namespace.c 72 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/export.h>
  12. #include <linux/capability.h>
  13. #include <linux/mnt_namespace.h>
  14. #include <linux/user_namespace.h>
  15. #include <linux/namei.h>
  16. #include <linux/security.h>
  17. #include <linux/idr.h>
  18. #include <linux/acct.h> /* acct_auto_close_mnt */
  19. #include <linux/init.h> /* init_rootfs */
  20. #include <linux/fs_struct.h> /* get_fs_root et.al. */
  21. #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
  22. #include <linux/uaccess.h>
  23. #include <linux/proc_ns.h>
  24. #include <linux/magic.h>
  25. #include <linux/bootmem.h>
  26. #include "pnode.h"
  27. #include "internal.h"
  28. static unsigned int m_hash_mask __read_mostly;
  29. static unsigned int m_hash_shift __read_mostly;
  30. static unsigned int mp_hash_mask __read_mostly;
  31. static unsigned int mp_hash_shift __read_mostly;
  32. static __initdata unsigned long mhash_entries;
  33. static int __init set_mhash_entries(char *str)
  34. {
  35. if (!str)
  36. return 0;
  37. mhash_entries = simple_strtoul(str, &str, 0);
  38. return 1;
  39. }
  40. __setup("mhash_entries=", set_mhash_entries);
  41. static __initdata unsigned long mphash_entries;
  42. static int __init set_mphash_entries(char *str)
  43. {
  44. if (!str)
  45. return 0;
  46. mphash_entries = simple_strtoul(str, &str, 0);
  47. return 1;
  48. }
  49. __setup("mphash_entries=", set_mphash_entries);
  50. static int event;
  51. static DEFINE_IDA(mnt_id_ida);
  52. static DEFINE_IDA(mnt_group_ida);
  53. static DEFINE_SPINLOCK(mnt_id_lock);
  54. static int mnt_id_start = 0;
  55. static int mnt_group_start = 1;
  56. static struct list_head *mount_hashtable __read_mostly;
  57. static struct hlist_head *mountpoint_hashtable __read_mostly;
  58. static struct kmem_cache *mnt_cache __read_mostly;
  59. static DECLARE_RWSEM(namespace_sem);
  60. /* /sys/fs */
  61. struct kobject *fs_kobj;
  62. EXPORT_SYMBOL_GPL(fs_kobj);
  63. /*
  64. * vfsmount lock may be taken for read to prevent changes to the
  65. * vfsmount hash, ie. during mountpoint lookups or walking back
  66. * up the tree.
  67. *
  68. * It should be taken for write in all cases where the vfsmount
  69. * tree or hash is modified or when a vfsmount structure is modified.
  70. */
  71. __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  72. static inline struct list_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
  73. {
  74. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  75. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  76. tmp = tmp + (tmp >> m_hash_shift);
  77. return &mount_hashtable[tmp & m_hash_mask];
  78. }
  79. static inline struct hlist_head *mp_hash(struct dentry *dentry)
  80. {
  81. unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
  82. tmp = tmp + (tmp >> mp_hash_shift);
  83. return &mountpoint_hashtable[tmp & mp_hash_mask];
  84. }
  85. /*
  86. * allocation is serialized by namespace_sem, but we need the spinlock to
  87. * serialize with freeing.
  88. */
  89. static int mnt_alloc_id(struct mount *mnt)
  90. {
  91. int res;
  92. retry:
  93. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  94. spin_lock(&mnt_id_lock);
  95. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  96. if (!res)
  97. mnt_id_start = mnt->mnt_id + 1;
  98. spin_unlock(&mnt_id_lock);
  99. if (res == -EAGAIN)
  100. goto retry;
  101. return res;
  102. }
  103. static void mnt_free_id(struct mount *mnt)
  104. {
  105. int id = mnt->mnt_id;
  106. spin_lock(&mnt_id_lock);
  107. ida_remove(&mnt_id_ida, id);
  108. if (mnt_id_start > id)
  109. mnt_id_start = id;
  110. spin_unlock(&mnt_id_lock);
  111. }
  112. /*
  113. * Allocate a new peer group ID
  114. *
  115. * mnt_group_ida is protected by namespace_sem
  116. */
  117. static int mnt_alloc_group_id(struct mount *mnt)
  118. {
  119. int res;
  120. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  121. return -ENOMEM;
  122. res = ida_get_new_above(&mnt_group_ida,
  123. mnt_group_start,
  124. &mnt->mnt_group_id);
  125. if (!res)
  126. mnt_group_start = mnt->mnt_group_id + 1;
  127. return res;
  128. }
  129. /*
  130. * Release a peer group ID
  131. */
  132. void mnt_release_group_id(struct mount *mnt)
  133. {
  134. int id = mnt->mnt_group_id;
  135. ida_remove(&mnt_group_ida, id);
  136. if (mnt_group_start > id)
  137. mnt_group_start = id;
  138. mnt->mnt_group_id = 0;
  139. }
  140. /*
  141. * vfsmount lock must be held for read
  142. */
  143. static inline void mnt_add_count(struct mount *mnt, int n)
  144. {
  145. #ifdef CONFIG_SMP
  146. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  147. #else
  148. preempt_disable();
  149. mnt->mnt_count += n;
  150. preempt_enable();
  151. #endif
  152. }
  153. /*
  154. * vfsmount lock must be held for write
  155. */
  156. unsigned int mnt_get_count(struct mount *mnt)
  157. {
  158. #ifdef CONFIG_SMP
  159. unsigned int count = 0;
  160. int cpu;
  161. for_each_possible_cpu(cpu) {
  162. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  163. }
  164. return count;
  165. #else
  166. return mnt->mnt_count;
  167. #endif
  168. }
  169. static struct mount *alloc_vfsmnt(const char *name)
  170. {
  171. struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  172. if (mnt) {
  173. int err;
  174. err = mnt_alloc_id(mnt);
  175. if (err)
  176. goto out_free_cache;
  177. if (name) {
  178. mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
  179. if (!mnt->mnt_devname)
  180. goto out_free_id;
  181. }
  182. #ifdef CONFIG_SMP
  183. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  184. if (!mnt->mnt_pcp)
  185. goto out_free_devname;
  186. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  187. #else
  188. mnt->mnt_count = 1;
  189. mnt->mnt_writers = 0;
  190. #endif
  191. INIT_LIST_HEAD(&mnt->mnt_hash);
  192. INIT_LIST_HEAD(&mnt->mnt_child);
  193. INIT_LIST_HEAD(&mnt->mnt_mounts);
  194. INIT_LIST_HEAD(&mnt->mnt_list);
  195. INIT_LIST_HEAD(&mnt->mnt_expire);
  196. INIT_LIST_HEAD(&mnt->mnt_share);
  197. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  198. INIT_LIST_HEAD(&mnt->mnt_slave);
  199. #ifdef CONFIG_FSNOTIFY
  200. INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  201. #endif
  202. }
  203. return mnt;
  204. #ifdef CONFIG_SMP
  205. out_free_devname:
  206. kfree(mnt->mnt_devname);
  207. #endif
  208. out_free_id:
  209. mnt_free_id(mnt);
  210. out_free_cache:
  211. kmem_cache_free(mnt_cache, mnt);
  212. return NULL;
  213. }
  214. /*
  215. * Most r/o checks on a fs are for operations that take
  216. * discrete amounts of time, like a write() or unlink().
  217. * We must keep track of when those operations start
  218. * (for permission checks) and when they end, so that
  219. * we can determine when writes are able to occur to
  220. * a filesystem.
  221. */
  222. /*
  223. * __mnt_is_readonly: check whether a mount is read-only
  224. * @mnt: the mount to check for its write status
  225. *
  226. * This shouldn't be used directly ouside of the VFS.
  227. * It does not guarantee that the filesystem will stay
  228. * r/w, just that it is right *now*. This can not and
  229. * should not be used in place of IS_RDONLY(inode).
  230. * mnt_want/drop_write() will _keep_ the filesystem
  231. * r/w.
  232. */
  233. int __mnt_is_readonly(struct vfsmount *mnt)
  234. {
  235. if (mnt->mnt_flags & MNT_READONLY)
  236. return 1;
  237. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  238. return 1;
  239. return 0;
  240. }
  241. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  242. static inline void mnt_inc_writers(struct mount *mnt)
  243. {
  244. #ifdef CONFIG_SMP
  245. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  246. #else
  247. mnt->mnt_writers++;
  248. #endif
  249. }
  250. static inline void mnt_dec_writers(struct mount *mnt)
  251. {
  252. #ifdef CONFIG_SMP
  253. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  254. #else
  255. mnt->mnt_writers--;
  256. #endif
  257. }
  258. static unsigned int mnt_get_writers(struct mount *mnt)
  259. {
  260. #ifdef CONFIG_SMP
  261. unsigned int count = 0;
  262. int cpu;
  263. for_each_possible_cpu(cpu) {
  264. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  265. }
  266. return count;
  267. #else
  268. return mnt->mnt_writers;
  269. #endif
  270. }
  271. static int mnt_is_readonly(struct vfsmount *mnt)
  272. {
  273. if (mnt->mnt_sb->s_readonly_remount)
  274. return 1;
  275. /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
  276. smp_rmb();
  277. return __mnt_is_readonly(mnt);
  278. }
  279. /*
  280. * Most r/o & frozen checks on a fs are for operations that take discrete
  281. * amounts of time, like a write() or unlink(). We must keep track of when
  282. * those operations start (for permission checks) and when they end, so that we
  283. * can determine when writes are able to occur to a filesystem.
  284. */
  285. /**
  286. * __mnt_want_write - get write access to a mount without freeze protection
  287. * @m: the mount on which to take a write
  288. *
  289. * This tells the low-level filesystem that a write is about to be performed to
  290. * it, and makes sure that writes are allowed (mnt it read-write) before
  291. * returning success. This operation does not protect against filesystem being
  292. * frozen. When the write operation is finished, __mnt_drop_write() must be
  293. * called. This is effectively a refcount.
  294. */
  295. int __mnt_want_write(struct vfsmount *m)
  296. {
  297. struct mount *mnt = real_mount(m);
  298. int ret = 0;
  299. preempt_disable();
  300. mnt_inc_writers(mnt);
  301. /*
  302. * The store to mnt_inc_writers must be visible before we pass
  303. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  304. * incremented count after it has set MNT_WRITE_HOLD.
  305. */
  306. smp_mb();
  307. while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
  308. cpu_relax();
  309. /*
  310. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  311. * be set to match its requirements. So we must not load that until
  312. * MNT_WRITE_HOLD is cleared.
  313. */
  314. smp_rmb();
  315. if (mnt_is_readonly(m)) {
  316. mnt_dec_writers(mnt);
  317. ret = -EROFS;
  318. }
  319. preempt_enable();
  320. return ret;
  321. }
  322. /**
  323. * mnt_want_write - get write access to a mount
  324. * @m: the mount on which to take a write
  325. *
  326. * This tells the low-level filesystem that a write is about to be performed to
  327. * it, and makes sure that writes are allowed (mount is read-write, filesystem
  328. * is not frozen) before returning success. When the write operation is
  329. * finished, mnt_drop_write() must be called. This is effectively a refcount.
  330. */
  331. int mnt_want_write(struct vfsmount *m)
  332. {
  333. int ret;
  334. sb_start_write(m->mnt_sb);
  335. ret = __mnt_want_write(m);
  336. if (ret)
  337. sb_end_write(m->mnt_sb);
  338. return ret;
  339. }
  340. EXPORT_SYMBOL_GPL(mnt_want_write);
  341. /**
  342. * mnt_clone_write - get write access to a mount
  343. * @mnt: the mount on which to take a write
  344. *
  345. * This is effectively like mnt_want_write, except
  346. * it must only be used to take an extra write reference
  347. * on a mountpoint that we already know has a write reference
  348. * on it. This allows some optimisation.
  349. *
  350. * After finished, mnt_drop_write must be called as usual to
  351. * drop the reference.
  352. */
  353. int mnt_clone_write(struct vfsmount *mnt)
  354. {
  355. /* superblock may be r/o */
  356. if (__mnt_is_readonly(mnt))
  357. return -EROFS;
  358. preempt_disable();
  359. mnt_inc_writers(real_mount(mnt));
  360. preempt_enable();
  361. return 0;
  362. }
  363. EXPORT_SYMBOL_GPL(mnt_clone_write);
  364. /**
  365. * __mnt_want_write_file - get write access to a file's mount
  366. * @file: the file who's mount on which to take a write
  367. *
  368. * This is like __mnt_want_write, but it takes a file and can
  369. * do some optimisations if the file is open for write already
  370. */
  371. int __mnt_want_write_file(struct file *file)
  372. {
  373. struct inode *inode = file_inode(file);
  374. if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
  375. return __mnt_want_write(file->f_path.mnt);
  376. else
  377. return mnt_clone_write(file->f_path.mnt);
  378. }
  379. /**
  380. * mnt_want_write_file - get write access to a file's mount
  381. * @file: the file who's mount on which to take a write
  382. *
  383. * This is like mnt_want_write, but it takes a file and can
  384. * do some optimisations if the file is open for write already
  385. */
  386. int mnt_want_write_file(struct file *file)
  387. {
  388. int ret;
  389. sb_start_write(file->f_path.mnt->mnt_sb);
  390. ret = __mnt_want_write_file(file);
  391. if (ret)
  392. sb_end_write(file->f_path.mnt->mnt_sb);
  393. return ret;
  394. }
  395. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  396. /**
  397. * __mnt_drop_write - give up write access to a mount
  398. * @mnt: the mount on which to give up write access
  399. *
  400. * Tells the low-level filesystem that we are done
  401. * performing writes to it. Must be matched with
  402. * __mnt_want_write() call above.
  403. */
  404. void __mnt_drop_write(struct vfsmount *mnt)
  405. {
  406. preempt_disable();
  407. mnt_dec_writers(real_mount(mnt));
  408. preempt_enable();
  409. }
  410. /**
  411. * mnt_drop_write - give up write access to a mount
  412. * @mnt: the mount on which to give up write access
  413. *
  414. * Tells the low-level filesystem that we are done performing writes to it and
  415. * also allows filesystem to be frozen again. Must be matched with
  416. * mnt_want_write() call above.
  417. */
  418. void mnt_drop_write(struct vfsmount *mnt)
  419. {
  420. __mnt_drop_write(mnt);
  421. sb_end_write(mnt->mnt_sb);
  422. }
  423. EXPORT_SYMBOL_GPL(mnt_drop_write);
  424. void __mnt_drop_write_file(struct file *file)
  425. {
  426. __mnt_drop_write(file->f_path.mnt);
  427. }
  428. void mnt_drop_write_file(struct file *file)
  429. {
  430. mnt_drop_write(file->f_path.mnt);
  431. }
  432. EXPORT_SYMBOL(mnt_drop_write_file);
  433. static int mnt_make_readonly(struct mount *mnt)
  434. {
  435. int ret = 0;
  436. lock_mount_hash();
  437. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  438. /*
  439. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  440. * should be visible before we do.
  441. */
  442. smp_mb();
  443. /*
  444. * With writers on hold, if this value is zero, then there are
  445. * definitely no active writers (although held writers may subsequently
  446. * increment the count, they'll have to wait, and decrement it after
  447. * seeing MNT_READONLY).
  448. *
  449. * It is OK to have counter incremented on one CPU and decremented on
  450. * another: the sum will add up correctly. The danger would be when we
  451. * sum up each counter, if we read a counter before it is incremented,
  452. * but then read another CPU's count which it has been subsequently
  453. * decremented from -- we would see more decrements than we should.
  454. * MNT_WRITE_HOLD protects against this scenario, because
  455. * mnt_want_write first increments count, then smp_mb, then spins on
  456. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  457. * we're counting up here.
  458. */
  459. if (mnt_get_writers(mnt) > 0)
  460. ret = -EBUSY;
  461. else
  462. mnt->mnt.mnt_flags |= MNT_READONLY;
  463. /*
  464. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  465. * that become unheld will see MNT_READONLY.
  466. */
  467. smp_wmb();
  468. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  469. unlock_mount_hash();
  470. return ret;
  471. }
  472. static void __mnt_unmake_readonly(struct mount *mnt)
  473. {
  474. lock_mount_hash();
  475. mnt->mnt.mnt_flags &= ~MNT_READONLY;
  476. unlock_mount_hash();
  477. }
  478. int sb_prepare_remount_readonly(struct super_block *sb)
  479. {
  480. struct mount *mnt;
  481. int err = 0;
  482. /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
  483. if (atomic_long_read(&sb->s_remove_count))
  484. return -EBUSY;
  485. lock_mount_hash();
  486. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  487. if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
  488. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  489. smp_mb();
  490. if (mnt_get_writers(mnt) > 0) {
  491. err = -EBUSY;
  492. break;
  493. }
  494. }
  495. }
  496. if (!err && atomic_long_read(&sb->s_remove_count))
  497. err = -EBUSY;
  498. if (!err) {
  499. sb->s_readonly_remount = 1;
  500. smp_wmb();
  501. }
  502. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  503. if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  504. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  505. }
  506. unlock_mount_hash();
  507. return err;
  508. }
  509. static void free_vfsmnt(struct mount *mnt)
  510. {
  511. kfree(mnt->mnt_devname);
  512. mnt_free_id(mnt);
  513. #ifdef CONFIG_SMP
  514. free_percpu(mnt->mnt_pcp);
  515. #endif
  516. kmem_cache_free(mnt_cache, mnt);
  517. }
  518. /* call under rcu_read_lock */
  519. bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
  520. {
  521. struct mount *mnt;
  522. if (read_seqretry(&mount_lock, seq))
  523. return false;
  524. if (bastard == NULL)
  525. return true;
  526. mnt = real_mount(bastard);
  527. mnt_add_count(mnt, 1);
  528. if (likely(!read_seqretry(&mount_lock, seq)))
  529. return true;
  530. if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
  531. mnt_add_count(mnt, -1);
  532. return false;
  533. }
  534. rcu_read_unlock();
  535. mntput(bastard);
  536. rcu_read_lock();
  537. return false;
  538. }
  539. /*
  540. * find the first mount at @dentry on vfsmount @mnt.
  541. * call under rcu_read_lock()
  542. */
  543. struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
  544. {
  545. struct list_head *head = m_hash(mnt, dentry);
  546. struct mount *p;
  547. list_for_each_entry_rcu(p, head, mnt_hash)
  548. if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
  549. return p;
  550. return NULL;
  551. }
  552. /*
  553. * find the last mount at @dentry on vfsmount @mnt.
  554. * mount_lock must be held.
  555. */
  556. struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
  557. {
  558. struct list_head *head = m_hash(mnt, dentry);
  559. struct mount *p;
  560. list_for_each_entry_reverse(p, head, mnt_hash)
  561. if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
  562. return p;
  563. return NULL;
  564. }
  565. /*
  566. * lookup_mnt - Return the first child mount mounted at path
  567. *
  568. * "First" means first mounted chronologically. If you create the
  569. * following mounts:
  570. *
  571. * mount /dev/sda1 /mnt
  572. * mount /dev/sda2 /mnt
  573. * mount /dev/sda3 /mnt
  574. *
  575. * Then lookup_mnt() on the base /mnt dentry in the root mount will
  576. * return successively the root dentry and vfsmount of /dev/sda1, then
  577. * /dev/sda2, then /dev/sda3, then NULL.
  578. *
  579. * lookup_mnt takes a reference to the found vfsmount.
  580. */
  581. struct vfsmount *lookup_mnt(struct path *path)
  582. {
  583. struct mount *child_mnt;
  584. struct vfsmount *m;
  585. unsigned seq;
  586. rcu_read_lock();
  587. do {
  588. seq = read_seqbegin(&mount_lock);
  589. child_mnt = __lookup_mnt(path->mnt, path->dentry);
  590. m = child_mnt ? &child_mnt->mnt : NULL;
  591. } while (!legitimize_mnt(m, seq));
  592. rcu_read_unlock();
  593. return m;
  594. }
  595. static struct mountpoint *new_mountpoint(struct dentry *dentry)
  596. {
  597. struct hlist_head *chain = mp_hash(dentry);
  598. struct mountpoint *mp;
  599. int ret;
  600. hlist_for_each_entry(mp, chain, m_hash) {
  601. if (mp->m_dentry == dentry) {
  602. /* might be worth a WARN_ON() */
  603. if (d_unlinked(dentry))
  604. return ERR_PTR(-ENOENT);
  605. mp->m_count++;
  606. return mp;
  607. }
  608. }
  609. mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
  610. if (!mp)
  611. return ERR_PTR(-ENOMEM);
  612. ret = d_set_mounted(dentry);
  613. if (ret) {
  614. kfree(mp);
  615. return ERR_PTR(ret);
  616. }
  617. mp->m_dentry = dentry;
  618. mp->m_count = 1;
  619. hlist_add_head(&mp->m_hash, chain);
  620. return mp;
  621. }
  622. static void put_mountpoint(struct mountpoint *mp)
  623. {
  624. if (!--mp->m_count) {
  625. struct dentry *dentry = mp->m_dentry;
  626. spin_lock(&dentry->d_lock);
  627. dentry->d_flags &= ~DCACHE_MOUNTED;
  628. spin_unlock(&dentry->d_lock);
  629. hlist_del(&mp->m_hash);
  630. kfree(mp);
  631. }
  632. }
  633. static inline int check_mnt(struct mount *mnt)
  634. {
  635. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  636. }
  637. /*
  638. * vfsmount lock must be held for write
  639. */
  640. static void touch_mnt_namespace(struct mnt_namespace *ns)
  641. {
  642. if (ns) {
  643. ns->event = ++event;
  644. wake_up_interruptible(&ns->poll);
  645. }
  646. }
  647. /*
  648. * vfsmount lock must be held for write
  649. */
  650. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  651. {
  652. if (ns && ns->event != event) {
  653. ns->event = event;
  654. wake_up_interruptible(&ns->poll);
  655. }
  656. }
  657. /*
  658. * vfsmount lock must be held for write
  659. */
  660. static void detach_mnt(struct mount *mnt, struct path *old_path)
  661. {
  662. old_path->dentry = mnt->mnt_mountpoint;
  663. old_path->mnt = &mnt->mnt_parent->mnt;
  664. mnt->mnt_parent = mnt;
  665. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  666. list_del_init(&mnt->mnt_child);
  667. list_del_init(&mnt->mnt_hash);
  668. put_mountpoint(mnt->mnt_mp);
  669. mnt->mnt_mp = NULL;
  670. }
  671. /*
  672. * vfsmount lock must be held for write
  673. */
  674. void mnt_set_mountpoint(struct mount *mnt,
  675. struct mountpoint *mp,
  676. struct mount *child_mnt)
  677. {
  678. mp->m_count++;
  679. mnt_add_count(mnt, 1); /* essentially, that's mntget */
  680. child_mnt->mnt_mountpoint = dget(mp->m_dentry);
  681. child_mnt->mnt_parent = mnt;
  682. child_mnt->mnt_mp = mp;
  683. }
  684. /*
  685. * vfsmount lock must be held for write
  686. */
  687. static void attach_mnt(struct mount *mnt,
  688. struct mount *parent,
  689. struct mountpoint *mp)
  690. {
  691. mnt_set_mountpoint(parent, mp, mnt);
  692. list_add_tail(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
  693. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  694. }
  695. /*
  696. * vfsmount lock must be held for write
  697. */
  698. static void commit_tree(struct mount *mnt)
  699. {
  700. struct mount *parent = mnt->mnt_parent;
  701. struct mount *m;
  702. LIST_HEAD(head);
  703. struct mnt_namespace *n = parent->mnt_ns;
  704. BUG_ON(parent == mnt);
  705. list_add_tail(&head, &mnt->mnt_list);
  706. list_for_each_entry(m, &head, mnt_list)
  707. m->mnt_ns = n;
  708. list_splice(&head, n->list.prev);
  709. list_add_tail(&mnt->mnt_hash,
  710. m_hash(&parent->mnt, mnt->mnt_mountpoint));
  711. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  712. touch_mnt_namespace(n);
  713. }
  714. static struct mount *next_mnt(struct mount *p, struct mount *root)
  715. {
  716. struct list_head *next = p->mnt_mounts.next;
  717. if (next == &p->mnt_mounts) {
  718. while (1) {
  719. if (p == root)
  720. return NULL;
  721. next = p->mnt_child.next;
  722. if (next != &p->mnt_parent->mnt_mounts)
  723. break;
  724. p = p->mnt_parent;
  725. }
  726. }
  727. return list_entry(next, struct mount, mnt_child);
  728. }
  729. static struct mount *skip_mnt_tree(struct mount *p)
  730. {
  731. struct list_head *prev = p->mnt_mounts.prev;
  732. while (prev != &p->mnt_mounts) {
  733. p = list_entry(prev, struct mount, mnt_child);
  734. prev = p->mnt_mounts.prev;
  735. }
  736. return p;
  737. }
  738. struct vfsmount *
  739. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  740. {
  741. struct mount *mnt;
  742. struct dentry *root;
  743. if (!type)
  744. return ERR_PTR(-ENODEV);
  745. mnt = alloc_vfsmnt(name);
  746. if (!mnt)
  747. return ERR_PTR(-ENOMEM);
  748. if (flags & MS_KERNMOUNT)
  749. mnt->mnt.mnt_flags = MNT_INTERNAL;
  750. root = mount_fs(type, flags, name, data);
  751. if (IS_ERR(root)) {
  752. free_vfsmnt(mnt);
  753. return ERR_CAST(root);
  754. }
  755. mnt->mnt.mnt_root = root;
  756. mnt->mnt.mnt_sb = root->d_sb;
  757. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  758. mnt->mnt_parent = mnt;
  759. lock_mount_hash();
  760. list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
  761. unlock_mount_hash();
  762. return &mnt->mnt;
  763. }
  764. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  765. static struct mount *clone_mnt(struct mount *old, struct dentry *root,
  766. int flag)
  767. {
  768. struct super_block *sb = old->mnt.mnt_sb;
  769. struct mount *mnt;
  770. int err;
  771. mnt = alloc_vfsmnt(old->mnt_devname);
  772. if (!mnt)
  773. return ERR_PTR(-ENOMEM);
  774. if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
  775. mnt->mnt_group_id = 0; /* not a peer of original */
  776. else
  777. mnt->mnt_group_id = old->mnt_group_id;
  778. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  779. err = mnt_alloc_group_id(mnt);
  780. if (err)
  781. goto out_free;
  782. }
  783. mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
  784. /* Don't allow unprivileged users to change mount flags */
  785. if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY))
  786. mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
  787. /* Don't allow unprivileged users to reveal what is under a mount */
  788. if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
  789. mnt->mnt.mnt_flags |= MNT_LOCKED;
  790. atomic_inc(&sb->s_active);
  791. mnt->mnt.mnt_sb = sb;
  792. mnt->mnt.mnt_root = dget(root);
  793. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  794. mnt->mnt_parent = mnt;
  795. lock_mount_hash();
  796. list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
  797. unlock_mount_hash();
  798. if ((flag & CL_SLAVE) ||
  799. ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
  800. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  801. mnt->mnt_master = old;
  802. CLEAR_MNT_SHARED(mnt);
  803. } else if (!(flag & CL_PRIVATE)) {
  804. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  805. list_add(&mnt->mnt_share, &old->mnt_share);
  806. if (IS_MNT_SLAVE(old))
  807. list_add(&mnt->mnt_slave, &old->mnt_slave);
  808. mnt->mnt_master = old->mnt_master;
  809. }
  810. if (flag & CL_MAKE_SHARED)
  811. set_mnt_shared(mnt);
  812. /* stick the duplicate mount on the same expiry list
  813. * as the original if that was on one */
  814. if (flag & CL_EXPIRE) {
  815. if (!list_empty(&old->mnt_expire))
  816. list_add(&mnt->mnt_expire, &old->mnt_expire);
  817. }
  818. return mnt;
  819. out_free:
  820. free_vfsmnt(mnt);
  821. return ERR_PTR(err);
  822. }
  823. static void delayed_free(struct rcu_head *head)
  824. {
  825. struct mount *mnt = container_of(head, struct mount, mnt_rcu);
  826. kfree(mnt->mnt_devname);
  827. #ifdef CONFIG_SMP
  828. free_percpu(mnt->mnt_pcp);
  829. #endif
  830. kmem_cache_free(mnt_cache, mnt);
  831. }
  832. static void mntput_no_expire(struct mount *mnt)
  833. {
  834. put_again:
  835. rcu_read_lock();
  836. mnt_add_count(mnt, -1);
  837. if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
  838. rcu_read_unlock();
  839. return;
  840. }
  841. lock_mount_hash();
  842. if (mnt_get_count(mnt)) {
  843. rcu_read_unlock();
  844. unlock_mount_hash();
  845. return;
  846. }
  847. if (unlikely(mnt->mnt_pinned)) {
  848. mnt_add_count(mnt, mnt->mnt_pinned + 1);
  849. mnt->mnt_pinned = 0;
  850. rcu_read_unlock();
  851. unlock_mount_hash();
  852. acct_auto_close_mnt(&mnt->mnt);
  853. goto put_again;
  854. }
  855. if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
  856. rcu_read_unlock();
  857. unlock_mount_hash();
  858. return;
  859. }
  860. mnt->mnt.mnt_flags |= MNT_DOOMED;
  861. rcu_read_unlock();
  862. list_del(&mnt->mnt_instance);
  863. unlock_mount_hash();
  864. /*
  865. * This probably indicates that somebody messed
  866. * up a mnt_want/drop_write() pair. If this
  867. * happens, the filesystem was probably unable
  868. * to make r/w->r/o transitions.
  869. */
  870. /*
  871. * The locking used to deal with mnt_count decrement provides barriers,
  872. * so mnt_get_writers() below is safe.
  873. */
  874. WARN_ON(mnt_get_writers(mnt));
  875. fsnotify_vfsmount_delete(&mnt->mnt);
  876. dput(mnt->mnt.mnt_root);
  877. deactivate_super(mnt->mnt.mnt_sb);
  878. mnt_free_id(mnt);
  879. call_rcu(&mnt->mnt_rcu, delayed_free);
  880. }
  881. void mntput(struct vfsmount *mnt)
  882. {
  883. if (mnt) {
  884. struct mount *m = real_mount(mnt);
  885. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  886. if (unlikely(m->mnt_expiry_mark))
  887. m->mnt_expiry_mark = 0;
  888. mntput_no_expire(m);
  889. }
  890. }
  891. EXPORT_SYMBOL(mntput);
  892. struct vfsmount *mntget(struct vfsmount *mnt)
  893. {
  894. if (mnt)
  895. mnt_add_count(real_mount(mnt), 1);
  896. return mnt;
  897. }
  898. EXPORT_SYMBOL(mntget);
  899. void mnt_pin(struct vfsmount *mnt)
  900. {
  901. lock_mount_hash();
  902. real_mount(mnt)->mnt_pinned++;
  903. unlock_mount_hash();
  904. }
  905. EXPORT_SYMBOL(mnt_pin);
  906. void mnt_unpin(struct vfsmount *m)
  907. {
  908. struct mount *mnt = real_mount(m);
  909. lock_mount_hash();
  910. if (mnt->mnt_pinned) {
  911. mnt_add_count(mnt, 1);
  912. mnt->mnt_pinned--;
  913. }
  914. unlock_mount_hash();
  915. }
  916. EXPORT_SYMBOL(mnt_unpin);
  917. static inline void mangle(struct seq_file *m, const char *s)
  918. {
  919. seq_escape(m, s, " \t\n\\");
  920. }
  921. /*
  922. * Simple .show_options callback for filesystems which don't want to
  923. * implement more complex mount option showing.
  924. *
  925. * See also save_mount_options().
  926. */
  927. int generic_show_options(struct seq_file *m, struct dentry *root)
  928. {
  929. const char *options;
  930. rcu_read_lock();
  931. options = rcu_dereference(root->d_sb->s_options);
  932. if (options != NULL && options[0]) {
  933. seq_putc(m, ',');
  934. mangle(m, options);
  935. }
  936. rcu_read_unlock();
  937. return 0;
  938. }
  939. EXPORT_SYMBOL(generic_show_options);
  940. /*
  941. * If filesystem uses generic_show_options(), this function should be
  942. * called from the fill_super() callback.
  943. *
  944. * The .remount_fs callback usually needs to be handled in a special
  945. * way, to make sure, that previous options are not overwritten if the
  946. * remount fails.
  947. *
  948. * Also note, that if the filesystem's .remount_fs function doesn't
  949. * reset all options to their default value, but changes only newly
  950. * given options, then the displayed options will not reflect reality
  951. * any more.
  952. */
  953. void save_mount_options(struct super_block *sb, char *options)
  954. {
  955. BUG_ON(sb->s_options);
  956. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  957. }
  958. EXPORT_SYMBOL(save_mount_options);
  959. void replace_mount_options(struct super_block *sb, char *options)
  960. {
  961. char *old = sb->s_options;
  962. rcu_assign_pointer(sb->s_options, options);
  963. if (old) {
  964. synchronize_rcu();
  965. kfree(old);
  966. }
  967. }
  968. EXPORT_SYMBOL(replace_mount_options);
  969. #ifdef CONFIG_PROC_FS
  970. /* iterator; we want it to have access to namespace_sem, thus here... */
  971. static void *m_start(struct seq_file *m, loff_t *pos)
  972. {
  973. struct proc_mounts *p = proc_mounts(m);
  974. down_read(&namespace_sem);
  975. return seq_list_start(&p->ns->list, *pos);
  976. }
  977. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  978. {
  979. struct proc_mounts *p = proc_mounts(m);
  980. return seq_list_next(v, &p->ns->list, pos);
  981. }
  982. static void m_stop(struct seq_file *m, void *v)
  983. {
  984. up_read(&namespace_sem);
  985. }
  986. static int m_show(struct seq_file *m, void *v)
  987. {
  988. struct proc_mounts *p = proc_mounts(m);
  989. struct mount *r = list_entry(v, struct mount, mnt_list);
  990. return p->show(m, &r->mnt);
  991. }
  992. const struct seq_operations mounts_op = {
  993. .start = m_start,
  994. .next = m_next,
  995. .stop = m_stop,
  996. .show = m_show,
  997. };
  998. #endif /* CONFIG_PROC_FS */
  999. /**
  1000. * may_umount_tree - check if a mount tree is busy
  1001. * @mnt: root of mount tree
  1002. *
  1003. * This is called to check if a tree of mounts has any
  1004. * open files, pwds, chroots or sub mounts that are
  1005. * busy.
  1006. */
  1007. int may_umount_tree(struct vfsmount *m)
  1008. {
  1009. struct mount *mnt = real_mount(m);
  1010. int actual_refs = 0;
  1011. int minimum_refs = 0;
  1012. struct mount *p;
  1013. BUG_ON(!m);
  1014. /* write lock needed for mnt_get_count */
  1015. lock_mount_hash();
  1016. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1017. actual_refs += mnt_get_count(p);
  1018. minimum_refs += 2;
  1019. }
  1020. unlock_mount_hash();
  1021. if (actual_refs > minimum_refs)
  1022. return 0;
  1023. return 1;
  1024. }
  1025. EXPORT_SYMBOL(may_umount_tree);
  1026. /**
  1027. * may_umount - check if a mount point is busy
  1028. * @mnt: root of mount
  1029. *
  1030. * This is called to check if a mount point has any
  1031. * open files, pwds, chroots or sub mounts. If the
  1032. * mount has sub mounts this will return busy
  1033. * regardless of whether the sub mounts are busy.
  1034. *
  1035. * Doesn't take quota and stuff into account. IOW, in some cases it will
  1036. * give false negatives. The main reason why it's here is that we need
  1037. * a non-destructive way to look for easily umountable filesystems.
  1038. */
  1039. int may_umount(struct vfsmount *mnt)
  1040. {
  1041. int ret = 1;
  1042. down_read(&namespace_sem);
  1043. lock_mount_hash();
  1044. if (propagate_mount_busy(real_mount(mnt), 2))
  1045. ret = 0;
  1046. unlock_mount_hash();
  1047. up_read(&namespace_sem);
  1048. return ret;
  1049. }
  1050. EXPORT_SYMBOL(may_umount);
  1051. static LIST_HEAD(unmounted); /* protected by namespace_sem */
  1052. static void namespace_unlock(void)
  1053. {
  1054. struct mount *mnt;
  1055. LIST_HEAD(head);
  1056. if (likely(list_empty(&unmounted))) {
  1057. up_write(&namespace_sem);
  1058. return;
  1059. }
  1060. list_splice_init(&unmounted, &head);
  1061. up_write(&namespace_sem);
  1062. synchronize_rcu();
  1063. while (!list_empty(&head)) {
  1064. mnt = list_first_entry(&head, struct mount, mnt_hash);
  1065. list_del_init(&mnt->mnt_hash);
  1066. if (mnt->mnt_ex_mountpoint.mnt)
  1067. path_put(&mnt->mnt_ex_mountpoint);
  1068. mntput(&mnt->mnt);
  1069. }
  1070. }
  1071. static inline void namespace_lock(void)
  1072. {
  1073. down_write(&namespace_sem);
  1074. }
  1075. /*
  1076. * mount_lock must be held
  1077. * namespace_sem must be held for write
  1078. * how = 0 => just this tree, don't propagate
  1079. * how = 1 => propagate; we know that nobody else has reference to any victims
  1080. * how = 2 => lazy umount
  1081. */
  1082. void umount_tree(struct mount *mnt, int how)
  1083. {
  1084. LIST_HEAD(tmp_list);
  1085. struct mount *p;
  1086. for (p = mnt; p; p = next_mnt(p, mnt))
  1087. list_move(&p->mnt_hash, &tmp_list);
  1088. if (how)
  1089. propagate_umount(&tmp_list);
  1090. list_for_each_entry(p, &tmp_list, mnt_hash) {
  1091. list_del_init(&p->mnt_expire);
  1092. list_del_init(&p->mnt_list);
  1093. __touch_mnt_namespace(p->mnt_ns);
  1094. p->mnt_ns = NULL;
  1095. if (how < 2)
  1096. p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
  1097. list_del_init(&p->mnt_child);
  1098. if (mnt_has_parent(p)) {
  1099. put_mountpoint(p->mnt_mp);
  1100. /* move the reference to mountpoint into ->mnt_ex_mountpoint */
  1101. p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
  1102. p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
  1103. p->mnt_mountpoint = p->mnt.mnt_root;
  1104. p->mnt_parent = p;
  1105. p->mnt_mp = NULL;
  1106. }
  1107. change_mnt_propagation(p, MS_PRIVATE);
  1108. }
  1109. list_splice(&tmp_list, &unmounted);
  1110. }
  1111. static void shrink_submounts(struct mount *mnt);
  1112. static int do_umount(struct mount *mnt, int flags)
  1113. {
  1114. struct super_block *sb = mnt->mnt.mnt_sb;
  1115. int retval;
  1116. retval = security_sb_umount(&mnt->mnt, flags);
  1117. if (retval)
  1118. return retval;
  1119. /*
  1120. * Allow userspace to request a mountpoint be expired rather than
  1121. * unmounting unconditionally. Unmount only happens if:
  1122. * (1) the mark is already set (the mark is cleared by mntput())
  1123. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1124. */
  1125. if (flags & MNT_EXPIRE) {
  1126. if (&mnt->mnt == current->fs->root.mnt ||
  1127. flags & (MNT_FORCE | MNT_DETACH))
  1128. return -EINVAL;
  1129. /*
  1130. * probably don't strictly need the lock here if we examined
  1131. * all race cases, but it's a slowpath.
  1132. */
  1133. lock_mount_hash();
  1134. if (mnt_get_count(mnt) != 2) {
  1135. unlock_mount_hash();
  1136. return -EBUSY;
  1137. }
  1138. unlock_mount_hash();
  1139. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1140. return -EAGAIN;
  1141. }
  1142. /*
  1143. * If we may have to abort operations to get out of this
  1144. * mount, and they will themselves hold resources we must
  1145. * allow the fs to do things. In the Unix tradition of
  1146. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1147. * might fail to complete on the first run through as other tasks
  1148. * must return, and the like. Thats for the mount program to worry
  1149. * about for the moment.
  1150. */
  1151. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1152. sb->s_op->umount_begin(sb);
  1153. }
  1154. /*
  1155. * No sense to grab the lock for this test, but test itself looks
  1156. * somewhat bogus. Suggestions for better replacement?
  1157. * Ho-hum... In principle, we might treat that as umount + switch
  1158. * to rootfs. GC would eventually take care of the old vfsmount.
  1159. * Actually it makes sense, especially if rootfs would contain a
  1160. * /reboot - static binary that would close all descriptors and
  1161. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1162. */
  1163. if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1164. /*
  1165. * Special case for "unmounting" root ...
  1166. * we just try to remount it readonly.
  1167. */
  1168. down_write(&sb->s_umount);
  1169. if (!(sb->s_flags & MS_RDONLY))
  1170. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1171. up_write(&sb->s_umount);
  1172. return retval;
  1173. }
  1174. namespace_lock();
  1175. lock_mount_hash();
  1176. event++;
  1177. if (flags & MNT_DETACH) {
  1178. if (!list_empty(&mnt->mnt_list))
  1179. umount_tree(mnt, 2);
  1180. retval = 0;
  1181. } else {
  1182. shrink_submounts(mnt);
  1183. retval = -EBUSY;
  1184. if (!propagate_mount_busy(mnt, 2)) {
  1185. if (!list_empty(&mnt->mnt_list))
  1186. umount_tree(mnt, 1);
  1187. retval = 0;
  1188. }
  1189. }
  1190. unlock_mount_hash();
  1191. namespace_unlock();
  1192. return retval;
  1193. }
  1194. /*
  1195. * Is the caller allowed to modify his namespace?
  1196. */
  1197. static inline bool may_mount(void)
  1198. {
  1199. return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
  1200. }
  1201. /*
  1202. * Now umount can handle mount points as well as block devices.
  1203. * This is important for filesystems which use unnamed block devices.
  1204. *
  1205. * We now support a flag for forced unmount like the other 'big iron'
  1206. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1207. */
  1208. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1209. {
  1210. struct path path;
  1211. struct mount *mnt;
  1212. int retval;
  1213. int lookup_flags = 0;
  1214. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1215. return -EINVAL;
  1216. if (!may_mount())
  1217. return -EPERM;
  1218. if (!(flags & UMOUNT_NOFOLLOW))
  1219. lookup_flags |= LOOKUP_FOLLOW;
  1220. retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
  1221. if (retval)
  1222. goto out;
  1223. mnt = real_mount(path.mnt);
  1224. retval = -EINVAL;
  1225. if (path.dentry != path.mnt->mnt_root)
  1226. goto dput_and_out;
  1227. if (!check_mnt(mnt))
  1228. goto dput_and_out;
  1229. if (mnt->mnt.mnt_flags & MNT_LOCKED)
  1230. goto dput_and_out;
  1231. retval = do_umount(mnt, flags);
  1232. dput_and_out:
  1233. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1234. dput(path.dentry);
  1235. mntput_no_expire(mnt);
  1236. out:
  1237. return retval;
  1238. }
  1239. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1240. /*
  1241. * The 2.0 compatible umount. No flags.
  1242. */
  1243. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1244. {
  1245. return sys_umount(name, 0);
  1246. }
  1247. #endif
  1248. static bool is_mnt_ns_file(struct dentry *dentry)
  1249. {
  1250. /* Is this a proxy for a mount namespace? */
  1251. struct inode *inode = dentry->d_inode;
  1252. struct proc_ns *ei;
  1253. if (!proc_ns_inode(inode))
  1254. return false;
  1255. ei = get_proc_ns(inode);
  1256. if (ei->ns_ops != &mntns_operations)
  1257. return false;
  1258. return true;
  1259. }
  1260. static bool mnt_ns_loop(struct dentry *dentry)
  1261. {
  1262. /* Could bind mounting the mount namespace inode cause a
  1263. * mount namespace loop?
  1264. */
  1265. struct mnt_namespace *mnt_ns;
  1266. if (!is_mnt_ns_file(dentry))
  1267. return false;
  1268. mnt_ns = get_proc_ns(dentry->d_inode)->ns;
  1269. return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
  1270. }
  1271. struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
  1272. int flag)
  1273. {
  1274. struct mount *res, *p, *q, *r, *parent;
  1275. if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
  1276. return ERR_PTR(-EINVAL);
  1277. if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
  1278. return ERR_PTR(-EINVAL);
  1279. res = q = clone_mnt(mnt, dentry, flag);
  1280. if (IS_ERR(q))
  1281. return q;
  1282. q->mnt.mnt_flags &= ~MNT_LOCKED;
  1283. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1284. p = mnt;
  1285. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1286. struct mount *s;
  1287. if (!is_subdir(r->mnt_mountpoint, dentry))
  1288. continue;
  1289. for (s = r; s; s = next_mnt(s, r)) {
  1290. if (!(flag & CL_COPY_UNBINDABLE) &&
  1291. IS_MNT_UNBINDABLE(s)) {
  1292. s = skip_mnt_tree(s);
  1293. continue;
  1294. }
  1295. if (!(flag & CL_COPY_MNT_NS_FILE) &&
  1296. is_mnt_ns_file(s->mnt.mnt_root)) {
  1297. s = skip_mnt_tree(s);
  1298. continue;
  1299. }
  1300. while (p != s->mnt_parent) {
  1301. p = p->mnt_parent;
  1302. q = q->mnt_parent;
  1303. }
  1304. p = s;
  1305. parent = q;
  1306. q = clone_mnt(p, p->mnt.mnt_root, flag);
  1307. if (IS_ERR(q))
  1308. goto out;
  1309. lock_mount_hash();
  1310. list_add_tail(&q->mnt_list, &res->mnt_list);
  1311. attach_mnt(q, parent, p->mnt_mp);
  1312. unlock_mount_hash();
  1313. }
  1314. }
  1315. return res;
  1316. out:
  1317. if (res) {
  1318. lock_mount_hash();
  1319. umount_tree(res, 0);
  1320. unlock_mount_hash();
  1321. }
  1322. return q;
  1323. }
  1324. /* Caller should check returned pointer for errors */
  1325. struct vfsmount *collect_mounts(struct path *path)
  1326. {
  1327. struct mount *tree;
  1328. namespace_lock();
  1329. tree = copy_tree(real_mount(path->mnt), path->dentry,
  1330. CL_COPY_ALL | CL_PRIVATE);
  1331. namespace_unlock();
  1332. if (IS_ERR(tree))
  1333. return ERR_CAST(tree);
  1334. return &tree->mnt;
  1335. }
  1336. void drop_collected_mounts(struct vfsmount *mnt)
  1337. {
  1338. namespace_lock();
  1339. lock_mount_hash();
  1340. umount_tree(real_mount(mnt), 0);
  1341. unlock_mount_hash();
  1342. namespace_unlock();
  1343. }
  1344. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1345. struct vfsmount *root)
  1346. {
  1347. struct mount *mnt;
  1348. int res = f(root, arg);
  1349. if (res)
  1350. return res;
  1351. list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
  1352. res = f(&mnt->mnt, arg);
  1353. if (res)
  1354. return res;
  1355. }
  1356. return 0;
  1357. }
  1358. static void cleanup_group_ids(struct mount *mnt, struct mount *end)
  1359. {
  1360. struct mount *p;
  1361. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1362. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1363. mnt_release_group_id(p);
  1364. }
  1365. }
  1366. static int invent_group_ids(struct mount *mnt, bool recurse)
  1367. {
  1368. struct mount *p;
  1369. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1370. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1371. int err = mnt_alloc_group_id(p);
  1372. if (err) {
  1373. cleanup_group_ids(mnt, p);
  1374. return err;
  1375. }
  1376. }
  1377. }
  1378. return 0;
  1379. }
  1380. /*
  1381. * @source_mnt : mount tree to be attached
  1382. * @nd : place the mount tree @source_mnt is attached
  1383. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1384. * store the parent mount and mountpoint dentry.
  1385. * (done when source_mnt is moved)
  1386. *
  1387. * NOTE: in the table below explains the semantics when a source mount
  1388. * of a given type is attached to a destination mount of a given type.
  1389. * ---------------------------------------------------------------------------
  1390. * | BIND MOUNT OPERATION |
  1391. * |**************************************************************************
  1392. * | source-->| shared | private | slave | unbindable |
  1393. * | dest | | | | |
  1394. * | | | | | | |
  1395. * | v | | | | |
  1396. * |**************************************************************************
  1397. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1398. * | | | | | |
  1399. * |non-shared| shared (+) | private | slave (*) | invalid |
  1400. * ***************************************************************************
  1401. * A bind operation clones the source mount and mounts the clone on the
  1402. * destination mount.
  1403. *
  1404. * (++) the cloned mount is propagated to all the mounts in the propagation
  1405. * tree of the destination mount and the cloned mount is added to
  1406. * the peer group of the source mount.
  1407. * (+) the cloned mount is created under the destination mount and is marked
  1408. * as shared. The cloned mount is added to the peer group of the source
  1409. * mount.
  1410. * (+++) the mount is propagated to all the mounts in the propagation tree
  1411. * of the destination mount and the cloned mount is made slave
  1412. * of the same master as that of the source mount. The cloned mount
  1413. * is marked as 'shared and slave'.
  1414. * (*) the cloned mount is made a slave of the same master as that of the
  1415. * source mount.
  1416. *
  1417. * ---------------------------------------------------------------------------
  1418. * | MOVE MOUNT OPERATION |
  1419. * |**************************************************************************
  1420. * | source-->| shared | private | slave | unbindable |
  1421. * | dest | | | | |
  1422. * | | | | | | |
  1423. * | v | | | | |
  1424. * |**************************************************************************
  1425. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1426. * | | | | | |
  1427. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1428. * ***************************************************************************
  1429. *
  1430. * (+) the mount is moved to the destination. And is then propagated to
  1431. * all the mounts in the propagation tree of the destination mount.
  1432. * (+*) the mount is moved to the destination.
  1433. * (+++) the mount is moved to the destination and is then propagated to
  1434. * all the mounts belonging to the destination mount's propagation tree.
  1435. * the mount is marked as 'shared and slave'.
  1436. * (*) the mount continues to be a slave at the new location.
  1437. *
  1438. * if the source mount is a tree, the operations explained above is
  1439. * applied to each mount in the tree.
  1440. * Must be called without spinlocks held, since this function can sleep
  1441. * in allocations.
  1442. */
  1443. static int attach_recursive_mnt(struct mount *source_mnt,
  1444. struct mount *dest_mnt,
  1445. struct mountpoint *dest_mp,
  1446. struct path *parent_path)
  1447. {
  1448. LIST_HEAD(tree_list);
  1449. struct mount *child, *p;
  1450. int err;
  1451. if (IS_MNT_SHARED(dest_mnt)) {
  1452. err = invent_group_ids(source_mnt, true);
  1453. if (err)
  1454. goto out;
  1455. }
  1456. err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
  1457. if (err)
  1458. goto out_cleanup_ids;
  1459. lock_mount_hash();
  1460. if (IS_MNT_SHARED(dest_mnt)) {
  1461. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1462. set_mnt_shared(p);
  1463. }
  1464. if (parent_path) {
  1465. detach_mnt(source_mnt, parent_path);
  1466. attach_mnt(source_mnt, dest_mnt, dest_mp);
  1467. touch_mnt_namespace(source_mnt->mnt_ns);
  1468. } else {
  1469. mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
  1470. commit_tree(source_mnt);
  1471. }
  1472. list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
  1473. list_del_init(&child->mnt_hash);
  1474. commit_tree(child);
  1475. }
  1476. unlock_mount_hash();
  1477. return 0;
  1478. out_cleanup_ids:
  1479. if (IS_MNT_SHARED(dest_mnt))
  1480. cleanup_group_ids(source_mnt, NULL);
  1481. out:
  1482. return err;
  1483. }
  1484. static struct mountpoint *lock_mount(struct path *path)
  1485. {
  1486. struct vfsmount *mnt;
  1487. struct dentry *dentry = path->dentry;
  1488. retry:
  1489. mutex_lock(&dentry->d_inode->i_mutex);
  1490. if (unlikely(cant_mount(dentry))) {
  1491. mutex_unlock(&dentry->d_inode->i_mutex);
  1492. return ERR_PTR(-ENOENT);
  1493. }
  1494. namespace_lock();
  1495. mnt = lookup_mnt(path);
  1496. if (likely(!mnt)) {
  1497. struct mountpoint *mp = new_mountpoint(dentry);
  1498. if (IS_ERR(mp)) {
  1499. namespace_unlock();
  1500. mutex_unlock(&dentry->d_inode->i_mutex);
  1501. return mp;
  1502. }
  1503. return mp;
  1504. }
  1505. namespace_unlock();
  1506. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1507. path_put(path);
  1508. path->mnt = mnt;
  1509. dentry = path->dentry = dget(mnt->mnt_root);
  1510. goto retry;
  1511. }
  1512. static void unlock_mount(struct mountpoint *where)
  1513. {
  1514. struct dentry *dentry = where->m_dentry;
  1515. put_mountpoint(where);
  1516. namespace_unlock();
  1517. mutex_unlock(&dentry->d_inode->i_mutex);
  1518. }
  1519. static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
  1520. {
  1521. if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
  1522. return -EINVAL;
  1523. if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
  1524. S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
  1525. return -ENOTDIR;
  1526. return attach_recursive_mnt(mnt, p, mp, NULL);
  1527. }
  1528. /*
  1529. * Sanity check the flags to change_mnt_propagation.
  1530. */
  1531. static int flags_to_propagation_type(int flags)
  1532. {
  1533. int type = flags & ~(MS_REC | MS_SILENT);
  1534. /* Fail if any non-propagation flags are set */
  1535. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1536. return 0;
  1537. /* Only one propagation flag should be set */
  1538. if (!is_power_of_2(type))
  1539. return 0;
  1540. return type;
  1541. }
  1542. /*
  1543. * recursively change the type of the mountpoint.
  1544. */
  1545. static int do_change_type(struct path *path, int flag)
  1546. {
  1547. struct mount *m;
  1548. struct mount *mnt = real_mount(path->mnt);
  1549. int recurse = flag & MS_REC;
  1550. int type;
  1551. int err = 0;
  1552. if (path->dentry != path->mnt->mnt_root)
  1553. return -EINVAL;
  1554. type = flags_to_propagation_type(flag);
  1555. if (!type)
  1556. return -EINVAL;
  1557. namespace_lock();
  1558. if (type == MS_SHARED) {
  1559. err = invent_group_ids(mnt, recurse);
  1560. if (err)
  1561. goto out_unlock;
  1562. }
  1563. lock_mount_hash();
  1564. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1565. change_mnt_propagation(m, type);
  1566. unlock_mount_hash();
  1567. out_unlock:
  1568. namespace_unlock();
  1569. return err;
  1570. }
  1571. static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
  1572. {
  1573. struct mount *child;
  1574. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  1575. if (!is_subdir(child->mnt_mountpoint, dentry))
  1576. continue;
  1577. if (child->mnt.mnt_flags & MNT_LOCKED)
  1578. return true;
  1579. }
  1580. return false;
  1581. }
  1582. /*
  1583. * do loopback mount.
  1584. */
  1585. static int do_loopback(struct path *path, const char *old_name,
  1586. int recurse)
  1587. {
  1588. struct path old_path;
  1589. struct mount *mnt = NULL, *old, *parent;
  1590. struct mountpoint *mp;
  1591. int err;
  1592. if (!old_name || !*old_name)
  1593. return -EINVAL;
  1594. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1595. if (err)
  1596. return err;
  1597. err = -EINVAL;
  1598. if (mnt_ns_loop(old_path.dentry))
  1599. goto out;
  1600. mp = lock_mount(path);
  1601. err = PTR_ERR(mp);
  1602. if (IS_ERR(mp))
  1603. goto out;
  1604. old = real_mount(old_path.mnt);
  1605. parent = real_mount(path->mnt);
  1606. err = -EINVAL;
  1607. if (IS_MNT_UNBINDABLE(old))
  1608. goto out2;
  1609. if (!check_mnt(parent) || !check_mnt(old))
  1610. goto out2;
  1611. if (!recurse && has_locked_children(old, old_path.dentry))
  1612. goto out2;
  1613. if (recurse)
  1614. mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
  1615. else
  1616. mnt = clone_mnt(old, old_path.dentry, 0);
  1617. if (IS_ERR(mnt)) {
  1618. err = PTR_ERR(mnt);
  1619. goto out2;
  1620. }
  1621. mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  1622. err = graft_tree(mnt, parent, mp);
  1623. if (err) {
  1624. lock_mount_hash();
  1625. umount_tree(mnt, 0);
  1626. unlock_mount_hash();
  1627. }
  1628. out2:
  1629. unlock_mount(mp);
  1630. out:
  1631. path_put(&old_path);
  1632. return err;
  1633. }
  1634. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1635. {
  1636. int error = 0;
  1637. int readonly_request = 0;
  1638. if (ms_flags & MS_RDONLY)
  1639. readonly_request = 1;
  1640. if (readonly_request == __mnt_is_readonly(mnt))
  1641. return 0;
  1642. if (mnt->mnt_flags & MNT_LOCK_READONLY)
  1643. return -EPERM;
  1644. if (readonly_request)
  1645. error = mnt_make_readonly(real_mount(mnt));
  1646. else
  1647. __mnt_unmake_readonly(real_mount(mnt));
  1648. return error;
  1649. }
  1650. /*
  1651. * change filesystem flags. dir should be a physical root of filesystem.
  1652. * If you've mounted a non-root directory somewhere and want to do remount
  1653. * on it - tough luck.
  1654. */
  1655. static int do_remount(struct path *path, int flags, int mnt_flags,
  1656. void *data)
  1657. {
  1658. int err;
  1659. struct super_block *sb = path->mnt->mnt_sb;
  1660. struct mount *mnt = real_mount(path->mnt);
  1661. if (!check_mnt(mnt))
  1662. return -EINVAL;
  1663. if (path->dentry != path->mnt->mnt_root)
  1664. return -EINVAL;
  1665. err = security_sb_remount(sb, data);
  1666. if (err)
  1667. return err;
  1668. down_write(&sb->s_umount);
  1669. if (flags & MS_BIND)
  1670. err = change_mount_flags(path->mnt, flags);
  1671. else if (!capable(CAP_SYS_ADMIN))
  1672. err = -EPERM;
  1673. else
  1674. err = do_remount_sb(sb, flags, data, 0);
  1675. if (!err) {
  1676. lock_mount_hash();
  1677. mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
  1678. mnt->mnt.mnt_flags = mnt_flags;
  1679. touch_mnt_namespace(mnt->mnt_ns);
  1680. unlock_mount_hash();
  1681. }
  1682. up_write(&sb->s_umount);
  1683. return err;
  1684. }
  1685. static inline int tree_contains_unbindable(struct mount *mnt)
  1686. {
  1687. struct mount *p;
  1688. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1689. if (IS_MNT_UNBINDABLE(p))
  1690. return 1;
  1691. }
  1692. return 0;
  1693. }
  1694. static int do_move_mount(struct path *path, const char *old_name)
  1695. {
  1696. struct path old_path, parent_path;
  1697. struct mount *p;
  1698. struct mount *old;
  1699. struct mountpoint *mp;
  1700. int err;
  1701. if (!old_name || !*old_name)
  1702. return -EINVAL;
  1703. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1704. if (err)
  1705. return err;
  1706. mp = lock_mount(path);
  1707. err = PTR_ERR(mp);
  1708. if (IS_ERR(mp))
  1709. goto out;
  1710. old = real_mount(old_path.mnt);
  1711. p = real_mount(path->mnt);
  1712. err = -EINVAL;
  1713. if (!check_mnt(p) || !check_mnt(old))
  1714. goto out1;
  1715. if (old->mnt.mnt_flags & MNT_LOCKED)
  1716. goto out1;
  1717. err = -EINVAL;
  1718. if (old_path.dentry != old_path.mnt->mnt_root)
  1719. goto out1;
  1720. if (!mnt_has_parent(old))
  1721. goto out1;
  1722. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1723. S_ISDIR(old_path.dentry->d_inode->i_mode))
  1724. goto out1;
  1725. /*
  1726. * Don't move a mount residing in a shared parent.
  1727. */
  1728. if (IS_MNT_SHARED(old->mnt_parent))
  1729. goto out1;
  1730. /*
  1731. * Don't move a mount tree containing unbindable mounts to a destination
  1732. * mount which is shared.
  1733. */
  1734. if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
  1735. goto out1;
  1736. err = -ELOOP;
  1737. for (; mnt_has_parent(p); p = p->mnt_parent)
  1738. if (p == old)
  1739. goto out1;
  1740. err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
  1741. if (err)
  1742. goto out1;
  1743. /* if the mount is moved, it should no longer be expire
  1744. * automatically */
  1745. list_del_init(&old->mnt_expire);
  1746. out1:
  1747. unlock_mount(mp);
  1748. out:
  1749. if (!err)
  1750. path_put(&parent_path);
  1751. path_put(&old_path);
  1752. return err;
  1753. }
  1754. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  1755. {
  1756. int err;
  1757. const char *subtype = strchr(fstype, '.');
  1758. if (subtype) {
  1759. subtype++;
  1760. err = -EINVAL;
  1761. if (!subtype[0])
  1762. goto err;
  1763. } else
  1764. subtype = "";
  1765. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  1766. err = -ENOMEM;
  1767. if (!mnt->mnt_sb->s_subtype)
  1768. goto err;
  1769. return mnt;
  1770. err:
  1771. mntput(mnt);
  1772. return ERR_PTR(err);
  1773. }
  1774. /*
  1775. * add a mount into a namespace's mount tree
  1776. */
  1777. static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
  1778. {
  1779. struct mountpoint *mp;
  1780. struct mount *parent;
  1781. int err;
  1782. mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL | MNT_DOOMED | MNT_SYNC_UMOUNT);
  1783. mp = lock_mount(path);
  1784. if (IS_ERR(mp))
  1785. return PTR_ERR(mp);
  1786. parent = real_mount(path->mnt);
  1787. err = -EINVAL;
  1788. if (unlikely(!check_mnt(parent))) {
  1789. /* that's acceptable only for automounts done in private ns */
  1790. if (!(mnt_flags & MNT_SHRINKABLE))
  1791. goto unlock;
  1792. /* ... and for those we'd better have mountpoint still alive */
  1793. if (!parent->mnt_ns)
  1794. goto unlock;
  1795. }
  1796. /* Refuse the same filesystem on the same mount point */
  1797. err = -EBUSY;
  1798. if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
  1799. path->mnt->mnt_root == path->dentry)
  1800. goto unlock;
  1801. err = -EINVAL;
  1802. if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
  1803. goto unlock;
  1804. newmnt->mnt.mnt_flags = mnt_flags;
  1805. err = graft_tree(newmnt, parent, mp);
  1806. unlock:
  1807. unlock_mount(mp);
  1808. return err;
  1809. }
  1810. /*
  1811. * create a new mount for userspace and request it to be added into the
  1812. * namespace's tree
  1813. */
  1814. static int do_new_mount(struct path *path, const char *fstype, int flags,
  1815. int mnt_flags, const char *name, void *data)
  1816. {
  1817. struct file_system_type *type;
  1818. struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
  1819. struct vfsmount *mnt;
  1820. int err;
  1821. if (!fstype)
  1822. return -EINVAL;
  1823. type = get_fs_type(fstype);
  1824. if (!type)
  1825. return -ENODEV;
  1826. if (user_ns != &init_user_ns) {
  1827. if (!(type->fs_flags & FS_USERNS_MOUNT)) {
  1828. put_filesystem(type);
  1829. return -EPERM;
  1830. }
  1831. /* Only in special cases allow devices from mounts
  1832. * created outside the initial user namespace.
  1833. */
  1834. if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
  1835. flags |= MS_NODEV;
  1836. mnt_flags |= MNT_NODEV;
  1837. }
  1838. }
  1839. mnt = vfs_kern_mount(type, flags, name, data);
  1840. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  1841. !mnt->mnt_sb->s_subtype)
  1842. mnt = fs_set_subtype(mnt, fstype);
  1843. put_filesystem(type);
  1844. if (IS_ERR(mnt))
  1845. return PTR_ERR(mnt);
  1846. err = do_add_mount(real_mount(mnt), path, mnt_flags);
  1847. if (err)
  1848. mntput(mnt);
  1849. return err;
  1850. }
  1851. int finish_automount(struct vfsmount *m, struct path *path)
  1852. {
  1853. struct mount *mnt = real_mount(m);
  1854. int err;
  1855. /* The new mount record should have at least 2 refs to prevent it being
  1856. * expired before we get a chance to add it
  1857. */
  1858. BUG_ON(mnt_get_count(mnt) < 2);
  1859. if (m->mnt_sb == path->mnt->mnt_sb &&
  1860. m->mnt_root == path->dentry) {
  1861. err = -ELOOP;
  1862. goto fail;
  1863. }
  1864. err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  1865. if (!err)
  1866. return 0;
  1867. fail:
  1868. /* remove m from any expiration list it may be on */
  1869. if (!list_empty(&mnt->mnt_expire)) {
  1870. namespace_lock();
  1871. list_del_init(&mnt->mnt_expire);
  1872. namespace_unlock();
  1873. }
  1874. mntput(m);
  1875. mntput(m);
  1876. return err;
  1877. }
  1878. /**
  1879. * mnt_set_expiry - Put a mount on an expiration list
  1880. * @mnt: The mount to list.
  1881. * @expiry_list: The list to add the mount to.
  1882. */
  1883. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  1884. {
  1885. namespace_lock();
  1886. list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
  1887. namespace_unlock();
  1888. }
  1889. EXPORT_SYMBOL(mnt_set_expiry);
  1890. /*
  1891. * process a list of expirable mountpoints with the intent of discarding any
  1892. * mountpoints that aren't in use and haven't been touched since last we came
  1893. * here
  1894. */
  1895. void mark_mounts_for_expiry(struct list_head *mounts)
  1896. {
  1897. struct mount *mnt, *next;
  1898. LIST_HEAD(graveyard);
  1899. if (list_empty(mounts))
  1900. return;
  1901. namespace_lock();
  1902. lock_mount_hash();
  1903. /* extract from the expiration list every vfsmount that matches the
  1904. * following criteria:
  1905. * - only referenced by its parent vfsmount
  1906. * - still marked for expiry (marked on the last call here; marks are
  1907. * cleared by mntput())
  1908. */
  1909. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1910. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  1911. propagate_mount_busy(mnt, 1))
  1912. continue;
  1913. list_move(&mnt->mnt_expire, &graveyard);
  1914. }
  1915. while (!list_empty(&graveyard)) {
  1916. mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
  1917. touch_mnt_namespace(mnt->mnt_ns);
  1918. umount_tree(mnt, 1);
  1919. }
  1920. unlock_mount_hash();
  1921. namespace_unlock();
  1922. }
  1923. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1924. /*
  1925. * Ripoff of 'select_parent()'
  1926. *
  1927. * search the list of submounts for a given mountpoint, and move any
  1928. * shrinkable submounts to the 'graveyard' list.
  1929. */
  1930. static int select_submounts(struct mount *parent, struct list_head *graveyard)
  1931. {
  1932. struct mount *this_parent = parent;
  1933. struct list_head *next;
  1934. int found = 0;
  1935. repeat:
  1936. next = this_parent->mnt_mounts.next;
  1937. resume:
  1938. while (next != &this_parent->mnt_mounts) {
  1939. struct list_head *tmp = next;
  1940. struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
  1941. next = tmp->next;
  1942. if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
  1943. continue;
  1944. /*
  1945. * Descend a level if the d_mounts list is non-empty.
  1946. */
  1947. if (!list_empty(&mnt->mnt_mounts)) {
  1948. this_parent = mnt;
  1949. goto repeat;
  1950. }
  1951. if (!propagate_mount_busy(mnt, 1)) {
  1952. list_move_tail(&mnt->mnt_expire, graveyard);
  1953. found++;
  1954. }
  1955. }
  1956. /*
  1957. * All done at this level ... ascend and resume the search
  1958. */
  1959. if (this_parent != parent) {
  1960. next = this_parent->mnt_child.next;
  1961. this_parent = this_parent->mnt_parent;
  1962. goto resume;
  1963. }
  1964. return found;
  1965. }
  1966. /*
  1967. * process a list of expirable mountpoints with the intent of discarding any
  1968. * submounts of a specific parent mountpoint
  1969. *
  1970. * mount_lock must be held for write
  1971. */
  1972. static void shrink_submounts(struct mount *mnt)
  1973. {
  1974. LIST_HEAD(graveyard);
  1975. struct mount *m;
  1976. /* extract submounts of 'mountpoint' from the expiration list */
  1977. while (select_submounts(mnt, &graveyard)) {
  1978. while (!list_empty(&graveyard)) {
  1979. m = list_first_entry(&graveyard, struct mount,
  1980. mnt_expire);
  1981. touch_mnt_namespace(m->mnt_ns);
  1982. umount_tree(m, 1);
  1983. }
  1984. }
  1985. }
  1986. /*
  1987. * Some copy_from_user() implementations do not return the exact number of
  1988. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  1989. * Note that this function differs from copy_from_user() in that it will oops
  1990. * on bad values of `to', rather than returning a short copy.
  1991. */
  1992. static long exact_copy_from_user(void *to, const void __user * from,
  1993. unsigned long n)
  1994. {
  1995. char *t = to;
  1996. const char __user *f = from;
  1997. char c;
  1998. if (!access_ok(VERIFY_READ, from, n))
  1999. return n;
  2000. while (n) {
  2001. if (__get_user(c, f)) {
  2002. memset(t, 0, n);
  2003. break;
  2004. }
  2005. *t++ = c;
  2006. f++;
  2007. n--;
  2008. }
  2009. return n;
  2010. }
  2011. int copy_mount_options(const void __user * data, unsigned long *where)
  2012. {
  2013. int i;
  2014. unsigned long page;
  2015. unsigned long size;
  2016. *where = 0;
  2017. if (!data)
  2018. return 0;
  2019. if (!(page = __get_free_page(GFP_KERNEL)))
  2020. return -ENOMEM;
  2021. /* We only care that *some* data at the address the user
  2022. * gave us is valid. Just in case, we'll zero
  2023. * the remainder of the page.
  2024. */
  2025. /* copy_from_user cannot cross TASK_SIZE ! */
  2026. size = TASK_SIZE - (unsigned long)data;
  2027. if (size > PAGE_SIZE)
  2028. size = PAGE_SIZE;
  2029. i = size - exact_copy_from_user((void *)page, data, size);
  2030. if (!i) {
  2031. free_page(page);
  2032. return -EFAULT;
  2033. }
  2034. if (i != PAGE_SIZE)
  2035. memset((char *)page + i, 0, PAGE_SIZE - i);
  2036. *where = page;
  2037. return 0;
  2038. }
  2039. int copy_mount_string(const void __user *data, char **where)
  2040. {
  2041. char *tmp;
  2042. if (!data) {
  2043. *where = NULL;
  2044. return 0;
  2045. }
  2046. tmp = strndup_user(data, PAGE_SIZE);
  2047. if (IS_ERR(tmp))
  2048. return PTR_ERR(tmp);
  2049. *where = tmp;
  2050. return 0;
  2051. }
  2052. /*
  2053. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  2054. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  2055. *
  2056. * data is a (void *) that can point to any structure up to
  2057. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  2058. * information (or be NULL).
  2059. *
  2060. * Pre-0.97 versions of mount() didn't have a flags word.
  2061. * When the flags word was introduced its top half was required
  2062. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  2063. * Therefore, if this magic number is present, it carries no information
  2064. * and must be discarded.
  2065. */
  2066. long do_mount(const char *dev_name, const char *dir_name,
  2067. const char *type_page, unsigned long flags, void *data_page)
  2068. {
  2069. struct path path;
  2070. int retval = 0;
  2071. int mnt_flags = 0;
  2072. /* Discard magic */
  2073. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  2074. flags &= ~MS_MGC_MSK;
  2075. /* Basic sanity checks */
  2076. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  2077. return -EINVAL;
  2078. if (data_page)
  2079. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  2080. /* ... and get the mountpoint */
  2081. retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
  2082. if (retval)
  2083. return retval;
  2084. retval = security_sb_mount(dev_name, &path,
  2085. type_page, flags, data_page);
  2086. if (!retval && !may_mount())
  2087. retval = -EPERM;
  2088. if (retval)
  2089. goto dput_out;
  2090. /* Default to relatime unless overriden */
  2091. if (!(flags & MS_NOATIME))
  2092. mnt_flags |= MNT_RELATIME;
  2093. /* Separate the per-mountpoint flags */
  2094. if (flags & MS_NOSUID)
  2095. mnt_flags |= MNT_NOSUID;
  2096. if (flags & MS_NODEV)
  2097. mnt_flags |= MNT_NODEV;
  2098. if (flags & MS_NOEXEC)
  2099. mnt_flags |= MNT_NOEXEC;
  2100. if (flags & MS_NOATIME)
  2101. mnt_flags |= MNT_NOATIME;
  2102. if (flags & MS_NODIRATIME)
  2103. mnt_flags |= MNT_NODIRATIME;
  2104. if (flags & MS_STRICTATIME)
  2105. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  2106. if (flags & MS_RDONLY)
  2107. mnt_flags |= MNT_READONLY;
  2108. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  2109. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  2110. MS_STRICTATIME);
  2111. if (flags & MS_REMOUNT)
  2112. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  2113. data_page);
  2114. else if (flags & MS_BIND)
  2115. retval = do_loopback(&path, dev_name, flags & MS_REC);
  2116. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  2117. retval = do_change_type(&path, flags);
  2118. else if (flags & MS_MOVE)
  2119. retval = do_move_mount(&path, dev_name);
  2120. else
  2121. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  2122. dev_name, data_page);
  2123. dput_out:
  2124. path_put(&path);
  2125. return retval;
  2126. }
  2127. static void free_mnt_ns(struct mnt_namespace *ns)
  2128. {
  2129. proc_free_inum(ns->proc_inum);
  2130. put_user_ns(ns->user_ns);
  2131. kfree(ns);
  2132. }
  2133. /*
  2134. * Assign a sequence number so we can detect when we attempt to bind
  2135. * mount a reference to an older mount namespace into the current
  2136. * mount namespace, preventing reference counting loops. A 64bit
  2137. * number incrementing at 10Ghz will take 12,427 years to wrap which
  2138. * is effectively never, so we can ignore the possibility.
  2139. */
  2140. static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
  2141. static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
  2142. {
  2143. struct mnt_namespace *new_ns;
  2144. int ret;
  2145. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  2146. if (!new_ns)
  2147. return ERR_PTR(-ENOMEM);
  2148. ret = proc_alloc_inum(&new_ns->proc_inum);
  2149. if (ret) {
  2150. kfree(new_ns);
  2151. return ERR_PTR(ret);
  2152. }
  2153. new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
  2154. atomic_set(&new_ns->count, 1);
  2155. new_ns->root = NULL;
  2156. INIT_LIST_HEAD(&new_ns->list);
  2157. init_waitqueue_head(&new_ns->poll);
  2158. new_ns->event = 0;
  2159. new_ns->user_ns = get_user_ns(user_ns);
  2160. return new_ns;
  2161. }
  2162. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2163. struct user_namespace *user_ns, struct fs_struct *new_fs)
  2164. {
  2165. struct mnt_namespace *new_ns;
  2166. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2167. struct mount *p, *q;
  2168. struct mount *old;
  2169. struct mount *new;
  2170. int copy_flags;
  2171. BUG_ON(!ns);
  2172. if (likely(!(flags & CLONE_NEWNS))) {
  2173. get_mnt_ns(ns);
  2174. return ns;
  2175. }
  2176. old = ns->root;
  2177. new_ns = alloc_mnt_ns(user_ns);
  2178. if (IS_ERR(new_ns))
  2179. return new_ns;
  2180. namespace_lock();
  2181. /* First pass: copy the tree topology */
  2182. copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
  2183. if (user_ns != ns->user_ns)
  2184. copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
  2185. new = copy_tree(old, old->mnt.mnt_root, copy_flags);
  2186. if (IS_ERR(new)) {
  2187. namespace_unlock();
  2188. free_mnt_ns(new_ns);
  2189. return ERR_CAST(new);
  2190. }
  2191. new_ns->root = new;
  2192. list_add_tail(&new_ns->list, &new->mnt_list);
  2193. /*
  2194. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2195. * as belonging to new namespace. We have already acquired a private
  2196. * fs_struct, so tsk->fs->lock is not needed.
  2197. */
  2198. p = old;
  2199. q = new;
  2200. while (p) {
  2201. q->mnt_ns = new_ns;
  2202. if (new_fs) {
  2203. if (&p->mnt == new_fs->root.mnt) {
  2204. new_fs->root.mnt = mntget(&q->mnt);
  2205. rootmnt = &p->mnt;
  2206. }
  2207. if (&p->mnt == new_fs->pwd.mnt) {
  2208. new_fs->pwd.mnt = mntget(&q->mnt);
  2209. pwdmnt = &p->mnt;
  2210. }
  2211. }
  2212. p = next_mnt(p, old);
  2213. q = next_mnt(q, new);
  2214. if (!q)
  2215. break;
  2216. while (p->mnt.mnt_root != q->mnt.mnt_root)
  2217. p = next_mnt(p, old);
  2218. }
  2219. namespace_unlock();
  2220. if (rootmnt)
  2221. mntput(rootmnt);
  2222. if (pwdmnt)
  2223. mntput(pwdmnt);
  2224. return new_ns;
  2225. }
  2226. /**
  2227. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2228. * @mnt: pointer to the new root filesystem mountpoint
  2229. */
  2230. static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
  2231. {
  2232. struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
  2233. if (!IS_ERR(new_ns)) {
  2234. struct mount *mnt = real_mount(m);
  2235. mnt->mnt_ns = new_ns;
  2236. new_ns->root = mnt;
  2237. list_add(&mnt->mnt_list, &new_ns->list);
  2238. } else {
  2239. mntput(m);
  2240. }
  2241. return new_ns;
  2242. }
  2243. struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
  2244. {
  2245. struct mnt_namespace *ns;
  2246. struct super_block *s;
  2247. struct path path;
  2248. int err;
  2249. ns = create_mnt_ns(mnt);
  2250. if (IS_ERR(ns))
  2251. return ERR_CAST(ns);
  2252. err = vfs_path_lookup(mnt->mnt_root, mnt,
  2253. name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
  2254. put_mnt_ns(ns);
  2255. if (err)
  2256. return ERR_PTR(err);
  2257. /* trade a vfsmount reference for active sb one */
  2258. s = path.mnt->mnt_sb;
  2259. atomic_inc(&s->s_active);
  2260. mntput(path.mnt);
  2261. /* lock the sucker */
  2262. down_write(&s->s_umount);
  2263. /* ... and return the root of (sub)tree on it */
  2264. return path.dentry;
  2265. }
  2266. EXPORT_SYMBOL(mount_subtree);
  2267. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2268. char __user *, type, unsigned long, flags, void __user *, data)
  2269. {
  2270. int ret;
  2271. char *kernel_type;
  2272. struct filename *kernel_dir;
  2273. char *kernel_dev;
  2274. unsigned long data_page;
  2275. ret = copy_mount_string(type, &kernel_type);
  2276. if (ret < 0)
  2277. goto out_type;
  2278. kernel_dir = getname(dir_name);
  2279. if (IS_ERR(kernel_dir)) {
  2280. ret = PTR_ERR(kernel_dir);
  2281. goto out_dir;
  2282. }
  2283. ret = copy_mount_string(dev_name, &kernel_dev);
  2284. if (ret < 0)
  2285. goto out_dev;
  2286. ret = copy_mount_options(data, &data_page);
  2287. if (ret < 0)
  2288. goto out_data;
  2289. ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
  2290. (void *) data_page);
  2291. free_page(data_page);
  2292. out_data:
  2293. kfree(kernel_dev);
  2294. out_dev:
  2295. putname(kernel_dir);
  2296. out_dir:
  2297. kfree(kernel_type);
  2298. out_type:
  2299. return ret;
  2300. }
  2301. /*
  2302. * Return true if path is reachable from root
  2303. *
  2304. * namespace_sem or mount_lock is held
  2305. */
  2306. bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
  2307. const struct path *root)
  2308. {
  2309. while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
  2310. dentry = mnt->mnt_mountpoint;
  2311. mnt = mnt->mnt_parent;
  2312. }
  2313. return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
  2314. }
  2315. int path_is_under(struct path *path1, struct path *path2)
  2316. {
  2317. int res;
  2318. read_seqlock_excl(&mount_lock);
  2319. res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
  2320. read_sequnlock_excl(&mount_lock);
  2321. return res;
  2322. }
  2323. EXPORT_SYMBOL(path_is_under);
  2324. /*
  2325. * pivot_root Semantics:
  2326. * Moves the root file system of the current process to the directory put_old,
  2327. * makes new_root as the new root file system of the current process, and sets
  2328. * root/cwd of all processes which had them on the current root to new_root.
  2329. *
  2330. * Restrictions:
  2331. * The new_root and put_old must be directories, and must not be on the
  2332. * same file system as the current process root. The put_old must be
  2333. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2334. * pointed to by put_old must yield the same directory as new_root. No other
  2335. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2336. *
  2337. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2338. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2339. * in this situation.
  2340. *
  2341. * Notes:
  2342. * - we don't move root/cwd if they are not at the root (reason: if something
  2343. * cared enough to change them, it's probably wrong to force them elsewhere)
  2344. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2345. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2346. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2347. * first.
  2348. */
  2349. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2350. const char __user *, put_old)
  2351. {
  2352. struct path new, old, parent_path, root_parent, root;
  2353. struct mount *new_mnt, *root_mnt, *old_mnt;
  2354. struct mountpoint *old_mp, *root_mp;
  2355. int error;
  2356. if (!may_mount())
  2357. return -EPERM;
  2358. error = user_path_dir(new_root, &new);
  2359. if (error)
  2360. goto out0;
  2361. error = user_path_dir(put_old, &old);
  2362. if (error)
  2363. goto out1;
  2364. error = security_sb_pivotroot(&old, &new);
  2365. if (error)
  2366. goto out2;
  2367. get_fs_root(current->fs, &root);
  2368. old_mp = lock_mount(&old);
  2369. error = PTR_ERR(old_mp);
  2370. if (IS_ERR(old_mp))
  2371. goto out3;
  2372. error = -EINVAL;
  2373. new_mnt = real_mount(new.mnt);
  2374. root_mnt = real_mount(root.mnt);
  2375. old_mnt = real_mount(old.mnt);
  2376. if (IS_MNT_SHARED(old_mnt) ||
  2377. IS_MNT_SHARED(new_mnt->mnt_parent) ||
  2378. IS_MNT_SHARED(root_mnt->mnt_parent))
  2379. goto out4;
  2380. if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
  2381. goto out4;
  2382. if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
  2383. goto out4;
  2384. error = -ENOENT;
  2385. if (d_unlinked(new.dentry))
  2386. goto out4;
  2387. error = -EBUSY;
  2388. if (new_mnt == root_mnt || old_mnt == root_mnt)
  2389. goto out4; /* loop, on the same file system */
  2390. error = -EINVAL;
  2391. if (root.mnt->mnt_root != root.dentry)
  2392. goto out4; /* not a mountpoint */
  2393. if (!mnt_has_parent(root_mnt))
  2394. goto out4; /* not attached */
  2395. root_mp = root_mnt->mnt_mp;
  2396. if (new.mnt->mnt_root != new.dentry)
  2397. goto out4; /* not a mountpoint */
  2398. if (!mnt_has_parent(new_mnt))
  2399. goto out4; /* not attached */
  2400. /* make sure we can reach put_old from new_root */
  2401. if (!is_path_reachable(old_mnt, old.dentry, &new))
  2402. goto out4;
  2403. root_mp->m_count++; /* pin it so it won't go away */
  2404. lock_mount_hash();
  2405. detach_mnt(new_mnt, &parent_path);
  2406. detach_mnt(root_mnt, &root_parent);
  2407. if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
  2408. new_mnt->mnt.mnt_flags |= MNT_LOCKED;
  2409. root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  2410. }
  2411. /* mount old root on put_old */
  2412. attach_mnt(root_mnt, old_mnt, old_mp);
  2413. /* mount new_root on / */
  2414. attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
  2415. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2416. unlock_mount_hash();
  2417. chroot_fs_refs(&root, &new);
  2418. put_mountpoint(root_mp);
  2419. error = 0;
  2420. out4:
  2421. unlock_mount(old_mp);
  2422. if (!error) {
  2423. path_put(&root_parent);
  2424. path_put(&parent_path);
  2425. }
  2426. out3:
  2427. path_put(&root);
  2428. out2:
  2429. path_put(&old);
  2430. out1:
  2431. path_put(&new);
  2432. out0:
  2433. return error;
  2434. }
  2435. static void __init init_mount_tree(void)
  2436. {
  2437. struct vfsmount *mnt;
  2438. struct mnt_namespace *ns;
  2439. struct path root;
  2440. struct file_system_type *type;
  2441. type = get_fs_type("rootfs");
  2442. if (!type)
  2443. panic("Can't find rootfs type");
  2444. mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
  2445. put_filesystem(type);
  2446. if (IS_ERR(mnt))
  2447. panic("Can't create rootfs");
  2448. ns = create_mnt_ns(mnt);
  2449. if (IS_ERR(ns))
  2450. panic("Can't allocate initial namespace");
  2451. init_task.nsproxy->mnt_ns = ns;
  2452. get_mnt_ns(ns);
  2453. root.mnt = mnt;
  2454. root.dentry = mnt->mnt_root;
  2455. set_fs_pwd(current->fs, &root);
  2456. set_fs_root(current->fs, &root);
  2457. }
  2458. void __init mnt_init(void)
  2459. {
  2460. unsigned u;
  2461. int err;
  2462. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
  2463. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2464. mount_hashtable = alloc_large_system_hash("Mount-cache",
  2465. sizeof(struct list_head),
  2466. mhash_entries, 19,
  2467. 0,
  2468. &m_hash_shift, &m_hash_mask, 0, 0);
  2469. mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
  2470. sizeof(struct hlist_head),
  2471. mphash_entries, 19,
  2472. 0,
  2473. &mp_hash_shift, &mp_hash_mask, 0, 0);
  2474. if (!mount_hashtable || !mountpoint_hashtable)
  2475. panic("Failed to allocate mount hash table\n");
  2476. for (u = 0; u <= m_hash_mask; u++)
  2477. INIT_LIST_HEAD(&mount_hashtable[u]);
  2478. for (u = 0; u <= mp_hash_mask; u++)
  2479. INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
  2480. kernfs_init();
  2481. err = sysfs_init();
  2482. if (err)
  2483. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2484. __func__, err);
  2485. fs_kobj = kobject_create_and_add("fs", NULL);
  2486. if (!fs_kobj)
  2487. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2488. init_rootfs();
  2489. init_mount_tree();
  2490. }
  2491. void put_mnt_ns(struct mnt_namespace *ns)
  2492. {
  2493. if (!atomic_dec_and_test(&ns->count))
  2494. return;
  2495. drop_collected_mounts(&ns->root->mnt);
  2496. free_mnt_ns(ns);
  2497. }
  2498. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2499. {
  2500. struct vfsmount *mnt;
  2501. mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
  2502. if (!IS_ERR(mnt)) {
  2503. /*
  2504. * it is a longterm mount, don't release mnt until
  2505. * we unmount before file sys is unregistered
  2506. */
  2507. real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
  2508. }
  2509. return mnt;
  2510. }
  2511. EXPORT_SYMBOL_GPL(kern_mount_data);
  2512. void kern_unmount(struct vfsmount *mnt)
  2513. {
  2514. /* release long term mount so mount point can be released */
  2515. if (!IS_ERR_OR_NULL(mnt)) {
  2516. real_mount(mnt)->mnt_ns = NULL;
  2517. synchronize_rcu(); /* yecchhh... */
  2518. mntput(mnt);
  2519. }
  2520. }
  2521. EXPORT_SYMBOL(kern_unmount);
  2522. bool our_mnt(struct vfsmount *mnt)
  2523. {
  2524. return check_mnt(real_mount(mnt));
  2525. }
  2526. bool current_chrooted(void)
  2527. {
  2528. /* Does the current process have a non-standard root */
  2529. struct path ns_root;
  2530. struct path fs_root;
  2531. bool chrooted;
  2532. /* Find the namespace root */
  2533. ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
  2534. ns_root.dentry = ns_root.mnt->mnt_root;
  2535. path_get(&ns_root);
  2536. while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
  2537. ;
  2538. get_fs_root(current->fs, &fs_root);
  2539. chrooted = !path_equal(&fs_root, &ns_root);
  2540. path_put(&fs_root);
  2541. path_put(&ns_root);
  2542. return chrooted;
  2543. }
  2544. bool fs_fully_visible(struct file_system_type *type)
  2545. {
  2546. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  2547. struct mount *mnt;
  2548. bool visible = false;
  2549. if (unlikely(!ns))
  2550. return false;
  2551. down_read(&namespace_sem);
  2552. list_for_each_entry(mnt, &ns->list, mnt_list) {
  2553. struct mount *child;
  2554. if (mnt->mnt.mnt_sb->s_type != type)
  2555. continue;
  2556. /* This mount is not fully visible if there are any child mounts
  2557. * that cover anything except for empty directories.
  2558. */
  2559. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  2560. struct inode *inode = child->mnt_mountpoint->d_inode;
  2561. if (!S_ISDIR(inode->i_mode))
  2562. goto next;
  2563. if (inode->i_nlink > 2)
  2564. goto next;
  2565. }
  2566. visible = true;
  2567. goto found;
  2568. next: ;
  2569. }
  2570. found:
  2571. up_read(&namespace_sem);
  2572. return visible;
  2573. }
  2574. static void *mntns_get(struct task_struct *task)
  2575. {
  2576. struct mnt_namespace *ns = NULL;
  2577. struct nsproxy *nsproxy;
  2578. rcu_read_lock();
  2579. nsproxy = task_nsproxy(task);
  2580. if (nsproxy) {
  2581. ns = nsproxy->mnt_ns;
  2582. get_mnt_ns(ns);
  2583. }
  2584. rcu_read_unlock();
  2585. return ns;
  2586. }
  2587. static void mntns_put(void *ns)
  2588. {
  2589. put_mnt_ns(ns);
  2590. }
  2591. static int mntns_install(struct nsproxy *nsproxy, void *ns)
  2592. {
  2593. struct fs_struct *fs = current->fs;
  2594. struct mnt_namespace *mnt_ns = ns;
  2595. struct path root;
  2596. if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
  2597. !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
  2598. !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
  2599. return -EPERM;
  2600. if (fs->users != 1)
  2601. return -EINVAL;
  2602. get_mnt_ns(mnt_ns);
  2603. put_mnt_ns(nsproxy->mnt_ns);
  2604. nsproxy->mnt_ns = mnt_ns;
  2605. /* Find the root */
  2606. root.mnt = &mnt_ns->root->mnt;
  2607. root.dentry = mnt_ns->root->mnt.mnt_root;
  2608. path_get(&root);
  2609. while(d_mountpoint(root.dentry) && follow_down_one(&root))
  2610. ;
  2611. /* Update the pwd and root */
  2612. set_fs_pwd(fs, &root);
  2613. set_fs_root(fs, &root);
  2614. path_put(&root);
  2615. return 0;
  2616. }
  2617. static unsigned int mntns_inum(void *ns)
  2618. {
  2619. struct mnt_namespace *mnt_ns = ns;
  2620. return mnt_ns->proc_inum;
  2621. }
  2622. const struct proc_ns_operations mntns_operations = {
  2623. .name = "mnt",
  2624. .type = CLONE_NEWNS,
  2625. .get = mntns_get,
  2626. .put = mntns_put,
  2627. .install = mntns_install,
  2628. .inum = mntns_inum,
  2629. };