t, and (max_sectors>>scale) will fit in a
  6332. * u32, as those are the requirements for sector_div.
  6333. * Thus 'scale' must be at least 10
  6334. */
  6335. scale = 10;
  6336. if (sizeof(sector_t) > sizeof(unsigned long)) {
  6337. while ( max_sectors/2 > (1ULL<<(scale+32)))
  6338. scale++;
  6339. }
  6340. res = (resync>>scale)*1000;
  6341. sector_div(res, (u32)((max_sectors>>scale)+1));
  6342. per_milli = res;
  6343. {
  6344. int i, x = per_milli/50, y = 20-x;
  6345. seq_printf(seq, "[");
  6346. for (i = 0; i < x; i++)
  6347. seq_printf(seq, "=");
  6348. seq_printf(seq, ">");
  6349. for (i = 0; i < y; i++)
  6350. seq_printf(seq, ".");
  6351. seq_printf(seq, "] ");
  6352. }
  6353. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  6354. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  6355. "reshape" :
  6356. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  6357. "check" :
  6358. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  6359. "resync" : "recovery"))),
  6360. per_milli/10, per_milli % 10,
  6361. (unsigned long long) resync/2,
  6362. (unsigned long long) max_sectors/2);
  6363. /*
  6364. * dt: time from mark until now
  6365. * db: blocks written from mark until now
  6366. * rt: remaining time
  6367. *
  6368. * rt is a sector_t, so could be 32bit or 64bit.
  6369. * So we divide before multiply in case it is 32bit and close
  6370. * to the limit.
  6371. * We scale the divisor (db) by 32 to avoid losing precision
  6372. * near the end of resync when the number of remaining sectors
  6373. * is close to 'db'.
  6374. * We then divide rt by 32 after multiplying by db to compensate.
  6375. * The '+1' avoids division by zero if db is very small.
  6376. */
  6377. dt = ((jiffies - mddev->resync_mark) / HZ);
  6378. if (!dt) dt++;
  6379. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  6380. - mddev->resync_mark_cnt;
  6381. rt = max_sectors - resync; /* number of remaining sectors */
  6382. sector_div(rt, db/32+1);
  6383. rt *= dt;
  6384. rt >>= 5;
  6385. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  6386. ((unsigned long)rt % 60)/6);
  6387. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  6388. }
  6389. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  6390. {
  6391. struct list_head *tmp;
  6392. loff_t l = *pos;
  6393. struct mddev *mddev;
  6394. if (l >= 0x10000)
  6395. return NULL;
  6396. if (!l--)
  6397. /* header */
  6398. return (void*)1;
  6399. spin_lock(&all_mddevs_lock);
  6400. list_for_each(tmp,&all_mddevs)
  6401. if (!l--) {
  6402. mddev = list_entry(tmp, struct mddev, all_mddevs);
  6403. mddev_get(mddev);
  6404. spin_unlock(&all_mddevs_lock);
  6405. return mddev;
  6406. }
  6407. spin_unlock(&all_mddevs_lock);
  6408. if (!l--)
  6409. return (void*)2;/* tail */
  6410. return NULL;
  6411. }
  6412. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  6413. {
  6414. struct list_head *tmp;
  6415. struct mddev *next_mddev, *mddev = v;
  6416. ++*pos;
  6417. if (v == (void*)2)
  6418. return NULL;
  6419. spin_lock(&all_mddevs_lock);
  6420. if (v == (void*)1)
  6421. tmp = all_mddevs.next;
  6422. else
  6423. tmp = mddev->all_mddevs.next;
  6424. if (tmp != &all_mddevs)
  6425. next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
  6426. else {
  6427. next_mddev = (void*)2;
  6428. *pos = 0x10000;
  6429. }
  6430. spin_unlock(&all_mddevs_lock);
  6431. if (v != (void*)1)
  6432. mddev_put(mddev);
  6433. return next_mddev;
  6434. }
  6435. static void md_seq_stop(struct seq_file *seq, void *v)
  6436. {
  6437. struct mddev *mddev = v;
  6438. if (mddev && v != (void*)1 && v != (void*)2)
  6439. mddev_put(mddev);
  6440. }
  6441. static int md_seq_show(struct seq_file *seq, void *v)
  6442. {
  6443. struct mddev *mddev = v;
  6444. sector_t sectors;
  6445. struct md_rdev *rdev;
  6446. if (v == (void*)1) {
  6447. struct md_personality *pers;
  6448. seq_printf(seq, "Personalities : ");
  6449. spin_lock(&pers_lock);
  6450. list_for_each_entry(pers, &pers_list, list)
  6451. seq_printf(seq, "[%s] ", pers->name);
  6452. spin_unlock(&pers_lock);
  6453. seq_printf(seq, "\n");
  6454. seq->poll_event = atomic_read(&md_event_count);
  6455. return 0;
  6456. }
  6457. if (v == (void*)2) {
  6458. status_unused(seq);
  6459. return 0;
  6460. }
  6461. spin_lock(&mddev->lock);
  6462. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  6463. seq_printf(seq, "%s : %sactive", mdname(mddev),
  6464. mddev->pers ? "" : "in");
  6465. if (mddev->pers) {
  6466. if (mddev->ro==1)
  6467. seq_printf(seq, " (read-only)");
  6468. if (mddev->ro==2)
  6469. seq_printf(seq, " (auto-read-only)");
  6470. seq_printf(seq, " %s", mddev->pers->name);
  6471. }
  6472. sectors = 0;
  6473. rcu_read_lock();
  6474. rdev_for_each_rcu(rdev, mddev) {
  6475. char b[BDEVNAME_SIZE];
  6476. seq_printf(seq, " %s[%d]",
  6477. bdevname(rdev->bdev,b), rdev->desc_nr);
  6478. if (test_bit(WriteMostly, &rdev->flags))
  6479. seq_printf(seq, "(W)");
  6480. if (test_bit(Faulty, &rdev->flags)) {
  6481. seq_printf(seq, "(F)");
  6482. continue;
  6483. }
  6484. if (rdev->raid_disk < 0)
  6485. seq_printf(seq, "(S)"); /* spare */
  6486. if (test_bit(Replacement, &rdev->flags))
  6487. seq_printf(seq, "(R)");
  6488. sectors += rdev->sectors;
  6489. }
  6490. rcu_read_unlock();
  6491. if (!list_empty(&mddev->disks)) {
  6492. if (mddev->pers)
  6493. seq_printf(seq, "\n %llu blocks",
  6494. (unsigned long long)
  6495. mddev->array_sectors / 2);
  6496. else
  6497. seq_printf(seq, "\n %llu blocks",
  6498. (unsigned long long)sectors / 2);
  6499. }
  6500. if (mddev->persistent) {
  6501. if (mddev->major_version != 0 ||
  6502. mddev->minor_version != 90) {
  6503. seq_printf(seq," super %d.%d",
  6504. mddev->major_version,
  6505. mddev->minor_version);
  6506. }
  6507. } else if (mddev->external)
  6508. seq_printf(seq, " super external:%s",
  6509. mddev->metadata_type);
  6510. else
  6511. seq_printf(seq, " super non-persistent");
  6512. if (mddev->pers) {
  6513. mddev->pers->status(seq, mddev);
  6514. seq_printf(seq, "\n ");
  6515. if (mddev->pers->sync_request) {
  6516. if (mddev->curr_resync > 2) {
  6517. status_resync(seq, mddev);
  6518. seq_printf(seq, "\n ");
  6519. } else if (mddev->curr_resync >= 1)
  6520. seq_printf(seq, "\tresync=DELAYED\n ");
  6521. else if (mddev->recovery_cp < MaxSector)
  6522. seq_printf(seq, "\tresync=PENDING\n ");
  6523. }
  6524. } else
  6525. seq_printf(seq, "\n ");
  6526. bitmap_status(seq, mddev->bitmap);
  6527. seq_printf(seq, "\n");
  6528. }
  6529. spin_unlock(&mddev->lock);
  6530. return 0;
  6531. }
  6532. static const struct seq_operations md_seq_ops = {
  6533. .start = md_seq_start,
  6534. .next = md_seq_next,
  6535. .stop = md_seq_stop,
  6536. .show = md_seq_show,
  6537. };
  6538. static int md_seq_open(struct inode *inode, struct file *file)
  6539. {
  6540. struct seq_file *seq;
  6541. int error;
  6542. error = seq_open(file, &md_seq_ops);
  6543. if (error)
  6544. return error;
  6545. seq = file->private_data;
  6546. seq->poll_event = atomic_read(&md_event_count);
  6547. return error;
  6548. }
  6549. static int md_unloading;
  6550. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  6551. {
  6552. struct seq_file *seq = filp->private_data;
  6553. int mask;
  6554. if (md_unloading)
  6555. return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
  6556. poll_wait(filp, &md_event_waiters, wait);
  6557. /* always allow read */
  6558. mask = POLLIN | POLLRDNORM;
  6559. if (seq->poll_event != atomic_read(&md_event_count))
  6560. mask |= POLLERR | POLLPRI;
  6561. return mask;
  6562. }
  6563. static const struct file_operations md_seq_fops = {
  6564. .owner = THIS_MODULE,
  6565. .open = md_seq_open,
  6566. .read = seq_read,
  6567. .llseek = seq_lseek,
  6568. .release = seq_release_private,
  6569. .poll = mdstat_poll,
  6570. };
  6571. int register_md_personality(struct md_personality *p)
  6572. {
  6573. printk(KERN_INFO "md: %s personality registered for level %d\n",
  6574. p->name, p->level);
  6575. spin_lock(&pers_lock);
  6576. list_add_tail(&p->list, &pers_list);
  6577. spin_unlock(&pers_lock);
  6578. return 0;
  6579. }
  6580. EXPORT_SYMBOL(register_md_personality);
  6581. int unregister_md_personality(struct md_personality *p)
  6582. {
  6583. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  6584. spin_lock(&pers_lock);
  6585. list_del_init(&p->list);
  6586. spin_unlock(&pers_lock);
  6587. return 0;
  6588. }
  6589. EXPORT_SYMBOL(unregister_md_personality);
  6590. int register_md_cluster_operations(struct md_cluster_operations *ops, struct module *module)
  6591. {
  6592. if (md_cluster_ops != NULL)
  6593. return -EALREADY;
  6594. spin_lock(&pers_lock);
  6595. md_cluster_ops = ops;
  6596. md_cluster_mod = module;
  6597. spin_unlock(&pers_lock);
  6598. return 0;
  6599. }
  6600. EXPORT_SYMBOL(register_md_cluster_operations);
  6601. int unregister_md_cluster_operations(void)
  6602. {
  6603. spin_lock(&pers_lock);
  6604. md_cluster_ops = NULL;
  6605. spin_unlock(&pers_lock);
  6606. return 0;
  6607. }
  6608. EXPORT_SYMBOL(unregister_md_cluster_operations);
  6609. int md_setup_cluster(struct mddev *mddev, int nodes)
  6610. {
  6611. int err;
  6612. err = request_module("md-cluster");
  6613. if (err) {
  6614. pr_err("md-cluster module not found.\n");
  6615. return err;
  6616. }
  6617. spin_lock(&pers_lock);
  6618. if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
  6619. spin_unlock(&pers_lock);
  6620. return -ENOENT;
  6621. }
  6622. spin_unlock(&pers_lock);
  6623. return md_cluster_ops->join(mddev, nodes);
  6624. }
  6625. void md_cluster_stop(struct mddev *mddev)
  6626. {
  6627. if (!md_cluster_ops)
  6628. return;
  6629. md_cluster_ops->leave(mddev);
  6630. module_put(md_cluster_mod);
  6631. }
  6632. static int is_mddev_idle(struct mddev *mddev, int init)
  6633. {
  6634. struct md_rdev *rdev;
  6635. int idle;
  6636. int curr_events;
  6637. idle = 1;
  6638. rcu_read_lock();
  6639. rdev_for_each_rcu(rdev, mddev) {
  6640. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  6641. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  6642. (int)part_stat_read(&disk->part0, sectors[1]) -
  6643. atomic_read(&disk->sync_io);
  6644. /* sync IO will cause sync_io to increase before the disk_stats
  6645. * as sync_io is counted when a request starts, and
  6646. * disk_stats is counted when it completes.
  6647. * So resync activity will cause curr_events to be smaller than
  6648. * when there was no such activity.
  6649. * non-sync IO will cause disk_stat to increase without
  6650. * increasing sync_io so curr_events will (eventually)
  6651. * be larger than it was before. Once it becomes
  6652. * substantially larger, the test below will cause
  6653. * the array to appear non-idle, and resync will slow
  6654. * down.
  6655. * If there is a lot of outstanding resync activity when
  6656. * we set last_event to curr_events, then all that activity
  6657. * completing might cause the array to appear non-idle
  6658. * and resync will be slowed down even though there might
  6659. * not have been non-resync activity. This will only
  6660. * happen once though. 'last_events' will soon reflect
  6661. * the state where there is little or no outstanding
  6662. * resync requests, and further resync activity will
  6663. * always make curr_events less than last_events.
  6664. *
  6665. */
  6666. if (init || curr_events - rdev->last_events > 64) {
  6667. rdev->last_events = curr_events;
  6668. idle = 0;
  6669. }
  6670. }
  6671. rcu_read_unlock();
  6672. return idle;
  6673. }
  6674. void md_done_sync(struct mddev *mddev, int blocks, int ok)
  6675. {
  6676. /* another "blocks" (512byte) blocks have been synced */
  6677. atomic_sub(blocks, &mddev->recovery_active);
  6678. wake_up(&mddev->recovery_wait);
  6679. if (!ok) {
  6680. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6681. set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
  6682. md_wakeup_thread(mddev->thread);
  6683. // stop recovery, signal do_sync ....
  6684. }
  6685. }
  6686. EXPORT_SYMBOL(md_done_sync);
  6687. /* md_write_start(mddev, bi)
  6688. * If we need to update some array metadata (e.g. 'active' flag
  6689. * in superblock) before writing, schedule a superblock update
  6690. * and wait for it to complete.
  6691. */
  6692. void md_write_start(struct mddev *mddev, struct bio *bi)
  6693. {
  6694. int did_change = 0;
  6695. if (bio_data_dir(bi) != WRITE)
  6696. return;
  6697. BUG_ON(mddev->ro == 1);
  6698. if (mddev->ro == 2) {
  6699. /* need to switch to read/write */
  6700. mddev->ro = 0;
  6701. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6702. md_wakeup_thread(mddev->thread);
  6703. md_wakeup_thread(mddev->sync_thread);
  6704. did_change = 1;
  6705. }
  6706. atomic_inc(&mddev->writes_pending);
  6707. if (mddev->safemode == 1)
  6708. mddev->safemode = 0;
  6709. if (mddev->in_sync) {
  6710. spin_lock(&mddev->lock);
  6711. if (mddev->in_sync) {
  6712. mddev->in_sync = 0;
  6713. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6714. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6715. md_wakeup_thread(mddev->thread);
  6716. did_change = 1;
  6717. }
  6718. spin_unlock(&mddev->lock);
  6719. }
  6720. if (did_change)
  6721. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6722. wait_event(mddev->sb_wait,
  6723. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6724. }
  6725. EXPORT_SYMBOL(md_write_start);
  6726. void md_write_end(struct mddev *mddev)
  6727. {
  6728. if (atomic_dec_and_test(&mddev->writes_pending)) {
  6729. if (mddev->safemode == 2)
  6730. md_wakeup_thread(mddev->thread);
  6731. else if (mddev->safemode_delay)
  6732. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  6733. }
  6734. }
  6735. EXPORT_SYMBOL(md_write_end);
  6736. /* md_allow_write(mddev)
  6737. * Calling this ensures that the array is marked 'active' so that writes
  6738. * may proceed without blocking. It is important to call this before
  6739. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  6740. * Must be called with mddev_lock held.
  6741. *
  6742. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  6743. * is dropped, so return -EAGAIN after notifying userspace.
  6744. */
  6745. int md_allow_write(struct mddev *mddev)
  6746. {
  6747. if (!mddev->pers)
  6748. return 0;
  6749. if (mddev->ro)
  6750. return 0;
  6751. if (!mddev->pers->sync_request)
  6752. return 0;
  6753. spin_lock(&mddev->lock);
  6754. if (mddev->in_sync) {
  6755. mddev->in_sync = 0;
  6756. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6757. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6758. if (mddev->safemode_delay &&
  6759. mddev->safemode == 0)
  6760. mddev->safemode = 1;
  6761. spin_unlock(&mddev->lock);
  6762. if (mddev_is_clustered(mddev))
  6763. md_cluster_ops->metadata_update_start(mddev);
  6764. md_update_sb(mddev, 0);
  6765. if (mddev_is_clustered(mddev))
  6766. md_cluster_ops->metadata_update_finish(mddev);
  6767. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6768. } else
  6769. spin_unlock(&mddev->lock);
  6770. if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  6771. return -EAGAIN;
  6772. else
  6773. return 0;
  6774. }
  6775. EXPORT_SYMBOL_GPL(md_allow_write);
  6776. #define SYNC_MARKS 10
  6777. #define SYNC_MARK_STEP (3*HZ)
  6778. #define UPDATE_FREQUENCY (5*60*HZ)
  6779. void md_do_sync(struct md_thread *thread)
  6780. {
  6781. struct mddev *mddev = thread->mddev;
  6782. struct mddev *mddev2;
  6783. unsigned int currspeed = 0,
  6784. window;
  6785. sector_t max_sectors,j, io_sectors, recovery_done;
  6786. unsigned long mark[SYNC_MARKS];
  6787. unsigned long update_time;
  6788. sector_t mark_cnt[SYNC_MARKS];
  6789. int last_mark,m;
  6790. struct list_head *tmp;
  6791. sector_t last_check;
  6792. int skipped = 0;
  6793. struct md_rdev *rdev;
  6794. char *desc, *action = NULL;
  6795. struct blk_plug plug;
  6796. /* just incase thread restarts... */
  6797. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6798. return;
  6799. if (mddev->ro) {/* never try to sync a read-only array */
  6800. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6801. return;
  6802. }
  6803. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6804. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
  6805. desc = "data-check";
  6806. action = "check";
  6807. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6808. desc = "requested-resync";
  6809. action = "repair";
  6810. } else
  6811. desc = "resync";
  6812. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6813. desc = "reshape";
  6814. else
  6815. desc = "recovery";
  6816. mddev->last_sync_action = action ?: desc;
  6817. /* we overload curr_resync somewhat here.
  6818. * 0 == not engaged in resync at all
  6819. * 2 == checking that there is no conflict with another sync
  6820. * 1 == like 2, but have yielded to allow conflicting resync to
  6821. * commense
  6822. * other == active in resync - this many blocks
  6823. *
  6824. * Before starting a resync we must have set curr_resync to
  6825. * 2, and then checked that every "conflicting" array has curr_resync
  6826. * less than ours. When we find one that is the same or higher
  6827. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  6828. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  6829. * This will mean we have to start checking from the beginning again.
  6830. *
  6831. */
  6832. do {
  6833. mddev->curr_resync = 2;
  6834. try_again:
  6835. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6836. goto skip;
  6837. for_each_mddev(mddev2, tmp) {
  6838. if (mddev2 == mddev)
  6839. continue;
  6840. if (!mddev->parallel_resync
  6841. && mddev2->curr_resync
  6842. && match_mddev_units(mddev, mddev2)) {
  6843. DEFINE_WAIT(wq);
  6844. if (mddev < mddev2 && mddev->curr_resync == 2) {
  6845. /* arbitrarily yield */
  6846. mddev->curr_resync = 1;
  6847. wake_up(&resync_wait);
  6848. }
  6849. if (mddev > mddev2 && mddev->curr_resync == 1)
  6850. /* no need to wait here, we can wait the next
  6851. * time 'round when curr_resync == 2
  6852. */
  6853. continue;
  6854. /* We need to wait 'interruptible' so as not to
  6855. * contribute to the load average, and not to
  6856. * be caught by 'softlockup'
  6857. */
  6858. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  6859. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  6860. mddev2->curr_resync >= mddev->curr_resync) {
  6861. printk(KERN_INFO "md: delaying %s of %s"
  6862. " until %s has finished (they"
  6863. " share one or more physical units)\n",
  6864. desc, mdname(mddev), mdname(mddev2));
  6865. mddev_put(mddev2);
  6866. if (signal_pending(current))
  6867. flush_signals(current);
  6868. schedule();
  6869. finish_wait(&resync_wait, &wq);
  6870. goto try_again;
  6871. }
  6872. finish_wait(&resync_wait, &wq);
  6873. }
  6874. }
  6875. } while (mddev->curr_resync < 2);
  6876. j = 0;
  6877. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6878. /* resync follows the size requested by the personality,
  6879. * which defaults to physical size, but can be virtual size
  6880. */
  6881. max_sectors = mddev->resync_max_sectors;
  6882. atomic64_set(&mddev->resync_mismatches, 0);
  6883. /* we don't use the checkpoint if there's a bitmap */
  6884. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6885. j = mddev->resync_min;
  6886. else if (!mddev->bitmap)
  6887. j = mddev->recovery_cp;
  6888. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6889. max_sectors = mddev->resync_max_sectors;
  6890. else {
  6891. /* recovery follows the physical size of devices */
  6892. max_sectors = mddev->dev_sectors;
  6893. j = MaxSector;
  6894. rcu_read_lock();
  6895. rdev_for_each_rcu(rdev, mddev)
  6896. if (rdev->raid_disk >= 0 &&
  6897. !test_bit(Faulty, &rdev->flags) &&
  6898. !test_bit(In_sync, &rdev->flags) &&
  6899. rdev->recovery_offset < j)
  6900. j = rdev->recovery_offset;
  6901. rcu_read_unlock();
  6902. /* If there is a bitmap, we need to make sure all
  6903. * writes that started before we added a spare
  6904. * complete before we start doing a recovery.
  6905. * Otherwise the write might complete and (via
  6906. * bitmap_endwrite) set a bit in the bitmap after the
  6907. * recovery has checked that bit and skipped that
  6908. * region.
  6909. */
  6910. if (mddev->bitmap) {
  6911. mddev->pers->quiesce(mddev, 1);
  6912. mddev->pers->quiesce(mddev, 0);
  6913. }
  6914. }
  6915. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  6916. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  6917. " %d KB/sec/disk.\n", speed_min(mddev));
  6918. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  6919. "(but not more than %d KB/sec) for %s.\n",
  6920. speed_max(mddev), desc);
  6921. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  6922. io_sectors = 0;
  6923. for (m = 0; m < SYNC_MARKS; m++) {
  6924. mark[m] = jiffies;
  6925. mark_cnt[m] = io_sectors;
  6926. }
  6927. last_mark = 0;
  6928. mddev->resync_mark = mark[last_mark];
  6929. mddev->resync_mark_cnt = mark_cnt[last_mark];
  6930. /*
  6931. * Tune reconstruction:
  6932. */
  6933. window = 32*(PAGE_SIZE/512);
  6934. printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
  6935. window/2, (unsigned long long)max_sectors/2);
  6936. atomic_set(&mddev->recovery_active, 0);
  6937. last_check = 0;
  6938. if (j>2) {
  6939. printk(KERN_INFO
  6940. "md: resuming %s of %s from checkpoint.\n",
  6941. desc, mdname(mddev));
  6942. mddev->curr_resync = j;
  6943. } else
  6944. mddev->curr_resync = 3; /* no longer delayed */
  6945. mddev->curr_resync_completed = j;
  6946. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6947. md_new_event(mddev);
  6948. update_time = jiffies;
  6949. if (mddev_is_clustered(mddev))
  6950. md_cluster_ops->resync_start(mddev, j, max_sectors);
  6951. blk_start_plug(&plug);
  6952. while (j < max_sectors) {
  6953. sector_t sectors;
  6954. skipped = 0;
  6955. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6956. ((mddev->curr_resync > mddev->curr_resync_completed &&
  6957. (mddev->curr_resync - mddev->curr_resync_completed)
  6958. > (max_sectors >> 4)) ||
  6959. time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
  6960. (j - mddev->curr_resync_completed)*2
  6961. >= mddev->resync_max - mddev->curr_resync_completed
  6962. )) {
  6963. /* time to update curr_resync_completed */
  6964. wait_event(mddev->recovery_wait,
  6965. atomic_read(&mddev->recovery_active) == 0);
  6966. mddev->curr_resync_completed = j;
  6967. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
  6968. j > mddev->recovery_cp)
  6969. mddev->recovery_cp = j;
  6970. update_time = jiffies;
  6971. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6972. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6973. }
  6974. while (j >= mddev->resync_max &&
  6975. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6976. /* As this condition is controlled by user-space,
  6977. * we can block indefinitely, so use '_interruptible'
  6978. * to avoid triggering warnings.
  6979. */
  6980. flush_signals(current); /* just in case */
  6981. wait_event_interruptible(mddev->recovery_wait,
  6982. mddev->resync_max > j
  6983. || test_bit(MD_RECOVERY_INTR,
  6984. &mddev->recovery));
  6985. }
  6986. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6987. break;
  6988. sectors = mddev->pers->sync_request(mddev, j, &skipped);
  6989. if (sectors == 0) {
  6990. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6991. break;
  6992. }
  6993. if (!skipped) { /* actual IO requested */
  6994. io_sectors += sectors;
  6995. atomic_add(sectors, &mddev->recovery_active);
  6996. }
  6997. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6998. break;
  6999. j += sectors;
  7000. if (j > 2)
  7001. mddev->curr_resync = j;
  7002. if (mddev_is_clustered(mddev))
  7003. md_cluster_ops->resync_info_update(mddev, j, max_sectors);
  7004. mddev->curr_mark_cnt = io_sectors;
  7005. if (last_check == 0)
  7006. /* this is the earliest that rebuild will be
  7007. * visible in /proc/mdstat
  7008. */
  7009. md_new_event(mddev);
  7010. if (last_check + window > io_sectors || j == max_sectors)
  7011. continue;
  7012. last_check = io_sectors;
  7013. repeat:
  7014. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  7015. /* step marks */
  7016. int next = (last_mark+1) % SYNC_MARKS;
  7017. mddev->resync_mark = mark[next];
  7018. mddev->resync_mark_cnt = mark_cnt[next];
  7019. mark[next] = jiffies;
  7020. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  7021. last_mark = next;
  7022. }
  7023. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  7024. break;
  7025. /*
  7026. * this loop exits only if either when we are slower than
  7027. * the 'hard' speed limit, or the system was IO-idle for
  7028. * a jiffy.
  7029. * the system might be non-idle CPU-wise, but we only care
  7030. * about not overloading the IO subsystem. (things like an
  7031. * e2fsck being done on the RAID array should execute fast)
  7032. */
  7033. cond_resched();
  7034. recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
  7035. currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
  7036. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  7037. if (currspeed > speed_min(mddev)) {
  7038. if ((currspeed > speed_max(mddev)) ||
  7039. !is_mddev_idle(mddev, 0)) {
  7040. msleep(500);
  7041. goto repeat;
  7042. }
  7043. }
  7044. }
  7045. printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
  7046. test_bit(MD_RECOVERY_INTR, &mddev->recovery)
  7047. ? "interrupted" : "done");
  7048. /*
  7049. * this also signals 'finished resyncing' to md_stop
  7050. */
  7051. blk_finish_plug(&plug);
  7052. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  7053. /* tell personality that we are finished */
  7054. mddev->pers->sync_request(mddev, max_sectors, &skipped);
  7055. if (mddev_is_clustered(mddev))
  7056. md_cluster_ops->resync_finish(mddev);
  7057. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  7058. mddev->curr_resync > 2) {
  7059. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  7060. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  7061. if (mddev->curr_resync >= mddev->recovery_cp) {
  7062. printk(KERN_INFO
  7063. "md: checkpointing %s of %s.\n",
  7064. desc, mdname(mddev));
  7065. if (test_bit(MD_RECOVERY_ERROR,
  7066. &mddev->recovery))
  7067. mddev->recovery_cp =
  7068. mddev->curr_resync_completed;
  7069. else
  7070. mddev->recovery_cp =
  7071. mddev->curr_resync;
  7072. }
  7073. } else
  7074. mddev->recovery_cp = MaxSector;
  7075. } else {
  7076. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  7077. mddev->curr_resync = MaxSector;
  7078. rcu_read_lock();
  7079. rdev_for_each_rcu(rdev, mddev)
  7080. if (rdev->raid_disk >= 0 &&
  7081. mddev->delta_disks >= 0 &&
  7082. !test_bit(Faulty, &rdev->flags) &&
  7083. !test_bit(In_sync, &rdev->flags) &&
  7084. rdev->recovery_offset < mddev->curr_resync)
  7085. rdev->recovery_offset = mddev->curr_resync;
  7086. rcu_read_unlock();
  7087. }
  7088. }
  7089. skip:
  7090. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7091. spin_lock(&mddev->lock);
  7092. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  7093. /* We completed so min/max setting can be forgotten if used. */
  7094. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  7095. mddev->resync_min = 0;
  7096. mddev->resync_max = MaxSector;
  7097. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  7098. mddev->resync_min = mddev->curr_resync_completed;
  7099. mddev->curr_resync = 0;
  7100. spin_unlock(&mddev->lock);
  7101. wake_up(&resync_wait);
  7102. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  7103. md_wakeup_thread(mddev->thread);
  7104. return;
  7105. }
  7106. EXPORT_SYMBOL_GPL(md_do_sync);
  7107. static int remove_and_add_spares(struct mddev *mddev,
  7108. struct md_rdev *this)
  7109. {
  7110. struct md_rdev *rdev;
  7111. int spares = 0;
  7112. int removed = 0;
  7113. rdev_for_each(rdev, mddev)
  7114. if ((this == NULL || rdev == this) &&
  7115. rdev->raid_disk >= 0 &&
  7116. !test_bit(Blocked, &rdev->flags) &&
  7117. (test_bit(Faulty, &rdev->flags) ||
  7118. ! test_bit(In_sync, &rdev->flags)) &&
  7119. atomic_read(&rdev->nr_pending)==0) {
  7120. if (mddev->pers->hot_remove_disk(
  7121. mddev, rdev) == 0) {
  7122. sysfs_unlink_rdev(mddev, rdev);
  7123. rdev->raid_disk = -1;
  7124. removed++;
  7125. }
  7126. }
  7127. if (removed && mddev->kobj.sd)
  7128. sysfs_notify(&mddev->kobj, NULL, "degraded");
  7129. if (this)
  7130. goto no_add;
  7131. rdev_for_each(rdev, mddev) {
  7132. if (rdev->raid_disk >= 0 &&
  7133. !test_bit(In_sync, &rdev->flags) &&
  7134. !test_bit(Faulty, &rdev->flags))
  7135. spares++;
  7136. if (rdev->raid_disk >= 0)
  7137. continue;
  7138. if (test_bit(Faulty, &rdev->flags))
  7139. continue;
  7140. if (mddev->ro &&
  7141. ! (rdev->saved_raid_disk >= 0 &&
  7142. !test_bit(Bitmap_sync, &rdev->flags)))
  7143. continue;
  7144. if (rdev->saved_raid_disk < 0)
  7145. rdev->recovery_offset = 0;
  7146. if (mddev->pers->
  7147. hot_add_disk(mddev, rdev) == 0) {
  7148. if (sysfs_link_rdev(mddev, rdev))
  7149. /* failure here is OK */;
  7150. spares++;
  7151. md_new_event(mddev);
  7152. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7153. }
  7154. }
  7155. no_add:
  7156. if (removed)
  7157. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7158. return spares;
  7159. }
  7160. static void md_start_sync(struct work_struct *ws)
  7161. {
  7162. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  7163. mddev->sync_thread = md_register_thread(md_do_sync,
  7164. mddev,
  7165. "resync");
  7166. if (!mddev->sync_thread) {
  7167. printk(KERN_ERR "%s: could not start resync"
  7168. " thread...\n",
  7169. mdname(mddev));
  7170. /* leave the spares where they are, it shouldn't hurt */
  7171. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7172. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7173. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7174. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7175. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7176. wake_up(&resync_wait);
  7177. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  7178. &mddev->recovery))
  7179. if (mddev->sysfs_action)
  7180. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7181. } else
  7182. md_wakeup_thread(mddev->sync_thread);
  7183. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7184. md_new_event(mddev);
  7185. }
  7186. /*
  7187. * This routine is regularly called by all per-raid-array threads to
  7188. * deal with generic issues like resync and super-block update.
  7189. * Raid personalities that don't have a thread (linear/raid0) do not
  7190. * need this as they never do any recovery or update the superblock.
  7191. *
  7192. * It does not do any resync itself, but rather "forks" off other threads
  7193. * to do that as needed.
  7194. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  7195. * "->recovery" and create a thread at ->sync_thread.
  7196. * When the thread finishes it sets MD_RECOVERY_DONE
  7197. * and wakeups up this thread which will reap the thread and finish up.
  7198. * This thread also removes any faulty devices (with nr_pending == 0).
  7199. *
  7200. * The overall approach is:
  7201. * 1/ if the superblock needs updating, update it.
  7202. * 2/ If a recovery thread is running, don't do anything else.
  7203. * 3/ If recovery has finished, clean up, possibly marking spares active.
  7204. * 4/ If there are any faulty devices, remove them.
  7205. * 5/ If array is degraded, try to add spares devices
  7206. * 6/ If array has spares or is not in-sync, start a resync thread.
  7207. */
  7208. void md_check_recovery(struct mddev *mddev)
  7209. {
  7210. if (mddev->suspended)
  7211. return;
  7212. if (mddev->bitmap)
  7213. bitmap_daemon_work(mddev);
  7214. if (signal_pending(current)) {
  7215. if (mddev->pers->sync_request && !mddev->external) {
  7216. printk(KERN_INFO "md: %s in immediate safe mode\n",
  7217. mdname(mddev));
  7218. mddev->safemode = 2;
  7219. }
  7220. flush_signals(current);
  7221. }
  7222. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  7223. return;
  7224. if ( ! (
  7225. (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
  7226. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  7227. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  7228. (mddev->external == 0 && mddev->safemode == 1) ||
  7229. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  7230. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  7231. ))
  7232. return;
  7233. if (mddev_trylock(mddev)) {
  7234. int spares = 0;
  7235. if (mddev->ro) {
  7236. /* On a read-only array we can:
  7237. * - remove failed devices
  7238. * - add already-in_sync devices if the array itself
  7239. * is in-sync.
  7240. * As we only add devices that are already in-sync,
  7241. * we can activate the spares immediately.
  7242. */
  7243. remove_and_add_spares(mddev, NULL);
  7244. /* There is no thread, but we need to call
  7245. * ->spare_active and clear saved_raid_disk
  7246. */
  7247. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  7248. md_reap_sync_thread(mddev);
  7249. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  7250. goto unlock;
  7251. }
  7252. if (!mddev->external) {
  7253. int did_change = 0;
  7254. spin_lock(&mddev->lock);
  7255. if (mddev->safemode &&
  7256. !atomic_read(&mddev->writes_pending) &&
  7257. !mddev->in_sync &&
  7258. mddev->recovery_cp == MaxSector) {
  7259. mddev->in_sync = 1;
  7260. did_change = 1;
  7261. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  7262. }
  7263. if (mddev->safemode == 1)
  7264. mddev->safemode = 0;
  7265. spin_unlock(&mddev->lock);
  7266. if (did_change)
  7267. sysfs_notify_dirent_safe(mddev->sysfs_state);
  7268. }
  7269. if (mddev->flags & MD_UPDATE_SB_FLAGS) {
  7270. if (mddev_is_clustered(mddev))
  7271. md_cluster_ops->metadata_update_start(mddev);
  7272. md_update_sb(mddev, 0);
  7273. if (mddev_is_clustered(mddev))
  7274. md_cluster_ops->metadata_update_finish(mddev);
  7275. }
  7276. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  7277. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  7278. /* resync/recovery still happening */
  7279. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  7280. goto unlock;
  7281. }
  7282. if (mddev->sync_thread) {
  7283. md_reap_sync_thread(mddev);
  7284. goto unlock;
  7285. }
  7286. /* Set RUNNING before clearing NEEDED to avoid
  7287. * any transients in the value of "sync_action".
  7288. */
  7289. mddev->curr_resync_completed = 0;
  7290. spin_lock(&mddev->lock);
  7291. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7292. spin_unlock(&mddev->lock);
  7293. /* Clear some bits that don't mean anything, but
  7294. * might be left set
  7295. */
  7296. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  7297. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  7298. if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  7299. test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  7300. goto not_running;
  7301. /* no recovery is running.
  7302. * remove any failed drives, then
  7303. * add spares if possible.
  7304. * Spares are also removed and re-added, to allow
  7305. * the personality to fail the re-add.
  7306. */
  7307. if (mddev->reshape_position != MaxSector) {
  7308. if (mddev->pers->check_reshape == NULL ||
  7309. mddev->pers->check_reshape(mddev) != 0)
  7310. /* Cannot proceed */
  7311. goto not_running;
  7312. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7313. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7314. } else if ((spares = remove_and_add_spares(mddev, NULL))) {
  7315. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7316. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7317. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7318. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7319. } else if (mddev->recovery_cp < MaxSector) {
  7320. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7321. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7322. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  7323. /* nothing to be done ... */
  7324. goto not_running;
  7325. if (mddev->pers->sync_request) {
  7326. if (spares) {
  7327. /* We are adding a device or devices to an array
  7328. * which has the bitmap stored on all devices.
  7329. * So make sure all bitmap pages get written
  7330. */
  7331. bitmap_write_all(mddev->bitmap);
  7332. }
  7333. INIT_WORK(&mddev->del_work, md_start_sync);
  7334. queue_work(md_misc_wq, &mddev->del_work);
  7335. goto unlock;
  7336. }
  7337. not_running:
  7338. if (!mddev->sync_thread) {
  7339. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7340. wake_up(&resync_wait);
  7341. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  7342. &mddev->recovery))
  7343. if (mddev->sysfs_action)
  7344. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7345. }
  7346. unlock:
  7347. wake_up(&mddev->sb_wait);
  7348. mddev_unlock(mddev);
  7349. }
  7350. }
  7351. EXPORT_SYMBOL(md_check_recovery);
  7352. void md_reap_sync_thread(struct mddev *mddev)
  7353. {
  7354. struct md_rdev *rdev;
  7355. /* resync has finished, collect result */
  7356. md_unregister_thread(&mddev->sync_thread);
  7357. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  7358. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  7359. /* success...*/
  7360. /* activate any spares */
  7361. if (mddev->pers->spare_active(mddev)) {
  7362. sysfs_notify(&mddev->kobj, NULL,
  7363. "degraded");
  7364. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7365. }
  7366. }
  7367. if (mddev_is_clustered(mddev))
  7368. md_cluster_ops->metadata_update_start(mddev);
  7369. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  7370. mddev->pers->finish_reshape)
  7371. mddev->pers->finish_reshape(mddev);
  7372. /* If array is no-longer degraded, then any saved_raid_disk
  7373. * information must be scrapped.
  7374. */
  7375. if (!mddev->degraded)
  7376. rdev_for_each(rdev, mddev)
  7377. rdev->saved_raid_disk = -1;
  7378. md_update_sb(mddev, 1);
  7379. if (mddev_is_clustered(mddev))
  7380. md_cluster_ops->metadata_update_finish(mddev);
  7381. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7382. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7383. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7384. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7385. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7386. wake_up(&resync_wait);
  7387. /* flag recovery needed just to double check */
  7388. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  7389. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7390. md_new_event(mddev);
  7391. if (mddev->event_work.func)
  7392. queue_work(md_misc_wq, &mddev->event_work);
  7393. }
  7394. EXPORT_SYMBOL(md_reap_sync_thread);
  7395. void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
  7396. {
  7397. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7398. wait_event_timeout(rdev->blocked_wait,
  7399. !test_bit(Blocked, &rdev->flags) &&
  7400. !test_bit(BlockedBadBlocks, &rdev->flags),
  7401. msecs_to_jiffies(5000));
  7402. rdev_dec_pending(rdev, mddev);
  7403. }
  7404. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  7405. void md_finish_reshape(struct mddev *mddev)
  7406. {
  7407. /* called be personality module when reshape completes. */
  7408. struct md_rdev *rdev;
  7409. rdev_for_each(rdev, mddev) {
  7410. if (rdev->data_offset > rdev->new_data_offset)
  7411. rdev->sectors += rdev->data_offset - rdev->new_data_offset;
  7412. else
  7413. rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
  7414. rdev->data_offset = rdev->new_data_offset;
  7415. }
  7416. }
  7417. EXPORT_SYMBOL(md_finish_reshape);
  7418. /* Bad block management.
  7419. * We can record which blocks on each device are 'bad' and so just
  7420. * fail those blocks, or that stripe, rather than the whole device.
  7421. * Entries in the bad-block table are 64bits wide. This comprises:
  7422. * Length of bad-range, in sectors: 0-511 for lengths 1-512
  7423. * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
  7424. * A 'shift' can be set so that larger blocks are tracked and
  7425. * consequently larger devices can be covered.
  7426. * 'Acknowledged' flag - 1 bit. - the most significant bit.
  7427. *
  7428. * Locking of the bad-block table uses a seqlock so md_is_badblock
  7429. * might need to retry if it is very unlucky.
  7430. * We will sometimes want to check for bad blocks in a bi_end_io function,
  7431. * so we use the write_seqlock_irq variant.
  7432. *
  7433. * When looking for a bad block we specify a range and want to
  7434. * know if any block in the range is bad. So we binary-search
  7435. * to the last range that starts at-or-before the given endpoint,
  7436. * (or "before the sector after the target range")
  7437. * then see if it ends after the given start.
  7438. * We return
  7439. * 0 if there are no known bad blocks in the range
  7440. * 1 if there are known bad block which are all acknowledged
  7441. * -1 if there are bad blocks which have not yet been acknowledged in metadata.
  7442. * plus the start/length of the first bad section we overlap.
  7443. */
  7444. int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
  7445. sector_t *first_bad, int *bad_sectors)
  7446. {
  7447. int hi;
  7448. int lo;
  7449. u64 *p = bb->page;
  7450. int rv;
  7451. sector_t target = s + sectors;
  7452. unsigned seq;
  7453. if (bb->shift > 0) {
  7454. /* round the start down, and the end up */
  7455. s >>= bb->shift;
  7456. target += (1<<bb->shift) - 1;
  7457. target >>= bb->shift;
  7458. sectors = target - s;
  7459. }
  7460. /* 'target' is now the first block after the bad range */
  7461. retry:
  7462. seq = read_seqbegin(&bb->lock);
  7463. lo = 0;
  7464. rv = 0;
  7465. hi = bb->count;
  7466. /* Binary search between lo and hi for 'target'
  7467. * i.e. for the last range that starts before 'target'
  7468. */
  7469. /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
  7470. * are known not to be the last range before target.
  7471. * VARIANT: hi-lo is the number of possible
  7472. * ranges, and decreases until it reaches 1
  7473. */
  7474. while (hi - lo > 1) {
  7475. int mid = (lo + hi) / 2;
  7476. sector_t a = BB_OFFSET(p[mid]);
  7477. if (a < target)
  7478. /* This could still be the one, earlier ranges
  7479. * could not. */
  7480. lo = mid;
  7481. else
  7482. /* This and later ranges are definitely out. */
  7483. hi = mid;
  7484. }
  7485. /* 'lo' might be the last that started before target, but 'hi' isn't */
  7486. if (hi > lo) {
  7487. /* need to check all range that end after 's' to see if
  7488. * any are unacknowledged.
  7489. */
  7490. while (lo >= 0 &&
  7491. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7492. if (BB_OFFSET(p[lo]) < target) {
  7493. /* starts before the end, and finishes after
  7494. * the start, so they must overlap
  7495. */
  7496. if (rv != -1 && BB_ACK(p[lo]))
  7497. rv = 1;
  7498. else
  7499. rv = -1;
  7500. *first_bad = BB_OFFSET(p[lo]);
  7501. *bad_sectors = BB_LEN(p[lo]);
  7502. }
  7503. lo--;
  7504. }
  7505. }
  7506. if (read_seqretry(&bb->lock, seq))
  7507. goto retry;
  7508. return rv;
  7509. }
  7510. EXPORT_SYMBOL_GPL(md_is_badblock);
  7511. /*
  7512. * Add a range of bad blocks to the table.
  7513. * This might extend the table, or might contract it
  7514. * if two adjacent ranges can be merged.
  7515. * We binary-search to find the 'insertion' point, then
  7516. * decide how best to handle it.
  7517. */
  7518. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  7519. int acknowledged)
  7520. {
  7521. u64 *p;
  7522. int lo, hi;
  7523. int rv = 1;
  7524. unsigned long flags;
  7525. if (bb->shift < 0)
  7526. /* badblocks are disabled */
  7527. return 0;
  7528. if (bb->shift) {
  7529. /* round the start down, and the end up */
  7530. sector_t next = s + sectors;
  7531. s >>= bb->shift;
  7532. next += (1<<bb->shift) - 1;
  7533. next >>= bb->shift;
  7534. sectors = next - s;
  7535. }
  7536. write_seqlock_irqsave(&bb->lock, flags);
  7537. p = bb->page;
  7538. lo = 0;
  7539. hi = bb->count;
  7540. /* Find the last range that starts at-or-before 's' */
  7541. while (hi - lo > 1) {
  7542. int mid = (lo + hi) / 2;
  7543. sector_t a = BB_OFFSET(p[mid]);
  7544. if (a <= s)
  7545. lo = mid;
  7546. else
  7547. hi = mid;
  7548. }
  7549. if (hi > lo && BB_OFFSET(p[lo]) > s)
  7550. hi = lo;
  7551. if (hi > lo) {
  7552. /* we found a range that might merge with the start
  7553. * of our new range
  7554. */
  7555. sector_t a = BB_OFFSET(p[lo]);
  7556. sector_t e = a + BB_LEN(p[lo]);
  7557. int ack = BB_ACK(p[lo]);
  7558. if (e >= s) {
  7559. /* Yes, we can merge with a previous range */
  7560. if (s == a && s + sectors >= e)
  7561. /* new range covers old */
  7562. ack = acknowledged;
  7563. else
  7564. ack = ack && acknowledged;
  7565. if (e < s + sectors)
  7566. e = s + sectors;
  7567. if (e - a <= BB_MAX_LEN) {
  7568. p[lo] = BB_MAKE(a, e-a, ack);
  7569. s = e;
  7570. } else {
  7571. /* does not all fit in one range,
  7572. * make p[lo] maximal
  7573. */
  7574. if (BB_LEN(p[lo]) != BB_MAX_LEN)
  7575. p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
  7576. s = a + BB_MAX_LEN;
  7577. }
  7578. sectors = e - s;
  7579. }
  7580. }
  7581. if (sectors && hi < bb->count) {
  7582. /* 'hi' points to the first range that starts after 's'.
  7583. * Maybe we can merge with the start of that range */
  7584. sector_t a = BB_OFFSET(p[hi]);
  7585. sector_t e = a + BB_LEN(p[hi]);
  7586. int ack = BB_ACK(p[hi]);
  7587. if (a <= s + sectors) {
  7588. /* merging is possible */
  7589. if (e <= s + sectors) {
  7590. /* full overlap */
  7591. e = s + sectors;
  7592. ack = acknowledged;
  7593. } else
  7594. ack = ack && acknowledged;
  7595. a = s;
  7596. if (e - a <= BB_MAX_LEN) {
  7597. p[hi] = BB_MAKE(a, e-a, ack);
  7598. s = e;
  7599. } else {
  7600. p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
  7601. s = a + BB_MAX_LEN;
  7602. }
  7603. sectors = e - s;
  7604. lo = hi;
  7605. hi++;
  7606. }
  7607. }
  7608. if (sectors == 0 && hi < bb->count) {
  7609. /* we might be able to combine lo and hi */
  7610. /* Note: 's' is at the end of 'lo' */
  7611. sector_t a = BB_OFFSET(p[hi]);
  7612. int lolen = BB_LEN(p[lo]);
  7613. int hilen = BB_LEN(p[hi]);
  7614. int newlen = lolen + hilen - (s - a);
  7615. if (s >= a && newlen < BB_MAX_LEN) {
  7616. /* yes, we can combine them */
  7617. int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
  7618. p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
  7619. memmove(p + hi, p + hi + 1,
  7620. (bb->count - hi - 1) * 8);
  7621. bb->count--;
  7622. }
  7623. }
  7624. while (sectors) {
  7625. /* didn't merge (it all).
  7626. * Need to add a range just before 'hi' */
  7627. if (bb->count >= MD_MAX_BADBLOCKS) {
  7628. /* No room for more */
  7629. rv = 0;
  7630. break;
  7631. } else {
  7632. int this_sectors = sectors;
  7633. memmove(p + hi + 1, p + hi,
  7634. (bb->count - hi) * 8);
  7635. bb->count++;
  7636. if (this_sectors > BB_MAX_LEN)
  7637. this_sectors = BB_MAX_LEN;
  7638. p[hi] = BB_MAKE(s, this_sectors, acknowledged);
  7639. sectors -= this_sectors;
  7640. s += this_sectors;
  7641. }
  7642. }
  7643. bb->changed = 1;
  7644. if (!acknowledged)
  7645. bb->unacked_exist = 1;
  7646. write_sequnlock_irqrestore(&bb->lock, flags);
  7647. return rv;
  7648. }
  7649. int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7650. int is_new)
  7651. {
  7652. int rv;
  7653. if (is_new)
  7654. s += rdev->new_data_offset;
  7655. else
  7656. s += rdev->data_offset;
  7657. rv = md_set_badblocks(&rdev->badblocks,
  7658. s, sectors, 0);
  7659. if (rv) {
  7660. /* Make sure they get written out promptly */
  7661. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7662. set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
  7663. md_wakeup_thread(rdev->mddev->thread);
  7664. }
  7665. return rv;
  7666. }
  7667. EXPORT_SYMBOL_GPL(rdev_set_badblocks);
  7668. /*
  7669. * Remove a range of bad blocks from the table.
  7670. * This may involve extending the table if we spilt a region,
  7671. * but it must not fail. So if the table becomes full, we just
  7672. * drop the remove request.
  7673. */
  7674. static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
  7675. {
  7676. u64 *p;
  7677. int lo, hi;
  7678. sector_t target = s + sectors;
  7679. int rv = 0;
  7680. if (bb->shift > 0) {
  7681. /* When clearing we round the start up and the end down.
  7682. * This should not matter as the shift should align with
  7683. * the block size and no rounding should ever be needed.
  7684. * However it is better the think a block is bad when it
  7685. * isn't than to think a block is not bad when it is.
  7686. */
  7687. s += (1<<bb->shift) - 1;
  7688. s >>= bb->shift;
  7689. target >>= bb->shift;
  7690. sectors = target - s;
  7691. }
  7692. write_seqlock_irq(&bb->lock);
  7693. p = bb->page;
  7694. lo = 0;
  7695. hi = bb->count;
  7696. /* Find the last range that starts before 'target' */
  7697. while (hi - lo > 1) {
  7698. int mid = (lo + hi) / 2;
  7699. sector_t a = BB_OFFSET(p[mid]);
  7700. if (a < target)
  7701. lo = mid;
  7702. else
  7703. hi = mid;
  7704. }
  7705. if (hi > lo) {
  7706. /* p[lo] is the last range that could overlap the
  7707. * current range. Earlier ranges could also overlap,
  7708. * but only this one can overlap the end of the range.
  7709. */
  7710. if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
  7711. /* Partial overlap, leave the tail of this range */
  7712. int ack = BB_ACK(p[lo]);
  7713. sector_t a = BB_OFFSET(p[lo]);
  7714. sector_t end = a + BB_LEN(p[lo]);
  7715. if (a < s) {
  7716. /* we need to split this range */
  7717. if (bb->count >= MD_MAX_BADBLOCKS) {
  7718. rv = -ENOSPC;
  7719. goto out;
  7720. }
  7721. memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
  7722. bb->count++;
  7723. p[lo] = BB_MAKE(a, s-a, ack);
  7724. lo++;
  7725. }
  7726. p[lo] = BB_MAKE(target, end - target, ack);
  7727. /* there is no longer an overlap */
  7728. hi = lo;
  7729. lo--;
  7730. }
  7731. while (lo >= 0 &&
  7732. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7733. /* This range does overlap */
  7734. if (BB_OFFSET(p[lo]) < s) {
  7735. /* Keep the early parts of this range. */
  7736. int ack = BB_ACK(p[lo]);
  7737. sector_t start = BB_OFFSET(p[lo]);
  7738. p[lo] = BB_MAKE(start, s - start, ack);
  7739. /* now low doesn't overlap, so.. */
  7740. break;
  7741. }
  7742. lo--;
  7743. }
  7744. /* 'lo' is strictly before, 'hi' is strictly after,
  7745. * anything between needs to be discarded
  7746. */
  7747. if (hi - lo > 1) {
  7748. memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
  7749. bb->count -= (hi - lo - 1);
  7750. }
  7751. }
  7752. bb->changed = 1;
  7753. out:
  7754. write_sequnlock_irq(&bb->lock);
  7755. return rv;
  7756. }
  7757. int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7758. int is_new)
  7759. {
  7760. if (is_new)
  7761. s += rdev->new_data_offset;
  7762. else
  7763. s += rdev->data_offset;
  7764. return md_clear_badblocks(&rdev->badblocks,
  7765. s, sectors);
  7766. }
  7767. EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
  7768. /*
  7769. * Acknowledge all bad blocks in a list.
  7770. * This only succeeds if ->changed is clear. It is used by
  7771. * in-kernel metadata updates
  7772. */
  7773. void md_ack_all_badblocks(struct badblocks *bb)
  7774. {
  7775. if (bb->page == NULL || bb->changed)
  7776. /* no point even trying */
  7777. return;
  7778. write_seqlock_irq(&bb->lock);
  7779. if (bb->changed == 0 && bb->unacked_exist) {
  7780. u64 *p = bb->page;
  7781. int i;
  7782. for (i = 0; i < bb->count ; i++) {
  7783. if (!BB_ACK(p[i])) {
  7784. sector_t start = BB_OFFSET(p[i]);
  7785. int len = BB_LEN(p[i]);
  7786. p[i] = BB_MAKE(start, len, 1);
  7787. }
  7788. }
  7789. bb->unacked_exist = 0;
  7790. }
  7791. write_sequnlock_irq(&bb->lock);
  7792. }
  7793. EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
  7794. /* sysfs access to bad-blocks list.
  7795. * We present two files.
  7796. * 'bad-blocks' lists sector numbers and lengths of ranges that
  7797. * are recorded as bad. The list is truncated to fit within
  7798. * the one-page limit of sysfs.
  7799. * Writing "sector length" to this file adds an acknowledged
  7800. * bad block list.
  7801. * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
  7802. * been acknowledged. Writing to this file adds bad blocks
  7803. * without acknowledging them. This is largely for testing.
  7804. */
  7805. static ssize_t
  7806. badblocks_show(struct badblocks *bb, char *page, int unack)
  7807. {
  7808. size_t len;
  7809. int i;
  7810. u64 *p = bb->page;
  7811. unsigned seq;
  7812. if (bb->shift < 0)
  7813. return 0;
  7814. retry:
  7815. seq = read_seqbegin(&bb->lock);
  7816. len = 0;
  7817. i = 0;
  7818. while (len < PAGE_SIZE && i < bb->count) {
  7819. sector_t s = BB_OFFSET(p[i]);
  7820. unsigned int length = BB_LEN(p[i]);
  7821. int ack = BB_ACK(p[i]);
  7822. i++;
  7823. if (unack && ack)
  7824. continue;
  7825. len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
  7826. (unsigned long long)s << bb->shift,
  7827. length << bb->shift);
  7828. }
  7829. if (unack && len == 0)
  7830. bb->unacked_exist = 0;
  7831. if (read_seqretry(&bb->lock, seq))
  7832. goto retry;
  7833. return len;
  7834. }
  7835. #define DO_DEBUG 1
  7836. static ssize_t
  7837. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
  7838. {
  7839. unsigned long long sector;
  7840. int length;
  7841. char newline;
  7842. #ifdef DO_DEBUG
  7843. /* Allow clearing via sysfs *only* for testing/debugging.
  7844. * Normally only a successful write may clear a badblock
  7845. */
  7846. int clear = 0;
  7847. if (page[0] == '-') {
  7848. clear = 1;
  7849. page++;
  7850. }
  7851. #endif /* DO_DEBUG */
  7852. switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
  7853. case 3:
  7854. if (newline != '\n')
  7855. return -EINVAL;
  7856. case 2:
  7857. if (length <= 0)
  7858. return -EINVAL;
  7859. break;
  7860. default:
  7861. return -EINVAL;
  7862. }
  7863. #ifdef DO_DEBUG
  7864. if (clear) {
  7865. md_clear_badblocks(bb, sector, length);
  7866. return len;
  7867. }
  7868. #endif /* DO_DEBUG */
  7869. if (md_set_badblocks(bb, sector, length, !unack))
  7870. return len;
  7871. else
  7872. return -ENOSPC;
  7873. }
  7874. static int md_notify_reboot(struct notifier_block *this,
  7875. unsigned long code, void *x)
  7876. {
  7877. struct list_head *tmp;
  7878. struct mddev *mddev;
  7879. int need_delay = 0;
  7880. for_each_mddev(mddev, tmp) {
  7881. if (mddev_trylock(mddev)) {
  7882. if (mddev->pers)
  7883. __md_stop_writes(mddev);
  7884. if (mddev->persistent)
  7885. mddev->safemode = 2;
  7886. mddev_unlock(mddev);
  7887. }
  7888. need_delay = 1;
  7889. }
  7890. /*
  7891. * certain more exotic SCSI devices are known to be
  7892. * volatile wrt too early system reboots. While the
  7893. * right place to handle this issue is the given
  7894. * driver, we do want to have a safe RAID driver ...
  7895. */
  7896. if (need_delay)
  7897. mdelay(1000*1);
  7898. return NOTIFY_DONE;
  7899. }
  7900. static struct notifier_block md_notifier = {
  7901. .notifier_call = md_notify_reboot,
  7902. .next = NULL,
  7903. .priority = INT_MAX, /* before any real devices */
  7904. };
  7905. static void md_geninit(void)
  7906. {
  7907. pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  7908. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  7909. }
  7910. static int __init md_init(void)
  7911. {
  7912. int ret = -ENOMEM;
  7913. md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
  7914. if (!md_wq)
  7915. goto err_wq;
  7916. md_misc_wq = alloc_workqueue("md_misc", 0, 0);
  7917. if (!md_misc_wq)
  7918. goto err_misc_wq;
  7919. if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
  7920. goto err_md;
  7921. if ((ret = register_blkdev(0, "mdp")) < 0)
  7922. goto err_mdp;
  7923. mdp_major = ret;
  7924. blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
  7925. md_probe, NULL, NULL);
  7926. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  7927. md_probe, NULL, NULL);
  7928. register_reboot_notifier(&md_notifier);
  7929. raid_table_header = register_sysctl_table(raid_root_table);
  7930. md_geninit();
  7931. return 0;
  7932. err_mdp:
  7933. unregister_blkdev(MD_MAJOR, "md");
  7934. err_md:
  7935. destroy_workqueue(md_misc_wq);
  7936. err_misc_wq:
  7937. destroy_workqueue(md_wq);
  7938. err_wq:
  7939. return ret;
  7940. }
  7941. void md_reload_sb(struct mddev *mddev)
  7942. {
  7943. struct md_rdev *rdev, *tmp;
  7944. rdev_for_each_safe(rdev, tmp, mddev) {
  7945. rdev->sb_loaded = 0;
  7946. ClearPageUptodate(rdev->sb_page);
  7947. }
  7948. mddev->raid_disks = 0;
  7949. analyze_sbs(mddev);
  7950. rdev_for_each_safe(rdev, tmp, mddev) {
  7951. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  7952. /* since we don't write to faulty devices, we figure out if the
  7953. * disk is faulty by comparing events
  7954. */
  7955. if (mddev->events > sb->events)
  7956. set_bit(Faulty, &rdev->flags);
  7957. }
  7958. }
  7959. EXPORT_SYMBOL(md_reload_sb);
  7960. #ifndef MODULE
  7961. /*
  7962. * Searches all registered partitions for autorun RAID arrays
  7963. * at boot time.
  7964. */
  7965. static LIST_HEAD(all_detected_devices);
  7966. struct detected_devices_node {
  7967. struct list_head list;
  7968. dev_t dev;
  7969. };
  7970. void md_autodetect_dev(dev_t dev)
  7971. {
  7972. struct detected_devices_node *node_detected_dev;
  7973. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  7974. if (node_detected_dev) {
  7975. node_detected_dev->dev = dev;
  7976. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  7977. } else {
  7978. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  7979. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  7980. }
  7981. }
  7982. static void autostart_arrays(int part)
  7983. {
  7984. struct md_rdev *rdev;
  7985. struct detected_devices_node *node_detected_dev;
  7986. dev_t dev;
  7987. int i_scanned, i_passed;
  7988. i_scanned = 0;
  7989. i_passed = 0;
  7990. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  7991. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  7992. i_scanned++;
  7993. node_detected_dev = list_entry(all_detected_devices.next,
  7994. struct detected_devices_node, list);
  7995. list_del(&node_detected_dev->list);
  7996. dev = node_detected_dev->dev;
  7997. kfree(node_detected_dev);
  7998. rdev = md_import_device(dev,0, 90);
  7999. if (IS_ERR(rdev))
  8000. continue;
  8001. if (test_bit(Faulty, &rdev->flags))
  8002. continue;
  8003. set_bit(AutoDetected, &rdev->flags);
  8004. list_add(&rdev->same_set, &pending_raid_disks);
  8005. i_passed++;
  8006. }
  8007. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  8008. i_scanned, i_passed);
  8009. autorun_devices(part);
  8010. }
  8011. #endif /* !MODULE */
  8012. static __exit void md_exit(void)
  8013. {
  8014. struct mddev *mddev;
  8015. struct list_head *tmp;
  8016. int delay = 1;
  8017. blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
  8018. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  8019. unregister_blkdev(MD_MAJOR,"md");
  8020. unregister_blkdev(mdp_major, "mdp");
  8021. unregister_reboot_notifier(&md_notifier);
  8022. unregister_sysctl_table(raid_table_header);
  8023. /* We cannot unload the modules while some process is
  8024. * waiting for us in select() or poll() - wake them up
  8025. */
  8026. md_unloading = 1;
  8027. while (waitqueue_active(&md_event_waiters)) {
  8028. /* not safe to leave yet */
  8029. wake_up(&md_event_waiters);
  8030. msleep(delay);
  8031. delay += delay;
  8032. }
  8033. remove_proc_entry("mdstat", NULL);
  8034. for_each_mddev(mddev, tmp) {
  8035. export_array(mddev);
  8036. mddev->hold_active = 0;
  8037. }
  8038. destroy_workqueue(md_misc_wq);
  8039. destroy_workqueue(md_wq);
  8040. }
  8041. subsys_initcall(md_init);
  8042. module_exit(md_exit)
  8043. static int get_ro(char *buffer, struct kernel_param *kp)
  8044. {
  8045. return sprintf(buffer, "%d", start_readonly);
  8046. }
  8047. static int set_ro(const char *val, struct kernel_param *kp)
  8048. {
  8049. char *e;
  8050. int num = simple_strtoul(val, &e, 10);
  8051. if (*val && (*e == '\0' || *e == '\n')) {
  8052. start_readonly = num;
  8053. return 0;
  8054. }
  8055. return -EINVAL;
  8056. }
  8057. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  8058. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  8059. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  8060. MODULE_LICENSE("GPL");
  8061. MODULE_DESCRIPTION("MD RAID framework");
  8062. MODULE_ALIAS("md");
  8063. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);