sched.c 269 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  29. #include <linux/mm.h>
  30. #include <linux/module.h>
  31. #include <linux/nmi.h>
  32. #include <linux/init.h>
  33. #include <linux/uaccess.h>
  34. #include <linux/highmem.h>
  35. #include <linux/smp_lock.h>
  36. #include <asm/mmu_context.h>
  37. #include <linux/interrupt.h>
  38. #include <linux/capability.h>
  39. #include <linux/completion.h>
  40. #include <linux/kernel_stat.h>
  41. #include <linux/debug_locks.h>
  42. #include <linux/perf_event.h>
  43. #include <linux/security.h>
  44. #include <linux/notifier.h>
  45. #include <linux/profile.h>
  46. #include <linux/freezer.h>
  47. #include <linux/vmalloc.h>
  48. #include <linux/blkdev.h>
  49. #include <linux/delay.h>
  50. #include <linux/pid_namespace.h>
  51. #include <linux/smp.h>
  52. #include <linux/threads.h>
  53. #include <linux/timer.h>
  54. #include <linux/rcupdate.h>
  55. #include <linux/cpu.h>
  56. #include <linux/cpuset.h>
  57. #include <linux/percpu.h>
  58. #include <linux/kthread.h>
  59. #include <linux/proc_fs.h>
  60. #include <linux/seq_file.h>
  61. #include <linux/sysctl.h>
  62. #include <linux/syscalls.h>
  63. #include <linux/times.h>
  64. #include <linux/tsacct_kern.h>
  65. #include <linux/kprobes.h>
  66. #include <linux/delayacct.h>
  67. #include <linux/unistd.h>
  68. #include <linux/pagemap.h>
  69. #include <linux/hrtimer.h>
  70. #include <linux/tick.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #define CREATE_TRACE_POINTS
  78. #include <trace/events/sched.h>
  79. /*
  80. * Convert user-nice values [ -20 ... 0 ... 19 ]
  81. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  82. * and back.
  83. */
  84. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  85. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  86. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  87. /*
  88. * 'User priority' is the nice value converted to something we
  89. * can work with better when scaling various scheduler parameters,
  90. * it's a [ 0 ... 39 ] range.
  91. */
  92. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  93. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  94. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  95. /*
  96. * Helpers for converting nanosecond timing to jiffy resolution
  97. */
  98. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  99. #define NICE_0_LOAD SCHED_LOAD_SCALE
  100. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  101. /*
  102. * These are the 'tuning knobs' of the scheduler:
  103. *
  104. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  105. * Timeslices get refilled after they expire.
  106. */
  107. #define DEF_TIMESLICE (100 * HZ / 1000)
  108. /*
  109. * single value that denotes runtime == period, ie unlimited time.
  110. */
  111. #define RUNTIME_INF ((u64)~0ULL)
  112. static inline int rt_policy(int policy)
  113. {
  114. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  115. return 1;
  116. return 0;
  117. }
  118. static inline int task_has_rt_policy(struct task_struct *p)
  119. {
  120. return rt_policy(p->policy);
  121. }
  122. /*
  123. * This is the priority-queue data structure of the RT scheduling class:
  124. */
  125. struct rt_prio_array {
  126. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  127. struct list_head queue[MAX_RT_PRIO];
  128. };
  129. struct rt_bandwidth {
  130. /* nests inside the rq lock: */
  131. raw_spinlock_t rt_runtime_lock;
  132. ktime_t rt_period;
  133. u64 rt_runtime;
  134. struct hrtimer rt_period_timer;
  135. };
  136. static struct rt_bandwidth def_rt_bandwidth;
  137. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  138. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  139. {
  140. struct rt_bandwidth *rt_b =
  141. container_of(timer, struct rt_bandwidth, rt_period_timer);
  142. ktime_t now;
  143. int overrun;
  144. int idle = 0;
  145. for (;;) {
  146. now = hrtimer_cb_get_time(timer);
  147. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  148. if (!overrun)
  149. break;
  150. idle = do_sched_rt_period_timer(rt_b, overrun);
  151. }
  152. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  153. }
  154. static
  155. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  156. {
  157. rt_b->rt_period = ns_to_ktime(period);
  158. rt_b->rt_runtime = runtime;
  159. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  160. hrtimer_init(&rt_b->rt_period_timer,
  161. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  162. rt_b->rt_period_timer.function = sched_rt_period_timer;
  163. }
  164. static inline int rt_bandwidth_enabled(void)
  165. {
  166. return sysctl_sched_rt_runtime >= 0;
  167. }
  168. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  169. {
  170. ktime_t now;
  171. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  172. return;
  173. if (hrtimer_active(&rt_b->rt_period_timer))
  174. return;
  175. raw_spin_lock(&rt_b->rt_runtime_lock);
  176. for (;;) {
  177. unsigned long delta;
  178. ktime_t soft, hard;
  179. if (hrtimer_active(&rt_b->rt_period_timer))
  180. break;
  181. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  182. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  183. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  184. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  185. delta = ktime_to_ns(ktime_sub(hard, soft));
  186. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  187. HRTIMER_MODE_ABS_PINNED, 0);
  188. }
  189. raw_spin_unlock(&rt_b->rt_runtime_lock);
  190. }
  191. #ifdef CONFIG_RT_GROUP_SCHED
  192. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  193. {
  194. hrtimer_cancel(&rt_b->rt_period_timer);
  195. }
  196. #endif
  197. /*
  198. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  199. * detach_destroy_domains and partition_sched_domains.
  200. */
  201. static DEFINE_MUTEX(sched_domains_mutex);
  202. #ifdef CONFIG_GROUP_SCHED
  203. #include <linux/cgroup.h>
  204. struct cfs_rq;
  205. static LIST_HEAD(task_groups);
  206. /* task group related information */
  207. struct task_group {
  208. #ifdef CONFIG_CGROUP_SCHED
  209. struct cgroup_subsys_state css;
  210. #endif
  211. #ifdef CONFIG_USER_SCHED
  212. uid_t uid;
  213. #endif
  214. #ifdef CONFIG_FAIR_GROUP_SCHED
  215. /* schedulable entities of this group on each cpu */
  216. struct sched_entity **se;
  217. /* runqueue "owned" by this group on each cpu */
  218. struct cfs_rq **cfs_rq;
  219. unsigned long shares;
  220. #endif
  221. #ifdef CONFIG_RT_GROUP_SCHED
  222. struct sched_rt_entity **rt_se;
  223. struct rt_rq **rt_rq;
  224. struct rt_bandwidth rt_bandwidth;
  225. #endif
  226. struct rcu_head rcu;
  227. struct list_head list;
  228. struct task_group *parent;
  229. struct list_head siblings;
  230. struct list_head children;
  231. };
  232. #ifdef CONFIG_USER_SCHED
  233. /* Helper function to pass uid information to create_sched_user() */
  234. void set_tg_uid(struct user_struct *user)
  235. {
  236. user->tg->uid = user->uid;
  237. }
  238. /*
  239. * Root task group.
  240. * Every UID task group (including init_task_group aka UID-0) will
  241. * be a child to this group.
  242. */
  243. struct task_group root_task_group;
  244. #ifdef CONFIG_FAIR_GROUP_SCHED
  245. /* Default task group's sched entity on each cpu */
  246. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  247. /* Default task group's cfs_rq on each cpu */
  248. static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
  249. #endif /* CONFIG_FAIR_GROUP_SCHED */
  250. #ifdef CONFIG_RT_GROUP_SCHED
  251. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  252. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
  253. #endif /* CONFIG_RT_GROUP_SCHED */
  254. #else /* !CONFIG_USER_SCHED */
  255. #define root_task_group init_task_group
  256. #endif /* CONFIG_USER_SCHED */
  257. /* task_group_lock serializes add/remove of task groups and also changes to
  258. * a task group's cpu shares.
  259. */
  260. static DEFINE_SPINLOCK(task_group_lock);
  261. #ifdef CONFIG_FAIR_GROUP_SCHED
  262. #ifdef CONFIG_SMP
  263. static int root_task_group_empty(void)
  264. {
  265. return list_empty(&root_task_group.children);
  266. }
  267. #endif
  268. #ifdef CONFIG_USER_SCHED
  269. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  270. #else /* !CONFIG_USER_SCHED */
  271. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  272. #endif /* CONFIG_USER_SCHED */
  273. /*
  274. * A weight of 0 or 1 can cause arithmetics problems.
  275. * A weight of a cfs_rq is the sum of weights of which entities
  276. * are queued on this cfs_rq, so a weight of a entity should not be
  277. * too large, so as the shares value of a task group.
  278. * (The default weight is 1024 - so there's no practical
  279. * limitation from this.)
  280. */
  281. #define MIN_SHARES 2
  282. #define MAX_SHARES (1UL << 18)
  283. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  284. #endif
  285. /* Default task group.
  286. * Every task in system belong to this group at bootup.
  287. */
  288. struct task_group init_task_group;
  289. /* return group to which a task belongs */
  290. static inline struct task_group *task_group(struct task_struct *p)
  291. {
  292. struct task_group *tg;
  293. #ifdef CONFIG_USER_SCHED
  294. rcu_read_lock();
  295. tg = __task_cred(p)->user->tg;
  296. rcu_read_unlock();
  297. #elif defined(CONFIG_CGROUP_SCHED)
  298. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  299. struct task_group, css);
  300. #else
  301. tg = &init_task_group;
  302. #endif
  303. return tg;
  304. }
  305. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  306. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  307. {
  308. #ifdef CONFIG_FAIR_GROUP_SCHED
  309. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  310. p->se.parent = task_group(p)->se[cpu];
  311. #endif
  312. #ifdef CONFIG_RT_GROUP_SCHED
  313. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  314. p->rt.parent = task_group(p)->rt_se[cpu];
  315. #endif
  316. }
  317. #else
  318. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  319. static inline struct task_group *task_group(struct task_struct *p)
  320. {
  321. return NULL;
  322. }
  323. #endif /* CONFIG_GROUP_SCHED */
  324. /* CFS-related fields in a runqueue */
  325. struct cfs_rq {
  326. struct load_weight load;
  327. unsigned long nr_running;
  328. u64 exec_clock;
  329. u64 min_vruntime;
  330. struct rb_root tasks_timeline;
  331. struct rb_node *rb_leftmost;
  332. struct list_head tasks;
  333. struct list_head *balance_iterator;
  334. /*
  335. * 'curr' points to currently running entity on this cfs_rq.
  336. * It is set to NULL otherwise (i.e when none are currently running).
  337. */
  338. struct sched_entity *curr, *next, *last;
  339. unsigned int nr_spread_over;
  340. #ifdef CONFIG_FAIR_GROUP_SCHED
  341. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  342. /*
  343. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  344. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  345. * (like users, containers etc.)
  346. *
  347. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  348. * list is used during load balance.
  349. */
  350. struct list_head leaf_cfs_rq_list;
  351. struct task_group *tg; /* group that "owns" this runqueue */
  352. #ifdef CONFIG_SMP
  353. /*
  354. * the part of load.weight contributed by tasks
  355. */
  356. unsigned long task_weight;
  357. /*
  358. * h_load = weight * f(tg)
  359. *
  360. * Where f(tg) is the recursive weight fraction assigned to
  361. * this group.
  362. */
  363. unsigned long h_load;
  364. /*
  365. * this cpu's part of tg->shares
  366. */
  367. unsigned long shares;
  368. /*
  369. * load.weight at the time we set shares
  370. */
  371. unsigned long rq_weight;
  372. #endif
  373. #endif
  374. };
  375. /* Real-Time classes' related field in a runqueue: */
  376. struct rt_rq {
  377. struct rt_prio_array active;
  378. unsigned long rt_nr_running;
  379. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  380. struct {
  381. int curr; /* highest queued rt task prio */
  382. #ifdef CONFIG_SMP
  383. int next; /* next highest */
  384. #endif
  385. } highest_prio;
  386. #endif
  387. #ifdef CONFIG_SMP
  388. unsigned long rt_nr_migratory;
  389. unsigned long rt_nr_total;
  390. int overloaded;
  391. struct plist_head pushable_tasks;
  392. #endif
  393. int rt_throttled;
  394. u64 rt_time;
  395. u64 rt_runtime;
  396. /* Nests inside the rq lock: */
  397. raw_spinlock_t rt_runtime_lock;
  398. #ifdef CONFIG_RT_GROUP_SCHED
  399. unsigned long rt_nr_boosted;
  400. struct rq *rq;
  401. struct list_head leaf_rt_rq_list;
  402. struct task_group *tg;
  403. struct sched_rt_entity *rt_se;
  404. #endif
  405. };
  406. #ifdef CONFIG_SMP
  407. /*
  408. * We add the notion of a root-domain which will be used to define per-domain
  409. * variables. Each exclusive cpuset essentially defines an island domain by
  410. * fully partitioning the member cpus from any other cpuset. Whenever a new
  411. * exclusive cpuset is created, we also create and attach a new root-domain
  412. * object.
  413. *
  414. */
  415. struct root_domain {
  416. atomic_t refcount;
  417. cpumask_var_t span;
  418. cpumask_var_t online;
  419. /*
  420. * The "RT overload" flag: it gets set if a CPU has more than
  421. * one runnable RT task.
  422. */
  423. cpumask_var_t rto_mask;
  424. atomic_t rto_count;
  425. #ifdef CONFIG_SMP
  426. struct cpupri cpupri;
  427. #endif
  428. };
  429. /*
  430. * By default the system creates a single root-domain with all cpus as
  431. * members (mimicking the global state we have today).
  432. */
  433. static struct root_domain def_root_domain;
  434. #endif
  435. /*
  436. * This is the main, per-CPU runqueue data structure.
  437. *
  438. * Locking rule: those places that want to lock multiple runqueues
  439. * (such as the load balancing or the thread migration code), lock
  440. * acquire operations must be ordered by ascending &runqueue.
  441. */
  442. struct rq {
  443. /* runqueue lock: */
  444. raw_spinlock_t lock;
  445. /*
  446. * nr_running and cpu_load should be in the same cacheline because
  447. * remote CPUs use both these fields when doing load calculation.
  448. */
  449. unsigned long nr_running;
  450. #define CPU_LOAD_IDX_MAX 5
  451. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  452. #ifdef CONFIG_NO_HZ
  453. unsigned char in_nohz_recently;
  454. #endif
  455. /* capture load from *all* tasks on this cpu: */
  456. struct load_weight load;
  457. unsigned long nr_load_updates;
  458. u64 nr_switches;
  459. struct cfs_rq cfs;
  460. struct rt_rq rt;
  461. #ifdef CONFIG_FAIR_GROUP_SCHED
  462. /* list of leaf cfs_rq on this cpu: */
  463. struct list_head leaf_cfs_rq_list;
  464. #endif
  465. #ifdef CONFIG_RT_GROUP_SCHED
  466. struct list_head leaf_rt_rq_list;
  467. #endif
  468. /*
  469. * This is part of a global counter where only the total sum
  470. * over all CPUs matters. A task can increase this counter on
  471. * one CPU and if it got migrated afterwards it may decrease
  472. * it on another CPU. Always updated under the runqueue lock:
  473. */
  474. unsigned long nr_uninterruptible;
  475. struct task_struct *curr, *idle;
  476. unsigned long next_balance;
  477. struct mm_struct *prev_mm;
  478. u64 clock;
  479. atomic_t nr_iowait;
  480. #ifdef CONFIG_SMP
  481. struct root_domain *rd;
  482. struct sched_domain *sd;
  483. unsigned char idle_at_tick;
  484. /* For active balancing */
  485. int post_schedule;
  486. int active_balance;
  487. int push_cpu;
  488. /* cpu of this runqueue: */
  489. int cpu;
  490. int online;
  491. unsigned long avg_load_per_task;
  492. struct task_struct *migration_thread;
  493. struct list_head migration_queue;
  494. u64 rt_avg;
  495. u64 age_stamp;
  496. u64 idle_stamp;
  497. u64 avg_idle;
  498. #endif
  499. /* calc_load related fields */
  500. unsigned long calc_load_update;
  501. long calc_load_active;
  502. #ifdef CONFIG_SCHED_HRTICK
  503. #ifdef CONFIG_SMP
  504. int hrtick_csd_pending;
  505. struct call_single_data hrtick_csd;
  506. #endif
  507. struct hrtimer hrtick_timer;
  508. #endif
  509. #ifdef CONFIG_SCHEDSTATS
  510. /* latency stats */
  511. struct sched_info rq_sched_info;
  512. unsigned long long rq_cpu_time;
  513. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  514. /* sys_sched_yield() stats */
  515. unsigned int yld_count;
  516. /* schedule() stats */
  517. unsigned int sched_switch;
  518. unsigned int sched_count;
  519. unsigned int sched_goidle;
  520. /* try_to_wake_up() stats */
  521. unsigned int ttwu_count;
  522. unsigned int ttwu_local;
  523. /* BKL stats */
  524. unsigned int bkl_count;
  525. #endif
  526. };
  527. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  528. static inline
  529. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  530. {
  531. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  532. }
  533. static inline int cpu_of(struct rq *rq)
  534. {
  535. #ifdef CONFIG_SMP
  536. return rq->cpu;
  537. #else
  538. return 0;
  539. #endif
  540. }
  541. /*
  542. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  543. * See detach_destroy_domains: synchronize_sched for details.
  544. *
  545. * The domain tree of any CPU may only be accessed from within
  546. * preempt-disabled sections.
  547. */
  548. #define for_each_domain(cpu, __sd) \
  549. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  550. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  551. #define this_rq() (&__get_cpu_var(runqueues))
  552. #define task_rq(p) cpu_rq(task_cpu(p))
  553. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  554. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  555. inline void update_rq_clock(struct rq *rq)
  556. {
  557. rq->clock = sched_clock_cpu(cpu_of(rq));
  558. }
  559. /*
  560. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  561. */
  562. #ifdef CONFIG_SCHED_DEBUG
  563. # define const_debug __read_mostly
  564. #else
  565. # define const_debug static const
  566. #endif
  567. /**
  568. * runqueue_is_locked
  569. * @cpu: the processor in question.
  570. *
  571. * Returns true if the current cpu runqueue is locked.
  572. * This interface allows printk to be called with the runqueue lock
  573. * held and know whether or not it is OK to wake up the klogd.
  574. */
  575. int runqueue_is_locked(int cpu)
  576. {
  577. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  578. }
  579. /*
  580. * Debugging: various feature bits
  581. */
  582. #define SCHED_FEAT(name, enabled) \
  583. __SCHED_FEAT_##name ,
  584. enum {
  585. #include "sched_features.h"
  586. };
  587. #undef SCHED_FEAT
  588. #define SCHED_FEAT(name, enabled) \
  589. (1UL << __SCHED_FEAT_##name) * enabled |
  590. const_debug unsigned int sysctl_sched_features =
  591. #include "sched_features.h"
  592. 0;
  593. #undef SCHED_FEAT
  594. #ifdef CONFIG_SCHED_DEBUG
  595. #define SCHED_FEAT(name, enabled) \
  596. #name ,
  597. static __read_mostly char *sched_feat_names[] = {
  598. #include "sched_features.h"
  599. NULL
  600. };
  601. #undef SCHED_FEAT
  602. static int sched_feat_show(struct seq_file *m, void *v)
  603. {
  604. int i;
  605. for (i = 0; sched_feat_names[i]; i++) {
  606. if (!(sysctl_sched_features & (1UL << i)))
  607. seq_puts(m, "NO_");
  608. seq_printf(m, "%s ", sched_feat_names[i]);
  609. }
  610. seq_puts(m, "\n");
  611. return 0;
  612. }
  613. static ssize_t
  614. sched_feat_write(struct file *filp, const char __user *ubuf,
  615. size_t cnt, loff_t *ppos)
  616. {
  617. char buf[64];
  618. char *cmp = buf;
  619. int neg = 0;
  620. int i;
  621. if (cnt > 63)
  622. cnt = 63;
  623. if (copy_from_user(&buf, ubuf, cnt))
  624. return -EFAULT;
  625. buf[cnt] = 0;
  626. if (strncmp(buf, "NO_", 3) == 0) {
  627. neg = 1;
  628. cmp += 3;
  629. }
  630. for (i = 0; sched_feat_names[i]; i++) {
  631. int len = strlen(sched_feat_names[i]);
  632. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  633. if (neg)
  634. sysctl_sched_features &= ~(1UL << i);
  635. else
  636. sysctl_sched_features |= (1UL << i);
  637. break;
  638. }
  639. }
  640. if (!sched_feat_names[i])
  641. return -EINVAL;
  642. *ppos += cnt;
  643. return cnt;
  644. }
  645. static int sched_feat_open(struct inode *inode, struct file *filp)
  646. {
  647. return single_open(filp, sched_feat_show, NULL);
  648. }
  649. static const struct file_operations sched_feat_fops = {
  650. .open = sched_feat_open,
  651. .write = sched_feat_write,
  652. .read = seq_read,
  653. .llseek = seq_lseek,
  654. .release = single_release,
  655. };
  656. static __init int sched_init_debug(void)
  657. {
  658. debugfs_create_file("sched_features", 0644, NULL, NULL,
  659. &sched_feat_fops);
  660. return 0;
  661. }
  662. late_initcall(sched_init_debug);
  663. #endif
  664. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  665. /*
  666. * Number of tasks to iterate in a single balance run.
  667. * Limited because this is done with IRQs disabled.
  668. */
  669. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  670. /*
  671. * ratelimit for updating the group shares.
  672. * default: 0.25ms
  673. */
  674. unsigned int sysctl_sched_shares_ratelimit = 250000;
  675. unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
  676. /*
  677. * Inject some fuzzyness into changing the per-cpu group shares
  678. * this avoids remote rq-locks at the expense of fairness.
  679. * default: 4
  680. */
  681. unsigned int sysctl_sched_shares_thresh = 4;
  682. /*
  683. * period over which we average the RT time consumption, measured
  684. * in ms.
  685. *
  686. * default: 1s
  687. */
  688. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  689. /*
  690. * period over which we measure -rt task cpu usage in us.
  691. * default: 1s
  692. */
  693. unsigned int sysctl_sched_rt_period = 1000000;
  694. static __read_mostly int scheduler_running;
  695. /*
  696. * part of the period that we allow rt tasks to run in us.
  697. * default: 0.95s
  698. */
  699. int sysctl_sched_rt_runtime = 950000;
  700. static inline u64 global_rt_period(void)
  701. {
  702. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  703. }
  704. static inline u64 global_rt_runtime(void)
  705. {
  706. if (sysctl_sched_rt_runtime < 0)
  707. return RUNTIME_INF;
  708. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  709. }
  710. #ifndef prepare_arch_switch
  711. # define prepare_arch_switch(next) do { } while (0)
  712. #endif
  713. #ifndef finish_arch_switch
  714. # define finish_arch_switch(prev) do { } while (0)
  715. #endif
  716. static inline int task_current(struct rq *rq, struct task_struct *p)
  717. {
  718. return rq->curr == p;
  719. }
  720. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  721. static inline int task_running(struct rq *rq, struct task_struct *p)
  722. {
  723. return task_current(rq, p);
  724. }
  725. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  726. {
  727. }
  728. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  729. {
  730. #ifdef CONFIG_DEBUG_SPINLOCK
  731. /* this is a valid case when another task releases the spinlock */
  732. rq->lock.owner = current;
  733. #endif
  734. /*
  735. * If we are tracking spinlock dependencies then we have to
  736. * fix up the runqueue lock - which gets 'carried over' from
  737. * prev into current:
  738. */
  739. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  740. raw_spin_unlock_irq(&rq->lock);
  741. }
  742. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  743. static inline int task_running(struct rq *rq, struct task_struct *p)
  744. {
  745. #ifdef CONFIG_SMP
  746. return p->oncpu;
  747. #else
  748. return task_current(rq, p);
  749. #endif
  750. }
  751. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  752. {
  753. #ifdef CONFIG_SMP
  754. /*
  755. * We can optimise this out completely for !SMP, because the
  756. * SMP rebalancing from interrupt is the only thing that cares
  757. * here.
  758. */
  759. next->oncpu = 1;
  760. #endif
  761. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  762. raw_spin_unlock_irq(&rq->lock);
  763. #else
  764. raw_spin_unlock(&rq->lock);
  765. #endif
  766. }
  767. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  768. {
  769. #ifdef CONFIG_SMP
  770. /*
  771. * After ->oncpu is cleared, the task can be moved to a different CPU.
  772. * We must ensure this doesn't happen until the switch is completely
  773. * finished.
  774. */
  775. smp_wmb();
  776. prev->oncpu = 0;
  777. #endif
  778. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  779. local_irq_enable();
  780. #endif
  781. }
  782. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  783. /*
  784. * __task_rq_lock - lock the runqueue a given task resides on.
  785. * Must be called interrupts disabled.
  786. */
  787. static inline struct rq *__task_rq_lock(struct task_struct *p)
  788. __acquires(rq->lock)
  789. {
  790. for (;;) {
  791. struct rq *rq = task_rq(p);
  792. raw_spin_lock(&rq->lock);
  793. if (likely(rq == task_rq(p)))
  794. return rq;
  795. raw_spin_unlock(&rq->lock);
  796. }
  797. }
  798. /*
  799. * task_rq_lock - lock the runqueue a given task resides on and disable
  800. * interrupts. Note the ordering: we can safely lookup the task_rq without
  801. * explicitly disabling preemption.
  802. */
  803. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  804. __acquires(rq->lock)
  805. {
  806. struct rq *rq;
  807. for (;;) {
  808. local_irq_save(*flags);
  809. rq = task_rq(p);
  810. raw_spin_lock(&rq->lock);
  811. if (likely(rq == task_rq(p)))
  812. return rq;
  813. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  814. }
  815. }
  816. void task_rq_unlock_wait(struct task_struct *p)
  817. {
  818. struct rq *rq = task_rq(p);
  819. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  820. raw_spin_unlock_wait(&rq->lock);
  821. }
  822. static void __task_rq_unlock(struct rq *rq)
  823. __releases(rq->lock)
  824. {
  825. raw_spin_unlock(&rq->lock);
  826. }
  827. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  828. __releases(rq->lock)
  829. {
  830. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  831. }
  832. /*
  833. * this_rq_lock - lock this runqueue and disable interrupts.
  834. */
  835. static struct rq *this_rq_lock(void)
  836. __acquires(rq->lock)
  837. {
  838. struct rq *rq;
  839. local_irq_disable();
  840. rq = this_rq();
  841. raw_spin_lock(&rq->lock);
  842. return rq;
  843. }
  844. #ifdef CONFIG_SCHED_HRTICK
  845. /*
  846. * Use HR-timers to deliver accurate preemption points.
  847. *
  848. * Its all a bit involved since we cannot program an hrt while holding the
  849. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  850. * reschedule event.
  851. *
  852. * When we get rescheduled we reprogram the hrtick_timer outside of the
  853. * rq->lock.
  854. */
  855. /*
  856. * Use hrtick when:
  857. * - enabled by features
  858. * - hrtimer is actually high res
  859. */
  860. static inline int hrtick_enabled(struct rq *rq)
  861. {
  862. if (!sched_feat(HRTICK))
  863. return 0;
  864. if (!cpu_active(cpu_of(rq)))
  865. return 0;
  866. return hrtimer_is_hres_active(&rq->hrtick_timer);
  867. }
  868. static void hrtick_clear(struct rq *rq)
  869. {
  870. if (hrtimer_active(&rq->hrtick_timer))
  871. hrtimer_cancel(&rq->hrtick_timer);
  872. }
  873. /*
  874. * High-resolution timer tick.
  875. * Runs from hardirq context with interrupts disabled.
  876. */
  877. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  878. {
  879. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  880. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  881. raw_spin_lock(&rq->lock);
  882. update_rq_clock(rq);
  883. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  884. raw_spin_unlock(&rq->lock);
  885. return HRTIMER_NORESTART;
  886. }
  887. #ifdef CONFIG_SMP
  888. /*
  889. * called from hardirq (IPI) context
  890. */
  891. static void __hrtick_start(void *arg)
  892. {
  893. struct rq *rq = arg;
  894. raw_spin_lock(&rq->lock);
  895. hrtimer_restart(&rq->hrtick_timer);
  896. rq->hrtick_csd_pending = 0;
  897. raw_spin_unlock(&rq->lock);
  898. }
  899. /*
  900. * Called to set the hrtick timer state.
  901. *
  902. * called with rq->lock held and irqs disabled
  903. */
  904. static void hrtick_start(struct rq *rq, u64 delay)
  905. {
  906. struct hrtimer *timer = &rq->hrtick_timer;
  907. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  908. hrtimer_set_expires(timer, time);
  909. if (rq == this_rq()) {
  910. hrtimer_restart(timer);
  911. } else if (!rq->hrtick_csd_pending) {
  912. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  913. rq->hrtick_csd_pending = 1;
  914. }
  915. }
  916. static int
  917. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  918. {
  919. int cpu = (int)(long)hcpu;
  920. switch (action) {
  921. case CPU_UP_CANCELED:
  922. case CPU_UP_CANCELED_FROZEN:
  923. case CPU_DOWN_PREPARE:
  924. case CPU_DOWN_PREPARE_FROZEN:
  925. case CPU_DEAD:
  926. case CPU_DEAD_FROZEN:
  927. hrtick_clear(cpu_rq(cpu));
  928. return NOTIFY_OK;
  929. }
  930. return NOTIFY_DONE;
  931. }
  932. static __init void init_hrtick(void)
  933. {
  934. hotcpu_notifier(hotplug_hrtick, 0);
  935. }
  936. #else
  937. /*
  938. * Called to set the hrtick timer state.
  939. *
  940. * called with rq->lock held and irqs disabled
  941. */
  942. static void hrtick_start(struct rq *rq, u64 delay)
  943. {
  944. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  945. HRTIMER_MODE_REL_PINNED, 0);
  946. }
  947. static inline void init_hrtick(void)
  948. {
  949. }
  950. #endif /* CONFIG_SMP */
  951. static void init_rq_hrtick(struct rq *rq)
  952. {
  953. #ifdef CONFIG_SMP
  954. rq->hrtick_csd_pending = 0;
  955. rq->hrtick_csd.flags = 0;
  956. rq->hrtick_csd.func = __hrtick_start;
  957. rq->hrtick_csd.info = rq;
  958. #endif
  959. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  960. rq->hrtick_timer.function = hrtick;
  961. }
  962. #else /* CONFIG_SCHED_HRTICK */
  963. static inline void hrtick_clear(struct rq *rq)
  964. {
  965. }
  966. static inline void init_rq_hrtick(struct rq *rq)
  967. {
  968. }
  969. static inline void init_hrtick(void)
  970. {
  971. }
  972. #endif /* CONFIG_SCHED_HRTICK */
  973. /*
  974. * resched_task - mark a task 'to be rescheduled now'.
  975. *
  976. * On UP this means the setting of the need_resched flag, on SMP it
  977. * might also involve a cross-CPU call to trigger the scheduler on
  978. * the target CPU.
  979. */
  980. #ifdef CONFIG_SMP
  981. #ifndef tsk_is_polling
  982. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  983. #endif
  984. static void resched_task(struct task_struct *p)
  985. {
  986. int cpu;
  987. assert_raw_spin_locked(&task_rq(p)->lock);
  988. if (test_tsk_need_resched(p))
  989. return;
  990. set_tsk_need_resched(p);
  991. cpu = task_cpu(p);
  992. if (cpu == smp_processor_id())
  993. return;
  994. /* NEED_RESCHED must be visible before we test polling */
  995. smp_mb();
  996. if (!tsk_is_polling(p))
  997. smp_send_reschedule(cpu);
  998. }
  999. static void resched_cpu(int cpu)
  1000. {
  1001. struct rq *rq = cpu_rq(cpu);
  1002. unsigned long flags;
  1003. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  1004. return;
  1005. resched_task(cpu_curr(cpu));
  1006. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1007. }
  1008. #ifdef CONFIG_NO_HZ
  1009. /*
  1010. * When add_timer_on() enqueues a timer into the timer wheel of an
  1011. * idle CPU then this timer might expire before the next timer event
  1012. * which is scheduled to wake up that CPU. In case of a completely
  1013. * idle system the next event might even be infinite time into the
  1014. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1015. * leaves the inner idle loop so the newly added timer is taken into
  1016. * account when the CPU goes back to idle and evaluates the timer
  1017. * wheel for the next timer event.
  1018. */
  1019. void wake_up_idle_cpu(int cpu)
  1020. {
  1021. struct rq *rq = cpu_rq(cpu);
  1022. if (cpu == smp_processor_id())
  1023. return;
  1024. /*
  1025. * This is safe, as this function is called with the timer
  1026. * wheel base lock of (cpu) held. When the CPU is on the way
  1027. * to idle and has not yet set rq->curr to idle then it will
  1028. * be serialized on the timer wheel base lock and take the new
  1029. * timer into account automatically.
  1030. */
  1031. if (rq->curr != rq->idle)
  1032. return;
  1033. /*
  1034. * We can set TIF_RESCHED on the idle task of the other CPU
  1035. * lockless. The worst case is that the other CPU runs the
  1036. * idle task through an additional NOOP schedule()
  1037. */
  1038. set_tsk_need_resched(rq->idle);
  1039. /* NEED_RESCHED must be visible before we test polling */
  1040. smp_mb();
  1041. if (!tsk_is_polling(rq->idle))
  1042. smp_send_reschedule(cpu);
  1043. }
  1044. #endif /* CONFIG_NO_HZ */
  1045. static u64 sched_avg_period(void)
  1046. {
  1047. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1048. }
  1049. static void sched_avg_update(struct rq *rq)
  1050. {
  1051. s64 period = sched_avg_period();
  1052. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1053. rq->age_stamp += period;
  1054. rq->rt_avg /= 2;
  1055. }
  1056. }
  1057. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1058. {
  1059. rq->rt_avg += rt_delta;
  1060. sched_avg_update(rq);
  1061. }
  1062. #else /* !CONFIG_SMP */
  1063. static void resched_task(struct task_struct *p)
  1064. {
  1065. assert_raw_spin_locked(&task_rq(p)->lock);
  1066. set_tsk_need_resched(p);
  1067. }
  1068. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1069. {
  1070. }
  1071. #endif /* CONFIG_SMP */
  1072. #if BITS_PER_LONG == 32
  1073. # define WMULT_CONST (~0UL)
  1074. #else
  1075. # define WMULT_CONST (1UL << 32)
  1076. #endif
  1077. #define WMULT_SHIFT 32
  1078. /*
  1079. * Shift right and round:
  1080. */
  1081. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1082. /*
  1083. * delta *= weight / lw
  1084. */
  1085. static unsigned long
  1086. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1087. struct load_weight *lw)
  1088. {
  1089. u64 tmp;
  1090. if (!lw->inv_weight) {
  1091. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1092. lw->inv_weight = 1;
  1093. else
  1094. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1095. / (lw->weight+1);
  1096. }
  1097. tmp = (u64)delta_exec * weight;
  1098. /*
  1099. * Check whether we'd overflow the 64-bit multiplication:
  1100. */
  1101. if (unlikely(tmp > WMULT_CONST))
  1102. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1103. WMULT_SHIFT/2);
  1104. else
  1105. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1106. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1107. }
  1108. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1109. {
  1110. lw->weight += inc;
  1111. lw->inv_weight = 0;
  1112. }
  1113. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1114. {
  1115. lw->weight -= dec;
  1116. lw->inv_weight = 0;
  1117. }
  1118. /*
  1119. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1120. * of tasks with abnormal "nice" values across CPUs the contribution that
  1121. * each task makes to its run queue's load is weighted according to its
  1122. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1123. * scaled version of the new time slice allocation that they receive on time
  1124. * slice expiry etc.
  1125. */
  1126. #define WEIGHT_IDLEPRIO 3
  1127. #define WMULT_IDLEPRIO 1431655765
  1128. /*
  1129. * Nice levels are multiplicative, with a gentle 10% change for every
  1130. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1131. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1132. * that remained on nice 0.
  1133. *
  1134. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1135. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1136. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1137. * If a task goes up by ~10% and another task goes down by ~10% then
  1138. * the relative distance between them is ~25%.)
  1139. */
  1140. static const int prio_to_weight[40] = {
  1141. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1142. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1143. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1144. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1145. /* 0 */ 1024, 820, 655, 526, 423,
  1146. /* 5 */ 335, 272, 215, 172, 137,
  1147. /* 10 */ 110, 87, 70, 56, 45,
  1148. /* 15 */ 36, 29, 23, 18, 15,
  1149. };
  1150. /*
  1151. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1152. *
  1153. * In cases where the weight does not change often, we can use the
  1154. * precalculated inverse to speed up arithmetics by turning divisions
  1155. * into multiplications:
  1156. */
  1157. static const u32 prio_to_wmult[40] = {
  1158. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1159. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1160. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1161. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1162. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1163. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1164. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1165. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1166. };
  1167. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1168. /*
  1169. * runqueue iterator, to support SMP load-balancing between different
  1170. * scheduling classes, without having to expose their internal data
  1171. * structures to the load-balancing proper:
  1172. */
  1173. struct rq_iterator {
  1174. void *arg;
  1175. struct task_struct *(*start)(void *);
  1176. struct task_struct *(*next)(void *);
  1177. };
  1178. #ifdef CONFIG_SMP
  1179. static unsigned long
  1180. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1181. unsigned long max_load_move, struct sched_domain *sd,
  1182. enum cpu_idle_type idle, int *all_pinned,
  1183. int *this_best_prio, struct rq_iterator *iterator);
  1184. static int
  1185. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1186. struct sched_domain *sd, enum cpu_idle_type idle,
  1187. struct rq_iterator *iterator);
  1188. #endif
  1189. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1190. enum cpuacct_stat_index {
  1191. CPUACCT_STAT_USER, /* ... user mode */
  1192. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1193. CPUACCT_STAT_NSTATS,
  1194. };
  1195. #ifdef CONFIG_CGROUP_CPUACCT
  1196. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1197. static void cpuacct_update_stats(struct task_struct *tsk,
  1198. enum cpuacct_stat_index idx, cputime_t val);
  1199. #else
  1200. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1201. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1202. enum cpuacct_stat_index idx, cputime_t val) {}
  1203. #endif
  1204. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1205. {
  1206. update_load_add(&rq->load, load);
  1207. }
  1208. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1209. {
  1210. update_load_sub(&rq->load, load);
  1211. }
  1212. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1213. typedef int (*tg_visitor)(struct task_group *, void *);
  1214. /*
  1215. * Iterate the full tree, calling @down when first entering a node and @up when
  1216. * leaving it for the final time.
  1217. */
  1218. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1219. {
  1220. struct task_group *parent, *child;
  1221. int ret;
  1222. rcu_read_lock();
  1223. parent = &root_task_group;
  1224. down:
  1225. ret = (*down)(parent, data);
  1226. if (ret)
  1227. goto out_unlock;
  1228. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1229. parent = child;
  1230. goto down;
  1231. up:
  1232. continue;
  1233. }
  1234. ret = (*up)(parent, data);
  1235. if (ret)
  1236. goto out_unlock;
  1237. child = parent;
  1238. parent = parent->parent;
  1239. if (parent)
  1240. goto up;
  1241. out_unlock:
  1242. rcu_read_unlock();
  1243. return ret;
  1244. }
  1245. static int tg_nop(struct task_group *tg, void *data)
  1246. {
  1247. return 0;
  1248. }
  1249. #endif
  1250. #ifdef CONFIG_SMP
  1251. /* Used instead of source_load when we know the type == 0 */
  1252. static unsigned long weighted_cpuload(const int cpu)
  1253. {
  1254. return cpu_rq(cpu)->load.weight;
  1255. }
  1256. /*
  1257. * Return a low guess at the load of a migration-source cpu weighted
  1258. * according to the scheduling class and "nice" value.
  1259. *
  1260. * We want to under-estimate the load of migration sources, to
  1261. * balance conservatively.
  1262. */
  1263. static unsigned long source_load(int cpu, int type)
  1264. {
  1265. struct rq *rq = cpu_rq(cpu);
  1266. unsigned long total = weighted_cpuload(cpu);
  1267. if (type == 0 || !sched_feat(LB_BIAS))
  1268. return total;
  1269. return min(rq->cpu_load[type-1], total);
  1270. }
  1271. /*
  1272. * Return a high guess at the load of a migration-target cpu weighted
  1273. * according to the scheduling class and "nice" value.
  1274. */
  1275. static unsigned long target_load(int cpu, int type)
  1276. {
  1277. struct rq *rq = cpu_rq(cpu);
  1278. unsigned long total = weighted_cpuload(cpu);
  1279. if (type == 0 || !sched_feat(LB_BIAS))
  1280. return total;
  1281. return max(rq->cpu_load[type-1], total);
  1282. }
  1283. static struct sched_group *group_of(int cpu)
  1284. {
  1285. struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
  1286. if (!sd)
  1287. return NULL;
  1288. return sd->groups;
  1289. }
  1290. static unsigned long power_of(int cpu)
  1291. {
  1292. struct sched_group *group = group_of(cpu);
  1293. if (!group)
  1294. return SCHED_LOAD_SCALE;
  1295. return group->cpu_power;
  1296. }
  1297. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1298. static unsigned long cpu_avg_load_per_task(int cpu)
  1299. {
  1300. struct rq *rq = cpu_rq(cpu);
  1301. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1302. if (nr_running)
  1303. rq->avg_load_per_task = rq->load.weight / nr_running;
  1304. else
  1305. rq->avg_load_per_task = 0;
  1306. return rq->avg_load_per_task;
  1307. }
  1308. #ifdef CONFIG_FAIR_GROUP_SCHED
  1309. static __read_mostly unsigned long *update_shares_data;
  1310. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1311. /*
  1312. * Calculate and set the cpu's group shares.
  1313. */
  1314. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1315. unsigned long sd_shares,
  1316. unsigned long sd_rq_weight,
  1317. unsigned long *usd_rq_weight)
  1318. {
  1319. unsigned long shares, rq_weight;
  1320. int boost = 0;
  1321. rq_weight = usd_rq_weight[cpu];
  1322. if (!rq_weight) {
  1323. boost = 1;
  1324. rq_weight = NICE_0_LOAD;
  1325. }
  1326. /*
  1327. * \Sum_j shares_j * rq_weight_i
  1328. * shares_i = -----------------------------
  1329. * \Sum_j rq_weight_j
  1330. */
  1331. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1332. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1333. if (abs(shares - tg->se[cpu]->load.weight) >
  1334. sysctl_sched_shares_thresh) {
  1335. struct rq *rq = cpu_rq(cpu);
  1336. unsigned long flags;
  1337. raw_spin_lock_irqsave(&rq->lock, flags);
  1338. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1339. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1340. __set_se_shares(tg->se[cpu], shares);
  1341. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1342. }
  1343. }
  1344. /*
  1345. * Re-compute the task group their per cpu shares over the given domain.
  1346. * This needs to be done in a bottom-up fashion because the rq weight of a
  1347. * parent group depends on the shares of its child groups.
  1348. */
  1349. static int tg_shares_up(struct task_group *tg, void *data)
  1350. {
  1351. unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
  1352. unsigned long *usd_rq_weight;
  1353. struct sched_domain *sd = data;
  1354. unsigned long flags;
  1355. int i;
  1356. if (!tg->se[0])
  1357. return 0;
  1358. local_irq_save(flags);
  1359. usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
  1360. for_each_cpu(i, sched_domain_span(sd)) {
  1361. weight = tg->cfs_rq[i]->load.weight;
  1362. usd_rq_weight[i] = weight;
  1363. rq_weight += weight;
  1364. /*
  1365. * If there are currently no tasks on the cpu pretend there
  1366. * is one of average load so that when a new task gets to
  1367. * run here it will not get delayed by group starvation.
  1368. */
  1369. if (!weight)
  1370. weight = NICE_0_LOAD;
  1371. sum_weight += weight;
  1372. shares += tg->cfs_rq[i]->shares;
  1373. }
  1374. if (!rq_weight)
  1375. rq_weight = sum_weight;
  1376. if ((!shares && rq_weight) || shares > tg->shares)
  1377. shares = tg->shares;
  1378. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1379. shares = tg->shares;
  1380. for_each_cpu(i, sched_domain_span(sd))
  1381. update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
  1382. local_irq_restore(flags);
  1383. return 0;
  1384. }
  1385. /*
  1386. * Compute the cpu's hierarchical load factor for each task group.
  1387. * This needs to be done in a top-down fashion because the load of a child
  1388. * group is a fraction of its parents load.
  1389. */
  1390. static int tg_load_down(struct task_group *tg, void *data)
  1391. {
  1392. unsigned long load;
  1393. long cpu = (long)data;
  1394. if (!tg->parent) {
  1395. load = cpu_rq(cpu)->load.weight;
  1396. } else {
  1397. load = tg->parent->cfs_rq[cpu]->h_load;
  1398. load *= tg->cfs_rq[cpu]->shares;
  1399. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1400. }
  1401. tg->cfs_rq[cpu]->h_load = load;
  1402. return 0;
  1403. }
  1404. static void update_shares(struct sched_domain *sd)
  1405. {
  1406. s64 elapsed;
  1407. u64 now;
  1408. if (root_task_group_empty())
  1409. return;
  1410. now = cpu_clock(raw_smp_processor_id());
  1411. elapsed = now - sd->last_update;
  1412. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1413. sd->last_update = now;
  1414. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1415. }
  1416. }
  1417. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1418. {
  1419. if (root_task_group_empty())
  1420. return;
  1421. raw_spin_unlock(&rq->lock);
  1422. update_shares(sd);
  1423. raw_spin_lock(&rq->lock);
  1424. }
  1425. static void update_h_load(long cpu)
  1426. {
  1427. if (root_task_group_empty())
  1428. return;
  1429. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1430. }
  1431. #else
  1432. static inline void update_shares(struct sched_domain *sd)
  1433. {
  1434. }
  1435. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1436. {
  1437. }
  1438. #endif
  1439. #ifdef CONFIG_PREEMPT
  1440. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1441. /*
  1442. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1443. * way at the expense of forcing extra atomic operations in all
  1444. * invocations. This assures that the double_lock is acquired using the
  1445. * same underlying policy as the spinlock_t on this architecture, which
  1446. * reduces latency compared to the unfair variant below. However, it
  1447. * also adds more overhead and therefore may reduce throughput.
  1448. */
  1449. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1450. __releases(this_rq->lock)
  1451. __acquires(busiest->lock)
  1452. __acquires(this_rq->lock)
  1453. {
  1454. raw_spin_unlock(&this_rq->lock);
  1455. double_rq_lock(this_rq, busiest);
  1456. return 1;
  1457. }
  1458. #else
  1459. /*
  1460. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1461. * latency by eliminating extra atomic operations when the locks are
  1462. * already in proper order on entry. This favors lower cpu-ids and will
  1463. * grant the double lock to lower cpus over higher ids under contention,
  1464. * regardless of entry order into the function.
  1465. */
  1466. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1467. __releases(this_rq->lock)
  1468. __acquires(busiest->lock)
  1469. __acquires(this_rq->lock)
  1470. {
  1471. int ret = 0;
  1472. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1473. if (busiest < this_rq) {
  1474. raw_spin_unlock(&this_rq->lock);
  1475. raw_spin_lock(&busiest->lock);
  1476. raw_spin_lock_nested(&this_rq->lock,
  1477. SINGLE_DEPTH_NESTING);
  1478. ret = 1;
  1479. } else
  1480. raw_spin_lock_nested(&busiest->lock,
  1481. SINGLE_DEPTH_NESTING);
  1482. }
  1483. return ret;
  1484. }
  1485. #endif /* CONFIG_PREEMPT */
  1486. /*
  1487. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1488. */
  1489. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1490. {
  1491. if (unlikely(!irqs_disabled())) {
  1492. /* printk() doesn't work good under rq->lock */
  1493. raw_spin_unlock(&this_rq->lock);
  1494. BUG_ON(1);
  1495. }
  1496. return _double_lock_balance(this_rq, busiest);
  1497. }
  1498. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1499. __releases(busiest->lock)
  1500. {
  1501. raw_spin_unlock(&busiest->lock);
  1502. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1503. }
  1504. #endif
  1505. #ifdef CONFIG_FAIR_GROUP_SCHED
  1506. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1507. {
  1508. #ifdef CONFIG_SMP
  1509. cfs_rq->shares = shares;
  1510. #endif
  1511. }
  1512. #endif
  1513. static void calc_load_account_active(struct rq *this_rq);
  1514. static void update_sysctl(void);
  1515. static int get_update_sysctl_factor(void);
  1516. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1517. {
  1518. set_task_rq(p, cpu);
  1519. #ifdef CONFIG_SMP
  1520. /*
  1521. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1522. * successfuly executed on another CPU. We must ensure that updates of
  1523. * per-task data have been completed by this moment.
  1524. */
  1525. smp_wmb();
  1526. task_thread_info(p)->cpu = cpu;
  1527. #endif
  1528. }
  1529. #include "sched_stats.h"
  1530. #include "sched_idletask.c"
  1531. #include "sched_fair.c"
  1532. #include "sched_rt.c"
  1533. #ifdef CONFIG_SCHED_DEBUG
  1534. # include "sched_debug.c"
  1535. #endif
  1536. #define sched_class_highest (&rt_sched_class)
  1537. #define for_each_class(class) \
  1538. for (class = sched_class_highest; class; class = class->next)
  1539. static void inc_nr_running(struct rq *rq)
  1540. {
  1541. rq->nr_running++;
  1542. }
  1543. static void dec_nr_running(struct rq *rq)
  1544. {
  1545. rq->nr_running--;
  1546. }
  1547. static void set_load_weight(struct task_struct *p)
  1548. {
  1549. if (task_has_rt_policy(p)) {
  1550. p->se.load.weight = prio_to_weight[0] * 2;
  1551. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1552. return;
  1553. }
  1554. /*
  1555. * SCHED_IDLE tasks get minimal weight:
  1556. */
  1557. if (p->policy == SCHED_IDLE) {
  1558. p->se.load.weight = WEIGHT_IDLEPRIO;
  1559. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1560. return;
  1561. }
  1562. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1563. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1564. }
  1565. static void update_avg(u64 *avg, u64 sample)
  1566. {
  1567. s64 diff = sample - *avg;
  1568. *avg += diff >> 3;
  1569. }
  1570. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1571. {
  1572. if (wakeup)
  1573. p->se.start_runtime = p->se.sum_exec_runtime;
  1574. sched_info_queued(p);
  1575. p->sched_class->enqueue_task(rq, p, wakeup);
  1576. p->se.on_rq = 1;
  1577. }
  1578. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1579. {
  1580. if (sleep) {
  1581. if (p->se.last_wakeup) {
  1582. update_avg(&p->se.avg_overlap,
  1583. p->se.sum_exec_runtime - p->se.last_wakeup);
  1584. p->se.last_wakeup = 0;
  1585. } else {
  1586. update_avg(&p->se.avg_wakeup,
  1587. sysctl_sched_wakeup_granularity);
  1588. }
  1589. }
  1590. sched_info_dequeued(p);
  1591. p->sched_class->dequeue_task(rq, p, sleep);
  1592. p->se.on_rq = 0;
  1593. }
  1594. /*
  1595. * __normal_prio - return the priority that is based on the static prio
  1596. */
  1597. static inline int __normal_prio(struct task_struct *p)
  1598. {
  1599. return p->static_prio;
  1600. }
  1601. /*
  1602. * Calculate the expected normal priority: i.e. priority
  1603. * without taking RT-inheritance into account. Might be
  1604. * boosted by interactivity modifiers. Changes upon fork,
  1605. * setprio syscalls, and whenever the interactivity
  1606. * estimator recalculates.
  1607. */
  1608. static inline int normal_prio(struct task_struct *p)
  1609. {
  1610. int prio;
  1611. if (task_has_rt_policy(p))
  1612. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1613. else
  1614. prio = __normal_prio(p);
  1615. return prio;
  1616. }
  1617. /*
  1618. * Calculate the current priority, i.e. the priority
  1619. * taken into account by the scheduler. This value might
  1620. * be boosted by RT tasks, or might be boosted by
  1621. * interactivity modifiers. Will be RT if the task got
  1622. * RT-boosted. If not then it returns p->normal_prio.
  1623. */
  1624. static int effective_prio(struct task_struct *p)
  1625. {
  1626. p->normal_prio = normal_prio(p);
  1627. /*
  1628. * If we are RT tasks or we were boosted to RT priority,
  1629. * keep the priority unchanged. Otherwise, update priority
  1630. * to the normal priority:
  1631. */
  1632. if (!rt_prio(p->prio))
  1633. return p->normal_prio;
  1634. return p->prio;
  1635. }
  1636. /*
  1637. * activate_task - move a task to the runqueue.
  1638. */
  1639. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1640. {
  1641. if (task_contributes_to_load(p))
  1642. rq->nr_uninterruptible--;
  1643. enqueue_task(rq, p, wakeup);
  1644. inc_nr_running(rq);
  1645. }
  1646. /*
  1647. * deactivate_task - remove a task from the runqueue.
  1648. */
  1649. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1650. {
  1651. if (task_contributes_to_load(p))
  1652. rq->nr_uninterruptible++;
  1653. dequeue_task(rq, p, sleep);
  1654. dec_nr_running(rq);
  1655. }
  1656. /**
  1657. * task_curr - is this task currently executing on a CPU?
  1658. * @p: the task in question.
  1659. */
  1660. inline int task_curr(const struct task_struct *p)
  1661. {
  1662. return cpu_curr(task_cpu(p)) == p;
  1663. }
  1664. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1665. const struct sched_class *prev_class,
  1666. int oldprio, int running)
  1667. {
  1668. if (prev_class != p->sched_class) {
  1669. if (prev_class->switched_from)
  1670. prev_class->switched_from(rq, p, running);
  1671. p->sched_class->switched_to(rq, p, running);
  1672. } else
  1673. p->sched_class->prio_changed(rq, p, oldprio, running);
  1674. }
  1675. /**
  1676. * kthread_bind - bind a just-created kthread to a cpu.
  1677. * @p: thread created by kthread_create().
  1678. * @cpu: cpu (might not be online, must be possible) for @k to run on.
  1679. *
  1680. * Description: This function is equivalent to set_cpus_allowed(),
  1681. * except that @cpu doesn't need to be online, and the thread must be
  1682. * stopped (i.e., just returned from kthread_create()).
  1683. *
  1684. * Function lives here instead of kthread.c because it messes with
  1685. * scheduler internals which require locking.
  1686. */
  1687. void kthread_bind(struct task_struct *p, unsigned int cpu)
  1688. {
  1689. struct rq *rq = cpu_rq(cpu);
  1690. unsigned long flags;
  1691. /* Must have done schedule() in kthread() before we set_task_cpu */
  1692. if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
  1693. WARN_ON(1);
  1694. return;
  1695. }
  1696. raw_spin_lock_irqsave(&rq->lock, flags);
  1697. update_rq_clock(rq);
  1698. set_task_cpu(p, cpu);
  1699. p->cpus_allowed = cpumask_of_cpu(cpu);
  1700. p->rt.nr_cpus_allowed = 1;
  1701. p->flags |= PF_THREAD_BOUND;
  1702. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1703. }
  1704. EXPORT_SYMBOL(kthread_bind);
  1705. #ifdef CONFIG_SMP
  1706. /*
  1707. * Is this task likely cache-hot:
  1708. */
  1709. static int
  1710. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1711. {
  1712. s64 delta;
  1713. if (p->sched_class != &fair_sched_class)
  1714. return 0;
  1715. /*
  1716. * Buddy candidates are cache hot:
  1717. */
  1718. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1719. (&p->se == cfs_rq_of(&p->se)->next ||
  1720. &p->se == cfs_rq_of(&p->se)->last))
  1721. return 1;
  1722. if (sysctl_sched_migration_cost == -1)
  1723. return 1;
  1724. if (sysctl_sched_migration_cost == 0)
  1725. return 0;
  1726. delta = now - p->se.exec_start;
  1727. return delta < (s64)sysctl_sched_migration_cost;
  1728. }
  1729. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1730. {
  1731. int old_cpu = task_cpu(p);
  1732. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1733. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1734. trace_sched_migrate_task(p, new_cpu);
  1735. if (old_cpu != new_cpu) {
  1736. p->se.nr_migrations++;
  1737. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
  1738. 1, 1, NULL, 0);
  1739. }
  1740. p->se.vruntime -= old_cfsrq->min_vruntime -
  1741. new_cfsrq->min_vruntime;
  1742. __set_task_cpu(p, new_cpu);
  1743. }
  1744. struct migration_req {
  1745. struct list_head list;
  1746. struct task_struct *task;
  1747. int dest_cpu;
  1748. struct completion done;
  1749. };
  1750. /*
  1751. * The task's runqueue lock must be held.
  1752. * Returns true if you have to wait for migration thread.
  1753. */
  1754. static int
  1755. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1756. {
  1757. struct rq *rq = task_rq(p);
  1758. /*
  1759. * If the task is not on a runqueue (and not running), then
  1760. * it is sufficient to simply update the task's cpu field.
  1761. */
  1762. if (!p->se.on_rq && !task_running(rq, p)) {
  1763. update_rq_clock(rq);
  1764. set_task_cpu(p, dest_cpu);
  1765. return 0;
  1766. }
  1767. init_completion(&req->done);
  1768. req->task = p;
  1769. req->dest_cpu = dest_cpu;
  1770. list_add(&req->list, &rq->migration_queue);
  1771. return 1;
  1772. }
  1773. /*
  1774. * wait_task_context_switch - wait for a thread to complete at least one
  1775. * context switch.
  1776. *
  1777. * @p must not be current.
  1778. */
  1779. void wait_task_context_switch(struct task_struct *p)
  1780. {
  1781. unsigned long nvcsw, nivcsw, flags;
  1782. int running;
  1783. struct rq *rq;
  1784. nvcsw = p->nvcsw;
  1785. nivcsw = p->nivcsw;
  1786. for (;;) {
  1787. /*
  1788. * The runqueue is assigned before the actual context
  1789. * switch. We need to take the runqueue lock.
  1790. *
  1791. * We could check initially without the lock but it is
  1792. * very likely that we need to take the lock in every
  1793. * iteration.
  1794. */
  1795. rq = task_rq_lock(p, &flags);
  1796. running = task_running(rq, p);
  1797. task_rq_unlock(rq, &flags);
  1798. if (likely(!running))
  1799. break;
  1800. /*
  1801. * The switch count is incremented before the actual
  1802. * context switch. We thus wait for two switches to be
  1803. * sure at least one completed.
  1804. */
  1805. if ((p->nvcsw - nvcsw) > 1)
  1806. break;
  1807. if ((p->nivcsw - nivcsw) > 1)
  1808. break;
  1809. cpu_relax();
  1810. }
  1811. }
  1812. /*
  1813. * wait_task_inactive - wait for a thread to unschedule.
  1814. *
  1815. * If @match_state is nonzero, it's the @p->state value just checked and
  1816. * not expected to change. If it changes, i.e. @p might have woken up,
  1817. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1818. * we return a positive number (its total switch count). If a second call
  1819. * a short while later returns the same number, the caller can be sure that
  1820. * @p has remained unscheduled the whole time.
  1821. *
  1822. * The caller must ensure that the task *will* unschedule sometime soon,
  1823. * else this function might spin for a *long* time. This function can't
  1824. * be called with interrupts off, or it may introduce deadlock with
  1825. * smp_call_function() if an IPI is sent by the same process we are
  1826. * waiting to become inactive.
  1827. */
  1828. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1829. {
  1830. unsigned long flags;
  1831. int running, on_rq;
  1832. unsigned long ncsw;
  1833. struct rq *rq;
  1834. for (;;) {
  1835. /*
  1836. * We do the initial early heuristics without holding
  1837. * any task-queue locks at all. We'll only try to get
  1838. * the runqueue lock when things look like they will
  1839. * work out!
  1840. */
  1841. rq = task_rq(p);
  1842. /*
  1843. * If the task is actively running on another CPU
  1844. * still, just relax and busy-wait without holding
  1845. * any locks.
  1846. *
  1847. * NOTE! Since we don't hold any locks, it's not
  1848. * even sure that "rq" stays as the right runqueue!
  1849. * But we don't care, since "task_running()" will
  1850. * return false if the runqueue has changed and p
  1851. * is actually now running somewhere else!
  1852. */
  1853. while (task_running(rq, p)) {
  1854. if (match_state && unlikely(p->state != match_state))
  1855. return 0;
  1856. cpu_relax();
  1857. }
  1858. /*
  1859. * Ok, time to look more closely! We need the rq
  1860. * lock now, to be *sure*. If we're wrong, we'll
  1861. * just go back and repeat.
  1862. */
  1863. rq = task_rq_lock(p, &flags);
  1864. trace_sched_wait_task(rq, p);
  1865. running = task_running(rq, p);
  1866. on_rq = p->se.on_rq;
  1867. ncsw = 0;
  1868. if (!match_state || p->state == match_state)
  1869. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1870. task_rq_unlock(rq, &flags);
  1871. /*
  1872. * If it changed from the expected state, bail out now.
  1873. */
  1874. if (unlikely(!ncsw))
  1875. break;
  1876. /*
  1877. * Was it really running after all now that we
  1878. * checked with the proper locks actually held?
  1879. *
  1880. * Oops. Go back and try again..
  1881. */
  1882. if (unlikely(running)) {
  1883. cpu_relax();
  1884. continue;
  1885. }
  1886. /*
  1887. * It's not enough that it's not actively running,
  1888. * it must be off the runqueue _entirely_, and not
  1889. * preempted!
  1890. *
  1891. * So if it was still runnable (but just not actively
  1892. * running right now), it's preempted, and we should
  1893. * yield - it could be a while.
  1894. */
  1895. if (unlikely(on_rq)) {
  1896. schedule_timeout_uninterruptible(1);
  1897. continue;
  1898. }
  1899. /*
  1900. * Ahh, all good. It wasn't running, and it wasn't
  1901. * runnable, which means that it will never become
  1902. * running in the future either. We're all done!
  1903. */
  1904. break;
  1905. }
  1906. return ncsw;
  1907. }
  1908. /***
  1909. * kick_process - kick a running thread to enter/exit the kernel
  1910. * @p: the to-be-kicked thread
  1911. *
  1912. * Cause a process which is running on another CPU to enter
  1913. * kernel-mode, without any delay. (to get signals handled.)
  1914. *
  1915. * NOTE: this function doesnt have to take the runqueue lock,
  1916. * because all it wants to ensure is that the remote task enters
  1917. * the kernel. If the IPI races and the task has been migrated
  1918. * to another CPU then no harm is done and the purpose has been
  1919. * achieved as well.
  1920. */
  1921. void kick_process(struct task_struct *p)
  1922. {
  1923. int cpu;
  1924. preempt_disable();
  1925. cpu = task_cpu(p);
  1926. if ((cpu != smp_processor_id()) && task_curr(p))
  1927. smp_send_reschedule(cpu);
  1928. preempt_enable();
  1929. }
  1930. EXPORT_SYMBOL_GPL(kick_process);
  1931. #endif /* CONFIG_SMP */
  1932. /**
  1933. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1934. * @p: the task to evaluate
  1935. * @func: the function to be called
  1936. * @info: the function call argument
  1937. *
  1938. * Calls the function @func when the task is currently running. This might
  1939. * be on the current CPU, which just calls the function directly
  1940. */
  1941. void task_oncpu_function_call(struct task_struct *p,
  1942. void (*func) (void *info), void *info)
  1943. {
  1944. int cpu;
  1945. preempt_disable();
  1946. cpu = task_cpu(p);
  1947. if (task_curr(p))
  1948. smp_call_function_single(cpu, func, info, 1);
  1949. preempt_enable();
  1950. }
  1951. #ifdef CONFIG_SMP
  1952. static inline
  1953. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1954. {
  1955. return p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1956. }
  1957. #endif
  1958. /***
  1959. * try_to_wake_up - wake up a thread
  1960. * @p: the to-be-woken-up thread
  1961. * @state: the mask of task states that can be woken
  1962. * @sync: do a synchronous wakeup?
  1963. *
  1964. * Put it on the run-queue if it's not already there. The "current"
  1965. * thread is always on the run-queue (except when the actual
  1966. * re-schedule is in progress), and as such you're allowed to do
  1967. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1968. * runnable without the overhead of this.
  1969. *
  1970. * returns failure only if the task is already active.
  1971. */
  1972. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  1973. int wake_flags)
  1974. {
  1975. int cpu, orig_cpu, this_cpu, success = 0;
  1976. unsigned long flags;
  1977. struct rq *rq, *orig_rq;
  1978. if (!sched_feat(SYNC_WAKEUPS))
  1979. wake_flags &= ~WF_SYNC;
  1980. this_cpu = get_cpu();
  1981. smp_wmb();
  1982. rq = orig_rq = task_rq_lock(p, &flags);
  1983. update_rq_clock(rq);
  1984. if (!(p->state & state))
  1985. goto out;
  1986. if (p->se.on_rq)
  1987. goto out_running;
  1988. cpu = task_cpu(p);
  1989. orig_cpu = cpu;
  1990. #ifdef CONFIG_SMP
  1991. if (unlikely(task_running(rq, p)))
  1992. goto out_activate;
  1993. /*
  1994. * In order to handle concurrent wakeups and release the rq->lock
  1995. * we put the task in TASK_WAKING state.
  1996. *
  1997. * First fix up the nr_uninterruptible count:
  1998. */
  1999. if (task_contributes_to_load(p))
  2000. rq->nr_uninterruptible--;
  2001. p->state = TASK_WAKING;
  2002. __task_rq_unlock(rq);
  2003. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  2004. if (cpu != orig_cpu)
  2005. set_task_cpu(p, cpu);
  2006. rq = __task_rq_lock(p);
  2007. update_rq_clock(rq);
  2008. WARN_ON(p->state != TASK_WAKING);
  2009. cpu = task_cpu(p);
  2010. #ifdef CONFIG_SCHEDSTATS
  2011. schedstat_inc(rq, ttwu_count);
  2012. if (cpu == this_cpu)
  2013. schedstat_inc(rq, ttwu_local);
  2014. else {
  2015. struct sched_domain *sd;
  2016. for_each_domain(this_cpu, sd) {
  2017. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2018. schedstat_inc(sd, ttwu_wake_remote);
  2019. break;
  2020. }
  2021. }
  2022. }
  2023. #endif /* CONFIG_SCHEDSTATS */
  2024. out_activate:
  2025. #endif /* CONFIG_SMP */
  2026. schedstat_inc(p, se.nr_wakeups);
  2027. if (wake_flags & WF_SYNC)
  2028. schedstat_inc(p, se.nr_wakeups_sync);
  2029. if (orig_cpu != cpu)
  2030. schedstat_inc(p, se.nr_wakeups_migrate);
  2031. if (cpu == this_cpu)
  2032. schedstat_inc(p, se.nr_wakeups_local);
  2033. else
  2034. schedstat_inc(p, se.nr_wakeups_remote);
  2035. activate_task(rq, p, 1);
  2036. success = 1;
  2037. /*
  2038. * Only attribute actual wakeups done by this task.
  2039. */
  2040. if (!in_interrupt()) {
  2041. struct sched_entity *se = &current->se;
  2042. u64 sample = se->sum_exec_runtime;
  2043. if (se->last_wakeup)
  2044. sample -= se->last_wakeup;
  2045. else
  2046. sample -= se->start_runtime;
  2047. update_avg(&se->avg_wakeup, sample);
  2048. se->last_wakeup = se->sum_exec_runtime;
  2049. }
  2050. out_running:
  2051. trace_sched_wakeup(rq, p, success);
  2052. check_preempt_curr(rq, p, wake_flags);
  2053. p->state = TASK_RUNNING;
  2054. #ifdef CONFIG_SMP
  2055. if (p->sched_class->task_wake_up)
  2056. p->sched_class->task_wake_up(rq, p);
  2057. if (unlikely(rq->idle_stamp)) {
  2058. u64 delta = rq->clock - rq->idle_stamp;
  2059. u64 max = 2*sysctl_sched_migration_cost;
  2060. if (delta > max)
  2061. rq->avg_idle = max;
  2062. else
  2063. update_avg(&rq->avg_idle, delta);
  2064. rq->idle_stamp = 0;
  2065. }
  2066. #endif
  2067. out:
  2068. task_rq_unlock(rq, &flags);
  2069. put_cpu();
  2070. return success;
  2071. }
  2072. /**
  2073. * wake_up_process - Wake up a specific process
  2074. * @p: The process to be woken up.
  2075. *
  2076. * Attempt to wake up the nominated process and move it to the set of runnable
  2077. * processes. Returns 1 if the process was woken up, 0 if it was already
  2078. * running.
  2079. *
  2080. * It may be assumed that this function implies a write memory barrier before
  2081. * changing the task state if and only if any tasks are woken up.
  2082. */
  2083. int wake_up_process(struct task_struct *p)
  2084. {
  2085. return try_to_wake_up(p, TASK_ALL, 0);
  2086. }
  2087. EXPORT_SYMBOL(wake_up_process);
  2088. int wake_up_state(struct task_struct *p, unsigned int state)
  2089. {
  2090. return try_to_wake_up(p, state, 0);
  2091. }
  2092. /*
  2093. * Perform scheduler related setup for a newly forked process p.
  2094. * p is forked by current.
  2095. *
  2096. * __sched_fork() is basic setup used by init_idle() too:
  2097. */
  2098. static void __sched_fork(struct task_struct *p)
  2099. {
  2100. p->se.exec_start = 0;
  2101. p->se.sum_exec_runtime = 0;
  2102. p->se.prev_sum_exec_runtime = 0;
  2103. p->se.nr_migrations = 0;
  2104. p->se.last_wakeup = 0;
  2105. p->se.avg_overlap = 0;
  2106. p->se.start_runtime = 0;
  2107. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2108. #ifdef CONFIG_SCHEDSTATS
  2109. p->se.wait_start = 0;
  2110. p->se.wait_max = 0;
  2111. p->se.wait_count = 0;
  2112. p->se.wait_sum = 0;
  2113. p->se.sleep_start = 0;
  2114. p->se.sleep_max = 0;
  2115. p->se.sum_sleep_runtime = 0;
  2116. p->se.block_start = 0;
  2117. p->se.block_max = 0;
  2118. p->se.exec_max = 0;
  2119. p->se.slice_max = 0;
  2120. p->se.nr_migrations_cold = 0;
  2121. p->se.nr_failed_migrations_affine = 0;
  2122. p->se.nr_failed_migrations_running = 0;
  2123. p->se.nr_failed_migrations_hot = 0;
  2124. p->se.nr_forced_migrations = 0;
  2125. p->se.nr_wakeups = 0;
  2126. p->se.nr_wakeups_sync = 0;
  2127. p->se.nr_wakeups_migrate = 0;
  2128. p->se.nr_wakeups_local = 0;
  2129. p->se.nr_wakeups_remote = 0;
  2130. p->se.nr_wakeups_affine = 0;
  2131. p->se.nr_wakeups_affine_attempts = 0;
  2132. p->se.nr_wakeups_passive = 0;
  2133. p->se.nr_wakeups_idle = 0;
  2134. #endif
  2135. INIT_LIST_HEAD(&p->rt.run_list);
  2136. p->se.on_rq = 0;
  2137. INIT_LIST_HEAD(&p->se.group_node);
  2138. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2139. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2140. #endif
  2141. }
  2142. /*
  2143. * fork()/clone()-time setup:
  2144. */
  2145. void sched_fork(struct task_struct *p, int clone_flags)
  2146. {
  2147. int cpu = get_cpu();
  2148. __sched_fork(p);
  2149. /*
  2150. * We mark the process as waking here. This guarantees that
  2151. * nobody will actually run it, and a signal or other external
  2152. * event cannot wake it up and insert it on the runqueue either.
  2153. */
  2154. p->state = TASK_WAKING;
  2155. /*
  2156. * Revert to default priority/policy on fork if requested.
  2157. */
  2158. if (unlikely(p->sched_reset_on_fork)) {
  2159. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2160. p->policy = SCHED_NORMAL;
  2161. p->normal_prio = p->static_prio;
  2162. }
  2163. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2164. p->static_prio = NICE_TO_PRIO(0);
  2165. p->normal_prio = p->static_prio;
  2166. set_load_weight(p);
  2167. }
  2168. /*
  2169. * We don't need the reset flag anymore after the fork. It has
  2170. * fulfilled its duty:
  2171. */
  2172. p->sched_reset_on_fork = 0;
  2173. }
  2174. /*
  2175. * Make sure we do not leak PI boosting priority to the child.
  2176. */
  2177. p->prio = current->normal_prio;
  2178. if (!rt_prio(p->prio))
  2179. p->sched_class = &fair_sched_class;
  2180. if (p->sched_class->task_fork)
  2181. p->sched_class->task_fork(p);
  2182. #ifdef CONFIG_SMP
  2183. cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
  2184. #endif
  2185. set_task_cpu(p, cpu);
  2186. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2187. if (likely(sched_info_on()))
  2188. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2189. #endif
  2190. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2191. p->oncpu = 0;
  2192. #endif
  2193. #ifdef CONFIG_PREEMPT
  2194. /* Want to start with kernel preemption disabled. */
  2195. task_thread_info(p)->preempt_count = 1;
  2196. #endif
  2197. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2198. put_cpu();
  2199. }
  2200. /*
  2201. * wake_up_new_task - wake up a newly created task for the first time.
  2202. *
  2203. * This function will do some initial scheduler statistics housekeeping
  2204. * that must be done for every newly created context, then puts the task
  2205. * on the runqueue and wakes it.
  2206. */
  2207. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2208. {
  2209. unsigned long flags;
  2210. struct rq *rq;
  2211. rq = task_rq_lock(p, &flags);
  2212. BUG_ON(p->state != TASK_WAKING);
  2213. p->state = TASK_RUNNING;
  2214. update_rq_clock(rq);
  2215. activate_task(rq, p, 0);
  2216. trace_sched_wakeup_new(rq, p, 1);
  2217. check_preempt_curr(rq, p, WF_FORK);
  2218. #ifdef CONFIG_SMP
  2219. if (p->sched_class->task_wake_up)
  2220. p->sched_class->task_wake_up(rq, p);
  2221. #endif
  2222. task_rq_unlock(rq, &flags);
  2223. }
  2224. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2225. /**
  2226. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2227. * @notifier: notifier struct to register
  2228. */
  2229. void preempt_notifier_register(struct preempt_notifier *notifier)
  2230. {
  2231. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2232. }
  2233. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2234. /**
  2235. * preempt_notifier_unregister - no longer interested in preemption notifications
  2236. * @notifier: notifier struct to unregister
  2237. *
  2238. * This is safe to call from within a preemption notifier.
  2239. */
  2240. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2241. {
  2242. hlist_del(&notifier->link);
  2243. }
  2244. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2245. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2246. {
  2247. struct preempt_notifier *notifier;
  2248. struct hlist_node *node;
  2249. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2250. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2251. }
  2252. static void
  2253. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2254. struct task_struct *next)
  2255. {
  2256. struct preempt_notifier *notifier;
  2257. struct hlist_node *node;
  2258. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2259. notifier->ops->sched_out(notifier, next);
  2260. }
  2261. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2262. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2263. {
  2264. }
  2265. static void
  2266. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2267. struct task_struct *next)
  2268. {
  2269. }
  2270. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2271. /**
  2272. * prepare_task_switch - prepare to switch tasks
  2273. * @rq: the runqueue preparing to switch
  2274. * @prev: the current task that is being switched out
  2275. * @next: the task we are going to switch to.
  2276. *
  2277. * This is called with the rq lock held and interrupts off. It must
  2278. * be paired with a subsequent finish_task_switch after the context
  2279. * switch.
  2280. *
  2281. * prepare_task_switch sets up locking and calls architecture specific
  2282. * hooks.
  2283. */
  2284. static inline void
  2285. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2286. struct task_struct *next)
  2287. {
  2288. fire_sched_out_preempt_notifiers(prev, next);
  2289. prepare_lock_switch(rq, next);
  2290. prepare_arch_switch(next);
  2291. }
  2292. /**
  2293. * finish_task_switch - clean up after a task-switch
  2294. * @rq: runqueue associated with task-switch
  2295. * @prev: the thread we just switched away from.
  2296. *
  2297. * finish_task_switch must be called after the context switch, paired
  2298. * with a prepare_task_switch call before the context switch.
  2299. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2300. * and do any other architecture-specific cleanup actions.
  2301. *
  2302. * Note that we may have delayed dropping an mm in context_switch(). If
  2303. * so, we finish that here outside of the runqueue lock. (Doing it
  2304. * with the lock held can cause deadlocks; see schedule() for
  2305. * details.)
  2306. */
  2307. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2308. __releases(rq->lock)
  2309. {
  2310. struct mm_struct *mm = rq->prev_mm;
  2311. long prev_state;
  2312. rq->prev_mm = NULL;
  2313. /*
  2314. * A task struct has one reference for the use as "current".
  2315. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2316. * schedule one last time. The schedule call will never return, and
  2317. * the scheduled task must drop that reference.
  2318. * The test for TASK_DEAD must occur while the runqueue locks are
  2319. * still held, otherwise prev could be scheduled on another cpu, die
  2320. * there before we look at prev->state, and then the reference would
  2321. * be dropped twice.
  2322. * Manfred Spraul <manfred@colorfullife.com>
  2323. */
  2324. prev_state = prev->state;
  2325. finish_arch_switch(prev);
  2326. perf_event_task_sched_in(current, cpu_of(rq));
  2327. finish_lock_switch(rq, prev);
  2328. fire_sched_in_preempt_notifiers(current);
  2329. if (mm)
  2330. mmdrop(mm);
  2331. if (unlikely(prev_state == TASK_DEAD)) {
  2332. /*
  2333. * Remove function-return probe instances associated with this
  2334. * task and put them back on the free list.
  2335. */
  2336. kprobe_flush_task(prev);
  2337. put_task_struct(prev);
  2338. }
  2339. }
  2340. #ifdef CONFIG_SMP
  2341. /* assumes rq->lock is held */
  2342. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2343. {
  2344. if (prev->sched_class->pre_schedule)
  2345. prev->sched_class->pre_schedule(rq, prev);
  2346. }
  2347. /* rq->lock is NOT held, but preemption is disabled */
  2348. static inline void post_schedule(struct rq *rq)
  2349. {
  2350. if (rq->post_schedule) {
  2351. unsigned long flags;
  2352. raw_spin_lock_irqsave(&rq->lock, flags);
  2353. if (rq->curr->sched_class->post_schedule)
  2354. rq->curr->sched_class->post_schedule(rq);
  2355. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2356. rq->post_schedule = 0;
  2357. }
  2358. }
  2359. #else
  2360. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2361. {
  2362. }
  2363. static inline void post_schedule(struct rq *rq)
  2364. {
  2365. }
  2366. #endif
  2367. /**
  2368. * schedule_tail - first thing a freshly forked thread must call.
  2369. * @prev: the thread we just switched away from.
  2370. */
  2371. asmlinkage void schedule_tail(struct task_struct *prev)
  2372. __releases(rq->lock)
  2373. {
  2374. struct rq *rq = this_rq();
  2375. finish_task_switch(rq, prev);
  2376. /*
  2377. * FIXME: do we need to worry about rq being invalidated by the
  2378. * task_switch?
  2379. */
  2380. post_schedule(rq);
  2381. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2382. /* In this case, finish_task_switch does not reenable preemption */
  2383. preempt_enable();
  2384. #endif
  2385. if (current->set_child_tid)
  2386. put_user(task_pid_vnr(current), current->set_child_tid);
  2387. }
  2388. /*
  2389. * context_switch - switch to the new MM and the new
  2390. * thread's register state.
  2391. */
  2392. static inline void
  2393. context_switch(struct rq *rq, struct task_struct *prev,
  2394. struct task_struct *next)
  2395. {
  2396. struct mm_struct *mm, *oldmm;
  2397. prepare_task_switch(rq, prev, next);
  2398. trace_sched_switch(rq, prev, next);
  2399. mm = next->mm;
  2400. oldmm = prev->active_mm;
  2401. /*
  2402. * For paravirt, this is coupled with an exit in switch_to to
  2403. * combine the page table reload and the switch backend into
  2404. * one hypercall.
  2405. */
  2406. arch_start_context_switch(prev);
  2407. if (likely(!mm)) {
  2408. next->active_mm = oldmm;
  2409. atomic_inc(&oldmm->mm_count);
  2410. enter_lazy_tlb(oldmm, next);
  2411. } else
  2412. switch_mm(oldmm, mm, next);
  2413. if (likely(!prev->mm)) {
  2414. prev->active_mm = NULL;
  2415. rq->prev_mm = oldmm;
  2416. }
  2417. /*
  2418. * Since the runqueue lock will be released by the next
  2419. * task (which is an invalid locking op but in the case
  2420. * of the scheduler it's an obvious special-case), so we
  2421. * do an early lockdep release here:
  2422. */
  2423. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2424. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2425. #endif
  2426. /* Here we just switch the register state and the stack. */
  2427. switch_to(prev, next, prev);
  2428. barrier();
  2429. /*
  2430. * this_rq must be evaluated again because prev may have moved
  2431. * CPUs since it called schedule(), thus the 'rq' on its stack
  2432. * frame will be invalid.
  2433. */
  2434. finish_task_switch(this_rq(), prev);
  2435. }
  2436. /*
  2437. * nr_running, nr_uninterruptible and nr_context_switches:
  2438. *
  2439. * externally visible scheduler statistics: current number of runnable
  2440. * threads, current number of uninterruptible-sleeping threads, total
  2441. * number of context switches performed since bootup.
  2442. */
  2443. unsigned long nr_running(void)
  2444. {
  2445. unsigned long i, sum = 0;
  2446. for_each_online_cpu(i)
  2447. sum += cpu_rq(i)->nr_running;
  2448. return sum;
  2449. }
  2450. unsigned long nr_uninterruptible(void)
  2451. {
  2452. unsigned long i, sum = 0;
  2453. for_each_possible_cpu(i)
  2454. sum += cpu_rq(i)->nr_uninterruptible;
  2455. /*
  2456. * Since we read the counters lockless, it might be slightly
  2457. * inaccurate. Do not allow it to go below zero though:
  2458. */
  2459. if (unlikely((long)sum < 0))
  2460. sum = 0;
  2461. return sum;
  2462. }
  2463. unsigned long long nr_context_switches(void)
  2464. {
  2465. int i;
  2466. unsigned long long sum = 0;
  2467. for_each_possible_cpu(i)
  2468. sum += cpu_rq(i)->nr_switches;
  2469. return sum;
  2470. }
  2471. unsigned long nr_iowait(void)
  2472. {
  2473. unsigned long i, sum = 0;
  2474. for_each_possible_cpu(i)
  2475. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2476. return sum;
  2477. }
  2478. unsigned long nr_iowait_cpu(void)
  2479. {
  2480. struct rq *this = this_rq();
  2481. return atomic_read(&this->nr_iowait);
  2482. }
  2483. unsigned long this_cpu_load(void)
  2484. {
  2485. struct rq *this = this_rq();
  2486. return this->cpu_load[0];
  2487. }
  2488. /* Variables and functions for calc_load */
  2489. static atomic_long_t calc_load_tasks;
  2490. static unsigned long calc_load_update;
  2491. unsigned long avenrun[3];
  2492. EXPORT_SYMBOL(avenrun);
  2493. /**
  2494. * get_avenrun - get the load average array
  2495. * @loads: pointer to dest load array
  2496. * @offset: offset to add
  2497. * @shift: shift count to shift the result left
  2498. *
  2499. * These values are estimates at best, so no need for locking.
  2500. */
  2501. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2502. {
  2503. loads[0] = (avenrun[0] + offset) << shift;
  2504. loads[1] = (avenrun[1] + offset) << shift;
  2505. loads[2] = (avenrun[2] + offset) << shift;
  2506. }
  2507. static unsigned long
  2508. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2509. {
  2510. load *= exp;
  2511. load += active * (FIXED_1 - exp);
  2512. return load >> FSHIFT;
  2513. }
  2514. /*
  2515. * calc_load - update the avenrun load estimates 10 ticks after the
  2516. * CPUs have updated calc_load_tasks.
  2517. */
  2518. void calc_global_load(void)
  2519. {
  2520. unsigned long upd = calc_load_update + 10;
  2521. long active;
  2522. if (time_before(jiffies, upd))
  2523. return;
  2524. active = atomic_long_read(&calc_load_tasks);
  2525. active = active > 0 ? active * FIXED_1 : 0;
  2526. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2527. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2528. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2529. calc_load_update += LOAD_FREQ;
  2530. }
  2531. /*
  2532. * Either called from update_cpu_load() or from a cpu going idle
  2533. */
  2534. static void calc_load_account_active(struct rq *this_rq)
  2535. {
  2536. long nr_active, delta;
  2537. nr_active = this_rq->nr_running;
  2538. nr_active += (long) this_rq->nr_uninterruptible;
  2539. if (nr_active != this_rq->calc_load_active) {
  2540. delta = nr_active - this_rq->calc_load_active;
  2541. this_rq->calc_load_active = nr_active;
  2542. atomic_long_add(delta, &calc_load_tasks);
  2543. }
  2544. }
  2545. /*
  2546. * Update rq->cpu_load[] statistics. This function is usually called every
  2547. * scheduler tick (TICK_NSEC).
  2548. */
  2549. static void update_cpu_load(struct rq *this_rq)
  2550. {
  2551. unsigned long this_load = this_rq->load.weight;
  2552. int i, scale;
  2553. this_rq->nr_load_updates++;
  2554. /* Update our load: */
  2555. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2556. unsigned long old_load, new_load;
  2557. /* scale is effectively 1 << i now, and >> i divides by scale */
  2558. old_load = this_rq->cpu_load[i];
  2559. new_load = this_load;
  2560. /*
  2561. * Round up the averaging division if load is increasing. This
  2562. * prevents us from getting stuck on 9 if the load is 10, for
  2563. * example.
  2564. */
  2565. if (new_load > old_load)
  2566. new_load += scale-1;
  2567. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2568. }
  2569. if (time_after_eq(jiffies, this_rq->calc_load_update)) {
  2570. this_rq->calc_load_update += LOAD_FREQ;
  2571. calc_load_account_active(this_rq);
  2572. }
  2573. }
  2574. #ifdef CONFIG_SMP
  2575. /*
  2576. * double_rq_lock - safely lock two runqueues
  2577. *
  2578. * Note this does not disable interrupts like task_rq_lock,
  2579. * you need to do so manually before calling.
  2580. */
  2581. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2582. __acquires(rq1->lock)
  2583. __acquires(rq2->lock)
  2584. {
  2585. BUG_ON(!irqs_disabled());
  2586. if (rq1 == rq2) {
  2587. raw_spin_lock(&rq1->lock);
  2588. __acquire(rq2->lock); /* Fake it out ;) */
  2589. } else {
  2590. if (rq1 < rq2) {
  2591. raw_spin_lock(&rq1->lock);
  2592. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2593. } else {
  2594. raw_spin_lock(&rq2->lock);
  2595. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2596. }
  2597. }
  2598. update_rq_clock(rq1);
  2599. update_rq_clock(rq2);
  2600. }
  2601. /*
  2602. * double_rq_unlock - safely unlock two runqueues
  2603. *
  2604. * Note this does not restore interrupts like task_rq_unlock,
  2605. * you need to do so manually after calling.
  2606. */
  2607. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2608. __releases(rq1->lock)
  2609. __releases(rq2->lock)
  2610. {
  2611. raw_spin_unlock(&rq1->lock);
  2612. if (rq1 != rq2)
  2613. raw_spin_unlock(&rq2->lock);
  2614. else
  2615. __release(rq2->lock);
  2616. }
  2617. /*
  2618. * If dest_cpu is allowed for this process, migrate the task to it.
  2619. * This is accomplished by forcing the cpu_allowed mask to only
  2620. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2621. * the cpu_allowed mask is restored.
  2622. */
  2623. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2624. {
  2625. struct migration_req req;
  2626. unsigned long flags;
  2627. struct rq *rq;
  2628. rq = task_rq_lock(p, &flags);
  2629. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2630. || unlikely(!cpu_active(dest_cpu)))
  2631. goto out;
  2632. /* force the process onto the specified CPU */
  2633. if (migrate_task(p, dest_cpu, &req)) {
  2634. /* Need to wait for migration thread (might exit: take ref). */
  2635. struct task_struct *mt = rq->migration_thread;
  2636. get_task_struct(mt);
  2637. task_rq_unlock(rq, &flags);
  2638. wake_up_process(mt);
  2639. put_task_struct(mt);
  2640. wait_for_completion(&req.done);
  2641. return;
  2642. }
  2643. out:
  2644. task_rq_unlock(rq, &flags);
  2645. }
  2646. /*
  2647. * sched_exec - execve() is a valuable balancing opportunity, because at
  2648. * this point the task has the smallest effective memory and cache footprint.
  2649. */
  2650. void sched_exec(void)
  2651. {
  2652. int new_cpu, this_cpu = get_cpu();
  2653. new_cpu = select_task_rq(current, SD_BALANCE_EXEC, 0);
  2654. put_cpu();
  2655. if (new_cpu != this_cpu)
  2656. sched_migrate_task(current, new_cpu);
  2657. }
  2658. /*
  2659. * pull_task - move a task from a remote runqueue to the local runqueue.
  2660. * Both runqueues must be locked.
  2661. */
  2662. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2663. struct rq *this_rq, int this_cpu)
  2664. {
  2665. deactivate_task(src_rq, p, 0);
  2666. set_task_cpu(p, this_cpu);
  2667. activate_task(this_rq, p, 0);
  2668. check_preempt_curr(this_rq, p, 0);
  2669. }
  2670. /*
  2671. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2672. */
  2673. static
  2674. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2675. struct sched_domain *sd, enum cpu_idle_type idle,
  2676. int *all_pinned)
  2677. {
  2678. int tsk_cache_hot = 0;
  2679. /*
  2680. * We do not migrate tasks that are:
  2681. * 1) running (obviously), or
  2682. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2683. * 3) are cache-hot on their current CPU.
  2684. */
  2685. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2686. schedstat_inc(p, se.nr_failed_migrations_affine);
  2687. return 0;
  2688. }
  2689. *all_pinned = 0;
  2690. if (task_running(rq, p)) {
  2691. schedstat_inc(p, se.nr_failed_migrations_running);
  2692. return 0;
  2693. }
  2694. /*
  2695. * Aggressive migration if:
  2696. * 1) task is cache cold, or
  2697. * 2) too many balance attempts have failed.
  2698. */
  2699. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2700. if (!tsk_cache_hot ||
  2701. sd->nr_balance_failed > sd->cache_nice_tries) {
  2702. #ifdef CONFIG_SCHEDSTATS
  2703. if (tsk_cache_hot) {
  2704. schedstat_inc(sd, lb_hot_gained[idle]);
  2705. schedstat_inc(p, se.nr_forced_migrations);
  2706. }
  2707. #endif
  2708. return 1;
  2709. }
  2710. if (tsk_cache_hot) {
  2711. schedstat_inc(p, se.nr_failed_migrations_hot);
  2712. return 0;
  2713. }
  2714. return 1;
  2715. }
  2716. static unsigned long
  2717. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2718. unsigned long max_load_move, struct sched_domain *sd,
  2719. enum cpu_idle_type idle, int *all_pinned,
  2720. int *this_best_prio, struct rq_iterator *iterator)
  2721. {
  2722. int loops = 0, pulled = 0, pinned = 0;
  2723. struct task_struct *p;
  2724. long rem_load_move = max_load_move;
  2725. if (max_load_move == 0)
  2726. goto out;
  2727. pinned = 1;
  2728. /*
  2729. * Start the load-balancing iterator:
  2730. */
  2731. p = iterator->start(iterator->arg);
  2732. next:
  2733. if (!p || loops++ > sysctl_sched_nr_migrate)
  2734. goto out;
  2735. if ((p->se.load.weight >> 1) > rem_load_move ||
  2736. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2737. p = iterator->next(iterator->arg);
  2738. goto next;
  2739. }
  2740. pull_task(busiest, p, this_rq, this_cpu);
  2741. pulled++;
  2742. rem_load_move -= p->se.load.weight;
  2743. #ifdef CONFIG_PREEMPT
  2744. /*
  2745. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2746. * will stop after the first task is pulled to minimize the critical
  2747. * section.
  2748. */
  2749. if (idle == CPU_NEWLY_IDLE)
  2750. goto out;
  2751. #endif
  2752. /*
  2753. * We only want to steal up to the prescribed amount of weighted load.
  2754. */
  2755. if (rem_load_move > 0) {
  2756. if (p->prio < *this_best_prio)
  2757. *this_best_prio = p->prio;
  2758. p = iterator->next(iterator->arg);
  2759. goto next;
  2760. }
  2761. out:
  2762. /*
  2763. * Right now, this is one of only two places pull_task() is called,
  2764. * so we can safely collect pull_task() stats here rather than
  2765. * inside pull_task().
  2766. */
  2767. schedstat_add(sd, lb_gained[idle], pulled);
  2768. if (all_pinned)
  2769. *all_pinned = pinned;
  2770. return max_load_move - rem_load_move;
  2771. }
  2772. /*
  2773. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2774. * this_rq, as part of a balancing operation within domain "sd".
  2775. * Returns 1 if successful and 0 otherwise.
  2776. *
  2777. * Called with both runqueues locked.
  2778. */
  2779. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2780. unsigned long max_load_move,
  2781. struct sched_domain *sd, enum cpu_idle_type idle,
  2782. int *all_pinned)
  2783. {
  2784. const struct sched_class *class = sched_class_highest;
  2785. unsigned long total_load_moved = 0;
  2786. int this_best_prio = this_rq->curr->prio;
  2787. do {
  2788. total_load_moved +=
  2789. class->load_balance(this_rq, this_cpu, busiest,
  2790. max_load_move - total_load_moved,
  2791. sd, idle, all_pinned, &this_best_prio);
  2792. class = class->next;
  2793. #ifdef CONFIG_PREEMPT
  2794. /*
  2795. * NEWIDLE balancing is a source of latency, so preemptible
  2796. * kernels will stop after the first task is pulled to minimize
  2797. * the critical section.
  2798. */
  2799. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2800. break;
  2801. #endif
  2802. } while (class && max_load_move > total_load_moved);
  2803. return total_load_moved > 0;
  2804. }
  2805. static int
  2806. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2807. struct sched_domain *sd, enum cpu_idle_type idle,
  2808. struct rq_iterator *iterator)
  2809. {
  2810. struct task_struct *p = iterator->start(iterator->arg);
  2811. int pinned = 0;
  2812. while (p) {
  2813. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2814. pull_task(busiest, p, this_rq, this_cpu);
  2815. /*
  2816. * Right now, this is only the second place pull_task()
  2817. * is called, so we can safely collect pull_task()
  2818. * stats here rather than inside pull_task().
  2819. */
  2820. schedstat_inc(sd, lb_gained[idle]);
  2821. return 1;
  2822. }
  2823. p = iterator->next(iterator->arg);
  2824. }
  2825. return 0;
  2826. }
  2827. /*
  2828. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2829. * part of active balancing operations within "domain".
  2830. * Returns 1 if successful and 0 otherwise.
  2831. *
  2832. * Called with both runqueues locked.
  2833. */
  2834. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2835. struct sched_domain *sd, enum cpu_idle_type idle)
  2836. {
  2837. const struct sched_class *class;
  2838. for_each_class(class) {
  2839. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2840. return 1;
  2841. }
  2842. return 0;
  2843. }
  2844. /********** Helpers for find_busiest_group ************************/
  2845. /*
  2846. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2847. * during load balancing.
  2848. */
  2849. struct sd_lb_stats {
  2850. struct sched_group *busiest; /* Busiest group in this sd */
  2851. struct sched_group *this; /* Local group in this sd */
  2852. unsigned long total_load; /* Total load of all groups in sd */
  2853. unsigned long total_pwr; /* Total power of all groups in sd */
  2854. unsigned long avg_load; /* Average load across all groups in sd */
  2855. /** Statistics of this group */
  2856. unsigned long this_load;
  2857. unsigned long this_load_per_task;
  2858. unsigned long this_nr_running;
  2859. /* Statistics of the busiest group */
  2860. unsigned long max_load;
  2861. unsigned long busiest_load_per_task;
  2862. unsigned long busiest_nr_running;
  2863. int group_imb; /* Is there imbalance in this sd */
  2864. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2865. int power_savings_balance; /* Is powersave balance needed for this sd */
  2866. struct sched_group *group_min; /* Least loaded group in sd */
  2867. struct sched_group *group_leader; /* Group which relieves group_min */
  2868. unsigned long min_load_per_task; /* load_per_task in group_min */
  2869. unsigned long leader_nr_running; /* Nr running of group_leader */
  2870. unsigned long min_nr_running; /* Nr running of group_min */
  2871. #endif
  2872. };
  2873. /*
  2874. * sg_lb_stats - stats of a sched_group required for load_balancing
  2875. */
  2876. struct sg_lb_stats {
  2877. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2878. unsigned long group_load; /* Total load over the CPUs of the group */
  2879. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2880. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2881. unsigned long group_capacity;
  2882. int group_imb; /* Is there an imbalance in the group ? */
  2883. };
  2884. /**
  2885. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2886. * @group: The group whose first cpu is to be returned.
  2887. */
  2888. static inline unsigned int group_first_cpu(struct sched_group *group)
  2889. {
  2890. return cpumask_first(sched_group_cpus(group));
  2891. }
  2892. /**
  2893. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2894. * @sd: The sched_domain whose load_idx is to be obtained.
  2895. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2896. */
  2897. static inline int get_sd_load_idx(struct sched_domain *sd,
  2898. enum cpu_idle_type idle)
  2899. {
  2900. int load_idx;
  2901. switch (idle) {
  2902. case CPU_NOT_IDLE:
  2903. load_idx = sd->busy_idx;
  2904. break;
  2905. case CPU_NEWLY_IDLE:
  2906. load_idx = sd->newidle_idx;
  2907. break;
  2908. default:
  2909. load_idx = sd->idle_idx;
  2910. break;
  2911. }
  2912. return load_idx;
  2913. }
  2914. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2915. /**
  2916. * init_sd_power_savings_stats - Initialize power savings statistics for
  2917. * the given sched_domain, during load balancing.
  2918. *
  2919. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2920. * @sds: Variable containing the statistics for sd.
  2921. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2922. */
  2923. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2924. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2925. {
  2926. /*
  2927. * Busy processors will not participate in power savings
  2928. * balance.
  2929. */
  2930. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2931. sds->power_savings_balance = 0;
  2932. else {
  2933. sds->power_savings_balance = 1;
  2934. sds->min_nr_running = ULONG_MAX;
  2935. sds->leader_nr_running = 0;
  2936. }
  2937. }
  2938. /**
  2939. * update_sd_power_savings_stats - Update the power saving stats for a
  2940. * sched_domain while performing load balancing.
  2941. *
  2942. * @group: sched_group belonging to the sched_domain under consideration.
  2943. * @sds: Variable containing the statistics of the sched_domain
  2944. * @local_group: Does group contain the CPU for which we're performing
  2945. * load balancing ?
  2946. * @sgs: Variable containing the statistics of the group.
  2947. */
  2948. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2949. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2950. {
  2951. if (!sds->power_savings_balance)
  2952. return;
  2953. /*
  2954. * If the local group is idle or completely loaded
  2955. * no need to do power savings balance at this domain
  2956. */
  2957. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2958. !sds->this_nr_running))
  2959. sds->power_savings_balance = 0;
  2960. /*
  2961. * If a group is already running at full capacity or idle,
  2962. * don't include that group in power savings calculations
  2963. */
  2964. if (!sds->power_savings_balance ||
  2965. sgs->sum_nr_running >= sgs->group_capacity ||
  2966. !sgs->sum_nr_running)
  2967. return;
  2968. /*
  2969. * Calculate the group which has the least non-idle load.
  2970. * This is the group from where we need to pick up the load
  2971. * for saving power
  2972. */
  2973. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  2974. (sgs->sum_nr_running == sds->min_nr_running &&
  2975. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  2976. sds->group_min = group;
  2977. sds->min_nr_running = sgs->sum_nr_running;
  2978. sds->min_load_per_task = sgs->sum_weighted_load /
  2979. sgs->sum_nr_running;
  2980. }
  2981. /*
  2982. * Calculate the group which is almost near its
  2983. * capacity but still has some space to pick up some load
  2984. * from other group and save more power
  2985. */
  2986. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  2987. return;
  2988. if (sgs->sum_nr_running > sds->leader_nr_running ||
  2989. (sgs->sum_nr_running == sds->leader_nr_running &&
  2990. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  2991. sds->group_leader = group;
  2992. sds->leader_nr_running = sgs->sum_nr_running;
  2993. }
  2994. }
  2995. /**
  2996. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  2997. * @sds: Variable containing the statistics of the sched_domain
  2998. * under consideration.
  2999. * @this_cpu: Cpu at which we're currently performing load-balancing.
  3000. * @imbalance: Variable to store the imbalance.
  3001. *
  3002. * Description:
  3003. * Check if we have potential to perform some power-savings balance.
  3004. * If yes, set the busiest group to be the least loaded group in the
  3005. * sched_domain, so that it's CPUs can be put to idle.
  3006. *
  3007. * Returns 1 if there is potential to perform power-savings balance.
  3008. * Else returns 0.
  3009. */
  3010. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3011. int this_cpu, unsigned long *imbalance)
  3012. {
  3013. if (!sds->power_savings_balance)
  3014. return 0;
  3015. if (sds->this != sds->group_leader ||
  3016. sds->group_leader == sds->group_min)
  3017. return 0;
  3018. *imbalance = sds->min_load_per_task;
  3019. sds->busiest = sds->group_min;
  3020. return 1;
  3021. }
  3022. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3023. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  3024. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  3025. {
  3026. return;
  3027. }
  3028. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3029. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3030. {
  3031. return;
  3032. }
  3033. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3034. int this_cpu, unsigned long *imbalance)
  3035. {
  3036. return 0;
  3037. }
  3038. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3039. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  3040. {
  3041. return SCHED_LOAD_SCALE;
  3042. }
  3043. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  3044. {
  3045. return default_scale_freq_power(sd, cpu);
  3046. }
  3047. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  3048. {
  3049. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  3050. unsigned long smt_gain = sd->smt_gain;
  3051. smt_gain /= weight;
  3052. return smt_gain;
  3053. }
  3054. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  3055. {
  3056. return default_scale_smt_power(sd, cpu);
  3057. }
  3058. unsigned long scale_rt_power(int cpu)
  3059. {
  3060. struct rq *rq = cpu_rq(cpu);
  3061. u64 total, available;
  3062. sched_avg_update(rq);
  3063. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  3064. available = total - rq->rt_avg;
  3065. if (unlikely((s64)total < SCHED_LOAD_SCALE))
  3066. total = SCHED_LOAD_SCALE;
  3067. total >>= SCHED_LOAD_SHIFT;
  3068. return div_u64(available, total);
  3069. }
  3070. static void update_cpu_power(struct sched_domain *sd, int cpu)
  3071. {
  3072. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  3073. unsigned long power = SCHED_LOAD_SCALE;
  3074. struct sched_group *sdg = sd->groups;
  3075. if (sched_feat(ARCH_POWER))
  3076. power *= arch_scale_freq_power(sd, cpu);
  3077. else
  3078. power *= default_scale_freq_power(sd, cpu);
  3079. power >>= SCHED_LOAD_SHIFT;
  3080. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  3081. if (sched_feat(ARCH_POWER))
  3082. power *= arch_scale_smt_power(sd, cpu);
  3083. else
  3084. power *= default_scale_smt_power(sd, cpu);
  3085. power >>= SCHED_LOAD_SHIFT;
  3086. }
  3087. power *= scale_rt_power(cpu);
  3088. power >>= SCHED_LOAD_SHIFT;
  3089. if (!power)
  3090. power = 1;
  3091. sdg->cpu_power = power;
  3092. }
  3093. static void update_group_power(struct sched_domain *sd, int cpu)
  3094. {
  3095. struct sched_domain *child = sd->child;
  3096. struct sched_group *group, *sdg = sd->groups;
  3097. unsigned long power;
  3098. if (!child) {
  3099. update_cpu_power(sd, cpu);
  3100. return;
  3101. }
  3102. power = 0;
  3103. group = child->groups;
  3104. do {
  3105. power += group->cpu_power;
  3106. group = group->next;
  3107. } while (group != child->groups);
  3108. sdg->cpu_power = power;
  3109. }
  3110. /**
  3111. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3112. * @sd: The sched_domain whose statistics are to be updated.
  3113. * @group: sched_group whose statistics are to be updated.
  3114. * @this_cpu: Cpu for which load balance is currently performed.
  3115. * @idle: Idle status of this_cpu
  3116. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3117. * @sd_idle: Idle status of the sched_domain containing group.
  3118. * @local_group: Does group contain this_cpu.
  3119. * @cpus: Set of cpus considered for load balancing.
  3120. * @balance: Should we balance.
  3121. * @sgs: variable to hold the statistics for this group.
  3122. */
  3123. static inline void update_sg_lb_stats(struct sched_domain *sd,
  3124. struct sched_group *group, int this_cpu,
  3125. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  3126. int local_group, const struct cpumask *cpus,
  3127. int *balance, struct sg_lb_stats *sgs)
  3128. {
  3129. unsigned long load, max_cpu_load, min_cpu_load;
  3130. int i;
  3131. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3132. unsigned long sum_avg_load_per_task;
  3133. unsigned long avg_load_per_task;
  3134. if (local_group) {
  3135. balance_cpu = group_first_cpu(group);
  3136. if (balance_cpu == this_cpu)
  3137. update_group_power(sd, this_cpu);
  3138. }
  3139. /* Tally up the load of all CPUs in the group */
  3140. sum_avg_load_per_task = avg_load_per_task = 0;
  3141. max_cpu_load = 0;
  3142. min_cpu_load = ~0UL;
  3143. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3144. struct rq *rq = cpu_rq(i);
  3145. if (*sd_idle && rq->nr_running)
  3146. *sd_idle = 0;
  3147. /* Bias balancing toward cpus of our domain */
  3148. if (local_group) {
  3149. if (idle_cpu(i) && !first_idle_cpu) {
  3150. first_idle_cpu = 1;
  3151. balance_cpu = i;
  3152. }
  3153. load = target_load(i, load_idx);
  3154. } else {
  3155. load = source_load(i, load_idx);
  3156. if (load > max_cpu_load)
  3157. max_cpu_load = load;
  3158. if (min_cpu_load > load)
  3159. min_cpu_load = load;
  3160. }
  3161. sgs->group_load += load;
  3162. sgs->sum_nr_running += rq->nr_running;
  3163. sgs->sum_weighted_load += weighted_cpuload(i);
  3164. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  3165. }
  3166. /*
  3167. * First idle cpu or the first cpu(busiest) in this sched group
  3168. * is eligible for doing load balancing at this and above
  3169. * domains. In the newly idle case, we will allow all the cpu's
  3170. * to do the newly idle load balance.
  3171. */
  3172. if (idle != CPU_NEWLY_IDLE && local_group &&
  3173. balance_cpu != this_cpu && balance) {
  3174. *balance = 0;
  3175. return;
  3176. }
  3177. /* Adjust by relative CPU power of the group */
  3178. sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
  3179. /*
  3180. * Consider the group unbalanced when the imbalance is larger
  3181. * than the average weight of two tasks.
  3182. *
  3183. * APZ: with cgroup the avg task weight can vary wildly and
  3184. * might not be a suitable number - should we keep a
  3185. * normalized nr_running number somewhere that negates
  3186. * the hierarchy?
  3187. */
  3188. avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
  3189. group->cpu_power;
  3190. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  3191. sgs->group_imb = 1;
  3192. sgs->group_capacity =
  3193. DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
  3194. }
  3195. /**
  3196. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  3197. * @sd: sched_domain whose statistics are to be updated.
  3198. * @this_cpu: Cpu for which load balance is currently performed.
  3199. * @idle: Idle status of this_cpu
  3200. * @sd_idle: Idle status of the sched_domain containing group.
  3201. * @cpus: Set of cpus considered for load balancing.
  3202. * @balance: Should we balance.
  3203. * @sds: variable to hold the statistics for this sched_domain.
  3204. */
  3205. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3206. enum cpu_idle_type idle, int *sd_idle,
  3207. const struct cpumask *cpus, int *balance,
  3208. struct sd_lb_stats *sds)
  3209. {
  3210. struct sched_domain *child = sd->child;
  3211. struct sched_group *group = sd->groups;
  3212. struct sg_lb_stats sgs;
  3213. int load_idx, prefer_sibling = 0;
  3214. if (child && child->flags & SD_PREFER_SIBLING)
  3215. prefer_sibling = 1;
  3216. init_sd_power_savings_stats(sd, sds, idle);
  3217. load_idx = get_sd_load_idx(sd, idle);
  3218. do {
  3219. int local_group;
  3220. local_group = cpumask_test_cpu(this_cpu,
  3221. sched_group_cpus(group));
  3222. memset(&sgs, 0, sizeof(sgs));
  3223. update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
  3224. local_group, cpus, balance, &sgs);
  3225. if (local_group && balance && !(*balance))
  3226. return;
  3227. sds->total_load += sgs.group_load;
  3228. sds->total_pwr += group->cpu_power;
  3229. /*
  3230. * In case the child domain prefers tasks go to siblings
  3231. * first, lower the group capacity to one so that we'll try
  3232. * and move all the excess tasks away.
  3233. */
  3234. if (prefer_sibling)
  3235. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  3236. if (local_group) {
  3237. sds->this_load = sgs.avg_load;
  3238. sds->this = group;
  3239. sds->this_nr_running = sgs.sum_nr_running;
  3240. sds->this_load_per_task = sgs.sum_weighted_load;
  3241. } else if (sgs.avg_load > sds->max_load &&
  3242. (sgs.sum_nr_running > sgs.group_capacity ||
  3243. sgs.group_imb)) {
  3244. sds->max_load = sgs.avg_load;
  3245. sds->busiest = group;
  3246. sds->busiest_nr_running = sgs.sum_nr_running;
  3247. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3248. sds->group_imb = sgs.group_imb;
  3249. }
  3250. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3251. group = group->next;
  3252. } while (group != sd->groups);
  3253. }
  3254. /**
  3255. * fix_small_imbalance - Calculate the minor imbalance that exists
  3256. * amongst the groups of a sched_domain, during
  3257. * load balancing.
  3258. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3259. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3260. * @imbalance: Variable to store the imbalance.
  3261. */
  3262. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3263. int this_cpu, unsigned long *imbalance)
  3264. {
  3265. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3266. unsigned int imbn = 2;
  3267. if (sds->this_nr_running) {
  3268. sds->this_load_per_task /= sds->this_nr_running;
  3269. if (sds->busiest_load_per_task >
  3270. sds->this_load_per_task)
  3271. imbn = 1;
  3272. } else
  3273. sds->this_load_per_task =
  3274. cpu_avg_load_per_task(this_cpu);
  3275. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3276. sds->busiest_load_per_task * imbn) {
  3277. *imbalance = sds->busiest_load_per_task;
  3278. return;
  3279. }
  3280. /*
  3281. * OK, we don't have enough imbalance to justify moving tasks,
  3282. * however we may be able to increase total CPU power used by
  3283. * moving them.
  3284. */
  3285. pwr_now += sds->busiest->cpu_power *
  3286. min(sds->busiest_load_per_task, sds->max_load);
  3287. pwr_now += sds->this->cpu_power *
  3288. min(sds->this_load_per_task, sds->this_load);
  3289. pwr_now /= SCHED_LOAD_SCALE;
  3290. /* Amount of load we'd subtract */
  3291. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  3292. sds->busiest->cpu_power;
  3293. if (sds->max_load > tmp)
  3294. pwr_move += sds->busiest->cpu_power *
  3295. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3296. /* Amount of load we'd add */
  3297. if (sds->max_load * sds->busiest->cpu_power <
  3298. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3299. tmp = (sds->max_load * sds->busiest->cpu_power) /
  3300. sds->this->cpu_power;
  3301. else
  3302. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  3303. sds->this->cpu_power;
  3304. pwr_move += sds->this->cpu_power *
  3305. min(sds->this_load_per_task, sds->this_load + tmp);
  3306. pwr_move /= SCHED_LOAD_SCALE;
  3307. /* Move if we gain throughput */
  3308. if (pwr_move > pwr_now)
  3309. *imbalance = sds->busiest_load_per_task;
  3310. }
  3311. /**
  3312. * calculate_imbalance - Calculate the amount of imbalance present within the
  3313. * groups of a given sched_domain during load balance.
  3314. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3315. * @this_cpu: Cpu for which currently load balance is being performed.
  3316. * @imbalance: The variable to store the imbalance.
  3317. */
  3318. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3319. unsigned long *imbalance)
  3320. {
  3321. unsigned long max_pull;
  3322. /*
  3323. * In the presence of smp nice balancing, certain scenarios can have
  3324. * max load less than avg load(as we skip the groups at or below
  3325. * its cpu_power, while calculating max_load..)
  3326. */
  3327. if (sds->max_load < sds->avg_load) {
  3328. *imbalance = 0;
  3329. return fix_small_imbalance(sds, this_cpu, imbalance);
  3330. }
  3331. /* Don't want to pull so many tasks that a group would go idle */
  3332. max_pull = min(sds->max_load - sds->avg_load,
  3333. sds->max_load - sds->busiest_load_per_task);
  3334. /* How much load to actually move to equalise the imbalance */
  3335. *imbalance = min(max_pull * sds->busiest->cpu_power,
  3336. (sds->avg_load - sds->this_load) * sds->this->cpu_power)
  3337. / SCHED_LOAD_SCALE;
  3338. /*
  3339. * if *imbalance is less than the average load per runnable task
  3340. * there is no gaurantee that any tasks will be moved so we'll have
  3341. * a think about bumping its value to force at least one task to be
  3342. * moved
  3343. */
  3344. if (*imbalance < sds->busiest_load_per_task)
  3345. return fix_small_imbalance(sds, this_cpu, imbalance);
  3346. }
  3347. /******* find_busiest_group() helpers end here *********************/
  3348. /**
  3349. * find_busiest_group - Returns the busiest group within the sched_domain
  3350. * if there is an imbalance. If there isn't an imbalance, and
  3351. * the user has opted for power-savings, it returns a group whose
  3352. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3353. * such a group exists.
  3354. *
  3355. * Also calculates the amount of weighted load which should be moved
  3356. * to restore balance.
  3357. *
  3358. * @sd: The sched_domain whose busiest group is to be returned.
  3359. * @this_cpu: The cpu for which load balancing is currently being performed.
  3360. * @imbalance: Variable which stores amount of weighted load which should
  3361. * be moved to restore balance/put a group to idle.
  3362. * @idle: The idle status of this_cpu.
  3363. * @sd_idle: The idleness of sd
  3364. * @cpus: The set of CPUs under consideration for load-balancing.
  3365. * @balance: Pointer to a variable indicating if this_cpu
  3366. * is the appropriate cpu to perform load balancing at this_level.
  3367. *
  3368. * Returns: - the busiest group if imbalance exists.
  3369. * - If no imbalance and user has opted for power-savings balance,
  3370. * return the least loaded group whose CPUs can be
  3371. * put to idle by rebalancing its tasks onto our group.
  3372. */
  3373. static struct sched_group *
  3374. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3375. unsigned long *imbalance, enum cpu_idle_type idle,
  3376. int *sd_idle, const struct cpumask *cpus, int *balance)
  3377. {
  3378. struct sd_lb_stats sds;
  3379. memset(&sds, 0, sizeof(sds));
  3380. /*
  3381. * Compute the various statistics relavent for load balancing at
  3382. * this level.
  3383. */
  3384. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3385. balance, &sds);
  3386. /* Cases where imbalance does not exist from POV of this_cpu */
  3387. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3388. * at this level.
  3389. * 2) There is no busy sibling group to pull from.
  3390. * 3) This group is the busiest group.
  3391. * 4) This group is more busy than the avg busieness at this
  3392. * sched_domain.
  3393. * 5) The imbalance is within the specified limit.
  3394. * 6) Any rebalance would lead to ping-pong
  3395. */
  3396. if (balance && !(*balance))
  3397. goto ret;
  3398. if (!sds.busiest || sds.busiest_nr_running == 0)
  3399. goto out_balanced;
  3400. if (sds.this_load >= sds.max_load)
  3401. goto out_balanced;
  3402. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3403. if (sds.this_load >= sds.avg_load)
  3404. goto out_balanced;
  3405. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3406. goto out_balanced;
  3407. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3408. if (sds.group_imb)
  3409. sds.busiest_load_per_task =
  3410. min(sds.busiest_load_per_task, sds.avg_load);
  3411. /*
  3412. * We're trying to get all the cpus to the average_load, so we don't
  3413. * want to push ourselves above the average load, nor do we wish to
  3414. * reduce the max loaded cpu below the average load, as either of these
  3415. * actions would just result in more rebalancing later, and ping-pong
  3416. * tasks around. Thus we look for the minimum possible imbalance.
  3417. * Negative imbalances (*we* are more loaded than anyone else) will
  3418. * be counted as no imbalance for these purposes -- we can't fix that
  3419. * by pulling tasks to us. Be careful of negative numbers as they'll
  3420. * appear as very large values with unsigned longs.
  3421. */
  3422. if (sds.max_load <= sds.busiest_load_per_task)
  3423. goto out_balanced;
  3424. /* Looks like there is an imbalance. Compute it */
  3425. calculate_imbalance(&sds, this_cpu, imbalance);
  3426. return sds.busiest;
  3427. out_balanced:
  3428. /*
  3429. * There is no obvious imbalance. But check if we can do some balancing
  3430. * to save power.
  3431. */
  3432. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3433. return sds.busiest;
  3434. ret:
  3435. *imbalance = 0;
  3436. return NULL;
  3437. }
  3438. /*
  3439. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3440. */
  3441. static struct rq *
  3442. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3443. unsigned long imbalance, const struct cpumask *cpus)
  3444. {
  3445. struct rq *busiest = NULL, *rq;
  3446. unsigned long max_load = 0;
  3447. int i;
  3448. for_each_cpu(i, sched_group_cpus(group)) {
  3449. unsigned long power = power_of(i);
  3450. unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  3451. unsigned long wl;
  3452. if (!cpumask_test_cpu(i, cpus))
  3453. continue;
  3454. rq = cpu_rq(i);
  3455. wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
  3456. wl /= power;
  3457. if (capacity && rq->nr_running == 1 && wl > imbalance)
  3458. continue;
  3459. if (wl > max_load) {
  3460. max_load = wl;
  3461. busiest = rq;
  3462. }
  3463. }
  3464. return busiest;
  3465. }
  3466. /*
  3467. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3468. * so long as it is large enough.
  3469. */
  3470. #define MAX_PINNED_INTERVAL 512
  3471. /* Working cpumask for load_balance and load_balance_newidle. */
  3472. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3473. /*
  3474. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3475. * tasks if there is an imbalance.
  3476. */
  3477. static int load_balance(int this_cpu, struct rq *this_rq,
  3478. struct sched_domain *sd, enum cpu_idle_type idle,
  3479. int *balance)
  3480. {
  3481. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3482. struct sched_group *group;
  3483. unsigned long imbalance;
  3484. struct rq *busiest;
  3485. unsigned long flags;
  3486. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3487. cpumask_copy(cpus, cpu_active_mask);
  3488. /*
  3489. * When power savings policy is enabled for the parent domain, idle
  3490. * sibling can pick up load irrespective of busy siblings. In this case,
  3491. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3492. * portraying it as CPU_NOT_IDLE.
  3493. */
  3494. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3495. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3496. sd_idle = 1;
  3497. schedstat_inc(sd, lb_count[idle]);
  3498. redo:
  3499. update_shares(sd);
  3500. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3501. cpus, balance);
  3502. if (*balance == 0)
  3503. goto out_balanced;
  3504. if (!group) {
  3505. schedstat_inc(sd, lb_nobusyg[idle]);
  3506. goto out_balanced;
  3507. }
  3508. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3509. if (!busiest) {
  3510. schedstat_inc(sd, lb_nobusyq[idle]);
  3511. goto out_balanced;
  3512. }
  3513. BUG_ON(busiest == this_rq);
  3514. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3515. ld_moved = 0;
  3516. if (busiest->nr_running > 1) {
  3517. /*
  3518. * Attempt to move tasks. If find_busiest_group has found
  3519. * an imbalance but busiest->nr_running <= 1, the group is
  3520. * still unbalanced. ld_moved simply stays zero, so it is
  3521. * correctly treated as an imbalance.
  3522. */
  3523. local_irq_save(flags);
  3524. double_rq_lock(this_rq, busiest);
  3525. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3526. imbalance, sd, idle, &all_pinned);
  3527. double_rq_unlock(this_rq, busiest);
  3528. local_irq_restore(flags);
  3529. /*
  3530. * some other cpu did the load balance for us.
  3531. */
  3532. if (ld_moved && this_cpu != smp_processor_id())
  3533. resched_cpu(this_cpu);
  3534. /* All tasks on this runqueue were pinned by CPU affinity */
  3535. if (unlikely(all_pinned)) {
  3536. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3537. if (!cpumask_empty(cpus))
  3538. goto redo;
  3539. goto out_balanced;
  3540. }
  3541. }
  3542. if (!ld_moved) {
  3543. schedstat_inc(sd, lb_failed[idle]);
  3544. sd->nr_balance_failed++;
  3545. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3546. raw_spin_lock_irqsave(&busiest->lock, flags);
  3547. /* don't kick the migration_thread, if the curr
  3548. * task on busiest cpu can't be moved to this_cpu
  3549. */
  3550. if (!cpumask_test_cpu(this_cpu,
  3551. &busiest->curr->cpus_allowed)) {
  3552. raw_spin_unlock_irqrestore(&busiest->lock,
  3553. flags);
  3554. all_pinned = 1;
  3555. goto out_one_pinned;
  3556. }
  3557. if (!busiest->active_balance) {
  3558. busiest->active_balance = 1;
  3559. busiest->push_cpu = this_cpu;
  3560. active_balance = 1;
  3561. }
  3562. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  3563. if (active_balance)
  3564. wake_up_process(busiest->migration_thread);
  3565. /*
  3566. * We've kicked active balancing, reset the failure
  3567. * counter.
  3568. */
  3569. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3570. }
  3571. } else
  3572. sd->nr_balance_failed = 0;
  3573. if (likely(!active_balance)) {
  3574. /* We were unbalanced, so reset the balancing interval */
  3575. sd->balance_interval = sd->min_interval;
  3576. } else {
  3577. /*
  3578. * If we've begun active balancing, start to back off. This
  3579. * case may not be covered by the all_pinned logic if there
  3580. * is only 1 task on the busy runqueue (because we don't call
  3581. * move_tasks).
  3582. */
  3583. if (sd->balance_interval < sd->max_interval)
  3584. sd->balance_interval *= 2;
  3585. }
  3586. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3587. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3588. ld_moved = -1;
  3589. goto out;
  3590. out_balanced:
  3591. schedstat_inc(sd, lb_balanced[idle]);
  3592. sd->nr_balance_failed = 0;
  3593. out_one_pinned:
  3594. /* tune up the balancing interval */
  3595. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3596. (sd->balance_interval < sd->max_interval))
  3597. sd->balance_interval *= 2;
  3598. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3599. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3600. ld_moved = -1;
  3601. else
  3602. ld_moved = 0;
  3603. out:
  3604. if (ld_moved)
  3605. update_shares(sd);
  3606. return ld_moved;
  3607. }
  3608. /*
  3609. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3610. * tasks if there is an imbalance.
  3611. *
  3612. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3613. * this_rq is locked.
  3614. */
  3615. static int
  3616. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  3617. {
  3618. struct sched_group *group;
  3619. struct rq *busiest = NULL;
  3620. unsigned long imbalance;
  3621. int ld_moved = 0;
  3622. int sd_idle = 0;
  3623. int all_pinned = 0;
  3624. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3625. cpumask_copy(cpus, cpu_active_mask);
  3626. /*
  3627. * When power savings policy is enabled for the parent domain, idle
  3628. * sibling can pick up load irrespective of busy siblings. In this case,
  3629. * let the state of idle sibling percolate up as IDLE, instead of
  3630. * portraying it as CPU_NOT_IDLE.
  3631. */
  3632. if (sd->flags & SD_SHARE_CPUPOWER &&
  3633. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3634. sd_idle = 1;
  3635. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3636. redo:
  3637. update_shares_locked(this_rq, sd);
  3638. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3639. &sd_idle, cpus, NULL);
  3640. if (!group) {
  3641. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3642. goto out_balanced;
  3643. }
  3644. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3645. if (!busiest) {
  3646. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3647. goto out_balanced;
  3648. }
  3649. BUG_ON(busiest == this_rq);
  3650. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3651. ld_moved = 0;
  3652. if (busiest->nr_running > 1) {
  3653. /* Attempt to move tasks */
  3654. double_lock_balance(this_rq, busiest);
  3655. /* this_rq->clock is already updated */
  3656. update_rq_clock(busiest);
  3657. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3658. imbalance, sd, CPU_NEWLY_IDLE,
  3659. &all_pinned);
  3660. double_unlock_balance(this_rq, busiest);
  3661. if (unlikely(all_pinned)) {
  3662. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3663. if (!cpumask_empty(cpus))
  3664. goto redo;
  3665. }
  3666. }
  3667. if (!ld_moved) {
  3668. int active_balance = 0;
  3669. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3670. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3671. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3672. return -1;
  3673. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3674. return -1;
  3675. if (sd->nr_balance_failed++ < 2)
  3676. return -1;
  3677. /*
  3678. * The only task running in a non-idle cpu can be moved to this
  3679. * cpu in an attempt to completely freeup the other CPU
  3680. * package. The same method used to move task in load_balance()
  3681. * have been extended for load_balance_newidle() to speedup
  3682. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3683. *
  3684. * The package power saving logic comes from
  3685. * find_busiest_group(). If there are no imbalance, then
  3686. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3687. * f_b_g() will select a group from which a running task may be
  3688. * pulled to this cpu in order to make the other package idle.
  3689. * If there is no opportunity to make a package idle and if
  3690. * there are no imbalance, then f_b_g() will return NULL and no
  3691. * action will be taken in load_balance_newidle().
  3692. *
  3693. * Under normal task pull operation due to imbalance, there
  3694. * will be more than one task in the source run queue and
  3695. * move_tasks() will succeed. ld_moved will be true and this
  3696. * active balance code will not be triggered.
  3697. */
  3698. /* Lock busiest in correct order while this_rq is held */
  3699. double_lock_balance(this_rq, busiest);
  3700. /*
  3701. * don't kick the migration_thread, if the curr
  3702. * task on busiest cpu can't be moved to this_cpu
  3703. */
  3704. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3705. double_unlock_balance(this_rq, busiest);
  3706. all_pinned = 1;
  3707. return ld_moved;
  3708. }
  3709. if (!busiest->active_balance) {
  3710. busiest->active_balance = 1;
  3711. busiest->push_cpu = this_cpu;
  3712. active_balance = 1;
  3713. }
  3714. double_unlock_balance(this_rq, busiest);
  3715. /*
  3716. * Should not call ttwu while holding a rq->lock
  3717. */
  3718. raw_spin_unlock(&this_rq->lock);
  3719. if (active_balance)
  3720. wake_up_process(busiest->migration_thread);
  3721. raw_spin_lock(&this_rq->lock);
  3722. } else
  3723. sd->nr_balance_failed = 0;
  3724. update_shares_locked(this_rq, sd);
  3725. return ld_moved;
  3726. out_balanced:
  3727. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3728. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3729. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3730. return -1;
  3731. sd->nr_balance_failed = 0;
  3732. return 0;
  3733. }
  3734. /*
  3735. * idle_balance is called by schedule() if this_cpu is about to become
  3736. * idle. Attempts to pull tasks from other CPUs.
  3737. */
  3738. static void idle_balance(int this_cpu, struct rq *this_rq)
  3739. {
  3740. struct sched_domain *sd;
  3741. int pulled_task = 0;
  3742. unsigned long next_balance = jiffies + HZ;
  3743. this_rq->idle_stamp = this_rq->clock;
  3744. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  3745. return;
  3746. for_each_domain(this_cpu, sd) {
  3747. unsigned long interval;
  3748. if (!(sd->flags & SD_LOAD_BALANCE))
  3749. continue;
  3750. if (sd->flags & SD_BALANCE_NEWIDLE)
  3751. /* If we've pulled tasks over stop searching: */
  3752. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3753. sd);
  3754. interval = msecs_to_jiffies(sd->balance_interval);
  3755. if (time_after(next_balance, sd->last_balance + interval))
  3756. next_balance = sd->last_balance + interval;
  3757. if (pulled_task) {
  3758. this_rq->idle_stamp = 0;
  3759. break;
  3760. }
  3761. }
  3762. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3763. /*
  3764. * We are going idle. next_balance may be set based on
  3765. * a busy processor. So reset next_balance.
  3766. */
  3767. this_rq->next_balance = next_balance;
  3768. }
  3769. }
  3770. /*
  3771. * active_load_balance is run by migration threads. It pushes running tasks
  3772. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3773. * running on each physical CPU where possible, and avoids physical /
  3774. * logical imbalances.
  3775. *
  3776. * Called with busiest_rq locked.
  3777. */
  3778. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3779. {
  3780. int target_cpu = busiest_rq->push_cpu;
  3781. struct sched_domain *sd;
  3782. struct rq *target_rq;
  3783. /* Is there any task to move? */
  3784. if (busiest_rq->nr_running <= 1)
  3785. return;
  3786. target_rq = cpu_rq(target_cpu);
  3787. /*
  3788. * This condition is "impossible", if it occurs
  3789. * we need to fix it. Originally reported by
  3790. * Bjorn Helgaas on a 128-cpu setup.
  3791. */
  3792. BUG_ON(busiest_rq == target_rq);
  3793. /* move a task from busiest_rq to target_rq */
  3794. double_lock_balance(busiest_rq, target_rq);
  3795. update_rq_clock(busiest_rq);
  3796. update_rq_clock(target_rq);
  3797. /* Search for an sd spanning us and the target CPU. */
  3798. for_each_domain(target_cpu, sd) {
  3799. if ((sd->flags & SD_LOAD_BALANCE) &&
  3800. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3801. break;
  3802. }
  3803. if (likely(sd)) {
  3804. schedstat_inc(sd, alb_count);
  3805. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3806. sd, CPU_IDLE))
  3807. schedstat_inc(sd, alb_pushed);
  3808. else
  3809. schedstat_inc(sd, alb_failed);
  3810. }
  3811. double_unlock_balance(busiest_rq, target_rq);
  3812. }
  3813. #ifdef CONFIG_NO_HZ
  3814. static struct {
  3815. atomic_t load_balancer;
  3816. cpumask_var_t cpu_mask;
  3817. cpumask_var_t ilb_grp_nohz_mask;
  3818. } nohz ____cacheline_aligned = {
  3819. .load_balancer = ATOMIC_INIT(-1),
  3820. };
  3821. int get_nohz_load_balancer(void)
  3822. {
  3823. return atomic_read(&nohz.load_balancer);
  3824. }
  3825. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3826. /**
  3827. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3828. * @cpu: The cpu whose lowest level of sched domain is to
  3829. * be returned.
  3830. * @flag: The flag to check for the lowest sched_domain
  3831. * for the given cpu.
  3832. *
  3833. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3834. */
  3835. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3836. {
  3837. struct sched_domain *sd;
  3838. for_each_domain(cpu, sd)
  3839. if (sd && (sd->flags & flag))
  3840. break;
  3841. return sd;
  3842. }
  3843. /**
  3844. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3845. * @cpu: The cpu whose domains we're iterating over.
  3846. * @sd: variable holding the value of the power_savings_sd
  3847. * for cpu.
  3848. * @flag: The flag to filter the sched_domains to be iterated.
  3849. *
  3850. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3851. * set, starting from the lowest sched_domain to the highest.
  3852. */
  3853. #define for_each_flag_domain(cpu, sd, flag) \
  3854. for (sd = lowest_flag_domain(cpu, flag); \
  3855. (sd && (sd->flags & flag)); sd = sd->parent)
  3856. /**
  3857. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3858. * @ilb_group: group to be checked for semi-idleness
  3859. *
  3860. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3861. *
  3862. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3863. * and atleast one non-idle CPU. This helper function checks if the given
  3864. * sched_group is semi-idle or not.
  3865. */
  3866. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3867. {
  3868. cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
  3869. sched_group_cpus(ilb_group));
  3870. /*
  3871. * A sched_group is semi-idle when it has atleast one busy cpu
  3872. * and atleast one idle cpu.
  3873. */
  3874. if (cpumask_empty(nohz.ilb_grp_nohz_mask))
  3875. return 0;
  3876. if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
  3877. return 0;
  3878. return 1;
  3879. }
  3880. /**
  3881. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3882. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3883. *
  3884. * Returns: Returns the id of the idle load balancer if it exists,
  3885. * Else, returns >= nr_cpu_ids.
  3886. *
  3887. * This algorithm picks the idle load balancer such that it belongs to a
  3888. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3889. * completely idle packages/cores just for the purpose of idle load balancing
  3890. * when there are other idle cpu's which are better suited for that job.
  3891. */
  3892. static int find_new_ilb(int cpu)
  3893. {
  3894. struct sched_domain *sd;
  3895. struct sched_group *ilb_group;
  3896. /*
  3897. * Have idle load balancer selection from semi-idle packages only
  3898. * when power-aware load balancing is enabled
  3899. */
  3900. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3901. goto out_done;
  3902. /*
  3903. * Optimize for the case when we have no idle CPUs or only one
  3904. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3905. */
  3906. if (cpumask_weight(nohz.cpu_mask) < 2)
  3907. goto out_done;
  3908. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3909. ilb_group = sd->groups;
  3910. do {
  3911. if (is_semi_idle_group(ilb_group))
  3912. return cpumask_first(nohz.ilb_grp_nohz_mask);
  3913. ilb_group = ilb_group->next;
  3914. } while (ilb_group != sd->groups);
  3915. }
  3916. out_done:
  3917. return cpumask_first(nohz.cpu_mask);
  3918. }
  3919. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3920. static inline int find_new_ilb(int call_cpu)
  3921. {
  3922. return cpumask_first(nohz.cpu_mask);
  3923. }
  3924. #endif
  3925. /*
  3926. * This routine will try to nominate the ilb (idle load balancing)
  3927. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3928. * load balancing on behalf of all those cpus. If all the cpus in the system
  3929. * go into this tickless mode, then there will be no ilb owner (as there is
  3930. * no need for one) and all the cpus will sleep till the next wakeup event
  3931. * arrives...
  3932. *
  3933. * For the ilb owner, tick is not stopped. And this tick will be used
  3934. * for idle load balancing. ilb owner will still be part of
  3935. * nohz.cpu_mask..
  3936. *
  3937. * While stopping the tick, this cpu will become the ilb owner if there
  3938. * is no other owner. And will be the owner till that cpu becomes busy
  3939. * or if all cpus in the system stop their ticks at which point
  3940. * there is no need for ilb owner.
  3941. *
  3942. * When the ilb owner becomes busy, it nominates another owner, during the
  3943. * next busy scheduler_tick()
  3944. */
  3945. int select_nohz_load_balancer(int stop_tick)
  3946. {
  3947. int cpu = smp_processor_id();
  3948. if (stop_tick) {
  3949. cpu_rq(cpu)->in_nohz_recently = 1;
  3950. if (!cpu_active(cpu)) {
  3951. if (atomic_read(&nohz.load_balancer) != cpu)
  3952. return 0;
  3953. /*
  3954. * If we are going offline and still the leader,
  3955. * give up!
  3956. */
  3957. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3958. BUG();
  3959. return 0;
  3960. }
  3961. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3962. /* time for ilb owner also to sleep */
  3963. if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
  3964. if (atomic_read(&nohz.load_balancer) == cpu)
  3965. atomic_set(&nohz.load_balancer, -1);
  3966. return 0;
  3967. }
  3968. if (atomic_read(&nohz.load_balancer) == -1) {
  3969. /* make me the ilb owner */
  3970. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3971. return 1;
  3972. } else if (atomic_read(&nohz.load_balancer) == cpu) {
  3973. int new_ilb;
  3974. if (!(sched_smt_power_savings ||
  3975. sched_mc_power_savings))
  3976. return 1;
  3977. /*
  3978. * Check to see if there is a more power-efficient
  3979. * ilb.
  3980. */
  3981. new_ilb = find_new_ilb(cpu);
  3982. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  3983. atomic_set(&nohz.load_balancer, -1);
  3984. resched_cpu(new_ilb);
  3985. return 0;
  3986. }
  3987. return 1;
  3988. }
  3989. } else {
  3990. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  3991. return 0;
  3992. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3993. if (atomic_read(&nohz.load_balancer) == cpu)
  3994. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3995. BUG();
  3996. }
  3997. return 0;
  3998. }
  3999. #endif
  4000. static DEFINE_SPINLOCK(balancing);
  4001. /*
  4002. * It checks each scheduling domain to see if it is due to be balanced,
  4003. * and initiates a balancing operation if so.
  4004. *
  4005. * Balancing parameters are set up in arch_init_sched_domains.
  4006. */
  4007. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  4008. {
  4009. int balance = 1;
  4010. struct rq *rq = cpu_rq(cpu);
  4011. unsigned long interval;
  4012. struct sched_domain *sd;
  4013. /* Earliest time when we have to do rebalance again */
  4014. unsigned long next_balance = jiffies + 60*HZ;
  4015. int update_next_balance = 0;
  4016. int need_serialize;
  4017. for_each_domain(cpu, sd) {
  4018. if (!(sd->flags & SD_LOAD_BALANCE))
  4019. continue;
  4020. interval = sd->balance_interval;
  4021. if (idle != CPU_IDLE)
  4022. interval *= sd->busy_factor;
  4023. /* scale ms to jiffies */
  4024. interval = msecs_to_jiffies(interval);
  4025. if (unlikely(!interval))
  4026. interval = 1;
  4027. if (interval > HZ*NR_CPUS/10)
  4028. interval = HZ*NR_CPUS/10;
  4029. need_serialize = sd->flags & SD_SERIALIZE;
  4030. if (need_serialize) {
  4031. if (!spin_trylock(&balancing))
  4032. goto out;
  4033. }
  4034. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  4035. if (load_balance(cpu, rq, sd, idle, &balance)) {
  4036. /*
  4037. * We've pulled tasks over so either we're no
  4038. * longer idle, or one of our SMT siblings is
  4039. * not idle.
  4040. */
  4041. idle = CPU_NOT_IDLE;
  4042. }
  4043. sd->last_balance = jiffies;
  4044. }
  4045. if (need_serialize)
  4046. spin_unlock(&balancing);
  4047. out:
  4048. if (time_after(next_balance, sd->last_balance + interval)) {
  4049. next_balance = sd->last_balance + interval;
  4050. update_next_balance = 1;
  4051. }
  4052. /*
  4053. * Stop the load balance at this level. There is another
  4054. * CPU in our sched group which is doing load balancing more
  4055. * actively.
  4056. */
  4057. if (!balance)
  4058. break;
  4059. }
  4060. /*
  4061. * next_balance will be updated only when there is a need.
  4062. * When the cpu is attached to null domain for ex, it will not be
  4063. * updated.
  4064. */
  4065. if (likely(update_next_balance))
  4066. rq->next_balance = next_balance;
  4067. }
  4068. /*
  4069. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4070. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  4071. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  4072. */
  4073. static void run_rebalance_domains(struct softirq_action *h)
  4074. {
  4075. int this_cpu = smp_processor_id();
  4076. struct rq *this_rq = cpu_rq(this_cpu);
  4077. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  4078. CPU_IDLE : CPU_NOT_IDLE;
  4079. rebalance_domains(this_cpu, idle);
  4080. #ifdef CONFIG_NO_HZ
  4081. /*
  4082. * If this cpu is the owner for idle load balancing, then do the
  4083. * balancing on behalf of the other idle cpus whose ticks are
  4084. * stopped.
  4085. */
  4086. if (this_rq->idle_at_tick &&
  4087. atomic_read(&nohz.load_balancer) == this_cpu) {
  4088. struct rq *rq;
  4089. int balance_cpu;
  4090. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  4091. if (balance_cpu == this_cpu)
  4092. continue;
  4093. /*
  4094. * If this cpu gets work to do, stop the load balancing
  4095. * work being done for other cpus. Next load
  4096. * balancing owner will pick it up.
  4097. */
  4098. if (need_resched())
  4099. break;
  4100. rebalance_domains(balance_cpu, CPU_IDLE);
  4101. rq = cpu_rq(balance_cpu);
  4102. if (time_after(this_rq->next_balance, rq->next_balance))
  4103. this_rq->next_balance = rq->next_balance;
  4104. }
  4105. }
  4106. #endif
  4107. }
  4108. static inline int on_null_domain(int cpu)
  4109. {
  4110. return !rcu_dereference(cpu_rq(cpu)->sd);
  4111. }
  4112. /*
  4113. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4114. *
  4115. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  4116. * idle load balancing owner or decide to stop the periodic load balancing,
  4117. * if the whole system is idle.
  4118. */
  4119. static inline void trigger_load_balance(struct rq *rq, int cpu)
  4120. {
  4121. #ifdef CONFIG_NO_HZ
  4122. /*
  4123. * If we were in the nohz mode recently and busy at the current
  4124. * scheduler tick, then check if we need to nominate new idle
  4125. * load balancer.
  4126. */
  4127. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  4128. rq->in_nohz_recently = 0;
  4129. if (atomic_read(&nohz.load_balancer) == cpu) {
  4130. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4131. atomic_set(&nohz.load_balancer, -1);
  4132. }
  4133. if (atomic_read(&nohz.load_balancer) == -1) {
  4134. int ilb = find_new_ilb(cpu);
  4135. if (ilb < nr_cpu_ids)
  4136. resched_cpu(ilb);
  4137. }
  4138. }
  4139. /*
  4140. * If this cpu is idle and doing idle load balancing for all the
  4141. * cpus with ticks stopped, is it time for that to stop?
  4142. */
  4143. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  4144. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  4145. resched_cpu(cpu);
  4146. return;
  4147. }
  4148. /*
  4149. * If this cpu is idle and the idle load balancing is done by
  4150. * someone else, then no need raise the SCHED_SOFTIRQ
  4151. */
  4152. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  4153. cpumask_test_cpu(cpu, nohz.cpu_mask))
  4154. return;
  4155. #endif
  4156. /* Don't need to rebalance while attached to NULL domain */
  4157. if (time_after_eq(jiffies, rq->next_balance) &&
  4158. likely(!on_null_domain(cpu)))
  4159. raise_softirq(SCHED_SOFTIRQ);
  4160. }
  4161. #else /* CONFIG_SMP */
  4162. /*
  4163. * on UP we do not need to balance between CPUs:
  4164. */
  4165. static inline void idle_balance(int cpu, struct rq *rq)
  4166. {
  4167. }
  4168. #endif
  4169. DEFINE_PER_CPU(struct kernel_stat, kstat);
  4170. EXPORT_PER_CPU_SYMBOL(kstat);
  4171. /*
  4172. * Return any ns on the sched_clock that have not yet been accounted in
  4173. * @p in case that task is currently running.
  4174. *
  4175. * Called with task_rq_lock() held on @rq.
  4176. */
  4177. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  4178. {
  4179. u64 ns = 0;
  4180. if (task_current(rq, p)) {
  4181. update_rq_clock(rq);
  4182. ns = rq->clock - p->se.exec_start;
  4183. if ((s64)ns < 0)
  4184. ns = 0;
  4185. }
  4186. return ns;
  4187. }
  4188. unsigned long long task_delta_exec(struct task_struct *p)
  4189. {
  4190. unsigned long flags;
  4191. struct rq *rq;
  4192. u64 ns = 0;
  4193. rq = task_rq_lock(p, &flags);
  4194. ns = do_task_delta_exec(p, rq);
  4195. task_rq_unlock(rq, &flags);
  4196. return ns;
  4197. }
  4198. /*
  4199. * Return accounted runtime for the task.
  4200. * In case the task is currently running, return the runtime plus current's
  4201. * pending runtime that have not been accounted yet.
  4202. */
  4203. unsigned long long task_sched_runtime(struct task_struct *p)
  4204. {
  4205. unsigned long flags;
  4206. struct rq *rq;
  4207. u64 ns = 0;
  4208. rq = task_rq_lock(p, &flags);
  4209. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  4210. task_rq_unlock(rq, &flags);
  4211. return ns;
  4212. }
  4213. /*
  4214. * Return sum_exec_runtime for the thread group.
  4215. * In case the task is currently running, return the sum plus current's
  4216. * pending runtime that have not been accounted yet.
  4217. *
  4218. * Note that the thread group might have other running tasks as well,
  4219. * so the return value not includes other pending runtime that other
  4220. * running tasks might have.
  4221. */
  4222. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  4223. {
  4224. struct task_cputime totals;
  4225. unsigned long flags;
  4226. struct rq *rq;
  4227. u64 ns;
  4228. rq = task_rq_lock(p, &flags);
  4229. thread_group_cputime(p, &totals);
  4230. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  4231. task_rq_unlock(rq, &flags);
  4232. return ns;
  4233. }
  4234. /*
  4235. * Account user cpu time to a process.
  4236. * @p: the process that the cpu time gets accounted to
  4237. * @cputime: the cpu time spent in user space since the last update
  4238. * @cputime_scaled: cputime scaled by cpu frequency
  4239. */
  4240. void account_user_time(struct task_struct *p, cputime_t cputime,
  4241. cputime_t cputime_scaled)
  4242. {
  4243. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4244. cputime64_t tmp;
  4245. /* Add user time to process. */
  4246. p->utime = cputime_add(p->utime, cputime);
  4247. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4248. account_group_user_time(p, cputime);
  4249. /* Add user time to cpustat. */
  4250. tmp = cputime_to_cputime64(cputime);
  4251. if (TASK_NICE(p) > 0)
  4252. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4253. else
  4254. cpustat->user = cputime64_add(cpustat->user, tmp);
  4255. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  4256. /* Account for user time used */
  4257. acct_update_integrals(p);
  4258. }
  4259. /*
  4260. * Account guest cpu time to a process.
  4261. * @p: the process that the cpu time gets accounted to
  4262. * @cputime: the cpu time spent in virtual machine since the last update
  4263. * @cputime_scaled: cputime scaled by cpu frequency
  4264. */
  4265. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  4266. cputime_t cputime_scaled)
  4267. {
  4268. cputime64_t tmp;
  4269. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4270. tmp = cputime_to_cputime64(cputime);
  4271. /* Add guest time to process. */
  4272. p->utime = cputime_add(p->utime, cputime);
  4273. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4274. account_group_user_time(p, cputime);
  4275. p->gtime = cputime_add(p->gtime, cputime);
  4276. /* Add guest time to cpustat. */
  4277. if (TASK_NICE(p) > 0) {
  4278. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4279. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  4280. } else {
  4281. cpustat->user = cputime64_add(cpustat->user, tmp);
  4282. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  4283. }
  4284. }
  4285. /*
  4286. * Account system cpu time to a process.
  4287. * @p: the process that the cpu time gets accounted to
  4288. * @hardirq_offset: the offset to subtract from hardirq_count()
  4289. * @cputime: the cpu time spent in kernel space since the last update
  4290. * @cputime_scaled: cputime scaled by cpu frequency
  4291. */
  4292. void account_system_time(struct task_struct *p, int hardirq_offset,
  4293. cputime_t cputime, cputime_t cputime_scaled)
  4294. {
  4295. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4296. cputime64_t tmp;
  4297. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  4298. account_guest_time(p, cputime, cputime_scaled);
  4299. return;
  4300. }
  4301. /* Add system time to process. */
  4302. p->stime = cputime_add(p->stime, cputime);
  4303. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  4304. account_group_system_time(p, cputime);
  4305. /* Add system time to cpustat. */
  4306. tmp = cputime_to_cputime64(cputime);
  4307. if (hardirq_count() - hardirq_offset)
  4308. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  4309. else if (softirq_count())
  4310. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  4311. else
  4312. cpustat->system = cputime64_add(cpustat->system, tmp);
  4313. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  4314. /* Account for system time used */
  4315. acct_update_integrals(p);
  4316. }
  4317. /*
  4318. * Account for involuntary wait time.
  4319. * @steal: the cpu time spent in involuntary wait
  4320. */
  4321. void account_steal_time(cputime_t cputime)
  4322. {
  4323. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4324. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4325. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  4326. }
  4327. /*
  4328. * Account for idle time.
  4329. * @cputime: the cpu time spent in idle wait
  4330. */
  4331. void account_idle_time(cputime_t cputime)
  4332. {
  4333. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4334. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4335. struct rq *rq = this_rq();
  4336. if (atomic_read(&rq->nr_iowait) > 0)
  4337. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  4338. else
  4339. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  4340. }
  4341. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  4342. /*
  4343. * Account a single tick of cpu time.
  4344. * @p: the process that the cpu time gets accounted to
  4345. * @user_tick: indicates if the tick is a user or a system tick
  4346. */
  4347. void account_process_tick(struct task_struct *p, int user_tick)
  4348. {
  4349. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  4350. struct rq *rq = this_rq();
  4351. if (user_tick)
  4352. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  4353. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  4354. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  4355. one_jiffy_scaled);
  4356. else
  4357. account_idle_time(cputime_one_jiffy);
  4358. }
  4359. /*
  4360. * Account multiple ticks of steal time.
  4361. * @p: the process from which the cpu time has been stolen
  4362. * @ticks: number of stolen ticks
  4363. */
  4364. void account_steal_ticks(unsigned long ticks)
  4365. {
  4366. account_steal_time(jiffies_to_cputime(ticks));
  4367. }
  4368. /*
  4369. * Account multiple ticks of idle time.
  4370. * @ticks: number of stolen ticks
  4371. */
  4372. void account_idle_ticks(unsigned long ticks)
  4373. {
  4374. account_idle_time(jiffies_to_cputime(ticks));
  4375. }
  4376. #endif
  4377. /*
  4378. * Use precise platform statistics if available:
  4379. */
  4380. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4381. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4382. {
  4383. *ut = p->utime;
  4384. *st = p->stime;
  4385. }
  4386. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4387. {
  4388. struct task_cputime cputime;
  4389. thread_group_cputime(p, &cputime);
  4390. *ut = cputime.utime;
  4391. *st = cputime.stime;
  4392. }
  4393. #else
  4394. #ifndef nsecs_to_cputime
  4395. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  4396. #endif
  4397. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4398. {
  4399. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  4400. /*
  4401. * Use CFS's precise accounting:
  4402. */
  4403. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  4404. if (total) {
  4405. u64 temp;
  4406. temp = (u64)(rtime * utime);
  4407. do_div(temp, total);
  4408. utime = (cputime_t)temp;
  4409. } else
  4410. utime = rtime;
  4411. /*
  4412. * Compare with previous values, to keep monotonicity:
  4413. */
  4414. p->prev_utime = max(p->prev_utime, utime);
  4415. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  4416. *ut = p->prev_utime;
  4417. *st = p->prev_stime;
  4418. }
  4419. /*
  4420. * Must be called with siglock held.
  4421. */
  4422. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4423. {
  4424. struct signal_struct *sig = p->signal;
  4425. struct task_cputime cputime;
  4426. cputime_t rtime, utime, total;
  4427. thread_group_cputime(p, &cputime);
  4428. total = cputime_add(cputime.utime, cputime.stime);
  4429. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  4430. if (total) {
  4431. u64 temp;
  4432. temp = (u64)(rtime * cputime.utime);
  4433. do_div(temp, total);
  4434. utime = (cputime_t)temp;
  4435. } else
  4436. utime = rtime;
  4437. sig->prev_utime = max(sig->prev_utime, utime);
  4438. sig->prev_stime = max(sig->prev_stime,
  4439. cputime_sub(rtime, sig->prev_utime));
  4440. *ut = sig->prev_utime;
  4441. *st = sig->prev_stime;
  4442. }
  4443. #endif
  4444. /*
  4445. * This function gets called by the timer code, with HZ frequency.
  4446. * We call it with interrupts disabled.
  4447. *
  4448. * It also gets called by the fork code, when changing the parent's
  4449. * timeslices.
  4450. */
  4451. void scheduler_tick(void)
  4452. {
  4453. int cpu = smp_processor_id();
  4454. struct rq *rq = cpu_rq(cpu);
  4455. struct task_struct *curr = rq->curr;
  4456. sched_clock_tick();
  4457. raw_spin_lock(&rq->lock);
  4458. update_rq_clock(rq);
  4459. update_cpu_load(rq);
  4460. curr->sched_class->task_tick(rq, curr, 0);
  4461. raw_spin_unlock(&rq->lock);
  4462. perf_event_task_tick(curr, cpu);
  4463. #ifdef CONFIG_SMP
  4464. rq->idle_at_tick = idle_cpu(cpu);
  4465. trigger_load_balance(rq, cpu);
  4466. #endif
  4467. }
  4468. notrace unsigned long get_parent_ip(unsigned long addr)
  4469. {
  4470. if (in_lock_functions(addr)) {
  4471. addr = CALLER_ADDR2;
  4472. if (in_lock_functions(addr))
  4473. addr = CALLER_ADDR3;
  4474. }
  4475. return addr;
  4476. }
  4477. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4478. defined(CONFIG_PREEMPT_TRACER))
  4479. void __kprobes add_preempt_count(int val)
  4480. {
  4481. #ifdef CONFIG_DEBUG_PREEMPT
  4482. /*
  4483. * Underflow?
  4484. */
  4485. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4486. return;
  4487. #endif
  4488. preempt_count() += val;
  4489. #ifdef CONFIG_DEBUG_PREEMPT
  4490. /*
  4491. * Spinlock count overflowing soon?
  4492. */
  4493. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4494. PREEMPT_MASK - 10);
  4495. #endif
  4496. if (preempt_count() == val)
  4497. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4498. }
  4499. EXPORT_SYMBOL(add_preempt_count);
  4500. void __kprobes sub_preempt_count(int val)
  4501. {
  4502. #ifdef CONFIG_DEBUG_PREEMPT
  4503. /*
  4504. * Underflow?
  4505. */
  4506. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4507. return;
  4508. /*
  4509. * Is the spinlock portion underflowing?
  4510. */
  4511. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4512. !(preempt_count() & PREEMPT_MASK)))
  4513. return;
  4514. #endif
  4515. if (preempt_count() == val)
  4516. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4517. preempt_count() -= val;
  4518. }
  4519. EXPORT_SYMBOL(sub_preempt_count);
  4520. #endif
  4521. /*
  4522. * Print scheduling while atomic bug:
  4523. */
  4524. static noinline void __schedule_bug(struct task_struct *prev)
  4525. {
  4526. struct pt_regs *regs = get_irq_regs();
  4527. pr_err("BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4528. prev->comm, prev->pid, preempt_count());
  4529. debug_show_held_locks(prev);
  4530. print_modules();
  4531. if (irqs_disabled())
  4532. print_irqtrace_events(prev);
  4533. if (regs)
  4534. show_regs(regs);
  4535. else
  4536. dump_stack();
  4537. }
  4538. /*
  4539. * Various schedule()-time debugging checks and statistics:
  4540. */
  4541. static inline void schedule_debug(struct task_struct *prev)
  4542. {
  4543. /*
  4544. * Test if we are atomic. Since do_exit() needs to call into
  4545. * schedule() atomically, we ignore that path for now.
  4546. * Otherwise, whine if we are scheduling when we should not be.
  4547. */
  4548. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4549. __schedule_bug(prev);
  4550. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4551. schedstat_inc(this_rq(), sched_count);
  4552. #ifdef CONFIG_SCHEDSTATS
  4553. if (unlikely(prev->lock_depth >= 0)) {
  4554. schedstat_inc(this_rq(), bkl_count);
  4555. schedstat_inc(prev, sched_info.bkl_count);
  4556. }
  4557. #endif
  4558. }
  4559. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  4560. {
  4561. if (prev->state == TASK_RUNNING) {
  4562. u64 runtime = prev->se.sum_exec_runtime;
  4563. runtime -= prev->se.prev_sum_exec_runtime;
  4564. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4565. /*
  4566. * In order to avoid avg_overlap growing stale when we are
  4567. * indeed overlapping and hence not getting put to sleep, grow
  4568. * the avg_overlap on preemption.
  4569. *
  4570. * We use the average preemption runtime because that
  4571. * correlates to the amount of cache footprint a task can
  4572. * build up.
  4573. */
  4574. update_avg(&prev->se.avg_overlap, runtime);
  4575. }
  4576. prev->sched_class->put_prev_task(rq, prev);
  4577. }
  4578. /*
  4579. * Pick up the highest-prio task:
  4580. */
  4581. static inline struct task_struct *
  4582. pick_next_task(struct rq *rq)
  4583. {
  4584. const struct sched_class *class;
  4585. struct task_struct *p;
  4586. /*
  4587. * Optimization: we know that if all tasks are in
  4588. * the fair class we can call that function directly:
  4589. */
  4590. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4591. p = fair_sched_class.pick_next_task(rq);
  4592. if (likely(p))
  4593. return p;
  4594. }
  4595. class = sched_class_highest;
  4596. for ( ; ; ) {
  4597. p = class->pick_next_task(rq);
  4598. if (p)
  4599. return p;
  4600. /*
  4601. * Will never be NULL as the idle class always
  4602. * returns a non-NULL p:
  4603. */
  4604. class = class->next;
  4605. }
  4606. }
  4607. /*
  4608. * schedule() is the main scheduler function.
  4609. */
  4610. asmlinkage void __sched schedule(void)
  4611. {
  4612. struct task_struct *prev, *next;
  4613. unsigned long *switch_count;
  4614. struct rq *rq;
  4615. int cpu;
  4616. need_resched:
  4617. preempt_disable();
  4618. cpu = smp_processor_id();
  4619. rq = cpu_rq(cpu);
  4620. rcu_sched_qs(cpu);
  4621. prev = rq->curr;
  4622. switch_count = &prev->nivcsw;
  4623. release_kernel_lock(prev);
  4624. need_resched_nonpreemptible:
  4625. schedule_debug(prev);
  4626. if (sched_feat(HRTICK))
  4627. hrtick_clear(rq);
  4628. raw_spin_lock_irq(&rq->lock);
  4629. update_rq_clock(rq);
  4630. clear_tsk_need_resched(prev);
  4631. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4632. if (unlikely(signal_pending_state(prev->state, prev)))
  4633. prev->state = TASK_RUNNING;
  4634. else
  4635. deactivate_task(rq, prev, 1);
  4636. switch_count = &prev->nvcsw;
  4637. }
  4638. pre_schedule(rq, prev);
  4639. if (unlikely(!rq->nr_running))
  4640. idle_balance(cpu, rq);
  4641. put_prev_task(rq, prev);
  4642. next = pick_next_task(rq);
  4643. if (likely(prev != next)) {
  4644. sched_info_switch(prev, next);
  4645. perf_event_task_sched_out(prev, next, cpu);
  4646. rq->nr_switches++;
  4647. rq->curr = next;
  4648. ++*switch_count;
  4649. context_switch(rq, prev, next); /* unlocks the rq */
  4650. /*
  4651. * the context switch might have flipped the stack from under
  4652. * us, hence refresh the local variables.
  4653. */
  4654. cpu = smp_processor_id();
  4655. rq = cpu_rq(cpu);
  4656. } else
  4657. raw_spin_unlock_irq(&rq->lock);
  4658. post_schedule(rq);
  4659. if (unlikely(reacquire_kernel_lock(current) < 0))
  4660. goto need_resched_nonpreemptible;
  4661. preempt_enable_no_resched();
  4662. if (need_resched())
  4663. goto need_resched;
  4664. }
  4665. EXPORT_SYMBOL(schedule);
  4666. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  4667. /*
  4668. * Look out! "owner" is an entirely speculative pointer
  4669. * access and not reliable.
  4670. */
  4671. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4672. {
  4673. unsigned int cpu;
  4674. struct rq *rq;
  4675. if (!sched_feat(OWNER_SPIN))
  4676. return 0;
  4677. #ifdef CONFIG_DEBUG_PAGEALLOC
  4678. /*
  4679. * Need to access the cpu field knowing that
  4680. * DEBUG_PAGEALLOC could have unmapped it if
  4681. * the mutex owner just released it and exited.
  4682. */
  4683. if (probe_kernel_address(&owner->cpu, cpu))
  4684. goto out;
  4685. #else
  4686. cpu = owner->cpu;
  4687. #endif
  4688. /*
  4689. * Even if the access succeeded (likely case),
  4690. * the cpu field may no longer be valid.
  4691. */
  4692. if (cpu >= nr_cpumask_bits)
  4693. goto out;
  4694. /*
  4695. * We need to validate that we can do a
  4696. * get_cpu() and that we have the percpu area.
  4697. */
  4698. if (!cpu_online(cpu))
  4699. goto out;
  4700. rq = cpu_rq(cpu);
  4701. for (;;) {
  4702. /*
  4703. * Owner changed, break to re-assess state.
  4704. */
  4705. if (lock->owner != owner)
  4706. break;
  4707. /*
  4708. * Is that owner really running on that cpu?
  4709. */
  4710. if (task_thread_info(rq->curr) != owner || need_resched())
  4711. return 0;
  4712. cpu_relax();
  4713. }
  4714. out:
  4715. return 1;
  4716. }
  4717. #endif
  4718. #ifdef CONFIG_PREEMPT
  4719. /*
  4720. * this is the entry point to schedule() from in-kernel preemption
  4721. * off of preempt_enable. Kernel preemptions off return from interrupt
  4722. * occur there and call schedule directly.
  4723. */
  4724. asmlinkage void __sched preempt_schedule(void)
  4725. {
  4726. struct thread_info *ti = current_thread_info();
  4727. /*
  4728. * If there is a non-zero preempt_count or interrupts are disabled,
  4729. * we do not want to preempt the current task. Just return..
  4730. */
  4731. if (likely(ti->preempt_count || irqs_disabled()))
  4732. return;
  4733. do {
  4734. add_preempt_count(PREEMPT_ACTIVE);
  4735. schedule();
  4736. sub_preempt_count(PREEMPT_ACTIVE);
  4737. /*
  4738. * Check again in case we missed a preemption opportunity
  4739. * between schedule and now.
  4740. */
  4741. barrier();
  4742. } while (need_resched());
  4743. }
  4744. EXPORT_SYMBOL(preempt_schedule);
  4745. /*
  4746. * this is the entry point to schedule() from kernel preemption
  4747. * off of irq context.
  4748. * Note, that this is called and return with irqs disabled. This will
  4749. * protect us against recursive calling from irq.
  4750. */
  4751. asmlinkage void __sched preempt_schedule_irq(void)
  4752. {
  4753. struct thread_info *ti = current_thread_info();
  4754. /* Catch callers which need to be fixed */
  4755. BUG_ON(ti->preempt_count || !irqs_disabled());
  4756. do {
  4757. add_preempt_count(PREEMPT_ACTIVE);
  4758. local_irq_enable();
  4759. schedule();
  4760. local_irq_disable();
  4761. sub_preempt_count(PREEMPT_ACTIVE);
  4762. /*
  4763. * Check again in case we missed a preemption opportunity
  4764. * between schedule and now.
  4765. */
  4766. barrier();
  4767. } while (need_resched());
  4768. }
  4769. #endif /* CONFIG_PREEMPT */
  4770. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  4771. void *key)
  4772. {
  4773. return try_to_wake_up(curr->private, mode, wake_flags);
  4774. }
  4775. EXPORT_SYMBOL(default_wake_function);
  4776. /*
  4777. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4778. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4779. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4780. *
  4781. * There are circumstances in which we can try to wake a task which has already
  4782. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4783. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4784. */
  4785. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4786. int nr_exclusive, int wake_flags, void *key)
  4787. {
  4788. wait_queue_t *curr, *next;
  4789. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4790. unsigned flags = curr->flags;
  4791. if (curr->func(curr, mode, wake_flags, key) &&
  4792. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4793. break;
  4794. }
  4795. }
  4796. /**
  4797. * __wake_up - wake up threads blocked on a waitqueue.
  4798. * @q: the waitqueue
  4799. * @mode: which threads
  4800. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4801. * @key: is directly passed to the wakeup function
  4802. *
  4803. * It may be assumed that this function implies a write memory barrier before
  4804. * changing the task state if and only if any tasks are woken up.
  4805. */
  4806. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4807. int nr_exclusive, void *key)
  4808. {
  4809. unsigned long flags;
  4810. spin_lock_irqsave(&q->lock, flags);
  4811. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4812. spin_unlock_irqrestore(&q->lock, flags);
  4813. }
  4814. EXPORT_SYMBOL(__wake_up);
  4815. /*
  4816. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4817. */
  4818. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4819. {
  4820. __wake_up_common(q, mode, 1, 0, NULL);
  4821. }
  4822. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  4823. {
  4824. __wake_up_common(q, mode, 1, 0, key);
  4825. }
  4826. /**
  4827. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  4828. * @q: the waitqueue
  4829. * @mode: which threads
  4830. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4831. * @key: opaque value to be passed to wakeup targets
  4832. *
  4833. * The sync wakeup differs that the waker knows that it will schedule
  4834. * away soon, so while the target thread will be woken up, it will not
  4835. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4836. * with each other. This can prevent needless bouncing between CPUs.
  4837. *
  4838. * On UP it can prevent extra preemption.
  4839. *
  4840. * It may be assumed that this function implies a write memory barrier before
  4841. * changing the task state if and only if any tasks are woken up.
  4842. */
  4843. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  4844. int nr_exclusive, void *key)
  4845. {
  4846. unsigned long flags;
  4847. int wake_flags = WF_SYNC;
  4848. if (unlikely(!q))
  4849. return;
  4850. if (unlikely(!nr_exclusive))
  4851. wake_flags = 0;
  4852. spin_lock_irqsave(&q->lock, flags);
  4853. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  4854. spin_unlock_irqrestore(&q->lock, flags);
  4855. }
  4856. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  4857. /*
  4858. * __wake_up_sync - see __wake_up_sync_key()
  4859. */
  4860. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4861. {
  4862. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  4863. }
  4864. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4865. /**
  4866. * complete: - signals a single thread waiting on this completion
  4867. * @x: holds the state of this particular completion
  4868. *
  4869. * This will wake up a single thread waiting on this completion. Threads will be
  4870. * awakened in the same order in which they were queued.
  4871. *
  4872. * See also complete_all(), wait_for_completion() and related routines.
  4873. *
  4874. * It may be assumed that this function implies a write memory barrier before
  4875. * changing the task state if and only if any tasks are woken up.
  4876. */
  4877. void complete(struct completion *x)
  4878. {
  4879. unsigned long flags;
  4880. spin_lock_irqsave(&x->wait.lock, flags);
  4881. x->done++;
  4882. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4883. spin_unlock_irqrestore(&x->wait.lock, flags);
  4884. }
  4885. EXPORT_SYMBOL(complete);
  4886. /**
  4887. * complete_all: - signals all threads waiting on this completion
  4888. * @x: holds the state of this particular completion
  4889. *
  4890. * This will wake up all threads waiting on this particular completion event.
  4891. *
  4892. * It may be assumed that this function implies a write memory barrier before
  4893. * changing the task state if and only if any tasks are woken up.
  4894. */
  4895. void complete_all(struct completion *x)
  4896. {
  4897. unsigned long flags;
  4898. spin_lock_irqsave(&x->wait.lock, flags);
  4899. x->done += UINT_MAX/2;
  4900. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4901. spin_unlock_irqrestore(&x->wait.lock, flags);
  4902. }
  4903. EXPORT_SYMBOL(complete_all);
  4904. static inline long __sched
  4905. do_wait_for_common(struct completion *x, long timeout, int state)
  4906. {
  4907. if (!x->done) {
  4908. DECLARE_WAITQUEUE(wait, current);
  4909. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4910. __add_wait_queue_tail(&x->wait, &wait);
  4911. do {
  4912. if (signal_pending_state(state, current)) {
  4913. timeout = -ERESTARTSYS;
  4914. break;
  4915. }
  4916. __set_current_state(state);
  4917. spin_unlock_irq(&x->wait.lock);
  4918. timeout = schedule_timeout(timeout);
  4919. spin_lock_irq(&x->wait.lock);
  4920. } while (!x->done && timeout);
  4921. __remove_wait_queue(&x->wait, &wait);
  4922. if (!x->done)
  4923. return timeout;
  4924. }
  4925. x->done--;
  4926. return timeout ?: 1;
  4927. }
  4928. static long __sched
  4929. wait_for_common(struct completion *x, long timeout, int state)
  4930. {
  4931. might_sleep();
  4932. spin_lock_irq(&x->wait.lock);
  4933. timeout = do_wait_for_common(x, timeout, state);
  4934. spin_unlock_irq(&x->wait.lock);
  4935. return timeout;
  4936. }
  4937. /**
  4938. * wait_for_completion: - waits for completion of a task
  4939. * @x: holds the state of this particular completion
  4940. *
  4941. * This waits to be signaled for completion of a specific task. It is NOT
  4942. * interruptible and there is no timeout.
  4943. *
  4944. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4945. * and interrupt capability. Also see complete().
  4946. */
  4947. void __sched wait_for_completion(struct completion *x)
  4948. {
  4949. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4950. }
  4951. EXPORT_SYMBOL(wait_for_completion);
  4952. /**
  4953. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4954. * @x: holds the state of this particular completion
  4955. * @timeout: timeout value in jiffies
  4956. *
  4957. * This waits for either a completion of a specific task to be signaled or for a
  4958. * specified timeout to expire. The timeout is in jiffies. It is not
  4959. * interruptible.
  4960. */
  4961. unsigned long __sched
  4962. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4963. {
  4964. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4965. }
  4966. EXPORT_SYMBOL(wait_for_completion_timeout);
  4967. /**
  4968. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4969. * @x: holds the state of this particular completion
  4970. *
  4971. * This waits for completion of a specific task to be signaled. It is
  4972. * interruptible.
  4973. */
  4974. int __sched wait_for_completion_interruptible(struct completion *x)
  4975. {
  4976. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4977. if (t == -ERESTARTSYS)
  4978. return t;
  4979. return 0;
  4980. }
  4981. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4982. /**
  4983. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4984. * @x: holds the state of this particular completion
  4985. * @timeout: timeout value in jiffies
  4986. *
  4987. * This waits for either a completion of a specific task to be signaled or for a
  4988. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4989. */
  4990. unsigned long __sched
  4991. wait_for_completion_interruptible_timeout(struct completion *x,
  4992. unsigned long timeout)
  4993. {
  4994. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4995. }
  4996. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4997. /**
  4998. * wait_for_completion_killable: - waits for completion of a task (killable)
  4999. * @x: holds the state of this particular completion
  5000. *
  5001. * This waits to be signaled for completion of a specific task. It can be
  5002. * interrupted by a kill signal.
  5003. */
  5004. int __sched wait_for_completion_killable(struct completion *x)
  5005. {
  5006. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  5007. if (t == -ERESTARTSYS)
  5008. return t;
  5009. return 0;
  5010. }
  5011. EXPORT_SYMBOL(wait_for_completion_killable);
  5012. /**
  5013. * try_wait_for_completion - try to decrement a completion without blocking
  5014. * @x: completion structure
  5015. *
  5016. * Returns: 0 if a decrement cannot be done without blocking
  5017. * 1 if a decrement succeeded.
  5018. *
  5019. * If a completion is being used as a counting completion,
  5020. * attempt to decrement the counter without blocking. This
  5021. * enables us to avoid waiting if the resource the completion
  5022. * is protecting is not available.
  5023. */
  5024. bool try_wait_for_completion(struct completion *x)
  5025. {
  5026. unsigned long flags;
  5027. int ret = 1;
  5028. spin_lock_irqsave(&x->wait.lock, flags);
  5029. if (!x->done)
  5030. ret = 0;
  5031. else
  5032. x->done--;
  5033. spin_unlock_irqrestore(&x->wait.lock, flags);
  5034. return ret;
  5035. }
  5036. EXPORT_SYMBOL(try_wait_for_completion);
  5037. /**
  5038. * completion_done - Test to see if a completion has any waiters
  5039. * @x: completion structure
  5040. *
  5041. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  5042. * 1 if there are no waiters.
  5043. *
  5044. */
  5045. bool completion_done(struct completion *x)
  5046. {
  5047. unsigned long flags;
  5048. int ret = 1;
  5049. spin_lock_irqsave(&x->wait.lock, flags);
  5050. if (!x->done)
  5051. ret = 0;
  5052. spin_unlock_irqrestore(&x->wait.lock, flags);
  5053. return ret;
  5054. }
  5055. EXPORT_SYMBOL(completion_done);
  5056. static long __sched
  5057. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  5058. {
  5059. unsigned long flags;
  5060. wait_queue_t wait;
  5061. init_waitqueue_entry(&wait, current);
  5062. __set_current_state(state);
  5063. spin_lock_irqsave(&q->lock, flags);
  5064. __add_wait_queue(q, &wait);
  5065. spin_unlock(&q->lock);
  5066. timeout = schedule_timeout(timeout);
  5067. spin_lock_irq(&q->lock);
  5068. __remove_wait_queue(q, &wait);
  5069. spin_unlock_irqrestore(&q->lock, flags);
  5070. return timeout;
  5071. }
  5072. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  5073. {
  5074. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5075. }
  5076. EXPORT_SYMBOL(interruptible_sleep_on);
  5077. long __sched
  5078. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5079. {
  5080. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  5081. }
  5082. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  5083. void __sched sleep_on(wait_queue_head_t *q)
  5084. {
  5085. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5086. }
  5087. EXPORT_SYMBOL(sleep_on);
  5088. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5089. {
  5090. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  5091. }
  5092. EXPORT_SYMBOL(sleep_on_timeout);
  5093. #ifdef CONFIG_RT_MUTEXES
  5094. /*
  5095. * rt_mutex_setprio - set the current priority of a task
  5096. * @p: task
  5097. * @prio: prio value (kernel-internal form)
  5098. *
  5099. * This function changes the 'effective' priority of a task. It does
  5100. * not touch ->normal_prio like __setscheduler().
  5101. *
  5102. * Used by the rt_mutex code to implement priority inheritance logic.
  5103. */
  5104. void rt_mutex_setprio(struct task_struct *p, int prio)
  5105. {
  5106. unsigned long flags;
  5107. int oldprio, on_rq, running;
  5108. struct rq *rq;
  5109. const struct sched_class *prev_class = p->sched_class;
  5110. BUG_ON(prio < 0 || prio > MAX_PRIO);
  5111. rq = task_rq_lock(p, &flags);
  5112. update_rq_clock(rq);
  5113. oldprio = p->prio;
  5114. on_rq = p->se.on_rq;
  5115. running = task_current(rq, p);
  5116. if (on_rq)
  5117. dequeue_task(rq, p, 0);
  5118. if (running)
  5119. p->sched_class->put_prev_task(rq, p);
  5120. if (rt_prio(prio))
  5121. p->sched_class = &rt_sched_class;
  5122. else
  5123. p->sched_class = &fair_sched_class;
  5124. p->prio = prio;
  5125. if (running)
  5126. p->sched_class->set_curr_task(rq);
  5127. if (on_rq) {
  5128. enqueue_task(rq, p, 0);
  5129. check_class_changed(rq, p, prev_class, oldprio, running);
  5130. }
  5131. task_rq_unlock(rq, &flags);
  5132. }
  5133. #endif
  5134. void set_user_nice(struct task_struct *p, long nice)
  5135. {
  5136. int old_prio, delta, on_rq;
  5137. unsigned long flags;
  5138. struct rq *rq;
  5139. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  5140. return;
  5141. /*
  5142. * We have to be careful, if called from sys_setpriority(),
  5143. * the task might be in the middle of scheduling on another CPU.
  5144. */
  5145. rq = task_rq_lock(p, &flags);
  5146. update_rq_clock(rq);
  5147. /*
  5148. * The RT priorities are set via sched_setscheduler(), but we still
  5149. * allow the 'normal' nice value to be set - but as expected
  5150. * it wont have any effect on scheduling until the task is
  5151. * SCHED_FIFO/SCHED_RR:
  5152. */
  5153. if (task_has_rt_policy(p)) {
  5154. p->static_prio = NICE_TO_PRIO(nice);
  5155. goto out_unlock;
  5156. }
  5157. on_rq = p->se.on_rq;
  5158. if (on_rq)
  5159. dequeue_task(rq, p, 0);
  5160. p->static_prio = NICE_TO_PRIO(nice);
  5161. set_load_weight(p);
  5162. old_prio = p->prio;
  5163. p->prio = effective_prio(p);
  5164. delta = p->prio - old_prio;
  5165. if (on_rq) {
  5166. enqueue_task(rq, p, 0);
  5167. /*
  5168. * If the task increased its priority or is running and
  5169. * lowered its priority, then reschedule its CPU:
  5170. */
  5171. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  5172. resched_task(rq->curr);
  5173. }
  5174. out_unlock:
  5175. task_rq_unlock(rq, &flags);
  5176. }
  5177. EXPORT_SYMBOL(set_user_nice);
  5178. /*
  5179. * can_nice - check if a task can reduce its nice value
  5180. * @p: task
  5181. * @nice: nice value
  5182. */
  5183. int can_nice(const struct task_struct *p, const int nice)
  5184. {
  5185. /* convert nice value [19,-20] to rlimit style value [1,40] */
  5186. int nice_rlim = 20 - nice;
  5187. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  5188. capable(CAP_SYS_NICE));
  5189. }
  5190. #ifdef __ARCH_WANT_SYS_NICE
  5191. /*
  5192. * sys_nice - change the priority of the current process.
  5193. * @increment: priority increment
  5194. *
  5195. * sys_setpriority is a more generic, but much slower function that
  5196. * does similar things.
  5197. */
  5198. SYSCALL_DEFINE1(nice, int, increment)
  5199. {
  5200. long nice, retval;
  5201. /*
  5202. * Setpriority might change our priority at the same moment.
  5203. * We don't have to worry. Conceptually one call occurs first
  5204. * and we have a single winner.
  5205. */
  5206. if (increment < -40)
  5207. increment = -40;
  5208. if (increment > 40)
  5209. increment = 40;
  5210. nice = TASK_NICE(current) + increment;
  5211. if (nice < -20)
  5212. nice = -20;
  5213. if (nice > 19)
  5214. nice = 19;
  5215. if (increment < 0 && !can_nice(current, nice))
  5216. return -EPERM;
  5217. retval = security_task_setnice(current, nice);
  5218. if (retval)
  5219. return retval;
  5220. set_user_nice(current, nice);
  5221. return 0;
  5222. }
  5223. #endif
  5224. /**
  5225. * task_prio - return the priority value of a given task.
  5226. * @p: the task in question.
  5227. *
  5228. * This is the priority value as seen by users in /proc.
  5229. * RT tasks are offset by -200. Normal tasks are centered
  5230. * around 0, value goes from -16 to +15.
  5231. */
  5232. int task_prio(const struct task_struct *p)
  5233. {
  5234. return p->prio - MAX_RT_PRIO;
  5235. }
  5236. /**
  5237. * task_nice - return the nice value of a given task.
  5238. * @p: the task in question.
  5239. */
  5240. int task_nice(const struct task_struct *p)
  5241. {
  5242. return TASK_NICE(p);
  5243. }
  5244. EXPORT_SYMBOL(task_nice);
  5245. /**
  5246. * idle_cpu - is a given cpu idle currently?
  5247. * @cpu: the processor in question.
  5248. */
  5249. int idle_cpu(int cpu)
  5250. {
  5251. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  5252. }
  5253. /**
  5254. * idle_task - return the idle task for a given cpu.
  5255. * @cpu: the processor in question.
  5256. */
  5257. struct task_struct *idle_task(int cpu)
  5258. {
  5259. return cpu_rq(cpu)->idle;
  5260. }
  5261. /**
  5262. * find_process_by_pid - find a process with a matching PID value.
  5263. * @pid: the pid in question.
  5264. */
  5265. static struct task_struct *find_process_by_pid(pid_t pid)
  5266. {
  5267. return pid ? find_task_by_vpid(pid) : current;
  5268. }
  5269. /* Actually do priority change: must hold rq lock. */
  5270. static void
  5271. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  5272. {
  5273. BUG_ON(p->se.on_rq);
  5274. p->policy = policy;
  5275. p->rt_priority = prio;
  5276. p->normal_prio = normal_prio(p);
  5277. /* we are holding p->pi_lock already */
  5278. p->prio = rt_mutex_getprio(p);
  5279. if (rt_prio(p->prio))
  5280. p->sched_class = &rt_sched_class;
  5281. else
  5282. p->sched_class = &fair_sched_class;
  5283. set_load_weight(p);
  5284. }
  5285. /*
  5286. * check the target process has a UID that matches the current process's
  5287. */
  5288. static bool check_same_owner(struct task_struct *p)
  5289. {
  5290. const struct cred *cred = current_cred(), *pcred;
  5291. bool match;
  5292. rcu_read_lock();
  5293. pcred = __task_cred(p);
  5294. match = (cred->euid == pcred->euid ||
  5295. cred->euid == pcred->uid);
  5296. rcu_read_unlock();
  5297. return match;
  5298. }
  5299. static int __sched_setscheduler(struct task_struct *p, int policy,
  5300. struct sched_param *param, bool user)
  5301. {
  5302. int retval, oldprio, oldpolicy = -1, on_rq, running;
  5303. unsigned long flags;
  5304. const struct sched_class *prev_class = p->sched_class;
  5305. struct rq *rq;
  5306. int reset_on_fork;
  5307. /* may grab non-irq protected spin_locks */
  5308. BUG_ON(in_interrupt());
  5309. recheck:
  5310. /* double check policy once rq lock held */
  5311. if (policy < 0) {
  5312. reset_on_fork = p->sched_reset_on_fork;
  5313. policy = oldpolicy = p->policy;
  5314. } else {
  5315. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  5316. policy &= ~SCHED_RESET_ON_FORK;
  5317. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  5318. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  5319. policy != SCHED_IDLE)
  5320. return -EINVAL;
  5321. }
  5322. /*
  5323. * Valid priorities for SCHED_FIFO and SCHED_RR are
  5324. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  5325. * SCHED_BATCH and SCHED_IDLE is 0.
  5326. */
  5327. if (param->sched_priority < 0 ||
  5328. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  5329. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  5330. return -EINVAL;
  5331. if (rt_policy(policy) != (param->sched_priority != 0))
  5332. return -EINVAL;
  5333. /*
  5334. * Allow unprivileged RT tasks to decrease priority:
  5335. */
  5336. if (user && !capable(CAP_SYS_NICE)) {
  5337. if (rt_policy(policy)) {
  5338. unsigned long rlim_rtprio;
  5339. if (!lock_task_sighand(p, &flags))
  5340. return -ESRCH;
  5341. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  5342. unlock_task_sighand(p, &flags);
  5343. /* can't set/change the rt policy */
  5344. if (policy != p->policy && !rlim_rtprio)
  5345. return -EPERM;
  5346. /* can't increase priority */
  5347. if (param->sched_priority > p->rt_priority &&
  5348. param->sched_priority > rlim_rtprio)
  5349. return -EPERM;
  5350. }
  5351. /*
  5352. * Like positive nice levels, dont allow tasks to
  5353. * move out of SCHED_IDLE either:
  5354. */
  5355. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  5356. return -EPERM;
  5357. /* can't change other user's priorities */
  5358. if (!check_same_owner(p))
  5359. return -EPERM;
  5360. /* Normal users shall not reset the sched_reset_on_fork flag */
  5361. if (p->sched_reset_on_fork && !reset_on_fork)
  5362. return -EPERM;
  5363. }
  5364. if (user) {
  5365. #ifdef CONFIG_RT_GROUP_SCHED
  5366. /*
  5367. * Do not allow realtime tasks into groups that have no runtime
  5368. * assigned.
  5369. */
  5370. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  5371. task_group(p)->rt_bandwidth.rt_runtime == 0)
  5372. return -EPERM;
  5373. #endif
  5374. retval = security_task_setscheduler(p, policy, param);
  5375. if (retval)
  5376. return retval;
  5377. }
  5378. /*
  5379. * make sure no PI-waiters arrive (or leave) while we are
  5380. * changing the priority of the task:
  5381. */
  5382. raw_spin_lock_irqsave(&p->pi_lock, flags);
  5383. /*
  5384. * To be able to change p->policy safely, the apropriate
  5385. * runqueue lock must be held.
  5386. */
  5387. rq = __task_rq_lock(p);
  5388. /* recheck policy now with rq lock held */
  5389. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  5390. policy = oldpolicy = -1;
  5391. __task_rq_unlock(rq);
  5392. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  5393. goto recheck;
  5394. }
  5395. update_rq_clock(rq);
  5396. on_rq = p->se.on_rq;
  5397. running = task_current(rq, p);
  5398. if (on_rq)
  5399. deactivate_task(rq, p, 0);
  5400. if (running)
  5401. p->sched_class->put_prev_task(rq, p);
  5402. p->sched_reset_on_fork = reset_on_fork;
  5403. oldprio = p->prio;
  5404. __setscheduler(rq, p, policy, param->sched_priority);
  5405. if (running)
  5406. p->sched_class->set_curr_task(rq);
  5407. if (on_rq) {
  5408. activate_task(rq, p, 0);
  5409. check_class_changed(rq, p, prev_class, oldprio, running);
  5410. }
  5411. __task_rq_unlock(rq);
  5412. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  5413. rt_mutex_adjust_pi(p);
  5414. return 0;
  5415. }
  5416. /**
  5417. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  5418. * @p: the task in question.
  5419. * @policy: new policy.
  5420. * @param: structure containing the new RT priority.
  5421. *
  5422. * NOTE that the task may be already dead.
  5423. */
  5424. int sched_setscheduler(struct task_struct *p, int policy,
  5425. struct sched_param *param)
  5426. {
  5427. return __sched_setscheduler(p, policy, param, true);
  5428. }
  5429. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5430. /**
  5431. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5432. * @p: the task in question.
  5433. * @policy: new policy.
  5434. * @param: structure containing the new RT priority.
  5435. *
  5436. * Just like sched_setscheduler, only don't bother checking if the
  5437. * current context has permission. For example, this is needed in
  5438. * stop_machine(): we create temporary high priority worker threads,
  5439. * but our caller might not have that capability.
  5440. */
  5441. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5442. struct sched_param *param)
  5443. {
  5444. return __sched_setscheduler(p, policy, param, false);
  5445. }
  5446. static int
  5447. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5448. {
  5449. struct sched_param lparam;
  5450. struct task_struct *p;
  5451. int retval;
  5452. if (!param || pid < 0)
  5453. return -EINVAL;
  5454. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5455. return -EFAULT;
  5456. rcu_read_lock();
  5457. retval = -ESRCH;
  5458. p = find_process_by_pid(pid);
  5459. if (p != NULL)
  5460. retval = sched_setscheduler(p, policy, &lparam);
  5461. rcu_read_unlock();
  5462. return retval;
  5463. }
  5464. /**
  5465. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5466. * @pid: the pid in question.
  5467. * @policy: new policy.
  5468. * @param: structure containing the new RT priority.
  5469. */
  5470. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5471. struct sched_param __user *, param)
  5472. {
  5473. /* negative values for policy are not valid */
  5474. if (policy < 0)
  5475. return -EINVAL;
  5476. return do_sched_setscheduler(pid, policy, param);
  5477. }
  5478. /**
  5479. * sys_sched_setparam - set/change the RT priority of a thread
  5480. * @pid: the pid in question.
  5481. * @param: structure containing the new RT priority.
  5482. */
  5483. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5484. {
  5485. return do_sched_setscheduler(pid, -1, param);
  5486. }
  5487. /**
  5488. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5489. * @pid: the pid in question.
  5490. */
  5491. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5492. {
  5493. struct task_struct *p;
  5494. int retval;
  5495. if (pid < 0)
  5496. return -EINVAL;
  5497. retval = -ESRCH;
  5498. rcu_read_lock();
  5499. p = find_process_by_pid(pid);
  5500. if (p) {
  5501. retval = security_task_getscheduler(p);
  5502. if (!retval)
  5503. retval = p->policy
  5504. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  5505. }
  5506. rcu_read_unlock();
  5507. return retval;
  5508. }
  5509. /**
  5510. * sys_sched_getparam - get the RT priority of a thread
  5511. * @pid: the pid in question.
  5512. * @param: structure containing the RT priority.
  5513. */
  5514. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5515. {
  5516. struct sched_param lp;
  5517. struct task_struct *p;
  5518. int retval;
  5519. if (!param || pid < 0)
  5520. return -EINVAL;
  5521. rcu_read_lock();
  5522. p = find_process_by_pid(pid);
  5523. retval = -ESRCH;
  5524. if (!p)
  5525. goto out_unlock;
  5526. retval = security_task_getscheduler(p);
  5527. if (retval)
  5528. goto out_unlock;
  5529. lp.sched_priority = p->rt_priority;
  5530. rcu_read_unlock();
  5531. /*
  5532. * This one might sleep, we cannot do it with a spinlock held ...
  5533. */
  5534. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5535. return retval;
  5536. out_unlock:
  5537. rcu_read_unlock();
  5538. return retval;
  5539. }
  5540. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5541. {
  5542. cpumask_var_t cpus_allowed, new_mask;
  5543. struct task_struct *p;
  5544. int retval;
  5545. get_online_cpus();
  5546. rcu_read_lock();
  5547. p = find_process_by_pid(pid);
  5548. if (!p) {
  5549. rcu_read_unlock();
  5550. put_online_cpus();
  5551. return -ESRCH;
  5552. }
  5553. /* Prevent p going away */
  5554. get_task_struct(p);
  5555. rcu_read_unlock();
  5556. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5557. retval = -ENOMEM;
  5558. goto out_put_task;
  5559. }
  5560. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5561. retval = -ENOMEM;
  5562. goto out_free_cpus_allowed;
  5563. }
  5564. retval = -EPERM;
  5565. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5566. goto out_unlock;
  5567. retval = security_task_setscheduler(p, 0, NULL);
  5568. if (retval)
  5569. goto out_unlock;
  5570. cpuset_cpus_allowed(p, cpus_allowed);
  5571. cpumask_and(new_mask, in_mask, cpus_allowed);
  5572. again:
  5573. retval = set_cpus_allowed_ptr(p, new_mask);
  5574. if (!retval) {
  5575. cpuset_cpus_allowed(p, cpus_allowed);
  5576. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5577. /*
  5578. * We must have raced with a concurrent cpuset
  5579. * update. Just reset the cpus_allowed to the
  5580. * cpuset's cpus_allowed
  5581. */
  5582. cpumask_copy(new_mask, cpus_allowed);
  5583. goto again;
  5584. }
  5585. }
  5586. out_unlock:
  5587. free_cpumask_var(new_mask);
  5588. out_free_cpus_allowed:
  5589. free_cpumask_var(cpus_allowed);
  5590. out_put_task:
  5591. put_task_struct(p);
  5592. put_online_cpus();
  5593. return retval;
  5594. }
  5595. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5596. struct cpumask *new_mask)
  5597. {
  5598. if (len < cpumask_size())
  5599. cpumask_clear(new_mask);
  5600. else if (len > cpumask_size())
  5601. len = cpumask_size();
  5602. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5603. }
  5604. /**
  5605. * sys_sched_setaffinity - set the cpu affinity of a process
  5606. * @pid: pid of the process
  5607. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5608. * @user_mask_ptr: user-space pointer to the new cpu mask
  5609. */
  5610. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5611. unsigned long __user *, user_mask_ptr)
  5612. {
  5613. cpumask_var_t new_mask;
  5614. int retval;
  5615. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5616. return -ENOMEM;
  5617. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5618. if (retval == 0)
  5619. retval = sched_setaffinity(pid, new_mask);
  5620. free_cpumask_var(new_mask);
  5621. return retval;
  5622. }
  5623. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5624. {
  5625. struct task_struct *p;
  5626. unsigned long flags;
  5627. struct rq *rq;
  5628. int retval;
  5629. get_online_cpus();
  5630. rcu_read_lock();
  5631. retval = -ESRCH;
  5632. p = find_process_by_pid(pid);
  5633. if (!p)
  5634. goto out_unlock;
  5635. retval = security_task_getscheduler(p);
  5636. if (retval)
  5637. goto out_unlock;
  5638. rq = task_rq_lock(p, &flags);
  5639. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5640. task_rq_unlock(rq, &flags);
  5641. out_unlock:
  5642. rcu_read_unlock();
  5643. put_online_cpus();
  5644. return retval;
  5645. }
  5646. /**
  5647. * sys_sched_getaffinity - get the cpu affinity of a process
  5648. * @pid: pid of the process
  5649. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5650. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5651. */
  5652. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5653. unsigned long __user *, user_mask_ptr)
  5654. {
  5655. int ret;
  5656. cpumask_var_t mask;
  5657. if (len < cpumask_size())
  5658. return -EINVAL;
  5659. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5660. return -ENOMEM;
  5661. ret = sched_getaffinity(pid, mask);
  5662. if (ret == 0) {
  5663. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5664. ret = -EFAULT;
  5665. else
  5666. ret = cpumask_size();
  5667. }
  5668. free_cpumask_var(mask);
  5669. return ret;
  5670. }
  5671. /**
  5672. * sys_sched_yield - yield the current processor to other threads.
  5673. *
  5674. * This function yields the current CPU to other tasks. If there are no
  5675. * other threads running on this CPU then this function will return.
  5676. */
  5677. SYSCALL_DEFINE0(sched_yield)
  5678. {
  5679. struct rq *rq = this_rq_lock();
  5680. schedstat_inc(rq, yld_count);
  5681. current->sched_class->yield_task(rq);
  5682. /*
  5683. * Since we are going to call schedule() anyway, there's
  5684. * no need to preempt or enable interrupts:
  5685. */
  5686. __release(rq->lock);
  5687. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5688. do_raw_spin_unlock(&rq->lock);
  5689. preempt_enable_no_resched();
  5690. schedule();
  5691. return 0;
  5692. }
  5693. static inline int should_resched(void)
  5694. {
  5695. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  5696. }
  5697. static void __cond_resched(void)
  5698. {
  5699. add_preempt_count(PREEMPT_ACTIVE);
  5700. schedule();
  5701. sub_preempt_count(PREEMPT_ACTIVE);
  5702. }
  5703. int __sched _cond_resched(void)
  5704. {
  5705. if (should_resched()) {
  5706. __cond_resched();
  5707. return 1;
  5708. }
  5709. return 0;
  5710. }
  5711. EXPORT_SYMBOL(_cond_resched);
  5712. /*
  5713. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5714. * call schedule, and on return reacquire the lock.
  5715. *
  5716. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5717. * operations here to prevent schedule() from being called twice (once via
  5718. * spin_unlock(), once by hand).
  5719. */
  5720. int __cond_resched_lock(spinlock_t *lock)
  5721. {
  5722. int resched = should_resched();
  5723. int ret = 0;
  5724. lockdep_assert_held(lock);
  5725. if (spin_needbreak(lock) || resched) {
  5726. spin_unlock(lock);
  5727. if (resched)
  5728. __cond_resched();
  5729. else
  5730. cpu_relax();
  5731. ret = 1;
  5732. spin_lock(lock);
  5733. }
  5734. return ret;
  5735. }
  5736. EXPORT_SYMBOL(__cond_resched_lock);
  5737. int __sched __cond_resched_softirq(void)
  5738. {
  5739. BUG_ON(!in_softirq());
  5740. if (should_resched()) {
  5741. local_bh_enable();
  5742. __cond_resched();
  5743. local_bh_disable();
  5744. return 1;
  5745. }
  5746. return 0;
  5747. }
  5748. EXPORT_SYMBOL(__cond_resched_softirq);
  5749. /**
  5750. * yield - yield the current processor to other threads.
  5751. *
  5752. * This is a shortcut for kernel-space yielding - it marks the
  5753. * thread runnable and calls sys_sched_yield().
  5754. */
  5755. void __sched yield(void)
  5756. {
  5757. set_current_state(TASK_RUNNING);
  5758. sys_sched_yield();
  5759. }
  5760. EXPORT_SYMBOL(yield);
  5761. /*
  5762. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5763. * that process accounting knows that this is a task in IO wait state.
  5764. */
  5765. void __sched io_schedule(void)
  5766. {
  5767. struct rq *rq = raw_rq();
  5768. delayacct_blkio_start();
  5769. atomic_inc(&rq->nr_iowait);
  5770. current->in_iowait = 1;
  5771. schedule();
  5772. current->in_iowait = 0;
  5773. atomic_dec(&rq->nr_iowait);
  5774. delayacct_blkio_end();
  5775. }
  5776. EXPORT_SYMBOL(io_schedule);
  5777. long __sched io_schedule_timeout(long timeout)
  5778. {
  5779. struct rq *rq = raw_rq();
  5780. long ret;
  5781. delayacct_blkio_start();
  5782. atomic_inc(&rq->nr_iowait);
  5783. current->in_iowait = 1;
  5784. ret = schedule_timeout(timeout);
  5785. current->in_iowait = 0;
  5786. atomic_dec(&rq->nr_iowait);
  5787. delayacct_blkio_end();
  5788. return ret;
  5789. }
  5790. /**
  5791. * sys_sched_get_priority_max - return maximum RT priority.
  5792. * @policy: scheduling class.
  5793. *
  5794. * this syscall returns the maximum rt_priority that can be used
  5795. * by a given scheduling class.
  5796. */
  5797. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5798. {
  5799. int ret = -EINVAL;
  5800. switch (policy) {
  5801. case SCHED_FIFO:
  5802. case SCHED_RR:
  5803. ret = MAX_USER_RT_PRIO-1;
  5804. break;
  5805. case SCHED_NORMAL:
  5806. case SCHED_BATCH:
  5807. case SCHED_IDLE:
  5808. ret = 0;
  5809. break;
  5810. }
  5811. return ret;
  5812. }
  5813. /**
  5814. * sys_sched_get_priority_min - return minimum RT priority.
  5815. * @policy: scheduling class.
  5816. *
  5817. * this syscall returns the minimum rt_priority that can be used
  5818. * by a given scheduling class.
  5819. */
  5820. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5821. {
  5822. int ret = -EINVAL;
  5823. switch (policy) {
  5824. case SCHED_FIFO:
  5825. case SCHED_RR:
  5826. ret = 1;
  5827. break;
  5828. case SCHED_NORMAL:
  5829. case SCHED_BATCH:
  5830. case SCHED_IDLE:
  5831. ret = 0;
  5832. }
  5833. return ret;
  5834. }
  5835. /**
  5836. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5837. * @pid: pid of the process.
  5838. * @interval: userspace pointer to the timeslice value.
  5839. *
  5840. * this syscall writes the default timeslice value of a given process
  5841. * into the user-space timespec buffer. A value of '0' means infinity.
  5842. */
  5843. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5844. struct timespec __user *, interval)
  5845. {
  5846. struct task_struct *p;
  5847. unsigned int time_slice;
  5848. unsigned long flags;
  5849. struct rq *rq;
  5850. int retval;
  5851. struct timespec t;
  5852. if (pid < 0)
  5853. return -EINVAL;
  5854. retval = -ESRCH;
  5855. rcu_read_lock();
  5856. p = find_process_by_pid(pid);
  5857. if (!p)
  5858. goto out_unlock;
  5859. retval = security_task_getscheduler(p);
  5860. if (retval)
  5861. goto out_unlock;
  5862. rq = task_rq_lock(p, &flags);
  5863. time_slice = p->sched_class->get_rr_interval(rq, p);
  5864. task_rq_unlock(rq, &flags);
  5865. rcu_read_unlock();
  5866. jiffies_to_timespec(time_slice, &t);
  5867. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5868. return retval;
  5869. out_unlock:
  5870. rcu_read_unlock();
  5871. return retval;
  5872. }
  5873. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5874. void sched_show_task(struct task_struct *p)
  5875. {
  5876. unsigned long free = 0;
  5877. unsigned state;
  5878. state = p->state ? __ffs(p->state) + 1 : 0;
  5879. pr_info("%-13.13s %c", p->comm,
  5880. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5881. #if BITS_PER_LONG == 32
  5882. if (state == TASK_RUNNING)
  5883. pr_cont(" running ");
  5884. else
  5885. pr_cont(" %08lx ", thread_saved_pc(p));
  5886. #else
  5887. if (state == TASK_RUNNING)
  5888. pr_cont(" running task ");
  5889. else
  5890. pr_cont(" %016lx ", thread_saved_pc(p));
  5891. #endif
  5892. #ifdef CONFIG_DEBUG_STACK_USAGE
  5893. free = stack_not_used(p);
  5894. #endif
  5895. pr_cont("%5lu %5d %6d 0x%08lx\n", free,
  5896. task_pid_nr(p), task_pid_nr(p->real_parent),
  5897. (unsigned long)task_thread_info(p)->flags);
  5898. show_stack(p, NULL);
  5899. }
  5900. void show_state_filter(unsigned long state_filter)
  5901. {
  5902. struct task_struct *g, *p;
  5903. #if BITS_PER_LONG == 32
  5904. pr_info(" task PC stack pid father\n");
  5905. #else
  5906. pr_info(" task PC stack pid father\n");
  5907. #endif
  5908. read_lock(&tasklist_lock);
  5909. do_each_thread(g, p) {
  5910. /*
  5911. * reset the NMI-timeout, listing all files on a slow
  5912. * console might take alot of time:
  5913. */
  5914. touch_nmi_watchdog();
  5915. if (!state_filter || (p->state & state_filter))
  5916. sched_show_task(p);
  5917. } while_each_thread(g, p);
  5918. touch_all_softlockup_watchdogs();
  5919. #ifdef CONFIG_SCHED_DEBUG
  5920. sysrq_sched_debug_show();
  5921. #endif
  5922. read_unlock(&tasklist_lock);
  5923. /*
  5924. * Only show locks if all tasks are dumped:
  5925. */
  5926. if (!state_filter)
  5927. debug_show_all_locks();
  5928. }
  5929. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5930. {
  5931. idle->sched_class = &idle_sched_class;
  5932. }
  5933. /**
  5934. * init_idle - set up an idle thread for a given CPU
  5935. * @idle: task in question
  5936. * @cpu: cpu the idle task belongs to
  5937. *
  5938. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5939. * flag, to make booting more robust.
  5940. */
  5941. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5942. {
  5943. struct rq *rq = cpu_rq(cpu);
  5944. unsigned long flags;
  5945. raw_spin_lock_irqsave(&rq->lock, flags);
  5946. __sched_fork(idle);
  5947. idle->state = TASK_RUNNING;
  5948. idle->se.exec_start = sched_clock();
  5949. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5950. __set_task_cpu(idle, cpu);
  5951. rq->curr = rq->idle = idle;
  5952. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5953. idle->oncpu = 1;
  5954. #endif
  5955. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5956. /* Set the preempt count _outside_ the spinlocks! */
  5957. #if defined(CONFIG_PREEMPT)
  5958. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5959. #else
  5960. task_thread_info(idle)->preempt_count = 0;
  5961. #endif
  5962. /*
  5963. * The idle tasks have their own, simple scheduling class:
  5964. */
  5965. idle->sched_class = &idle_sched_class;
  5966. ftrace_graph_init_task(idle);
  5967. }
  5968. /*
  5969. * In a system that switches off the HZ timer nohz_cpu_mask
  5970. * indicates which cpus entered this state. This is used
  5971. * in the rcu update to wait only for active cpus. For system
  5972. * which do not switch off the HZ timer nohz_cpu_mask should
  5973. * always be CPU_BITS_NONE.
  5974. */
  5975. cpumask_var_t nohz_cpu_mask;
  5976. /*
  5977. * Increase the granularity value when there are more CPUs,
  5978. * because with more CPUs the 'effective latency' as visible
  5979. * to users decreases. But the relationship is not linear,
  5980. * so pick a second-best guess by going with the log2 of the
  5981. * number of CPUs.
  5982. *
  5983. * This idea comes from the SD scheduler of Con Kolivas:
  5984. */
  5985. static int get_update_sysctl_factor(void)
  5986. {
  5987. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  5988. unsigned int factor;
  5989. switch (sysctl_sched_tunable_scaling) {
  5990. case SCHED_TUNABLESCALING_NONE:
  5991. factor = 1;
  5992. break;
  5993. case SCHED_TUNABLESCALING_LINEAR:
  5994. factor = cpus;
  5995. break;
  5996. case SCHED_TUNABLESCALING_LOG:
  5997. default:
  5998. factor = 1 + ilog2(cpus);
  5999. break;
  6000. }
  6001. return factor;
  6002. }
  6003. static void update_sysctl(void)
  6004. {
  6005. unsigned int factor = get_update_sysctl_factor();
  6006. #define SET_SYSCTL(name) \
  6007. (sysctl_##name = (factor) * normalized_sysctl_##name)
  6008. SET_SYSCTL(sched_min_granularity);
  6009. SET_SYSCTL(sched_latency);
  6010. SET_SYSCTL(sched_wakeup_granularity);
  6011. SET_SYSCTL(sched_shares_ratelimit);
  6012. #undef SET_SYSCTL
  6013. }
  6014. static inline void sched_init_granularity(void)
  6015. {
  6016. update_sysctl();
  6017. }
  6018. #ifdef CONFIG_SMP
  6019. /*
  6020. * This is how migration works:
  6021. *
  6022. * 1) we queue a struct migration_req structure in the source CPU's
  6023. * runqueue and wake up that CPU's migration thread.
  6024. * 2) we down() the locked semaphore => thread blocks.
  6025. * 3) migration thread wakes up (implicitly it forces the migrated
  6026. * thread off the CPU)
  6027. * 4) it gets the migration request and checks whether the migrated
  6028. * task is still in the wrong runqueue.
  6029. * 5) if it's in the wrong runqueue then the migration thread removes
  6030. * it and puts it into the right queue.
  6031. * 6) migration thread up()s the semaphore.
  6032. * 7) we wake up and the migration is done.
  6033. */
  6034. /*
  6035. * Change a given task's CPU affinity. Migrate the thread to a
  6036. * proper CPU and schedule it away if the CPU it's executing on
  6037. * is removed from the allowed bitmask.
  6038. *
  6039. * NOTE: the caller must have a valid reference to the task, the
  6040. * task must not exit() & deallocate itself prematurely. The
  6041. * call is not atomic; no spinlocks may be held.
  6042. */
  6043. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  6044. {
  6045. struct migration_req req;
  6046. unsigned long flags;
  6047. struct rq *rq;
  6048. int ret = 0;
  6049. rq = task_rq_lock(p, &flags);
  6050. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  6051. ret = -EINVAL;
  6052. goto out;
  6053. }
  6054. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  6055. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  6056. ret = -EINVAL;
  6057. goto out;
  6058. }
  6059. if (p->sched_class->set_cpus_allowed)
  6060. p->sched_class->set_cpus_allowed(p, new_mask);
  6061. else {
  6062. cpumask_copy(&p->cpus_allowed, new_mask);
  6063. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  6064. }
  6065. /* Can the task run on the task's current CPU? If so, we're done */
  6066. if (cpumask_test_cpu(task_cpu(p), new_mask))
  6067. goto out;
  6068. if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
  6069. /* Need help from migration thread: drop lock and wait. */
  6070. struct task_struct *mt = rq->migration_thread;
  6071. get_task_struct(mt);
  6072. task_rq_unlock(rq, &flags);
  6073. wake_up_process(rq->migration_thread);
  6074. put_task_struct(mt);
  6075. wait_for_completion(&req.done);
  6076. tlb_migrate_finish(p->mm);
  6077. return 0;
  6078. }
  6079. out:
  6080. task_rq_unlock(rq, &flags);
  6081. return ret;
  6082. }
  6083. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  6084. /*
  6085. * Move (not current) task off this cpu, onto dest cpu. We're doing
  6086. * this because either it can't run here any more (set_cpus_allowed()
  6087. * away from this CPU, or CPU going down), or because we're
  6088. * attempting to rebalance this task on exec (sched_exec).
  6089. *
  6090. * So we race with normal scheduler movements, but that's OK, as long
  6091. * as the task is no longer on this CPU.
  6092. *
  6093. * Returns non-zero if task was successfully migrated.
  6094. */
  6095. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  6096. {
  6097. struct rq *rq_dest, *rq_src;
  6098. int ret = 0, on_rq;
  6099. if (unlikely(!cpu_active(dest_cpu)))
  6100. return ret;
  6101. rq_src = cpu_rq(src_cpu);
  6102. rq_dest = cpu_rq(dest_cpu);
  6103. double_rq_lock(rq_src, rq_dest);
  6104. /* Already moved. */
  6105. if (task_cpu(p) != src_cpu)
  6106. goto done;
  6107. /* Affinity changed (again). */
  6108. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6109. goto fail;
  6110. on_rq = p->se.on_rq;
  6111. if (on_rq)
  6112. deactivate_task(rq_src, p, 0);
  6113. set_task_cpu(p, dest_cpu);
  6114. if (on_rq) {
  6115. activate_task(rq_dest, p, 0);
  6116. check_preempt_curr(rq_dest, p, 0);
  6117. }
  6118. done:
  6119. ret = 1;
  6120. fail:
  6121. double_rq_unlock(rq_src, rq_dest);
  6122. return ret;
  6123. }
  6124. #define RCU_MIGRATION_IDLE 0
  6125. #define RCU_MIGRATION_NEED_QS 1
  6126. #define RCU_MIGRATION_GOT_QS 2
  6127. #define RCU_MIGRATION_MUST_SYNC 3
  6128. /*
  6129. * migration_thread - this is a highprio system thread that performs
  6130. * thread migration by bumping thread off CPU then 'pushing' onto
  6131. * another runqueue.
  6132. */
  6133. static int migration_thread(void *data)
  6134. {
  6135. int badcpu;
  6136. int cpu = (long)data;
  6137. struct rq *rq;
  6138. rq = cpu_rq(cpu);
  6139. BUG_ON(rq->migration_thread != current);
  6140. set_current_state(TASK_INTERRUPTIBLE);
  6141. while (!kthread_should_stop()) {
  6142. struct migration_req *req;
  6143. struct list_head *head;
  6144. raw_spin_lock_irq(&rq->lock);
  6145. if (cpu_is_offline(cpu)) {
  6146. raw_spin_unlock_irq(&rq->lock);
  6147. break;
  6148. }
  6149. if (rq->active_balance) {
  6150. active_load_balance(rq, cpu);
  6151. rq->active_balance = 0;
  6152. }
  6153. head = &rq->migration_queue;
  6154. if (list_empty(head)) {
  6155. raw_spin_unlock_irq(&rq->lock);
  6156. schedule();
  6157. set_current_state(TASK_INTERRUPTIBLE);
  6158. continue;
  6159. }
  6160. req = list_entry(head->next, struct migration_req, list);
  6161. list_del_init(head->next);
  6162. if (req->task != NULL) {
  6163. raw_spin_unlock(&rq->lock);
  6164. __migrate_task(req->task, cpu, req->dest_cpu);
  6165. } else if (likely(cpu == (badcpu = smp_processor_id()))) {
  6166. req->dest_cpu = RCU_MIGRATION_GOT_QS;
  6167. raw_spin_unlock(&rq->lock);
  6168. } else {
  6169. req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
  6170. raw_spin_unlock(&rq->lock);
  6171. WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
  6172. }
  6173. local_irq_enable();
  6174. complete(&req->done);
  6175. }
  6176. __set_current_state(TASK_RUNNING);
  6177. return 0;
  6178. }
  6179. #ifdef CONFIG_HOTPLUG_CPU
  6180. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  6181. {
  6182. int ret;
  6183. local_irq_disable();
  6184. ret = __migrate_task(p, src_cpu, dest_cpu);
  6185. local_irq_enable();
  6186. return ret;
  6187. }
  6188. /*
  6189. * Figure out where task on dead CPU should go, use force if necessary.
  6190. */
  6191. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  6192. {
  6193. int dest_cpu;
  6194. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  6195. again:
  6196. /* Look for allowed, online CPU in same node. */
  6197. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  6198. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6199. goto move;
  6200. /* Any allowed, online CPU? */
  6201. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  6202. if (dest_cpu < nr_cpu_ids)
  6203. goto move;
  6204. /* No more Mr. Nice Guy. */
  6205. if (dest_cpu >= nr_cpu_ids) {
  6206. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  6207. dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
  6208. /*
  6209. * Don't tell them about moving exiting tasks or
  6210. * kernel threads (both mm NULL), since they never
  6211. * leave kernel.
  6212. */
  6213. if (p->mm && printk_ratelimit()) {
  6214. pr_info("process %d (%s) no longer affine to cpu%d\n",
  6215. task_pid_nr(p), p->comm, dead_cpu);
  6216. }
  6217. }
  6218. move:
  6219. /* It can have affinity changed while we were choosing. */
  6220. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  6221. goto again;
  6222. }
  6223. /*
  6224. * While a dead CPU has no uninterruptible tasks queued at this point,
  6225. * it might still have a nonzero ->nr_uninterruptible counter, because
  6226. * for performance reasons the counter is not stricly tracking tasks to
  6227. * their home CPUs. So we just add the counter to another CPU's counter,
  6228. * to keep the global sum constant after CPU-down:
  6229. */
  6230. static void migrate_nr_uninterruptible(struct rq *rq_src)
  6231. {
  6232. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  6233. unsigned long flags;
  6234. local_irq_save(flags);
  6235. double_rq_lock(rq_src, rq_dest);
  6236. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  6237. rq_src->nr_uninterruptible = 0;
  6238. double_rq_unlock(rq_src, rq_dest);
  6239. local_irq_restore(flags);
  6240. }
  6241. /* Run through task list and migrate tasks from the dead cpu. */
  6242. static void migrate_live_tasks(int src_cpu)
  6243. {
  6244. struct task_struct *p, *t;
  6245. read_lock(&tasklist_lock);
  6246. do_each_thread(t, p) {
  6247. if (p == current)
  6248. continue;
  6249. if (task_cpu(p) == src_cpu)
  6250. move_task_off_dead_cpu(src_cpu, p);
  6251. } while_each_thread(t, p);
  6252. read_unlock(&tasklist_lock);
  6253. }
  6254. /*
  6255. * Schedules idle task to be the next runnable task on current CPU.
  6256. * It does so by boosting its priority to highest possible.
  6257. * Used by CPU offline code.
  6258. */
  6259. void sched_idle_next(void)
  6260. {
  6261. int this_cpu = smp_processor_id();
  6262. struct rq *rq = cpu_rq(this_cpu);
  6263. struct task_struct *p = rq->idle;
  6264. unsigned long flags;
  6265. /* cpu has to be offline */
  6266. BUG_ON(cpu_online(this_cpu));
  6267. /*
  6268. * Strictly not necessary since rest of the CPUs are stopped by now
  6269. * and interrupts disabled on the current cpu.
  6270. */
  6271. raw_spin_lock_irqsave(&rq->lock, flags);
  6272. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6273. update_rq_clock(rq);
  6274. activate_task(rq, p, 0);
  6275. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6276. }
  6277. /*
  6278. * Ensures that the idle task is using init_mm right before its cpu goes
  6279. * offline.
  6280. */
  6281. void idle_task_exit(void)
  6282. {
  6283. struct mm_struct *mm = current->active_mm;
  6284. BUG_ON(cpu_online(smp_processor_id()));
  6285. if (mm != &init_mm)
  6286. switch_mm(mm, &init_mm, current);
  6287. mmdrop(mm);
  6288. }
  6289. /* called under rq->lock with disabled interrupts */
  6290. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  6291. {
  6292. struct rq *rq = cpu_rq(dead_cpu);
  6293. /* Must be exiting, otherwise would be on tasklist. */
  6294. BUG_ON(!p->exit_state);
  6295. /* Cannot have done final schedule yet: would have vanished. */
  6296. BUG_ON(p->state == TASK_DEAD);
  6297. get_task_struct(p);
  6298. /*
  6299. * Drop lock around migration; if someone else moves it,
  6300. * that's OK. No task can be added to this CPU, so iteration is
  6301. * fine.
  6302. */
  6303. raw_spin_unlock_irq(&rq->lock);
  6304. move_task_off_dead_cpu(dead_cpu, p);
  6305. raw_spin_lock_irq(&rq->lock);
  6306. put_task_struct(p);
  6307. }
  6308. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  6309. static void migrate_dead_tasks(unsigned int dead_cpu)
  6310. {
  6311. struct rq *rq = cpu_rq(dead_cpu);
  6312. struct task_struct *next;
  6313. for ( ; ; ) {
  6314. if (!rq->nr_running)
  6315. break;
  6316. update_rq_clock(rq);
  6317. next = pick_next_task(rq);
  6318. if (!next)
  6319. break;
  6320. next->sched_class->put_prev_task(rq, next);
  6321. migrate_dead(dead_cpu, next);
  6322. }
  6323. }
  6324. /*
  6325. * remove the tasks which were accounted by rq from calc_load_tasks.
  6326. */
  6327. static void calc_global_load_remove(struct rq *rq)
  6328. {
  6329. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  6330. rq->calc_load_active = 0;
  6331. }
  6332. #endif /* CONFIG_HOTPLUG_CPU */
  6333. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  6334. static struct ctl_table sd_ctl_dir[] = {
  6335. {
  6336. .procname = "sched_domain",
  6337. .mode = 0555,
  6338. },
  6339. {}
  6340. };
  6341. static struct ctl_table sd_ctl_root[] = {
  6342. {
  6343. .procname = "kernel",
  6344. .mode = 0555,
  6345. .child = sd_ctl_dir,
  6346. },
  6347. {}
  6348. };
  6349. static struct ctl_table *sd_alloc_ctl_entry(int n)
  6350. {
  6351. struct ctl_table *entry =
  6352. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  6353. return entry;
  6354. }
  6355. static void sd_free_ctl_entry(struct ctl_table **tablep)
  6356. {
  6357. struct ctl_table *entry;
  6358. /*
  6359. * In the intermediate directories, both the child directory and
  6360. * procname are dynamically allocated and could fail but the mode
  6361. * will always be set. In the lowest directory the names are
  6362. * static strings and all have proc handlers.
  6363. */
  6364. for (entry = *tablep; entry->mode; entry++) {
  6365. if (entry->child)
  6366. sd_free_ctl_entry(&entry->child);
  6367. if (entry->proc_handler == NULL)
  6368. kfree(entry->procname);
  6369. }
  6370. kfree(*tablep);
  6371. *tablep = NULL;
  6372. }
  6373. static void
  6374. set_table_entry(struct ctl_table *entry,
  6375. const char *procname, void *data, int maxlen,
  6376. mode_t mode, proc_handler *proc_handler)
  6377. {
  6378. entry->procname = procname;
  6379. entry->data = data;
  6380. entry->maxlen = maxlen;
  6381. entry->mode = mode;
  6382. entry->proc_handler = proc_handler;
  6383. }
  6384. static struct ctl_table *
  6385. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  6386. {
  6387. struct ctl_table *table = sd_alloc_ctl_entry(13);
  6388. if (table == NULL)
  6389. return NULL;
  6390. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  6391. sizeof(long), 0644, proc_doulongvec_minmax);
  6392. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  6393. sizeof(long), 0644, proc_doulongvec_minmax);
  6394. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  6395. sizeof(int), 0644, proc_dointvec_minmax);
  6396. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  6397. sizeof(int), 0644, proc_dointvec_minmax);
  6398. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  6399. sizeof(int), 0644, proc_dointvec_minmax);
  6400. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  6401. sizeof(int), 0644, proc_dointvec_minmax);
  6402. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  6403. sizeof(int), 0644, proc_dointvec_minmax);
  6404. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  6405. sizeof(int), 0644, proc_dointvec_minmax);
  6406. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  6407. sizeof(int), 0644, proc_dointvec_minmax);
  6408. set_table_entry(&table[9], "cache_nice_tries",
  6409. &sd->cache_nice_tries,
  6410. sizeof(int), 0644, proc_dointvec_minmax);
  6411. set_table_entry(&table[10], "flags", &sd->flags,
  6412. sizeof(int), 0644, proc_dointvec_minmax);
  6413. set_table_entry(&table[11], "name", sd->name,
  6414. CORENAME_MAX_SIZE, 0444, proc_dostring);
  6415. /* &table[12] is terminator */
  6416. return table;
  6417. }
  6418. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  6419. {
  6420. struct ctl_table *entry, *table;
  6421. struct sched_domain *sd;
  6422. int domain_num = 0, i;
  6423. char buf[32];
  6424. for_each_domain(cpu, sd)
  6425. domain_num++;
  6426. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  6427. if (table == NULL)
  6428. return NULL;
  6429. i = 0;
  6430. for_each_domain(cpu, sd) {
  6431. snprintf(buf, 32, "domain%d", i);
  6432. entry->procname = kstrdup(buf, GFP_KERNEL);
  6433. entry->mode = 0555;
  6434. entry->child = sd_alloc_ctl_domain_table(sd);
  6435. entry++;
  6436. i++;
  6437. }
  6438. return table;
  6439. }
  6440. static struct ctl_table_header *sd_sysctl_header;
  6441. static void register_sched_domain_sysctl(void)
  6442. {
  6443. int i, cpu_num = num_possible_cpus();
  6444. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6445. char buf[32];
  6446. WARN_ON(sd_ctl_dir[0].child);
  6447. sd_ctl_dir[0].child = entry;
  6448. if (entry == NULL)
  6449. return;
  6450. for_each_possible_cpu(i) {
  6451. snprintf(buf, 32, "cpu%d", i);
  6452. entry->procname = kstrdup(buf, GFP_KERNEL);
  6453. entry->mode = 0555;
  6454. entry->child = sd_alloc_ctl_cpu_table(i);
  6455. entry++;
  6456. }
  6457. WARN_ON(sd_sysctl_header);
  6458. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6459. }
  6460. /* may be called multiple times per register */
  6461. static void unregister_sched_domain_sysctl(void)
  6462. {
  6463. if (sd_sysctl_header)
  6464. unregister_sysctl_table(sd_sysctl_header);
  6465. sd_sysctl_header = NULL;
  6466. if (sd_ctl_dir[0].child)
  6467. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6468. }
  6469. #else
  6470. static void register_sched_domain_sysctl(void)
  6471. {
  6472. }
  6473. static void unregister_sched_domain_sysctl(void)
  6474. {
  6475. }
  6476. #endif
  6477. static void set_rq_online(struct rq *rq)
  6478. {
  6479. if (!rq->online) {
  6480. const struct sched_class *class;
  6481. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6482. rq->online = 1;
  6483. for_each_class(class) {
  6484. if (class->rq_online)
  6485. class->rq_online(rq);
  6486. }
  6487. }
  6488. }
  6489. static void set_rq_offline(struct rq *rq)
  6490. {
  6491. if (rq->online) {
  6492. const struct sched_class *class;
  6493. for_each_class(class) {
  6494. if (class->rq_offline)
  6495. class->rq_offline(rq);
  6496. }
  6497. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6498. rq->online = 0;
  6499. }
  6500. }
  6501. /*
  6502. * migration_call - callback that gets triggered when a CPU is added.
  6503. * Here we can start up the necessary migration thread for the new CPU.
  6504. */
  6505. static int __cpuinit
  6506. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6507. {
  6508. struct task_struct *p;
  6509. int cpu = (long)hcpu;
  6510. unsigned long flags;
  6511. struct rq *rq;
  6512. switch (action) {
  6513. case CPU_UP_PREPARE:
  6514. case CPU_UP_PREPARE_FROZEN:
  6515. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6516. if (IS_ERR(p))
  6517. return NOTIFY_BAD;
  6518. kthread_bind(p, cpu);
  6519. /* Must be high prio: stop_machine expects to yield to it. */
  6520. rq = task_rq_lock(p, &flags);
  6521. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6522. task_rq_unlock(rq, &flags);
  6523. get_task_struct(p);
  6524. cpu_rq(cpu)->migration_thread = p;
  6525. rq->calc_load_update = calc_load_update;
  6526. break;
  6527. case CPU_ONLINE:
  6528. case CPU_ONLINE_FROZEN:
  6529. /* Strictly unnecessary, as first user will wake it. */
  6530. wake_up_process(cpu_rq(cpu)->migration_thread);
  6531. /* Update our root-domain */
  6532. rq = cpu_rq(cpu);
  6533. raw_spin_lock_irqsave(&rq->lock, flags);
  6534. if (rq->rd) {
  6535. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6536. set_rq_online(rq);
  6537. }
  6538. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6539. break;
  6540. #ifdef CONFIG_HOTPLUG_CPU
  6541. case CPU_UP_CANCELED:
  6542. case CPU_UP_CANCELED_FROZEN:
  6543. if (!cpu_rq(cpu)->migration_thread)
  6544. break;
  6545. /* Unbind it from offline cpu so it can run. Fall thru. */
  6546. kthread_bind(cpu_rq(cpu)->migration_thread,
  6547. cpumask_any(cpu_online_mask));
  6548. kthread_stop(cpu_rq(cpu)->migration_thread);
  6549. put_task_struct(cpu_rq(cpu)->migration_thread);
  6550. cpu_rq(cpu)->migration_thread = NULL;
  6551. break;
  6552. case CPU_DEAD:
  6553. case CPU_DEAD_FROZEN:
  6554. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6555. migrate_live_tasks(cpu);
  6556. rq = cpu_rq(cpu);
  6557. kthread_stop(rq->migration_thread);
  6558. put_task_struct(rq->migration_thread);
  6559. rq->migration_thread = NULL;
  6560. /* Idle task back to normal (off runqueue, low prio) */
  6561. raw_spin_lock_irq(&rq->lock);
  6562. update_rq_clock(rq);
  6563. deactivate_task(rq, rq->idle, 0);
  6564. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6565. rq->idle->sched_class = &idle_sched_class;
  6566. migrate_dead_tasks(cpu);
  6567. raw_spin_unlock_irq(&rq->lock);
  6568. cpuset_unlock();
  6569. migrate_nr_uninterruptible(rq);
  6570. BUG_ON(rq->nr_running != 0);
  6571. calc_global_load_remove(rq);
  6572. /*
  6573. * No need to migrate the tasks: it was best-effort if
  6574. * they didn't take sched_hotcpu_mutex. Just wake up
  6575. * the requestors.
  6576. */
  6577. raw_spin_lock_irq(&rq->lock);
  6578. while (!list_empty(&rq->migration_queue)) {
  6579. struct migration_req *req;
  6580. req = list_entry(rq->migration_queue.next,
  6581. struct migration_req, list);
  6582. list_del_init(&req->list);
  6583. raw_spin_unlock_irq(&rq->lock);
  6584. complete(&req->done);
  6585. raw_spin_lock_irq(&rq->lock);
  6586. }
  6587. raw_spin_unlock_irq(&rq->lock);
  6588. break;
  6589. case CPU_DYING:
  6590. case CPU_DYING_FROZEN:
  6591. /* Update our root-domain */
  6592. rq = cpu_rq(cpu);
  6593. raw_spin_lock_irqsave(&rq->lock, flags);
  6594. if (rq->rd) {
  6595. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6596. set_rq_offline(rq);
  6597. }
  6598. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6599. break;
  6600. #endif
  6601. }
  6602. return NOTIFY_OK;
  6603. }
  6604. /*
  6605. * Register at high priority so that task migration (migrate_all_tasks)
  6606. * happens before everything else. This has to be lower priority than
  6607. * the notifier in the perf_event subsystem, though.
  6608. */
  6609. static struct notifier_block __cpuinitdata migration_notifier = {
  6610. .notifier_call = migration_call,
  6611. .priority = 10
  6612. };
  6613. static int __init migration_init(void)
  6614. {
  6615. void *cpu = (void *)(long)smp_processor_id();
  6616. int err;
  6617. /* Start one for the boot CPU: */
  6618. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6619. BUG_ON(err == NOTIFY_BAD);
  6620. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6621. register_cpu_notifier(&migration_notifier);
  6622. return 0;
  6623. }
  6624. early_initcall(migration_init);
  6625. #endif
  6626. #ifdef CONFIG_SMP
  6627. #ifdef CONFIG_SCHED_DEBUG
  6628. static __read_mostly int sched_domain_debug_enabled;
  6629. static int __init sched_domain_debug_setup(char *str)
  6630. {
  6631. sched_domain_debug_enabled = 1;
  6632. return 0;
  6633. }
  6634. early_param("sched_debug", sched_domain_debug_setup);
  6635. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6636. struct cpumask *groupmask)
  6637. {
  6638. struct sched_group *group = sd->groups;
  6639. char str[256];
  6640. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6641. cpumask_clear(groupmask);
  6642. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6643. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6644. pr_cont("does not load-balance\n");
  6645. if (sd->parent)
  6646. pr_err("ERROR: !SD_LOAD_BALANCE domain has parent\n");
  6647. return -1;
  6648. }
  6649. pr_cont("span %s level %s\n", str, sd->name);
  6650. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6651. pr_err("ERROR: domain->span does not contain CPU%d\n", cpu);
  6652. }
  6653. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6654. pr_err("ERROR: domain->groups does not contain CPU%d\n", cpu);
  6655. }
  6656. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6657. do {
  6658. if (!group) {
  6659. pr_cont("\n");
  6660. pr_err("ERROR: group is NULL\n");
  6661. break;
  6662. }
  6663. if (!group->cpu_power) {
  6664. pr_cont("\n");
  6665. pr_err("ERROR: domain->cpu_power not set\n");
  6666. break;
  6667. }
  6668. if (!cpumask_weight(sched_group_cpus(group))) {
  6669. pr_cont("\n");
  6670. pr_err("ERROR: empty group\n");
  6671. break;
  6672. }
  6673. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6674. pr_cont("\n");
  6675. pr_err("ERROR: repeated CPUs\n");
  6676. break;
  6677. }
  6678. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6679. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6680. pr_cont(" %s", str);
  6681. if (group->cpu_power != SCHED_LOAD_SCALE) {
  6682. pr_cont(" (cpu_power = %d)", group->cpu_power);
  6683. }
  6684. group = group->next;
  6685. } while (group != sd->groups);
  6686. pr_cont("\n");
  6687. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6688. pr_err("ERROR: groups don't span domain->span\n");
  6689. if (sd->parent &&
  6690. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6691. pr_err("ERROR: parent span is not a superset of domain->span\n");
  6692. return 0;
  6693. }
  6694. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6695. {
  6696. cpumask_var_t groupmask;
  6697. int level = 0;
  6698. if (!sched_domain_debug_enabled)
  6699. return;
  6700. if (!sd) {
  6701. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6702. return;
  6703. }
  6704. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6705. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6706. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6707. return;
  6708. }
  6709. for (;;) {
  6710. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6711. break;
  6712. level++;
  6713. sd = sd->parent;
  6714. if (!sd)
  6715. break;
  6716. }
  6717. free_cpumask_var(groupmask);
  6718. }
  6719. #else /* !CONFIG_SCHED_DEBUG */
  6720. # define sched_domain_debug(sd, cpu) do { } while (0)
  6721. #endif /* CONFIG_SCHED_DEBUG */
  6722. static int sd_degenerate(struct sched_domain *sd)
  6723. {
  6724. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6725. return 1;
  6726. /* Following flags need at least 2 groups */
  6727. if (sd->flags & (SD_LOAD_BALANCE |
  6728. SD_BALANCE_NEWIDLE |
  6729. SD_BALANCE_FORK |
  6730. SD_BALANCE_EXEC |
  6731. SD_SHARE_CPUPOWER |
  6732. SD_SHARE_PKG_RESOURCES)) {
  6733. if (sd->groups != sd->groups->next)
  6734. return 0;
  6735. }
  6736. /* Following flags don't use groups */
  6737. if (sd->flags & (SD_WAKE_AFFINE))
  6738. return 0;
  6739. return 1;
  6740. }
  6741. static int
  6742. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6743. {
  6744. unsigned long cflags = sd->flags, pflags = parent->flags;
  6745. if (sd_degenerate(parent))
  6746. return 1;
  6747. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6748. return 0;
  6749. /* Flags needing groups don't count if only 1 group in parent */
  6750. if (parent->groups == parent->groups->next) {
  6751. pflags &= ~(SD_LOAD_BALANCE |
  6752. SD_BALANCE_NEWIDLE |
  6753. SD_BALANCE_FORK |
  6754. SD_BALANCE_EXEC |
  6755. SD_SHARE_CPUPOWER |
  6756. SD_SHARE_PKG_RESOURCES);
  6757. if (nr_node_ids == 1)
  6758. pflags &= ~SD_SERIALIZE;
  6759. }
  6760. if (~cflags & pflags)
  6761. return 0;
  6762. return 1;
  6763. }
  6764. static void free_rootdomain(struct root_domain *rd)
  6765. {
  6766. synchronize_sched();
  6767. cpupri_cleanup(&rd->cpupri);
  6768. free_cpumask_var(rd->rto_mask);
  6769. free_cpumask_var(rd->online);
  6770. free_cpumask_var(rd->span);
  6771. kfree(rd);
  6772. }
  6773. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6774. {
  6775. struct root_domain *old_rd = NULL;
  6776. unsigned long flags;
  6777. raw_spin_lock_irqsave(&rq->lock, flags);
  6778. if (rq->rd) {
  6779. old_rd = rq->rd;
  6780. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6781. set_rq_offline(rq);
  6782. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6783. /*
  6784. * If we dont want to free the old_rt yet then
  6785. * set old_rd to NULL to skip the freeing later
  6786. * in this function:
  6787. */
  6788. if (!atomic_dec_and_test(&old_rd->refcount))
  6789. old_rd = NULL;
  6790. }
  6791. atomic_inc(&rd->refcount);
  6792. rq->rd = rd;
  6793. cpumask_set_cpu(rq->cpu, rd->span);
  6794. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  6795. set_rq_online(rq);
  6796. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6797. if (old_rd)
  6798. free_rootdomain(old_rd);
  6799. }
  6800. static int init_rootdomain(struct root_domain *rd, bool bootmem)
  6801. {
  6802. gfp_t gfp = GFP_KERNEL;
  6803. memset(rd, 0, sizeof(*rd));
  6804. if (bootmem)
  6805. gfp = GFP_NOWAIT;
  6806. if (!alloc_cpumask_var(&rd->span, gfp))
  6807. goto out;
  6808. if (!alloc_cpumask_var(&rd->online, gfp))
  6809. goto free_span;
  6810. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  6811. goto free_online;
  6812. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  6813. goto free_rto_mask;
  6814. return 0;
  6815. free_rto_mask:
  6816. free_cpumask_var(rd->rto_mask);
  6817. free_online:
  6818. free_cpumask_var(rd->online);
  6819. free_span:
  6820. free_cpumask_var(rd->span);
  6821. out:
  6822. return -ENOMEM;
  6823. }
  6824. static void init_defrootdomain(void)
  6825. {
  6826. init_rootdomain(&def_root_domain, true);
  6827. atomic_set(&def_root_domain.refcount, 1);
  6828. }
  6829. static struct root_domain *alloc_rootdomain(void)
  6830. {
  6831. struct root_domain *rd;
  6832. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6833. if (!rd)
  6834. return NULL;
  6835. if (init_rootdomain(rd, false) != 0) {
  6836. kfree(rd);
  6837. return NULL;
  6838. }
  6839. return rd;
  6840. }
  6841. /*
  6842. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6843. * hold the hotplug lock.
  6844. */
  6845. static void
  6846. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6847. {
  6848. struct rq *rq = cpu_rq(cpu);
  6849. struct sched_domain *tmp;
  6850. /* Remove the sched domains which do not contribute to scheduling. */
  6851. for (tmp = sd; tmp; ) {
  6852. struct sched_domain *parent = tmp->parent;
  6853. if (!parent)
  6854. break;
  6855. if (sd_parent_degenerate(tmp, parent)) {
  6856. tmp->parent = parent->parent;
  6857. if (parent->parent)
  6858. parent->parent->child = tmp;
  6859. } else
  6860. tmp = tmp->parent;
  6861. }
  6862. if (sd && sd_degenerate(sd)) {
  6863. sd = sd->parent;
  6864. if (sd)
  6865. sd->child = NULL;
  6866. }
  6867. sched_domain_debug(sd, cpu);
  6868. rq_attach_root(rq, rd);
  6869. rcu_assign_pointer(rq->sd, sd);
  6870. }
  6871. /* cpus with isolated domains */
  6872. static cpumask_var_t cpu_isolated_map;
  6873. /* Setup the mask of cpus configured for isolated domains */
  6874. static int __init isolated_cpu_setup(char *str)
  6875. {
  6876. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  6877. cpulist_parse(str, cpu_isolated_map);
  6878. return 1;
  6879. }
  6880. __setup("isolcpus=", isolated_cpu_setup);
  6881. /*
  6882. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6883. * to a function which identifies what group(along with sched group) a CPU
  6884. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6885. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6886. *
  6887. * init_sched_build_groups will build a circular linked list of the groups
  6888. * covered by the given span, and will set each group's ->cpumask correctly,
  6889. * and ->cpu_power to 0.
  6890. */
  6891. static void
  6892. init_sched_build_groups(const struct cpumask *span,
  6893. const struct cpumask *cpu_map,
  6894. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6895. struct sched_group **sg,
  6896. struct cpumask *tmpmask),
  6897. struct cpumask *covered, struct cpumask *tmpmask)
  6898. {
  6899. struct sched_group *first = NULL, *last = NULL;
  6900. int i;
  6901. cpumask_clear(covered);
  6902. for_each_cpu(i, span) {
  6903. struct sched_group *sg;
  6904. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6905. int j;
  6906. if (cpumask_test_cpu(i, covered))
  6907. continue;
  6908. cpumask_clear(sched_group_cpus(sg));
  6909. sg->cpu_power = 0;
  6910. for_each_cpu(j, span) {
  6911. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6912. continue;
  6913. cpumask_set_cpu(j, covered);
  6914. cpumask_set_cpu(j, sched_group_cpus(sg));
  6915. }
  6916. if (!first)
  6917. first = sg;
  6918. if (last)
  6919. last->next = sg;
  6920. last = sg;
  6921. }
  6922. last->next = first;
  6923. }
  6924. #define SD_NODES_PER_DOMAIN 16
  6925. #ifdef CONFIG_NUMA
  6926. /**
  6927. * find_next_best_node - find the next node to include in a sched_domain
  6928. * @node: node whose sched_domain we're building
  6929. * @used_nodes: nodes already in the sched_domain
  6930. *
  6931. * Find the next node to include in a given scheduling domain. Simply
  6932. * finds the closest node not already in the @used_nodes map.
  6933. *
  6934. * Should use nodemask_t.
  6935. */
  6936. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6937. {
  6938. int i, n, val, min_val, best_node = 0;
  6939. min_val = INT_MAX;
  6940. for (i = 0; i < nr_node_ids; i++) {
  6941. /* Start at @node */
  6942. n = (node + i) % nr_node_ids;
  6943. if (!nr_cpus_node(n))
  6944. continue;
  6945. /* Skip already used nodes */
  6946. if (node_isset(n, *used_nodes))
  6947. continue;
  6948. /* Simple min distance search */
  6949. val = node_distance(node, n);
  6950. if (val < min_val) {
  6951. min_val = val;
  6952. best_node = n;
  6953. }
  6954. }
  6955. node_set(best_node, *used_nodes);
  6956. return best_node;
  6957. }
  6958. /**
  6959. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6960. * @node: node whose cpumask we're constructing
  6961. * @span: resulting cpumask
  6962. *
  6963. * Given a node, construct a good cpumask for its sched_domain to span. It
  6964. * should be one that prevents unnecessary balancing, but also spreads tasks
  6965. * out optimally.
  6966. */
  6967. static void sched_domain_node_span(int node, struct cpumask *span)
  6968. {
  6969. nodemask_t used_nodes;
  6970. int i;
  6971. cpumask_clear(span);
  6972. nodes_clear(used_nodes);
  6973. cpumask_or(span, span, cpumask_of_node(node));
  6974. node_set(node, used_nodes);
  6975. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6976. int next_node = find_next_best_node(node, &used_nodes);
  6977. cpumask_or(span, span, cpumask_of_node(next_node));
  6978. }
  6979. }
  6980. #endif /* CONFIG_NUMA */
  6981. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6982. /*
  6983. * The cpus mask in sched_group and sched_domain hangs off the end.
  6984. *
  6985. * ( See the the comments in include/linux/sched.h:struct sched_group
  6986. * and struct sched_domain. )
  6987. */
  6988. struct static_sched_group {
  6989. struct sched_group sg;
  6990. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  6991. };
  6992. struct static_sched_domain {
  6993. struct sched_domain sd;
  6994. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  6995. };
  6996. struct s_data {
  6997. #ifdef CONFIG_NUMA
  6998. int sd_allnodes;
  6999. cpumask_var_t domainspan;
  7000. cpumask_var_t covered;
  7001. cpumask_var_t notcovered;
  7002. #endif
  7003. cpumask_var_t nodemask;
  7004. cpumask_var_t this_sibling_map;
  7005. cpumask_var_t this_core_map;
  7006. cpumask_var_t send_covered;
  7007. cpumask_var_t tmpmask;
  7008. struct sched_group **sched_group_nodes;
  7009. struct root_domain *rd;
  7010. };
  7011. enum s_alloc {
  7012. sa_sched_groups = 0,
  7013. sa_rootdomain,
  7014. sa_tmpmask,
  7015. sa_send_covered,
  7016. sa_this_core_map,
  7017. sa_this_sibling_map,
  7018. sa_nodemask,
  7019. sa_sched_group_nodes,
  7020. #ifdef CONFIG_NUMA
  7021. sa_notcovered,
  7022. sa_covered,
  7023. sa_domainspan,
  7024. #endif
  7025. sa_none,
  7026. };
  7027. /*
  7028. * SMT sched-domains:
  7029. */
  7030. #ifdef CONFIG_SCHED_SMT
  7031. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  7032. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  7033. static int
  7034. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  7035. struct sched_group **sg, struct cpumask *unused)
  7036. {
  7037. if (sg)
  7038. *sg = &per_cpu(sched_groups, cpu).sg;
  7039. return cpu;
  7040. }
  7041. #endif /* CONFIG_SCHED_SMT */
  7042. /*
  7043. * multi-core sched-domains:
  7044. */
  7045. #ifdef CONFIG_SCHED_MC
  7046. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  7047. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  7048. #endif /* CONFIG_SCHED_MC */
  7049. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  7050. static int
  7051. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  7052. struct sched_group **sg, struct cpumask *mask)
  7053. {
  7054. int group;
  7055. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7056. group = cpumask_first(mask);
  7057. if (sg)
  7058. *sg = &per_cpu(sched_group_core, group).sg;
  7059. return group;
  7060. }
  7061. #elif defined(CONFIG_SCHED_MC)
  7062. static int
  7063. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  7064. struct sched_group **sg, struct cpumask *unused)
  7065. {
  7066. if (sg)
  7067. *sg = &per_cpu(sched_group_core, cpu).sg;
  7068. return cpu;
  7069. }
  7070. #endif
  7071. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  7072. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  7073. static int
  7074. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  7075. struct sched_group **sg, struct cpumask *mask)
  7076. {
  7077. int group;
  7078. #ifdef CONFIG_SCHED_MC
  7079. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  7080. group = cpumask_first(mask);
  7081. #elif defined(CONFIG_SCHED_SMT)
  7082. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7083. group = cpumask_first(mask);
  7084. #else
  7085. group = cpu;
  7086. #endif
  7087. if (sg)
  7088. *sg = &per_cpu(sched_group_phys, group).sg;
  7089. return group;
  7090. }
  7091. #ifdef CONFIG_NUMA
  7092. /*
  7093. * The init_sched_build_groups can't handle what we want to do with node
  7094. * groups, so roll our own. Now each node has its own list of groups which
  7095. * gets dynamically allocated.
  7096. */
  7097. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  7098. static struct sched_group ***sched_group_nodes_bycpu;
  7099. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  7100. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  7101. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  7102. struct sched_group **sg,
  7103. struct cpumask *nodemask)
  7104. {
  7105. int group;
  7106. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  7107. group = cpumask_first(nodemask);
  7108. if (sg)
  7109. *sg = &per_cpu(sched_group_allnodes, group).sg;
  7110. return group;
  7111. }
  7112. static void init_numa_sched_groups_power(struct sched_group *group_head)
  7113. {
  7114. struct sched_group *sg = group_head;
  7115. int j;
  7116. if (!sg)
  7117. return;
  7118. do {
  7119. for_each_cpu(j, sched_group_cpus(sg)) {
  7120. struct sched_domain *sd;
  7121. sd = &per_cpu(phys_domains, j).sd;
  7122. if (j != group_first_cpu(sd->groups)) {
  7123. /*
  7124. * Only add "power" once for each
  7125. * physical package.
  7126. */
  7127. continue;
  7128. }
  7129. sg->cpu_power += sd->groups->cpu_power;
  7130. }
  7131. sg = sg->next;
  7132. } while (sg != group_head);
  7133. }
  7134. static int build_numa_sched_groups(struct s_data *d,
  7135. const struct cpumask *cpu_map, int num)
  7136. {
  7137. struct sched_domain *sd;
  7138. struct sched_group *sg, *prev;
  7139. int n, j;
  7140. cpumask_clear(d->covered);
  7141. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  7142. if (cpumask_empty(d->nodemask)) {
  7143. d->sched_group_nodes[num] = NULL;
  7144. goto out;
  7145. }
  7146. sched_domain_node_span(num, d->domainspan);
  7147. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  7148. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7149. GFP_KERNEL, num);
  7150. if (!sg) {
  7151. pr_warning("Can not alloc domain group for node %d\n", num);
  7152. return -ENOMEM;
  7153. }
  7154. d->sched_group_nodes[num] = sg;
  7155. for_each_cpu(j, d->nodemask) {
  7156. sd = &per_cpu(node_domains, j).sd;
  7157. sd->groups = sg;
  7158. }
  7159. sg->cpu_power = 0;
  7160. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  7161. sg->next = sg;
  7162. cpumask_or(d->covered, d->covered, d->nodemask);
  7163. prev = sg;
  7164. for (j = 0; j < nr_node_ids; j++) {
  7165. n = (num + j) % nr_node_ids;
  7166. cpumask_complement(d->notcovered, d->covered);
  7167. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  7168. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  7169. if (cpumask_empty(d->tmpmask))
  7170. break;
  7171. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  7172. if (cpumask_empty(d->tmpmask))
  7173. continue;
  7174. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7175. GFP_KERNEL, num);
  7176. if (!sg) {
  7177. pr_warning("Can not alloc domain group for node %d\n",
  7178. j);
  7179. return -ENOMEM;
  7180. }
  7181. sg->cpu_power = 0;
  7182. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  7183. sg->next = prev->next;
  7184. cpumask_or(d->covered, d->covered, d->tmpmask);
  7185. prev->next = sg;
  7186. prev = sg;
  7187. }
  7188. out:
  7189. return 0;
  7190. }
  7191. #endif /* CONFIG_NUMA */
  7192. #ifdef CONFIG_NUMA
  7193. /* Free memory allocated for various sched_group structures */
  7194. static void free_sched_groups(const struct cpumask *cpu_map,
  7195. struct cpumask *nodemask)
  7196. {
  7197. int cpu, i;
  7198. for_each_cpu(cpu, cpu_map) {
  7199. struct sched_group **sched_group_nodes
  7200. = sched_group_nodes_bycpu[cpu];
  7201. if (!sched_group_nodes)
  7202. continue;
  7203. for (i = 0; i < nr_node_ids; i++) {
  7204. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  7205. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7206. if (cpumask_empty(nodemask))
  7207. continue;
  7208. if (sg == NULL)
  7209. continue;
  7210. sg = sg->next;
  7211. next_sg:
  7212. oldsg = sg;
  7213. sg = sg->next;
  7214. kfree(oldsg);
  7215. if (oldsg != sched_group_nodes[i])
  7216. goto next_sg;
  7217. }
  7218. kfree(sched_group_nodes);
  7219. sched_group_nodes_bycpu[cpu] = NULL;
  7220. }
  7221. }
  7222. #else /* !CONFIG_NUMA */
  7223. static void free_sched_groups(const struct cpumask *cpu_map,
  7224. struct cpumask *nodemask)
  7225. {
  7226. }
  7227. #endif /* CONFIG_NUMA */
  7228. /*
  7229. * Initialize sched groups cpu_power.
  7230. *
  7231. * cpu_power indicates the capacity of sched group, which is used while
  7232. * distributing the load between different sched groups in a sched domain.
  7233. * Typically cpu_power for all the groups in a sched domain will be same unless
  7234. * there are asymmetries in the topology. If there are asymmetries, group
  7235. * having more cpu_power will pickup more load compared to the group having
  7236. * less cpu_power.
  7237. */
  7238. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  7239. {
  7240. struct sched_domain *child;
  7241. struct sched_group *group;
  7242. long power;
  7243. int weight;
  7244. WARN_ON(!sd || !sd->groups);
  7245. if (cpu != group_first_cpu(sd->groups))
  7246. return;
  7247. child = sd->child;
  7248. sd->groups->cpu_power = 0;
  7249. if (!child) {
  7250. power = SCHED_LOAD_SCALE;
  7251. weight = cpumask_weight(sched_domain_span(sd));
  7252. /*
  7253. * SMT siblings share the power of a single core.
  7254. * Usually multiple threads get a better yield out of
  7255. * that one core than a single thread would have,
  7256. * reflect that in sd->smt_gain.
  7257. */
  7258. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  7259. power *= sd->smt_gain;
  7260. power /= weight;
  7261. power >>= SCHED_LOAD_SHIFT;
  7262. }
  7263. sd->groups->cpu_power += power;
  7264. return;
  7265. }
  7266. /*
  7267. * Add cpu_power of each child group to this groups cpu_power.
  7268. */
  7269. group = child->groups;
  7270. do {
  7271. sd->groups->cpu_power += group->cpu_power;
  7272. group = group->next;
  7273. } while (group != child->groups);
  7274. }
  7275. /*
  7276. * Initializers for schedule domains
  7277. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  7278. */
  7279. #ifdef CONFIG_SCHED_DEBUG
  7280. # define SD_INIT_NAME(sd, type) sd->name = #type
  7281. #else
  7282. # define SD_INIT_NAME(sd, type) do { } while (0)
  7283. #endif
  7284. #define SD_INIT(sd, type) sd_init_##type(sd)
  7285. #define SD_INIT_FUNC(type) \
  7286. static noinline void sd_init_##type(struct sched_domain *sd) \
  7287. { \
  7288. memset(sd, 0, sizeof(*sd)); \
  7289. *sd = SD_##type##_INIT; \
  7290. sd->level = SD_LV_##type; \
  7291. SD_INIT_NAME(sd, type); \
  7292. }
  7293. SD_INIT_FUNC(CPU)
  7294. #ifdef CONFIG_NUMA
  7295. SD_INIT_FUNC(ALLNODES)
  7296. SD_INIT_FUNC(NODE)
  7297. #endif
  7298. #ifdef CONFIG_SCHED_SMT
  7299. SD_INIT_FUNC(SIBLING)
  7300. #endif
  7301. #ifdef CONFIG_SCHED_MC
  7302. SD_INIT_FUNC(MC)
  7303. #endif
  7304. static int default_relax_domain_level = -1;
  7305. static int __init setup_relax_domain_level(char *str)
  7306. {
  7307. unsigned long val;
  7308. val = simple_strtoul(str, NULL, 0);
  7309. if (val < SD_LV_MAX)
  7310. default_relax_domain_level = val;
  7311. return 1;
  7312. }
  7313. __setup("relax_domain_level=", setup_relax_domain_level);
  7314. static void set_domain_attribute(struct sched_domain *sd,
  7315. struct sched_domain_attr *attr)
  7316. {
  7317. int request;
  7318. if (!attr || attr->relax_domain_level < 0) {
  7319. if (default_relax_domain_level < 0)
  7320. return;
  7321. else
  7322. request = default_relax_domain_level;
  7323. } else
  7324. request = attr->relax_domain_level;
  7325. if (request < sd->level) {
  7326. /* turn off idle balance on this domain */
  7327. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  7328. } else {
  7329. /* turn on idle balance on this domain */
  7330. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  7331. }
  7332. }
  7333. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  7334. const struct cpumask *cpu_map)
  7335. {
  7336. switch (what) {
  7337. case sa_sched_groups:
  7338. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  7339. d->sched_group_nodes = NULL;
  7340. case sa_rootdomain:
  7341. free_rootdomain(d->rd); /* fall through */
  7342. case sa_tmpmask:
  7343. free_cpumask_var(d->tmpmask); /* fall through */
  7344. case sa_send_covered:
  7345. free_cpumask_var(d->send_covered); /* fall through */
  7346. case sa_this_core_map:
  7347. free_cpumask_var(d->this_core_map); /* fall through */
  7348. case sa_this_sibling_map:
  7349. free_cpumask_var(d->this_sibling_map); /* fall through */
  7350. case sa_nodemask:
  7351. free_cpumask_var(d->nodemask); /* fall through */
  7352. case sa_sched_group_nodes:
  7353. #ifdef CONFIG_NUMA
  7354. kfree(d->sched_group_nodes); /* fall through */
  7355. case sa_notcovered:
  7356. free_cpumask_var(d->notcovered); /* fall through */
  7357. case sa_covered:
  7358. free_cpumask_var(d->covered); /* fall through */
  7359. case sa_domainspan:
  7360. free_cpumask_var(d->domainspan); /* fall through */
  7361. #endif
  7362. case sa_none:
  7363. break;
  7364. }
  7365. }
  7366. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  7367. const struct cpumask *cpu_map)
  7368. {
  7369. #ifdef CONFIG_NUMA
  7370. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  7371. return sa_none;
  7372. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  7373. return sa_domainspan;
  7374. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  7375. return sa_covered;
  7376. /* Allocate the per-node list of sched groups */
  7377. d->sched_group_nodes = kcalloc(nr_node_ids,
  7378. sizeof(struct sched_group *), GFP_KERNEL);
  7379. if (!d->sched_group_nodes) {
  7380. pr_warning("Can not alloc sched group node list\n");
  7381. return sa_notcovered;
  7382. }
  7383. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  7384. #endif
  7385. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  7386. return sa_sched_group_nodes;
  7387. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  7388. return sa_nodemask;
  7389. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  7390. return sa_this_sibling_map;
  7391. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  7392. return sa_this_core_map;
  7393. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  7394. return sa_send_covered;
  7395. d->rd = alloc_rootdomain();
  7396. if (!d->rd) {
  7397. pr_warning("Cannot alloc root domain\n");
  7398. return sa_tmpmask;
  7399. }
  7400. return sa_rootdomain;
  7401. }
  7402. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  7403. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  7404. {
  7405. struct sched_domain *sd = NULL;
  7406. #ifdef CONFIG_NUMA
  7407. struct sched_domain *parent;
  7408. d->sd_allnodes = 0;
  7409. if (cpumask_weight(cpu_map) >
  7410. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  7411. sd = &per_cpu(allnodes_domains, i).sd;
  7412. SD_INIT(sd, ALLNODES);
  7413. set_domain_attribute(sd, attr);
  7414. cpumask_copy(sched_domain_span(sd), cpu_map);
  7415. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  7416. d->sd_allnodes = 1;
  7417. }
  7418. parent = sd;
  7419. sd = &per_cpu(node_domains, i).sd;
  7420. SD_INIT(sd, NODE);
  7421. set_domain_attribute(sd, attr);
  7422. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  7423. sd->parent = parent;
  7424. if (parent)
  7425. parent->child = sd;
  7426. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  7427. #endif
  7428. return sd;
  7429. }
  7430. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  7431. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7432. struct sched_domain *parent, int i)
  7433. {
  7434. struct sched_domain *sd;
  7435. sd = &per_cpu(phys_domains, i).sd;
  7436. SD_INIT(sd, CPU);
  7437. set_domain_attribute(sd, attr);
  7438. cpumask_copy(sched_domain_span(sd), d->nodemask);
  7439. sd->parent = parent;
  7440. if (parent)
  7441. parent->child = sd;
  7442. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  7443. return sd;
  7444. }
  7445. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  7446. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7447. struct sched_domain *parent, int i)
  7448. {
  7449. struct sched_domain *sd = parent;
  7450. #ifdef CONFIG_SCHED_MC
  7451. sd = &per_cpu(core_domains, i).sd;
  7452. SD_INIT(sd, MC);
  7453. set_domain_attribute(sd, attr);
  7454. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  7455. sd->parent = parent;
  7456. parent->child = sd;
  7457. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  7458. #endif
  7459. return sd;
  7460. }
  7461. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  7462. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7463. struct sched_domain *parent, int i)
  7464. {
  7465. struct sched_domain *sd = parent;
  7466. #ifdef CONFIG_SCHED_SMT
  7467. sd = &per_cpu(cpu_domains, i).sd;
  7468. SD_INIT(sd, SIBLING);
  7469. set_domain_attribute(sd, attr);
  7470. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  7471. sd->parent = parent;
  7472. parent->child = sd;
  7473. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  7474. #endif
  7475. return sd;
  7476. }
  7477. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  7478. const struct cpumask *cpu_map, int cpu)
  7479. {
  7480. switch (l) {
  7481. #ifdef CONFIG_SCHED_SMT
  7482. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  7483. cpumask_and(d->this_sibling_map, cpu_map,
  7484. topology_thread_cpumask(cpu));
  7485. if (cpu == cpumask_first(d->this_sibling_map))
  7486. init_sched_build_groups(d->this_sibling_map, cpu_map,
  7487. &cpu_to_cpu_group,
  7488. d->send_covered, d->tmpmask);
  7489. break;
  7490. #endif
  7491. #ifdef CONFIG_SCHED_MC
  7492. case SD_LV_MC: /* set up multi-core groups */
  7493. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  7494. if (cpu == cpumask_first(d->this_core_map))
  7495. init_sched_build_groups(d->this_core_map, cpu_map,
  7496. &cpu_to_core_group,
  7497. d->send_covered, d->tmpmask);
  7498. break;
  7499. #endif
  7500. case SD_LV_CPU: /* set up physical groups */
  7501. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  7502. if (!cpumask_empty(d->nodemask))
  7503. init_sched_build_groups(d->nodemask, cpu_map,
  7504. &cpu_to_phys_group,
  7505. d->send_covered, d->tmpmask);
  7506. break;
  7507. #ifdef CONFIG_NUMA
  7508. case SD_LV_ALLNODES:
  7509. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  7510. d->send_covered, d->tmpmask);
  7511. break;
  7512. #endif
  7513. default:
  7514. break;
  7515. }
  7516. }
  7517. /*
  7518. * Build sched domains for a given set of cpus and attach the sched domains
  7519. * to the individual cpus
  7520. */
  7521. static int __build_sched_domains(const struct cpumask *cpu_map,
  7522. struct sched_domain_attr *attr)
  7523. {
  7524. enum s_alloc alloc_state = sa_none;
  7525. struct s_data d;
  7526. struct sched_domain *sd;
  7527. int i;
  7528. #ifdef CONFIG_NUMA
  7529. d.sd_allnodes = 0;
  7530. #endif
  7531. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  7532. if (alloc_state != sa_rootdomain)
  7533. goto error;
  7534. alloc_state = sa_sched_groups;
  7535. /*
  7536. * Set up domains for cpus specified by the cpu_map.
  7537. */
  7538. for_each_cpu(i, cpu_map) {
  7539. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  7540. cpu_map);
  7541. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  7542. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  7543. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  7544. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  7545. }
  7546. for_each_cpu(i, cpu_map) {
  7547. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  7548. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  7549. }
  7550. /* Set up physical groups */
  7551. for (i = 0; i < nr_node_ids; i++)
  7552. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  7553. #ifdef CONFIG_NUMA
  7554. /* Set up node groups */
  7555. if (d.sd_allnodes)
  7556. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  7557. for (i = 0; i < nr_node_ids; i++)
  7558. if (build_numa_sched_groups(&d, cpu_map, i))
  7559. goto error;
  7560. #endif
  7561. /* Calculate CPU power for physical packages and nodes */
  7562. #ifdef CONFIG_SCHED_SMT
  7563. for_each_cpu(i, cpu_map) {
  7564. sd = &per_cpu(cpu_domains, i).sd;
  7565. init_sched_groups_power(i, sd);
  7566. }
  7567. #endif
  7568. #ifdef CONFIG_SCHED_MC
  7569. for_each_cpu(i, cpu_map) {
  7570. sd = &per_cpu(core_domains, i).sd;
  7571. init_sched_groups_power(i, sd);
  7572. }
  7573. #endif
  7574. for_each_cpu(i, cpu_map) {
  7575. sd = &per_cpu(phys_domains, i).sd;
  7576. init_sched_groups_power(i, sd);
  7577. }
  7578. #ifdef CONFIG_NUMA
  7579. for (i = 0; i < nr_node_ids; i++)
  7580. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  7581. if (d.sd_allnodes) {
  7582. struct sched_group *sg;
  7583. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7584. d.tmpmask);
  7585. init_numa_sched_groups_power(sg);
  7586. }
  7587. #endif
  7588. /* Attach the domains */
  7589. for_each_cpu(i, cpu_map) {
  7590. #ifdef CONFIG_SCHED_SMT
  7591. sd = &per_cpu(cpu_domains, i).sd;
  7592. #elif defined(CONFIG_SCHED_MC)
  7593. sd = &per_cpu(core_domains, i).sd;
  7594. #else
  7595. sd = &per_cpu(phys_domains, i).sd;
  7596. #endif
  7597. cpu_attach_domain(sd, d.rd, i);
  7598. }
  7599. d.sched_group_nodes = NULL; /* don't free this we still need it */
  7600. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  7601. return 0;
  7602. error:
  7603. __free_domain_allocs(&d, alloc_state, cpu_map);
  7604. return -ENOMEM;
  7605. }
  7606. static int build_sched_domains(const struct cpumask *cpu_map)
  7607. {
  7608. return __build_sched_domains(cpu_map, NULL);
  7609. }
  7610. static cpumask_var_t *doms_cur; /* current sched domains */
  7611. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7612. static struct sched_domain_attr *dattr_cur;
  7613. /* attribues of custom domains in 'doms_cur' */
  7614. /*
  7615. * Special case: If a kmalloc of a doms_cur partition (array of
  7616. * cpumask) fails, then fallback to a single sched domain,
  7617. * as determined by the single cpumask fallback_doms.
  7618. */
  7619. static cpumask_var_t fallback_doms;
  7620. /*
  7621. * arch_update_cpu_topology lets virtualized architectures update the
  7622. * cpu core maps. It is supposed to return 1 if the topology changed
  7623. * or 0 if it stayed the same.
  7624. */
  7625. int __attribute__((weak)) arch_update_cpu_topology(void)
  7626. {
  7627. return 0;
  7628. }
  7629. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  7630. {
  7631. int i;
  7632. cpumask_var_t *doms;
  7633. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  7634. if (!doms)
  7635. return NULL;
  7636. for (i = 0; i < ndoms; i++) {
  7637. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  7638. free_sched_domains(doms, i);
  7639. return NULL;
  7640. }
  7641. }
  7642. return doms;
  7643. }
  7644. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  7645. {
  7646. unsigned int i;
  7647. for (i = 0; i < ndoms; i++)
  7648. free_cpumask_var(doms[i]);
  7649. kfree(doms);
  7650. }
  7651. /*
  7652. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7653. * For now this just excludes isolated cpus, but could be used to
  7654. * exclude other special cases in the future.
  7655. */
  7656. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7657. {
  7658. int err;
  7659. arch_update_cpu_topology();
  7660. ndoms_cur = 1;
  7661. doms_cur = alloc_sched_domains(ndoms_cur);
  7662. if (!doms_cur)
  7663. doms_cur = &fallback_doms;
  7664. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  7665. dattr_cur = NULL;
  7666. err = build_sched_domains(doms_cur[0]);
  7667. register_sched_domain_sysctl();
  7668. return err;
  7669. }
  7670. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7671. struct cpumask *tmpmask)
  7672. {
  7673. free_sched_groups(cpu_map, tmpmask);
  7674. }
  7675. /*
  7676. * Detach sched domains from a group of cpus specified in cpu_map
  7677. * These cpus will now be attached to the NULL domain
  7678. */
  7679. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7680. {
  7681. /* Save because hotplug lock held. */
  7682. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7683. int i;
  7684. for_each_cpu(i, cpu_map)
  7685. cpu_attach_domain(NULL, &def_root_domain, i);
  7686. synchronize_sched();
  7687. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7688. }
  7689. /* handle null as "default" */
  7690. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7691. struct sched_domain_attr *new, int idx_new)
  7692. {
  7693. struct sched_domain_attr tmp;
  7694. /* fast path */
  7695. if (!new && !cur)
  7696. return 1;
  7697. tmp = SD_ATTR_INIT;
  7698. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7699. new ? (new + idx_new) : &tmp,
  7700. sizeof(struct sched_domain_attr));
  7701. }
  7702. /*
  7703. * Partition sched domains as specified by the 'ndoms_new'
  7704. * cpumasks in the array doms_new[] of cpumasks. This compares
  7705. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7706. * It destroys each deleted domain and builds each new domain.
  7707. *
  7708. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  7709. * The masks don't intersect (don't overlap.) We should setup one
  7710. * sched domain for each mask. CPUs not in any of the cpumasks will
  7711. * not be load balanced. If the same cpumask appears both in the
  7712. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7713. * it as it is.
  7714. *
  7715. * The passed in 'doms_new' should be allocated using
  7716. * alloc_sched_domains. This routine takes ownership of it and will
  7717. * free_sched_domains it when done with it. If the caller failed the
  7718. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  7719. * and partition_sched_domains() will fallback to the single partition
  7720. * 'fallback_doms', it also forces the domains to be rebuilt.
  7721. *
  7722. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7723. * ndoms_new == 0 is a special case for destroying existing domains,
  7724. * and it will not create the default domain.
  7725. *
  7726. * Call with hotplug lock held
  7727. */
  7728. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  7729. struct sched_domain_attr *dattr_new)
  7730. {
  7731. int i, j, n;
  7732. int new_topology;
  7733. mutex_lock(&sched_domains_mutex);
  7734. /* always unregister in case we don't destroy any domains */
  7735. unregister_sched_domain_sysctl();
  7736. /* Let architecture update cpu core mappings. */
  7737. new_topology = arch_update_cpu_topology();
  7738. n = doms_new ? ndoms_new : 0;
  7739. /* Destroy deleted domains */
  7740. for (i = 0; i < ndoms_cur; i++) {
  7741. for (j = 0; j < n && !new_topology; j++) {
  7742. if (cpumask_equal(doms_cur[i], doms_new[j])
  7743. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7744. goto match1;
  7745. }
  7746. /* no match - a current sched domain not in new doms_new[] */
  7747. detach_destroy_domains(doms_cur[i]);
  7748. match1:
  7749. ;
  7750. }
  7751. if (doms_new == NULL) {
  7752. ndoms_cur = 0;
  7753. doms_new = &fallback_doms;
  7754. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  7755. WARN_ON_ONCE(dattr_new);
  7756. }
  7757. /* Build new domains */
  7758. for (i = 0; i < ndoms_new; i++) {
  7759. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7760. if (cpumask_equal(doms_new[i], doms_cur[j])
  7761. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7762. goto match2;
  7763. }
  7764. /* no match - add a new doms_new */
  7765. __build_sched_domains(doms_new[i],
  7766. dattr_new ? dattr_new + i : NULL);
  7767. match2:
  7768. ;
  7769. }
  7770. /* Remember the new sched domains */
  7771. if (doms_cur != &fallback_doms)
  7772. free_sched_domains(doms_cur, ndoms_cur);
  7773. kfree(dattr_cur); /* kfree(NULL) is safe */
  7774. doms_cur = doms_new;
  7775. dattr_cur = dattr_new;
  7776. ndoms_cur = ndoms_new;
  7777. register_sched_domain_sysctl();
  7778. mutex_unlock(&sched_domains_mutex);
  7779. }
  7780. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7781. static void arch_reinit_sched_domains(void)
  7782. {
  7783. get_online_cpus();
  7784. /* Destroy domains first to force the rebuild */
  7785. partition_sched_domains(0, NULL, NULL);
  7786. rebuild_sched_domains();
  7787. put_online_cpus();
  7788. }
  7789. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7790. {
  7791. unsigned int level = 0;
  7792. if (sscanf(buf, "%u", &level) != 1)
  7793. return -EINVAL;
  7794. /*
  7795. * level is always be positive so don't check for
  7796. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7797. * What happens on 0 or 1 byte write,
  7798. * need to check for count as well?
  7799. */
  7800. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7801. return -EINVAL;
  7802. if (smt)
  7803. sched_smt_power_savings = level;
  7804. else
  7805. sched_mc_power_savings = level;
  7806. arch_reinit_sched_domains();
  7807. return count;
  7808. }
  7809. #ifdef CONFIG_SCHED_MC
  7810. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7811. char *page)
  7812. {
  7813. return sprintf(page, "%u\n", sched_mc_power_savings);
  7814. }
  7815. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7816. const char *buf, size_t count)
  7817. {
  7818. return sched_power_savings_store(buf, count, 0);
  7819. }
  7820. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7821. sched_mc_power_savings_show,
  7822. sched_mc_power_savings_store);
  7823. #endif
  7824. #ifdef CONFIG_SCHED_SMT
  7825. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7826. char *page)
  7827. {
  7828. return sprintf(page, "%u\n", sched_smt_power_savings);
  7829. }
  7830. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7831. const char *buf, size_t count)
  7832. {
  7833. return sched_power_savings_store(buf, count, 1);
  7834. }
  7835. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7836. sched_smt_power_savings_show,
  7837. sched_smt_power_savings_store);
  7838. #endif
  7839. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7840. {
  7841. int err = 0;
  7842. #ifdef CONFIG_SCHED_SMT
  7843. if (smt_capable())
  7844. err = sysfs_create_file(&cls->kset.kobj,
  7845. &attr_sched_smt_power_savings.attr);
  7846. #endif
  7847. #ifdef CONFIG_SCHED_MC
  7848. if (!err && mc_capable())
  7849. err = sysfs_create_file(&cls->kset.kobj,
  7850. &attr_sched_mc_power_savings.attr);
  7851. #endif
  7852. return err;
  7853. }
  7854. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7855. #ifndef CONFIG_CPUSETS
  7856. /*
  7857. * Add online and remove offline CPUs from the scheduler domains.
  7858. * When cpusets are enabled they take over this function.
  7859. */
  7860. static int update_sched_domains(struct notifier_block *nfb,
  7861. unsigned long action, void *hcpu)
  7862. {
  7863. switch (action) {
  7864. case CPU_ONLINE:
  7865. case CPU_ONLINE_FROZEN:
  7866. case CPU_DOWN_PREPARE:
  7867. case CPU_DOWN_PREPARE_FROZEN:
  7868. case CPU_DOWN_FAILED:
  7869. case CPU_DOWN_FAILED_FROZEN:
  7870. partition_sched_domains(1, NULL, NULL);
  7871. return NOTIFY_OK;
  7872. default:
  7873. return NOTIFY_DONE;
  7874. }
  7875. }
  7876. #endif
  7877. static int update_runtime(struct notifier_block *nfb,
  7878. unsigned long action, void *hcpu)
  7879. {
  7880. int cpu = (int)(long)hcpu;
  7881. switch (action) {
  7882. case CPU_DOWN_PREPARE:
  7883. case CPU_DOWN_PREPARE_FROZEN:
  7884. disable_runtime(cpu_rq(cpu));
  7885. return NOTIFY_OK;
  7886. case CPU_DOWN_FAILED:
  7887. case CPU_DOWN_FAILED_FROZEN:
  7888. case CPU_ONLINE:
  7889. case CPU_ONLINE_FROZEN:
  7890. enable_runtime(cpu_rq(cpu));
  7891. return NOTIFY_OK;
  7892. default:
  7893. return NOTIFY_DONE;
  7894. }
  7895. }
  7896. void __init sched_init_smp(void)
  7897. {
  7898. cpumask_var_t non_isolated_cpus;
  7899. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7900. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7901. #if defined(CONFIG_NUMA)
  7902. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7903. GFP_KERNEL);
  7904. BUG_ON(sched_group_nodes_bycpu == NULL);
  7905. #endif
  7906. get_online_cpus();
  7907. mutex_lock(&sched_domains_mutex);
  7908. arch_init_sched_domains(cpu_active_mask);
  7909. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7910. if (cpumask_empty(non_isolated_cpus))
  7911. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7912. mutex_unlock(&sched_domains_mutex);
  7913. put_online_cpus();
  7914. #ifndef CONFIG_CPUSETS
  7915. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7916. hotcpu_notifier(update_sched_domains, 0);
  7917. #endif
  7918. /* RT runtime code needs to handle some hotplug events */
  7919. hotcpu_notifier(update_runtime, 0);
  7920. init_hrtick();
  7921. /* Move init over to a non-isolated CPU */
  7922. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7923. BUG();
  7924. sched_init_granularity();
  7925. free_cpumask_var(non_isolated_cpus);
  7926. init_sched_rt_class();
  7927. }
  7928. #else
  7929. void __init sched_init_smp(void)
  7930. {
  7931. sched_init_granularity();
  7932. }
  7933. #endif /* CONFIG_SMP */
  7934. const_debug unsigned int sysctl_timer_migration = 1;
  7935. int in_sched_functions(unsigned long addr)
  7936. {
  7937. return in_lock_functions(addr) ||
  7938. (addr >= (unsigned long)__sched_text_start
  7939. && addr < (unsigned long)__sched_text_end);
  7940. }
  7941. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7942. {
  7943. cfs_rq->tasks_timeline = RB_ROOT;
  7944. INIT_LIST_HEAD(&cfs_rq->tasks);
  7945. #ifdef CONFIG_FAIR_GROUP_SCHED
  7946. cfs_rq->rq = rq;
  7947. #endif
  7948. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7949. }
  7950. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7951. {
  7952. struct rt_prio_array *array;
  7953. int i;
  7954. array = &rt_rq->active;
  7955. for (i = 0; i < MAX_RT_PRIO; i++) {
  7956. INIT_LIST_HEAD(array->queue + i);
  7957. __clear_bit(i, array->bitmap);
  7958. }
  7959. /* delimiter for bitsearch: */
  7960. __set_bit(MAX_RT_PRIO, array->bitmap);
  7961. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7962. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  7963. #ifdef CONFIG_SMP
  7964. rt_rq->highest_prio.next = MAX_RT_PRIO;
  7965. #endif
  7966. #endif
  7967. #ifdef CONFIG_SMP
  7968. rt_rq->rt_nr_migratory = 0;
  7969. rt_rq->overloaded = 0;
  7970. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  7971. #endif
  7972. rt_rq->rt_time = 0;
  7973. rt_rq->rt_throttled = 0;
  7974. rt_rq->rt_runtime = 0;
  7975. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  7976. #ifdef CONFIG_RT_GROUP_SCHED
  7977. rt_rq->rt_nr_boosted = 0;
  7978. rt_rq->rq = rq;
  7979. #endif
  7980. }
  7981. #ifdef CONFIG_FAIR_GROUP_SCHED
  7982. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  7983. struct sched_entity *se, int cpu, int add,
  7984. struct sched_entity *parent)
  7985. {
  7986. struct rq *rq = cpu_rq(cpu);
  7987. tg->cfs_rq[cpu] = cfs_rq;
  7988. init_cfs_rq(cfs_rq, rq);
  7989. cfs_rq->tg = tg;
  7990. if (add)
  7991. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  7992. tg->se[cpu] = se;
  7993. /* se could be NULL for init_task_group */
  7994. if (!se)
  7995. return;
  7996. if (!parent)
  7997. se->cfs_rq = &rq->cfs;
  7998. else
  7999. se->cfs_rq = parent->my_q;
  8000. se->my_q = cfs_rq;
  8001. se->load.weight = tg->shares;
  8002. se->load.inv_weight = 0;
  8003. se->parent = parent;
  8004. }
  8005. #endif
  8006. #ifdef CONFIG_RT_GROUP_SCHED
  8007. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  8008. struct sched_rt_entity *rt_se, int cpu, int add,
  8009. struct sched_rt_entity *parent)
  8010. {
  8011. struct rq *rq = cpu_rq(cpu);
  8012. tg->rt_rq[cpu] = rt_rq;
  8013. init_rt_rq(rt_rq, rq);
  8014. rt_rq->tg = tg;
  8015. rt_rq->rt_se = rt_se;
  8016. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  8017. if (add)
  8018. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  8019. tg->rt_se[cpu] = rt_se;
  8020. if (!rt_se)
  8021. return;
  8022. if (!parent)
  8023. rt_se->rt_rq = &rq->rt;
  8024. else
  8025. rt_se->rt_rq = parent->my_q;
  8026. rt_se->my_q = rt_rq;
  8027. rt_se->parent = parent;
  8028. INIT_LIST_HEAD(&rt_se->run_list);
  8029. }
  8030. #endif
  8031. void __init sched_init(void)
  8032. {
  8033. int i, j;
  8034. unsigned long alloc_size = 0, ptr;
  8035. #ifdef CONFIG_FAIR_GROUP_SCHED
  8036. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  8037. #endif
  8038. #ifdef CONFIG_RT_GROUP_SCHED
  8039. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  8040. #endif
  8041. #ifdef CONFIG_USER_SCHED
  8042. alloc_size *= 2;
  8043. #endif
  8044. #ifdef CONFIG_CPUMASK_OFFSTACK
  8045. alloc_size += num_possible_cpus() * cpumask_size();
  8046. #endif
  8047. if (alloc_size) {
  8048. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  8049. #ifdef CONFIG_FAIR_GROUP_SCHED
  8050. init_task_group.se = (struct sched_entity **)ptr;
  8051. ptr += nr_cpu_ids * sizeof(void **);
  8052. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  8053. ptr += nr_cpu_ids * sizeof(void **);
  8054. #ifdef CONFIG_USER_SCHED
  8055. root_task_group.se = (struct sched_entity **)ptr;
  8056. ptr += nr_cpu_ids * sizeof(void **);
  8057. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  8058. ptr += nr_cpu_ids * sizeof(void **);
  8059. #endif /* CONFIG_USER_SCHED */
  8060. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8061. #ifdef CONFIG_RT_GROUP_SCHED
  8062. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  8063. ptr += nr_cpu_ids * sizeof(void **);
  8064. init_task_group.rt_rq = (struct rt_rq **)ptr;
  8065. ptr += nr_cpu_ids * sizeof(void **);
  8066. #ifdef CONFIG_USER_SCHED
  8067. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  8068. ptr += nr_cpu_ids * sizeof(void **);
  8069. root_task_group.rt_rq = (struct rt_rq **)ptr;
  8070. ptr += nr_cpu_ids * sizeof(void **);
  8071. #endif /* CONFIG_USER_SCHED */
  8072. #endif /* CONFIG_RT_GROUP_SCHED */
  8073. #ifdef CONFIG_CPUMASK_OFFSTACK
  8074. for_each_possible_cpu(i) {
  8075. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  8076. ptr += cpumask_size();
  8077. }
  8078. #endif /* CONFIG_CPUMASK_OFFSTACK */
  8079. }
  8080. #ifdef CONFIG_SMP
  8081. init_defrootdomain();
  8082. #endif
  8083. init_rt_bandwidth(&def_rt_bandwidth,
  8084. global_rt_period(), global_rt_runtime());
  8085. #ifdef CONFIG_RT_GROUP_SCHED
  8086. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  8087. global_rt_period(), global_rt_runtime());
  8088. #ifdef CONFIG_USER_SCHED
  8089. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  8090. global_rt_period(), RUNTIME_INF);
  8091. #endif /* CONFIG_USER_SCHED */
  8092. #endif /* CONFIG_RT_GROUP_SCHED */
  8093. #ifdef CONFIG_GROUP_SCHED
  8094. list_add(&init_task_group.list, &task_groups);
  8095. INIT_LIST_HEAD(&init_task_group.children);
  8096. #ifdef CONFIG_USER_SCHED
  8097. INIT_LIST_HEAD(&root_task_group.children);
  8098. init_task_group.parent = &root_task_group;
  8099. list_add(&init_task_group.siblings, &root_task_group.children);
  8100. #endif /* CONFIG_USER_SCHED */
  8101. #endif /* CONFIG_GROUP_SCHED */
  8102. #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
  8103. update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
  8104. __alignof__(unsigned long));
  8105. #endif
  8106. for_each_possible_cpu(i) {
  8107. struct rq *rq;
  8108. rq = cpu_rq(i);
  8109. raw_spin_lock_init(&rq->lock);
  8110. rq->nr_running = 0;
  8111. rq->calc_load_active = 0;
  8112. rq->calc_load_update = jiffies + LOAD_FREQ;
  8113. init_cfs_rq(&rq->cfs, rq);
  8114. init_rt_rq(&rq->rt, rq);
  8115. #ifdef CONFIG_FAIR_GROUP_SCHED
  8116. init_task_group.shares = init_task_group_load;
  8117. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  8118. #ifdef CONFIG_CGROUP_SCHED
  8119. /*
  8120. * How much cpu bandwidth does init_task_group get?
  8121. *
  8122. * In case of task-groups formed thr' the cgroup filesystem, it
  8123. * gets 100% of the cpu resources in the system. This overall
  8124. * system cpu resource is divided among the tasks of
  8125. * init_task_group and its child task-groups in a fair manner,
  8126. * based on each entity's (task or task-group's) weight
  8127. * (se->load.weight).
  8128. *
  8129. * In other words, if init_task_group has 10 tasks of weight
  8130. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  8131. * then A0's share of the cpu resource is:
  8132. *
  8133. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  8134. *
  8135. * We achieve this by letting init_task_group's tasks sit
  8136. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  8137. */
  8138. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  8139. #elif defined CONFIG_USER_SCHED
  8140. root_task_group.shares = NICE_0_LOAD;
  8141. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  8142. /*
  8143. * In case of task-groups formed thr' the user id of tasks,
  8144. * init_task_group represents tasks belonging to root user.
  8145. * Hence it forms a sibling of all subsequent groups formed.
  8146. * In this case, init_task_group gets only a fraction of overall
  8147. * system cpu resource, based on the weight assigned to root
  8148. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  8149. * by letting tasks of init_task_group sit in a separate cfs_rq
  8150. * (init_tg_cfs_rq) and having one entity represent this group of
  8151. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  8152. */
  8153. init_tg_cfs_entry(&init_task_group,
  8154. &per_cpu(init_tg_cfs_rq, i),
  8155. &per_cpu(init_sched_entity, i), i, 1,
  8156. root_task_group.se[i]);
  8157. #endif
  8158. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8159. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  8160. #ifdef CONFIG_RT_GROUP_SCHED
  8161. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  8162. #ifdef CONFIG_CGROUP_SCHED
  8163. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  8164. #elif defined CONFIG_USER_SCHED
  8165. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  8166. init_tg_rt_entry(&init_task_group,
  8167. &per_cpu(init_rt_rq_var, i),
  8168. &per_cpu(init_sched_rt_entity, i), i, 1,
  8169. root_task_group.rt_se[i]);
  8170. #endif
  8171. #endif
  8172. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  8173. rq->cpu_load[j] = 0;
  8174. #ifdef CONFIG_SMP
  8175. rq->sd = NULL;
  8176. rq->rd = NULL;
  8177. rq->post_schedule = 0;
  8178. rq->active_balance = 0;
  8179. rq->next_balance = jiffies;
  8180. rq->push_cpu = 0;
  8181. rq->cpu = i;
  8182. rq->online = 0;
  8183. rq->migration_thread = NULL;
  8184. rq->idle_stamp = 0;
  8185. rq->avg_idle = 2*sysctl_sched_migration_cost;
  8186. INIT_LIST_HEAD(&rq->migration_queue);
  8187. rq_attach_root(rq, &def_root_domain);
  8188. #endif
  8189. init_rq_hrtick(rq);
  8190. atomic_set(&rq->nr_iowait, 0);
  8191. }
  8192. set_load_weight(&init_task);
  8193. #ifdef CONFIG_PREEMPT_NOTIFIERS
  8194. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  8195. #endif
  8196. #ifdef CONFIG_SMP
  8197. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  8198. #endif
  8199. #ifdef CONFIG_RT_MUTEXES
  8200. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  8201. #endif
  8202. /*
  8203. * The boot idle thread does lazy MMU switching as well:
  8204. */
  8205. atomic_inc(&init_mm.mm_count);
  8206. enter_lazy_tlb(&init_mm, current);
  8207. /*
  8208. * Make us the idle thread. Technically, schedule() should not be
  8209. * called from this thread, however somewhere below it might be,
  8210. * but because we are the idle thread, we just pick up running again
  8211. * when this runqueue becomes "idle".
  8212. */
  8213. init_idle(current, smp_processor_id());
  8214. calc_load_update = jiffies + LOAD_FREQ;
  8215. /*
  8216. * During early bootup we pretend to be a normal task:
  8217. */
  8218. current->sched_class = &fair_sched_class;
  8219. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  8220. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  8221. #ifdef CONFIG_SMP
  8222. #ifdef CONFIG_NO_HZ
  8223. zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  8224. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  8225. #endif
  8226. /* May be allocated at isolcpus cmdline parse time */
  8227. if (cpu_isolated_map == NULL)
  8228. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  8229. #endif /* SMP */
  8230. perf_event_init();
  8231. scheduler_running = 1;
  8232. }
  8233. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  8234. static inline int preempt_count_equals(int preempt_offset)
  8235. {
  8236. int nested = preempt_count() & ~PREEMPT_ACTIVE;
  8237. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  8238. }
  8239. void __might_sleep(char *file, int line, int preempt_offset)
  8240. {
  8241. #ifdef in_atomic
  8242. static unsigned long prev_jiffy; /* ratelimiting */
  8243. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  8244. system_state != SYSTEM_RUNNING || oops_in_progress)
  8245. return;
  8246. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  8247. return;
  8248. prev_jiffy = jiffies;
  8249. pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
  8250. file, line);
  8251. pr_err("in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  8252. in_atomic(), irqs_disabled(),
  8253. current->pid, current->comm);
  8254. debug_show_held_locks(current);
  8255. if (irqs_disabled())
  8256. print_irqtrace_events(current);
  8257. dump_stack();
  8258. #endif
  8259. }
  8260. EXPORT_SYMBOL(__might_sleep);
  8261. #endif
  8262. #ifdef CONFIG_MAGIC_SYSRQ
  8263. static void normalize_task(struct rq *rq, struct task_struct *p)
  8264. {
  8265. int on_rq;
  8266. update_rq_clock(rq);
  8267. on_rq = p->se.on_rq;
  8268. if (on_rq)
  8269. deactivate_task(rq, p, 0);
  8270. __setscheduler(rq, p, SCHED_NORMAL, 0);
  8271. if (on_rq) {
  8272. activate_task(rq, p, 0);
  8273. resched_task(rq->curr);
  8274. }
  8275. }
  8276. void normalize_rt_tasks(void)
  8277. {
  8278. struct task_struct *g, *p;
  8279. unsigned long flags;
  8280. struct rq *rq;
  8281. read_lock_irqsave(&tasklist_lock, flags);
  8282. do_each_thread(g, p) {
  8283. /*
  8284. * Only normalize user tasks:
  8285. */
  8286. if (!p->mm)
  8287. continue;
  8288. p->se.exec_start = 0;
  8289. #ifdef CONFIG_SCHEDSTATS
  8290. p->se.wait_start = 0;
  8291. p->se.sleep_start = 0;
  8292. p->se.block_start = 0;
  8293. #endif
  8294. if (!rt_task(p)) {
  8295. /*
  8296. * Renice negative nice level userspace
  8297. * tasks back to 0:
  8298. */
  8299. if (TASK_NICE(p) < 0 && p->mm)
  8300. set_user_nice(p, 0);
  8301. continue;
  8302. }
  8303. raw_spin_lock(&p->pi_lock);
  8304. rq = __task_rq_lock(p);
  8305. normalize_task(rq, p);
  8306. __task_rq_unlock(rq);
  8307. raw_spin_unlock(&p->pi_lock);
  8308. } while_each_thread(g, p);
  8309. read_unlock_irqrestore(&tasklist_lock, flags);
  8310. }
  8311. #endif /* CONFIG_MAGIC_SYSRQ */
  8312. #ifdef CONFIG_IA64
  8313. /*
  8314. * These functions are only useful for the IA64 MCA handling.
  8315. *
  8316. * They can only be called when the whole system has been
  8317. * stopped - every CPU needs to be quiescent, and no scheduling
  8318. * activity can take place. Using them for anything else would
  8319. * be a serious bug, and as a result, they aren't even visible
  8320. * under any other configuration.
  8321. */
  8322. /**
  8323. * curr_task - return the current task for a given cpu.
  8324. * @cpu: the processor in question.
  8325. *
  8326. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8327. */
  8328. struct task_struct *curr_task(int cpu)
  8329. {
  8330. return cpu_curr(cpu);
  8331. }
  8332. /**
  8333. * set_curr_task - set the current task for a given cpu.
  8334. * @cpu: the processor in question.
  8335. * @p: the task pointer to set.
  8336. *
  8337. * Description: This function must only be used when non-maskable interrupts
  8338. * are serviced on a separate stack. It allows the architecture to switch the
  8339. * notion of the current task on a cpu in a non-blocking manner. This function
  8340. * must be called with all CPU's synchronized, and interrupts disabled, the
  8341. * and caller must save the original value of the current task (see
  8342. * curr_task() above) and restore that value before reenabling interrupts and
  8343. * re-starting the system.
  8344. *
  8345. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8346. */
  8347. void set_curr_task(int cpu, struct task_struct *p)
  8348. {
  8349. cpu_curr(cpu) = p;
  8350. }
  8351. #endif
  8352. #ifdef CONFIG_FAIR_GROUP_SCHED
  8353. static void free_fair_sched_group(struct task_group *tg)
  8354. {
  8355. int i;
  8356. for_each_possible_cpu(i) {
  8357. if (tg->cfs_rq)
  8358. kfree(tg->cfs_rq[i]);
  8359. if (tg->se)
  8360. kfree(tg->se[i]);
  8361. }
  8362. kfree(tg->cfs_rq);
  8363. kfree(tg->se);
  8364. }
  8365. static
  8366. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8367. {
  8368. struct cfs_rq *cfs_rq;
  8369. struct sched_entity *se;
  8370. struct rq *rq;
  8371. int i;
  8372. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  8373. if (!tg->cfs_rq)
  8374. goto err;
  8375. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  8376. if (!tg->se)
  8377. goto err;
  8378. tg->shares = NICE_0_LOAD;
  8379. for_each_possible_cpu(i) {
  8380. rq = cpu_rq(i);
  8381. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  8382. GFP_KERNEL, cpu_to_node(i));
  8383. if (!cfs_rq)
  8384. goto err;
  8385. se = kzalloc_node(sizeof(struct sched_entity),
  8386. GFP_KERNEL, cpu_to_node(i));
  8387. if (!se)
  8388. goto err_free_rq;
  8389. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  8390. }
  8391. return 1;
  8392. err_free_rq:
  8393. kfree(cfs_rq);
  8394. err:
  8395. return 0;
  8396. }
  8397. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8398. {
  8399. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  8400. &cpu_rq(cpu)->leaf_cfs_rq_list);
  8401. }
  8402. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8403. {
  8404. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  8405. }
  8406. #else /* !CONFG_FAIR_GROUP_SCHED */
  8407. static inline void free_fair_sched_group(struct task_group *tg)
  8408. {
  8409. }
  8410. static inline
  8411. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8412. {
  8413. return 1;
  8414. }
  8415. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8416. {
  8417. }
  8418. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8419. {
  8420. }
  8421. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8422. #ifdef CONFIG_RT_GROUP_SCHED
  8423. static void free_rt_sched_group(struct task_group *tg)
  8424. {
  8425. int i;
  8426. destroy_rt_bandwidth(&tg->rt_bandwidth);
  8427. for_each_possible_cpu(i) {
  8428. if (tg->rt_rq)
  8429. kfree(tg->rt_rq[i]);
  8430. if (tg->rt_se)
  8431. kfree(tg->rt_se[i]);
  8432. }
  8433. kfree(tg->rt_rq);
  8434. kfree(tg->rt_se);
  8435. }
  8436. static
  8437. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8438. {
  8439. struct rt_rq *rt_rq;
  8440. struct sched_rt_entity *rt_se;
  8441. struct rq *rq;
  8442. int i;
  8443. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  8444. if (!tg->rt_rq)
  8445. goto err;
  8446. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  8447. if (!tg->rt_se)
  8448. goto err;
  8449. init_rt_bandwidth(&tg->rt_bandwidth,
  8450. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  8451. for_each_possible_cpu(i) {
  8452. rq = cpu_rq(i);
  8453. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  8454. GFP_KERNEL, cpu_to_node(i));
  8455. if (!rt_rq)
  8456. goto err;
  8457. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  8458. GFP_KERNEL, cpu_to_node(i));
  8459. if (!rt_se)
  8460. goto err_free_rq;
  8461. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  8462. }
  8463. return 1;
  8464. err_free_rq:
  8465. kfree(rt_rq);
  8466. err:
  8467. return 0;
  8468. }
  8469. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8470. {
  8471. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  8472. &cpu_rq(cpu)->leaf_rt_rq_list);
  8473. }
  8474. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8475. {
  8476. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  8477. }
  8478. #else /* !CONFIG_RT_GROUP_SCHED */
  8479. static inline void free_rt_sched_group(struct task_group *tg)
  8480. {
  8481. }
  8482. static inline
  8483. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8484. {
  8485. return 1;
  8486. }
  8487. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8488. {
  8489. }
  8490. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8491. {
  8492. }
  8493. #endif /* CONFIG_RT_GROUP_SCHED */
  8494. #ifdef CONFIG_GROUP_SCHED
  8495. static void free_sched_group(struct task_group *tg)
  8496. {
  8497. free_fair_sched_group(tg);
  8498. free_rt_sched_group(tg);
  8499. kfree(tg);
  8500. }
  8501. /* allocate runqueue etc for a new task group */
  8502. struct task_group *sched_create_group(struct task_group *parent)
  8503. {
  8504. struct task_group *tg;
  8505. unsigned long flags;
  8506. int i;
  8507. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  8508. if (!tg)
  8509. return ERR_PTR(-ENOMEM);
  8510. if (!alloc_fair_sched_group(tg, parent))
  8511. goto err;
  8512. if (!alloc_rt_sched_group(tg, parent))
  8513. goto err;
  8514. spin_lock_irqsave(&task_group_lock, flags);
  8515. for_each_possible_cpu(i) {
  8516. register_fair_sched_group(tg, i);
  8517. register_rt_sched_group(tg, i);
  8518. }
  8519. list_add_rcu(&tg->list, &task_groups);
  8520. WARN_ON(!parent); /* root should already exist */
  8521. tg->parent = parent;
  8522. INIT_LIST_HEAD(&tg->children);
  8523. list_add_rcu(&tg->siblings, &parent->children);
  8524. spin_unlock_irqrestore(&task_group_lock, flags);
  8525. return tg;
  8526. err:
  8527. free_sched_group(tg);
  8528. return ERR_PTR(-ENOMEM);
  8529. }
  8530. /* rcu callback to free various structures associated with a task group */
  8531. static void free_sched_group_rcu(struct rcu_head *rhp)
  8532. {
  8533. /* now it should be safe to free those cfs_rqs */
  8534. free_sched_group(container_of(rhp, struct task_group, rcu));
  8535. }
  8536. /* Destroy runqueue etc associated with a task group */
  8537. void sched_destroy_group(struct task_group *tg)
  8538. {
  8539. unsigned long flags;
  8540. int i;
  8541. spin_lock_irqsave(&task_group_lock, flags);
  8542. for_each_possible_cpu(i) {
  8543. unregister_fair_sched_group(tg, i);
  8544. unregister_rt_sched_group(tg, i);
  8545. }
  8546. list_del_rcu(&tg->list);
  8547. list_del_rcu(&tg->siblings);
  8548. spin_unlock_irqrestore(&task_group_lock, flags);
  8549. /* wait for possible concurrent references to cfs_rqs complete */
  8550. call_rcu(&tg->rcu, free_sched_group_rcu);
  8551. }
  8552. /* change task's runqueue when it moves between groups.
  8553. * The caller of this function should have put the task in its new group
  8554. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  8555. * reflect its new group.
  8556. */
  8557. void sched_move_task(struct task_struct *tsk)
  8558. {
  8559. int on_rq, running;
  8560. unsigned long flags;
  8561. struct rq *rq;
  8562. rq = task_rq_lock(tsk, &flags);
  8563. update_rq_clock(rq);
  8564. running = task_current(rq, tsk);
  8565. on_rq = tsk->se.on_rq;
  8566. if (on_rq)
  8567. dequeue_task(rq, tsk, 0);
  8568. if (unlikely(running))
  8569. tsk->sched_class->put_prev_task(rq, tsk);
  8570. set_task_rq(tsk, task_cpu(tsk));
  8571. #ifdef CONFIG_FAIR_GROUP_SCHED
  8572. if (tsk->sched_class->moved_group)
  8573. tsk->sched_class->moved_group(tsk);
  8574. #endif
  8575. if (unlikely(running))
  8576. tsk->sched_class->set_curr_task(rq);
  8577. if (on_rq)
  8578. enqueue_task(rq, tsk, 0);
  8579. task_rq_unlock(rq, &flags);
  8580. }
  8581. #endif /* CONFIG_GROUP_SCHED */
  8582. #ifdef CONFIG_FAIR_GROUP_SCHED
  8583. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8584. {
  8585. struct cfs_rq *cfs_rq = se->cfs_rq;
  8586. int on_rq;
  8587. on_rq = se->on_rq;
  8588. if (on_rq)
  8589. dequeue_entity(cfs_rq, se, 0);
  8590. se->load.weight = shares;
  8591. se->load.inv_weight = 0;
  8592. if (on_rq)
  8593. enqueue_entity(cfs_rq, se, 0);
  8594. }
  8595. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8596. {
  8597. struct cfs_rq *cfs_rq = se->cfs_rq;
  8598. struct rq *rq = cfs_rq->rq;
  8599. unsigned long flags;
  8600. raw_spin_lock_irqsave(&rq->lock, flags);
  8601. __set_se_shares(se, shares);
  8602. raw_spin_unlock_irqrestore(&rq->lock, flags);
  8603. }
  8604. static DEFINE_MUTEX(shares_mutex);
  8605. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8606. {
  8607. int i;
  8608. unsigned long flags;
  8609. /*
  8610. * We can't change the weight of the root cgroup.
  8611. */
  8612. if (!tg->se[0])
  8613. return -EINVAL;
  8614. if (shares < MIN_SHARES)
  8615. shares = MIN_SHARES;
  8616. else if (shares > MAX_SHARES)
  8617. shares = MAX_SHARES;
  8618. mutex_lock(&shares_mutex);
  8619. if (tg->shares == shares)
  8620. goto done;
  8621. spin_lock_irqsave(&task_group_lock, flags);
  8622. for_each_possible_cpu(i)
  8623. unregister_fair_sched_group(tg, i);
  8624. list_del_rcu(&tg->siblings);
  8625. spin_unlock_irqrestore(&task_group_lock, flags);
  8626. /* wait for any ongoing reference to this group to finish */
  8627. synchronize_sched();
  8628. /*
  8629. * Now we are free to modify the group's share on each cpu
  8630. * w/o tripping rebalance_share or load_balance_fair.
  8631. */
  8632. tg->shares = shares;
  8633. for_each_possible_cpu(i) {
  8634. /*
  8635. * force a rebalance
  8636. */
  8637. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8638. set_se_shares(tg->se[i], shares);
  8639. }
  8640. /*
  8641. * Enable load balance activity on this group, by inserting it back on
  8642. * each cpu's rq->leaf_cfs_rq_list.
  8643. */
  8644. spin_lock_irqsave(&task_group_lock, flags);
  8645. for_each_possible_cpu(i)
  8646. register_fair_sched_group(tg, i);
  8647. list_add_rcu(&tg->siblings, &tg->parent->children);
  8648. spin_unlock_irqrestore(&task_group_lock, flags);
  8649. done:
  8650. mutex_unlock(&shares_mutex);
  8651. return 0;
  8652. }
  8653. unsigned long sched_group_shares(struct task_group *tg)
  8654. {
  8655. return tg->shares;
  8656. }
  8657. #endif
  8658. #ifdef CONFIG_RT_GROUP_SCHED
  8659. /*
  8660. * Ensure that the real time constraints are schedulable.
  8661. */
  8662. static DEFINE_MUTEX(rt_constraints_mutex);
  8663. static unsigned long to_ratio(u64 period, u64 runtime)
  8664. {
  8665. if (runtime == RUNTIME_INF)
  8666. return 1ULL << 20;
  8667. return div64_u64(runtime << 20, period);
  8668. }
  8669. /* Must be called with tasklist_lock held */
  8670. static inline int tg_has_rt_tasks(struct task_group *tg)
  8671. {
  8672. struct task_struct *g, *p;
  8673. do_each_thread(g, p) {
  8674. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8675. return 1;
  8676. } while_each_thread(g, p);
  8677. return 0;
  8678. }
  8679. struct rt_schedulable_data {
  8680. struct task_group *tg;
  8681. u64 rt_period;
  8682. u64 rt_runtime;
  8683. };
  8684. static int tg_schedulable(struct task_group *tg, void *data)
  8685. {
  8686. struct rt_schedulable_data *d = data;
  8687. struct task_group *child;
  8688. unsigned long total, sum = 0;
  8689. u64 period, runtime;
  8690. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8691. runtime = tg->rt_bandwidth.rt_runtime;
  8692. if (tg == d->tg) {
  8693. period = d->rt_period;
  8694. runtime = d->rt_runtime;
  8695. }
  8696. #ifdef CONFIG_USER_SCHED
  8697. if (tg == &root_task_group) {
  8698. period = global_rt_period();
  8699. runtime = global_rt_runtime();
  8700. }
  8701. #endif
  8702. /*
  8703. * Cannot have more runtime than the period.
  8704. */
  8705. if (runtime > period && runtime != RUNTIME_INF)
  8706. return -EINVAL;
  8707. /*
  8708. * Ensure we don't starve existing RT tasks.
  8709. */
  8710. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8711. return -EBUSY;
  8712. total = to_ratio(period, runtime);
  8713. /*
  8714. * Nobody can have more than the global setting allows.
  8715. */
  8716. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8717. return -EINVAL;
  8718. /*
  8719. * The sum of our children's runtime should not exceed our own.
  8720. */
  8721. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8722. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8723. runtime = child->rt_bandwidth.rt_runtime;
  8724. if (child == d->tg) {
  8725. period = d->rt_period;
  8726. runtime = d->rt_runtime;
  8727. }
  8728. sum += to_ratio(period, runtime);
  8729. }
  8730. if (sum > total)
  8731. return -EINVAL;
  8732. return 0;
  8733. }
  8734. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8735. {
  8736. struct rt_schedulable_data data = {
  8737. .tg = tg,
  8738. .rt_period = period,
  8739. .rt_runtime = runtime,
  8740. };
  8741. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8742. }
  8743. static int tg_set_bandwidth(struct task_group *tg,
  8744. u64 rt_period, u64 rt_runtime)
  8745. {
  8746. int i, err = 0;
  8747. mutex_lock(&rt_constraints_mutex);
  8748. read_lock(&tasklist_lock);
  8749. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8750. if (err)
  8751. goto unlock;
  8752. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8753. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8754. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8755. for_each_possible_cpu(i) {
  8756. struct rt_rq *rt_rq = tg->rt_rq[i];
  8757. raw_spin_lock(&rt_rq->rt_runtime_lock);
  8758. rt_rq->rt_runtime = rt_runtime;
  8759. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  8760. }
  8761. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8762. unlock:
  8763. read_unlock(&tasklist_lock);
  8764. mutex_unlock(&rt_constraints_mutex);
  8765. return err;
  8766. }
  8767. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8768. {
  8769. u64 rt_runtime, rt_period;
  8770. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8771. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8772. if (rt_runtime_us < 0)
  8773. rt_runtime = RUNTIME_INF;
  8774. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8775. }
  8776. long sched_group_rt_runtime(struct task_group *tg)
  8777. {
  8778. u64 rt_runtime_us;
  8779. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8780. return -1;
  8781. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8782. do_div(rt_runtime_us, NSEC_PER_USEC);
  8783. return rt_runtime_us;
  8784. }
  8785. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8786. {
  8787. u64 rt_runtime, rt_period;
  8788. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8789. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8790. if (rt_period == 0)
  8791. return -EINVAL;
  8792. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8793. }
  8794. long sched_group_rt_period(struct task_group *tg)
  8795. {
  8796. u64 rt_period_us;
  8797. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8798. do_div(rt_period_us, NSEC_PER_USEC);
  8799. return rt_period_us;
  8800. }
  8801. static int sched_rt_global_constraints(void)
  8802. {
  8803. u64 runtime, period;
  8804. int ret = 0;
  8805. if (sysctl_sched_rt_period <= 0)
  8806. return -EINVAL;
  8807. runtime = global_rt_runtime();
  8808. period = global_rt_period();
  8809. /*
  8810. * Sanity check on the sysctl variables.
  8811. */
  8812. if (runtime > period && runtime != RUNTIME_INF)
  8813. return -EINVAL;
  8814. mutex_lock(&rt_constraints_mutex);
  8815. read_lock(&tasklist_lock);
  8816. ret = __rt_schedulable(NULL, 0, 0);
  8817. read_unlock(&tasklist_lock);
  8818. mutex_unlock(&rt_constraints_mutex);
  8819. return ret;
  8820. }
  8821. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8822. {
  8823. /* Don't accept realtime tasks when there is no way for them to run */
  8824. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8825. return 0;
  8826. return 1;
  8827. }
  8828. #else /* !CONFIG_RT_GROUP_SCHED */
  8829. static int sched_rt_global_constraints(void)
  8830. {
  8831. unsigned long flags;
  8832. int i;
  8833. if (sysctl_sched_rt_period <= 0)
  8834. return -EINVAL;
  8835. /*
  8836. * There's always some RT tasks in the root group
  8837. * -- migration, kstopmachine etc..
  8838. */
  8839. if (sysctl_sched_rt_runtime == 0)
  8840. return -EBUSY;
  8841. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8842. for_each_possible_cpu(i) {
  8843. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8844. raw_spin_lock(&rt_rq->rt_runtime_lock);
  8845. rt_rq->rt_runtime = global_rt_runtime();
  8846. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  8847. }
  8848. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8849. return 0;
  8850. }
  8851. #endif /* CONFIG_RT_GROUP_SCHED */
  8852. int sched_rt_handler(struct ctl_table *table, int write,
  8853. void __user *buffer, size_t *lenp,
  8854. loff_t *ppos)
  8855. {
  8856. int ret;
  8857. int old_period, old_runtime;
  8858. static DEFINE_MUTEX(mutex);
  8859. mutex_lock(&mutex);
  8860. old_period = sysctl_sched_rt_period;
  8861. old_runtime = sysctl_sched_rt_runtime;
  8862. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  8863. if (!ret && write) {
  8864. ret = sched_rt_global_constraints();
  8865. if (ret) {
  8866. sysctl_sched_rt_period = old_period;
  8867. sysctl_sched_rt_runtime = old_runtime;
  8868. } else {
  8869. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8870. def_rt_bandwidth.rt_period =
  8871. ns_to_ktime(global_rt_period());
  8872. }
  8873. }
  8874. mutex_unlock(&mutex);
  8875. return ret;
  8876. }
  8877. #ifdef CONFIG_CGROUP_SCHED
  8878. /* return corresponding task_group object of a cgroup */
  8879. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8880. {
  8881. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8882. struct task_group, css);
  8883. }
  8884. static struct cgroup_subsys_state *
  8885. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8886. {
  8887. struct task_group *tg, *parent;
  8888. if (!cgrp->parent) {
  8889. /* This is early initialization for the top cgroup */
  8890. return &init_task_group.css;
  8891. }
  8892. parent = cgroup_tg(cgrp->parent);
  8893. tg = sched_create_group(parent);
  8894. if (IS_ERR(tg))
  8895. return ERR_PTR(-ENOMEM);
  8896. return &tg->css;
  8897. }
  8898. static void
  8899. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8900. {
  8901. struct task_group *tg = cgroup_tg(cgrp);
  8902. sched_destroy_group(tg);
  8903. }
  8904. static int
  8905. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  8906. {
  8907. #ifdef CONFIG_RT_GROUP_SCHED
  8908. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8909. return -EINVAL;
  8910. #else
  8911. /* We don't support RT-tasks being in separate groups */
  8912. if (tsk->sched_class != &fair_sched_class)
  8913. return -EINVAL;
  8914. #endif
  8915. return 0;
  8916. }
  8917. static int
  8918. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8919. struct task_struct *tsk, bool threadgroup)
  8920. {
  8921. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  8922. if (retval)
  8923. return retval;
  8924. if (threadgroup) {
  8925. struct task_struct *c;
  8926. rcu_read_lock();
  8927. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  8928. retval = cpu_cgroup_can_attach_task(cgrp, c);
  8929. if (retval) {
  8930. rcu_read_unlock();
  8931. return retval;
  8932. }
  8933. }
  8934. rcu_read_unlock();
  8935. }
  8936. return 0;
  8937. }
  8938. static void
  8939. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8940. struct cgroup *old_cont, struct task_struct *tsk,
  8941. bool threadgroup)
  8942. {
  8943. sched_move_task(tsk);
  8944. if (threadgroup) {
  8945. struct task_struct *c;
  8946. rcu_read_lock();
  8947. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  8948. sched_move_task(c);
  8949. }
  8950. rcu_read_unlock();
  8951. }
  8952. }
  8953. #ifdef CONFIG_FAIR_GROUP_SCHED
  8954. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8955. u64 shareval)
  8956. {
  8957. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  8958. }
  8959. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  8960. {
  8961. struct task_group *tg = cgroup_tg(cgrp);
  8962. return (u64) tg->shares;
  8963. }
  8964. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8965. #ifdef CONFIG_RT_GROUP_SCHED
  8966. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  8967. s64 val)
  8968. {
  8969. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8970. }
  8971. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  8972. {
  8973. return sched_group_rt_runtime(cgroup_tg(cgrp));
  8974. }
  8975. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  8976. u64 rt_period_us)
  8977. {
  8978. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  8979. }
  8980. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  8981. {
  8982. return sched_group_rt_period(cgroup_tg(cgrp));
  8983. }
  8984. #endif /* CONFIG_RT_GROUP_SCHED */
  8985. static struct cftype cpu_files[] = {
  8986. #ifdef CONFIG_FAIR_GROUP_SCHED
  8987. {
  8988. .name = "shares",
  8989. .read_u64 = cpu_shares_read_u64,
  8990. .write_u64 = cpu_shares_write_u64,
  8991. },
  8992. #endif
  8993. #ifdef CONFIG_RT_GROUP_SCHED
  8994. {
  8995. .name = "rt_runtime_us",
  8996. .read_s64 = cpu_rt_runtime_read,
  8997. .write_s64 = cpu_rt_runtime_write,
  8998. },
  8999. {
  9000. .name = "rt_period_us",
  9001. .read_u64 = cpu_rt_period_read_uint,
  9002. .write_u64 = cpu_rt_period_write_uint,
  9003. },
  9004. #endif
  9005. };
  9006. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  9007. {
  9008. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  9009. }
  9010. struct cgroup_subsys cpu_cgroup_subsys = {
  9011. .name = "cpu",
  9012. .create = cpu_cgroup_create,
  9013. .destroy = cpu_cgroup_destroy,
  9014. .can_attach = cpu_cgroup_can_attach,
  9015. .attach = cpu_cgroup_attach,
  9016. .populate = cpu_cgroup_populate,
  9017. .subsys_id = cpu_cgroup_subsys_id,
  9018. .early_init = 1,
  9019. };
  9020. #endif /* CONFIG_CGROUP_SCHED */
  9021. #ifdef CONFIG_CGROUP_CPUACCT
  9022. /*
  9023. * CPU accounting code for task groups.
  9024. *
  9025. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  9026. * (balbir@in.ibm.com).
  9027. */
  9028. /* track cpu usage of a group of tasks and its child groups */
  9029. struct cpuacct {
  9030. struct cgroup_subsys_state css;
  9031. /* cpuusage holds pointer to a u64-type object on every cpu */
  9032. u64 *cpuusage;
  9033. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  9034. struct cpuacct *parent;
  9035. };
  9036. struct cgroup_subsys cpuacct_subsys;
  9037. /* return cpu accounting group corresponding to this container */
  9038. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  9039. {
  9040. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  9041. struct cpuacct, css);
  9042. }
  9043. /* return cpu accounting group to which this task belongs */
  9044. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  9045. {
  9046. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  9047. struct cpuacct, css);
  9048. }
  9049. /* create a new cpu accounting group */
  9050. static struct cgroup_subsys_state *cpuacct_create(
  9051. struct cgroup_subsys *ss, struct cgroup *cgrp)
  9052. {
  9053. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  9054. int i;
  9055. if (!ca)
  9056. goto out;
  9057. ca->cpuusage = alloc_percpu(u64);
  9058. if (!ca->cpuusage)
  9059. goto out_free_ca;
  9060. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  9061. if (percpu_counter_init(&ca->cpustat[i], 0))
  9062. goto out_free_counters;
  9063. if (cgrp->parent)
  9064. ca->parent = cgroup_ca(cgrp->parent);
  9065. return &ca->css;
  9066. out_free_counters:
  9067. while (--i >= 0)
  9068. percpu_counter_destroy(&ca->cpustat[i]);
  9069. free_percpu(ca->cpuusage);
  9070. out_free_ca:
  9071. kfree(ca);
  9072. out:
  9073. return ERR_PTR(-ENOMEM);
  9074. }
  9075. /* destroy an existing cpu accounting group */
  9076. static void
  9077. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  9078. {
  9079. struct cpuacct *ca = cgroup_ca(cgrp);
  9080. int i;
  9081. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  9082. percpu_counter_destroy(&ca->cpustat[i]);
  9083. free_percpu(ca->cpuusage);
  9084. kfree(ca);
  9085. }
  9086. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  9087. {
  9088. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9089. u64 data;
  9090. #ifndef CONFIG_64BIT
  9091. /*
  9092. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  9093. */
  9094. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  9095. data = *cpuusage;
  9096. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  9097. #else
  9098. data = *cpuusage;
  9099. #endif
  9100. return data;
  9101. }
  9102. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  9103. {
  9104. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9105. #ifndef CONFIG_64BIT
  9106. /*
  9107. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  9108. */
  9109. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  9110. *cpuusage = val;
  9111. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  9112. #else
  9113. *cpuusage = val;
  9114. #endif
  9115. }
  9116. /* return total cpu usage (in nanoseconds) of a group */
  9117. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  9118. {
  9119. struct cpuacct *ca = cgroup_ca(cgrp);
  9120. u64 totalcpuusage = 0;
  9121. int i;
  9122. for_each_present_cpu(i)
  9123. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  9124. return totalcpuusage;
  9125. }
  9126. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  9127. u64 reset)
  9128. {
  9129. struct cpuacct *ca = cgroup_ca(cgrp);
  9130. int err = 0;
  9131. int i;
  9132. if (reset) {
  9133. err = -EINVAL;
  9134. goto out;
  9135. }
  9136. for_each_present_cpu(i)
  9137. cpuacct_cpuusage_write(ca, i, 0);
  9138. out:
  9139. return err;
  9140. }
  9141. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  9142. struct seq_file *m)
  9143. {
  9144. struct cpuacct *ca = cgroup_ca(cgroup);
  9145. u64 percpu;
  9146. int i;
  9147. for_each_present_cpu(i) {
  9148. percpu = cpuacct_cpuusage_read(ca, i);
  9149. seq_printf(m, "%llu ", (unsigned long long) percpu);
  9150. }
  9151. seq_printf(m, "\n");
  9152. return 0;
  9153. }
  9154. static const char *cpuacct_stat_desc[] = {
  9155. [CPUACCT_STAT_USER] = "user",
  9156. [CPUACCT_STAT_SYSTEM] = "system",
  9157. };
  9158. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  9159. struct cgroup_map_cb *cb)
  9160. {
  9161. struct cpuacct *ca = cgroup_ca(cgrp);
  9162. int i;
  9163. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  9164. s64 val = percpu_counter_read(&ca->cpustat[i]);
  9165. val = cputime64_to_clock_t(val);
  9166. cb->fill(cb, cpuacct_stat_desc[i], val);
  9167. }
  9168. return 0;
  9169. }
  9170. static struct cftype files[] = {
  9171. {
  9172. .name = "usage",
  9173. .read_u64 = cpuusage_read,
  9174. .write_u64 = cpuusage_write,
  9175. },
  9176. {
  9177. .name = "usage_percpu",
  9178. .read_seq_string = cpuacct_percpu_seq_read,
  9179. },
  9180. {
  9181. .name = "stat",
  9182. .read_map = cpuacct_stats_show,
  9183. },
  9184. };
  9185. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  9186. {
  9187. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  9188. }
  9189. /*
  9190. * charge this task's execution time to its accounting group.
  9191. *
  9192. * called with rq->lock held.
  9193. */
  9194. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  9195. {
  9196. struct cpuacct *ca;
  9197. int cpu;
  9198. if (unlikely(!cpuacct_subsys.active))
  9199. return;
  9200. cpu = task_cpu(tsk);
  9201. rcu_read_lock();
  9202. ca = task_ca(tsk);
  9203. for (; ca; ca = ca->parent) {
  9204. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9205. *cpuusage += cputime;
  9206. }
  9207. rcu_read_unlock();
  9208. }
  9209. /*
  9210. * Charge the system/user time to the task's accounting group.
  9211. */
  9212. static void cpuacct_update_stats(struct task_struct *tsk,
  9213. enum cpuacct_stat_index idx, cputime_t val)
  9214. {
  9215. struct cpuacct *ca;
  9216. if (unlikely(!cpuacct_subsys.active))
  9217. return;
  9218. rcu_read_lock();
  9219. ca = task_ca(tsk);
  9220. do {
  9221. percpu_counter_add(&ca->cpustat[idx], val);
  9222. ca = ca->parent;
  9223. } while (ca);
  9224. rcu_read_unlock();
  9225. }
  9226. struct cgroup_subsys cpuacct_subsys = {
  9227. .name = "cpuacct",
  9228. .create = cpuacct_create,
  9229. .destroy = cpuacct_destroy,
  9230. .populate = cpuacct_populate,
  9231. .subsys_id = cpuacct_subsys_id,
  9232. };
  9233. #endif /* CONFIG_CGROUP_CPUACCT */
  9234. #ifndef CONFIG_SMP
  9235. int rcu_expedited_torture_stats(char *page)
  9236. {
  9237. return 0;
  9238. }
  9239. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  9240. void synchronize_sched_expedited(void)
  9241. {
  9242. }
  9243. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  9244. #else /* #ifndef CONFIG_SMP */
  9245. static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
  9246. static DEFINE_MUTEX(rcu_sched_expedited_mutex);
  9247. #define RCU_EXPEDITED_STATE_POST -2
  9248. #define RCU_EXPEDITED_STATE_IDLE -1
  9249. static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  9250. int rcu_expedited_torture_stats(char *page)
  9251. {
  9252. int cnt = 0;
  9253. int cpu;
  9254. cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
  9255. for_each_online_cpu(cpu) {
  9256. cnt += sprintf(&page[cnt], " %d:%d",
  9257. cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
  9258. }
  9259. cnt += sprintf(&page[cnt], "\n");
  9260. return cnt;
  9261. }
  9262. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  9263. static long synchronize_sched_expedited_count;
  9264. /*
  9265. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  9266. * approach to force grace period to end quickly. This consumes
  9267. * significant time on all CPUs, and is thus not recommended for
  9268. * any sort of common-case code.
  9269. *
  9270. * Note that it is illegal to call this function while holding any
  9271. * lock that is acquired by a CPU-hotplug notifier. Failing to
  9272. * observe this restriction will result in deadlock.
  9273. */
  9274. void synchronize_sched_expedited(void)
  9275. {
  9276. int cpu;
  9277. unsigned long flags;
  9278. bool need_full_sync = 0;
  9279. struct rq *rq;
  9280. struct migration_req *req;
  9281. long snap;
  9282. int trycount = 0;
  9283. smp_mb(); /* ensure prior mod happens before capturing snap. */
  9284. snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
  9285. get_online_cpus();
  9286. while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
  9287. put_online_cpus();
  9288. if (trycount++ < 10)
  9289. udelay(trycount * num_online_cpus());
  9290. else {
  9291. synchronize_sched();
  9292. return;
  9293. }
  9294. if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
  9295. smp_mb(); /* ensure test happens before caller kfree */
  9296. return;
  9297. }
  9298. get_online_cpus();
  9299. }
  9300. rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
  9301. for_each_online_cpu(cpu) {
  9302. rq = cpu_rq(cpu);
  9303. req = &per_cpu(rcu_migration_req, cpu);
  9304. init_completion(&req->done);
  9305. req->task = NULL;
  9306. req->dest_cpu = RCU_MIGRATION_NEED_QS;
  9307. raw_spin_lock_irqsave(&rq->lock, flags);
  9308. list_add(&req->list, &rq->migration_queue);
  9309. raw_spin_unlock_irqrestore(&rq->lock, flags);
  9310. wake_up_process(rq->migration_thread);
  9311. }
  9312. for_each_online_cpu(cpu) {
  9313. rcu_expedited_state = cpu;
  9314. req = &per_cpu(rcu_migration_req, cpu);
  9315. rq = cpu_rq(cpu);
  9316. wait_for_completion(&req->done);
  9317. raw_spin_lock_irqsave(&rq->lock, flags);
  9318. if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
  9319. need_full_sync = 1;
  9320. req->dest_cpu = RCU_MIGRATION_IDLE;
  9321. raw_spin_unlock_irqrestore(&rq->lock, flags);
  9322. }
  9323. rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  9324. synchronize_sched_expedited_count++;
  9325. mutex_unlock(&rcu_sched_expedited_mutex);
  9326. put_online_cpus();
  9327. if (need_full_sync)
  9328. synchronize_sched();
  9329. }
  9330. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  9331. #endif /* #else #ifndef CONFIG_SMP */