dsi.c 138 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595
  1. /*
  2. * linux/drivers/video/omap2/dss/dsi.c
  3. *
  4. * Copyright (C) 2009 Nokia Corporation
  5. * Author: Tomi Valkeinen <tomi.valkeinen@nokia.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License version 2 as published by
  9. * the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope that it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. *
  16. * You should have received a copy of the GNU General Public License along with
  17. * this program. If not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #define DSS_SUBSYS_NAME "DSI"
  20. #include <linux/kernel.h>
  21. #include <linux/io.h>
  22. #include <linux/clk.h>
  23. #include <linux/device.h>
  24. #include <linux/err.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/delay.h>
  27. #include <linux/mutex.h>
  28. #include <linux/module.h>
  29. #include <linux/semaphore.h>
  30. #include <linux/seq_file.h>
  31. #include <linux/platform_device.h>
  32. #include <linux/regulator/consumer.h>
  33. #include <linux/wait.h>
  34. #include <linux/workqueue.h>
  35. #include <linux/sched.h>
  36. #include <linux/slab.h>
  37. #include <linux/debugfs.h>
  38. #include <linux/pm_runtime.h>
  39. #include <linux/of.h>
  40. #include <linux/of_platform.h>
  41. #include <linux/component.h>
  42. #include <video/omapdss.h>
  43. #include <video/mipi_display.h>
  44. #include "dss.h"
  45. #include "dss_features.h"
  46. #define DSI_CATCH_MISSING_TE
  47. struct dsi_reg { u16 module; u16 idx; };
  48. #define DSI_REG(mod, idx) ((const struct dsi_reg) { mod, idx })
  49. /* DSI Protocol Engine */
  50. #define DSI_PROTO 0
  51. #define DSI_PROTO_SZ 0x200
  52. #define DSI_REVISION DSI_REG(DSI_PROTO, 0x0000)
  53. #define DSI_SYSCONFIG DSI_REG(DSI_PROTO, 0x0010)
  54. #define DSI_SYSSTATUS DSI_REG(DSI_PROTO, 0x0014)
  55. #define DSI_IRQSTATUS DSI_REG(DSI_PROTO, 0x0018)
  56. #define DSI_IRQENABLE DSI_REG(DSI_PROTO, 0x001C)
  57. #define DSI_CTRL DSI_REG(DSI_PROTO, 0x0040)
  58. #define DSI_GNQ DSI_REG(DSI_PROTO, 0x0044)
  59. #define DSI_COMPLEXIO_CFG1 DSI_REG(DSI_PROTO, 0x0048)
  60. #define DSI_COMPLEXIO_IRQ_STATUS DSI_REG(DSI_PROTO, 0x004C)
  61. #define DSI_COMPLEXIO_IRQ_ENABLE DSI_REG(DSI_PROTO, 0x0050)
  62. #define DSI_CLK_CTRL DSI_REG(DSI_PROTO, 0x0054)
  63. #define DSI_TIMING1 DSI_REG(DSI_PROTO, 0x0058)
  64. #define DSI_TIMING2 DSI_REG(DSI_PROTO, 0x005C)
  65. #define DSI_VM_TIMING1 DSI_REG(DSI_PROTO, 0x0060)
  66. #define DSI_VM_TIMING2 DSI_REG(DSI_PROTO, 0x0064)
  67. #define DSI_VM_TIMING3 DSI_REG(DSI_PROTO, 0x0068)
  68. #define DSI_CLK_TIMING DSI_REG(DSI_PROTO, 0x006C)
  69. #define DSI_TX_FIFO_VC_SIZE DSI_REG(DSI_PROTO, 0x0070)
  70. #define DSI_RX_FIFO_VC_SIZE DSI_REG(DSI_PROTO, 0x0074)
  71. #define DSI_COMPLEXIO_CFG2 DSI_REG(DSI_PROTO, 0x0078)
  72. #define DSI_RX_FIFO_VC_FULLNESS DSI_REG(DSI_PROTO, 0x007C)
  73. #define DSI_VM_TIMING4 DSI_REG(DSI_PROTO, 0x0080)
  74. #define DSI_TX_FIFO_VC_EMPTINESS DSI_REG(DSI_PROTO, 0x0084)
  75. #define DSI_VM_TIMING5 DSI_REG(DSI_PROTO, 0x0088)
  76. #define DSI_VM_TIMING6 DSI_REG(DSI_PROTO, 0x008C)
  77. #define DSI_VM_TIMING7 DSI_REG(DSI_PROTO, 0x0090)
  78. #define DSI_STOPCLK_TIMING DSI_REG(DSI_PROTO, 0x0094)
  79. #define DSI_VC_CTRL(n) DSI_REG(DSI_PROTO, 0x0100 + (n * 0x20))
  80. #define DSI_VC_TE(n) DSI_REG(DSI_PROTO, 0x0104 + (n * 0x20))
  81. #define DSI_VC_LONG_PACKET_HEADER(n) DSI_REG(DSI_PROTO, 0x0108 + (n * 0x20))
  82. #define DSI_VC_LONG_PACKET_PAYLOAD(n) DSI_REG(DSI_PROTO, 0x010C + (n * 0x20))
  83. #define DSI_VC_SHORT_PACKET_HEADER(n) DSI_REG(DSI_PROTO, 0x0110 + (n * 0x20))
  84. #define DSI_VC_IRQSTATUS(n) DSI_REG(DSI_PROTO, 0x0118 + (n * 0x20))
  85. #define DSI_VC_IRQENABLE(n) DSI_REG(DSI_PROTO, 0x011C + (n * 0x20))
  86. /* DSIPHY_SCP */
  87. #define DSI_PHY 1
  88. #define DSI_PHY_OFFSET 0x200
  89. #define DSI_PHY_SZ 0x40
  90. #define DSI_DSIPHY_CFG0 DSI_REG(DSI_PHY, 0x0000)
  91. #define DSI_DSIPHY_CFG1 DSI_REG(DSI_PHY, 0x0004)
  92. #define DSI_DSIPHY_CFG2 DSI_REG(DSI_PHY, 0x0008)
  93. #define DSI_DSIPHY_CFG5 DSI_REG(DSI_PHY, 0x0014)
  94. #define DSI_DSIPHY_CFG10 DSI_REG(DSI_PHY, 0x0028)
  95. /* DSI_PLL_CTRL_SCP */
  96. #define DSI_PLL 2
  97. #define DSI_PLL_OFFSET 0x300
  98. #define DSI_PLL_SZ 0x20
  99. #define DSI_PLL_CONTROL DSI_REG(DSI_PLL, 0x0000)
  100. #define DSI_PLL_STATUS DSI_REG(DSI_PLL, 0x0004)
  101. #define DSI_PLL_GO DSI_REG(DSI_PLL, 0x0008)
  102. #define DSI_PLL_CONFIGURATION1 DSI_REG(DSI_PLL, 0x000C)
  103. #define DSI_PLL_CONFIGURATION2 DSI_REG(DSI_PLL, 0x0010)
  104. #define REG_GET(dsidev, idx, start, end) \
  105. FLD_GET(dsi_read_reg(dsidev, idx), start, end)
  106. #define REG_FLD_MOD(dsidev, idx, val, start, end) \
  107. dsi_write_reg(dsidev, idx, FLD_MOD(dsi_read_reg(dsidev, idx), val, start, end))
  108. /* Global interrupts */
  109. #define DSI_IRQ_VC0 (1 << 0)
  110. #define DSI_IRQ_VC1 (1 << 1)
  111. #define DSI_IRQ_VC2 (1 << 2)
  112. #define DSI_IRQ_VC3 (1 << 3)
  113. #define DSI_IRQ_WAKEUP (1 << 4)
  114. #define DSI_IRQ_RESYNC (1 << 5)
  115. #define DSI_IRQ_PLL_LOCK (1 << 7)
  116. #define DSI_IRQ_PLL_UNLOCK (1 << 8)
  117. #define DSI_IRQ_PLL_RECALL (1 << 9)
  118. #define DSI_IRQ_COMPLEXIO_ERR (1 << 10)
  119. #define DSI_IRQ_HS_TX_TIMEOUT (1 << 14)
  120. #define DSI_IRQ_LP_RX_TIMEOUT (1 << 15)
  121. #define DSI_IRQ_TE_TRIGGER (1 << 16)
  122. #define DSI_IRQ_ACK_TRIGGER (1 << 17)
  123. #define DSI_IRQ_SYNC_LOST (1 << 18)
  124. #define DSI_IRQ_LDO_POWER_GOOD (1 << 19)
  125. #define DSI_IRQ_TA_TIMEOUT (1 << 20)
  126. #define DSI_IRQ_ERROR_MASK \
  127. (DSI_IRQ_HS_TX_TIMEOUT | DSI_IRQ_LP_RX_TIMEOUT | DSI_IRQ_SYNC_LOST | \
  128. DSI_IRQ_TA_TIMEOUT)
  129. #define DSI_IRQ_CHANNEL_MASK 0xf
  130. /* Virtual channel interrupts */
  131. #define DSI_VC_IRQ_CS (1 << 0)
  132. #define DSI_VC_IRQ_ECC_CORR (1 << 1)
  133. #define DSI_VC_IRQ_PACKET_SENT (1 << 2)
  134. #define DSI_VC_IRQ_FIFO_TX_OVF (1 << 3)
  135. #define DSI_VC_IRQ_FIFO_RX_OVF (1 << 4)
  136. #define DSI_VC_IRQ_BTA (1 << 5)
  137. #define DSI_VC_IRQ_ECC_NO_CORR (1 << 6)
  138. #define DSI_VC_IRQ_FIFO_TX_UDF (1 << 7)
  139. #define DSI_VC_IRQ_PP_BUSY_CHANGE (1 << 8)
  140. #define DSI_VC_IRQ_ERROR_MASK \
  141. (DSI_VC_IRQ_CS | DSI_VC_IRQ_ECC_CORR | DSI_VC_IRQ_FIFO_TX_OVF | \
  142. DSI_VC_IRQ_FIFO_RX_OVF | DSI_VC_IRQ_ECC_NO_CORR | \
  143. DSI_VC_IRQ_FIFO_TX_UDF)
  144. /* ComplexIO interrupts */
  145. #define DSI_CIO_IRQ_ERRSYNCESC1 (1 << 0)
  146. #define DSI_CIO_IRQ_ERRSYNCESC2 (1 << 1)
  147. #define DSI_CIO_IRQ_ERRSYNCESC3 (1 << 2)
  148. #define DSI_CIO_IRQ_ERRSYNCESC4 (1 << 3)
  149. #define DSI_CIO_IRQ_ERRSYNCESC5 (1 << 4)
  150. #define DSI_CIO_IRQ_ERRESC1 (1 << 5)
  151. #define DSI_CIO_IRQ_ERRESC2 (1 << 6)
  152. #define DSI_CIO_IRQ_ERRESC3 (1 << 7)
  153. #define DSI_CIO_IRQ_ERRESC4 (1 << 8)
  154. #define DSI_CIO_IRQ_ERRESC5 (1 << 9)
  155. #define DSI_CIO_IRQ_ERRCONTROL1 (1 << 10)
  156. #define DSI_CIO_IRQ_ERRCONTROL2 (1 << 11)
  157. #define DSI_CIO_IRQ_ERRCONTROL3 (1 << 12)
  158. #define DSI_CIO_IRQ_ERRCONTROL4 (1 << 13)
  159. #define DSI_CIO_IRQ_ERRCONTROL5 (1 << 14)
  160. #define DSI_CIO_IRQ_STATEULPS1 (1 << 15)
  161. #define DSI_CIO_IRQ_STATEULPS2 (1 << 16)
  162. #define DSI_CIO_IRQ_STATEULPS3 (1 << 17)
  163. #define DSI_CIO_IRQ_STATEULPS4 (1 << 18)
  164. #define DSI_CIO_IRQ_STATEULPS5 (1 << 19)
  165. #define DSI_CIO_IRQ_ERRCONTENTIONLP0_1 (1 << 20)
  166. #define DSI_CIO_IRQ_ERRCONTENTIONLP1_1 (1 << 21)
  167. #define DSI_CIO_IRQ_ERRCONTENTIONLP0_2 (1 << 22)
  168. #define DSI_CIO_IRQ_ERRCONTENTIONLP1_2 (1 << 23)
  169. #define DSI_CIO_IRQ_ERRCONTENTIONLP0_3 (1 << 24)
  170. #define DSI_CIO_IRQ_ERRCONTENTIONLP1_3 (1 << 25)
  171. #define DSI_CIO_IRQ_ERRCONTENTIONLP0_4 (1 << 26)
  172. #define DSI_CIO_IRQ_ERRCONTENTIONLP1_4 (1 << 27)
  173. #define DSI_CIO_IRQ_ERRCONTENTIONLP0_5 (1 << 28)
  174. #define DSI_CIO_IRQ_ERRCONTENTIONLP1_5 (1 << 29)
  175. #define DSI_CIO_IRQ_ULPSACTIVENOT_ALL0 (1 << 30)
  176. #define DSI_CIO_IRQ_ULPSACTIVENOT_ALL1 (1 << 31)
  177. #define DSI_CIO_IRQ_ERROR_MASK \
  178. (DSI_CIO_IRQ_ERRSYNCESC1 | DSI_CIO_IRQ_ERRSYNCESC2 | \
  179. DSI_CIO_IRQ_ERRSYNCESC3 | DSI_CIO_IRQ_ERRSYNCESC4 | \
  180. DSI_CIO_IRQ_ERRSYNCESC5 | \
  181. DSI_CIO_IRQ_ERRESC1 | DSI_CIO_IRQ_ERRESC2 | \
  182. DSI_CIO_IRQ_ERRESC3 | DSI_CIO_IRQ_ERRESC4 | \
  183. DSI_CIO_IRQ_ERRESC5 | \
  184. DSI_CIO_IRQ_ERRCONTROL1 | DSI_CIO_IRQ_ERRCONTROL2 | \
  185. DSI_CIO_IRQ_ERRCONTROL3 | DSI_CIO_IRQ_ERRCONTROL4 | \
  186. DSI_CIO_IRQ_ERRCONTROL5 | \
  187. DSI_CIO_IRQ_ERRCONTENTIONLP0_1 | DSI_CIO_IRQ_ERRCONTENTIONLP1_1 | \
  188. DSI_CIO_IRQ_ERRCONTENTIONLP0_2 | DSI_CIO_IRQ_ERRCONTENTIONLP1_2 | \
  189. DSI_CIO_IRQ_ERRCONTENTIONLP0_3 | DSI_CIO_IRQ_ERRCONTENTIONLP1_3 | \
  190. DSI_CIO_IRQ_ERRCONTENTIONLP0_4 | DSI_CIO_IRQ_ERRCONTENTIONLP1_4 | \
  191. DSI_CIO_IRQ_ERRCONTENTIONLP0_5 | DSI_CIO_IRQ_ERRCONTENTIONLP1_5)
  192. typedef void (*omap_dsi_isr_t) (void *arg, u32 mask);
  193. static int dsi_display_init_dispc(struct platform_device *dsidev,
  194. enum omap_channel channel);
  195. static void dsi_display_uninit_dispc(struct platform_device *dsidev,
  196. enum omap_channel channel);
  197. static int dsi_vc_send_null(struct omap_dss_device *dssdev, int channel);
  198. /* DSI PLL HSDIV indices */
  199. #define HSDIV_DISPC 0
  200. #define HSDIV_DSI 1
  201. #define DSI_MAX_NR_ISRS 2
  202. #define DSI_MAX_NR_LANES 5
  203. enum dsi_lane_function {
  204. DSI_LANE_UNUSED = 0,
  205. DSI_LANE_CLK,
  206. DSI_LANE_DATA1,
  207. DSI_LANE_DATA2,
  208. DSI_LANE_DATA3,
  209. DSI_LANE_DATA4,
  210. };
  211. struct dsi_lane_config {
  212. enum dsi_lane_function function;
  213. u8 polarity;
  214. };
  215. struct dsi_isr_data {
  216. omap_dsi_isr_t isr;
  217. void *arg;
  218. u32 mask;
  219. };
  220. enum fifo_size {
  221. DSI_FIFO_SIZE_0 = 0,
  222. DSI_FIFO_SIZE_32 = 1,
  223. DSI_FIFO_SIZE_64 = 2,
  224. DSI_FIFO_SIZE_96 = 3,
  225. DSI_FIFO_SIZE_128 = 4,
  226. };
  227. enum dsi_vc_source {
  228. DSI_VC_SOURCE_L4 = 0,
  229. DSI_VC_SOURCE_VP,
  230. };
  231. struct dsi_irq_stats {
  232. unsigned long last_reset;
  233. unsigned irq_count;
  234. unsigned dsi_irqs[32];
  235. unsigned vc_irqs[4][32];
  236. unsigned cio_irqs[32];
  237. };
  238. struct dsi_isr_tables {
  239. struct dsi_isr_data isr_table[DSI_MAX_NR_ISRS];
  240. struct dsi_isr_data isr_table_vc[4][DSI_MAX_NR_ISRS];
  241. struct dsi_isr_data isr_table_cio[DSI_MAX_NR_ISRS];
  242. };
  243. struct dsi_clk_calc_ctx {
  244. struct platform_device *dsidev;
  245. struct dss_pll *pll;
  246. /* inputs */
  247. const struct omap_dss_dsi_config *config;
  248. unsigned long req_pck_min, req_pck_nom, req_pck_max;
  249. /* outputs */
  250. struct dss_pll_clock_info dsi_cinfo;
  251. struct dispc_clock_info dispc_cinfo;
  252. struct omap_video_timings dispc_vm;
  253. struct omap_dss_dsi_videomode_timings dsi_vm;
  254. };
  255. struct dsi_lp_clock_info {
  256. unsigned long lp_clk;
  257. u16 lp_clk_div;
  258. };
  259. struct dsi_data {
  260. struct platform_device *pdev;
  261. void __iomem *proto_base;
  262. void __iomem *phy_base;
  263. void __iomem *pll_base;
  264. int module_id;
  265. int irq;
  266. bool is_enabled;
  267. struct clk *dss_clk;
  268. struct dispc_clock_info user_dispc_cinfo;
  269. struct dss_pll_clock_info user_dsi_cinfo;
  270. struct dsi_lp_clock_info user_lp_cinfo;
  271. struct dsi_lp_clock_info current_lp_cinfo;
  272. struct dss_pll pll;
  273. bool vdds_dsi_enabled;
  274. struct regulator *vdds_dsi_reg;
  275. struct {
  276. enum dsi_vc_source source;
  277. struct omap_dss_device *dssdev;
  278. enum fifo_size tx_fifo_size;
  279. enum fifo_size rx_fifo_size;
  280. int vc_id;
  281. } vc[4];
  282. struct mutex lock;
  283. struct semaphore bus_lock;
  284. spinlock_t irq_lock;
  285. struct dsi_isr_tables isr_tables;
  286. /* space for a copy used by the interrupt handler */
  287. struct dsi_isr_tables isr_tables_copy;
  288. int update_channel;
  289. #ifdef DSI_PERF_MEASURE
  290. unsigned update_bytes;
  291. #endif
  292. bool te_enabled;
  293. bool ulps_enabled;
  294. void (*framedone_callback)(int, void *);
  295. void *framedone_data;
  296. struct delayed_work framedone_timeout_work;
  297. #ifdef DSI_CATCH_MISSING_TE
  298. struct timer_list te_timer;
  299. #endif
  300. unsigned long cache_req_pck;
  301. unsigned long cache_clk_freq;
  302. struct dss_pll_clock_info cache_cinfo;
  303. u32 errors;
  304. spinlock_t errors_lock;
  305. #ifdef DSI_PERF_MEASURE
  306. ktime_t perf_setup_time;
  307. ktime_t perf_start_time;
  308. #endif
  309. int debug_read;
  310. int debug_write;
  311. #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
  312. spinlock_t irq_stats_lock;
  313. struct dsi_irq_stats irq_stats;
  314. #endif
  315. unsigned num_lanes_supported;
  316. unsigned line_buffer_size;
  317. struct dsi_lane_config lanes[DSI_MAX_NR_LANES];
  318. unsigned num_lanes_used;
  319. unsigned scp_clk_refcount;
  320. struct dss_lcd_mgr_config mgr_config;
  321. struct omap_video_timings timings;
  322. enum omap_dss_dsi_pixel_format pix_fmt;
  323. enum omap_dss_dsi_mode mode;
  324. struct omap_dss_dsi_videomode_timings vm_timings;
  325. struct omap_dss_device output;
  326. };
  327. struct dsi_packet_sent_handler_data {
  328. struct platform_device *dsidev;
  329. struct completion *completion;
  330. };
  331. struct dsi_module_id_data {
  332. u32 address;
  333. int id;
  334. };
  335. static const struct of_device_id dsi_of_match[];
  336. #ifdef DSI_PERF_MEASURE
  337. static bool dsi_perf;
  338. module_param(dsi_perf, bool, 0644);
  339. #endif
  340. static inline struct dsi_data *dsi_get_dsidrv_data(struct platform_device *dsidev)
  341. {
  342. return dev_get_drvdata(&dsidev->dev);
  343. }
  344. static inline struct platform_device *dsi_get_dsidev_from_dssdev(struct omap_dss_device *dssdev)
  345. {
  346. return to_platform_device(dssdev->dev);
  347. }
  348. static struct platform_device *dsi_get_dsidev_from_id(int module)
  349. {
  350. struct omap_dss_device *out;
  351. enum omap_dss_output_id id;
  352. switch (module) {
  353. case 0:
  354. id = OMAP_DSS_OUTPUT_DSI1;
  355. break;
  356. case 1:
  357. id = OMAP_DSS_OUTPUT_DSI2;
  358. break;
  359. default:
  360. return NULL;
  361. }
  362. out = omap_dss_get_output(id);
  363. return out ? to_platform_device(out->dev) : NULL;
  364. }
  365. static inline void dsi_write_reg(struct platform_device *dsidev,
  366. const struct dsi_reg idx, u32 val)
  367. {
  368. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  369. void __iomem *base;
  370. switch(idx.module) {
  371. case DSI_PROTO: base = dsi->proto_base; break;
  372. case DSI_PHY: base = dsi->phy_base; break;
  373. case DSI_PLL: base = dsi->pll_base; break;
  374. default: return;
  375. }
  376. __raw_writel(val, base + idx.idx);
  377. }
  378. static inline u32 dsi_read_reg(struct platform_device *dsidev,
  379. const struct dsi_reg idx)
  380. {
  381. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  382. void __iomem *base;
  383. switch(idx.module) {
  384. case DSI_PROTO: base = dsi->proto_base; break;
  385. case DSI_PHY: base = dsi->phy_base; break;
  386. case DSI_PLL: base = dsi->pll_base; break;
  387. default: return 0;
  388. }
  389. return __raw_readl(base + idx.idx);
  390. }
  391. static void dsi_bus_lock(struct omap_dss_device *dssdev)
  392. {
  393. struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
  394. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  395. down(&dsi->bus_lock);
  396. }
  397. static void dsi_bus_unlock(struct omap_dss_device *dssdev)
  398. {
  399. struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
  400. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  401. up(&dsi->bus_lock);
  402. }
  403. static bool dsi_bus_is_locked(struct platform_device *dsidev)
  404. {
  405. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  406. return dsi->bus_lock.count == 0;
  407. }
  408. static void dsi_completion_handler(void *data, u32 mask)
  409. {
  410. complete((struct completion *)data);
  411. }
  412. static inline int wait_for_bit_change(struct platform_device *dsidev,
  413. const struct dsi_reg idx, int bitnum, int value)
  414. {
  415. unsigned long timeout;
  416. ktime_t wait;
  417. int t;
  418. /* first busyloop to see if the bit changes right away */
  419. t = 100;
  420. while (t-- > 0) {
  421. if (REG_GET(dsidev, idx, bitnum, bitnum) == value)
  422. return value;
  423. }
  424. /* then loop for 500ms, sleeping for 1ms in between */
  425. timeout = jiffies + msecs_to_jiffies(500);
  426. while (time_before(jiffies, timeout)) {
  427. if (REG_GET(dsidev, idx, bitnum, bitnum) == value)
  428. return value;
  429. wait = ns_to_ktime(1000 * 1000);
  430. set_current_state(TASK_UNINTERRUPTIBLE);
  431. schedule_hrtimeout(&wait, HRTIMER_MODE_REL);
  432. }
  433. return !value;
  434. }
  435. u8 dsi_get_pixel_size(enum omap_dss_dsi_pixel_format fmt)
  436. {
  437. switch (fmt) {
  438. case OMAP_DSS_DSI_FMT_RGB888:
  439. case OMAP_DSS_DSI_FMT_RGB666:
  440. return 24;
  441. case OMAP_DSS_DSI_FMT_RGB666_PACKED:
  442. return 18;
  443. case OMAP_DSS_DSI_FMT_RGB565:
  444. return 16;
  445. default:
  446. BUG();
  447. return 0;
  448. }
  449. }
  450. #ifdef DSI_PERF_MEASURE
  451. static void dsi_perf_mark_setup(struct platform_device *dsidev)
  452. {
  453. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  454. dsi->perf_setup_time = ktime_get();
  455. }
  456. static void dsi_perf_mark_start(struct platform_device *dsidev)
  457. {
  458. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  459. dsi->perf_start_time = ktime_get();
  460. }
  461. static void dsi_perf_show(struct platform_device *dsidev, const char *name)
  462. {
  463. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  464. ktime_t t, setup_time, trans_time;
  465. u32 total_bytes;
  466. u32 setup_us, trans_us, total_us;
  467. if (!dsi_perf)
  468. return;
  469. t = ktime_get();
  470. setup_time = ktime_sub(dsi->perf_start_time, dsi->perf_setup_time);
  471. setup_us = (u32)ktime_to_us(setup_time);
  472. if (setup_us == 0)
  473. setup_us = 1;
  474. trans_time = ktime_sub(t, dsi->perf_start_time);
  475. trans_us = (u32)ktime_to_us(trans_time);
  476. if (trans_us == 0)
  477. trans_us = 1;
  478. total_us = setup_us + trans_us;
  479. total_bytes = dsi->update_bytes;
  480. printk(KERN_INFO "DSI(%s): %u us + %u us = %u us (%uHz), "
  481. "%u bytes, %u kbytes/sec\n",
  482. name,
  483. setup_us,
  484. trans_us,
  485. total_us,
  486. 1000*1000 / total_us,
  487. total_bytes,
  488. total_bytes * 1000 / total_us);
  489. }
  490. #else
  491. static inline void dsi_perf_mark_setup(struct platform_device *dsidev)
  492. {
  493. }
  494. static inline void dsi_perf_mark_start(struct platform_device *dsidev)
  495. {
  496. }
  497. static inline void dsi_perf_show(struct platform_device *dsidev,
  498. const char *name)
  499. {
  500. }
  501. #endif
  502. static int verbose_irq;
  503. static void print_irq_status(u32 status)
  504. {
  505. if (status == 0)
  506. return;
  507. if (!verbose_irq && (status & ~DSI_IRQ_CHANNEL_MASK) == 0)
  508. return;
  509. #define PIS(x) (status & DSI_IRQ_##x) ? (#x " ") : ""
  510. pr_debug("DSI IRQ: 0x%x: %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
  511. status,
  512. verbose_irq ? PIS(VC0) : "",
  513. verbose_irq ? PIS(VC1) : "",
  514. verbose_irq ? PIS(VC2) : "",
  515. verbose_irq ? PIS(VC3) : "",
  516. PIS(WAKEUP),
  517. PIS(RESYNC),
  518. PIS(PLL_LOCK),
  519. PIS(PLL_UNLOCK),
  520. PIS(PLL_RECALL),
  521. PIS(COMPLEXIO_ERR),
  522. PIS(HS_TX_TIMEOUT),
  523. PIS(LP_RX_TIMEOUT),
  524. PIS(TE_TRIGGER),
  525. PIS(ACK_TRIGGER),
  526. PIS(SYNC_LOST),
  527. PIS(LDO_POWER_GOOD),
  528. PIS(TA_TIMEOUT));
  529. #undef PIS
  530. }
  531. static void print_irq_status_vc(int channel, u32 status)
  532. {
  533. if (status == 0)
  534. return;
  535. if (!verbose_irq && (status & ~DSI_VC_IRQ_PACKET_SENT) == 0)
  536. return;
  537. #define PIS(x) (status & DSI_VC_IRQ_##x) ? (#x " ") : ""
  538. pr_debug("DSI VC(%d) IRQ 0x%x: %s%s%s%s%s%s%s%s%s\n",
  539. channel,
  540. status,
  541. PIS(CS),
  542. PIS(ECC_CORR),
  543. PIS(ECC_NO_CORR),
  544. verbose_irq ? PIS(PACKET_SENT) : "",
  545. PIS(BTA),
  546. PIS(FIFO_TX_OVF),
  547. PIS(FIFO_RX_OVF),
  548. PIS(FIFO_TX_UDF),
  549. PIS(PP_BUSY_CHANGE));
  550. #undef PIS
  551. }
  552. static void print_irq_status_cio(u32 status)
  553. {
  554. if (status == 0)
  555. return;
  556. #define PIS(x) (status & DSI_CIO_IRQ_##x) ? (#x " ") : ""
  557. pr_debug("DSI CIO IRQ 0x%x: %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
  558. status,
  559. PIS(ERRSYNCESC1),
  560. PIS(ERRSYNCESC2),
  561. PIS(ERRSYNCESC3),
  562. PIS(ERRESC1),
  563. PIS(ERRESC2),
  564. PIS(ERRESC3),
  565. PIS(ERRCONTROL1),
  566. PIS(ERRCONTROL2),
  567. PIS(ERRCONTROL3),
  568. PIS(STATEULPS1),
  569. PIS(STATEULPS2),
  570. PIS(STATEULPS3),
  571. PIS(ERRCONTENTIONLP0_1),
  572. PIS(ERRCONTENTIONLP1_1),
  573. PIS(ERRCONTENTIONLP0_2),
  574. PIS(ERRCONTENTIONLP1_2),
  575. PIS(ERRCONTENTIONLP0_3),
  576. PIS(ERRCONTENTIONLP1_3),
  577. PIS(ULPSACTIVENOT_ALL0),
  578. PIS(ULPSACTIVENOT_ALL1));
  579. #undef PIS
  580. }
  581. #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
  582. static void dsi_collect_irq_stats(struct platform_device *dsidev, u32 irqstatus,
  583. u32 *vcstatus, u32 ciostatus)
  584. {
  585. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  586. int i;
  587. spin_lock(&dsi->irq_stats_lock);
  588. dsi->irq_stats.irq_count++;
  589. dss_collect_irq_stats(irqstatus, dsi->irq_stats.dsi_irqs);
  590. for (i = 0; i < 4; ++i)
  591. dss_collect_irq_stats(vcstatus[i], dsi->irq_stats.vc_irqs[i]);
  592. dss_collect_irq_stats(ciostatus, dsi->irq_stats.cio_irqs);
  593. spin_unlock(&dsi->irq_stats_lock);
  594. }
  595. #else
  596. #define dsi_collect_irq_stats(dsidev, irqstatus, vcstatus, ciostatus)
  597. #endif
  598. static int debug_irq;
  599. static void dsi_handle_irq_errors(struct platform_device *dsidev, u32 irqstatus,
  600. u32 *vcstatus, u32 ciostatus)
  601. {
  602. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  603. int i;
  604. if (irqstatus & DSI_IRQ_ERROR_MASK) {
  605. DSSERR("DSI error, irqstatus %x\n", irqstatus);
  606. print_irq_status(irqstatus);
  607. spin_lock(&dsi->errors_lock);
  608. dsi->errors |= irqstatus & DSI_IRQ_ERROR_MASK;
  609. spin_unlock(&dsi->errors_lock);
  610. } else if (debug_irq) {
  611. print_irq_status(irqstatus);
  612. }
  613. for (i = 0; i < 4; ++i) {
  614. if (vcstatus[i] & DSI_VC_IRQ_ERROR_MASK) {
  615. DSSERR("DSI VC(%d) error, vc irqstatus %x\n",
  616. i, vcstatus[i]);
  617. print_irq_status_vc(i, vcstatus[i]);
  618. } else if (debug_irq) {
  619. print_irq_status_vc(i, vcstatus[i]);
  620. }
  621. }
  622. if (ciostatus & DSI_CIO_IRQ_ERROR_MASK) {
  623. DSSERR("DSI CIO error, cio irqstatus %x\n", ciostatus);
  624. print_irq_status_cio(ciostatus);
  625. } else if (debug_irq) {
  626. print_irq_status_cio(ciostatus);
  627. }
  628. }
  629. static void dsi_call_isrs(struct dsi_isr_data *isr_array,
  630. unsigned isr_array_size, u32 irqstatus)
  631. {
  632. struct dsi_isr_data *isr_data;
  633. int i;
  634. for (i = 0; i < isr_array_size; i++) {
  635. isr_data = &isr_array[i];
  636. if (isr_data->isr && isr_data->mask & irqstatus)
  637. isr_data->isr(isr_data->arg, irqstatus);
  638. }
  639. }
  640. static void dsi_handle_isrs(struct dsi_isr_tables *isr_tables,
  641. u32 irqstatus, u32 *vcstatus, u32 ciostatus)
  642. {
  643. int i;
  644. dsi_call_isrs(isr_tables->isr_table,
  645. ARRAY_SIZE(isr_tables->isr_table),
  646. irqstatus);
  647. for (i = 0; i < 4; ++i) {
  648. if (vcstatus[i] == 0)
  649. continue;
  650. dsi_call_isrs(isr_tables->isr_table_vc[i],
  651. ARRAY_SIZE(isr_tables->isr_table_vc[i]),
  652. vcstatus[i]);
  653. }
  654. if (ciostatus != 0)
  655. dsi_call_isrs(isr_tables->isr_table_cio,
  656. ARRAY_SIZE(isr_tables->isr_table_cio),
  657. ciostatus);
  658. }
  659. static irqreturn_t omap_dsi_irq_handler(int irq, void *arg)
  660. {
  661. struct platform_device *dsidev;
  662. struct dsi_data *dsi;
  663. u32 irqstatus, vcstatus[4], ciostatus;
  664. int i;
  665. dsidev = (struct platform_device *) arg;
  666. dsi = dsi_get_dsidrv_data(dsidev);
  667. if (!dsi->is_enabled)
  668. return IRQ_NONE;
  669. spin_lock(&dsi->irq_lock);
  670. irqstatus = dsi_read_reg(dsidev, DSI_IRQSTATUS);
  671. /* IRQ is not for us */
  672. if (!irqstatus) {
  673. spin_unlock(&dsi->irq_lock);
  674. return IRQ_NONE;
  675. }
  676. dsi_write_reg(dsidev, DSI_IRQSTATUS, irqstatus & ~DSI_IRQ_CHANNEL_MASK);
  677. /* flush posted write */
  678. dsi_read_reg(dsidev, DSI_IRQSTATUS);
  679. for (i = 0; i < 4; ++i) {
  680. if ((irqstatus & (1 << i)) == 0) {
  681. vcstatus[i] = 0;
  682. continue;
  683. }
  684. vcstatus[i] = dsi_read_reg(dsidev, DSI_VC_IRQSTATUS(i));
  685. dsi_write_reg(dsidev, DSI_VC_IRQSTATUS(i), vcstatus[i]);
  686. /* flush posted write */
  687. dsi_read_reg(dsidev, DSI_VC_IRQSTATUS(i));
  688. }
  689. if (irqstatus & DSI_IRQ_COMPLEXIO_ERR) {
  690. ciostatus = dsi_read_reg(dsidev, DSI_COMPLEXIO_IRQ_STATUS);
  691. dsi_write_reg(dsidev, DSI_COMPLEXIO_IRQ_STATUS, ciostatus);
  692. /* flush posted write */
  693. dsi_read_reg(dsidev, DSI_COMPLEXIO_IRQ_STATUS);
  694. } else {
  695. ciostatus = 0;
  696. }
  697. #ifdef DSI_CATCH_MISSING_TE
  698. if (irqstatus & DSI_IRQ_TE_TRIGGER)
  699. del_timer(&dsi->te_timer);
  700. #endif
  701. /* make a copy and unlock, so that isrs can unregister
  702. * themselves */
  703. memcpy(&dsi->isr_tables_copy, &dsi->isr_tables,
  704. sizeof(dsi->isr_tables));
  705. spin_unlock(&dsi->irq_lock);
  706. dsi_handle_isrs(&dsi->isr_tables_copy, irqstatus, vcstatus, ciostatus);
  707. dsi_handle_irq_errors(dsidev, irqstatus, vcstatus, ciostatus);
  708. dsi_collect_irq_stats(dsidev, irqstatus, vcstatus, ciostatus);
  709. return IRQ_HANDLED;
  710. }
  711. /* dsi->irq_lock has to be locked by the caller */
  712. static void _omap_dsi_configure_irqs(struct platform_device *dsidev,
  713. struct dsi_isr_data *isr_array,
  714. unsigned isr_array_size, u32 default_mask,
  715. const struct dsi_reg enable_reg,
  716. const struct dsi_reg status_reg)
  717. {
  718. struct dsi_isr_data *isr_data;
  719. u32 mask;
  720. u32 old_mask;
  721. int i;
  722. mask = default_mask;
  723. for (i = 0; i < isr_array_size; i++) {
  724. isr_data = &isr_array[i];
  725. if (isr_data->isr == NULL)
  726. continue;
  727. mask |= isr_data->mask;
  728. }
  729. old_mask = dsi_read_reg(dsidev, enable_reg);
  730. /* clear the irqstatus for newly enabled irqs */
  731. dsi_write_reg(dsidev, status_reg, (mask ^ old_mask) & mask);
  732. dsi_write_reg(dsidev, enable_reg, mask);
  733. /* flush posted writes */
  734. dsi_read_reg(dsidev, enable_reg);
  735. dsi_read_reg(dsidev, status_reg);
  736. }
  737. /* dsi->irq_lock has to be locked by the caller */
  738. static void _omap_dsi_set_irqs(struct platform_device *dsidev)
  739. {
  740. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  741. u32 mask = DSI_IRQ_ERROR_MASK;
  742. #ifdef DSI_CATCH_MISSING_TE
  743. mask |= DSI_IRQ_TE_TRIGGER;
  744. #endif
  745. _omap_dsi_configure_irqs(dsidev, dsi->isr_tables.isr_table,
  746. ARRAY_SIZE(dsi->isr_tables.isr_table), mask,
  747. DSI_IRQENABLE, DSI_IRQSTATUS);
  748. }
  749. /* dsi->irq_lock has to be locked by the caller */
  750. static void _omap_dsi_set_irqs_vc(struct platform_device *dsidev, int vc)
  751. {
  752. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  753. _omap_dsi_configure_irqs(dsidev, dsi->isr_tables.isr_table_vc[vc],
  754. ARRAY_SIZE(dsi->isr_tables.isr_table_vc[vc]),
  755. DSI_VC_IRQ_ERROR_MASK,
  756. DSI_VC_IRQENABLE(vc), DSI_VC_IRQSTATUS(vc));
  757. }
  758. /* dsi->irq_lock has to be locked by the caller */
  759. static void _omap_dsi_set_irqs_cio(struct platform_device *dsidev)
  760. {
  761. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  762. _omap_dsi_configure_irqs(dsidev, dsi->isr_tables.isr_table_cio,
  763. ARRAY_SIZE(dsi->isr_tables.isr_table_cio),
  764. DSI_CIO_IRQ_ERROR_MASK,
  765. DSI_COMPLEXIO_IRQ_ENABLE, DSI_COMPLEXIO_IRQ_STATUS);
  766. }
  767. static void _dsi_initialize_irq(struct platform_device *dsidev)
  768. {
  769. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  770. unsigned long flags;
  771. int vc;
  772. spin_lock_irqsave(&dsi->irq_lock, flags);
  773. memset(&dsi->isr_tables, 0, sizeof(dsi->isr_tables));
  774. _omap_dsi_set_irqs(dsidev);
  775. for (vc = 0; vc < 4; ++vc)
  776. _omap_dsi_set_irqs_vc(dsidev, vc);
  777. _omap_dsi_set_irqs_cio(dsidev);
  778. spin_unlock_irqrestore(&dsi->irq_lock, flags);
  779. }
  780. static int _dsi_register_isr(omap_dsi_isr_t isr, void *arg, u32 mask,
  781. struct dsi_isr_data *isr_array, unsigned isr_array_size)
  782. {
  783. struct dsi_isr_data *isr_data;
  784. int free_idx;
  785. int i;
  786. BUG_ON(isr == NULL);
  787. /* check for duplicate entry and find a free slot */
  788. free_idx = -1;
  789. for (i = 0; i < isr_array_size; i++) {
  790. isr_data = &isr_array[i];
  791. if (isr_data->isr == isr && isr_data->arg == arg &&
  792. isr_data->mask == mask) {
  793. return -EINVAL;
  794. }
  795. if (isr_data->isr == NULL && free_idx == -1)
  796. free_idx = i;
  797. }
  798. if (free_idx == -1)
  799. return -EBUSY;
  800. isr_data = &isr_array[free_idx];
  801. isr_data->isr = isr;
  802. isr_data->arg = arg;
  803. isr_data->mask = mask;
  804. return 0;
  805. }
  806. static int _dsi_unregister_isr(omap_dsi_isr_t isr, void *arg, u32 mask,
  807. struct dsi_isr_data *isr_array, unsigned isr_array_size)
  808. {
  809. struct dsi_isr_data *isr_data;
  810. int i;
  811. for (i = 0; i < isr_array_size; i++) {
  812. isr_data = &isr_array[i];
  813. if (isr_data->isr != isr || isr_data->arg != arg ||
  814. isr_data->mask != mask)
  815. continue;
  816. isr_data->isr = NULL;
  817. isr_data->arg = NULL;
  818. isr_data->mask = 0;
  819. return 0;
  820. }
  821. return -EINVAL;
  822. }
  823. static int dsi_register_isr(struct platform_device *dsidev, omap_dsi_isr_t isr,
  824. void *arg, u32 mask)
  825. {
  826. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  827. unsigned long flags;
  828. int r;
  829. spin_lock_irqsave(&dsi->irq_lock, flags);
  830. r = _dsi_register_isr(isr, arg, mask, dsi->isr_tables.isr_table,
  831. ARRAY_SIZE(dsi->isr_tables.isr_table));
  832. if (r == 0)
  833. _omap_dsi_set_irqs(dsidev);
  834. spin_unlock_irqrestore(&dsi->irq_lock, flags);
  835. return r;
  836. }
  837. static int dsi_unregister_isr(struct platform_device *dsidev,
  838. omap_dsi_isr_t isr, void *arg, u32 mask)
  839. {
  840. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  841. unsigned long flags;
  842. int r;
  843. spin_lock_irqsave(&dsi->irq_lock, flags);
  844. r = _dsi_unregister_isr(isr, arg, mask, dsi->isr_tables.isr_table,
  845. ARRAY_SIZE(dsi->isr_tables.isr_table));
  846. if (r == 0)
  847. _omap_dsi_set_irqs(dsidev);
  848. spin_unlock_irqrestore(&dsi->irq_lock, flags);
  849. return r;
  850. }
  851. static int dsi_register_isr_vc(struct platform_device *dsidev, int channel,
  852. omap_dsi_isr_t isr, void *arg, u32 mask)
  853. {
  854. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  855. unsigned long flags;
  856. int r;
  857. spin_lock_irqsave(&dsi->irq_lock, flags);
  858. r = _dsi_register_isr(isr, arg, mask,
  859. dsi->isr_tables.isr_table_vc[channel],
  860. ARRAY_SIZE(dsi->isr_tables.isr_table_vc[channel]));
  861. if (r == 0)
  862. _omap_dsi_set_irqs_vc(dsidev, channel);
  863. spin_unlock_irqrestore(&dsi->irq_lock, flags);
  864. return r;
  865. }
  866. static int dsi_unregister_isr_vc(struct platform_device *dsidev, int channel,
  867. omap_dsi_isr_t isr, void *arg, u32 mask)
  868. {
  869. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  870. unsigned long flags;
  871. int r;
  872. spin_lock_irqsave(&dsi->irq_lock, flags);
  873. r = _dsi_unregister_isr(isr, arg, mask,
  874. dsi->isr_tables.isr_table_vc[channel],
  875. ARRAY_SIZE(dsi->isr_tables.isr_table_vc[channel]));
  876. if (r == 0)
  877. _omap_dsi_set_irqs_vc(dsidev, channel);
  878. spin_unlock_irqrestore(&dsi->irq_lock, flags);
  879. return r;
  880. }
  881. static int dsi_register_isr_cio(struct platform_device *dsidev,
  882. omap_dsi_isr_t isr, void *arg, u32 mask)
  883. {
  884. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  885. unsigned long flags;
  886. int r;
  887. spin_lock_irqsave(&dsi->irq_lock, flags);
  888. r = _dsi_register_isr(isr, arg, mask, dsi->isr_tables.isr_table_cio,
  889. ARRAY_SIZE(dsi->isr_tables.isr_table_cio));
  890. if (r == 0)
  891. _omap_dsi_set_irqs_cio(dsidev);
  892. spin_unlock_irqrestore(&dsi->irq_lock, flags);
  893. return r;
  894. }
  895. static int dsi_unregister_isr_cio(struct platform_device *dsidev,
  896. omap_dsi_isr_t isr, void *arg, u32 mask)
  897. {
  898. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  899. unsigned long flags;
  900. int r;
  901. spin_lock_irqsave(&dsi->irq_lock, flags);
  902. r = _dsi_unregister_isr(isr, arg, mask, dsi->isr_tables.isr_table_cio,
  903. ARRAY_SIZE(dsi->isr_tables.isr_table_cio));
  904. if (r == 0)
  905. _omap_dsi_set_irqs_cio(dsidev);
  906. spin_unlock_irqrestore(&dsi->irq_lock, flags);
  907. return r;
  908. }
  909. static u32 dsi_get_errors(struct platform_device *dsidev)
  910. {
  911. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  912. unsigned long flags;
  913. u32 e;
  914. spin_lock_irqsave(&dsi->errors_lock, flags);
  915. e = dsi->errors;
  916. dsi->errors = 0;
  917. spin_unlock_irqrestore(&dsi->errors_lock, flags);
  918. return e;
  919. }
  920. static int dsi_runtime_get(struct platform_device *dsidev)
  921. {
  922. int r;
  923. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  924. DSSDBG("dsi_runtime_get\n");
  925. r = pm_runtime_get_sync(&dsi->pdev->dev);
  926. WARN_ON(r < 0);
  927. return r < 0 ? r : 0;
  928. }
  929. static void dsi_runtime_put(struct platform_device *dsidev)
  930. {
  931. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  932. int r;
  933. DSSDBG("dsi_runtime_put\n");
  934. r = pm_runtime_put_sync(&dsi->pdev->dev);
  935. WARN_ON(r < 0 && r != -ENOSYS);
  936. }
  937. static int dsi_regulator_init(struct platform_device *dsidev)
  938. {
  939. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  940. struct regulator *vdds_dsi;
  941. int r;
  942. if (dsi->vdds_dsi_reg != NULL)
  943. return 0;
  944. vdds_dsi = devm_regulator_get(&dsi->pdev->dev, "vdd");
  945. if (IS_ERR(vdds_dsi)) {
  946. if (PTR_ERR(vdds_dsi) != -EPROBE_DEFER)
  947. DSSERR("can't get DSI VDD regulator\n");
  948. return PTR_ERR(vdds_dsi);
  949. }
  950. dsi->vdds_dsi_reg = vdds_dsi;
  951. return 0;
  952. }
  953. static void _dsi_print_reset_status(struct platform_device *dsidev)
  954. {
  955. u32 l;
  956. int b0, b1, b2;
  957. /* A dummy read using the SCP interface to any DSIPHY register is
  958. * required after DSIPHY reset to complete the reset of the DSI complex
  959. * I/O. */
  960. l = dsi_read_reg(dsidev, DSI_DSIPHY_CFG5);
  961. if (dss_has_feature(FEAT_DSI_REVERSE_TXCLKESC)) {
  962. b0 = 28;
  963. b1 = 27;
  964. b2 = 26;
  965. } else {
  966. b0 = 24;
  967. b1 = 25;
  968. b2 = 26;
  969. }
  970. #define DSI_FLD_GET(fld, start, end)\
  971. FLD_GET(dsi_read_reg(dsidev, DSI_##fld), start, end)
  972. pr_debug("DSI resets: PLL (%d) CIO (%d) PHY (%x%x%x, %d, %d, %d)\n",
  973. DSI_FLD_GET(PLL_STATUS, 0, 0),
  974. DSI_FLD_GET(COMPLEXIO_CFG1, 29, 29),
  975. DSI_FLD_GET(DSIPHY_CFG5, b0, b0),
  976. DSI_FLD_GET(DSIPHY_CFG5, b1, b1),
  977. DSI_FLD_GET(DSIPHY_CFG5, b2, b2),
  978. DSI_FLD_GET(DSIPHY_CFG5, 29, 29),
  979. DSI_FLD_GET(DSIPHY_CFG5, 30, 30),
  980. DSI_FLD_GET(DSIPHY_CFG5, 31, 31));
  981. #undef DSI_FLD_GET
  982. }
  983. static inline int dsi_if_enable(struct platform_device *dsidev, bool enable)
  984. {
  985. DSSDBG("dsi_if_enable(%d)\n", enable);
  986. enable = enable ? 1 : 0;
  987. REG_FLD_MOD(dsidev, DSI_CTRL, enable, 0, 0); /* IF_EN */
  988. if (wait_for_bit_change(dsidev, DSI_CTRL, 0, enable) != enable) {
  989. DSSERR("Failed to set dsi_if_enable to %d\n", enable);
  990. return -EIO;
  991. }
  992. return 0;
  993. }
  994. static unsigned long dsi_get_pll_hsdiv_dispc_rate(struct platform_device *dsidev)
  995. {
  996. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  997. return dsi->pll.cinfo.clkout[HSDIV_DISPC];
  998. }
  999. static unsigned long dsi_get_pll_hsdiv_dsi_rate(struct platform_device *dsidev)
  1000. {
  1001. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  1002. return dsi->pll.cinfo.clkout[HSDIV_DSI];
  1003. }
  1004. static unsigned long dsi_get_txbyteclkhs(struct platform_device *dsidev)
  1005. {
  1006. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  1007. return dsi->pll.cinfo.clkdco / 16;
  1008. }
  1009. static unsigned long dsi_fclk_rate(struct platform_device *dsidev)
  1010. {
  1011. unsigned long r;
  1012. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  1013. if (dss_get_dsi_clk_source(dsi->module_id) == OMAP_DSS_CLK_SRC_FCK) {
  1014. /* DSI FCLK source is DSS_CLK_FCK */
  1015. r = clk_get_rate(dsi->dss_clk);
  1016. } else {
  1017. /* DSI FCLK source is dsi_pll_hsdiv_dsi_clk */
  1018. r = dsi_get_pll_hsdiv_dsi_rate(dsidev);
  1019. }
  1020. return r;
  1021. }
  1022. static int dsi_lp_clock_calc(unsigned long dsi_fclk,
  1023. unsigned long lp_clk_min, unsigned long lp_clk_max,
  1024. struct dsi_lp_clock_info *lp_cinfo)
  1025. {
  1026. unsigned lp_clk_div;
  1027. unsigned long lp_clk;
  1028. lp_clk_div = DIV_ROUND_UP(dsi_fclk, lp_clk_max * 2);
  1029. lp_clk = dsi_fclk / 2 / lp_clk_div;
  1030. if (lp_clk < lp_clk_min || lp_clk > lp_clk_max)
  1031. return -EINVAL;
  1032. lp_cinfo->lp_clk_div = lp_clk_div;
  1033. lp_cinfo->lp_clk = lp_clk;
  1034. return 0;
  1035. }
  1036. static int dsi_set_lp_clk_divisor(struct platform_device *dsidev)
  1037. {
  1038. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  1039. unsigned long dsi_fclk;
  1040. unsigned lp_clk_div;
  1041. unsigned long lp_clk;
  1042. unsigned lpdiv_max = dss_feat_get_param_max(FEAT_PARAM_DSIPLL_LPDIV);
  1043. lp_clk_div = dsi->user_lp_cinfo.lp_clk_div;
  1044. if (lp_clk_div == 0 || lp_clk_div > lpdiv_max)
  1045. return -EINVAL;
  1046. dsi_fclk = dsi_fclk_rate(dsidev);
  1047. lp_clk = dsi_fclk / 2 / lp_clk_div;
  1048. DSSDBG("LP_CLK_DIV %u, LP_CLK %lu\n", lp_clk_div, lp_clk);
  1049. dsi->current_lp_cinfo.lp_clk = lp_clk;
  1050. dsi->current_lp_cinfo.lp_clk_div = lp_clk_div;
  1051. /* LP_CLK_DIVISOR */
  1052. REG_FLD_MOD(dsidev, DSI_CLK_CTRL, lp_clk_div, 12, 0);
  1053. /* LP_RX_SYNCHRO_ENABLE */
  1054. REG_FLD_MOD(dsidev, DSI_CLK_CTRL, dsi_fclk > 30000000 ? 1 : 0, 21, 21);
  1055. return 0;
  1056. }
  1057. static void dsi_enable_scp_clk(struct platform_device *dsidev)
  1058. {
  1059. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  1060. if (dsi->scp_clk_refcount++ == 0)
  1061. REG_FLD_MOD(dsidev, DSI_CLK_CTRL, 1, 14, 14); /* CIO_CLK_ICG */
  1062. }
  1063. static void dsi_disable_scp_clk(struct platform_device *dsidev)
  1064. {
  1065. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  1066. WARN_ON(dsi->scp_clk_refcount == 0);
  1067. if (--dsi->scp_clk_refcount == 0)
  1068. REG_FLD_MOD(dsidev, DSI_CLK_CTRL, 0, 14, 14); /* CIO_CLK_ICG */
  1069. }
  1070. enum dsi_pll_power_state {
  1071. DSI_PLL_POWER_OFF = 0x0,
  1072. DSI_PLL_POWER_ON_HSCLK = 0x1,
  1073. DSI_PLL_POWER_ON_ALL = 0x2,
  1074. DSI_PLL_POWER_ON_DIV = 0x3,
  1075. };
  1076. static int dsi_pll_power(struct platform_device *dsidev,
  1077. enum dsi_pll_power_state state)
  1078. {
  1079. int t = 0;
  1080. /* DSI-PLL power command 0x3 is not working */
  1081. if (dss_has_feature(FEAT_DSI_PLL_PWR_BUG) &&
  1082. state == DSI_PLL_POWER_ON_DIV)
  1083. state = DSI_PLL_POWER_ON_ALL;
  1084. /* PLL_PWR_CMD */
  1085. REG_FLD_MOD(dsidev, DSI_CLK_CTRL, state, 31, 30);
  1086. /* PLL_PWR_STATUS */
  1087. while (FLD_GET(dsi_read_reg(dsidev, DSI_CLK_CTRL), 29, 28) != state) {
  1088. if (++t > 1000) {
  1089. DSSERR("Failed to set DSI PLL power mode to %d\n",
  1090. state);
  1091. return -ENODEV;
  1092. }
  1093. udelay(1);
  1094. }
  1095. return 0;
  1096. }
  1097. static void dsi_pll_calc_dsi_fck(struct dss_pll_clock_info *cinfo)
  1098. {
  1099. unsigned long max_dsi_fck;
  1100. max_dsi_fck = dss_feat_get_param_max(FEAT_PARAM_DSI_FCK);
  1101. cinfo->mX[HSDIV_DSI] = DIV_ROUND_UP(cinfo->clkdco, max_dsi_fck);
  1102. cinfo->clkout[HSDIV_DSI] = cinfo->clkdco / cinfo->mX[HSDIV_DSI];
  1103. }
  1104. static int dsi_pll_enable(struct dss_pll *pll)
  1105. {
  1106. struct dsi_data *dsi = container_of(pll, struct dsi_data, pll);
  1107. struct platform_device *dsidev = dsi->pdev;
  1108. int r = 0;
  1109. DSSDBG("PLL init\n");
  1110. r = dsi_regulator_init(dsidev);
  1111. if (r)
  1112. return r;
  1113. r = dsi_runtime_get(dsidev);
  1114. if (r)
  1115. return r;
  1116. /*
  1117. * Note: SCP CLK is not required on OMAP3, but it is required on OMAP4.
  1118. */
  1119. dsi_enable_scp_clk(dsidev);
  1120. if (!dsi->vdds_dsi_enabled) {
  1121. r = regulator_enable(dsi->vdds_dsi_reg);
  1122. if (r)
  1123. goto err0;
  1124. dsi->vdds_dsi_enabled = true;
  1125. }
  1126. /* XXX PLL does not come out of reset without this... */
  1127. dispc_pck_free_enable(1);
  1128. if (wait_for_bit_change(dsidev, DSI_PLL_STATUS, 0, 1) != 1) {
  1129. DSSERR("PLL not coming out of reset.\n");
  1130. r = -ENODEV;
  1131. dispc_pck_free_enable(0);
  1132. goto err1;
  1133. }
  1134. /* XXX ... but if left on, we get problems when planes do not
  1135. * fill the whole display. No idea about this */
  1136. dispc_pck_free_enable(0);
  1137. r = dsi_pll_power(dsidev, DSI_PLL_POWER_ON_ALL);
  1138. if (r)
  1139. goto err1;
  1140. DSSDBG("PLL init done\n");
  1141. return 0;
  1142. err1:
  1143. if (dsi->vdds_dsi_enabled) {
  1144. regulator_disable(dsi->vdds_dsi_reg);
  1145. dsi->vdds_dsi_enabled = false;
  1146. }
  1147. err0:
  1148. dsi_disable_scp_clk(dsidev);
  1149. dsi_runtime_put(dsidev);
  1150. return r;
  1151. }
  1152. static void dsi_pll_uninit(struct platform_device *dsidev, bool disconnect_lanes)
  1153. {
  1154. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  1155. dsi_pll_power(dsidev, DSI_PLL_POWER_OFF);
  1156. if (disconnect_lanes) {
  1157. WARN_ON(!dsi->vdds_dsi_enabled);
  1158. regulator_disable(dsi->vdds_dsi_reg);
  1159. dsi->vdds_dsi_enabled = false;
  1160. }
  1161. dsi_disable_scp_clk(dsidev);
  1162. dsi_runtime_put(dsidev);
  1163. DSSDBG("PLL uninit done\n");
  1164. }
  1165. static void dsi_pll_disable(struct dss_pll *pll)
  1166. {
  1167. struct dsi_data *dsi = container_of(pll, struct dsi_data, pll);
  1168. struct platform_device *dsidev = dsi->pdev;
  1169. dsi_pll_uninit(dsidev, true);
  1170. }
  1171. static void dsi_dump_dsidev_clocks(struct platform_device *dsidev,
  1172. struct seq_file *s)
  1173. {
  1174. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  1175. struct dss_pll_clock_info *cinfo = &dsi->pll.cinfo;
  1176. enum omap_dss_clk_source dispc_clk_src, dsi_clk_src;
  1177. int dsi_module = dsi->module_id;
  1178. struct dss_pll *pll = &dsi->pll;
  1179. dispc_clk_src = dss_get_dispc_clk_source();
  1180. dsi_clk_src = dss_get_dsi_clk_source(dsi_module);
  1181. if (dsi_runtime_get(dsidev))
  1182. return;
  1183. seq_printf(s, "- DSI%d PLL -\n", dsi_module + 1);
  1184. seq_printf(s, "dsi pll clkin\t%lu\n", clk_get_rate(pll->clkin));
  1185. seq_printf(s, "Fint\t\t%-16lun %u\n", cinfo->fint, cinfo->n);
  1186. seq_printf(s, "CLKIN4DDR\t%-16lum %u\n",
  1187. cinfo->clkdco, cinfo->m);
  1188. seq_printf(s, "DSI_PLL_HSDIV_DISPC (%s)\t%-16lum_dispc %u\t(%s)\n",
  1189. dss_feat_get_clk_source_name(dsi_module == 0 ?
  1190. OMAP_DSS_CLK_SRC_DSI_PLL_HSDIV_DISPC :
  1191. OMAP_DSS_CLK_SRC_DSI2_PLL_HSDIV_DISPC),
  1192. cinfo->clkout[HSDIV_DISPC],
  1193. cinfo->mX[HSDIV_DISPC],
  1194. dispc_clk_src == OMAP_DSS_CLK_SRC_FCK ?
  1195. "off" : "on");
  1196. seq_printf(s, "DSI_PLL_HSDIV_DSI (%s)\t%-16lum_dsi %u\t(%s)\n",
  1197. dss_feat_get_clk_source_name(dsi_module == 0 ?
  1198. OMAP_DSS_CLK_SRC_DSI_PLL_HSDIV_DSI :
  1199. OMAP_DSS_CLK_SRC_DSI2_PLL_HSDIV_DSI),
  1200. cinfo->clkout[HSDIV_DSI],
  1201. cinfo->mX[HSDIV_DSI],
  1202. dsi_clk_src == OMAP_DSS_CLK_SRC_FCK ?
  1203. "off" : "on");
  1204. seq_printf(s, "- DSI%d -\n", dsi_module + 1);
  1205. seq_printf(s, "dsi fclk source = %s (%s)\n",
  1206. dss_get_generic_clk_source_name(dsi_clk_src),
  1207. dss_feat_get_clk_source_name(dsi_clk_src));
  1208. seq_printf(s, "DSI_FCLK\t%lu\n", dsi_fclk_rate(dsidev));
  1209. seq_printf(s, "DDR_CLK\t\t%lu\n",
  1210. cinfo->clkdco / 4);
  1211. seq_printf(s, "TxByteClkHS\t%lu\n", dsi_get_txbyteclkhs(dsidev));
  1212. seq_printf(s, "LP_CLK\t\t%lu\n", dsi->current_lp_cinfo.lp_clk);
  1213. dsi_runtime_put(dsidev);
  1214. }
  1215. void dsi_dump_clocks(struct seq_file *s)
  1216. {
  1217. struct platform_device *dsidev;
  1218. int i;
  1219. for (i = 0; i < MAX_NUM_DSI; i++) {
  1220. dsidev = dsi_get_dsidev_from_id(i);
  1221. if (dsidev)
  1222. dsi_dump_dsidev_clocks(dsidev, s);
  1223. }
  1224. }
  1225. #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
  1226. static void dsi_dump_dsidev_irqs(struct platform_device *dsidev,
  1227. struct seq_file *s)
  1228. {
  1229. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  1230. unsigned long flags;
  1231. struct dsi_irq_stats stats;
  1232. spin_lock_irqsave(&dsi->irq_stats_lock, flags);
  1233. stats = dsi->irq_stats;
  1234. memset(&dsi->irq_stats, 0, sizeof(dsi->irq_stats));
  1235. dsi->irq_stats.last_reset = jiffies;
  1236. spin_unlock_irqrestore(&dsi->irq_stats_lock, flags);
  1237. seq_printf(s, "period %u ms\n",
  1238. jiffies_to_msecs(jiffies - stats.last_reset));
  1239. seq_printf(s, "irqs %d\n", stats.irq_count);
  1240. #define PIS(x) \
  1241. seq_printf(s, "%-20s %10d\n", #x, stats.dsi_irqs[ffs(DSI_IRQ_##x)-1]);
  1242. seq_printf(s, "-- DSI%d interrupts --\n", dsi->module_id + 1);
  1243. PIS(VC0);
  1244. PIS(VC1);
  1245. PIS(VC2);
  1246. PIS(VC3);
  1247. PIS(WAKEUP);
  1248. PIS(RESYNC);
  1249. PIS(PLL_LOCK);
  1250. PIS(PLL_UNLOCK);
  1251. PIS(PLL_RECALL);
  1252. PIS(COMPLEXIO_ERR);
  1253. PIS(HS_TX_TIMEOUT);
  1254. PIS(LP_RX_TIMEOUT);
  1255. PIS(TE_TRIGGER);
  1256. PIS(ACK_TRIGGER);
  1257. PIS(SYNC_LOST);
  1258. PIS(LDO_POWER_GOOD);
  1259. PIS(TA_TIMEOUT);
  1260. #undef PIS
  1261. #define PIS(x) \
  1262. seq_printf(s, "%-20s %10d %10d %10d %10d\n", #x, \
  1263. stats.vc_irqs[0][ffs(DSI_VC_IRQ_##x)-1], \
  1264. stats.vc_irqs[1][ffs(DSI_VC_IRQ_##x)-1], \
  1265. stats.vc_irqs[2][ffs(DSI_VC_IRQ_##x)-1], \
  1266. stats.vc_irqs[3][ffs(DSI_VC_IRQ_##x)-1]);
  1267. seq_printf(s, "-- VC interrupts --\n");
  1268. PIS(CS);
  1269. PIS(ECC_CORR);
  1270. PIS(PACKET_SENT);
  1271. PIS(FIFO_TX_OVF);
  1272. PIS(FIFO_RX_OVF);
  1273. PIS(BTA);
  1274. PIS(ECC_NO_CORR);
  1275. PIS(FIFO_TX_UDF);
  1276. PIS(PP_BUSY_CHANGE);
  1277. #undef PIS
  1278. #define PIS(x) \
  1279. seq_printf(s, "%-20s %10d\n", #x, \
  1280. stats.cio_irqs[ffs(DSI_CIO_IRQ_##x)-1]);
  1281. seq_printf(s, "-- CIO interrupts --\n");
  1282. PIS(ERRSYNCESC1);
  1283. PIS(ERRSYNCESC2);
  1284. PIS(ERRSYNCESC3);
  1285. PIS(ERRESC1);
  1286. PIS(ERRESC2);
  1287. PIS(ERRESC3);
  1288. PIS(ERRCONTROL1);
  1289. PIS(ERRCONTROL2);
  1290. PIS(ERRCONTROL3);
  1291. PIS(STATEULPS1);
  1292. PIS(STATEULPS2);
  1293. PIS(STATEULPS3);
  1294. PIS(ERRCONTENTIONLP0_1);
  1295. PIS(ERRCONTENTIONLP1_1);
  1296. PIS(ERRCONTENTIONLP0_2);
  1297. PIS(ERRCONTENTIONLP1_2);
  1298. PIS(ERRCONTENTIONLP0_3);
  1299. PIS(ERRCONTENTIONLP1_3);
  1300. PIS(ULPSACTIVENOT_ALL0);
  1301. PIS(ULPSACTIVENOT_ALL1);
  1302. #undef PIS
  1303. }
  1304. static void dsi1_dump_irqs(struct seq_file *s)
  1305. {
  1306. struct platform_device *dsidev = dsi_get_dsidev_from_id(0);
  1307. dsi_dump_dsidev_irqs(dsidev, s);
  1308. }
  1309. static void dsi2_dump_irqs(struct seq_file *s)
  1310. {
  1311. struct platform_device *dsidev = dsi_get_dsidev_from_id(1);
  1312. dsi_dump_dsidev_irqs(dsidev, s);
  1313. }
  1314. #endif
  1315. static void dsi_dump_dsidev_regs(struct platform_device *dsidev,
  1316. struct seq_file *s)
  1317. {
  1318. #define DUMPREG(r) seq_printf(s, "%-35s %08x\n", #r, dsi_read_reg(dsidev, r))
  1319. if (dsi_runtime_get(dsidev))
  1320. return;
  1321. dsi_enable_scp_clk(dsidev);
  1322. DUMPREG(DSI_REVISION);
  1323. DUMPREG(DSI_SYSCONFIG);
  1324. DUMPREG(DSI_SYSSTATUS);
  1325. DUMPREG(DSI_IRQSTATUS);
  1326. DUMPREG(DSI_IRQENABLE);
  1327. DUMPREG(DSI_CTRL);
  1328. DUMPREG(DSI_COMPLEXIO_CFG1);
  1329. DUMPREG(DSI_COMPLEXIO_IRQ_STATUS);
  1330. DUMPREG(DSI_COMPLEXIO_IRQ_ENABLE);
  1331. DUMPREG(DSI_CLK_CTRL);
  1332. DUMPREG(DSI_TIMING1);
  1333. DUMPREG(DSI_TIMING2);
  1334. DUMPREG(DSI_VM_TIMING1);
  1335. DUMPREG(DSI_VM_TIMING2);
  1336. DUMPREG(DSI_VM_TIMING3);
  1337. DUMPREG(DSI_CLK_TIMING);
  1338. DUMPREG(DSI_TX_FIFO_VC_SIZE);
  1339. DUMPREG(DSI_RX_FIFO_VC_SIZE);
  1340. DUMPREG(DSI_COMPLEXIO_CFG2);
  1341. DUMPREG(DSI_RX_FIFO_VC_FULLNESS);
  1342. DUMPREG(DSI_VM_TIMING4);
  1343. DUMPREG(DSI_TX_FIFO_VC_EMPTINESS);
  1344. DUMPREG(DSI_VM_TIMING5);
  1345. DUMPREG(DSI_VM_TIMING6);
  1346. DUMPREG(DSI_VM_TIMING7);
  1347. DUMPREG(DSI_STOPCLK_TIMING);
  1348. DUMPREG(DSI_VC_CTRL(0));
  1349. DUMPREG(DSI_VC_TE(0));
  1350. DUMPREG(DSI_VC_LONG_PACKET_HEADER(0));
  1351. DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(0));
  1352. DUMPREG(DSI_VC_SHORT_PACKET_HEADER(0));
  1353. DUMPREG(DSI_VC_IRQSTATUS(0));
  1354. DUMPREG(DSI_VC_IRQENABLE(0));
  1355. DUMPREG(DSI_VC_CTRL(1));
  1356. DUMPREG(DSI_VC_TE(1));
  1357. DUMPREG(DSI_VC_LONG_PACKET_HEADER(1));
  1358. DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(1));
  1359. DUMPREG(DSI_VC_SHORT_PACKET_HEADER(1));
  1360. DUMPREG(DSI_VC_IRQSTATUS(1));
  1361. DUMPREG(DSI_VC_IRQENABLE(1));
  1362. DUMPREG(DSI_VC_CTRL(2));
  1363. DUMPREG(DSI_VC_TE(2));
  1364. DUMPREG(DSI_VC_LONG_PACKET_HEADER(2));
  1365. DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(2));
  1366. DUMPREG(DSI_VC_SHORT_PACKET_HEADER(2));
  1367. DUMPREG(DSI_VC_IRQSTATUS(2));
  1368. DUMPREG(DSI_VC_IRQENABLE(2));
  1369. DUMPREG(DSI_VC_CTRL(3));
  1370. DUMPREG(DSI_VC_TE(3));
  1371. DUMPREG(DSI_VC_LONG_PACKET_HEADER(3));
  1372. DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(3));
  1373. DUMPREG(DSI_VC_SHORT_PACKET_HEADER(3));
  1374. DUMPREG(DSI_VC_IRQSTATUS(3));
  1375. DUMPREG(DSI_VC_IRQENABLE(3));
  1376. DUMPREG(DSI_DSIPHY_CFG0);
  1377. DUMPREG(DSI_DSIPHY_CFG1);
  1378. DUMPREG(DSI_DSIPHY_CFG2);
  1379. DUMPREG(DSI_DSIPHY_CFG5);
  1380. DUMPREG(DSI_PLL_CONTROL);
  1381. DUMPREG(DSI_PLL_STATUS);
  1382. DUMPREG(DSI_PLL_GO);
  1383. DUMPREG(DSI_PLL_CONFIGURATION1);
  1384. DUMPREG(DSI_PLL_CONFIGURATION2);
  1385. dsi_disable_scp_clk(dsidev);
  1386. dsi_runtime_put(dsidev);
  1387. #undef DUMPREG
  1388. }
  1389. static void dsi1_dump_regs(struct seq_file *s)
  1390. {
  1391. struct platform_device *dsidev = dsi_get_dsidev_from_id(0);
  1392. dsi_dump_dsidev_regs(dsidev, s);
  1393. }
  1394. static void dsi2_dump_regs(struct seq_file *s)
  1395. {
  1396. struct platform_device *dsidev = dsi_get_dsidev_from_id(1);
  1397. dsi_dump_dsidev_regs(dsidev, s);
  1398. }
  1399. enum dsi_cio_power_state {
  1400. DSI_COMPLEXIO_POWER_OFF = 0x0,
  1401. DSI_COMPLEXIO_POWER_ON = 0x1,
  1402. DSI_COMPLEXIO_POWER_ULPS = 0x2,
  1403. };
  1404. static int dsi_cio_power(struct platform_device *dsidev,
  1405. enum dsi_cio_power_state state)
  1406. {
  1407. int t = 0;
  1408. /* PWR_CMD */
  1409. REG_FLD_MOD(dsidev, DSI_COMPLEXIO_CFG1, state, 28, 27);
  1410. /* PWR_STATUS */
  1411. while (FLD_GET(dsi_read_reg(dsidev, DSI_COMPLEXIO_CFG1),
  1412. 26, 25) != state) {
  1413. if (++t > 1000) {
  1414. DSSERR("failed to set complexio power state to "
  1415. "%d\n", state);
  1416. return -ENODEV;
  1417. }
  1418. udelay(1);
  1419. }
  1420. return 0;
  1421. }
  1422. static unsigned dsi_get_line_buf_size(struct platform_device *dsidev)
  1423. {
  1424. int val;
  1425. /* line buffer on OMAP3 is 1024 x 24bits */
  1426. /* XXX: for some reason using full buffer size causes
  1427. * considerable TX slowdown with update sizes that fill the
  1428. * whole buffer */
  1429. if (!dss_has_feature(FEAT_DSI_GNQ))
  1430. return 1023 * 3;
  1431. val = REG_GET(dsidev, DSI_GNQ, 14, 12); /* VP1_LINE_BUFFER_SIZE */
  1432. switch (val) {
  1433. case 1:
  1434. return 512 * 3; /* 512x24 bits */
  1435. case 2:
  1436. return 682 * 3; /* 682x24 bits */
  1437. case 3:
  1438. return 853 * 3; /* 853x24 bits */
  1439. case 4:
  1440. return 1024 * 3; /* 1024x24 bits */
  1441. case 5:
  1442. return 1194 * 3; /* 1194x24 bits */
  1443. case 6:
  1444. return 1365 * 3; /* 1365x24 bits */
  1445. case 7:
  1446. return 1920 * 3; /* 1920x24 bits */
  1447. default:
  1448. BUG();
  1449. return 0;
  1450. }
  1451. }
  1452. static int dsi_set_lane_config(struct platform_device *dsidev)
  1453. {
  1454. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  1455. static const u8 offsets[] = { 0, 4, 8, 12, 16 };
  1456. static const enum dsi_lane_function functions[] = {
  1457. DSI_LANE_CLK,
  1458. DSI_LANE_DATA1,
  1459. DSI_LANE_DATA2,
  1460. DSI_LANE_DATA3,
  1461. DSI_LANE_DATA4,
  1462. };
  1463. u32 r;
  1464. int i;
  1465. r = dsi_read_reg(dsidev, DSI_COMPLEXIO_CFG1);
  1466. for (i = 0; i < dsi->num_lanes_used; ++i) {
  1467. unsigned offset = offsets[i];
  1468. unsigned polarity, lane_number;
  1469. unsigned t;
  1470. for (t = 0; t < dsi->num_lanes_supported; ++t)
  1471. if (dsi->lanes[t].function == functions[i])
  1472. break;
  1473. if (t == dsi->num_lanes_supported)
  1474. return -EINVAL;
  1475. lane_number = t;
  1476. polarity = dsi->lanes[t].polarity;
  1477. r = FLD_MOD(r, lane_number + 1, offset + 2, offset);
  1478. r = FLD_MOD(r, polarity, offset + 3, offset + 3);
  1479. }
  1480. /* clear the unused lanes */
  1481. for (; i < dsi->num_lanes_supported; ++i) {
  1482. unsigned offset = offsets[i];
  1483. r = FLD_MOD(r, 0, offset + 2, offset);
  1484. r = FLD_MOD(r, 0, offset + 3, offset + 3);
  1485. }
  1486. dsi_write_reg(dsidev, DSI_COMPLEXIO_CFG1, r);
  1487. return 0;
  1488. }
  1489. static inline unsigned ns2ddr(struct platform_device *dsidev, unsigned ns)
  1490. {
  1491. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  1492. /* convert time in ns to ddr ticks, rounding up */
  1493. unsigned long ddr_clk = dsi->pll.cinfo.clkdco / 4;
  1494. return (ns * (ddr_clk / 1000 / 1000) + 999) / 1000;
  1495. }
  1496. static inline unsigned ddr2ns(struct platform_device *dsidev, unsigned ddr)
  1497. {
  1498. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  1499. unsigned long ddr_clk = dsi->pll.cinfo.clkdco / 4;
  1500. return ddr * 1000 * 1000 / (ddr_clk / 1000);
  1501. }
  1502. static void dsi_cio_timings(struct platform_device *dsidev)
  1503. {
  1504. u32 r;
  1505. u32 ths_prepare, ths_prepare_ths_zero, ths_trail, ths_exit;
  1506. u32 tlpx_half, tclk_trail, tclk_zero;
  1507. u32 tclk_prepare;
  1508. /* calculate timings */
  1509. /* 1 * DDR_CLK = 2 * UI */
  1510. /* min 40ns + 4*UI max 85ns + 6*UI */
  1511. ths_prepare = ns2ddr(dsidev, 70) + 2;
  1512. /* min 145ns + 10*UI */
  1513. ths_prepare_ths_zero = ns2ddr(dsidev, 175) + 2;
  1514. /* min max(8*UI, 60ns+4*UI) */
  1515. ths_trail = ns2ddr(dsidev, 60) + 5;
  1516. /* min 100ns */
  1517. ths_exit = ns2ddr(dsidev, 145);
  1518. /* tlpx min 50n */
  1519. tlpx_half = ns2ddr(dsidev, 25);
  1520. /* min 60ns */
  1521. tclk_trail = ns2ddr(dsidev, 60) + 2;
  1522. /* min 38ns, max 95ns */
  1523. tclk_prepare = ns2ddr(dsidev, 65);
  1524. /* min tclk-prepare + tclk-zero = 300ns */
  1525. tclk_zero = ns2ddr(dsidev, 260);
  1526. DSSDBG("ths_prepare %u (%uns), ths_prepare_ths_zero %u (%uns)\n",
  1527. ths_prepare, ddr2ns(dsidev, ths_prepare),
  1528. ths_prepare_ths_zero, ddr2ns(dsidev, ths_prepare_ths_zero));
  1529. DSSDBG("ths_trail %u (%uns), ths_exit %u (%uns)\n",
  1530. ths_trail, ddr2ns(dsidev, ths_trail),
  1531. ths_exit, ddr2ns(dsidev, ths_exit));
  1532. DSSDBG("tlpx_half %u (%uns), tclk_trail %u (%uns), "
  1533. "tclk_zero %u (%uns)\n",
  1534. tlpx_half, ddr2ns(dsidev, tlpx_half),
  1535. tclk_trail, ddr2ns(dsidev, tclk_trail),
  1536. tclk_zero, ddr2ns(dsidev, tclk_zero));
  1537. DSSDBG("tclk_prepare %u (%uns)\n",
  1538. tclk_prepare, ddr2ns(dsidev, tclk_prepare));
  1539. /* program timings */
  1540. r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG0);
  1541. r = FLD_MOD(r, ths_prepare, 31, 24);
  1542. r = FLD_MOD(r, ths_prepare_ths_zero, 23, 16);
  1543. r = FLD_MOD(r, ths_trail, 15, 8);
  1544. r = FLD_MOD(r, ths_exit, 7, 0);
  1545. dsi_write_reg(dsidev, DSI_DSIPHY_CFG0, r);
  1546. r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG1);
  1547. r = FLD_MOD(r, tlpx_half, 20, 16);
  1548. r = FLD_MOD(r, tclk_trail, 15, 8);
  1549. r = FLD_MOD(r, tclk_zero, 7, 0);
  1550. if (dss_has_feature(FEAT_DSI_PHY_DCC)) {
  1551. r = FLD_MOD(r, 0, 21, 21); /* DCCEN = disable */
  1552. r = FLD_MOD(r, 1, 22, 22); /* CLKINP_DIVBY2EN = enable */
  1553. r = FLD_MOD(r, 1, 23, 23); /* CLKINP_SEL = enable */
  1554. }
  1555. dsi_write_reg(dsidev, DSI_DSIPHY_CFG1, r);
  1556. r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG2);
  1557. r = FLD_MOD(r, tclk_prepare, 7, 0);
  1558. dsi_write_reg(dsidev, DSI_DSIPHY_CFG2, r);
  1559. }
  1560. /* lane masks have lane 0 at lsb. mask_p for positive lines, n for negative */
  1561. static void dsi_cio_enable_lane_override(struct platform_device *dsidev,
  1562. unsigned mask_p, unsigned mask_n)
  1563. {
  1564. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  1565. int i;
  1566. u32 l;
  1567. u8 lptxscp_start = dsi->num_lanes_supported == 3 ? 22 : 26;
  1568. l = 0;
  1569. for (i = 0; i < dsi->num_lanes_supported; ++i) {
  1570. unsigned p = dsi->lanes[i].polarity;
  1571. if (mask_p & (1 << i))
  1572. l |= 1 << (i * 2 + (p ? 0 : 1));
  1573. if (mask_n & (1 << i))
  1574. l |= 1 << (i * 2 + (p ? 1 : 0));
  1575. }
  1576. /*
  1577. * Bits in REGLPTXSCPDAT4TO0DXDY:
  1578. * 17: DY0 18: DX0
  1579. * 19: DY1 20: DX1
  1580. * 21: DY2 22: DX2
  1581. * 23: DY3 24: DX3
  1582. * 25: DY4 26: DX4
  1583. */
  1584. /* Set the lane override configuration */
  1585. /* REGLPTXSCPDAT4TO0DXDY */
  1586. REG_FLD_MOD(dsidev, DSI_DSIPHY_CFG10, l, lptxscp_start, 17);
  1587. /* Enable lane override */
  1588. /* ENLPTXSCPDAT */
  1589. REG_FLD_MOD(dsidev, DSI_DSIPHY_CFG10, 1, 27, 27);
  1590. }
  1591. static void dsi_cio_disable_lane_override(struct platform_device *dsidev)
  1592. {
  1593. /* Disable lane override */
  1594. REG_FLD_MOD(dsidev, DSI_DSIPHY_CFG10, 0, 27, 27); /* ENLPTXSCPDAT */
  1595. /* Reset the lane override configuration */
  1596. /* REGLPTXSCPDAT4TO0DXDY */
  1597. REG_FLD_MOD(dsidev, DSI_DSIPHY_CFG10, 0, 22, 17);
  1598. }
  1599. static int dsi_cio_wait_tx_clk_esc_reset(struct platform_device *dsidev)
  1600. {
  1601. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  1602. int t, i;
  1603. bool in_use[DSI_MAX_NR_LANES];
  1604. static const u8 offsets_old[] = { 28, 27, 26 };
  1605. static const u8 offsets_new[] = { 24, 25, 26, 27, 28 };
  1606. const u8 *offsets;
  1607. if (dss_has_feature(FEAT_DSI_REVERSE_TXCLKESC))
  1608. offsets = offsets_old;
  1609. else
  1610. offsets = offsets_new;
  1611. for (i = 0; i < dsi->num_lanes_supported; ++i)
  1612. in_use[i] = dsi->lanes[i].function != DSI_LANE_UNUSED;
  1613. t = 100000;
  1614. while (true) {
  1615. u32 l;
  1616. int ok;
  1617. l = dsi_read_reg(dsidev, DSI_DSIPHY_CFG5);
  1618. ok = 0;
  1619. for (i = 0; i < dsi->num_lanes_supported; ++i) {
  1620. if (!in_use[i] || (l & (1 << offsets[i])))
  1621. ok++;
  1622. }
  1623. if (ok == dsi->num_lanes_supported)
  1624. break;
  1625. if (--t == 0) {
  1626. for (i = 0; i < dsi->num_lanes_supported; ++i) {
  1627. if (!in_use[i] || (l & (1 << offsets[i])))
  1628. continue;
  1629. DSSERR("CIO TXCLKESC%d domain not coming " \
  1630. "out of reset\n", i);
  1631. }
  1632. return -EIO;
  1633. }
  1634. }
  1635. return 0;
  1636. }
  1637. /* return bitmask of enabled lanes, lane0 being the lsb */
  1638. static unsigned dsi_get_lane_mask(struct platform_device *dsidev)
  1639. {
  1640. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  1641. unsigned mask = 0;
  1642. int i;
  1643. for (i = 0; i < dsi->num_lanes_supported; ++i) {
  1644. if (dsi->lanes[i].function != DSI_LANE_UNUSED)
  1645. mask |= 1 << i;
  1646. }
  1647. return mask;
  1648. }
  1649. static int dsi_cio_init(struct platform_device *dsidev)
  1650. {
  1651. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  1652. int r;
  1653. u32 l;
  1654. DSSDBG("DSI CIO init starts");
  1655. r = dss_dsi_enable_pads(dsi->module_id, dsi_get_lane_mask(dsidev));
  1656. if (r)
  1657. return r;
  1658. dsi_enable_scp_clk(dsidev);
  1659. /* A dummy read using the SCP interface to any DSIPHY register is
  1660. * required after DSIPHY reset to complete the reset of the DSI complex
  1661. * I/O. */
  1662. dsi_read_reg(dsidev, DSI_DSIPHY_CFG5);
  1663. if (wait_for_bit_change(dsidev, DSI_DSIPHY_CFG5, 30, 1) != 1) {
  1664. DSSERR("CIO SCP Clock domain not coming out of reset.\n");
  1665. r = -EIO;
  1666. goto err_scp_clk_dom;
  1667. }
  1668. r = dsi_set_lane_config(dsidev);
  1669. if (r)
  1670. goto err_scp_clk_dom;
  1671. /* set TX STOP MODE timer to maximum for this operation */
  1672. l = dsi_read_reg(dsidev, DSI_TIMING1);
  1673. l = FLD_MOD(l, 1, 15, 15); /* FORCE_TX_STOP_MODE_IO */
  1674. l = FLD_MOD(l, 1, 14, 14); /* STOP_STATE_X16_IO */
  1675. l = FLD_MOD(l, 1, 13, 13); /* STOP_STATE_X4_IO */
  1676. l = FLD_MOD(l, 0x1fff, 12, 0); /* STOP_STATE_COUNTER_IO */
  1677. dsi_write_reg(dsidev, DSI_TIMING1, l);
  1678. if (dsi->ulps_enabled) {
  1679. unsigned mask_p;
  1680. int i;
  1681. DSSDBG("manual ulps exit\n");
  1682. /* ULPS is exited by Mark-1 state for 1ms, followed by
  1683. * stop state. DSS HW cannot do this via the normal
  1684. * ULPS exit sequence, as after reset the DSS HW thinks
  1685. * that we are not in ULPS mode, and refuses to send the
  1686. * sequence. So we need to send the ULPS exit sequence
  1687. * manually by setting positive lines high and negative lines
  1688. * low for 1ms.
  1689. */
  1690. mask_p = 0;
  1691. for (i = 0; i < dsi->num_lanes_supported; ++i) {
  1692. if (dsi->lanes[i].function == DSI_LANE_UNUSED)
  1693. continue;
  1694. mask_p |= 1 << i;
  1695. }
  1696. dsi_cio_enable_lane_override(dsidev, mask_p, 0);
  1697. }
  1698. r = dsi_cio_power(dsidev, DSI_COMPLEXIO_POWER_ON);
  1699. if (r)
  1700. goto err_cio_pwr;
  1701. if (wait_for_bit_change(dsidev, DSI_COMPLEXIO_CFG1, 29, 1) != 1) {
  1702. DSSERR("CIO PWR clock domain not coming out of reset.\n");
  1703. r = -ENODEV;
  1704. goto err_cio_pwr_dom;
  1705. }
  1706. dsi_if_enable(dsidev, true);
  1707. dsi_if_enable(dsidev, false);
  1708. REG_FLD_MOD(dsidev, DSI_CLK_CTRL, 1, 20, 20); /* LP_CLK_ENABLE */
  1709. r = dsi_cio_wait_tx_clk_esc_reset(dsidev);
  1710. if (r)
  1711. goto err_tx_clk_esc_rst;
  1712. if (dsi->ulps_enabled) {
  1713. /* Keep Mark-1 state for 1ms (as per DSI spec) */
  1714. ktime_t wait = ns_to_ktime(1000 * 1000);
  1715. set_current_state(TASK_UNINTERRUPTIBLE);
  1716. schedule_hrtimeout(&wait, HRTIMER_MODE_REL);
  1717. /* Disable the override. The lanes should be set to Mark-11
  1718. * state by the HW */
  1719. dsi_cio_disable_lane_override(dsidev);
  1720. }
  1721. /* FORCE_TX_STOP_MODE_IO */
  1722. REG_FLD_MOD(dsidev, DSI_TIMING1, 0, 15, 15);
  1723. dsi_cio_timings(dsidev);
  1724. if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
  1725. /* DDR_CLK_ALWAYS_ON */
  1726. REG_FLD_MOD(dsidev, DSI_CLK_CTRL,
  1727. dsi->vm_timings.ddr_clk_always_on, 13, 13);
  1728. }
  1729. dsi->ulps_enabled = false;
  1730. DSSDBG("CIO init done\n");
  1731. return 0;
  1732. err_tx_clk_esc_rst:
  1733. REG_FLD_MOD(dsidev, DSI_CLK_CTRL, 0, 20, 20); /* LP_CLK_ENABLE */
  1734. err_cio_pwr_dom:
  1735. dsi_cio_power(dsidev, DSI_COMPLEXIO_POWER_OFF);
  1736. err_cio_pwr:
  1737. if (dsi->ulps_enabled)
  1738. dsi_cio_disable_lane_override(dsidev);
  1739. err_scp_clk_dom:
  1740. dsi_disable_scp_clk(dsidev);
  1741. dss_dsi_disable_pads(dsi->module_id, dsi_get_lane_mask(dsidev));
  1742. return r;
  1743. }
  1744. static void dsi_cio_uninit(struct platform_device *dsidev)
  1745. {
  1746. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  1747. /* DDR_CLK_ALWAYS_ON */
  1748. REG_FLD_MOD(dsidev, DSI_CLK_CTRL, 0, 13, 13);
  1749. dsi_cio_power(dsidev, DSI_COMPLEXIO_POWER_OFF);
  1750. dsi_disable_scp_clk(dsidev);
  1751. dss_dsi_disable_pads(dsi->module_id, dsi_get_lane_mask(dsidev));
  1752. }
  1753. static void dsi_config_tx_fifo(struct platform_device *dsidev,
  1754. enum fifo_size size1, enum fifo_size size2,
  1755. enum fifo_size size3, enum fifo_size size4)
  1756. {
  1757. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  1758. u32 r = 0;
  1759. int add = 0;
  1760. int i;
  1761. dsi->vc[0].tx_fifo_size = size1;
  1762. dsi->vc[1].tx_fifo_size = size2;
  1763. dsi->vc[2].tx_fifo_size = size3;
  1764. dsi->vc[3].tx_fifo_size = size4;
  1765. for (i = 0; i < 4; i++) {
  1766. u8 v;
  1767. int size = dsi->vc[i].tx_fifo_size;
  1768. if (add + size > 4) {
  1769. DSSERR("Illegal FIFO configuration\n");
  1770. BUG();
  1771. return;
  1772. }
  1773. v = FLD_VAL(add, 2, 0) | FLD_VAL(size, 7, 4);
  1774. r |= v << (8 * i);
  1775. /*DSSDBG("TX FIFO vc %d: size %d, add %d\n", i, size, add); */
  1776. add += size;
  1777. }
  1778. dsi_write_reg(dsidev, DSI_TX_FIFO_VC_SIZE, r);
  1779. }
  1780. static void dsi_config_rx_fifo(struct platform_device *dsidev,
  1781. enum fifo_size size1, enum fifo_size size2,
  1782. enum fifo_size size3, enum fifo_size size4)
  1783. {
  1784. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  1785. u32 r = 0;
  1786. int add = 0;
  1787. int i;
  1788. dsi->vc[0].rx_fifo_size = size1;
  1789. dsi->vc[1].rx_fifo_size = size2;
  1790. dsi->vc[2].rx_fifo_size = size3;
  1791. dsi->vc[3].rx_fifo_size = size4;
  1792. for (i = 0; i < 4; i++) {
  1793. u8 v;
  1794. int size = dsi->vc[i].rx_fifo_size;
  1795. if (add + size > 4) {
  1796. DSSERR("Illegal FIFO configuration\n");
  1797. BUG();
  1798. return;
  1799. }
  1800. v = FLD_VAL(add, 2, 0) | FLD_VAL(size, 7, 4);
  1801. r |= v << (8 * i);
  1802. /*DSSDBG("RX FIFO vc %d: size %d, add %d\n", i, size, add); */
  1803. add += size;
  1804. }
  1805. dsi_write_reg(dsidev, DSI_RX_FIFO_VC_SIZE, r);
  1806. }
  1807. static int dsi_force_tx_stop_mode_io(struct platform_device *dsidev)
  1808. {
  1809. u32 r;
  1810. r = dsi_read_reg(dsidev, DSI_TIMING1);
  1811. r = FLD_MOD(r, 1, 15, 15); /* FORCE_TX_STOP_MODE_IO */
  1812. dsi_write_reg(dsidev, DSI_TIMING1, r);
  1813. if (wait_for_bit_change(dsidev, DSI_TIMING1, 15, 0) != 0) {
  1814. DSSERR("TX_STOP bit not going down\n");
  1815. return -EIO;
  1816. }
  1817. return 0;
  1818. }
  1819. static bool dsi_vc_is_enabled(struct platform_device *dsidev, int channel)
  1820. {
  1821. return REG_GET(dsidev, DSI_VC_CTRL(channel), 0, 0);
  1822. }
  1823. static void dsi_packet_sent_handler_vp(void *data, u32 mask)
  1824. {
  1825. struct dsi_packet_sent_handler_data *vp_data =
  1826. (struct dsi_packet_sent_handler_data *) data;
  1827. struct dsi_data *dsi = dsi_get_dsidrv_data(vp_data->dsidev);
  1828. const int channel = dsi->update_channel;
  1829. u8 bit = dsi->te_enabled ? 30 : 31;
  1830. if (REG_GET(vp_data->dsidev, DSI_VC_TE(channel), bit, bit) == 0)
  1831. complete(vp_data->completion);
  1832. }
  1833. static int dsi_sync_vc_vp(struct platform_device *dsidev, int channel)
  1834. {
  1835. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  1836. DECLARE_COMPLETION_ONSTACK(completion);
  1837. struct dsi_packet_sent_handler_data vp_data = {
  1838. .dsidev = dsidev,
  1839. .completion = &completion
  1840. };
  1841. int r = 0;
  1842. u8 bit;
  1843. bit = dsi->te_enabled ? 30 : 31;
  1844. r = dsi_register_isr_vc(dsidev, channel, dsi_packet_sent_handler_vp,
  1845. &vp_data, DSI_VC_IRQ_PACKET_SENT);
  1846. if (r)
  1847. goto err0;
  1848. /* Wait for completion only if TE_EN/TE_START is still set */
  1849. if (REG_GET(dsidev, DSI_VC_TE(channel), bit, bit)) {
  1850. if (wait_for_completion_timeout(&completion,
  1851. msecs_to_jiffies(10)) == 0) {
  1852. DSSERR("Failed to complete previous frame transfer\n");
  1853. r = -EIO;
  1854. goto err1;
  1855. }
  1856. }
  1857. dsi_unregister_isr_vc(dsidev, channel, dsi_packet_sent_handler_vp,
  1858. &vp_data, DSI_VC_IRQ_PACKET_SENT);
  1859. return 0;
  1860. err1:
  1861. dsi_unregister_isr_vc(dsidev, channel, dsi_packet_sent_handler_vp,
  1862. &vp_data, DSI_VC_IRQ_PACKET_SENT);
  1863. err0:
  1864. return r;
  1865. }
  1866. static void dsi_packet_sent_handler_l4(void *data, u32 mask)
  1867. {
  1868. struct dsi_packet_sent_handler_data *l4_data =
  1869. (struct dsi_packet_sent_handler_data *) data;
  1870. struct dsi_data *dsi = dsi_get_dsidrv_data(l4_data->dsidev);
  1871. const int channel = dsi->update_channel;
  1872. if (REG_GET(l4_data->dsidev, DSI_VC_CTRL(channel), 5, 5) == 0)
  1873. complete(l4_data->completion);
  1874. }
  1875. static int dsi_sync_vc_l4(struct platform_device *dsidev, int channel)
  1876. {
  1877. DECLARE_COMPLETION_ONSTACK(completion);
  1878. struct dsi_packet_sent_handler_data l4_data = {
  1879. .dsidev = dsidev,
  1880. .completion = &completion
  1881. };
  1882. int r = 0;
  1883. r = dsi_register_isr_vc(dsidev, channel, dsi_packet_sent_handler_l4,
  1884. &l4_data, DSI_VC_IRQ_PACKET_SENT);
  1885. if (r)
  1886. goto err0;
  1887. /* Wait for completion only if TX_FIFO_NOT_EMPTY is still set */
  1888. if (REG_GET(dsidev, DSI_VC_CTRL(channel), 5, 5)) {
  1889. if (wait_for_completion_timeout(&completion,
  1890. msecs_to_jiffies(10)) == 0) {
  1891. DSSERR("Failed to complete previous l4 transfer\n");
  1892. r = -EIO;
  1893. goto err1;
  1894. }
  1895. }
  1896. dsi_unregister_isr_vc(dsidev, channel, dsi_packet_sent_handler_l4,
  1897. &l4_data, DSI_VC_IRQ_PACKET_SENT);
  1898. return 0;
  1899. err1:
  1900. dsi_unregister_isr_vc(dsidev, channel, dsi_packet_sent_handler_l4,
  1901. &l4_data, DSI_VC_IRQ_PACKET_SENT);
  1902. err0:
  1903. return r;
  1904. }
  1905. static int dsi_sync_vc(struct platform_device *dsidev, int channel)
  1906. {
  1907. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  1908. WARN_ON(!dsi_bus_is_locked(dsidev));
  1909. WARN_ON(in_interrupt());
  1910. if (!dsi_vc_is_enabled(dsidev, channel))
  1911. return 0;
  1912. switch (dsi->vc[channel].source) {
  1913. case DSI_VC_SOURCE_VP:
  1914. return dsi_sync_vc_vp(dsidev, channel);
  1915. case DSI_VC_SOURCE_L4:
  1916. return dsi_sync_vc_l4(dsidev, channel);
  1917. default:
  1918. BUG();
  1919. return -EINVAL;
  1920. }
  1921. }
  1922. static int dsi_vc_enable(struct platform_device *dsidev, int channel,
  1923. bool enable)
  1924. {
  1925. DSSDBG("dsi_vc_enable channel %d, enable %d\n",
  1926. channel, enable);
  1927. enable = enable ? 1 : 0;
  1928. REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), enable, 0, 0);
  1929. if (wait_for_bit_change(dsidev, DSI_VC_CTRL(channel),
  1930. 0, enable) != enable) {
  1931. DSSERR("Failed to set dsi_vc_enable to %d\n", enable);
  1932. return -EIO;
  1933. }
  1934. return 0;
  1935. }
  1936. static void dsi_vc_initial_config(struct platform_device *dsidev, int channel)
  1937. {
  1938. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  1939. u32 r;
  1940. DSSDBG("Initial config of virtual channel %d", channel);
  1941. r = dsi_read_reg(dsidev, DSI_VC_CTRL(channel));
  1942. if (FLD_GET(r, 15, 15)) /* VC_BUSY */
  1943. DSSERR("VC(%d) busy when trying to configure it!\n",
  1944. channel);
  1945. r = FLD_MOD(r, 0, 1, 1); /* SOURCE, 0 = L4 */
  1946. r = FLD_MOD(r, 0, 2, 2); /* BTA_SHORT_EN */
  1947. r = FLD_MOD(r, 0, 3, 3); /* BTA_LONG_EN */
  1948. r = FLD_MOD(r, 0, 4, 4); /* MODE, 0 = command */
  1949. r = FLD_MOD(r, 1, 7, 7); /* CS_TX_EN */
  1950. r = FLD_MOD(r, 1, 8, 8); /* ECC_TX_EN */
  1951. r = FLD_MOD(r, 0, 9, 9); /* MODE_SPEED, high speed on/off */
  1952. if (dss_has_feature(FEAT_DSI_VC_OCP_WIDTH))
  1953. r = FLD_MOD(r, 3, 11, 10); /* OCP_WIDTH = 32 bit */
  1954. r = FLD_MOD(r, 4, 29, 27); /* DMA_RX_REQ_NB = no dma */
  1955. r = FLD_MOD(r, 4, 23, 21); /* DMA_TX_REQ_NB = no dma */
  1956. dsi_write_reg(dsidev, DSI_VC_CTRL(channel), r);
  1957. dsi->vc[channel].source = DSI_VC_SOURCE_L4;
  1958. }
  1959. static int dsi_vc_config_source(struct platform_device *dsidev, int channel,
  1960. enum dsi_vc_source source)
  1961. {
  1962. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  1963. if (dsi->vc[channel].source == source)
  1964. return 0;
  1965. DSSDBG("Source config of virtual channel %d", channel);
  1966. dsi_sync_vc(dsidev, channel);
  1967. dsi_vc_enable(dsidev, channel, 0);
  1968. /* VC_BUSY */
  1969. if (wait_for_bit_change(dsidev, DSI_VC_CTRL(channel), 15, 0) != 0) {
  1970. DSSERR("vc(%d) busy when trying to config for VP\n", channel);
  1971. return -EIO;
  1972. }
  1973. /* SOURCE, 0 = L4, 1 = video port */
  1974. REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), source, 1, 1);
  1975. /* DCS_CMD_ENABLE */
  1976. if (dss_has_feature(FEAT_DSI_DCS_CMD_CONFIG_VC)) {
  1977. bool enable = source == DSI_VC_SOURCE_VP;
  1978. REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), enable, 30, 30);
  1979. }
  1980. dsi_vc_enable(dsidev, channel, 1);
  1981. dsi->vc[channel].source = source;
  1982. return 0;
  1983. }
  1984. static void dsi_vc_enable_hs(struct omap_dss_device *dssdev, int channel,
  1985. bool enable)
  1986. {
  1987. struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
  1988. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  1989. DSSDBG("dsi_vc_enable_hs(%d, %d)\n", channel, enable);
  1990. WARN_ON(!dsi_bus_is_locked(dsidev));
  1991. dsi_vc_enable(dsidev, channel, 0);
  1992. dsi_if_enable(dsidev, 0);
  1993. REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), enable, 9, 9);
  1994. dsi_vc_enable(dsidev, channel, 1);
  1995. dsi_if_enable(dsidev, 1);
  1996. dsi_force_tx_stop_mode_io(dsidev);
  1997. /* start the DDR clock by sending a NULL packet */
  1998. if (dsi->vm_timings.ddr_clk_always_on && enable)
  1999. dsi_vc_send_null(dssdev, channel);
  2000. }
  2001. static void dsi_vc_flush_long_data(struct platform_device *dsidev, int channel)
  2002. {
  2003. while (REG_GET(dsidev, DSI_VC_CTRL(channel), 20, 20)) {
  2004. u32 val;
  2005. val = dsi_read_reg(dsidev, DSI_VC_SHORT_PACKET_HEADER(channel));
  2006. DSSDBG("\t\tb1 %#02x b2 %#02x b3 %#02x b4 %#02x\n",
  2007. (val >> 0) & 0xff,
  2008. (val >> 8) & 0xff,
  2009. (val >> 16) & 0xff,
  2010. (val >> 24) & 0xff);
  2011. }
  2012. }
  2013. static void dsi_show_rx_ack_with_err(u16 err)
  2014. {
  2015. DSSERR("\tACK with ERROR (%#x):\n", err);
  2016. if (err & (1 << 0))
  2017. DSSERR("\t\tSoT Error\n");
  2018. if (err & (1 << 1))
  2019. DSSERR("\t\tSoT Sync Error\n");
  2020. if (err & (1 << 2))
  2021. DSSERR("\t\tEoT Sync Error\n");
  2022. if (err & (1 << 3))
  2023. DSSERR("\t\tEscape Mode Entry Command Error\n");
  2024. if (err & (1 << 4))
  2025. DSSERR("\t\tLP Transmit Sync Error\n");
  2026. if (err & (1 << 5))
  2027. DSSERR("\t\tHS Receive Timeout Error\n");
  2028. if (err & (1 << 6))
  2029. DSSERR("\t\tFalse Control Error\n");
  2030. if (err & (1 << 7))
  2031. DSSERR("\t\t(reserved7)\n");
  2032. if (err & (1 << 8))
  2033. DSSERR("\t\tECC Error, single-bit (corrected)\n");
  2034. if (err & (1 << 9))
  2035. DSSERR("\t\tECC Error, multi-bit (not corrected)\n");
  2036. if (err & (1 << 10))
  2037. DSSERR("\t\tChecksum Error\n");
  2038. if (err & (1 << 11))
  2039. DSSERR("\t\tData type not recognized\n");
  2040. if (err & (1 << 12))
  2041. DSSERR("\t\tInvalid VC ID\n");
  2042. if (err & (1 << 13))
  2043. DSSERR("\t\tInvalid Transmission Length\n");
  2044. if (err & (1 << 14))
  2045. DSSERR("\t\t(reserved14)\n");
  2046. if (err & (1 << 15))
  2047. DSSERR("\t\tDSI Protocol Violation\n");
  2048. }
  2049. static u16 dsi_vc_flush_receive_data(struct platform_device *dsidev,
  2050. int channel)
  2051. {
  2052. /* RX_FIFO_NOT_EMPTY */
  2053. while (REG_GET(dsidev, DSI_VC_CTRL(channel), 20, 20)) {
  2054. u32 val;
  2055. u8 dt;
  2056. val = dsi_read_reg(dsidev, DSI_VC_SHORT_PACKET_HEADER(channel));
  2057. DSSERR("\trawval %#08x\n", val);
  2058. dt = FLD_GET(val, 5, 0);
  2059. if (dt == MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT) {
  2060. u16 err = FLD_GET(val, 23, 8);
  2061. dsi_show_rx_ack_with_err(err);
  2062. } else if (dt == MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE) {
  2063. DSSERR("\tDCS short response, 1 byte: %#x\n",
  2064. FLD_GET(val, 23, 8));
  2065. } else if (dt == MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE) {
  2066. DSSERR("\tDCS short response, 2 byte: %#x\n",
  2067. FLD_GET(val, 23, 8));
  2068. } else if (dt == MIPI_DSI_RX_DCS_LONG_READ_RESPONSE) {
  2069. DSSERR("\tDCS long response, len %d\n",
  2070. FLD_GET(val, 23, 8));
  2071. dsi_vc_flush_long_data(dsidev, channel);
  2072. } else {
  2073. DSSERR("\tunknown datatype 0x%02x\n", dt);
  2074. }
  2075. }
  2076. return 0;
  2077. }
  2078. static int dsi_vc_send_bta(struct platform_device *dsidev, int channel)
  2079. {
  2080. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  2081. if (dsi->debug_write || dsi->debug_read)
  2082. DSSDBG("dsi_vc_send_bta %d\n", channel);
  2083. WARN_ON(!dsi_bus_is_locked(dsidev));
  2084. /* RX_FIFO_NOT_EMPTY */
  2085. if (REG_GET(dsidev, DSI_VC_CTRL(channel), 20, 20)) {
  2086. DSSERR("rx fifo not empty when sending BTA, dumping data:\n");
  2087. dsi_vc_flush_receive_data(dsidev, channel);
  2088. }
  2089. REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), 1, 6, 6); /* BTA_EN */
  2090. /* flush posted write */
  2091. dsi_read_reg(dsidev, DSI_VC_CTRL(channel));
  2092. return 0;
  2093. }
  2094. static int dsi_vc_send_bta_sync(struct omap_dss_device *dssdev, int channel)
  2095. {
  2096. struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
  2097. DECLARE_COMPLETION_ONSTACK(completion);
  2098. int r = 0;
  2099. u32 err;
  2100. r = dsi_register_isr_vc(dsidev, channel, dsi_completion_handler,
  2101. &completion, DSI_VC_IRQ_BTA);
  2102. if (r)
  2103. goto err0;
  2104. r = dsi_register_isr(dsidev, dsi_completion_handler, &completion,
  2105. DSI_IRQ_ERROR_MASK);
  2106. if (r)
  2107. goto err1;
  2108. r = dsi_vc_send_bta(dsidev, channel);
  2109. if (r)
  2110. goto err2;
  2111. if (wait_for_completion_timeout(&completion,
  2112. msecs_to_jiffies(500)) == 0) {
  2113. DSSERR("Failed to receive BTA\n");
  2114. r = -EIO;
  2115. goto err2;
  2116. }
  2117. err = dsi_get_errors(dsidev);
  2118. if (err) {
  2119. DSSERR("Error while sending BTA: %x\n", err);
  2120. r = -EIO;
  2121. goto err2;
  2122. }
  2123. err2:
  2124. dsi_unregister_isr(dsidev, dsi_completion_handler, &completion,
  2125. DSI_IRQ_ERROR_MASK);
  2126. err1:
  2127. dsi_unregister_isr_vc(dsidev, channel, dsi_completion_handler,
  2128. &completion, DSI_VC_IRQ_BTA);
  2129. err0:
  2130. return r;
  2131. }
  2132. static inline void dsi_vc_write_long_header(struct platform_device *dsidev,
  2133. int channel, u8 data_type, u16 len, u8 ecc)
  2134. {
  2135. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  2136. u32 val;
  2137. u8 data_id;
  2138. WARN_ON(!dsi_bus_is_locked(dsidev));
  2139. data_id = data_type | dsi->vc[channel].vc_id << 6;
  2140. val = FLD_VAL(data_id, 7, 0) | FLD_VAL(len, 23, 8) |
  2141. FLD_VAL(ecc, 31, 24);
  2142. dsi_write_reg(dsidev, DSI_VC_LONG_PACKET_HEADER(channel), val);
  2143. }
  2144. static inline void dsi_vc_write_long_payload(struct platform_device *dsidev,
  2145. int channel, u8 b1, u8 b2, u8 b3, u8 b4)
  2146. {
  2147. u32 val;
  2148. val = b4 << 24 | b3 << 16 | b2 << 8 | b1 << 0;
  2149. /* DSSDBG("\twriting %02x, %02x, %02x, %02x (%#010x)\n",
  2150. b1, b2, b3, b4, val); */
  2151. dsi_write_reg(dsidev, DSI_VC_LONG_PACKET_PAYLOAD(channel), val);
  2152. }
  2153. static int dsi_vc_send_long(struct platform_device *dsidev, int channel,
  2154. u8 data_type, u8 *data, u16 len, u8 ecc)
  2155. {
  2156. /*u32 val; */
  2157. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  2158. int i;
  2159. u8 *p;
  2160. int r = 0;
  2161. u8 b1, b2, b3, b4;
  2162. if (dsi->debug_write)
  2163. DSSDBG("dsi_vc_send_long, %d bytes\n", len);
  2164. /* len + header */
  2165. if (dsi->vc[channel].tx_fifo_size * 32 * 4 < len + 4) {
  2166. DSSERR("unable to send long packet: packet too long.\n");
  2167. return -EINVAL;
  2168. }
  2169. dsi_vc_config_source(dsidev, channel, DSI_VC_SOURCE_L4);
  2170. dsi_vc_write_long_header(dsidev, channel, data_type, len, ecc);
  2171. p = data;
  2172. for (i = 0; i < len >> 2; i++) {
  2173. if (dsi->debug_write)
  2174. DSSDBG("\tsending full packet %d\n", i);
  2175. b1 = *p++;
  2176. b2 = *p++;
  2177. b3 = *p++;
  2178. b4 = *p++;
  2179. dsi_vc_write_long_payload(dsidev, channel, b1, b2, b3, b4);
  2180. }
  2181. i = len % 4;
  2182. if (i) {
  2183. b1 = 0; b2 = 0; b3 = 0;
  2184. if (dsi->debug_write)
  2185. DSSDBG("\tsending remainder bytes %d\n", i);
  2186. switch (i) {
  2187. case 3:
  2188. b1 = *p++;
  2189. b2 = *p++;
  2190. b3 = *p++;
  2191. break;
  2192. case 2:
  2193. b1 = *p++;
  2194. b2 = *p++;
  2195. break;
  2196. case 1:
  2197. b1 = *p++;
  2198. break;
  2199. }
  2200. dsi_vc_write_long_payload(dsidev, channel, b1, b2, b3, 0);
  2201. }
  2202. return r;
  2203. }
  2204. static int dsi_vc_send_short(struct platform_device *dsidev, int channel,
  2205. u8 data_type, u16 data, u8 ecc)
  2206. {
  2207. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  2208. u32 r;
  2209. u8 data_id;
  2210. WARN_ON(!dsi_bus_is_locked(dsidev));
  2211. if (dsi->debug_write)
  2212. DSSDBG("dsi_vc_send_short(ch%d, dt %#x, b1 %#x, b2 %#x)\n",
  2213. channel,
  2214. data_type, data & 0xff, (data >> 8) & 0xff);
  2215. dsi_vc_config_source(dsidev, channel, DSI_VC_SOURCE_L4);
  2216. if (FLD_GET(dsi_read_reg(dsidev, DSI_VC_CTRL(channel)), 16, 16)) {
  2217. DSSERR("ERROR FIFO FULL, aborting transfer\n");
  2218. return -EINVAL;
  2219. }
  2220. data_id = data_type | dsi->vc[channel].vc_id << 6;
  2221. r = (data_id << 0) | (data << 8) | (ecc << 24);
  2222. dsi_write_reg(dsidev, DSI_VC_SHORT_PACKET_HEADER(channel), r);
  2223. return 0;
  2224. }
  2225. static int dsi_vc_send_null(struct omap_dss_device *dssdev, int channel)
  2226. {
  2227. struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
  2228. return dsi_vc_send_long(dsidev, channel, MIPI_DSI_NULL_PACKET, NULL,
  2229. 0, 0);
  2230. }
  2231. static int dsi_vc_write_nosync_common(struct platform_device *dsidev,
  2232. int channel, u8 *data, int len, enum dss_dsi_content_type type)
  2233. {
  2234. int r;
  2235. if (len == 0) {
  2236. BUG_ON(type == DSS_DSI_CONTENT_DCS);
  2237. r = dsi_vc_send_short(dsidev, channel,
  2238. MIPI_DSI_GENERIC_SHORT_WRITE_0_PARAM, 0, 0);
  2239. } else if (len == 1) {
  2240. r = dsi_vc_send_short(dsidev, channel,
  2241. type == DSS_DSI_CONTENT_GENERIC ?
  2242. MIPI_DSI_GENERIC_SHORT_WRITE_1_PARAM :
  2243. MIPI_DSI_DCS_SHORT_WRITE, data[0], 0);
  2244. } else if (len == 2) {
  2245. r = dsi_vc_send_short(dsidev, channel,
  2246. type == DSS_DSI_CONTENT_GENERIC ?
  2247. MIPI_DSI_GENERIC_SHORT_WRITE_2_PARAM :
  2248. MIPI_DSI_DCS_SHORT_WRITE_PARAM,
  2249. data[0] | (data[1] << 8), 0);
  2250. } else {
  2251. r = dsi_vc_send_long(dsidev, channel,
  2252. type == DSS_DSI_CONTENT_GENERIC ?
  2253. MIPI_DSI_GENERIC_LONG_WRITE :
  2254. MIPI_DSI_DCS_LONG_WRITE, data, len, 0);
  2255. }
  2256. return r;
  2257. }
  2258. static int dsi_vc_dcs_write_nosync(struct omap_dss_device *dssdev, int channel,
  2259. u8 *data, int len)
  2260. {
  2261. struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
  2262. return dsi_vc_write_nosync_common(dsidev, channel, data, len,
  2263. DSS_DSI_CONTENT_DCS);
  2264. }
  2265. static int dsi_vc_generic_write_nosync(struct omap_dss_device *dssdev, int channel,
  2266. u8 *data, int len)
  2267. {
  2268. struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
  2269. return dsi_vc_write_nosync_common(dsidev, channel, data, len,
  2270. DSS_DSI_CONTENT_GENERIC);
  2271. }
  2272. static int dsi_vc_write_common(struct omap_dss_device *dssdev, int channel,
  2273. u8 *data, int len, enum dss_dsi_content_type type)
  2274. {
  2275. struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
  2276. int r;
  2277. r = dsi_vc_write_nosync_common(dsidev, channel, data, len, type);
  2278. if (r)
  2279. goto err;
  2280. r = dsi_vc_send_bta_sync(dssdev, channel);
  2281. if (r)
  2282. goto err;
  2283. /* RX_FIFO_NOT_EMPTY */
  2284. if (REG_GET(dsidev, DSI_VC_CTRL(channel), 20, 20)) {
  2285. DSSERR("rx fifo not empty after write, dumping data:\n");
  2286. dsi_vc_flush_receive_data(dsidev, channel);
  2287. r = -EIO;
  2288. goto err;
  2289. }
  2290. return 0;
  2291. err:
  2292. DSSERR("dsi_vc_write_common(ch %d, cmd 0x%02x, len %d) failed\n",
  2293. channel, data[0], len);
  2294. return r;
  2295. }
  2296. static int dsi_vc_dcs_write(struct omap_dss_device *dssdev, int channel, u8 *data,
  2297. int len)
  2298. {
  2299. return dsi_vc_write_common(dssdev, channel, data, len,
  2300. DSS_DSI_CONTENT_DCS);
  2301. }
  2302. static int dsi_vc_generic_write(struct omap_dss_device *dssdev, int channel, u8 *data,
  2303. int len)
  2304. {
  2305. return dsi_vc_write_common(dssdev, channel, data, len,
  2306. DSS_DSI_CONTENT_GENERIC);
  2307. }
  2308. static int dsi_vc_dcs_send_read_request(struct platform_device *dsidev,
  2309. int channel, u8 dcs_cmd)
  2310. {
  2311. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  2312. int r;
  2313. if (dsi->debug_read)
  2314. DSSDBG("dsi_vc_dcs_send_read_request(ch%d, dcs_cmd %x)\n",
  2315. channel, dcs_cmd);
  2316. r = dsi_vc_send_short(dsidev, channel, MIPI_DSI_DCS_READ, dcs_cmd, 0);
  2317. if (r) {
  2318. DSSERR("dsi_vc_dcs_send_read_request(ch %d, cmd 0x%02x)"
  2319. " failed\n", channel, dcs_cmd);
  2320. return r;
  2321. }
  2322. return 0;
  2323. }
  2324. static int dsi_vc_generic_send_read_request(struct platform_device *dsidev,
  2325. int channel, u8 *reqdata, int reqlen)
  2326. {
  2327. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  2328. u16 data;
  2329. u8 data_type;
  2330. int r;
  2331. if (dsi->debug_read)
  2332. DSSDBG("dsi_vc_generic_send_read_request(ch %d, reqlen %d)\n",
  2333. channel, reqlen);
  2334. if (reqlen == 0) {
  2335. data_type = MIPI_DSI_GENERIC_READ_REQUEST_0_PARAM;
  2336. data = 0;
  2337. } else if (reqlen == 1) {
  2338. data_type = MIPI_DSI_GENERIC_READ_REQUEST_1_PARAM;
  2339. data = reqdata[0];
  2340. } else if (reqlen == 2) {
  2341. data_type = MIPI_DSI_GENERIC_READ_REQUEST_2_PARAM;
  2342. data = reqdata[0] | (reqdata[1] << 8);
  2343. } else {
  2344. BUG();
  2345. return -EINVAL;
  2346. }
  2347. r = dsi_vc_send_short(dsidev, channel, data_type, data, 0);
  2348. if (r) {
  2349. DSSERR("dsi_vc_generic_send_read_request(ch %d, reqlen %d)"
  2350. " failed\n", channel, reqlen);
  2351. return r;
  2352. }
  2353. return 0;
  2354. }
  2355. static int dsi_vc_read_rx_fifo(struct platform_device *dsidev, int channel,
  2356. u8 *buf, int buflen, enum dss_dsi_content_type type)
  2357. {
  2358. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  2359. u32 val;
  2360. u8 dt;
  2361. int r;
  2362. /* RX_FIFO_NOT_EMPTY */
  2363. if (REG_GET(dsidev, DSI_VC_CTRL(channel), 20, 20) == 0) {
  2364. DSSERR("RX fifo empty when trying to read.\n");
  2365. r = -EIO;
  2366. goto err;
  2367. }
  2368. val = dsi_read_reg(dsidev, DSI_VC_SHORT_PACKET_HEADER(channel));
  2369. if (dsi->debug_read)
  2370. DSSDBG("\theader: %08x\n", val);
  2371. dt = FLD_GET(val, 5, 0);
  2372. if (dt == MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT) {
  2373. u16 err = FLD_GET(val, 23, 8);
  2374. dsi_show_rx_ack_with_err(err);
  2375. r = -EIO;
  2376. goto err;
  2377. } else if (dt == (type == DSS_DSI_CONTENT_GENERIC ?
  2378. MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE :
  2379. MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE)) {
  2380. u8 data = FLD_GET(val, 15, 8);
  2381. if (dsi->debug_read)
  2382. DSSDBG("\t%s short response, 1 byte: %02x\n",
  2383. type == DSS_DSI_CONTENT_GENERIC ? "GENERIC" :
  2384. "DCS", data);
  2385. if (buflen < 1) {
  2386. r = -EIO;
  2387. goto err;
  2388. }
  2389. buf[0] = data;
  2390. return 1;
  2391. } else if (dt == (type == DSS_DSI_CONTENT_GENERIC ?
  2392. MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE :
  2393. MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE)) {
  2394. u16 data = FLD_GET(val, 23, 8);
  2395. if (dsi->debug_read)
  2396. DSSDBG("\t%s short response, 2 byte: %04x\n",
  2397. type == DSS_DSI_CONTENT_GENERIC ? "GENERIC" :
  2398. "DCS", data);
  2399. if (buflen < 2) {
  2400. r = -EIO;
  2401. goto err;
  2402. }
  2403. buf[0] = data & 0xff;
  2404. buf[1] = (data >> 8) & 0xff;
  2405. return 2;
  2406. } else if (dt == (type == DSS_DSI_CONTENT_GENERIC ?
  2407. MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE :
  2408. MIPI_DSI_RX_DCS_LONG_READ_RESPONSE)) {
  2409. int w;
  2410. int len = FLD_GET(val, 23, 8);
  2411. if (dsi->debug_read)
  2412. DSSDBG("\t%s long response, len %d\n",
  2413. type == DSS_DSI_CONTENT_GENERIC ? "GENERIC" :
  2414. "DCS", len);
  2415. if (len > buflen) {
  2416. r = -EIO;
  2417. goto err;
  2418. }
  2419. /* two byte checksum ends the packet, not included in len */
  2420. for (w = 0; w < len + 2;) {
  2421. int b;
  2422. val = dsi_read_reg(dsidev,
  2423. DSI_VC_SHORT_PACKET_HEADER(channel));
  2424. if (dsi->debug_read)
  2425. DSSDBG("\t\t%02x %02x %02x %02x\n",
  2426. (val >> 0) & 0xff,
  2427. (val >> 8) & 0xff,
  2428. (val >> 16) & 0xff,
  2429. (val >> 24) & 0xff);
  2430. for (b = 0; b < 4; ++b) {
  2431. if (w < len)
  2432. buf[w] = (val >> (b * 8)) & 0xff;
  2433. /* we discard the 2 byte checksum */
  2434. ++w;
  2435. }
  2436. }
  2437. return len;
  2438. } else {
  2439. DSSERR("\tunknown datatype 0x%02x\n", dt);
  2440. r = -EIO;
  2441. goto err;
  2442. }
  2443. err:
  2444. DSSERR("dsi_vc_read_rx_fifo(ch %d type %s) failed\n", channel,
  2445. type == DSS_DSI_CONTENT_GENERIC ? "GENERIC" : "DCS");
  2446. return r;
  2447. }
  2448. static int dsi_vc_dcs_read(struct omap_dss_device *dssdev, int channel, u8 dcs_cmd,
  2449. u8 *buf, int buflen)
  2450. {
  2451. struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
  2452. int r;
  2453. r = dsi_vc_dcs_send_read_request(dsidev, channel, dcs_cmd);
  2454. if (r)
  2455. goto err;
  2456. r = dsi_vc_send_bta_sync(dssdev, channel);
  2457. if (r)
  2458. goto err;
  2459. r = dsi_vc_read_rx_fifo(dsidev, channel, buf, buflen,
  2460. DSS_DSI_CONTENT_DCS);
  2461. if (r < 0)
  2462. goto err;
  2463. if (r != buflen) {
  2464. r = -EIO;
  2465. goto err;
  2466. }
  2467. return 0;
  2468. err:
  2469. DSSERR("dsi_vc_dcs_read(ch %d, cmd 0x%02x) failed\n", channel, dcs_cmd);
  2470. return r;
  2471. }
  2472. static int dsi_vc_generic_read(struct omap_dss_device *dssdev, int channel,
  2473. u8 *reqdata, int reqlen, u8 *buf, int buflen)
  2474. {
  2475. struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
  2476. int r;
  2477. r = dsi_vc_generic_send_read_request(dsidev, channel, reqdata, reqlen);
  2478. if (r)
  2479. return r;
  2480. r = dsi_vc_send_bta_sync(dssdev, channel);
  2481. if (r)
  2482. return r;
  2483. r = dsi_vc_read_rx_fifo(dsidev, channel, buf, buflen,
  2484. DSS_DSI_CONTENT_GENERIC);
  2485. if (r < 0)
  2486. return r;
  2487. if (r != buflen) {
  2488. r = -EIO;
  2489. return r;
  2490. }
  2491. return 0;
  2492. }
  2493. static int dsi_vc_set_max_rx_packet_size(struct omap_dss_device *dssdev, int channel,
  2494. u16 len)
  2495. {
  2496. struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
  2497. return dsi_vc_send_short(dsidev, channel,
  2498. MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE, len, 0);
  2499. }
  2500. static int dsi_enter_ulps(struct platform_device *dsidev)
  2501. {
  2502. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  2503. DECLARE_COMPLETION_ONSTACK(completion);
  2504. int r, i;
  2505. unsigned mask;
  2506. DSSDBG("Entering ULPS");
  2507. WARN_ON(!dsi_bus_is_locked(dsidev));
  2508. WARN_ON(dsi->ulps_enabled);
  2509. if (dsi->ulps_enabled)
  2510. return 0;
  2511. /* DDR_CLK_ALWAYS_ON */
  2512. if (REG_GET(dsidev, DSI_CLK_CTRL, 13, 13)) {
  2513. dsi_if_enable(dsidev, 0);
  2514. REG_FLD_MOD(dsidev, DSI_CLK_CTRL, 0, 13, 13);
  2515. dsi_if_enable(dsidev, 1);
  2516. }
  2517. dsi_sync_vc(dsidev, 0);
  2518. dsi_sync_vc(dsidev, 1);
  2519. dsi_sync_vc(dsidev, 2);
  2520. dsi_sync_vc(dsidev, 3);
  2521. dsi_force_tx_stop_mode_io(dsidev);
  2522. dsi_vc_enable(dsidev, 0, false);
  2523. dsi_vc_enable(dsidev, 1, false);
  2524. dsi_vc_enable(dsidev, 2, false);
  2525. dsi_vc_enable(dsidev, 3, false);
  2526. if (REG_GET(dsidev, DSI_COMPLEXIO_CFG2, 16, 16)) { /* HS_BUSY */
  2527. DSSERR("HS busy when enabling ULPS\n");
  2528. return -EIO;
  2529. }
  2530. if (REG_GET(dsidev, DSI_COMPLEXIO_CFG2, 17, 17)) { /* LP_BUSY */
  2531. DSSERR("LP busy when enabling ULPS\n");
  2532. return -EIO;
  2533. }
  2534. r = dsi_register_isr_cio(dsidev, dsi_completion_handler, &completion,
  2535. DSI_CIO_IRQ_ULPSACTIVENOT_ALL0);
  2536. if (r)
  2537. return r;
  2538. mask = 0;
  2539. for (i = 0; i < dsi->num_lanes_supported; ++i) {
  2540. if (dsi->lanes[i].function == DSI_LANE_UNUSED)
  2541. continue;
  2542. mask |= 1 << i;
  2543. }
  2544. /* Assert TxRequestEsc for data lanes and TxUlpsClk for clk lane */
  2545. /* LANEx_ULPS_SIG2 */
  2546. REG_FLD_MOD(dsidev, DSI_COMPLEXIO_CFG2, mask, 9, 5);
  2547. /* flush posted write and wait for SCP interface to finish the write */
  2548. dsi_read_reg(dsidev, DSI_COMPLEXIO_CFG2);
  2549. if (wait_for_completion_timeout(&completion,
  2550. msecs_to_jiffies(1000)) == 0) {
  2551. DSSERR("ULPS enable timeout\n");
  2552. r = -EIO;
  2553. goto err;
  2554. }
  2555. dsi_unregister_isr_cio(dsidev, dsi_completion_handler, &completion,
  2556. DSI_CIO_IRQ_ULPSACTIVENOT_ALL0);
  2557. /* Reset LANEx_ULPS_SIG2 */
  2558. REG_FLD_MOD(dsidev, DSI_COMPLEXIO_CFG2, 0, 9, 5);
  2559. /* flush posted write and wait for SCP interface to finish the write */
  2560. dsi_read_reg(dsidev, DSI_COMPLEXIO_CFG2);
  2561. dsi_cio_power(dsidev, DSI_COMPLEXIO_POWER_ULPS);
  2562. dsi_if_enable(dsidev, false);
  2563. dsi->ulps_enabled = true;
  2564. return 0;
  2565. err:
  2566. dsi_unregister_isr_cio(dsidev, dsi_completion_handler, &completion,
  2567. DSI_CIO_IRQ_ULPSACTIVENOT_ALL0);
  2568. return r;
  2569. }
  2570. static void dsi_set_lp_rx_timeout(struct platform_device *dsidev,
  2571. unsigned ticks, bool x4, bool x16)
  2572. {
  2573. unsigned long fck;
  2574. unsigned long total_ticks;
  2575. u32 r;
  2576. BUG_ON(ticks > 0x1fff);
  2577. /* ticks in DSI_FCK */
  2578. fck = dsi_fclk_rate(dsidev);
  2579. r = dsi_read_reg(dsidev, DSI_TIMING2);
  2580. r = FLD_MOD(r, 1, 15, 15); /* LP_RX_TO */
  2581. r = FLD_MOD(r, x16 ? 1 : 0, 14, 14); /* LP_RX_TO_X16 */
  2582. r = FLD_MOD(r, x4 ? 1 : 0, 13, 13); /* LP_RX_TO_X4 */
  2583. r = FLD_MOD(r, ticks, 12, 0); /* LP_RX_COUNTER */
  2584. dsi_write_reg(dsidev, DSI_TIMING2, r);
  2585. total_ticks = ticks * (x16 ? 16 : 1) * (x4 ? 4 : 1);
  2586. DSSDBG("LP_RX_TO %lu ticks (%#x%s%s) = %lu ns\n",
  2587. total_ticks,
  2588. ticks, x4 ? " x4" : "", x16 ? " x16" : "",
  2589. (total_ticks * 1000) / (fck / 1000 / 1000));
  2590. }
  2591. static void dsi_set_ta_timeout(struct platform_device *dsidev, unsigned ticks,
  2592. bool x8, bool x16)
  2593. {
  2594. unsigned long fck;
  2595. unsigned long total_ticks;
  2596. u32 r;
  2597. BUG_ON(ticks > 0x1fff);
  2598. /* ticks in DSI_FCK */
  2599. fck = dsi_fclk_rate(dsidev);
  2600. r = dsi_read_reg(dsidev, DSI_TIMING1);
  2601. r = FLD_MOD(r, 1, 31, 31); /* TA_TO */
  2602. r = FLD_MOD(r, x16 ? 1 : 0, 30, 30); /* TA_TO_X16 */
  2603. r = FLD_MOD(r, x8 ? 1 : 0, 29, 29); /* TA_TO_X8 */
  2604. r = FLD_MOD(r, ticks, 28, 16); /* TA_TO_COUNTER */
  2605. dsi_write_reg(dsidev, DSI_TIMING1, r);
  2606. total_ticks = ticks * (x16 ? 16 : 1) * (x8 ? 8 : 1);
  2607. DSSDBG("TA_TO %lu ticks (%#x%s%s) = %lu ns\n",
  2608. total_ticks,
  2609. ticks, x8 ? " x8" : "", x16 ? " x16" : "",
  2610. (total_ticks * 1000) / (fck / 1000 / 1000));
  2611. }
  2612. static void dsi_set_stop_state_counter(struct platform_device *dsidev,
  2613. unsigned ticks, bool x4, bool x16)
  2614. {
  2615. unsigned long fck;
  2616. unsigned long total_ticks;
  2617. u32 r;
  2618. BUG_ON(ticks > 0x1fff);
  2619. /* ticks in DSI_FCK */
  2620. fck = dsi_fclk_rate(dsidev);
  2621. r = dsi_read_reg(dsidev, DSI_TIMING1);
  2622. r = FLD_MOD(r, 1, 15, 15); /* FORCE_TX_STOP_MODE_IO */
  2623. r = FLD_MOD(r, x16 ? 1 : 0, 14, 14); /* STOP_STATE_X16_IO */
  2624. r = FLD_MOD(r, x4 ? 1 : 0, 13, 13); /* STOP_STATE_X4_IO */
  2625. r = FLD_MOD(r, ticks, 12, 0); /* STOP_STATE_COUNTER_IO */
  2626. dsi_write_reg(dsidev, DSI_TIMING1, r);
  2627. total_ticks = ticks * (x16 ? 16 : 1) * (x4 ? 4 : 1);
  2628. DSSDBG("STOP_STATE_COUNTER %lu ticks (%#x%s%s) = %lu ns\n",
  2629. total_ticks,
  2630. ticks, x4 ? " x4" : "", x16 ? " x16" : "",
  2631. (total_ticks * 1000) / (fck / 1000 / 1000));
  2632. }
  2633. static void dsi_set_hs_tx_timeout(struct platform_device *dsidev,
  2634. unsigned ticks, bool x4, bool x16)
  2635. {
  2636. unsigned long fck;
  2637. unsigned long total_ticks;
  2638. u32 r;
  2639. BUG_ON(ticks > 0x1fff);
  2640. /* ticks in TxByteClkHS */
  2641. fck = dsi_get_txbyteclkhs(dsidev);
  2642. r = dsi_read_reg(dsidev, DSI_TIMING2);
  2643. r = FLD_MOD(r, 1, 31, 31); /* HS_TX_TO */
  2644. r = FLD_MOD(r, x16 ? 1 : 0, 30, 30); /* HS_TX_TO_X16 */
  2645. r = FLD_MOD(r, x4 ? 1 : 0, 29, 29); /* HS_TX_TO_X8 (4 really) */
  2646. r = FLD_MOD(r, ticks, 28, 16); /* HS_TX_TO_COUNTER */
  2647. dsi_write_reg(dsidev, DSI_TIMING2, r);
  2648. total_ticks = ticks * (x16 ? 16 : 1) * (x4 ? 4 : 1);
  2649. DSSDBG("HS_TX_TO %lu ticks (%#x%s%s) = %lu ns\n",
  2650. total_ticks,
  2651. ticks, x4 ? " x4" : "", x16 ? " x16" : "",
  2652. (total_ticks * 1000) / (fck / 1000 / 1000));
  2653. }
  2654. static void dsi_config_vp_num_line_buffers(struct platform_device *dsidev)
  2655. {
  2656. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  2657. int num_line_buffers;
  2658. if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
  2659. int bpp = dsi_get_pixel_size(dsi->pix_fmt);
  2660. struct omap_video_timings *timings = &dsi->timings;
  2661. /*
  2662. * Don't use line buffers if width is greater than the video
  2663. * port's line buffer size
  2664. */
  2665. if (dsi->line_buffer_size <= timings->x_res * bpp / 8)
  2666. num_line_buffers = 0;
  2667. else
  2668. num_line_buffers = 2;
  2669. } else {
  2670. /* Use maximum number of line buffers in command mode */
  2671. num_line_buffers = 2;
  2672. }
  2673. /* LINE_BUFFER */
  2674. REG_FLD_MOD(dsidev, DSI_CTRL, num_line_buffers, 13, 12);
  2675. }
  2676. static void dsi_config_vp_sync_events(struct platform_device *dsidev)
  2677. {
  2678. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  2679. bool sync_end;
  2680. u32 r;
  2681. if (dsi->vm_timings.trans_mode == OMAP_DSS_DSI_PULSE_MODE)
  2682. sync_end = true;
  2683. else
  2684. sync_end = false;
  2685. r = dsi_read_reg(dsidev, DSI_CTRL);
  2686. r = FLD_MOD(r, 1, 9, 9); /* VP_DE_POL */
  2687. r = FLD_MOD(r, 1, 10, 10); /* VP_HSYNC_POL */
  2688. r = FLD_MOD(r, 1, 11, 11); /* VP_VSYNC_POL */
  2689. r = FLD_MOD(r, 1, 15, 15); /* VP_VSYNC_START */
  2690. r = FLD_MOD(r, sync_end, 16, 16); /* VP_VSYNC_END */
  2691. r = FLD_MOD(r, 1, 17, 17); /* VP_HSYNC_START */
  2692. r = FLD_MOD(r, sync_end, 18, 18); /* VP_HSYNC_END */
  2693. dsi_write_reg(dsidev, DSI_CTRL, r);
  2694. }
  2695. static void dsi_config_blanking_modes(struct platform_device *dsidev)
  2696. {
  2697. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  2698. int blanking_mode = dsi->vm_timings.blanking_mode;
  2699. int hfp_blanking_mode = dsi->vm_timings.hfp_blanking_mode;
  2700. int hbp_blanking_mode = dsi->vm_timings.hbp_blanking_mode;
  2701. int hsa_blanking_mode = dsi->vm_timings.hsa_blanking_mode;
  2702. u32 r;
  2703. /*
  2704. * 0 = TX FIFO packets sent or LPS in corresponding blanking periods
  2705. * 1 = Long blanking packets are sent in corresponding blanking periods
  2706. */
  2707. r = dsi_read_reg(dsidev, DSI_CTRL);
  2708. r = FLD_MOD(r, blanking_mode, 20, 20); /* BLANKING_MODE */
  2709. r = FLD_MOD(r, hfp_blanking_mode, 21, 21); /* HFP_BLANKING */
  2710. r = FLD_MOD(r, hbp_blanking_mode, 22, 22); /* HBP_BLANKING */
  2711. r = FLD_MOD(r, hsa_blanking_mode, 23, 23); /* HSA_BLANKING */
  2712. dsi_write_reg(dsidev, DSI_CTRL, r);
  2713. }
  2714. /*
  2715. * According to section 'HS Command Mode Interleaving' in OMAP TRM, Scenario 3
  2716. * results in maximum transition time for data and clock lanes to enter and
  2717. * exit HS mode. Hence, this is the scenario where the least amount of command
  2718. * mode data can be interleaved. We program the minimum amount of TXBYTECLKHS
  2719. * clock cycles that can be used to interleave command mode data in HS so that
  2720. * all scenarios are satisfied.
  2721. */
  2722. static int dsi_compute_interleave_hs(int blank, bool ddr_alwon, int enter_hs,
  2723. int exit_hs, int exiths_clk, int ddr_pre, int ddr_post)
  2724. {
  2725. int transition;
  2726. /*
  2727. * If DDR_CLK_ALWAYS_ON is set, we need to consider HS mode transition
  2728. * time of data lanes only, if it isn't set, we need to consider HS
  2729. * transition time of both data and clock lanes. HS transition time
  2730. * of Scenario 3 is considered.
  2731. */
  2732. if (ddr_alwon) {
  2733. transition = enter_hs + exit_hs + max(enter_hs, 2) + 1;
  2734. } else {
  2735. int trans1, trans2;
  2736. trans1 = ddr_pre + enter_hs + exit_hs + max(enter_hs, 2) + 1;
  2737. trans2 = ddr_pre + enter_hs + exiths_clk + ddr_post + ddr_pre +
  2738. enter_hs + 1;
  2739. transition = max(trans1, trans2);
  2740. }
  2741. return blank > transition ? blank - transition : 0;
  2742. }
  2743. /*
  2744. * According to section 'LP Command Mode Interleaving' in OMAP TRM, Scenario 1
  2745. * results in maximum transition time for data lanes to enter and exit LP mode.
  2746. * Hence, this is the scenario where the least amount of command mode data can
  2747. * be interleaved. We program the minimum amount of bytes that can be
  2748. * interleaved in LP so that all scenarios are satisfied.
  2749. */
  2750. static int dsi_compute_interleave_lp(int blank, int enter_hs, int exit_hs,
  2751. int lp_clk_div, int tdsi_fclk)
  2752. {
  2753. int trans_lp; /* time required for a LP transition, in TXBYTECLKHS */
  2754. int tlp_avail; /* time left for interleaving commands, in CLKIN4DDR */
  2755. int ttxclkesc; /* period of LP transmit escape clock, in CLKIN4DDR */
  2756. int thsbyte_clk = 16; /* Period of TXBYTECLKHS clock, in CLKIN4DDR */
  2757. int lp_inter; /* cmd mode data that can be interleaved, in bytes */
  2758. /* maximum LP transition time according to Scenario 1 */
  2759. trans_lp = exit_hs + max(enter_hs, 2) + 1;
  2760. /* CLKIN4DDR = 16 * TXBYTECLKHS */
  2761. tlp_avail = thsbyte_clk * (blank - trans_lp);
  2762. ttxclkesc = tdsi_fclk * lp_clk_div;
  2763. lp_inter = ((tlp_avail - 8 * thsbyte_clk - 5 * tdsi_fclk) / ttxclkesc -
  2764. 26) / 16;
  2765. return max(lp_inter, 0);
  2766. }
  2767. static void dsi_config_cmd_mode_interleaving(struct platform_device *dsidev)
  2768. {
  2769. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  2770. int blanking_mode;
  2771. int hfp_blanking_mode, hbp_blanking_mode, hsa_blanking_mode;
  2772. int hsa, hfp, hbp, width_bytes, bllp, lp_clk_div;
  2773. int ddr_clk_pre, ddr_clk_post, enter_hs_mode_lat, exit_hs_mode_lat;
  2774. int tclk_trail, ths_exit, exiths_clk;
  2775. bool ddr_alwon;
  2776. struct omap_video_timings *timings = &dsi->timings;
  2777. int bpp = dsi_get_pixel_size(dsi->pix_fmt);
  2778. int ndl = dsi->num_lanes_used - 1;
  2779. int dsi_fclk_hsdiv = dsi->user_dsi_cinfo.mX[HSDIV_DSI] + 1;
  2780. int hsa_interleave_hs = 0, hsa_interleave_lp = 0;
  2781. int hfp_interleave_hs = 0, hfp_interleave_lp = 0;
  2782. int hbp_interleave_hs = 0, hbp_interleave_lp = 0;
  2783. int bl_interleave_hs = 0, bl_interleave_lp = 0;
  2784. u32 r;
  2785. r = dsi_read_reg(dsidev, DSI_CTRL);
  2786. blanking_mode = FLD_GET(r, 20, 20);
  2787. hfp_blanking_mode = FLD_GET(r, 21, 21);
  2788. hbp_blanking_mode = FLD_GET(r, 22, 22);
  2789. hsa_blanking_mode = FLD_GET(r, 23, 23);
  2790. r = dsi_read_reg(dsidev, DSI_VM_TIMING1);
  2791. hbp = FLD_GET(r, 11, 0);
  2792. hfp = FLD_GET(r, 23, 12);
  2793. hsa = FLD_GET(r, 31, 24);
  2794. r = dsi_read_reg(dsidev, DSI_CLK_TIMING);
  2795. ddr_clk_post = FLD_GET(r, 7, 0);
  2796. ddr_clk_pre = FLD_GET(r, 15, 8);
  2797. r = dsi_read_reg(dsidev, DSI_VM_TIMING7);
  2798. exit_hs_mode_lat = FLD_GET(r, 15, 0);
  2799. enter_hs_mode_lat = FLD_GET(r, 31, 16);
  2800. r = dsi_read_reg(dsidev, DSI_CLK_CTRL);
  2801. lp_clk_div = FLD_GET(r, 12, 0);
  2802. ddr_alwon = FLD_GET(r, 13, 13);
  2803. r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG0);
  2804. ths_exit = FLD_GET(r, 7, 0);
  2805. r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG1);
  2806. tclk_trail = FLD_GET(r, 15, 8);
  2807. exiths_clk = ths_exit + tclk_trail;
  2808. width_bytes = DIV_ROUND_UP(timings->x_res * bpp, 8);
  2809. bllp = hbp + hfp + hsa + DIV_ROUND_UP(width_bytes + 6, ndl);
  2810. if (!hsa_blanking_mode) {
  2811. hsa_interleave_hs = dsi_compute_interleave_hs(hsa, ddr_alwon,
  2812. enter_hs_mode_lat, exit_hs_mode_lat,
  2813. exiths_clk, ddr_clk_pre, ddr_clk_post);
  2814. hsa_interleave_lp = dsi_compute_interleave_lp(hsa,
  2815. enter_hs_mode_lat, exit_hs_mode_lat,
  2816. lp_clk_div, dsi_fclk_hsdiv);
  2817. }
  2818. if (!hfp_blanking_mode) {
  2819. hfp_interleave_hs = dsi_compute_interleave_hs(hfp, ddr_alwon,
  2820. enter_hs_mode_lat, exit_hs_mode_lat,
  2821. exiths_clk, ddr_clk_pre, ddr_clk_post);
  2822. hfp_interleave_lp = dsi_compute_interleave_lp(hfp,
  2823. enter_hs_mode_lat, exit_hs_mode_lat,
  2824. lp_clk_div, dsi_fclk_hsdiv);
  2825. }
  2826. if (!hbp_blanking_mode) {
  2827. hbp_interleave_hs = dsi_compute_interleave_hs(hbp, ddr_alwon,
  2828. enter_hs_mode_lat, exit_hs_mode_lat,
  2829. exiths_clk, ddr_clk_pre, ddr_clk_post);
  2830. hbp_interleave_lp = dsi_compute_interleave_lp(hbp,
  2831. enter_hs_mode_lat, exit_hs_mode_lat,
  2832. lp_clk_div, dsi_fclk_hsdiv);
  2833. }
  2834. if (!blanking_mode) {
  2835. bl_interleave_hs = dsi_compute_interleave_hs(bllp, ddr_alwon,
  2836. enter_hs_mode_lat, exit_hs_mode_lat,
  2837. exiths_clk, ddr_clk_pre, ddr_clk_post);
  2838. bl_interleave_lp = dsi_compute_interleave_lp(bllp,
  2839. enter_hs_mode_lat, exit_hs_mode_lat,
  2840. lp_clk_div, dsi_fclk_hsdiv);
  2841. }
  2842. DSSDBG("DSI HS interleaving(TXBYTECLKHS) HSA %d, HFP %d, HBP %d, BLLP %d\n",
  2843. hsa_interleave_hs, hfp_interleave_hs, hbp_interleave_hs,
  2844. bl_interleave_hs);
  2845. DSSDBG("DSI LP interleaving(bytes) HSA %d, HFP %d, HBP %d, BLLP %d\n",
  2846. hsa_interleave_lp, hfp_interleave_lp, hbp_interleave_lp,
  2847. bl_interleave_lp);
  2848. r = dsi_read_reg(dsidev, DSI_VM_TIMING4);
  2849. r = FLD_MOD(r, hsa_interleave_hs, 23, 16);
  2850. r = FLD_MOD(r, hfp_interleave_hs, 15, 8);
  2851. r = FLD_MOD(r, hbp_interleave_hs, 7, 0);
  2852. dsi_write_reg(dsidev, DSI_VM_TIMING4, r);
  2853. r = dsi_read_reg(dsidev, DSI_VM_TIMING5);
  2854. r = FLD_MOD(r, hsa_interleave_lp, 23, 16);
  2855. r = FLD_MOD(r, hfp_interleave_lp, 15, 8);
  2856. r = FLD_MOD(r, hbp_interleave_lp, 7, 0);
  2857. dsi_write_reg(dsidev, DSI_VM_TIMING5, r);
  2858. r = dsi_read_reg(dsidev, DSI_VM_TIMING6);
  2859. r = FLD_MOD(r, bl_interleave_hs, 31, 15);
  2860. r = FLD_MOD(r, bl_interleave_lp, 16, 0);
  2861. dsi_write_reg(dsidev, DSI_VM_TIMING6, r);
  2862. }
  2863. static int dsi_proto_config(struct platform_device *dsidev)
  2864. {
  2865. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  2866. u32 r;
  2867. int buswidth = 0;
  2868. dsi_config_tx_fifo(dsidev, DSI_FIFO_SIZE_32,
  2869. DSI_FIFO_SIZE_32,
  2870. DSI_FIFO_SIZE_32,
  2871. DSI_FIFO_SIZE_32);
  2872. dsi_config_rx_fifo(dsidev, DSI_FIFO_SIZE_32,
  2873. DSI_FIFO_SIZE_32,
  2874. DSI_FIFO_SIZE_32,
  2875. DSI_FIFO_SIZE_32);
  2876. /* XXX what values for the timeouts? */
  2877. dsi_set_stop_state_counter(dsidev, 0x1000, false, false);
  2878. dsi_set_ta_timeout(dsidev, 0x1fff, true, true);
  2879. dsi_set_lp_rx_timeout(dsidev, 0x1fff, true, true);
  2880. dsi_set_hs_tx_timeout(dsidev, 0x1fff, true, true);
  2881. switch (dsi_get_pixel_size(dsi->pix_fmt)) {
  2882. case 16:
  2883. buswidth = 0;
  2884. break;
  2885. case 18:
  2886. buswidth = 1;
  2887. break;
  2888. case 24:
  2889. buswidth = 2;
  2890. break;
  2891. default:
  2892. BUG();
  2893. return -EINVAL;
  2894. }
  2895. r = dsi_read_reg(dsidev, DSI_CTRL);
  2896. r = FLD_MOD(r, 1, 1, 1); /* CS_RX_EN */
  2897. r = FLD_MOD(r, 1, 2, 2); /* ECC_RX_EN */
  2898. r = FLD_MOD(r, 1, 3, 3); /* TX_FIFO_ARBITRATION */
  2899. r = FLD_MOD(r, 1, 4, 4); /* VP_CLK_RATIO, always 1, see errata*/
  2900. r = FLD_MOD(r, buswidth, 7, 6); /* VP_DATA_BUS_WIDTH */
  2901. r = FLD_MOD(r, 0, 8, 8); /* VP_CLK_POL */
  2902. r = FLD_MOD(r, 1, 14, 14); /* TRIGGER_RESET_MODE */
  2903. r = FLD_MOD(r, 1, 19, 19); /* EOT_ENABLE */
  2904. if (!dss_has_feature(FEAT_DSI_DCS_CMD_CONFIG_VC)) {
  2905. r = FLD_MOD(r, 1, 24, 24); /* DCS_CMD_ENABLE */
  2906. /* DCS_CMD_CODE, 1=start, 0=continue */
  2907. r = FLD_MOD(r, 0, 25, 25);
  2908. }
  2909. dsi_write_reg(dsidev, DSI_CTRL, r);
  2910. dsi_config_vp_num_line_buffers(dsidev);
  2911. if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
  2912. dsi_config_vp_sync_events(dsidev);
  2913. dsi_config_blanking_modes(dsidev);
  2914. dsi_config_cmd_mode_interleaving(dsidev);
  2915. }
  2916. dsi_vc_initial_config(dsidev, 0);
  2917. dsi_vc_initial_config(dsidev, 1);
  2918. dsi_vc_initial_config(dsidev, 2);
  2919. dsi_vc_initial_config(dsidev, 3);
  2920. return 0;
  2921. }
  2922. static void dsi_proto_timings(struct platform_device *dsidev)
  2923. {
  2924. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  2925. unsigned tlpx, tclk_zero, tclk_prepare, tclk_trail;
  2926. unsigned tclk_pre, tclk_post;
  2927. unsigned ths_prepare, ths_prepare_ths_zero, ths_zero;
  2928. unsigned ths_trail, ths_exit;
  2929. unsigned ddr_clk_pre, ddr_clk_post;
  2930. unsigned enter_hs_mode_lat, exit_hs_mode_lat;
  2931. unsigned ths_eot;
  2932. int ndl = dsi->num_lanes_used - 1;
  2933. u32 r;
  2934. r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG0);
  2935. ths_prepare = FLD_GET(r, 31, 24);
  2936. ths_prepare_ths_zero = FLD_GET(r, 23, 16);
  2937. ths_zero = ths_prepare_ths_zero - ths_prepare;
  2938. ths_trail = FLD_GET(r, 15, 8);
  2939. ths_exit = FLD_GET(r, 7, 0);
  2940. r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG1);
  2941. tlpx = FLD_GET(r, 20, 16) * 2;
  2942. tclk_trail = FLD_GET(r, 15, 8);
  2943. tclk_zero = FLD_GET(r, 7, 0);
  2944. r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG2);
  2945. tclk_prepare = FLD_GET(r, 7, 0);
  2946. /* min 8*UI */
  2947. tclk_pre = 20;
  2948. /* min 60ns + 52*UI */
  2949. tclk_post = ns2ddr(dsidev, 60) + 26;
  2950. ths_eot = DIV_ROUND_UP(4, ndl);
  2951. ddr_clk_pre = DIV_ROUND_UP(tclk_pre + tlpx + tclk_zero + tclk_prepare,
  2952. 4);
  2953. ddr_clk_post = DIV_ROUND_UP(tclk_post + ths_trail, 4) + ths_eot;
  2954. BUG_ON(ddr_clk_pre == 0 || ddr_clk_pre > 255);
  2955. BUG_ON(ddr_clk_post == 0 || ddr_clk_post > 255);
  2956. r = dsi_read_reg(dsidev, DSI_CLK_TIMING);
  2957. r = FLD_MOD(r, ddr_clk_pre, 15, 8);
  2958. r = FLD_MOD(r, ddr_clk_post, 7, 0);
  2959. dsi_write_reg(dsidev, DSI_CLK_TIMING, r);
  2960. DSSDBG("ddr_clk_pre %u, ddr_clk_post %u\n",
  2961. ddr_clk_pre,
  2962. ddr_clk_post);
  2963. enter_hs_mode_lat = 1 + DIV_ROUND_UP(tlpx, 4) +
  2964. DIV_ROUND_UP(ths_prepare, 4) +
  2965. DIV_ROUND_UP(ths_zero + 3, 4);
  2966. exit_hs_mode_lat = DIV_ROUND_UP(ths_trail + ths_exit, 4) + 1 + ths_eot;
  2967. r = FLD_VAL(enter_hs_mode_lat, 31, 16) |
  2968. FLD_VAL(exit_hs_mode_lat, 15, 0);
  2969. dsi_write_reg(dsidev, DSI_VM_TIMING7, r);
  2970. DSSDBG("enter_hs_mode_lat %u, exit_hs_mode_lat %u\n",
  2971. enter_hs_mode_lat, exit_hs_mode_lat);
  2972. if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
  2973. /* TODO: Implement a video mode check_timings function */
  2974. int hsa = dsi->vm_timings.hsa;
  2975. int hfp = dsi->vm_timings.hfp;
  2976. int hbp = dsi->vm_timings.hbp;
  2977. int vsa = dsi->vm_timings.vsa;
  2978. int vfp = dsi->vm_timings.vfp;
  2979. int vbp = dsi->vm_timings.vbp;
  2980. int window_sync = dsi->vm_timings.window_sync;
  2981. bool hsync_end;
  2982. struct omap_video_timings *timings = &dsi->timings;
  2983. int bpp = dsi_get_pixel_size(dsi->pix_fmt);
  2984. int tl, t_he, width_bytes;
  2985. hsync_end = dsi->vm_timings.trans_mode == OMAP_DSS_DSI_PULSE_MODE;
  2986. t_he = hsync_end ?
  2987. ((hsa == 0 && ndl == 3) ? 1 : DIV_ROUND_UP(4, ndl)) : 0;
  2988. width_bytes = DIV_ROUND_UP(timings->x_res * bpp, 8);
  2989. /* TL = t_HS + HSA + t_HE + HFP + ceil((WC + 6) / NDL) + HBP */
  2990. tl = DIV_ROUND_UP(4, ndl) + (hsync_end ? hsa : 0) + t_he + hfp +
  2991. DIV_ROUND_UP(width_bytes + 6, ndl) + hbp;
  2992. DSSDBG("HBP: %d, HFP: %d, HSA: %d, TL: %d TXBYTECLKHS\n", hbp,
  2993. hfp, hsync_end ? hsa : 0, tl);
  2994. DSSDBG("VBP: %d, VFP: %d, VSA: %d, VACT: %d lines\n", vbp, vfp,
  2995. vsa, timings->y_res);
  2996. r = dsi_read_reg(dsidev, DSI_VM_TIMING1);
  2997. r = FLD_MOD(r, hbp, 11, 0); /* HBP */
  2998. r = FLD_MOD(r, hfp, 23, 12); /* HFP */
  2999. r = FLD_MOD(r, hsync_end ? hsa : 0, 31, 24); /* HSA */
  3000. dsi_write_reg(dsidev, DSI_VM_TIMING1, r);
  3001. r = dsi_read_reg(dsidev, DSI_VM_TIMING2);
  3002. r = FLD_MOD(r, vbp, 7, 0); /* VBP */
  3003. r = FLD_MOD(r, vfp, 15, 8); /* VFP */
  3004. r = FLD_MOD(r, vsa, 23, 16); /* VSA */
  3005. r = FLD_MOD(r, window_sync, 27, 24); /* WINDOW_SYNC */
  3006. dsi_write_reg(dsidev, DSI_VM_TIMING2, r);
  3007. r = dsi_read_reg(dsidev, DSI_VM_TIMING3);
  3008. r = FLD_MOD(r, timings->y_res, 14, 0); /* VACT */
  3009. r = FLD_MOD(r, tl, 31, 16); /* TL */
  3010. dsi_write_reg(dsidev, DSI_VM_TIMING3, r);
  3011. }
  3012. }
  3013. static int dsi_configure_pins(struct omap_dss_device *dssdev,
  3014. const struct omap_dsi_pin_config *pin_cfg)
  3015. {
  3016. struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
  3017. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  3018. int num_pins;
  3019. const int *pins;
  3020. struct dsi_lane_config lanes[DSI_MAX_NR_LANES];
  3021. int num_lanes;
  3022. int i;
  3023. static const enum dsi_lane_function functions[] = {
  3024. DSI_LANE_CLK,
  3025. DSI_LANE_DATA1,
  3026. DSI_LANE_DATA2,
  3027. DSI_LANE_DATA3,
  3028. DSI_LANE_DATA4,
  3029. };
  3030. num_pins = pin_cfg->num_pins;
  3031. pins = pin_cfg->pins;
  3032. if (num_pins < 4 || num_pins > dsi->num_lanes_supported * 2
  3033. || num_pins % 2 != 0)
  3034. return -EINVAL;
  3035. for (i = 0; i < DSI_MAX_NR_LANES; ++i)
  3036. lanes[i].function = DSI_LANE_UNUSED;
  3037. num_lanes = 0;
  3038. for (i = 0; i < num_pins; i += 2) {
  3039. u8 lane, pol;
  3040. int dx, dy;
  3041. dx = pins[i];
  3042. dy = pins[i + 1];
  3043. if (dx < 0 || dx >= dsi->num_lanes_supported * 2)
  3044. return -EINVAL;
  3045. if (dy < 0 || dy >= dsi->num_lanes_supported * 2)
  3046. return -EINVAL;
  3047. if (dx & 1) {
  3048. if (dy != dx - 1)
  3049. return -EINVAL;
  3050. pol = 1;
  3051. } else {
  3052. if (dy != dx + 1)
  3053. return -EINVAL;
  3054. pol = 0;
  3055. }
  3056. lane = dx / 2;
  3057. lanes[lane].function = functions[i / 2];
  3058. lanes[lane].polarity = pol;
  3059. num_lanes++;
  3060. }
  3061. memcpy(dsi->lanes, lanes, sizeof(dsi->lanes));
  3062. dsi->num_lanes_used = num_lanes;
  3063. return 0;
  3064. }
  3065. static int dsi_enable_video_output(struct omap_dss_device *dssdev, int channel)
  3066. {
  3067. struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
  3068. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  3069. enum omap_channel dispc_channel = dssdev->dispc_channel;
  3070. int bpp = dsi_get_pixel_size(dsi->pix_fmt);
  3071. struct omap_dss_device *out = &dsi->output;
  3072. u8 data_type;
  3073. u16 word_count;
  3074. int r;
  3075. if (!out->dispc_channel_connected) {
  3076. DSSERR("failed to enable display: no output/manager\n");
  3077. return -ENODEV;
  3078. }
  3079. r = dsi_display_init_dispc(dsidev, dispc_channel);
  3080. if (r)
  3081. goto err_init_dispc;
  3082. if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
  3083. switch (dsi->pix_fmt) {
  3084. case OMAP_DSS_DSI_FMT_RGB888:
  3085. data_type = MIPI_DSI_PACKED_PIXEL_STREAM_24;
  3086. break;
  3087. case OMAP_DSS_DSI_FMT_RGB666:
  3088. data_type = MIPI_DSI_PIXEL_STREAM_3BYTE_18;
  3089. break;
  3090. case OMAP_DSS_DSI_FMT_RGB666_PACKED:
  3091. data_type = MIPI_DSI_PACKED_PIXEL_STREAM_18;
  3092. break;
  3093. case OMAP_DSS_DSI_FMT_RGB565:
  3094. data_type = MIPI_DSI_PACKED_PIXEL_STREAM_16;
  3095. break;
  3096. default:
  3097. r = -EINVAL;
  3098. goto err_pix_fmt;
  3099. }
  3100. dsi_if_enable(dsidev, false);
  3101. dsi_vc_enable(dsidev, channel, false);
  3102. /* MODE, 1 = video mode */
  3103. REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), 1, 4, 4);
  3104. word_count = DIV_ROUND_UP(dsi->timings.x_res * bpp, 8);
  3105. dsi_vc_write_long_header(dsidev, channel, data_type,
  3106. word_count, 0);
  3107. dsi_vc_enable(dsidev, channel, true);
  3108. dsi_if_enable(dsidev, true);
  3109. }
  3110. r = dss_mgr_enable(dispc_channel);
  3111. if (r)
  3112. goto err_mgr_enable;
  3113. return 0;
  3114. err_mgr_enable:
  3115. if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
  3116. dsi_if_enable(dsidev, false);
  3117. dsi_vc_enable(dsidev, channel, false);
  3118. }
  3119. err_pix_fmt:
  3120. dsi_display_uninit_dispc(dsidev, dispc_channel);
  3121. err_init_dispc:
  3122. return r;
  3123. }
  3124. static void dsi_disable_video_output(struct omap_dss_device *dssdev, int channel)
  3125. {
  3126. struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
  3127. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  3128. enum omap_channel dispc_channel = dssdev->dispc_channel;
  3129. if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
  3130. dsi_if_enable(dsidev, false);
  3131. dsi_vc_enable(dsidev, channel, false);
  3132. /* MODE, 0 = command mode */
  3133. REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), 0, 4, 4);
  3134. dsi_vc_enable(dsidev, channel, true);
  3135. dsi_if_enable(dsidev, true);
  3136. }
  3137. dss_mgr_disable(dispc_channel);
  3138. dsi_display_uninit_dispc(dsidev, dispc_channel);
  3139. }
  3140. static void dsi_update_screen_dispc(struct platform_device *dsidev)
  3141. {
  3142. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  3143. enum omap_channel dispc_channel = dsi->output.dispc_channel;
  3144. unsigned bytespp;
  3145. unsigned bytespl;
  3146. unsigned bytespf;
  3147. unsigned total_len;
  3148. unsigned packet_payload;
  3149. unsigned packet_len;
  3150. u32 l;
  3151. int r;
  3152. const unsigned channel = dsi->update_channel;
  3153. const unsigned line_buf_size = dsi->line_buffer_size;
  3154. u16 w = dsi->timings.x_res;
  3155. u16 h = dsi->timings.y_res;
  3156. DSSDBG("dsi_update_screen_dispc(%dx%d)\n", w, h);
  3157. dsi_vc_config_source(dsidev, channel, DSI_VC_SOURCE_VP);
  3158. bytespp = dsi_get_pixel_size(dsi->pix_fmt) / 8;
  3159. bytespl = w * bytespp;
  3160. bytespf = bytespl * h;
  3161. /* NOTE: packet_payload has to be equal to N * bytespl, where N is
  3162. * number of lines in a packet. See errata about VP_CLK_RATIO */
  3163. if (bytespf < line_buf_size)
  3164. packet_payload = bytespf;
  3165. else
  3166. packet_payload = (line_buf_size) / bytespl * bytespl;
  3167. packet_len = packet_payload + 1; /* 1 byte for DCS cmd */
  3168. total_len = (bytespf / packet_payload) * packet_len;
  3169. if (bytespf % packet_payload)
  3170. total_len += (bytespf % packet_payload) + 1;
  3171. l = FLD_VAL(total_len, 23, 0); /* TE_SIZE */
  3172. dsi_write_reg(dsidev, DSI_VC_TE(channel), l);
  3173. dsi_vc_write_long_header(dsidev, channel, MIPI_DSI_DCS_LONG_WRITE,
  3174. packet_len, 0);
  3175. if (dsi->te_enabled)
  3176. l = FLD_MOD(l, 1, 30, 30); /* TE_EN */
  3177. else
  3178. l = FLD_MOD(l, 1, 31, 31); /* TE_START */
  3179. dsi_write_reg(dsidev, DSI_VC_TE(channel), l);
  3180. /* We put SIDLEMODE to no-idle for the duration of the transfer,
  3181. * because DSS interrupts are not capable of waking up the CPU and the
  3182. * framedone interrupt could be delayed for quite a long time. I think
  3183. * the same goes for any DSS interrupts, but for some reason I have not
  3184. * seen the problem anywhere else than here.
  3185. */
  3186. dispc_disable_sidle();
  3187. dsi_perf_mark_start(dsidev);
  3188. r = schedule_delayed_work(&dsi->framedone_timeout_work,
  3189. msecs_to_jiffies(250));
  3190. BUG_ON(r == 0);
  3191. dss_mgr_set_timings(dispc_channel, &dsi->timings);
  3192. dss_mgr_start_update(dispc_channel);
  3193. if (dsi->te_enabled) {
  3194. /* disable LP_RX_TO, so that we can receive TE. Time to wait
  3195. * for TE is longer than the timer allows */
  3196. REG_FLD_MOD(dsidev, DSI_TIMING2, 0, 15, 15); /* LP_RX_TO */
  3197. dsi_vc_send_bta(dsidev, channel);
  3198. #ifdef DSI_CATCH_MISSING_TE
  3199. mod_timer(&dsi->te_timer, jiffies + msecs_to_jiffies(250));
  3200. #endif
  3201. }
  3202. }
  3203. #ifdef DSI_CATCH_MISSING_TE
  3204. static void dsi_te_timeout(unsigned long arg)
  3205. {
  3206. DSSERR("TE not received for 250ms!\n");
  3207. }
  3208. #endif
  3209. static void dsi_handle_framedone(struct platform_device *dsidev, int error)
  3210. {
  3211. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  3212. /* SIDLEMODE back to smart-idle */
  3213. dispc_enable_sidle();
  3214. if (dsi->te_enabled) {
  3215. /* enable LP_RX_TO again after the TE */
  3216. REG_FLD_MOD(dsidev, DSI_TIMING2, 1, 15, 15); /* LP_RX_TO */
  3217. }
  3218. dsi->framedone_callback(error, dsi->framedone_data);
  3219. if (!error)
  3220. dsi_perf_show(dsidev, "DISPC");
  3221. }
  3222. static void dsi_framedone_timeout_work_callback(struct work_struct *work)
  3223. {
  3224. struct dsi_data *dsi = container_of(work, struct dsi_data,
  3225. framedone_timeout_work.work);
  3226. /* XXX While extremely unlikely, we could get FRAMEDONE interrupt after
  3227. * 250ms which would conflict with this timeout work. What should be
  3228. * done is first cancel the transfer on the HW, and then cancel the
  3229. * possibly scheduled framedone work. However, cancelling the transfer
  3230. * on the HW is buggy, and would probably require resetting the whole
  3231. * DSI */
  3232. DSSERR("Framedone not received for 250ms!\n");
  3233. dsi_handle_framedone(dsi->pdev, -ETIMEDOUT);
  3234. }
  3235. static void dsi_framedone_irq_callback(void *data)
  3236. {
  3237. struct platform_device *dsidev = (struct platform_device *) data;
  3238. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  3239. /* Note: We get FRAMEDONE when DISPC has finished sending pixels and
  3240. * turns itself off. However, DSI still has the pixels in its buffers,
  3241. * and is sending the data.
  3242. */
  3243. cancel_delayed_work(&dsi->framedone_timeout_work);
  3244. dsi_handle_framedone(dsidev, 0);
  3245. }
  3246. static int dsi_update(struct omap_dss_device *dssdev, int channel,
  3247. void (*callback)(int, void *), void *data)
  3248. {
  3249. struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
  3250. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  3251. u16 dw, dh;
  3252. dsi_perf_mark_setup(dsidev);
  3253. dsi->update_channel = channel;
  3254. dsi->framedone_callback = callback;
  3255. dsi->framedone_data = data;
  3256. dw = dsi->timings.x_res;
  3257. dh = dsi->timings.y_res;
  3258. #ifdef DSI_PERF_MEASURE
  3259. dsi->update_bytes = dw * dh *
  3260. dsi_get_pixel_size(dsi->pix_fmt) / 8;
  3261. #endif
  3262. dsi_update_screen_dispc(dsidev);
  3263. return 0;
  3264. }
  3265. /* Display funcs */
  3266. static int dsi_configure_dispc_clocks(struct platform_device *dsidev)
  3267. {
  3268. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  3269. struct dispc_clock_info dispc_cinfo;
  3270. int r;
  3271. unsigned long fck;
  3272. fck = dsi_get_pll_hsdiv_dispc_rate(dsidev);
  3273. dispc_cinfo.lck_div = dsi->user_dispc_cinfo.lck_div;
  3274. dispc_cinfo.pck_div = dsi->user_dispc_cinfo.pck_div;
  3275. r = dispc_calc_clock_rates(fck, &dispc_cinfo);
  3276. if (r) {
  3277. DSSERR("Failed to calc dispc clocks\n");
  3278. return r;
  3279. }
  3280. dsi->mgr_config.clock_info = dispc_cinfo;
  3281. return 0;
  3282. }
  3283. static int dsi_display_init_dispc(struct platform_device *dsidev,
  3284. enum omap_channel channel)
  3285. {
  3286. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  3287. int r;
  3288. dss_select_lcd_clk_source(channel, dsi->module_id == 0 ?
  3289. OMAP_DSS_CLK_SRC_DSI_PLL_HSDIV_DISPC :
  3290. OMAP_DSS_CLK_SRC_DSI2_PLL_HSDIV_DISPC);
  3291. if (dsi->mode == OMAP_DSS_DSI_CMD_MODE) {
  3292. r = dss_mgr_register_framedone_handler(channel,
  3293. dsi_framedone_irq_callback, dsidev);
  3294. if (r) {
  3295. DSSERR("can't register FRAMEDONE handler\n");
  3296. goto err;
  3297. }
  3298. dsi->mgr_config.stallmode = true;
  3299. dsi->mgr_config.fifohandcheck = true;
  3300. } else {
  3301. dsi->mgr_config.stallmode = false;
  3302. dsi->mgr_config.fifohandcheck = false;
  3303. }
  3304. /*
  3305. * override interlace, logic level and edge related parameters in
  3306. * omap_video_timings with default values
  3307. */
  3308. dsi->timings.interlace = false;
  3309. dsi->timings.hsync_level = OMAPDSS_SIG_ACTIVE_HIGH;
  3310. dsi->timings.vsync_level = OMAPDSS_SIG_ACTIVE_HIGH;
  3311. dsi->timings.data_pclk_edge = OMAPDSS_DRIVE_SIG_RISING_EDGE;
  3312. dsi->timings.de_level = OMAPDSS_SIG_ACTIVE_HIGH;
  3313. dsi->timings.sync_pclk_edge = OMAPDSS_DRIVE_SIG_FALLING_EDGE;
  3314. dss_mgr_set_timings(channel, &dsi->timings);
  3315. r = dsi_configure_dispc_clocks(dsidev);
  3316. if (r)
  3317. goto err1;
  3318. dsi->mgr_config.io_pad_mode = DSS_IO_PAD_MODE_BYPASS;
  3319. dsi->mgr_config.video_port_width =
  3320. dsi_get_pixel_size(dsi->pix_fmt);
  3321. dsi->mgr_config.lcden_sig_polarity = 0;
  3322. dss_mgr_set_lcd_config(channel, &dsi->mgr_config);
  3323. return 0;
  3324. err1:
  3325. if (dsi->mode == OMAP_DSS_DSI_CMD_MODE)
  3326. dss_mgr_unregister_framedone_handler(channel,
  3327. dsi_framedone_irq_callback, dsidev);
  3328. err:
  3329. dss_select_lcd_clk_source(channel, OMAP_DSS_CLK_SRC_FCK);
  3330. return r;
  3331. }
  3332. static void dsi_display_uninit_dispc(struct platform_device *dsidev,
  3333. enum omap_channel channel)
  3334. {
  3335. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  3336. if (dsi->mode == OMAP_DSS_DSI_CMD_MODE)
  3337. dss_mgr_unregister_framedone_handler(channel,
  3338. dsi_framedone_irq_callback, dsidev);
  3339. dss_select_lcd_clk_source(channel, OMAP_DSS_CLK_SRC_FCK);
  3340. }
  3341. static int dsi_configure_dsi_clocks(struct platform_device *dsidev)
  3342. {
  3343. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  3344. struct dss_pll_clock_info cinfo;
  3345. int r;
  3346. cinfo = dsi->user_dsi_cinfo;
  3347. r = dss_pll_set_config(&dsi->pll, &cinfo);
  3348. if (r) {
  3349. DSSERR("Failed to set dsi clocks\n");
  3350. return r;
  3351. }
  3352. return 0;
  3353. }
  3354. static int dsi_display_init_dsi(struct platform_device *dsidev)
  3355. {
  3356. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  3357. int r;
  3358. r = dss_pll_enable(&dsi->pll);
  3359. if (r)
  3360. goto err0;
  3361. r = dsi_configure_dsi_clocks(dsidev);
  3362. if (r)
  3363. goto err1;
  3364. dss_select_dsi_clk_source(dsi->module_id, dsi->module_id == 0 ?
  3365. OMAP_DSS_CLK_SRC_DSI_PLL_HSDIV_DSI :
  3366. OMAP_DSS_CLK_SRC_DSI2_PLL_HSDIV_DSI);
  3367. DSSDBG("PLL OK\n");
  3368. r = dsi_cio_init(dsidev);
  3369. if (r)
  3370. goto err2;
  3371. _dsi_print_reset_status(dsidev);
  3372. dsi_proto_timings(dsidev);
  3373. dsi_set_lp_clk_divisor(dsidev);
  3374. if (1)
  3375. _dsi_print_reset_status(dsidev);
  3376. r = dsi_proto_config(dsidev);
  3377. if (r)
  3378. goto err3;
  3379. /* enable interface */
  3380. dsi_vc_enable(dsidev, 0, 1);
  3381. dsi_vc_enable(dsidev, 1, 1);
  3382. dsi_vc_enable(dsidev, 2, 1);
  3383. dsi_vc_enable(dsidev, 3, 1);
  3384. dsi_if_enable(dsidev, 1);
  3385. dsi_force_tx_stop_mode_io(dsidev);
  3386. return 0;
  3387. err3:
  3388. dsi_cio_uninit(dsidev);
  3389. err2:
  3390. dss_select_dsi_clk_source(dsi->module_id, OMAP_DSS_CLK_SRC_FCK);
  3391. err1:
  3392. dss_pll_disable(&dsi->pll);
  3393. err0:
  3394. return r;
  3395. }
  3396. static void dsi_display_uninit_dsi(struct platform_device *dsidev,
  3397. bool disconnect_lanes, bool enter_ulps)
  3398. {
  3399. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  3400. if (enter_ulps && !dsi->ulps_enabled)
  3401. dsi_enter_ulps(dsidev);
  3402. /* disable interface */
  3403. dsi_if_enable(dsidev, 0);
  3404. dsi_vc_enable(dsidev, 0, 0);
  3405. dsi_vc_enable(dsidev, 1, 0);
  3406. dsi_vc_enable(dsidev, 2, 0);
  3407. dsi_vc_enable(dsidev, 3, 0);
  3408. dss_select_dsi_clk_source(dsi->module_id, OMAP_DSS_CLK_SRC_FCK);
  3409. dsi_cio_uninit(dsidev);
  3410. dsi_pll_uninit(dsidev, disconnect_lanes);
  3411. }
  3412. static int dsi_display_enable(struct omap_dss_device *dssdev)
  3413. {
  3414. struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
  3415. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  3416. int r = 0;
  3417. DSSDBG("dsi_display_enable\n");
  3418. WARN_ON(!dsi_bus_is_locked(dsidev));
  3419. mutex_lock(&dsi->lock);
  3420. r = dsi_runtime_get(dsidev);
  3421. if (r)
  3422. goto err_get_dsi;
  3423. _dsi_initialize_irq(dsidev);
  3424. r = dsi_display_init_dsi(dsidev);
  3425. if (r)
  3426. goto err_init_dsi;
  3427. mutex_unlock(&dsi->lock);
  3428. return 0;
  3429. err_init_dsi:
  3430. dsi_runtime_put(dsidev);
  3431. err_get_dsi:
  3432. mutex_unlock(&dsi->lock);
  3433. DSSDBG("dsi_display_enable FAILED\n");
  3434. return r;
  3435. }
  3436. static void dsi_display_disable(struct omap_dss_device *dssdev,
  3437. bool disconnect_lanes, bool enter_ulps)
  3438. {
  3439. struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
  3440. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  3441. DSSDBG("dsi_display_disable\n");
  3442. WARN_ON(!dsi_bus_is_locked(dsidev));
  3443. mutex_lock(&dsi->lock);
  3444. dsi_sync_vc(dsidev, 0);
  3445. dsi_sync_vc(dsidev, 1);
  3446. dsi_sync_vc(dsidev, 2);
  3447. dsi_sync_vc(dsidev, 3);
  3448. dsi_display_uninit_dsi(dsidev, disconnect_lanes, enter_ulps);
  3449. dsi_runtime_put(dsidev);
  3450. mutex_unlock(&dsi->lock);
  3451. }
  3452. static int dsi_enable_te(struct omap_dss_device *dssdev, bool enable)
  3453. {
  3454. struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
  3455. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  3456. dsi->te_enabled = enable;
  3457. return 0;
  3458. }
  3459. #ifdef PRINT_VERBOSE_VM_TIMINGS
  3460. static void print_dsi_vm(const char *str,
  3461. const struct omap_dss_dsi_videomode_timings *t)
  3462. {
  3463. unsigned long byteclk = t->hsclk / 4;
  3464. int bl, wc, pps, tot;
  3465. wc = DIV_ROUND_UP(t->hact * t->bitspp, 8);
  3466. pps = DIV_ROUND_UP(wc + 6, t->ndl); /* pixel packet size */
  3467. bl = t->hss + t->hsa + t->hse + t->hbp + t->hfp;
  3468. tot = bl + pps;
  3469. #define TO_DSI_T(x) ((u32)div64_u64((u64)x * 1000000000llu, byteclk))
  3470. pr_debug("%s bck %lu, %u/%u/%u/%u/%u/%u = %u+%u = %u, "
  3471. "%u/%u/%u/%u/%u/%u = %u + %u = %u\n",
  3472. str,
  3473. byteclk,
  3474. t->hss, t->hsa, t->hse, t->hbp, pps, t->hfp,
  3475. bl, pps, tot,
  3476. TO_DSI_T(t->hss),
  3477. TO_DSI_T(t->hsa),
  3478. TO_DSI_T(t->hse),
  3479. TO_DSI_T(t->hbp),
  3480. TO_DSI_T(pps),
  3481. TO_DSI_T(t->hfp),
  3482. TO_DSI_T(bl),
  3483. TO_DSI_T(pps),
  3484. TO_DSI_T(tot));
  3485. #undef TO_DSI_T
  3486. }
  3487. static void print_dispc_vm(const char *str, const struct omap_video_timings *t)
  3488. {
  3489. unsigned long pck = t->pixelclock;
  3490. int hact, bl, tot;
  3491. hact = t->x_res;
  3492. bl = t->hsw + t->hbp + t->hfp;
  3493. tot = hact + bl;
  3494. #define TO_DISPC_T(x) ((u32)div64_u64((u64)x * 1000000000llu, pck))
  3495. pr_debug("%s pck %lu, %u/%u/%u/%u = %u+%u = %u, "
  3496. "%u/%u/%u/%u = %u + %u = %u\n",
  3497. str,
  3498. pck,
  3499. t->hsw, t->hbp, hact, t->hfp,
  3500. bl, hact, tot,
  3501. TO_DISPC_T(t->hsw),
  3502. TO_DISPC_T(t->hbp),
  3503. TO_DISPC_T(hact),
  3504. TO_DISPC_T(t->hfp),
  3505. TO_DISPC_T(bl),
  3506. TO_DISPC_T(hact),
  3507. TO_DISPC_T(tot));
  3508. #undef TO_DISPC_T
  3509. }
  3510. /* note: this is not quite accurate */
  3511. static void print_dsi_dispc_vm(const char *str,
  3512. const struct omap_dss_dsi_videomode_timings *t)
  3513. {
  3514. struct omap_video_timings vm = { 0 };
  3515. unsigned long byteclk = t->hsclk / 4;
  3516. unsigned long pck;
  3517. u64 dsi_tput;
  3518. int dsi_hact, dsi_htot;
  3519. dsi_tput = (u64)byteclk * t->ndl * 8;
  3520. pck = (u32)div64_u64(dsi_tput, t->bitspp);
  3521. dsi_hact = DIV_ROUND_UP(DIV_ROUND_UP(t->hact * t->bitspp, 8) + 6, t->ndl);
  3522. dsi_htot = t->hss + t->hsa + t->hse + t->hbp + dsi_hact + t->hfp;
  3523. vm.pixelclock = pck;
  3524. vm.hsw = div64_u64((u64)(t->hsa + t->hse) * pck, byteclk);
  3525. vm.hbp = div64_u64((u64)t->hbp * pck, byteclk);
  3526. vm.hfp = div64_u64((u64)t->hfp * pck, byteclk);
  3527. vm.x_res = t->hact;
  3528. print_dispc_vm(str, &vm);
  3529. }
  3530. #endif /* PRINT_VERBOSE_VM_TIMINGS */
  3531. static bool dsi_cm_calc_dispc_cb(int lckd, int pckd, unsigned long lck,
  3532. unsigned long pck, void *data)
  3533. {
  3534. struct dsi_clk_calc_ctx *ctx = data;
  3535. struct omap_video_timings *t = &ctx->dispc_vm;
  3536. ctx->dispc_cinfo.lck_div = lckd;
  3537. ctx->dispc_cinfo.pck_div = pckd;
  3538. ctx->dispc_cinfo.lck = lck;
  3539. ctx->dispc_cinfo.pck = pck;
  3540. *t = *ctx->config->timings;
  3541. t->pixelclock = pck;
  3542. t->x_res = ctx->config->timings->x_res;
  3543. t->y_res = ctx->config->timings->y_res;
  3544. t->hsw = t->hfp = t->hbp = t->vsw = 1;
  3545. t->vfp = t->vbp = 0;
  3546. return true;
  3547. }
  3548. static bool dsi_cm_calc_hsdiv_cb(int m_dispc, unsigned long dispc,
  3549. void *data)
  3550. {
  3551. struct dsi_clk_calc_ctx *ctx = data;
  3552. ctx->dsi_cinfo.mX[HSDIV_DISPC] = m_dispc;
  3553. ctx->dsi_cinfo.clkout[HSDIV_DISPC] = dispc;
  3554. return dispc_div_calc(dispc, ctx->req_pck_min, ctx->req_pck_max,
  3555. dsi_cm_calc_dispc_cb, ctx);
  3556. }
  3557. static bool dsi_cm_calc_pll_cb(int n, int m, unsigned long fint,
  3558. unsigned long clkdco, void *data)
  3559. {
  3560. struct dsi_clk_calc_ctx *ctx = data;
  3561. ctx->dsi_cinfo.n = n;
  3562. ctx->dsi_cinfo.m = m;
  3563. ctx->dsi_cinfo.fint = fint;
  3564. ctx->dsi_cinfo.clkdco = clkdco;
  3565. return dss_pll_hsdiv_calc(ctx->pll, clkdco, ctx->req_pck_min,
  3566. dss_feat_get_param_max(FEAT_PARAM_DSS_FCK),
  3567. dsi_cm_calc_hsdiv_cb, ctx);
  3568. }
  3569. static bool dsi_cm_calc(struct dsi_data *dsi,
  3570. const struct omap_dss_dsi_config *cfg,
  3571. struct dsi_clk_calc_ctx *ctx)
  3572. {
  3573. unsigned long clkin;
  3574. int bitspp, ndl;
  3575. unsigned long pll_min, pll_max;
  3576. unsigned long pck, txbyteclk;
  3577. clkin = clk_get_rate(dsi->pll.clkin);
  3578. bitspp = dsi_get_pixel_size(cfg->pixel_format);
  3579. ndl = dsi->num_lanes_used - 1;
  3580. /*
  3581. * Here we should calculate minimum txbyteclk to be able to send the
  3582. * frame in time, and also to handle TE. That's not very simple, though,
  3583. * especially as we go to LP between each pixel packet due to HW
  3584. * "feature". So let's just estimate very roughly and multiply by 1.5.
  3585. */
  3586. pck = cfg->timings->pixelclock;
  3587. pck = pck * 3 / 2;
  3588. txbyteclk = pck * bitspp / 8 / ndl;
  3589. memset(ctx, 0, sizeof(*ctx));
  3590. ctx->dsidev = dsi->pdev;
  3591. ctx->pll = &dsi->pll;
  3592. ctx->config = cfg;
  3593. ctx->req_pck_min = pck;
  3594. ctx->req_pck_nom = pck;
  3595. ctx->req_pck_max = pck * 3 / 2;
  3596. pll_min = max(cfg->hs_clk_min * 4, txbyteclk * 4 * 4);
  3597. pll_max = cfg->hs_clk_max * 4;
  3598. return dss_pll_calc(ctx->pll, clkin,
  3599. pll_min, pll_max,
  3600. dsi_cm_calc_pll_cb, ctx);
  3601. }
  3602. static bool dsi_vm_calc_blanking(struct dsi_clk_calc_ctx *ctx)
  3603. {
  3604. struct dsi_data *dsi = dsi_get_dsidrv_data(ctx->dsidev);
  3605. const struct omap_dss_dsi_config *cfg = ctx->config;
  3606. int bitspp = dsi_get_pixel_size(cfg->pixel_format);
  3607. int ndl = dsi->num_lanes_used - 1;
  3608. unsigned long hsclk = ctx->dsi_cinfo.clkdco / 4;
  3609. unsigned long byteclk = hsclk / 4;
  3610. unsigned long dispc_pck, req_pck_min, req_pck_nom, req_pck_max;
  3611. int xres;
  3612. int panel_htot, panel_hbl; /* pixels */
  3613. int dispc_htot, dispc_hbl; /* pixels */
  3614. int dsi_htot, dsi_hact, dsi_hbl, hss, hse; /* byteclks */
  3615. int hfp, hsa, hbp;
  3616. const struct omap_video_timings *req_vm;
  3617. struct omap_video_timings *dispc_vm;
  3618. struct omap_dss_dsi_videomode_timings *dsi_vm;
  3619. u64 dsi_tput, dispc_tput;
  3620. dsi_tput = (u64)byteclk * ndl * 8;
  3621. req_vm = cfg->timings;
  3622. req_pck_min = ctx->req_pck_min;
  3623. req_pck_max = ctx->req_pck_max;
  3624. req_pck_nom = ctx->req_pck_nom;
  3625. dispc_pck = ctx->dispc_cinfo.pck;
  3626. dispc_tput = (u64)dispc_pck * bitspp;
  3627. xres = req_vm->x_res;
  3628. panel_hbl = req_vm->hfp + req_vm->hbp + req_vm->hsw;
  3629. panel_htot = xres + panel_hbl;
  3630. dsi_hact = DIV_ROUND_UP(DIV_ROUND_UP(xres * bitspp, 8) + 6, ndl);
  3631. /*
  3632. * When there are no line buffers, DISPC and DSI must have the
  3633. * same tput. Otherwise DISPC tput needs to be higher than DSI's.
  3634. */
  3635. if (dsi->line_buffer_size < xres * bitspp / 8) {
  3636. if (dispc_tput != dsi_tput)
  3637. return false;
  3638. } else {
  3639. if (dispc_tput < dsi_tput)
  3640. return false;
  3641. }
  3642. /* DSI tput must be over the min requirement */
  3643. if (dsi_tput < (u64)bitspp * req_pck_min)
  3644. return false;
  3645. /* When non-burst mode, DSI tput must be below max requirement. */
  3646. if (cfg->trans_mode != OMAP_DSS_DSI_BURST_MODE) {
  3647. if (dsi_tput > (u64)bitspp * req_pck_max)
  3648. return false;
  3649. }
  3650. hss = DIV_ROUND_UP(4, ndl);
  3651. if (cfg->trans_mode == OMAP_DSS_DSI_PULSE_MODE) {
  3652. if (ndl == 3 && req_vm->hsw == 0)
  3653. hse = 1;
  3654. else
  3655. hse = DIV_ROUND_UP(4, ndl);
  3656. } else {
  3657. hse = 0;
  3658. }
  3659. /* DSI htot to match the panel's nominal pck */
  3660. dsi_htot = div64_u64((u64)panel_htot * byteclk, req_pck_nom);
  3661. /* fail if there would be no time for blanking */
  3662. if (dsi_htot < hss + hse + dsi_hact)
  3663. return false;
  3664. /* total DSI blanking needed to achieve panel's TL */
  3665. dsi_hbl = dsi_htot - dsi_hact;
  3666. /* DISPC htot to match the DSI TL */
  3667. dispc_htot = div64_u64((u64)dsi_htot * dispc_pck, byteclk);
  3668. /* verify that the DSI and DISPC TLs are the same */
  3669. if ((u64)dsi_htot * dispc_pck != (u64)dispc_htot * byteclk)
  3670. return false;
  3671. dispc_hbl = dispc_htot - xres;
  3672. /* setup DSI videomode */
  3673. dsi_vm = &ctx->dsi_vm;
  3674. memset(dsi_vm, 0, sizeof(*dsi_vm));
  3675. dsi_vm->hsclk = hsclk;
  3676. dsi_vm->ndl = ndl;
  3677. dsi_vm->bitspp = bitspp;
  3678. if (cfg->trans_mode != OMAP_DSS_DSI_PULSE_MODE) {
  3679. hsa = 0;
  3680. } else if (ndl == 3 && req_vm->hsw == 0) {
  3681. hsa = 0;
  3682. } else {
  3683. hsa = div64_u64((u64)req_vm->hsw * byteclk, req_pck_nom);
  3684. hsa = max(hsa - hse, 1);
  3685. }
  3686. hbp = div64_u64((u64)req_vm->hbp * byteclk, req_pck_nom);
  3687. hbp = max(hbp, 1);
  3688. hfp = dsi_hbl - (hss + hsa + hse + hbp);
  3689. if (hfp < 1) {
  3690. int t;
  3691. /* we need to take cycles from hbp */
  3692. t = 1 - hfp;
  3693. hbp = max(hbp - t, 1);
  3694. hfp = dsi_hbl - (hss + hsa + hse + hbp);
  3695. if (hfp < 1 && hsa > 0) {
  3696. /* we need to take cycles from hsa */
  3697. t = 1 - hfp;
  3698. hsa = max(hsa - t, 1);
  3699. hfp = dsi_hbl - (hss + hsa + hse + hbp);
  3700. }
  3701. }
  3702. if (hfp < 1)
  3703. return false;
  3704. dsi_vm->hss = hss;
  3705. dsi_vm->hsa = hsa;
  3706. dsi_vm->hse = hse;
  3707. dsi_vm->hbp = hbp;
  3708. dsi_vm->hact = xres;
  3709. dsi_vm->hfp = hfp;
  3710. dsi_vm->vsa = req_vm->vsw;
  3711. dsi_vm->vbp = req_vm->vbp;
  3712. dsi_vm->vact = req_vm->y_res;
  3713. dsi_vm->vfp = req_vm->vfp;
  3714. dsi_vm->trans_mode = cfg->trans_mode;
  3715. dsi_vm->blanking_mode = 0;
  3716. dsi_vm->hsa_blanking_mode = 1;
  3717. dsi_vm->hfp_blanking_mode = 1;
  3718. dsi_vm->hbp_blanking_mode = 1;
  3719. dsi_vm->ddr_clk_always_on = cfg->ddr_clk_always_on;
  3720. dsi_vm->window_sync = 4;
  3721. /* setup DISPC videomode */
  3722. dispc_vm = &ctx->dispc_vm;
  3723. *dispc_vm = *req_vm;
  3724. dispc_vm->pixelclock = dispc_pck;
  3725. if (cfg->trans_mode == OMAP_DSS_DSI_PULSE_MODE) {
  3726. hsa = div64_u64((u64)req_vm->hsw * dispc_pck,
  3727. req_pck_nom);
  3728. hsa = max(hsa, 1);
  3729. } else {
  3730. hsa = 1;
  3731. }
  3732. hbp = div64_u64((u64)req_vm->hbp * dispc_pck, req_pck_nom);
  3733. hbp = max(hbp, 1);
  3734. hfp = dispc_hbl - hsa - hbp;
  3735. if (hfp < 1) {
  3736. int t;
  3737. /* we need to take cycles from hbp */
  3738. t = 1 - hfp;
  3739. hbp = max(hbp - t, 1);
  3740. hfp = dispc_hbl - hsa - hbp;
  3741. if (hfp < 1) {
  3742. /* we need to take cycles from hsa */
  3743. t = 1 - hfp;
  3744. hsa = max(hsa - t, 1);
  3745. hfp = dispc_hbl - hsa - hbp;
  3746. }
  3747. }
  3748. if (hfp < 1)
  3749. return false;
  3750. dispc_vm->hfp = hfp;
  3751. dispc_vm->hsw = hsa;
  3752. dispc_vm->hbp = hbp;
  3753. return true;
  3754. }
  3755. static bool dsi_vm_calc_dispc_cb(int lckd, int pckd, unsigned long lck,
  3756. unsigned long pck, void *data)
  3757. {
  3758. struct dsi_clk_calc_ctx *ctx = data;
  3759. ctx->dispc_cinfo.lck_div = lckd;
  3760. ctx->dispc_cinfo.pck_div = pckd;
  3761. ctx->dispc_cinfo.lck = lck;
  3762. ctx->dispc_cinfo.pck = pck;
  3763. if (dsi_vm_calc_blanking(ctx) == false)
  3764. return false;
  3765. #ifdef PRINT_VERBOSE_VM_TIMINGS
  3766. print_dispc_vm("dispc", &ctx->dispc_vm);
  3767. print_dsi_vm("dsi ", &ctx->dsi_vm);
  3768. print_dispc_vm("req ", ctx->config->timings);
  3769. print_dsi_dispc_vm("act ", &ctx->dsi_vm);
  3770. #endif
  3771. return true;
  3772. }
  3773. static bool dsi_vm_calc_hsdiv_cb(int m_dispc, unsigned long dispc,
  3774. void *data)
  3775. {
  3776. struct dsi_clk_calc_ctx *ctx = data;
  3777. unsigned long pck_max;
  3778. ctx->dsi_cinfo.mX[HSDIV_DISPC] = m_dispc;
  3779. ctx->dsi_cinfo.clkout[HSDIV_DISPC] = dispc;
  3780. /*
  3781. * In burst mode we can let the dispc pck be arbitrarily high, but it
  3782. * limits our scaling abilities. So for now, don't aim too high.
  3783. */
  3784. if (ctx->config->trans_mode == OMAP_DSS_DSI_BURST_MODE)
  3785. pck_max = ctx->req_pck_max + 10000000;
  3786. else
  3787. pck_max = ctx->req_pck_max;
  3788. return dispc_div_calc(dispc, ctx->req_pck_min, pck_max,
  3789. dsi_vm_calc_dispc_cb, ctx);
  3790. }
  3791. static bool dsi_vm_calc_pll_cb(int n, int m, unsigned long fint,
  3792. unsigned long clkdco, void *data)
  3793. {
  3794. struct dsi_clk_calc_ctx *ctx = data;
  3795. ctx->dsi_cinfo.n = n;
  3796. ctx->dsi_cinfo.m = m;
  3797. ctx->dsi_cinfo.fint = fint;
  3798. ctx->dsi_cinfo.clkdco = clkdco;
  3799. return dss_pll_hsdiv_calc(ctx->pll, clkdco, ctx->req_pck_min,
  3800. dss_feat_get_param_max(FEAT_PARAM_DSS_FCK),
  3801. dsi_vm_calc_hsdiv_cb, ctx);
  3802. }
  3803. static bool dsi_vm_calc(struct dsi_data *dsi,
  3804. const struct omap_dss_dsi_config *cfg,
  3805. struct dsi_clk_calc_ctx *ctx)
  3806. {
  3807. const struct omap_video_timings *t = cfg->timings;
  3808. unsigned long clkin;
  3809. unsigned long pll_min;
  3810. unsigned long pll_max;
  3811. int ndl = dsi->num_lanes_used - 1;
  3812. int bitspp = dsi_get_pixel_size(cfg->pixel_format);
  3813. unsigned long byteclk_min;
  3814. clkin = clk_get_rate(dsi->pll.clkin);
  3815. memset(ctx, 0, sizeof(*ctx));
  3816. ctx->dsidev = dsi->pdev;
  3817. ctx->pll = &dsi->pll;
  3818. ctx->config = cfg;
  3819. /* these limits should come from the panel driver */
  3820. ctx->req_pck_min = t->pixelclock - 1000;
  3821. ctx->req_pck_nom = t->pixelclock;
  3822. ctx->req_pck_max = t->pixelclock + 1000;
  3823. byteclk_min = div64_u64((u64)ctx->req_pck_min * bitspp, ndl * 8);
  3824. pll_min = max(cfg->hs_clk_min * 4, byteclk_min * 4 * 4);
  3825. if (cfg->trans_mode == OMAP_DSS_DSI_BURST_MODE) {
  3826. pll_max = cfg->hs_clk_max * 4;
  3827. } else {
  3828. unsigned long byteclk_max;
  3829. byteclk_max = div64_u64((u64)ctx->req_pck_max * bitspp,
  3830. ndl * 8);
  3831. pll_max = byteclk_max * 4 * 4;
  3832. }
  3833. return dss_pll_calc(ctx->pll, clkin,
  3834. pll_min, pll_max,
  3835. dsi_vm_calc_pll_cb, ctx);
  3836. }
  3837. static int dsi_set_config(struct omap_dss_device *dssdev,
  3838. const struct omap_dss_dsi_config *config)
  3839. {
  3840. struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
  3841. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  3842. struct dsi_clk_calc_ctx ctx;
  3843. bool ok;
  3844. int r;
  3845. mutex_lock(&dsi->lock);
  3846. dsi->pix_fmt = config->pixel_format;
  3847. dsi->mode = config->mode;
  3848. if (config->mode == OMAP_DSS_DSI_VIDEO_MODE)
  3849. ok = dsi_vm_calc(dsi, config, &ctx);
  3850. else
  3851. ok = dsi_cm_calc(dsi, config, &ctx);
  3852. if (!ok) {
  3853. DSSERR("failed to find suitable DSI clock settings\n");
  3854. r = -EINVAL;
  3855. goto err;
  3856. }
  3857. dsi_pll_calc_dsi_fck(&ctx.dsi_cinfo);
  3858. r = dsi_lp_clock_calc(ctx.dsi_cinfo.clkout[HSDIV_DSI],
  3859. config->lp_clk_min, config->lp_clk_max, &dsi->user_lp_cinfo);
  3860. if (r) {
  3861. DSSERR("failed to find suitable DSI LP clock settings\n");
  3862. goto err;
  3863. }
  3864. dsi->user_dsi_cinfo = ctx.dsi_cinfo;
  3865. dsi->user_dispc_cinfo = ctx.dispc_cinfo;
  3866. dsi->timings = ctx.dispc_vm;
  3867. dsi->vm_timings = ctx.dsi_vm;
  3868. mutex_unlock(&dsi->lock);
  3869. return 0;
  3870. err:
  3871. mutex_unlock(&dsi->lock);
  3872. return r;
  3873. }
  3874. /*
  3875. * Return a hardcoded channel for the DSI output. This should work for
  3876. * current use cases, but this can be later expanded to either resolve
  3877. * the channel in some more dynamic manner, or get the channel as a user
  3878. * parameter.
  3879. */
  3880. static enum omap_channel dsi_get_channel(int module_id)
  3881. {
  3882. switch (omapdss_get_version()) {
  3883. case OMAPDSS_VER_OMAP24xx:
  3884. case OMAPDSS_VER_AM43xx:
  3885. DSSWARN("DSI not supported\n");
  3886. return OMAP_DSS_CHANNEL_LCD;
  3887. case OMAPDSS_VER_OMAP34xx_ES1:
  3888. case OMAPDSS_VER_OMAP34xx_ES3:
  3889. case OMAPDSS_VER_OMAP3630:
  3890. case OMAPDSS_VER_AM35xx:
  3891. return OMAP_DSS_CHANNEL_LCD;
  3892. case OMAPDSS_VER_OMAP4430_ES1:
  3893. case OMAPDSS_VER_OMAP4430_ES2:
  3894. case OMAPDSS_VER_OMAP4:
  3895. switch (module_id) {
  3896. case 0:
  3897. return OMAP_DSS_CHANNEL_LCD;
  3898. case 1:
  3899. return OMAP_DSS_CHANNEL_LCD2;
  3900. default:
  3901. DSSWARN("unsupported module id\n");
  3902. return OMAP_DSS_CHANNEL_LCD;
  3903. }
  3904. case OMAPDSS_VER_OMAP5:
  3905. switch (module_id) {
  3906. case 0:
  3907. return OMAP_DSS_CHANNEL_LCD;
  3908. case 1:
  3909. return OMAP_DSS_CHANNEL_LCD3;
  3910. default:
  3911. DSSWARN("unsupported module id\n");
  3912. return OMAP_DSS_CHANNEL_LCD;
  3913. }
  3914. default:
  3915. DSSWARN("unsupported DSS version\n");
  3916. return OMAP_DSS_CHANNEL_LCD;
  3917. }
  3918. }
  3919. static int dsi_request_vc(struct omap_dss_device *dssdev, int *channel)
  3920. {
  3921. struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
  3922. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  3923. int i;
  3924. for (i = 0; i < ARRAY_SIZE(dsi->vc); i++) {
  3925. if (!dsi->vc[i].dssdev) {
  3926. dsi->vc[i].dssdev = dssdev;
  3927. *channel = i;
  3928. return 0;
  3929. }
  3930. }
  3931. DSSERR("cannot get VC for display %s", dssdev->name);
  3932. return -ENOSPC;
  3933. }
  3934. static int dsi_set_vc_id(struct omap_dss_device *dssdev, int channel, int vc_id)
  3935. {
  3936. struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
  3937. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  3938. if (vc_id < 0 || vc_id > 3) {
  3939. DSSERR("VC ID out of range\n");
  3940. return -EINVAL;
  3941. }
  3942. if (channel < 0 || channel > 3) {
  3943. DSSERR("Virtual Channel out of range\n");
  3944. return -EINVAL;
  3945. }
  3946. if (dsi->vc[channel].dssdev != dssdev) {
  3947. DSSERR("Virtual Channel not allocated to display %s\n",
  3948. dssdev->name);
  3949. return -EINVAL;
  3950. }
  3951. dsi->vc[channel].vc_id = vc_id;
  3952. return 0;
  3953. }
  3954. static void dsi_release_vc(struct omap_dss_device *dssdev, int channel)
  3955. {
  3956. struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
  3957. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  3958. if ((channel >= 0 && channel <= 3) &&
  3959. dsi->vc[channel].dssdev == dssdev) {
  3960. dsi->vc[channel].dssdev = NULL;
  3961. dsi->vc[channel].vc_id = 0;
  3962. }
  3963. }
  3964. static int dsi_get_clocks(struct platform_device *dsidev)
  3965. {
  3966. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  3967. struct clk *clk;
  3968. clk = devm_clk_get(&dsidev->dev, "fck");
  3969. if (IS_ERR(clk)) {
  3970. DSSERR("can't get fck\n");
  3971. return PTR_ERR(clk);
  3972. }
  3973. dsi->dss_clk = clk;
  3974. return 0;
  3975. }
  3976. static int dsi_connect(struct omap_dss_device *dssdev,
  3977. struct omap_dss_device *dst)
  3978. {
  3979. struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
  3980. enum omap_channel dispc_channel = dssdev->dispc_channel;
  3981. int r;
  3982. r = dsi_regulator_init(dsidev);
  3983. if (r)
  3984. return r;
  3985. r = dss_mgr_connect(dispc_channel, dssdev);
  3986. if (r)
  3987. return r;
  3988. r = omapdss_output_set_device(dssdev, dst);
  3989. if (r) {
  3990. DSSERR("failed to connect output to new device: %s\n",
  3991. dssdev->name);
  3992. dss_mgr_disconnect(dispc_channel, dssdev);
  3993. return r;
  3994. }
  3995. return 0;
  3996. }
  3997. static void dsi_disconnect(struct omap_dss_device *dssdev,
  3998. struct omap_dss_device *dst)
  3999. {
  4000. enum omap_channel dispc_channel = dssdev->dispc_channel;
  4001. WARN_ON(dst != dssdev->dst);
  4002. if (dst != dssdev->dst)
  4003. return;
  4004. omapdss_output_unset_device(dssdev);
  4005. dss_mgr_disconnect(dispc_channel, dssdev);
  4006. }
  4007. static const struct omapdss_dsi_ops dsi_ops = {
  4008. .connect = dsi_connect,
  4009. .disconnect = dsi_disconnect,
  4010. .bus_lock = dsi_bus_lock,
  4011. .bus_unlock = dsi_bus_unlock,
  4012. .enable = dsi_display_enable,
  4013. .disable = dsi_display_disable,
  4014. .enable_hs = dsi_vc_enable_hs,
  4015. .configure_pins = dsi_configure_pins,
  4016. .set_config = dsi_set_config,
  4017. .enable_video_output = dsi_enable_video_output,
  4018. .disable_video_output = dsi_disable_video_output,
  4019. .update = dsi_update,
  4020. .enable_te = dsi_enable_te,
  4021. .request_vc = dsi_request_vc,
  4022. .set_vc_id = dsi_set_vc_id,
  4023. .release_vc = dsi_release_vc,
  4024. .dcs_write = dsi_vc_dcs_write,
  4025. .dcs_write_nosync = dsi_vc_dcs_write_nosync,
  4026. .dcs_read = dsi_vc_dcs_read,
  4027. .gen_write = dsi_vc_generic_write,
  4028. .gen_write_nosync = dsi_vc_generic_write_nosync,
  4029. .gen_read = dsi_vc_generic_read,
  4030. .bta_sync = dsi_vc_send_bta_sync,
  4031. .set_max_rx_packet_size = dsi_vc_set_max_rx_packet_size,
  4032. };
  4033. static void dsi_init_output(struct platform_device *dsidev)
  4034. {
  4035. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  4036. struct omap_dss_device *out = &dsi->output;
  4037. out->dev = &dsidev->dev;
  4038. out->id = dsi->module_id == 0 ?
  4039. OMAP_DSS_OUTPUT_DSI1 : OMAP_DSS_OUTPUT_DSI2;
  4040. out->output_type = OMAP_DISPLAY_TYPE_DSI;
  4041. out->name = dsi->module_id == 0 ? "dsi.0" : "dsi.1";
  4042. out->dispc_channel = dsi_get_channel(dsi->module_id);
  4043. out->ops.dsi = &dsi_ops;
  4044. out->owner = THIS_MODULE;
  4045. omapdss_register_output(out);
  4046. }
  4047. static void dsi_uninit_output(struct platform_device *dsidev)
  4048. {
  4049. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  4050. struct omap_dss_device *out = &dsi->output;
  4051. omapdss_unregister_output(out);
  4052. }
  4053. static int dsi_probe_of(struct platform_device *pdev)
  4054. {
  4055. struct device_node *node = pdev->dev.of_node;
  4056. struct dsi_data *dsi = dsi_get_dsidrv_data(pdev);
  4057. struct property *prop;
  4058. u32 lane_arr[10];
  4059. int len, num_pins;
  4060. int r, i;
  4061. struct device_node *ep;
  4062. struct omap_dsi_pin_config pin_cfg;
  4063. ep = omapdss_of_get_first_endpoint(node);
  4064. if (!ep)
  4065. return 0;
  4066. prop = of_find_property(ep, "lanes", &len);
  4067. if (prop == NULL) {
  4068. dev_err(&pdev->dev, "failed to find lane data\n");
  4069. r = -EINVAL;
  4070. goto err;
  4071. }
  4072. num_pins = len / sizeof(u32);
  4073. if (num_pins < 4 || num_pins % 2 != 0 ||
  4074. num_pins > dsi->num_lanes_supported * 2) {
  4075. dev_err(&pdev->dev, "bad number of lanes\n");
  4076. r = -EINVAL;
  4077. goto err;
  4078. }
  4079. r = of_property_read_u32_array(ep, "lanes", lane_arr, num_pins);
  4080. if (r) {
  4081. dev_err(&pdev->dev, "failed to read lane data\n");
  4082. goto err;
  4083. }
  4084. pin_cfg.num_pins = num_pins;
  4085. for (i = 0; i < num_pins; ++i)
  4086. pin_cfg.pins[i] = (int)lane_arr[i];
  4087. r = dsi_configure_pins(&dsi->output, &pin_cfg);
  4088. if (r) {
  4089. dev_err(&pdev->dev, "failed to configure pins");
  4090. goto err;
  4091. }
  4092. of_node_put(ep);
  4093. return 0;
  4094. err:
  4095. of_node_put(ep);
  4096. return r;
  4097. }
  4098. static const struct dss_pll_ops dsi_pll_ops = {
  4099. .enable = dsi_pll_enable,
  4100. .disable = dsi_pll_disable,
  4101. .set_config = dss_pll_write_config_type_a,
  4102. };
  4103. static const struct dss_pll_hw dss_omap3_dsi_pll_hw = {
  4104. .n_max = (1 << 7) - 1,
  4105. .m_max = (1 << 11) - 1,
  4106. .mX_max = (1 << 4) - 1,
  4107. .fint_min = 750000,
  4108. .fint_max = 2100000,
  4109. .clkdco_low = 1000000000,
  4110. .clkdco_max = 1800000000,
  4111. .n_msb = 7,
  4112. .n_lsb = 1,
  4113. .m_msb = 18,
  4114. .m_lsb = 8,
  4115. .mX_msb[0] = 22,
  4116. .mX_lsb[0] = 19,
  4117. .mX_msb[1] = 26,
  4118. .mX_lsb[1] = 23,
  4119. .has_stopmode = true,
  4120. .has_freqsel = true,
  4121. .has_selfreqdco = false,
  4122. .has_refsel = false,
  4123. };
  4124. static const struct dss_pll_hw dss_omap4_dsi_pll_hw = {
  4125. .n_max = (1 << 8) - 1,
  4126. .m_max = (1 << 12) - 1,
  4127. .mX_max = (1 << 5) - 1,
  4128. .fint_min = 500000,
  4129. .fint_max = 2500000,
  4130. .clkdco_low = 1000000000,
  4131. .clkdco_max = 1800000000,
  4132. .n_msb = 8,
  4133. .n_lsb = 1,
  4134. .m_msb = 20,
  4135. .m_lsb = 9,
  4136. .mX_msb[0] = 25,
  4137. .mX_lsb[0] = 21,
  4138. .mX_msb[1] = 30,
  4139. .mX_lsb[1] = 26,
  4140. .has_stopmode = true,
  4141. .has_freqsel = false,
  4142. .has_selfreqdco = false,
  4143. .has_refsel = false,
  4144. };
  4145. static const struct dss_pll_hw dss_omap5_dsi_pll_hw = {
  4146. .n_max = (1 << 8) - 1,
  4147. .m_max = (1 << 12) - 1,
  4148. .mX_max = (1 << 5) - 1,
  4149. .fint_min = 150000,
  4150. .fint_max = 52000000,
  4151. .clkdco_low = 1000000000,
  4152. .clkdco_max = 1800000000,
  4153. .n_msb = 8,
  4154. .n_lsb = 1,
  4155. .m_msb = 20,
  4156. .m_lsb = 9,
  4157. .mX_msb[0] = 25,
  4158. .mX_lsb[0] = 21,
  4159. .mX_msb[1] = 30,
  4160. .mX_lsb[1] = 26,
  4161. .has_stopmode = true,
  4162. .has_freqsel = false,
  4163. .has_selfreqdco = true,
  4164. .has_refsel = true,
  4165. };
  4166. static int dsi_init_pll_data(struct platform_device *dsidev)
  4167. {
  4168. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  4169. struct dss_pll *pll = &dsi->pll;
  4170. struct clk *clk;
  4171. int r;
  4172. clk = devm_clk_get(&dsidev->dev, "sys_clk");
  4173. if (IS_ERR(clk)) {
  4174. DSSERR("can't get sys_clk\n");
  4175. return PTR_ERR(clk);
  4176. }
  4177. pll->name = dsi->module_id == 0 ? "dsi0" : "dsi1";
  4178. pll->id = dsi->module_id == 0 ? DSS_PLL_DSI1 : DSS_PLL_DSI2;
  4179. pll->clkin = clk;
  4180. pll->base = dsi->pll_base;
  4181. switch (omapdss_get_version()) {
  4182. case OMAPDSS_VER_OMAP34xx_ES1:
  4183. case OMAPDSS_VER_OMAP34xx_ES3:
  4184. case OMAPDSS_VER_OMAP3630:
  4185. case OMAPDSS_VER_AM35xx:
  4186. pll->hw = &dss_omap3_dsi_pll_hw;
  4187. break;
  4188. case OMAPDSS_VER_OMAP4430_ES1:
  4189. case OMAPDSS_VER_OMAP4430_ES2:
  4190. case OMAPDSS_VER_OMAP4:
  4191. pll->hw = &dss_omap4_dsi_pll_hw;
  4192. break;
  4193. case OMAPDSS_VER_OMAP5:
  4194. pll->hw = &dss_omap5_dsi_pll_hw;
  4195. break;
  4196. default:
  4197. return -ENODEV;
  4198. }
  4199. pll->ops = &dsi_pll_ops;
  4200. r = dss_pll_register(pll);
  4201. if (r)
  4202. return r;
  4203. return 0;
  4204. }
  4205. /* DSI1 HW IP initialisation */
  4206. static int dsi_bind(struct device *dev, struct device *master, void *data)
  4207. {
  4208. struct platform_device *dsidev = to_platform_device(dev);
  4209. u32 rev;
  4210. int r, i;
  4211. struct dsi_data *dsi;
  4212. struct resource *dsi_mem;
  4213. struct resource *res;
  4214. struct resource temp_res;
  4215. dsi = devm_kzalloc(&dsidev->dev, sizeof(*dsi), GFP_KERNEL);
  4216. if (!dsi)
  4217. return -ENOMEM;
  4218. dsi->pdev = dsidev;
  4219. dev_set_drvdata(&dsidev->dev, dsi);
  4220. spin_lock_init(&dsi->irq_lock);
  4221. spin_lock_init(&dsi->errors_lock);
  4222. dsi->errors = 0;
  4223. #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
  4224. spin_lock_init(&dsi->irq_stats_lock);
  4225. dsi->irq_stats.last_reset = jiffies;
  4226. #endif
  4227. mutex_init(&dsi->lock);
  4228. sema_init(&dsi->bus_lock, 1);
  4229. INIT_DEFERRABLE_WORK(&dsi->framedone_timeout_work,
  4230. dsi_framedone_timeout_work_callback);
  4231. #ifdef DSI_CATCH_MISSING_TE
  4232. init_timer(&dsi->te_timer);
  4233. dsi->te_timer.function = dsi_te_timeout;
  4234. dsi->te_timer.data = 0;
  4235. #endif
  4236. res = platform_get_resource_byname(dsidev, IORESOURCE_MEM, "proto");
  4237. if (!res) {
  4238. res = platform_get_resource(dsidev, IORESOURCE_MEM, 0);
  4239. if (!res) {
  4240. DSSERR("can't get IORESOURCE_MEM DSI\n");
  4241. return -EINVAL;
  4242. }
  4243. temp_res.start = res->start;
  4244. temp_res.end = temp_res.start + DSI_PROTO_SZ - 1;
  4245. res = &temp_res;
  4246. }
  4247. dsi_mem = res;
  4248. dsi->proto_base = devm_ioremap(&dsidev->dev, res->start,
  4249. resource_size(res));
  4250. if (!dsi->proto_base) {
  4251. DSSERR("can't ioremap DSI protocol engine\n");
  4252. return -ENOMEM;
  4253. }
  4254. res = platform_get_resource_byname(dsidev, IORESOURCE_MEM, "phy");
  4255. if (!res) {
  4256. res = platform_get_resource(dsidev, IORESOURCE_MEM, 0);
  4257. if (!res) {
  4258. DSSERR("can't get IORESOURCE_MEM DSI\n");
  4259. return -EINVAL;
  4260. }
  4261. temp_res.start = res->start + DSI_PHY_OFFSET;
  4262. temp_res.end = temp_res.start + DSI_PHY_SZ - 1;
  4263. res = &temp_res;
  4264. }
  4265. dsi->phy_base = devm_ioremap(&dsidev->dev, res->start,
  4266. resource_size(res));
  4267. if (!dsi->proto_base) {
  4268. DSSERR("can't ioremap DSI PHY\n");
  4269. return -ENOMEM;
  4270. }
  4271. res = platform_get_resource_byname(dsidev, IORESOURCE_MEM, "pll");
  4272. if (!res) {
  4273. res = platform_get_resource(dsidev, IORESOURCE_MEM, 0);
  4274. if (!res) {
  4275. DSSERR("can't get IORESOURCE_MEM DSI\n");
  4276. return -EINVAL;
  4277. }
  4278. temp_res.start = res->start + DSI_PLL_OFFSET;
  4279. temp_res.end = temp_res.start + DSI_PLL_SZ - 1;
  4280. res = &temp_res;
  4281. }
  4282. dsi->pll_base = devm_ioremap(&dsidev->dev, res->start,
  4283. resource_size(res));
  4284. if (!dsi->proto_base) {
  4285. DSSERR("can't ioremap DSI PLL\n");
  4286. return -ENOMEM;
  4287. }
  4288. dsi->irq = platform_get_irq(dsi->pdev, 0);
  4289. if (dsi->irq < 0) {
  4290. DSSERR("platform_get_irq failed\n");
  4291. return -ENODEV;
  4292. }
  4293. r = devm_request_irq(&dsidev->dev, dsi->irq, omap_dsi_irq_handler,
  4294. IRQF_SHARED, dev_name(&dsidev->dev), dsi->pdev);
  4295. if (r < 0) {
  4296. DSSERR("request_irq failed\n");
  4297. return r;
  4298. }
  4299. if (dsidev->dev.of_node) {
  4300. const struct of_device_id *match;
  4301. const struct dsi_module_id_data *d;
  4302. match = of_match_node(dsi_of_match, dsidev->dev.of_node);
  4303. if (!match) {
  4304. DSSERR("unsupported DSI module\n");
  4305. return -ENODEV;
  4306. }
  4307. d = match->data;
  4308. while (d->address != 0 && d->address != dsi_mem->start)
  4309. d++;
  4310. if (d->address == 0) {
  4311. DSSERR("unsupported DSI module\n");
  4312. return -ENODEV;
  4313. }
  4314. dsi->module_id = d->id;
  4315. } else {
  4316. dsi->module_id = dsidev->id;
  4317. }
  4318. /* DSI VCs initialization */
  4319. for (i = 0; i < ARRAY_SIZE(dsi->vc); i++) {
  4320. dsi->vc[i].source = DSI_VC_SOURCE_L4;
  4321. dsi->vc[i].dssdev = NULL;
  4322. dsi->vc[i].vc_id = 0;
  4323. }
  4324. r = dsi_get_clocks(dsidev);
  4325. if (r)
  4326. return r;
  4327. dsi_init_pll_data(dsidev);
  4328. pm_runtime_enable(&dsidev->dev);
  4329. r = dsi_runtime_get(dsidev);
  4330. if (r)
  4331. goto err_runtime_get;
  4332. rev = dsi_read_reg(dsidev, DSI_REVISION);
  4333. dev_dbg(&dsidev->dev, "OMAP DSI rev %d.%d\n",
  4334. FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0));
  4335. /* DSI on OMAP3 doesn't have register DSI_GNQ, set number
  4336. * of data to 3 by default */
  4337. if (dss_has_feature(FEAT_DSI_GNQ))
  4338. /* NB_DATA_LANES */
  4339. dsi->num_lanes_supported = 1 + REG_GET(dsidev, DSI_GNQ, 11, 9);
  4340. else
  4341. dsi->num_lanes_supported = 3;
  4342. dsi->line_buffer_size = dsi_get_line_buf_size(dsidev);
  4343. dsi_init_output(dsidev);
  4344. if (dsidev->dev.of_node) {
  4345. r = dsi_probe_of(dsidev);
  4346. if (r) {
  4347. DSSERR("Invalid DSI DT data\n");
  4348. goto err_probe_of;
  4349. }
  4350. r = of_platform_populate(dsidev->dev.of_node, NULL, NULL,
  4351. &dsidev->dev);
  4352. if (r)
  4353. DSSERR("Failed to populate DSI child devices: %d\n", r);
  4354. }
  4355. dsi_runtime_put(dsidev);
  4356. if (dsi->module_id == 0)
  4357. dss_debugfs_create_file("dsi1_regs", dsi1_dump_regs);
  4358. else if (dsi->module_id == 1)
  4359. dss_debugfs_create_file("dsi2_regs", dsi2_dump_regs);
  4360. #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
  4361. if (dsi->module_id == 0)
  4362. dss_debugfs_create_file("dsi1_irqs", dsi1_dump_irqs);
  4363. else if (dsi->module_id == 1)
  4364. dss_debugfs_create_file("dsi2_irqs", dsi2_dump_irqs);
  4365. #endif
  4366. return 0;
  4367. err_probe_of:
  4368. dsi_uninit_output(dsidev);
  4369. dsi_runtime_put(dsidev);
  4370. err_runtime_get:
  4371. pm_runtime_disable(&dsidev->dev);
  4372. return r;
  4373. }
  4374. static void dsi_unbind(struct device *dev, struct device *master, void *data)
  4375. {
  4376. struct platform_device *dsidev = to_platform_device(dev);
  4377. struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
  4378. of_platform_depopulate(&dsidev->dev);
  4379. WARN_ON(dsi->scp_clk_refcount > 0);
  4380. dss_pll_unregister(&dsi->pll);
  4381. dsi_uninit_output(dsidev);
  4382. pm_runtime_disable(&dsidev->dev);
  4383. if (dsi->vdds_dsi_reg != NULL && dsi->vdds_dsi_enabled) {
  4384. regulator_disable(dsi->vdds_dsi_reg);
  4385. dsi->vdds_dsi_enabled = false;
  4386. }
  4387. }
  4388. static const struct component_ops dsi_component_ops = {
  4389. .bind = dsi_bind,
  4390. .unbind = dsi_unbind,
  4391. };
  4392. static int dsi_probe(struct platform_device *pdev)
  4393. {
  4394. return component_add(&pdev->dev, &dsi_component_ops);
  4395. }
  4396. static int dsi_remove(struct platform_device *pdev)
  4397. {
  4398. component_del(&pdev->dev, &dsi_component_ops);
  4399. return 0;
  4400. }
  4401. static int dsi_runtime_suspend(struct device *dev)
  4402. {
  4403. struct platform_device *pdev = to_platform_device(dev);
  4404. struct dsi_data *dsi = dsi_get_dsidrv_data(pdev);
  4405. dsi->is_enabled = false;
  4406. /* ensure the irq handler sees the is_enabled value */
  4407. smp_wmb();
  4408. /* wait for current handler to finish before turning the DSI off */
  4409. synchronize_irq(dsi->irq);
  4410. dispc_runtime_put();
  4411. return 0;
  4412. }
  4413. static int dsi_runtime_resume(struct device *dev)
  4414. {
  4415. struct platform_device *pdev = to_platform_device(dev);
  4416. struct dsi_data *dsi = dsi_get_dsidrv_data(pdev);
  4417. int r;
  4418. r = dispc_runtime_get();
  4419. if (r)
  4420. return r;
  4421. dsi->is_enabled = true;
  4422. /* ensure the irq handler sees the is_enabled value */
  4423. smp_wmb();
  4424. return 0;
  4425. }
  4426. static const struct dev_pm_ops dsi_pm_ops = {
  4427. .runtime_suspend = dsi_runtime_suspend,
  4428. .runtime_resume = dsi_runtime_resume,
  4429. };
  4430. static const struct dsi_module_id_data dsi_of_data_omap3[] = {
  4431. { .address = 0x4804fc00, .id = 0, },
  4432. { },
  4433. };
  4434. static const struct dsi_module_id_data dsi_of_data_omap4[] = {
  4435. { .address = 0x58004000, .id = 0, },
  4436. { .address = 0x58005000, .id = 1, },
  4437. { },
  4438. };
  4439. static const struct dsi_module_id_data dsi_of_data_omap5[] = {
  4440. { .address = 0x58004000, .id = 0, },
  4441. { .address = 0x58009000, .id = 1, },
  4442. { },
  4443. };
  4444. static const struct of_device_id dsi_of_match[] = {
  4445. { .compatible = "ti,omap3-dsi", .data = dsi_of_data_omap3, },
  4446. { .compatible = "ti,omap4-dsi", .data = dsi_of_data_omap4, },
  4447. { .compatible = "ti,omap5-dsi", .data = dsi_of_data_omap5, },
  4448. {},
  4449. };
  4450. static struct platform_driver omap_dsihw_driver = {
  4451. .probe = dsi_probe,
  4452. .remove = dsi_remove,
  4453. .driver = {
  4454. .name = "omapdss_dsi",
  4455. .pm = &dsi_pm_ops,
  4456. .of_match_table = dsi_of_match,
  4457. .suppress_bind_attrs = true,
  4458. },
  4459. };
  4460. int __init dsi_init_platform_driver(void)
  4461. {
  4462. return platform_driver_register(&omap_dsihw_driver);
  4463. }
  4464. void dsi_uninit_platform_driver(void)
  4465. {
  4466. platform_driver_unregister(&omap_dsihw_driver);
  4467. }