book3s_64_mmu_radix.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909
  1. /*
  2. * This program is free software; you can redistribute it and/or modify
  3. * it under the terms of the GNU General Public License, version 2, as
  4. * published by the Free Software Foundation.
  5. *
  6. * Copyright 2016 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  7. */
  8. #include <linux/types.h>
  9. #include <linux/string.h>
  10. #include <linux/kvm.h>
  11. #include <linux/kvm_host.h>
  12. #include <asm/kvm_ppc.h>
  13. #include <asm/kvm_book3s.h>
  14. #include <asm/page.h>
  15. #include <asm/mmu.h>
  16. #include <asm/pgtable.h>
  17. #include <asm/pgalloc.h>
  18. #include <asm/pte-walk.h>
  19. /*
  20. * Supported radix tree geometry.
  21. * Like p9, we support either 5 or 9 bits at the first (lowest) level,
  22. * for a page size of 64k or 4k.
  23. */
  24. static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 };
  25. int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
  26. struct kvmppc_pte *gpte, bool data, bool iswrite)
  27. {
  28. struct kvm *kvm = vcpu->kvm;
  29. u32 pid;
  30. int ret, level, ps;
  31. __be64 prte, rpte;
  32. unsigned long ptbl;
  33. unsigned long root, pte, index;
  34. unsigned long rts, bits, offset;
  35. unsigned long gpa;
  36. unsigned long proc_tbl_size;
  37. /* Work out effective PID */
  38. switch (eaddr >> 62) {
  39. case 0:
  40. pid = vcpu->arch.pid;
  41. break;
  42. case 3:
  43. pid = 0;
  44. break;
  45. default:
  46. return -EINVAL;
  47. }
  48. proc_tbl_size = 1 << ((kvm->arch.process_table & PRTS_MASK) + 12);
  49. if (pid * 16 >= proc_tbl_size)
  50. return -EINVAL;
  51. /* Read partition table to find root of tree for effective PID */
  52. ptbl = (kvm->arch.process_table & PRTB_MASK) + (pid * 16);
  53. ret = kvm_read_guest(kvm, ptbl, &prte, sizeof(prte));
  54. if (ret)
  55. return ret;
  56. root = be64_to_cpu(prte);
  57. rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) |
  58. ((root & RTS2_MASK) >> RTS2_SHIFT);
  59. bits = root & RPDS_MASK;
  60. root = root & RPDB_MASK;
  61. /* P9 DD1 interprets RTS (radix tree size) differently */
  62. offset = rts + 31;
  63. if (cpu_has_feature(CPU_FTR_POWER9_DD1))
  64. offset -= 3;
  65. /* current implementations only support 52-bit space */
  66. if (offset != 52)
  67. return -EINVAL;
  68. for (level = 3; level >= 0; --level) {
  69. if (level && bits != p9_supported_radix_bits[level])
  70. return -EINVAL;
  71. if (level == 0 && !(bits == 5 || bits == 9))
  72. return -EINVAL;
  73. offset -= bits;
  74. index = (eaddr >> offset) & ((1UL << bits) - 1);
  75. /* check that low bits of page table base are zero */
  76. if (root & ((1UL << (bits + 3)) - 1))
  77. return -EINVAL;
  78. ret = kvm_read_guest(kvm, root + index * 8,
  79. &rpte, sizeof(rpte));
  80. if (ret)
  81. return ret;
  82. pte = __be64_to_cpu(rpte);
  83. if (!(pte & _PAGE_PRESENT))
  84. return -ENOENT;
  85. if (pte & _PAGE_PTE)
  86. break;
  87. bits = pte & 0x1f;
  88. root = pte & 0x0fffffffffffff00ul;
  89. }
  90. /* need a leaf at lowest level; 512GB pages not supported */
  91. if (level < 0 || level == 3)
  92. return -EINVAL;
  93. /* offset is now log base 2 of the page size */
  94. gpa = pte & 0x01fffffffffff000ul;
  95. if (gpa & ((1ul << offset) - 1))
  96. return -EINVAL;
  97. gpa += eaddr & ((1ul << offset) - 1);
  98. for (ps = MMU_PAGE_4K; ps < MMU_PAGE_COUNT; ++ps)
  99. if (offset == mmu_psize_defs[ps].shift)
  100. break;
  101. gpte->page_size = ps;
  102. gpte->eaddr = eaddr;
  103. gpte->raddr = gpa;
  104. /* Work out permissions */
  105. gpte->may_read = !!(pte & _PAGE_READ);
  106. gpte->may_write = !!(pte & _PAGE_WRITE);
  107. gpte->may_execute = !!(pte & _PAGE_EXEC);
  108. if (kvmppc_get_msr(vcpu) & MSR_PR) {
  109. if (pte & _PAGE_PRIVILEGED) {
  110. gpte->may_read = 0;
  111. gpte->may_write = 0;
  112. gpte->may_execute = 0;
  113. }
  114. } else {
  115. if (!(pte & _PAGE_PRIVILEGED)) {
  116. /* Check AMR/IAMR to see if strict mode is in force */
  117. if (vcpu->arch.amr & (1ul << 62))
  118. gpte->may_read = 0;
  119. if (vcpu->arch.amr & (1ul << 63))
  120. gpte->may_write = 0;
  121. if (vcpu->arch.iamr & (1ul << 62))
  122. gpte->may_execute = 0;
  123. }
  124. }
  125. return 0;
  126. }
  127. static void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr,
  128. unsigned int pshift)
  129. {
  130. unsigned long psize = PAGE_SIZE;
  131. if (pshift)
  132. psize = 1UL << pshift;
  133. addr &= ~(psize - 1);
  134. radix__flush_tlb_lpid_page(kvm->arch.lpid, addr, psize);
  135. }
  136. static void kvmppc_radix_flush_pwc(struct kvm *kvm)
  137. {
  138. radix__flush_pwc_lpid(kvm->arch.lpid);
  139. }
  140. static unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep,
  141. unsigned long clr, unsigned long set,
  142. unsigned long addr, unsigned int shift)
  143. {
  144. unsigned long old = 0;
  145. if (!(clr & _PAGE_PRESENT) && cpu_has_feature(CPU_FTR_POWER9_DD1) &&
  146. pte_present(*ptep)) {
  147. /* have to invalidate it first */
  148. old = __radix_pte_update(ptep, _PAGE_PRESENT, 0);
  149. kvmppc_radix_tlbie_page(kvm, addr, shift);
  150. set |= _PAGE_PRESENT;
  151. old &= _PAGE_PRESENT;
  152. }
  153. return __radix_pte_update(ptep, clr, set) | old;
  154. }
  155. void kvmppc_radix_set_pte_at(struct kvm *kvm, unsigned long addr,
  156. pte_t *ptep, pte_t pte)
  157. {
  158. radix__set_pte_at(kvm->mm, addr, ptep, pte, 0);
  159. }
  160. static struct kmem_cache *kvm_pte_cache;
  161. static struct kmem_cache *kvm_pmd_cache;
  162. static pte_t *kvmppc_pte_alloc(void)
  163. {
  164. return kmem_cache_alloc(kvm_pte_cache, GFP_KERNEL);
  165. }
  166. static void kvmppc_pte_free(pte_t *ptep)
  167. {
  168. kmem_cache_free(kvm_pte_cache, ptep);
  169. }
  170. /* Like pmd_huge() and pmd_large(), but works regardless of config options */
  171. static inline int pmd_is_leaf(pmd_t pmd)
  172. {
  173. return !!(pmd_val(pmd) & _PAGE_PTE);
  174. }
  175. static pmd_t *kvmppc_pmd_alloc(void)
  176. {
  177. return kmem_cache_alloc(kvm_pmd_cache, GFP_KERNEL);
  178. }
  179. static void kvmppc_pmd_free(pmd_t *pmdp)
  180. {
  181. kmem_cache_free(kvm_pmd_cache, pmdp);
  182. }
  183. static void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte,
  184. unsigned long gpa, unsigned int shift)
  185. {
  186. unsigned long page_size = 1ul << shift;
  187. unsigned long old;
  188. old = kvmppc_radix_update_pte(kvm, pte, ~0UL, 0, gpa, shift);
  189. kvmppc_radix_tlbie_page(kvm, gpa, shift);
  190. if (old & _PAGE_DIRTY) {
  191. unsigned long gfn = gpa >> PAGE_SHIFT;
  192. struct kvm_memory_slot *memslot;
  193. memslot = gfn_to_memslot(kvm, gfn);
  194. if (memslot && memslot->dirty_bitmap)
  195. kvmppc_update_dirty_map(memslot, gfn, page_size);
  196. }
  197. }
  198. /*
  199. * kvmppc_free_p?d are used to free existing page tables, and recursively
  200. * descend and clear and free children.
  201. * Callers are responsible for flushing the PWC.
  202. *
  203. * When page tables are being unmapped/freed as part of page fault path
  204. * (full == false), ptes are not expected. There is code to unmap them
  205. * and emit a warning if encountered, but there may already be data
  206. * corruption due to the unexpected mappings.
  207. */
  208. static void kvmppc_unmap_free_pte(struct kvm *kvm, pte_t *pte, bool full)
  209. {
  210. if (full) {
  211. memset(pte, 0, sizeof(long) << PTE_INDEX_SIZE);
  212. } else {
  213. pte_t *p = pte;
  214. unsigned long it;
  215. for (it = 0; it < PTRS_PER_PTE; ++it, ++p) {
  216. if (pte_val(*p) == 0)
  217. continue;
  218. WARN_ON_ONCE(1);
  219. kvmppc_unmap_pte(kvm, p,
  220. pte_pfn(*p) << PAGE_SHIFT,
  221. PAGE_SHIFT);
  222. }
  223. }
  224. kvmppc_pte_free(pte);
  225. }
  226. static void kvmppc_unmap_free_pmd(struct kvm *kvm, pmd_t *pmd, bool full)
  227. {
  228. unsigned long im;
  229. pmd_t *p = pmd;
  230. for (im = 0; im < PTRS_PER_PMD; ++im, ++p) {
  231. if (!pmd_present(*p))
  232. continue;
  233. if (pmd_is_leaf(*p)) {
  234. if (full) {
  235. pmd_clear(p);
  236. } else {
  237. WARN_ON_ONCE(1);
  238. kvmppc_unmap_pte(kvm, (pte_t *)p,
  239. pte_pfn(*(pte_t *)p) << PAGE_SHIFT,
  240. PMD_SHIFT);
  241. }
  242. } else {
  243. pte_t *pte;
  244. pte = pte_offset_map(p, 0);
  245. kvmppc_unmap_free_pte(kvm, pte, full);
  246. pmd_clear(p);
  247. }
  248. }
  249. kvmppc_pmd_free(pmd);
  250. }
  251. static void kvmppc_unmap_free_pud(struct kvm *kvm, pud_t *pud)
  252. {
  253. unsigned long iu;
  254. pud_t *p = pud;
  255. for (iu = 0; iu < PTRS_PER_PUD; ++iu, ++p) {
  256. if (!pud_present(*p))
  257. continue;
  258. if (pud_huge(*p)) {
  259. pud_clear(p);
  260. } else {
  261. pmd_t *pmd;
  262. pmd = pmd_offset(p, 0);
  263. kvmppc_unmap_free_pmd(kvm, pmd, true);
  264. pud_clear(p);
  265. }
  266. }
  267. pud_free(kvm->mm, pud);
  268. }
  269. void kvmppc_free_radix(struct kvm *kvm)
  270. {
  271. unsigned long ig;
  272. pgd_t *pgd;
  273. if (!kvm->arch.pgtable)
  274. return;
  275. pgd = kvm->arch.pgtable;
  276. for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) {
  277. pud_t *pud;
  278. if (!pgd_present(*pgd))
  279. continue;
  280. pud = pud_offset(pgd, 0);
  281. kvmppc_unmap_free_pud(kvm, pud);
  282. pgd_clear(pgd);
  283. }
  284. pgd_free(kvm->mm, kvm->arch.pgtable);
  285. kvm->arch.pgtable = NULL;
  286. }
  287. static void kvmppc_unmap_free_pmd_entry_table(struct kvm *kvm, pmd_t *pmd,
  288. unsigned long gpa)
  289. {
  290. pte_t *pte = pte_offset_kernel(pmd, 0);
  291. /*
  292. * Clearing the pmd entry then flushing the PWC ensures that the pte
  293. * page no longer be cached by the MMU, so can be freed without
  294. * flushing the PWC again.
  295. */
  296. pmd_clear(pmd);
  297. kvmppc_radix_flush_pwc(kvm);
  298. kvmppc_unmap_free_pte(kvm, pte, false);
  299. }
  300. static void kvmppc_unmap_free_pud_entry_table(struct kvm *kvm, pud_t *pud,
  301. unsigned long gpa)
  302. {
  303. pmd_t *pmd = pmd_offset(pud, 0);
  304. /*
  305. * Clearing the pud entry then flushing the PWC ensures that the pmd
  306. * page and any children pte pages will no longer be cached by the MMU,
  307. * so can be freed without flushing the PWC again.
  308. */
  309. pud_clear(pud);
  310. kvmppc_radix_flush_pwc(kvm);
  311. kvmppc_unmap_free_pmd(kvm, pmd, false);
  312. }
  313. /*
  314. * There are a number of bits which may differ between different faults to
  315. * the same partition scope entry. RC bits, in the course of cleaning and
  316. * aging. And the write bit can change, either the access could have been
  317. * upgraded, or a read fault could happen concurrently with a write fault
  318. * that sets those bits first.
  319. */
  320. #define PTE_BITS_MUST_MATCH (~(_PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED))
  321. static int kvmppc_create_pte(struct kvm *kvm, pte_t pte, unsigned long gpa,
  322. unsigned int level, unsigned long mmu_seq)
  323. {
  324. pgd_t *pgd;
  325. pud_t *pud, *new_pud = NULL;
  326. pmd_t *pmd, *new_pmd = NULL;
  327. pte_t *ptep, *new_ptep = NULL;
  328. int ret;
  329. /* Traverse the guest's 2nd-level tree, allocate new levels needed */
  330. pgd = kvm->arch.pgtable + pgd_index(gpa);
  331. pud = NULL;
  332. if (pgd_present(*pgd))
  333. pud = pud_offset(pgd, gpa);
  334. else
  335. new_pud = pud_alloc_one(kvm->mm, gpa);
  336. pmd = NULL;
  337. if (pud && pud_present(*pud) && !pud_huge(*pud))
  338. pmd = pmd_offset(pud, gpa);
  339. else if (level <= 1)
  340. new_pmd = kvmppc_pmd_alloc();
  341. if (level == 0 && !(pmd && pmd_present(*pmd) && !pmd_is_leaf(*pmd)))
  342. new_ptep = kvmppc_pte_alloc();
  343. /* Check if we might have been invalidated; let the guest retry if so */
  344. spin_lock(&kvm->mmu_lock);
  345. ret = -EAGAIN;
  346. if (mmu_notifier_retry(kvm, mmu_seq))
  347. goto out_unlock;
  348. /* Now traverse again under the lock and change the tree */
  349. ret = -ENOMEM;
  350. if (pgd_none(*pgd)) {
  351. if (!new_pud)
  352. goto out_unlock;
  353. pgd_populate(kvm->mm, pgd, new_pud);
  354. new_pud = NULL;
  355. }
  356. pud = pud_offset(pgd, gpa);
  357. if (pud_huge(*pud)) {
  358. unsigned long hgpa = gpa & PUD_MASK;
  359. /* Check if we raced and someone else has set the same thing */
  360. if (level == 2) {
  361. if (pud_raw(*pud) == pte_raw(pte)) {
  362. ret = 0;
  363. goto out_unlock;
  364. }
  365. /* Valid 1GB page here already, add our extra bits */
  366. WARN_ON_ONCE((pud_val(*pud) ^ pte_val(pte)) &
  367. PTE_BITS_MUST_MATCH);
  368. kvmppc_radix_update_pte(kvm, (pte_t *)pud,
  369. 0, pte_val(pte), hgpa, PUD_SHIFT);
  370. ret = 0;
  371. goto out_unlock;
  372. }
  373. /*
  374. * If we raced with another CPU which has just put
  375. * a 1GB pte in after we saw a pmd page, try again.
  376. */
  377. if (!new_pmd) {
  378. ret = -EAGAIN;
  379. goto out_unlock;
  380. }
  381. /* Valid 1GB page here already, remove it */
  382. kvmppc_unmap_pte(kvm, (pte_t *)pud, hgpa, PUD_SHIFT);
  383. }
  384. if (level == 2) {
  385. if (!pud_none(*pud)) {
  386. /*
  387. * There's a page table page here, but we wanted to
  388. * install a large page, so remove and free the page
  389. * table page.
  390. */
  391. kvmppc_unmap_free_pud_entry_table(kvm, pud, gpa);
  392. }
  393. kvmppc_radix_set_pte_at(kvm, gpa, (pte_t *)pud, pte);
  394. ret = 0;
  395. goto out_unlock;
  396. }
  397. if (pud_none(*pud)) {
  398. if (!new_pmd)
  399. goto out_unlock;
  400. pud_populate(kvm->mm, pud, new_pmd);
  401. new_pmd = NULL;
  402. }
  403. pmd = pmd_offset(pud, gpa);
  404. if (pmd_is_leaf(*pmd)) {
  405. unsigned long lgpa = gpa & PMD_MASK;
  406. /* Check if we raced and someone else has set the same thing */
  407. if (level == 1) {
  408. if (pmd_raw(*pmd) == pte_raw(pte)) {
  409. ret = 0;
  410. goto out_unlock;
  411. }
  412. /* Valid 2MB page here already, add our extra bits */
  413. WARN_ON_ONCE((pmd_val(*pmd) ^ pte_val(pte)) &
  414. PTE_BITS_MUST_MATCH);
  415. kvmppc_radix_update_pte(kvm, pmdp_ptep(pmd),
  416. 0, pte_val(pte), lgpa, PMD_SHIFT);
  417. ret = 0;
  418. goto out_unlock;
  419. }
  420. /*
  421. * If we raced with another CPU which has just put
  422. * a 2MB pte in after we saw a pte page, try again.
  423. */
  424. if (!new_ptep) {
  425. ret = -EAGAIN;
  426. goto out_unlock;
  427. }
  428. /* Valid 2MB page here already, remove it */
  429. kvmppc_unmap_pte(kvm, pmdp_ptep(pmd), lgpa, PMD_SHIFT);
  430. }
  431. if (level == 1) {
  432. if (!pmd_none(*pmd)) {
  433. /*
  434. * There's a page table page here, but we wanted to
  435. * install a large page, so remove and free the page
  436. * table page.
  437. */
  438. kvmppc_unmap_free_pmd_entry_table(kvm, pmd, gpa);
  439. }
  440. kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte);
  441. ret = 0;
  442. goto out_unlock;
  443. }
  444. if (pmd_none(*pmd)) {
  445. if (!new_ptep)
  446. goto out_unlock;
  447. pmd_populate(kvm->mm, pmd, new_ptep);
  448. new_ptep = NULL;
  449. }
  450. ptep = pte_offset_kernel(pmd, gpa);
  451. if (pte_present(*ptep)) {
  452. /* Check if someone else set the same thing */
  453. if (pte_raw(*ptep) == pte_raw(pte)) {
  454. ret = 0;
  455. goto out_unlock;
  456. }
  457. /* Valid page here already, add our extra bits */
  458. WARN_ON_ONCE((pte_val(*ptep) ^ pte_val(pte)) &
  459. PTE_BITS_MUST_MATCH);
  460. kvmppc_radix_update_pte(kvm, ptep, 0, pte_val(pte), gpa, 0);
  461. ret = 0;
  462. goto out_unlock;
  463. }
  464. kvmppc_radix_set_pte_at(kvm, gpa, ptep, pte);
  465. ret = 0;
  466. out_unlock:
  467. spin_unlock(&kvm->mmu_lock);
  468. if (new_pud)
  469. pud_free(kvm->mm, new_pud);
  470. if (new_pmd)
  471. kvmppc_pmd_free(new_pmd);
  472. if (new_ptep)
  473. kvmppc_pte_free(new_ptep);
  474. return ret;
  475. }
  476. int kvmppc_book3s_radix_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
  477. unsigned long ea, unsigned long dsisr)
  478. {
  479. struct kvm *kvm = vcpu->kvm;
  480. unsigned long mmu_seq, pte_size;
  481. unsigned long gpa, gfn, hva, pfn;
  482. struct kvm_memory_slot *memslot;
  483. struct page *page = NULL;
  484. long ret;
  485. bool writing;
  486. bool upgrade_write = false;
  487. bool *upgrade_p = &upgrade_write;
  488. pte_t pte, *ptep;
  489. unsigned long pgflags;
  490. unsigned int shift, level;
  491. /* Check for unusual errors */
  492. if (dsisr & DSISR_UNSUPP_MMU) {
  493. pr_err("KVM: Got unsupported MMU fault\n");
  494. return -EFAULT;
  495. }
  496. if (dsisr & DSISR_BADACCESS) {
  497. /* Reflect to the guest as DSI */
  498. pr_err("KVM: Got radix HV page fault with DSISR=%lx\n", dsisr);
  499. kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
  500. return RESUME_GUEST;
  501. }
  502. /* Translate the logical address and get the page */
  503. gpa = vcpu->arch.fault_gpa & ~0xfffUL;
  504. gpa &= ~0xF000000000000000ul;
  505. gfn = gpa >> PAGE_SHIFT;
  506. if (!(dsisr & DSISR_PRTABLE_FAULT))
  507. gpa |= ea & 0xfff;
  508. memslot = gfn_to_memslot(kvm, gfn);
  509. /* No memslot means it's an emulated MMIO region */
  510. if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
  511. if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS |
  512. DSISR_SET_RC)) {
  513. /*
  514. * Bad address in guest page table tree, or other
  515. * unusual error - reflect it to the guest as DSI.
  516. */
  517. kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
  518. return RESUME_GUEST;
  519. }
  520. return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
  521. dsisr & DSISR_ISSTORE);
  522. }
  523. writing = (dsisr & DSISR_ISSTORE) != 0;
  524. if (memslot->flags & KVM_MEM_READONLY) {
  525. if (writing) {
  526. /* give the guest a DSI */
  527. dsisr = DSISR_ISSTORE | DSISR_PROTFAULT;
  528. kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
  529. return RESUME_GUEST;
  530. }
  531. upgrade_p = NULL;
  532. }
  533. if (dsisr & DSISR_SET_RC) {
  534. /*
  535. * Need to set an R or C bit in the 2nd-level tables;
  536. * since we are just helping out the hardware here,
  537. * it is sufficient to do what the hardware does.
  538. */
  539. pgflags = _PAGE_ACCESSED;
  540. if (writing)
  541. pgflags |= _PAGE_DIRTY;
  542. /*
  543. * We are walking the secondary page table here. We can do this
  544. * without disabling irq.
  545. */
  546. spin_lock(&kvm->mmu_lock);
  547. ptep = __find_linux_pte(kvm->arch.pgtable,
  548. gpa, NULL, &shift);
  549. if (ptep && pte_present(*ptep) &&
  550. (!writing || pte_write(*ptep))) {
  551. kvmppc_radix_update_pte(kvm, ptep, 0, pgflags,
  552. gpa, shift);
  553. dsisr &= ~DSISR_SET_RC;
  554. }
  555. spin_unlock(&kvm->mmu_lock);
  556. if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE |
  557. DSISR_PROTFAULT | DSISR_SET_RC)))
  558. return RESUME_GUEST;
  559. }
  560. /* used to check for invalidations in progress */
  561. mmu_seq = kvm->mmu_notifier_seq;
  562. smp_rmb();
  563. /*
  564. * Do a fast check first, since __gfn_to_pfn_memslot doesn't
  565. * do it with !atomic && !async, which is how we call it.
  566. * We always ask for write permission since the common case
  567. * is that the page is writable.
  568. */
  569. hva = gfn_to_hva_memslot(memslot, gfn);
  570. if (upgrade_p && __get_user_pages_fast(hva, 1, 1, &page) == 1) {
  571. pfn = page_to_pfn(page);
  572. upgrade_write = true;
  573. } else {
  574. /* Call KVM generic code to do the slow-path check */
  575. pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL,
  576. writing, upgrade_p);
  577. if (is_error_noslot_pfn(pfn))
  578. return -EFAULT;
  579. page = NULL;
  580. if (pfn_valid(pfn)) {
  581. page = pfn_to_page(pfn);
  582. if (PageReserved(page))
  583. page = NULL;
  584. }
  585. }
  586. /* See if we can insert a 1GB or 2MB large PTE here */
  587. level = 0;
  588. if (page && PageCompound(page)) {
  589. pte_size = PAGE_SIZE << compound_order(compound_head(page));
  590. if (pte_size >= PUD_SIZE &&
  591. (gpa & (PUD_SIZE - PAGE_SIZE)) ==
  592. (hva & (PUD_SIZE - PAGE_SIZE))) {
  593. level = 2;
  594. pfn &= ~((PUD_SIZE >> PAGE_SHIFT) - 1);
  595. } else if (pte_size >= PMD_SIZE &&
  596. (gpa & (PMD_SIZE - PAGE_SIZE)) ==
  597. (hva & (PMD_SIZE - PAGE_SIZE))) {
  598. level = 1;
  599. pfn &= ~((PMD_SIZE >> PAGE_SHIFT) - 1);
  600. }
  601. }
  602. /*
  603. * Compute the PTE value that we need to insert.
  604. */
  605. if (page) {
  606. pgflags = _PAGE_READ | _PAGE_EXEC | _PAGE_PRESENT | _PAGE_PTE |
  607. _PAGE_ACCESSED;
  608. if (writing || upgrade_write)
  609. pgflags |= _PAGE_WRITE | _PAGE_DIRTY;
  610. pte = pfn_pte(pfn, __pgprot(pgflags));
  611. } else {
  612. /*
  613. * Read the PTE from the process' radix tree and use that
  614. * so we get the attribute bits.
  615. */
  616. local_irq_disable();
  617. ptep = __find_linux_pte(vcpu->arch.pgdir, hva, NULL, &shift);
  618. pte = *ptep;
  619. local_irq_enable();
  620. if (shift == PUD_SHIFT &&
  621. (gpa & (PUD_SIZE - PAGE_SIZE)) ==
  622. (hva & (PUD_SIZE - PAGE_SIZE))) {
  623. level = 2;
  624. } else if (shift == PMD_SHIFT &&
  625. (gpa & (PMD_SIZE - PAGE_SIZE)) ==
  626. (hva & (PMD_SIZE - PAGE_SIZE))) {
  627. level = 1;
  628. } else if (shift && shift != PAGE_SHIFT) {
  629. /* Adjust PFN */
  630. unsigned long mask = (1ul << shift) - PAGE_SIZE;
  631. pte = __pte(pte_val(pte) | (hva & mask));
  632. }
  633. pte = __pte(pte_val(pte) | _PAGE_EXEC | _PAGE_ACCESSED);
  634. if (writing || upgrade_write) {
  635. if (pte_val(pte) & _PAGE_WRITE)
  636. pte = __pte(pte_val(pte) | _PAGE_DIRTY);
  637. } else {
  638. pte = __pte(pte_val(pte) & ~(_PAGE_WRITE | _PAGE_DIRTY));
  639. }
  640. }
  641. /* Allocate space in the tree and write the PTE */
  642. ret = kvmppc_create_pte(kvm, pte, gpa, level, mmu_seq);
  643. if (page) {
  644. if (!ret && (pte_val(pte) & _PAGE_WRITE))
  645. set_page_dirty_lock(page);
  646. put_page(page);
  647. }
  648. if (ret == 0 || ret == -EAGAIN)
  649. ret = RESUME_GUEST;
  650. return ret;
  651. }
  652. /* Called with kvm->lock held */
  653. int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
  654. unsigned long gfn)
  655. {
  656. pte_t *ptep;
  657. unsigned long gpa = gfn << PAGE_SHIFT;
  658. unsigned int shift;
  659. unsigned long old;
  660. ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
  661. if (ptep && pte_present(*ptep)) {
  662. old = kvmppc_radix_update_pte(kvm, ptep, ~0UL, 0,
  663. gpa, shift);
  664. kvmppc_radix_tlbie_page(kvm, gpa, shift);
  665. if ((old & _PAGE_DIRTY) && memslot->dirty_bitmap) {
  666. unsigned long npages = 1;
  667. if (shift)
  668. npages = 1ul << (shift - PAGE_SHIFT);
  669. kvmppc_update_dirty_map(memslot, gfn, npages);
  670. }
  671. }
  672. return 0;
  673. }
  674. /* Called with kvm->lock held */
  675. int kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
  676. unsigned long gfn)
  677. {
  678. pte_t *ptep;
  679. unsigned long gpa = gfn << PAGE_SHIFT;
  680. unsigned int shift;
  681. int ref = 0;
  682. ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
  683. if (ptep && pte_present(*ptep) && pte_young(*ptep)) {
  684. kvmppc_radix_update_pte(kvm, ptep, _PAGE_ACCESSED, 0,
  685. gpa, shift);
  686. /* XXX need to flush tlb here? */
  687. ref = 1;
  688. }
  689. return ref;
  690. }
  691. /* Called with kvm->lock held */
  692. int kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
  693. unsigned long gfn)
  694. {
  695. pte_t *ptep;
  696. unsigned long gpa = gfn << PAGE_SHIFT;
  697. unsigned int shift;
  698. int ref = 0;
  699. ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
  700. if (ptep && pte_present(*ptep) && pte_young(*ptep))
  701. ref = 1;
  702. return ref;
  703. }
  704. /* Returns the number of PAGE_SIZE pages that are dirty */
  705. static int kvm_radix_test_clear_dirty(struct kvm *kvm,
  706. struct kvm_memory_slot *memslot, int pagenum)
  707. {
  708. unsigned long gfn = memslot->base_gfn + pagenum;
  709. unsigned long gpa = gfn << PAGE_SHIFT;
  710. pte_t *ptep;
  711. unsigned int shift;
  712. int ret = 0;
  713. ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
  714. if (ptep && pte_present(*ptep) && pte_dirty(*ptep)) {
  715. ret = 1;
  716. if (shift)
  717. ret = 1 << (shift - PAGE_SHIFT);
  718. kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0,
  719. gpa, shift);
  720. kvmppc_radix_tlbie_page(kvm, gpa, shift);
  721. }
  722. return ret;
  723. }
  724. long kvmppc_hv_get_dirty_log_radix(struct kvm *kvm,
  725. struct kvm_memory_slot *memslot, unsigned long *map)
  726. {
  727. unsigned long i, j;
  728. int npages;
  729. for (i = 0; i < memslot->npages; i = j) {
  730. npages = kvm_radix_test_clear_dirty(kvm, memslot, i);
  731. /*
  732. * Note that if npages > 0 then i must be a multiple of npages,
  733. * since huge pages are only used to back the guest at guest
  734. * real addresses that are a multiple of their size.
  735. * Since we have at most one PTE covering any given guest
  736. * real address, if npages > 1 we can skip to i + npages.
  737. */
  738. j = i + 1;
  739. if (npages) {
  740. set_dirty_bits(map, i, npages);
  741. j = i + npages;
  742. }
  743. }
  744. return 0;
  745. }
  746. static void add_rmmu_ap_encoding(struct kvm_ppc_rmmu_info *info,
  747. int psize, int *indexp)
  748. {
  749. if (!mmu_psize_defs[psize].shift)
  750. return;
  751. info->ap_encodings[*indexp] = mmu_psize_defs[psize].shift |
  752. (mmu_psize_defs[psize].ap << 29);
  753. ++(*indexp);
  754. }
  755. int kvmhv_get_rmmu_info(struct kvm *kvm, struct kvm_ppc_rmmu_info *info)
  756. {
  757. int i;
  758. if (!radix_enabled())
  759. return -EINVAL;
  760. memset(info, 0, sizeof(*info));
  761. /* 4k page size */
  762. info->geometries[0].page_shift = 12;
  763. info->geometries[0].level_bits[0] = 9;
  764. for (i = 1; i < 4; ++i)
  765. info->geometries[0].level_bits[i] = p9_supported_radix_bits[i];
  766. /* 64k page size */
  767. info->geometries[1].page_shift = 16;
  768. for (i = 0; i < 4; ++i)
  769. info->geometries[1].level_bits[i] = p9_supported_radix_bits[i];
  770. i = 0;
  771. add_rmmu_ap_encoding(info, MMU_PAGE_4K, &i);
  772. add_rmmu_ap_encoding(info, MMU_PAGE_64K, &i);
  773. add_rmmu_ap_encoding(info, MMU_PAGE_2M, &i);
  774. add_rmmu_ap_encoding(info, MMU_PAGE_1G, &i);
  775. return 0;
  776. }
  777. int kvmppc_init_vm_radix(struct kvm *kvm)
  778. {
  779. kvm->arch.pgtable = pgd_alloc(kvm->mm);
  780. if (!kvm->arch.pgtable)
  781. return -ENOMEM;
  782. return 0;
  783. }
  784. static void pte_ctor(void *addr)
  785. {
  786. memset(addr, 0, RADIX_PTE_TABLE_SIZE);
  787. }
  788. static void pmd_ctor(void *addr)
  789. {
  790. memset(addr, 0, RADIX_PMD_TABLE_SIZE);
  791. }
  792. int kvmppc_radix_init(void)
  793. {
  794. unsigned long size = sizeof(void *) << RADIX_PTE_INDEX_SIZE;
  795. kvm_pte_cache = kmem_cache_create("kvm-pte", size, size, 0, pte_ctor);
  796. if (!kvm_pte_cache)
  797. return -ENOMEM;
  798. size = sizeof(void *) << RADIX_PMD_INDEX_SIZE;
  799. kvm_pmd_cache = kmem_cache_create("kvm-pmd", size, size, 0, pmd_ctor);
  800. if (!kvm_pmd_cache) {
  801. kmem_cache_destroy(kvm_pte_cache);
  802. return -ENOMEM;
  803. }
  804. return 0;
  805. }
  806. void kvmppc_radix_exit(void)
  807. {
  808. kmem_cache_destroy(kvm_pte_cache);
  809. kmem_cache_destroy(kvm_pmd_cache);
  810. }