intel_ringbuffer.c 82 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. bool
  35. intel_ring_initialized(struct intel_engine_cs *ring)
  36. {
  37. struct drm_device *dev = ring->dev;
  38. if (!dev)
  39. return false;
  40. if (i915.enable_execlists) {
  41. struct intel_context *dctx = ring->default_context;
  42. struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
  43. return ringbuf->obj;
  44. } else
  45. return ring->buffer && ring->buffer->obj;
  46. }
  47. int __intel_ring_space(int head, int tail, int size)
  48. {
  49. int space = head - tail;
  50. if (space <= 0)
  51. space += size;
  52. return space - I915_RING_FREE_SPACE;
  53. }
  54. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  55. {
  56. if (ringbuf->last_retired_head != -1) {
  57. ringbuf->head = ringbuf->last_retired_head;
  58. ringbuf->last_retired_head = -1;
  59. }
  60. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  61. ringbuf->tail, ringbuf->size);
  62. }
  63. int intel_ring_space(struct intel_ringbuffer *ringbuf)
  64. {
  65. intel_ring_update_space(ringbuf);
  66. return ringbuf->space;
  67. }
  68. bool intel_ring_stopped(struct intel_engine_cs *ring)
  69. {
  70. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  71. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  72. }
  73. static void __intel_ring_advance(struct intel_engine_cs *ring)
  74. {
  75. struct intel_ringbuffer *ringbuf = ring->buffer;
  76. ringbuf->tail &= ringbuf->size - 1;
  77. if (intel_ring_stopped(ring))
  78. return;
  79. ring->write_tail(ring, ringbuf->tail);
  80. }
  81. static int
  82. gen2_render_ring_flush(struct drm_i915_gem_request *req,
  83. u32 invalidate_domains,
  84. u32 flush_domains)
  85. {
  86. struct intel_engine_cs *ring = req->ring;
  87. u32 cmd;
  88. int ret;
  89. cmd = MI_FLUSH;
  90. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  91. cmd |= MI_NO_WRITE_FLUSH;
  92. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  93. cmd |= MI_READ_FLUSH;
  94. ret = intel_ring_begin(req, 2);
  95. if (ret)
  96. return ret;
  97. intel_ring_emit(ring, cmd);
  98. intel_ring_emit(ring, MI_NOOP);
  99. intel_ring_advance(ring);
  100. return 0;
  101. }
  102. static int
  103. gen4_render_ring_flush(struct drm_i915_gem_request *req,
  104. u32 invalidate_domains,
  105. u32 flush_domains)
  106. {
  107. struct intel_engine_cs *ring = req->ring;
  108. struct drm_device *dev = ring->dev;
  109. u32 cmd;
  110. int ret;
  111. /*
  112. * read/write caches:
  113. *
  114. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  115. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  116. * also flushed at 2d versus 3d pipeline switches.
  117. *
  118. * read-only caches:
  119. *
  120. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  121. * MI_READ_FLUSH is set, and is always flushed on 965.
  122. *
  123. * I915_GEM_DOMAIN_COMMAND may not exist?
  124. *
  125. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  126. * invalidated when MI_EXE_FLUSH is set.
  127. *
  128. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  129. * invalidated with every MI_FLUSH.
  130. *
  131. * TLBs:
  132. *
  133. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  134. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  135. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  136. * are flushed at any MI_FLUSH.
  137. */
  138. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  139. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  140. cmd &= ~MI_NO_WRITE_FLUSH;
  141. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  142. cmd |= MI_EXE_FLUSH;
  143. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  144. (IS_G4X(dev) || IS_GEN5(dev)))
  145. cmd |= MI_INVALIDATE_ISP;
  146. ret = intel_ring_begin(req, 2);
  147. if (ret)
  148. return ret;
  149. intel_ring_emit(ring, cmd);
  150. intel_ring_emit(ring, MI_NOOP);
  151. intel_ring_advance(ring);
  152. return 0;
  153. }
  154. /**
  155. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  156. * implementing two workarounds on gen6. From section 1.4.7.1
  157. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  158. *
  159. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  160. * produced by non-pipelined state commands), software needs to first
  161. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  162. * 0.
  163. *
  164. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  165. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  166. *
  167. * And the workaround for these two requires this workaround first:
  168. *
  169. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  170. * BEFORE the pipe-control with a post-sync op and no write-cache
  171. * flushes.
  172. *
  173. * And this last workaround is tricky because of the requirements on
  174. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  175. * volume 2 part 1:
  176. *
  177. * "1 of the following must also be set:
  178. * - Render Target Cache Flush Enable ([12] of DW1)
  179. * - Depth Cache Flush Enable ([0] of DW1)
  180. * - Stall at Pixel Scoreboard ([1] of DW1)
  181. * - Depth Stall ([13] of DW1)
  182. * - Post-Sync Operation ([13] of DW1)
  183. * - Notify Enable ([8] of DW1)"
  184. *
  185. * The cache flushes require the workaround flush that triggered this
  186. * one, so we can't use it. Depth stall would trigger the same.
  187. * Post-sync nonzero is what triggered this second workaround, so we
  188. * can't use that one either. Notify enable is IRQs, which aren't
  189. * really our business. That leaves only stall at scoreboard.
  190. */
  191. static int
  192. intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
  193. {
  194. struct intel_engine_cs *ring = req->ring;
  195. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  196. int ret;
  197. ret = intel_ring_begin(req, 6);
  198. if (ret)
  199. return ret;
  200. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  201. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  202. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  203. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  204. intel_ring_emit(ring, 0); /* low dword */
  205. intel_ring_emit(ring, 0); /* high dword */
  206. intel_ring_emit(ring, MI_NOOP);
  207. intel_ring_advance(ring);
  208. ret = intel_ring_begin(req, 6);
  209. if (ret)
  210. return ret;
  211. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  212. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  213. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  214. intel_ring_emit(ring, 0);
  215. intel_ring_emit(ring, 0);
  216. intel_ring_emit(ring, MI_NOOP);
  217. intel_ring_advance(ring);
  218. return 0;
  219. }
  220. static int
  221. gen6_render_ring_flush(struct drm_i915_gem_request *req,
  222. u32 invalidate_domains, u32 flush_domains)
  223. {
  224. struct intel_engine_cs *ring = req->ring;
  225. u32 flags = 0;
  226. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  227. int ret;
  228. /* Force SNB workarounds for PIPE_CONTROL flushes */
  229. ret = intel_emit_post_sync_nonzero_flush(req);
  230. if (ret)
  231. return ret;
  232. /* Just flush everything. Experiments have shown that reducing the
  233. * number of bits based on the write domains has little performance
  234. * impact.
  235. */
  236. if (flush_domains) {
  237. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  238. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  239. /*
  240. * Ensure that any following seqno writes only happen
  241. * when the render cache is indeed flushed.
  242. */
  243. flags |= PIPE_CONTROL_CS_STALL;
  244. }
  245. if (invalidate_domains) {
  246. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  247. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  248. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  249. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  250. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  251. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  252. /*
  253. * TLB invalidate requires a post-sync write.
  254. */
  255. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  256. }
  257. ret = intel_ring_begin(req, 4);
  258. if (ret)
  259. return ret;
  260. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  261. intel_ring_emit(ring, flags);
  262. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  263. intel_ring_emit(ring, 0);
  264. intel_ring_advance(ring);
  265. return 0;
  266. }
  267. static int
  268. gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
  269. {
  270. struct intel_engine_cs *ring = req->ring;
  271. int ret;
  272. ret = intel_ring_begin(req, 4);
  273. if (ret)
  274. return ret;
  275. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  276. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  277. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  278. intel_ring_emit(ring, 0);
  279. intel_ring_emit(ring, 0);
  280. intel_ring_advance(ring);
  281. return 0;
  282. }
  283. static int
  284. gen7_render_ring_flush(struct drm_i915_gem_request *req,
  285. u32 invalidate_domains, u32 flush_domains)
  286. {
  287. struct intel_engine_cs *ring = req->ring;
  288. u32 flags = 0;
  289. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  290. int ret;
  291. /*
  292. * Ensure that any following seqno writes only happen when the render
  293. * cache is indeed flushed.
  294. *
  295. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  296. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  297. * don't try to be clever and just set it unconditionally.
  298. */
  299. flags |= PIPE_CONTROL_CS_STALL;
  300. /* Just flush everything. Experiments have shown that reducing the
  301. * number of bits based on the write domains has little performance
  302. * impact.
  303. */
  304. if (flush_domains) {
  305. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  306. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  307. }
  308. if (invalidate_domains) {
  309. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  310. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  311. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  312. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  313. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  314. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  315. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  316. /*
  317. * TLB invalidate requires a post-sync write.
  318. */
  319. flags |= PIPE_CONTROL_QW_WRITE;
  320. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  321. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  322. /* Workaround: we must issue a pipe_control with CS-stall bit
  323. * set before a pipe_control command that has the state cache
  324. * invalidate bit set. */
  325. gen7_render_ring_cs_stall_wa(req);
  326. }
  327. ret = intel_ring_begin(req, 4);
  328. if (ret)
  329. return ret;
  330. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  331. intel_ring_emit(ring, flags);
  332. intel_ring_emit(ring, scratch_addr);
  333. intel_ring_emit(ring, 0);
  334. intel_ring_advance(ring);
  335. return 0;
  336. }
  337. static int
  338. gen8_emit_pipe_control(struct drm_i915_gem_request *req,
  339. u32 flags, u32 scratch_addr)
  340. {
  341. struct intel_engine_cs *ring = req->ring;
  342. int ret;
  343. ret = intel_ring_begin(req, 6);
  344. if (ret)
  345. return ret;
  346. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  347. intel_ring_emit(ring, flags);
  348. intel_ring_emit(ring, scratch_addr);
  349. intel_ring_emit(ring, 0);
  350. intel_ring_emit(ring, 0);
  351. intel_ring_emit(ring, 0);
  352. intel_ring_advance(ring);
  353. return 0;
  354. }
  355. static int
  356. gen8_render_ring_flush(struct drm_i915_gem_request *req,
  357. u32 invalidate_domains, u32 flush_domains)
  358. {
  359. u32 flags = 0;
  360. u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  361. int ret;
  362. flags |= PIPE_CONTROL_CS_STALL;
  363. if (flush_domains) {
  364. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  365. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  366. }
  367. if (invalidate_domains) {
  368. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  369. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  370. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  371. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  372. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  373. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  374. flags |= PIPE_CONTROL_QW_WRITE;
  375. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  376. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  377. ret = gen8_emit_pipe_control(req,
  378. PIPE_CONTROL_CS_STALL |
  379. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  380. 0);
  381. if (ret)
  382. return ret;
  383. }
  384. return gen8_emit_pipe_control(req, flags, scratch_addr);
  385. }
  386. static void ring_write_tail(struct intel_engine_cs *ring,
  387. u32 value)
  388. {
  389. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  390. I915_WRITE_TAIL(ring, value);
  391. }
  392. u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
  393. {
  394. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  395. u64 acthd;
  396. if (INTEL_INFO(ring->dev)->gen >= 8)
  397. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  398. RING_ACTHD_UDW(ring->mmio_base));
  399. else if (INTEL_INFO(ring->dev)->gen >= 4)
  400. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  401. else
  402. acthd = I915_READ(ACTHD);
  403. return acthd;
  404. }
  405. static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
  406. {
  407. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  408. u32 addr;
  409. addr = dev_priv->status_page_dmah->busaddr;
  410. if (INTEL_INFO(ring->dev)->gen >= 4)
  411. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  412. I915_WRITE(HWS_PGA, addr);
  413. }
  414. static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
  415. {
  416. struct drm_device *dev = ring->dev;
  417. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  418. u32 mmio = 0;
  419. /* The ring status page addresses are no longer next to the rest of
  420. * the ring registers as of gen7.
  421. */
  422. if (IS_GEN7(dev)) {
  423. switch (ring->id) {
  424. case RCS:
  425. mmio = RENDER_HWS_PGA_GEN7;
  426. break;
  427. case BCS:
  428. mmio = BLT_HWS_PGA_GEN7;
  429. break;
  430. /*
  431. * VCS2 actually doesn't exist on Gen7. Only shut up
  432. * gcc switch check warning
  433. */
  434. case VCS2:
  435. case VCS:
  436. mmio = BSD_HWS_PGA_GEN7;
  437. break;
  438. case VECS:
  439. mmio = VEBOX_HWS_PGA_GEN7;
  440. break;
  441. }
  442. } else if (IS_GEN6(ring->dev)) {
  443. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  444. } else {
  445. /* XXX: gen8 returns to sanity */
  446. mmio = RING_HWS_PGA(ring->mmio_base);
  447. }
  448. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  449. POSTING_READ(mmio);
  450. /*
  451. * Flush the TLB for this page
  452. *
  453. * FIXME: These two bits have disappeared on gen8, so a question
  454. * arises: do we still need this and if so how should we go about
  455. * invalidating the TLB?
  456. */
  457. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  458. u32 reg = RING_INSTPM(ring->mmio_base);
  459. /* ring should be idle before issuing a sync flush*/
  460. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  461. I915_WRITE(reg,
  462. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  463. INSTPM_SYNC_FLUSH));
  464. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  465. 1000))
  466. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  467. ring->name);
  468. }
  469. }
  470. static bool stop_ring(struct intel_engine_cs *ring)
  471. {
  472. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  473. if (!IS_GEN2(ring->dev)) {
  474. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  475. if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  476. DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
  477. /* Sometimes we observe that the idle flag is not
  478. * set even though the ring is empty. So double
  479. * check before giving up.
  480. */
  481. if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
  482. return false;
  483. }
  484. }
  485. I915_WRITE_CTL(ring, 0);
  486. I915_WRITE_HEAD(ring, 0);
  487. ring->write_tail(ring, 0);
  488. if (!IS_GEN2(ring->dev)) {
  489. (void)I915_READ_CTL(ring);
  490. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  491. }
  492. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  493. }
  494. static int init_ring_common(struct intel_engine_cs *ring)
  495. {
  496. struct drm_device *dev = ring->dev;
  497. struct drm_i915_private *dev_priv = dev->dev_private;
  498. struct intel_ringbuffer *ringbuf = ring->buffer;
  499. struct drm_i915_gem_object *obj = ringbuf->obj;
  500. int ret = 0;
  501. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  502. if (!stop_ring(ring)) {
  503. /* G45 ring initialization often fails to reset head to zero */
  504. DRM_DEBUG_KMS("%s head not reset to zero "
  505. "ctl %08x head %08x tail %08x start %08x\n",
  506. ring->name,
  507. I915_READ_CTL(ring),
  508. I915_READ_HEAD(ring),
  509. I915_READ_TAIL(ring),
  510. I915_READ_START(ring));
  511. if (!stop_ring(ring)) {
  512. DRM_ERROR("failed to set %s head to zero "
  513. "ctl %08x head %08x tail %08x start %08x\n",
  514. ring->name,
  515. I915_READ_CTL(ring),
  516. I915_READ_HEAD(ring),
  517. I915_READ_TAIL(ring),
  518. I915_READ_START(ring));
  519. ret = -EIO;
  520. goto out;
  521. }
  522. }
  523. if (I915_NEED_GFX_HWS(dev))
  524. intel_ring_setup_status_page(ring);
  525. else
  526. ring_setup_phys_status_page(ring);
  527. /* Enforce ordering by reading HEAD register back */
  528. I915_READ_HEAD(ring);
  529. /* Initialize the ring. This must happen _after_ we've cleared the ring
  530. * registers with the above sequence (the readback of the HEAD registers
  531. * also enforces ordering), otherwise the hw might lose the new ring
  532. * register values. */
  533. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  534. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  535. if (I915_READ_HEAD(ring))
  536. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  537. ring->name, I915_READ_HEAD(ring));
  538. I915_WRITE_HEAD(ring, 0);
  539. (void)I915_READ_HEAD(ring);
  540. I915_WRITE_CTL(ring,
  541. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  542. | RING_VALID);
  543. /* If the head is still not zero, the ring is dead */
  544. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  545. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  546. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  547. DRM_ERROR("%s initialization failed "
  548. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  549. ring->name,
  550. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  551. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  552. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  553. ret = -EIO;
  554. goto out;
  555. }
  556. ringbuf->last_retired_head = -1;
  557. ringbuf->head = I915_READ_HEAD(ring);
  558. ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  559. intel_ring_update_space(ringbuf);
  560. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  561. out:
  562. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  563. return ret;
  564. }
  565. void
  566. intel_fini_pipe_control(struct intel_engine_cs *ring)
  567. {
  568. struct drm_device *dev = ring->dev;
  569. if (ring->scratch.obj == NULL)
  570. return;
  571. if (INTEL_INFO(dev)->gen >= 5) {
  572. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  573. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  574. }
  575. drm_gem_object_unreference(&ring->scratch.obj->base);
  576. ring->scratch.obj = NULL;
  577. }
  578. int
  579. intel_init_pipe_control(struct intel_engine_cs *ring)
  580. {
  581. int ret;
  582. WARN_ON(ring->scratch.obj);
  583. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  584. if (ring->scratch.obj == NULL) {
  585. DRM_ERROR("Failed to allocate seqno page\n");
  586. ret = -ENOMEM;
  587. goto err;
  588. }
  589. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  590. if (ret)
  591. goto err_unref;
  592. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  593. if (ret)
  594. goto err_unref;
  595. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  596. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  597. if (ring->scratch.cpu_page == NULL) {
  598. ret = -ENOMEM;
  599. goto err_unpin;
  600. }
  601. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  602. ring->name, ring->scratch.gtt_offset);
  603. return 0;
  604. err_unpin:
  605. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  606. err_unref:
  607. drm_gem_object_unreference(&ring->scratch.obj->base);
  608. err:
  609. return ret;
  610. }
  611. static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
  612. {
  613. int ret, i;
  614. struct intel_engine_cs *ring = req->ring;
  615. struct drm_device *dev = ring->dev;
  616. struct drm_i915_private *dev_priv = dev->dev_private;
  617. struct i915_workarounds *w = &dev_priv->workarounds;
  618. if (WARN_ON_ONCE(w->count == 0))
  619. return 0;
  620. ring->gpu_caches_dirty = true;
  621. ret = intel_ring_flush_all_caches(req);
  622. if (ret)
  623. return ret;
  624. ret = intel_ring_begin(req, (w->count * 2 + 2));
  625. if (ret)
  626. return ret;
  627. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
  628. for (i = 0; i < w->count; i++) {
  629. intel_ring_emit(ring, w->reg[i].addr);
  630. intel_ring_emit(ring, w->reg[i].value);
  631. }
  632. intel_ring_emit(ring, MI_NOOP);
  633. intel_ring_advance(ring);
  634. ring->gpu_caches_dirty = true;
  635. ret = intel_ring_flush_all_caches(req);
  636. if (ret)
  637. return ret;
  638. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  639. return 0;
  640. }
  641. static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
  642. {
  643. int ret;
  644. ret = intel_ring_workarounds_emit(req);
  645. if (ret != 0)
  646. return ret;
  647. ret = i915_gem_render_state_init(req);
  648. if (ret)
  649. DRM_ERROR("init render state: %d\n", ret);
  650. return ret;
  651. }
  652. static int wa_add(struct drm_i915_private *dev_priv,
  653. const u32 addr, const u32 mask, const u32 val)
  654. {
  655. const u32 idx = dev_priv->workarounds.count;
  656. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  657. return -ENOSPC;
  658. dev_priv->workarounds.reg[idx].addr = addr;
  659. dev_priv->workarounds.reg[idx].value = val;
  660. dev_priv->workarounds.reg[idx].mask = mask;
  661. dev_priv->workarounds.count++;
  662. return 0;
  663. }
  664. #define WA_REG(addr, mask, val) { \
  665. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  666. if (r) \
  667. return r; \
  668. }
  669. #define WA_SET_BIT_MASKED(addr, mask) \
  670. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  671. #define WA_CLR_BIT_MASKED(addr, mask) \
  672. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  673. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  674. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  675. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  676. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  677. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  678. static int bdw_init_workarounds(struct intel_engine_cs *ring)
  679. {
  680. struct drm_device *dev = ring->dev;
  681. struct drm_i915_private *dev_priv = dev->dev_private;
  682. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  683. /* WaDisableAsyncFlipPerfMode:bdw */
  684. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  685. /* WaDisablePartialInstShootdown:bdw */
  686. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  687. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  688. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  689. STALL_DOP_GATING_DISABLE);
  690. /* WaDisableDopClockGating:bdw */
  691. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  692. DOP_CLOCK_GATING_DISABLE);
  693. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  694. GEN8_SAMPLER_POWER_BYPASS_DIS);
  695. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  696. * workaround for for a possible hang in the unlikely event a TLB
  697. * invalidation occurs during a PSD flush.
  698. */
  699. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  700. /* WaForceEnableNonCoherent:bdw */
  701. HDC_FORCE_NON_COHERENT |
  702. /* WaForceContextSaveRestoreNonCoherent:bdw */
  703. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  704. /* WaHdcDisableFetchWhenMasked:bdw */
  705. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  706. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  707. (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  708. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  709. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  710. * polygons in the same 8x4 pixel/sample area to be processed without
  711. * stalling waiting for the earlier ones to write to Hierarchical Z
  712. * buffer."
  713. *
  714. * This optimization is off by default for Broadwell; turn it on.
  715. */
  716. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  717. /* Wa4x4STCOptimizationDisable:bdw */
  718. WA_SET_BIT_MASKED(CACHE_MODE_1,
  719. GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  720. /*
  721. * BSpec recommends 8x4 when MSAA is used,
  722. * however in practice 16x4 seems fastest.
  723. *
  724. * Note that PS/WM thread counts depend on the WIZ hashing
  725. * disable bit, which we don't touch here, but it's good
  726. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  727. */
  728. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  729. GEN6_WIZ_HASHING_MASK,
  730. GEN6_WIZ_HASHING_16x4);
  731. return 0;
  732. }
  733. static int chv_init_workarounds(struct intel_engine_cs *ring)
  734. {
  735. struct drm_device *dev = ring->dev;
  736. struct drm_i915_private *dev_priv = dev->dev_private;
  737. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  738. /* WaDisableAsyncFlipPerfMode:chv */
  739. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  740. /* WaDisablePartialInstShootdown:chv */
  741. /* WaDisableThreadStallDopClockGating:chv */
  742. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  743. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  744. STALL_DOP_GATING_DISABLE);
  745. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  746. * workaround for a possible hang in the unlikely event a TLB
  747. * invalidation occurs during a PSD flush.
  748. */
  749. /* WaForceEnableNonCoherent:chv */
  750. /* WaHdcDisableFetchWhenMasked:chv */
  751. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  752. HDC_FORCE_NON_COHERENT |
  753. HDC_DONOT_FETCH_MEM_WHEN_MASKED);
  754. /* According to the CACHE_MODE_0 default value documentation, some
  755. * CHV platforms disable this optimization by default. Turn it on.
  756. */
  757. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  758. /* Wa4x4STCOptimizationDisable:chv */
  759. WA_SET_BIT_MASKED(CACHE_MODE_1,
  760. GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  761. /* Improve HiZ throughput on CHV. */
  762. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  763. /*
  764. * BSpec recommends 8x4 when MSAA is used,
  765. * however in practice 16x4 seems fastest.
  766. *
  767. * Note that PS/WM thread counts depend on the WIZ hashing
  768. * disable bit, which we don't touch here, but it's good
  769. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  770. */
  771. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  772. GEN6_WIZ_HASHING_MASK,
  773. GEN6_WIZ_HASHING_16x4);
  774. return 0;
  775. }
  776. static int gen9_init_workarounds(struct intel_engine_cs *ring)
  777. {
  778. struct drm_device *dev = ring->dev;
  779. struct drm_i915_private *dev_priv = dev->dev_private;
  780. uint32_t tmp;
  781. /* WaDisablePartialInstShootdown:skl,bxt */
  782. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  783. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  784. /* Syncing dependencies between camera and graphics:skl,bxt */
  785. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  786. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  787. if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
  788. INTEL_REVID(dev) == SKL_REVID_B0)) ||
  789. (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
  790. /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
  791. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  792. GEN9_DG_MIRROR_FIX_ENABLE);
  793. }
  794. if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
  795. (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
  796. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
  797. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  798. GEN9_RHWO_OPTIMIZATION_DISABLE);
  799. /*
  800. * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
  801. * but we do that in per ctx batchbuffer as there is an issue
  802. * with this register not getting restored on ctx restore
  803. */
  804. }
  805. if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) >= SKL_REVID_C0) ||
  806. IS_BROXTON(dev)) {
  807. /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
  808. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  809. GEN9_ENABLE_YV12_BUGFIX);
  810. }
  811. /* Wa4x4STCOptimizationDisable:skl,bxt */
  812. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  813. /* WaDisablePartialResolveInVc:skl,bxt */
  814. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
  815. /* WaCcsTlbPrefetchDisable:skl,bxt */
  816. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  817. GEN9_CCS_TLB_PREFETCH_ENABLE);
  818. /* WaDisableMaskBasedCammingInRCC:skl,bxt */
  819. if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_C0) ||
  820. (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0))
  821. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  822. PIXEL_MASK_CAMMING_DISABLE);
  823. /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
  824. tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
  825. if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_F0) ||
  826. (IS_BROXTON(dev) && INTEL_REVID(dev) >= BXT_REVID_B0))
  827. tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
  828. WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
  829. return 0;
  830. }
  831. static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
  832. {
  833. struct drm_device *dev = ring->dev;
  834. struct drm_i915_private *dev_priv = dev->dev_private;
  835. u8 vals[3] = { 0, 0, 0 };
  836. unsigned int i;
  837. for (i = 0; i < 3; i++) {
  838. u8 ss;
  839. /*
  840. * Only consider slices where one, and only one, subslice has 7
  841. * EUs
  842. */
  843. if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
  844. continue;
  845. /*
  846. * subslice_7eu[i] != 0 (because of the check above) and
  847. * ss_max == 4 (maximum number of subslices possible per slice)
  848. *
  849. * -> 0 <= ss <= 3;
  850. */
  851. ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
  852. vals[i] = 3 - ss;
  853. }
  854. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  855. return 0;
  856. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  857. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  858. GEN9_IZ_HASHING_MASK(2) |
  859. GEN9_IZ_HASHING_MASK(1) |
  860. GEN9_IZ_HASHING_MASK(0),
  861. GEN9_IZ_HASHING(2, vals[2]) |
  862. GEN9_IZ_HASHING(1, vals[1]) |
  863. GEN9_IZ_HASHING(0, vals[0]));
  864. return 0;
  865. }
  866. static int skl_init_workarounds(struct intel_engine_cs *ring)
  867. {
  868. struct drm_device *dev = ring->dev;
  869. struct drm_i915_private *dev_priv = dev->dev_private;
  870. gen9_init_workarounds(ring);
  871. /* WaDisablePowerCompilerClockGating:skl */
  872. if (INTEL_REVID(dev) == SKL_REVID_B0)
  873. WA_SET_BIT_MASKED(HIZ_CHICKEN,
  874. BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
  875. if (INTEL_REVID(dev) <= SKL_REVID_D0) {
  876. /*
  877. *Use Force Non-Coherent whenever executing a 3D context. This
  878. * is a workaround for a possible hang in the unlikely event
  879. * a TLB invalidation occurs during a PSD flush.
  880. */
  881. /* WaForceEnableNonCoherent:skl */
  882. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  883. HDC_FORCE_NON_COHERENT);
  884. }
  885. if (INTEL_REVID(dev) == SKL_REVID_C0 ||
  886. INTEL_REVID(dev) == SKL_REVID_D0)
  887. /* WaBarrierPerformanceFixDisable:skl */
  888. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  889. HDC_FENCE_DEST_SLM_DISABLE |
  890. HDC_BARRIER_PERFORMANCE_DISABLE);
  891. return skl_tune_iz_hashing(ring);
  892. }
  893. static int bxt_init_workarounds(struct intel_engine_cs *ring)
  894. {
  895. struct drm_device *dev = ring->dev;
  896. struct drm_i915_private *dev_priv = dev->dev_private;
  897. gen9_init_workarounds(ring);
  898. /* WaDisableThreadStallDopClockGating:bxt */
  899. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  900. STALL_DOP_GATING_DISABLE);
  901. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  902. if (INTEL_REVID(dev) <= BXT_REVID_B0) {
  903. WA_SET_BIT_MASKED(
  904. GEN7_HALF_SLICE_CHICKEN1,
  905. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  906. }
  907. return 0;
  908. }
  909. int init_workarounds_ring(struct intel_engine_cs *ring)
  910. {
  911. struct drm_device *dev = ring->dev;
  912. struct drm_i915_private *dev_priv = dev->dev_private;
  913. WARN_ON(ring->id != RCS);
  914. dev_priv->workarounds.count = 0;
  915. if (IS_BROADWELL(dev))
  916. return bdw_init_workarounds(ring);
  917. if (IS_CHERRYVIEW(dev))
  918. return chv_init_workarounds(ring);
  919. if (IS_SKYLAKE(dev))
  920. return skl_init_workarounds(ring);
  921. if (IS_BROXTON(dev))
  922. return bxt_init_workarounds(ring);
  923. return 0;
  924. }
  925. static int init_render_ring(struct intel_engine_cs *ring)
  926. {
  927. struct drm_device *dev = ring->dev;
  928. struct drm_i915_private *dev_priv = dev->dev_private;
  929. int ret = init_ring_common(ring);
  930. if (ret)
  931. return ret;
  932. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  933. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  934. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  935. /* We need to disable the AsyncFlip performance optimisations in order
  936. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  937. * programmed to '1' on all products.
  938. *
  939. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  940. */
  941. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  942. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  943. /* Required for the hardware to program scanline values for waiting */
  944. /* WaEnableFlushTlbInvalidationMode:snb */
  945. if (INTEL_INFO(dev)->gen == 6)
  946. I915_WRITE(GFX_MODE,
  947. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  948. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  949. if (IS_GEN7(dev))
  950. I915_WRITE(GFX_MODE_GEN7,
  951. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  952. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  953. if (IS_GEN6(dev)) {
  954. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  955. * "If this bit is set, STCunit will have LRA as replacement
  956. * policy. [...] This bit must be reset. LRA replacement
  957. * policy is not supported."
  958. */
  959. I915_WRITE(CACHE_MODE_0,
  960. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  961. }
  962. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  963. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  964. if (HAS_L3_DPF(dev))
  965. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  966. return init_workarounds_ring(ring);
  967. }
  968. static void render_ring_cleanup(struct intel_engine_cs *ring)
  969. {
  970. struct drm_device *dev = ring->dev;
  971. struct drm_i915_private *dev_priv = dev->dev_private;
  972. if (dev_priv->semaphore_obj) {
  973. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  974. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  975. dev_priv->semaphore_obj = NULL;
  976. }
  977. intel_fini_pipe_control(ring);
  978. }
  979. static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
  980. unsigned int num_dwords)
  981. {
  982. #define MBOX_UPDATE_DWORDS 8
  983. struct intel_engine_cs *signaller = signaller_req->ring;
  984. struct drm_device *dev = signaller->dev;
  985. struct drm_i915_private *dev_priv = dev->dev_private;
  986. struct intel_engine_cs *waiter;
  987. int i, ret, num_rings;
  988. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  989. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  990. #undef MBOX_UPDATE_DWORDS
  991. ret = intel_ring_begin(signaller_req, num_dwords);
  992. if (ret)
  993. return ret;
  994. for_each_ring(waiter, dev_priv, i) {
  995. u32 seqno;
  996. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  997. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  998. continue;
  999. seqno = i915_gem_request_get_seqno(signaller_req);
  1000. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  1001. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  1002. PIPE_CONTROL_QW_WRITE |
  1003. PIPE_CONTROL_FLUSH_ENABLE);
  1004. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  1005. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1006. intel_ring_emit(signaller, seqno);
  1007. intel_ring_emit(signaller, 0);
  1008. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1009. MI_SEMAPHORE_TARGET(waiter->id));
  1010. intel_ring_emit(signaller, 0);
  1011. }
  1012. return 0;
  1013. }
  1014. static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
  1015. unsigned int num_dwords)
  1016. {
  1017. #define MBOX_UPDATE_DWORDS 6
  1018. struct intel_engine_cs *signaller = signaller_req->ring;
  1019. struct drm_device *dev = signaller->dev;
  1020. struct drm_i915_private *dev_priv = dev->dev_private;
  1021. struct intel_engine_cs *waiter;
  1022. int i, ret, num_rings;
  1023. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1024. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1025. #undef MBOX_UPDATE_DWORDS
  1026. ret = intel_ring_begin(signaller_req, num_dwords);
  1027. if (ret)
  1028. return ret;
  1029. for_each_ring(waiter, dev_priv, i) {
  1030. u32 seqno;
  1031. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  1032. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1033. continue;
  1034. seqno = i915_gem_request_get_seqno(signaller_req);
  1035. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  1036. MI_FLUSH_DW_OP_STOREDW);
  1037. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  1038. MI_FLUSH_DW_USE_GTT);
  1039. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1040. intel_ring_emit(signaller, seqno);
  1041. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1042. MI_SEMAPHORE_TARGET(waiter->id));
  1043. intel_ring_emit(signaller, 0);
  1044. }
  1045. return 0;
  1046. }
  1047. static int gen6_signal(struct drm_i915_gem_request *signaller_req,
  1048. unsigned int num_dwords)
  1049. {
  1050. struct intel_engine_cs *signaller = signaller_req->ring;
  1051. struct drm_device *dev = signaller->dev;
  1052. struct drm_i915_private *dev_priv = dev->dev_private;
  1053. struct intel_engine_cs *useless;
  1054. int i, ret, num_rings;
  1055. #define MBOX_UPDATE_DWORDS 3
  1056. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1057. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  1058. #undef MBOX_UPDATE_DWORDS
  1059. ret = intel_ring_begin(signaller_req, num_dwords);
  1060. if (ret)
  1061. return ret;
  1062. for_each_ring(useless, dev_priv, i) {
  1063. u32 mbox_reg = signaller->semaphore.mbox.signal[i];
  1064. if (mbox_reg != GEN6_NOSYNC) {
  1065. u32 seqno = i915_gem_request_get_seqno(signaller_req);
  1066. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  1067. intel_ring_emit(signaller, mbox_reg);
  1068. intel_ring_emit(signaller, seqno);
  1069. }
  1070. }
  1071. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1072. if (num_rings % 2 == 0)
  1073. intel_ring_emit(signaller, MI_NOOP);
  1074. return 0;
  1075. }
  1076. /**
  1077. * gen6_add_request - Update the semaphore mailbox registers
  1078. *
  1079. * @request - request to write to the ring
  1080. *
  1081. * Update the mailbox registers in the *other* rings with the current seqno.
  1082. * This acts like a signal in the canonical semaphore.
  1083. */
  1084. static int
  1085. gen6_add_request(struct drm_i915_gem_request *req)
  1086. {
  1087. struct intel_engine_cs *ring = req->ring;
  1088. int ret;
  1089. if (ring->semaphore.signal)
  1090. ret = ring->semaphore.signal(req, 4);
  1091. else
  1092. ret = intel_ring_begin(req, 4);
  1093. if (ret)
  1094. return ret;
  1095. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1096. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1097. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1098. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1099. __intel_ring_advance(ring);
  1100. return 0;
  1101. }
  1102. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  1103. u32 seqno)
  1104. {
  1105. struct drm_i915_private *dev_priv = dev->dev_private;
  1106. return dev_priv->last_seqno < seqno;
  1107. }
  1108. /**
  1109. * intel_ring_sync - sync the waiter to the signaller on seqno
  1110. *
  1111. * @waiter - ring that is waiting
  1112. * @signaller - ring which has, or will signal
  1113. * @seqno - seqno which the waiter will block on
  1114. */
  1115. static int
  1116. gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
  1117. struct intel_engine_cs *signaller,
  1118. u32 seqno)
  1119. {
  1120. struct intel_engine_cs *waiter = waiter_req->ring;
  1121. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  1122. int ret;
  1123. ret = intel_ring_begin(waiter_req, 4);
  1124. if (ret)
  1125. return ret;
  1126. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  1127. MI_SEMAPHORE_GLOBAL_GTT |
  1128. MI_SEMAPHORE_POLL |
  1129. MI_SEMAPHORE_SAD_GTE_SDD);
  1130. intel_ring_emit(waiter, seqno);
  1131. intel_ring_emit(waiter,
  1132. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1133. intel_ring_emit(waiter,
  1134. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1135. intel_ring_advance(waiter);
  1136. return 0;
  1137. }
  1138. static int
  1139. gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
  1140. struct intel_engine_cs *signaller,
  1141. u32 seqno)
  1142. {
  1143. struct intel_engine_cs *waiter = waiter_req->ring;
  1144. u32 dw1 = MI_SEMAPHORE_MBOX |
  1145. MI_SEMAPHORE_COMPARE |
  1146. MI_SEMAPHORE_REGISTER;
  1147. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  1148. int ret;
  1149. /* Throughout all of the GEM code, seqno passed implies our current
  1150. * seqno is >= the last seqno executed. However for hardware the
  1151. * comparison is strictly greater than.
  1152. */
  1153. seqno -= 1;
  1154. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1155. ret = intel_ring_begin(waiter_req, 4);
  1156. if (ret)
  1157. return ret;
  1158. /* If seqno wrap happened, omit the wait with no-ops */
  1159. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  1160. intel_ring_emit(waiter, dw1 | wait_mbox);
  1161. intel_ring_emit(waiter, seqno);
  1162. intel_ring_emit(waiter, 0);
  1163. intel_ring_emit(waiter, MI_NOOP);
  1164. } else {
  1165. intel_ring_emit(waiter, MI_NOOP);
  1166. intel_ring_emit(waiter, MI_NOOP);
  1167. intel_ring_emit(waiter, MI_NOOP);
  1168. intel_ring_emit(waiter, MI_NOOP);
  1169. }
  1170. intel_ring_advance(waiter);
  1171. return 0;
  1172. }
  1173. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  1174. do { \
  1175. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  1176. PIPE_CONTROL_DEPTH_STALL); \
  1177. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  1178. intel_ring_emit(ring__, 0); \
  1179. intel_ring_emit(ring__, 0); \
  1180. } while (0)
  1181. static int
  1182. pc_render_add_request(struct drm_i915_gem_request *req)
  1183. {
  1184. struct intel_engine_cs *ring = req->ring;
  1185. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  1186. int ret;
  1187. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  1188. * incoherent with writes to memory, i.e. completely fubar,
  1189. * so we need to use PIPE_NOTIFY instead.
  1190. *
  1191. * However, we also need to workaround the qword write
  1192. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  1193. * memory before requesting an interrupt.
  1194. */
  1195. ret = intel_ring_begin(req, 32);
  1196. if (ret)
  1197. return ret;
  1198. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1199. PIPE_CONTROL_WRITE_FLUSH |
  1200. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  1201. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1202. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1203. intel_ring_emit(ring, 0);
  1204. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1205. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  1206. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1207. scratch_addr += 2 * CACHELINE_BYTES;
  1208. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1209. scratch_addr += 2 * CACHELINE_BYTES;
  1210. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1211. scratch_addr += 2 * CACHELINE_BYTES;
  1212. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1213. scratch_addr += 2 * CACHELINE_BYTES;
  1214. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1215. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1216. PIPE_CONTROL_WRITE_FLUSH |
  1217. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  1218. PIPE_CONTROL_NOTIFY);
  1219. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1220. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1221. intel_ring_emit(ring, 0);
  1222. __intel_ring_advance(ring);
  1223. return 0;
  1224. }
  1225. static u32
  1226. gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1227. {
  1228. /* Workaround to force correct ordering between irq and seqno writes on
  1229. * ivb (and maybe also on snb) by reading from a CS register (like
  1230. * ACTHD) before reading the status page. */
  1231. if (!lazy_coherency) {
  1232. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1233. POSTING_READ(RING_ACTHD(ring->mmio_base));
  1234. }
  1235. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1236. }
  1237. static u32
  1238. ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1239. {
  1240. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1241. }
  1242. static void
  1243. ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1244. {
  1245. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  1246. }
  1247. static u32
  1248. pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1249. {
  1250. return ring->scratch.cpu_page[0];
  1251. }
  1252. static void
  1253. pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1254. {
  1255. ring->scratch.cpu_page[0] = seqno;
  1256. }
  1257. static bool
  1258. gen5_ring_get_irq(struct intel_engine_cs *ring)
  1259. {
  1260. struct drm_device *dev = ring->dev;
  1261. struct drm_i915_private *dev_priv = dev->dev_private;
  1262. unsigned long flags;
  1263. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1264. return false;
  1265. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1266. if (ring->irq_refcount++ == 0)
  1267. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1268. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1269. return true;
  1270. }
  1271. static void
  1272. gen5_ring_put_irq(struct intel_engine_cs *ring)
  1273. {
  1274. struct drm_device *dev = ring->dev;
  1275. struct drm_i915_private *dev_priv = dev->dev_private;
  1276. unsigned long flags;
  1277. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1278. if (--ring->irq_refcount == 0)
  1279. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1280. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1281. }
  1282. static bool
  1283. i9xx_ring_get_irq(struct intel_engine_cs *ring)
  1284. {
  1285. struct drm_device *dev = ring->dev;
  1286. struct drm_i915_private *dev_priv = dev->dev_private;
  1287. unsigned long flags;
  1288. if (!intel_irqs_enabled(dev_priv))
  1289. return false;
  1290. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1291. if (ring->irq_refcount++ == 0) {
  1292. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1293. I915_WRITE(IMR, dev_priv->irq_mask);
  1294. POSTING_READ(IMR);
  1295. }
  1296. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1297. return true;
  1298. }
  1299. static void
  1300. i9xx_ring_put_irq(struct intel_engine_cs *ring)
  1301. {
  1302. struct drm_device *dev = ring->dev;
  1303. struct drm_i915_private *dev_priv = dev->dev_private;
  1304. unsigned long flags;
  1305. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1306. if (--ring->irq_refcount == 0) {
  1307. dev_priv->irq_mask |= ring->irq_enable_mask;
  1308. I915_WRITE(IMR, dev_priv->irq_mask);
  1309. POSTING_READ(IMR);
  1310. }
  1311. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1312. }
  1313. static bool
  1314. i8xx_ring_get_irq(struct intel_engine_cs *ring)
  1315. {
  1316. struct drm_device *dev = ring->dev;
  1317. struct drm_i915_private *dev_priv = dev->dev_private;
  1318. unsigned long flags;
  1319. if (!intel_irqs_enabled(dev_priv))
  1320. return false;
  1321. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1322. if (ring->irq_refcount++ == 0) {
  1323. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1324. I915_WRITE16(IMR, dev_priv->irq_mask);
  1325. POSTING_READ16(IMR);
  1326. }
  1327. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1328. return true;
  1329. }
  1330. static void
  1331. i8xx_ring_put_irq(struct intel_engine_cs *ring)
  1332. {
  1333. struct drm_device *dev = ring->dev;
  1334. struct drm_i915_private *dev_priv = dev->dev_private;
  1335. unsigned long flags;
  1336. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1337. if (--ring->irq_refcount == 0) {
  1338. dev_priv->irq_mask |= ring->irq_enable_mask;
  1339. I915_WRITE16(IMR, dev_priv->irq_mask);
  1340. POSTING_READ16(IMR);
  1341. }
  1342. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1343. }
  1344. static int
  1345. bsd_ring_flush(struct drm_i915_gem_request *req,
  1346. u32 invalidate_domains,
  1347. u32 flush_domains)
  1348. {
  1349. struct intel_engine_cs *ring = req->ring;
  1350. int ret;
  1351. ret = intel_ring_begin(req, 2);
  1352. if (ret)
  1353. return ret;
  1354. intel_ring_emit(ring, MI_FLUSH);
  1355. intel_ring_emit(ring, MI_NOOP);
  1356. intel_ring_advance(ring);
  1357. return 0;
  1358. }
  1359. static int
  1360. i9xx_add_request(struct drm_i915_gem_request *req)
  1361. {
  1362. struct intel_engine_cs *ring = req->ring;
  1363. int ret;
  1364. ret = intel_ring_begin(req, 4);
  1365. if (ret)
  1366. return ret;
  1367. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1368. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1369. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1370. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1371. __intel_ring_advance(ring);
  1372. return 0;
  1373. }
  1374. static bool
  1375. gen6_ring_get_irq(struct intel_engine_cs *ring)
  1376. {
  1377. struct drm_device *dev = ring->dev;
  1378. struct drm_i915_private *dev_priv = dev->dev_private;
  1379. unsigned long flags;
  1380. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1381. return false;
  1382. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1383. if (ring->irq_refcount++ == 0) {
  1384. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1385. I915_WRITE_IMR(ring,
  1386. ~(ring->irq_enable_mask |
  1387. GT_PARITY_ERROR(dev)));
  1388. else
  1389. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1390. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1391. }
  1392. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1393. return true;
  1394. }
  1395. static void
  1396. gen6_ring_put_irq(struct intel_engine_cs *ring)
  1397. {
  1398. struct drm_device *dev = ring->dev;
  1399. struct drm_i915_private *dev_priv = dev->dev_private;
  1400. unsigned long flags;
  1401. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1402. if (--ring->irq_refcount == 0) {
  1403. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1404. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  1405. else
  1406. I915_WRITE_IMR(ring, ~0);
  1407. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1408. }
  1409. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1410. }
  1411. static bool
  1412. hsw_vebox_get_irq(struct intel_engine_cs *ring)
  1413. {
  1414. struct drm_device *dev = ring->dev;
  1415. struct drm_i915_private *dev_priv = dev->dev_private;
  1416. unsigned long flags;
  1417. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1418. return false;
  1419. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1420. if (ring->irq_refcount++ == 0) {
  1421. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1422. gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  1423. }
  1424. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1425. return true;
  1426. }
  1427. static void
  1428. hsw_vebox_put_irq(struct intel_engine_cs *ring)
  1429. {
  1430. struct drm_device *dev = ring->dev;
  1431. struct drm_i915_private *dev_priv = dev->dev_private;
  1432. unsigned long flags;
  1433. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1434. if (--ring->irq_refcount == 0) {
  1435. I915_WRITE_IMR(ring, ~0);
  1436. gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  1437. }
  1438. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1439. }
  1440. static bool
  1441. gen8_ring_get_irq(struct intel_engine_cs *ring)
  1442. {
  1443. struct drm_device *dev = ring->dev;
  1444. struct drm_i915_private *dev_priv = dev->dev_private;
  1445. unsigned long flags;
  1446. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1447. return false;
  1448. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1449. if (ring->irq_refcount++ == 0) {
  1450. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1451. I915_WRITE_IMR(ring,
  1452. ~(ring->irq_enable_mask |
  1453. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1454. } else {
  1455. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1456. }
  1457. POSTING_READ(RING_IMR(ring->mmio_base));
  1458. }
  1459. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1460. return true;
  1461. }
  1462. static void
  1463. gen8_ring_put_irq(struct intel_engine_cs *ring)
  1464. {
  1465. struct drm_device *dev = ring->dev;
  1466. struct drm_i915_private *dev_priv = dev->dev_private;
  1467. unsigned long flags;
  1468. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1469. if (--ring->irq_refcount == 0) {
  1470. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1471. I915_WRITE_IMR(ring,
  1472. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1473. } else {
  1474. I915_WRITE_IMR(ring, ~0);
  1475. }
  1476. POSTING_READ(RING_IMR(ring->mmio_base));
  1477. }
  1478. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1479. }
  1480. static int
  1481. i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1482. u64 offset, u32 length,
  1483. unsigned dispatch_flags)
  1484. {
  1485. struct intel_engine_cs *ring = req->ring;
  1486. int ret;
  1487. ret = intel_ring_begin(req, 2);
  1488. if (ret)
  1489. return ret;
  1490. intel_ring_emit(ring,
  1491. MI_BATCH_BUFFER_START |
  1492. MI_BATCH_GTT |
  1493. (dispatch_flags & I915_DISPATCH_SECURE ?
  1494. 0 : MI_BATCH_NON_SECURE_I965));
  1495. intel_ring_emit(ring, offset);
  1496. intel_ring_advance(ring);
  1497. return 0;
  1498. }
  1499. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1500. #define I830_BATCH_LIMIT (256*1024)
  1501. #define I830_TLB_ENTRIES (2)
  1502. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1503. static int
  1504. i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1505. u64 offset, u32 len,
  1506. unsigned dispatch_flags)
  1507. {
  1508. struct intel_engine_cs *ring = req->ring;
  1509. u32 cs_offset = ring->scratch.gtt_offset;
  1510. int ret;
  1511. ret = intel_ring_begin(req, 6);
  1512. if (ret)
  1513. return ret;
  1514. /* Evict the invalid PTE TLBs */
  1515. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1516. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1517. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1518. intel_ring_emit(ring, cs_offset);
  1519. intel_ring_emit(ring, 0xdeadbeef);
  1520. intel_ring_emit(ring, MI_NOOP);
  1521. intel_ring_advance(ring);
  1522. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1523. if (len > I830_BATCH_LIMIT)
  1524. return -ENOSPC;
  1525. ret = intel_ring_begin(req, 6 + 2);
  1526. if (ret)
  1527. return ret;
  1528. /* Blit the batch (which has now all relocs applied) to the
  1529. * stable batch scratch bo area (so that the CS never
  1530. * stumbles over its tlb invalidation bug) ...
  1531. */
  1532. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1533. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1534. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1535. intel_ring_emit(ring, cs_offset);
  1536. intel_ring_emit(ring, 4096);
  1537. intel_ring_emit(ring, offset);
  1538. intel_ring_emit(ring, MI_FLUSH);
  1539. intel_ring_emit(ring, MI_NOOP);
  1540. intel_ring_advance(ring);
  1541. /* ... and execute it. */
  1542. offset = cs_offset;
  1543. }
  1544. ret = intel_ring_begin(req, 4);
  1545. if (ret)
  1546. return ret;
  1547. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1548. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1549. 0 : MI_BATCH_NON_SECURE));
  1550. intel_ring_emit(ring, offset + len - 8);
  1551. intel_ring_emit(ring, MI_NOOP);
  1552. intel_ring_advance(ring);
  1553. return 0;
  1554. }
  1555. static int
  1556. i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1557. u64 offset, u32 len,
  1558. unsigned dispatch_flags)
  1559. {
  1560. struct intel_engine_cs *ring = req->ring;
  1561. int ret;
  1562. ret = intel_ring_begin(req, 2);
  1563. if (ret)
  1564. return ret;
  1565. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1566. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1567. 0 : MI_BATCH_NON_SECURE));
  1568. intel_ring_advance(ring);
  1569. return 0;
  1570. }
  1571. static void cleanup_status_page(struct intel_engine_cs *ring)
  1572. {
  1573. struct drm_i915_gem_object *obj;
  1574. obj = ring->status_page.obj;
  1575. if (obj == NULL)
  1576. return;
  1577. kunmap(sg_page(obj->pages->sgl));
  1578. i915_gem_object_ggtt_unpin(obj);
  1579. drm_gem_object_unreference(&obj->base);
  1580. ring->status_page.obj = NULL;
  1581. }
  1582. static int init_status_page(struct intel_engine_cs *ring)
  1583. {
  1584. struct drm_i915_gem_object *obj;
  1585. if ((obj = ring->status_page.obj) == NULL) {
  1586. unsigned flags;
  1587. int ret;
  1588. obj = i915_gem_alloc_object(ring->dev, 4096);
  1589. if (obj == NULL) {
  1590. DRM_ERROR("Failed to allocate status page\n");
  1591. return -ENOMEM;
  1592. }
  1593. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1594. if (ret)
  1595. goto err_unref;
  1596. flags = 0;
  1597. if (!HAS_LLC(ring->dev))
  1598. /* On g33, we cannot place HWS above 256MiB, so
  1599. * restrict its pinning to the low mappable arena.
  1600. * Though this restriction is not documented for
  1601. * gen4, gen5, or byt, they also behave similarly
  1602. * and hang if the HWS is placed at the top of the
  1603. * GTT. To generalise, it appears that all !llc
  1604. * platforms have issues with us placing the HWS
  1605. * above the mappable region (even though we never
  1606. * actualy map it).
  1607. */
  1608. flags |= PIN_MAPPABLE;
  1609. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1610. if (ret) {
  1611. err_unref:
  1612. drm_gem_object_unreference(&obj->base);
  1613. return ret;
  1614. }
  1615. ring->status_page.obj = obj;
  1616. }
  1617. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1618. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1619. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1620. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1621. ring->name, ring->status_page.gfx_addr);
  1622. return 0;
  1623. }
  1624. static int init_phys_status_page(struct intel_engine_cs *ring)
  1625. {
  1626. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1627. if (!dev_priv->status_page_dmah) {
  1628. dev_priv->status_page_dmah =
  1629. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1630. if (!dev_priv->status_page_dmah)
  1631. return -ENOMEM;
  1632. }
  1633. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1634. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1635. return 0;
  1636. }
  1637. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1638. {
  1639. iounmap(ringbuf->virtual_start);
  1640. ringbuf->virtual_start = NULL;
  1641. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1642. }
  1643. int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
  1644. struct intel_ringbuffer *ringbuf)
  1645. {
  1646. struct drm_i915_private *dev_priv = to_i915(dev);
  1647. struct drm_i915_gem_object *obj = ringbuf->obj;
  1648. int ret;
  1649. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1650. if (ret)
  1651. return ret;
  1652. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1653. if (ret) {
  1654. i915_gem_object_ggtt_unpin(obj);
  1655. return ret;
  1656. }
  1657. ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
  1658. i915_gem_obj_ggtt_offset(obj), ringbuf->size);
  1659. if (ringbuf->virtual_start == NULL) {
  1660. i915_gem_object_ggtt_unpin(obj);
  1661. return -EINVAL;
  1662. }
  1663. return 0;
  1664. }
  1665. void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1666. {
  1667. drm_gem_object_unreference(&ringbuf->obj->base);
  1668. ringbuf->obj = NULL;
  1669. }
  1670. int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1671. struct intel_ringbuffer *ringbuf)
  1672. {
  1673. struct drm_i915_gem_object *obj;
  1674. obj = NULL;
  1675. if (!HAS_LLC(dev))
  1676. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1677. if (obj == NULL)
  1678. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1679. if (obj == NULL)
  1680. return -ENOMEM;
  1681. /* mark ring buffers as read-only from GPU side by default */
  1682. obj->gt_ro = 1;
  1683. ringbuf->obj = obj;
  1684. return 0;
  1685. }
  1686. static int intel_init_ring_buffer(struct drm_device *dev,
  1687. struct intel_engine_cs *ring)
  1688. {
  1689. struct intel_ringbuffer *ringbuf;
  1690. int ret;
  1691. WARN_ON(ring->buffer);
  1692. ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
  1693. if (!ringbuf)
  1694. return -ENOMEM;
  1695. ring->buffer = ringbuf;
  1696. ring->dev = dev;
  1697. INIT_LIST_HEAD(&ring->active_list);
  1698. INIT_LIST_HEAD(&ring->request_list);
  1699. INIT_LIST_HEAD(&ring->execlist_queue);
  1700. i915_gem_batch_pool_init(dev, &ring->batch_pool);
  1701. ringbuf->size = 32 * PAGE_SIZE;
  1702. ringbuf->ring = ring;
  1703. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1704. init_waitqueue_head(&ring->irq_queue);
  1705. if (I915_NEED_GFX_HWS(dev)) {
  1706. ret = init_status_page(ring);
  1707. if (ret)
  1708. goto error;
  1709. } else {
  1710. BUG_ON(ring->id != RCS);
  1711. ret = init_phys_status_page(ring);
  1712. if (ret)
  1713. goto error;
  1714. }
  1715. WARN_ON(ringbuf->obj);
  1716. ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
  1717. if (ret) {
  1718. DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
  1719. ring->name, ret);
  1720. goto error;
  1721. }
  1722. ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
  1723. if (ret) {
  1724. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1725. ring->name, ret);
  1726. intel_destroy_ringbuffer_obj(ringbuf);
  1727. goto error;
  1728. }
  1729. /* Workaround an erratum on the i830 which causes a hang if
  1730. * the TAIL pointer points to within the last 2 cachelines
  1731. * of the buffer.
  1732. */
  1733. ringbuf->effective_size = ringbuf->size;
  1734. if (IS_I830(dev) || IS_845G(dev))
  1735. ringbuf->effective_size -= 2 * CACHELINE_BYTES;
  1736. ret = i915_cmd_parser_init_ring(ring);
  1737. if (ret)
  1738. goto error;
  1739. return 0;
  1740. error:
  1741. kfree(ringbuf);
  1742. ring->buffer = NULL;
  1743. return ret;
  1744. }
  1745. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
  1746. {
  1747. struct drm_i915_private *dev_priv;
  1748. struct intel_ringbuffer *ringbuf;
  1749. if (!intel_ring_initialized(ring))
  1750. return;
  1751. dev_priv = to_i915(ring->dev);
  1752. ringbuf = ring->buffer;
  1753. intel_stop_ring_buffer(ring);
  1754. WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1755. intel_unpin_ringbuffer_obj(ringbuf);
  1756. intel_destroy_ringbuffer_obj(ringbuf);
  1757. if (ring->cleanup)
  1758. ring->cleanup(ring);
  1759. cleanup_status_page(ring);
  1760. i915_cmd_parser_fini_ring(ring);
  1761. i915_gem_batch_pool_fini(&ring->batch_pool);
  1762. kfree(ringbuf);
  1763. ring->buffer = NULL;
  1764. }
  1765. static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
  1766. {
  1767. struct intel_ringbuffer *ringbuf = ring->buffer;
  1768. struct drm_i915_gem_request *request;
  1769. unsigned space;
  1770. int ret;
  1771. if (intel_ring_space(ringbuf) >= n)
  1772. return 0;
  1773. /* The whole point of reserving space is to not wait! */
  1774. WARN_ON(ringbuf->reserved_in_use);
  1775. list_for_each_entry(request, &ring->request_list, list) {
  1776. space = __intel_ring_space(request->postfix, ringbuf->tail,
  1777. ringbuf->size);
  1778. if (space >= n)
  1779. break;
  1780. }
  1781. if (WARN_ON(&request->list == &ring->request_list))
  1782. return -ENOSPC;
  1783. ret = i915_wait_request(request);
  1784. if (ret)
  1785. return ret;
  1786. ringbuf->space = space;
  1787. return 0;
  1788. }
  1789. static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
  1790. {
  1791. uint32_t __iomem *virt;
  1792. int rem = ringbuf->size - ringbuf->tail;
  1793. virt = ringbuf->virtual_start + ringbuf->tail;
  1794. rem /= 4;
  1795. while (rem--)
  1796. iowrite32(MI_NOOP, virt++);
  1797. ringbuf->tail = 0;
  1798. intel_ring_update_space(ringbuf);
  1799. }
  1800. int intel_ring_idle(struct intel_engine_cs *ring)
  1801. {
  1802. struct drm_i915_gem_request *req;
  1803. /* Wait upon the last request to be completed */
  1804. if (list_empty(&ring->request_list))
  1805. return 0;
  1806. req = list_entry(ring->request_list.prev,
  1807. struct drm_i915_gem_request,
  1808. list);
  1809. /* Make sure we do not trigger any retires */
  1810. return __i915_wait_request(req,
  1811. atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
  1812. to_i915(ring->dev)->mm.interruptible,
  1813. NULL, NULL);
  1814. }
  1815. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  1816. {
  1817. request->ringbuf = request->ring->buffer;
  1818. return 0;
  1819. }
  1820. int intel_ring_reserve_space(struct drm_i915_gem_request *request)
  1821. {
  1822. /*
  1823. * The first call merely notes the reserve request and is common for
  1824. * all back ends. The subsequent localised _begin() call actually
  1825. * ensures that the reservation is available. Without the begin, if
  1826. * the request creator immediately submitted the request without
  1827. * adding any commands to it then there might not actually be
  1828. * sufficient room for the submission commands.
  1829. */
  1830. intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
  1831. return intel_ring_begin(request, 0);
  1832. }
  1833. void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
  1834. {
  1835. WARN_ON(ringbuf->reserved_size);
  1836. WARN_ON(ringbuf->reserved_in_use);
  1837. ringbuf->reserved_size = size;
  1838. }
  1839. void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
  1840. {
  1841. WARN_ON(ringbuf->reserved_in_use);
  1842. ringbuf->reserved_size = 0;
  1843. ringbuf->reserved_in_use = false;
  1844. }
  1845. void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
  1846. {
  1847. WARN_ON(ringbuf->reserved_in_use);
  1848. ringbuf->reserved_in_use = true;
  1849. ringbuf->reserved_tail = ringbuf->tail;
  1850. }
  1851. void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
  1852. {
  1853. WARN_ON(!ringbuf->reserved_in_use);
  1854. if (ringbuf->tail > ringbuf->reserved_tail) {
  1855. WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
  1856. "request reserved size too small: %d vs %d!\n",
  1857. ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
  1858. } else {
  1859. /*
  1860. * The ring was wrapped while the reserved space was in use.
  1861. * That means that some unknown amount of the ring tail was
  1862. * no-op filled and skipped. Thus simply adding the ring size
  1863. * to the tail and doing the above space check will not work.
  1864. * Rather than attempt to track how much tail was skipped,
  1865. * it is much simpler to say that also skipping the sanity
  1866. * check every once in a while is not a big issue.
  1867. */
  1868. }
  1869. ringbuf->reserved_size = 0;
  1870. ringbuf->reserved_in_use = false;
  1871. }
  1872. static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
  1873. {
  1874. struct intel_ringbuffer *ringbuf = ring->buffer;
  1875. int remain_usable = ringbuf->effective_size - ringbuf->tail;
  1876. int remain_actual = ringbuf->size - ringbuf->tail;
  1877. int ret, total_bytes, wait_bytes = 0;
  1878. bool need_wrap = false;
  1879. if (ringbuf->reserved_in_use)
  1880. total_bytes = bytes;
  1881. else
  1882. total_bytes = bytes + ringbuf->reserved_size;
  1883. if (unlikely(bytes > remain_usable)) {
  1884. /*
  1885. * Not enough space for the basic request. So need to flush
  1886. * out the remainder and then wait for base + reserved.
  1887. */
  1888. wait_bytes = remain_actual + total_bytes;
  1889. need_wrap = true;
  1890. } else {
  1891. if (unlikely(total_bytes > remain_usable)) {
  1892. /*
  1893. * The base request will fit but the reserved space
  1894. * falls off the end. So only need to to wait for the
  1895. * reserved size after flushing out the remainder.
  1896. */
  1897. wait_bytes = remain_actual + ringbuf->reserved_size;
  1898. need_wrap = true;
  1899. } else if (total_bytes > ringbuf->space) {
  1900. /* No wrapping required, just waiting. */
  1901. wait_bytes = total_bytes;
  1902. }
  1903. }
  1904. if (wait_bytes) {
  1905. ret = ring_wait_for_space(ring, wait_bytes);
  1906. if (unlikely(ret))
  1907. return ret;
  1908. if (need_wrap)
  1909. __wrap_ring_buffer(ringbuf);
  1910. }
  1911. return 0;
  1912. }
  1913. int intel_ring_begin(struct drm_i915_gem_request *req,
  1914. int num_dwords)
  1915. {
  1916. struct intel_engine_cs *ring;
  1917. struct drm_i915_private *dev_priv;
  1918. int ret;
  1919. WARN_ON(req == NULL);
  1920. ring = req->ring;
  1921. dev_priv = ring->dev->dev_private;
  1922. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1923. dev_priv->mm.interruptible);
  1924. if (ret)
  1925. return ret;
  1926. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  1927. if (ret)
  1928. return ret;
  1929. ring->buffer->space -= num_dwords * sizeof(uint32_t);
  1930. return 0;
  1931. }
  1932. /* Align the ring tail to a cacheline boundary */
  1933. int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
  1934. {
  1935. struct intel_engine_cs *ring = req->ring;
  1936. int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1937. int ret;
  1938. if (num_dwords == 0)
  1939. return 0;
  1940. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1941. ret = intel_ring_begin(req, num_dwords);
  1942. if (ret)
  1943. return ret;
  1944. while (num_dwords--)
  1945. intel_ring_emit(ring, MI_NOOP);
  1946. intel_ring_advance(ring);
  1947. return 0;
  1948. }
  1949. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
  1950. {
  1951. struct drm_device *dev = ring->dev;
  1952. struct drm_i915_private *dev_priv = dev->dev_private;
  1953. if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
  1954. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1955. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1956. if (HAS_VEBOX(dev))
  1957. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1958. }
  1959. ring->set_seqno(ring, seqno);
  1960. ring->hangcheck.seqno = seqno;
  1961. }
  1962. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
  1963. u32 value)
  1964. {
  1965. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1966. /* Every tail move must follow the sequence below */
  1967. /* Disable notification that the ring is IDLE. The GT
  1968. * will then assume that it is busy and bring it out of rc6.
  1969. */
  1970. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1971. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1972. /* Clear the context id. Here be magic! */
  1973. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1974. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1975. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1976. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1977. 50))
  1978. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1979. /* Now that the ring is fully powered up, update the tail */
  1980. I915_WRITE_TAIL(ring, value);
  1981. POSTING_READ(RING_TAIL(ring->mmio_base));
  1982. /* Let the ring send IDLE messages to the GT again,
  1983. * and so let it sleep to conserve power when idle.
  1984. */
  1985. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1986. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1987. }
  1988. static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
  1989. u32 invalidate, u32 flush)
  1990. {
  1991. struct intel_engine_cs *ring = req->ring;
  1992. uint32_t cmd;
  1993. int ret;
  1994. ret = intel_ring_begin(req, 4);
  1995. if (ret)
  1996. return ret;
  1997. cmd = MI_FLUSH_DW;
  1998. if (INTEL_INFO(ring->dev)->gen >= 8)
  1999. cmd += 1;
  2000. /* We always require a command barrier so that subsequent
  2001. * commands, such as breadcrumb interrupts, are strictly ordered
  2002. * wrt the contents of the write cache being flushed to memory
  2003. * (and thus being coherent from the CPU).
  2004. */
  2005. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2006. /*
  2007. * Bspec vol 1c.5 - video engine command streamer:
  2008. * "If ENABLED, all TLBs will be invalidated once the flush
  2009. * operation is complete. This bit is only valid when the
  2010. * Post-Sync Operation field is a value of 1h or 3h."
  2011. */
  2012. if (invalidate & I915_GEM_GPU_DOMAINS)
  2013. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  2014. intel_ring_emit(ring, cmd);
  2015. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2016. if (INTEL_INFO(ring->dev)->gen >= 8) {
  2017. intel_ring_emit(ring, 0); /* upper addr */
  2018. intel_ring_emit(ring, 0); /* value */
  2019. } else {
  2020. intel_ring_emit(ring, 0);
  2021. intel_ring_emit(ring, MI_NOOP);
  2022. }
  2023. intel_ring_advance(ring);
  2024. return 0;
  2025. }
  2026. static int
  2027. gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2028. u64 offset, u32 len,
  2029. unsigned dispatch_flags)
  2030. {
  2031. struct intel_engine_cs *ring = req->ring;
  2032. bool ppgtt = USES_PPGTT(ring->dev) &&
  2033. !(dispatch_flags & I915_DISPATCH_SECURE);
  2034. int ret;
  2035. ret = intel_ring_begin(req, 4);
  2036. if (ret)
  2037. return ret;
  2038. /* FIXME(BDW): Address space and security selectors. */
  2039. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
  2040. (dispatch_flags & I915_DISPATCH_RS ?
  2041. MI_BATCH_RESOURCE_STREAMER : 0));
  2042. intel_ring_emit(ring, lower_32_bits(offset));
  2043. intel_ring_emit(ring, upper_32_bits(offset));
  2044. intel_ring_emit(ring, MI_NOOP);
  2045. intel_ring_advance(ring);
  2046. return 0;
  2047. }
  2048. static int
  2049. hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2050. u64 offset, u32 len,
  2051. unsigned dispatch_flags)
  2052. {
  2053. struct intel_engine_cs *ring = req->ring;
  2054. int ret;
  2055. ret = intel_ring_begin(req, 2);
  2056. if (ret)
  2057. return ret;
  2058. intel_ring_emit(ring,
  2059. MI_BATCH_BUFFER_START |
  2060. (dispatch_flags & I915_DISPATCH_SECURE ?
  2061. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
  2062. (dispatch_flags & I915_DISPATCH_RS ?
  2063. MI_BATCH_RESOURCE_STREAMER : 0));
  2064. /* bit0-7 is the length on GEN6+ */
  2065. intel_ring_emit(ring, offset);
  2066. intel_ring_advance(ring);
  2067. return 0;
  2068. }
  2069. static int
  2070. gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2071. u64 offset, u32 len,
  2072. unsigned dispatch_flags)
  2073. {
  2074. struct intel_engine_cs *ring = req->ring;
  2075. int ret;
  2076. ret = intel_ring_begin(req, 2);
  2077. if (ret)
  2078. return ret;
  2079. intel_ring_emit(ring,
  2080. MI_BATCH_BUFFER_START |
  2081. (dispatch_flags & I915_DISPATCH_SECURE ?
  2082. 0 : MI_BATCH_NON_SECURE_I965));
  2083. /* bit0-7 is the length on GEN6+ */
  2084. intel_ring_emit(ring, offset);
  2085. intel_ring_advance(ring);
  2086. return 0;
  2087. }
  2088. /* Blitter support (SandyBridge+) */
  2089. static int gen6_ring_flush(struct drm_i915_gem_request *req,
  2090. u32 invalidate, u32 flush)
  2091. {
  2092. struct intel_engine_cs *ring = req->ring;
  2093. struct drm_device *dev = ring->dev;
  2094. uint32_t cmd;
  2095. int ret;
  2096. ret = intel_ring_begin(req, 4);
  2097. if (ret)
  2098. return ret;
  2099. cmd = MI_FLUSH_DW;
  2100. if (INTEL_INFO(dev)->gen >= 8)
  2101. cmd += 1;
  2102. /* We always require a command barrier so that subsequent
  2103. * commands, such as breadcrumb interrupts, are strictly ordered
  2104. * wrt the contents of the write cache being flushed to memory
  2105. * (and thus being coherent from the CPU).
  2106. */
  2107. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2108. /*
  2109. * Bspec vol 1c.3 - blitter engine command streamer:
  2110. * "If ENABLED, all TLBs will be invalidated once the flush
  2111. * operation is complete. This bit is only valid when the
  2112. * Post-Sync Operation field is a value of 1h or 3h."
  2113. */
  2114. if (invalidate & I915_GEM_DOMAIN_RENDER)
  2115. cmd |= MI_INVALIDATE_TLB;
  2116. intel_ring_emit(ring, cmd);
  2117. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2118. if (INTEL_INFO(dev)->gen >= 8) {
  2119. intel_ring_emit(ring, 0); /* upper addr */
  2120. intel_ring_emit(ring, 0); /* value */
  2121. } else {
  2122. intel_ring_emit(ring, 0);
  2123. intel_ring_emit(ring, MI_NOOP);
  2124. }
  2125. intel_ring_advance(ring);
  2126. return 0;
  2127. }
  2128. int intel_init_render_ring_buffer(struct drm_device *dev)
  2129. {
  2130. struct drm_i915_private *dev_priv = dev->dev_private;
  2131. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  2132. struct drm_i915_gem_object *obj;
  2133. int ret;
  2134. ring->name = "render ring";
  2135. ring->id = RCS;
  2136. ring->mmio_base = RENDER_RING_BASE;
  2137. if (INTEL_INFO(dev)->gen >= 8) {
  2138. if (i915_semaphore_is_enabled(dev)) {
  2139. obj = i915_gem_alloc_object(dev, 4096);
  2140. if (obj == NULL) {
  2141. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2142. i915.semaphores = 0;
  2143. } else {
  2144. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2145. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2146. if (ret != 0) {
  2147. drm_gem_object_unreference(&obj->base);
  2148. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2149. i915.semaphores = 0;
  2150. } else
  2151. dev_priv->semaphore_obj = obj;
  2152. }
  2153. }
  2154. ring->init_context = intel_rcs_ctx_init;
  2155. ring->add_request = gen6_add_request;
  2156. ring->flush = gen8_render_ring_flush;
  2157. ring->irq_get = gen8_ring_get_irq;
  2158. ring->irq_put = gen8_ring_put_irq;
  2159. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2160. ring->get_seqno = gen6_ring_get_seqno;
  2161. ring->set_seqno = ring_set_seqno;
  2162. if (i915_semaphore_is_enabled(dev)) {
  2163. WARN_ON(!dev_priv->semaphore_obj);
  2164. ring->semaphore.sync_to = gen8_ring_sync;
  2165. ring->semaphore.signal = gen8_rcs_signal;
  2166. GEN8_RING_SEMAPHORE_INIT;
  2167. }
  2168. } else if (INTEL_INFO(dev)->gen >= 6) {
  2169. ring->add_request = gen6_add_request;
  2170. ring->flush = gen7_render_ring_flush;
  2171. if (INTEL_INFO(dev)->gen == 6)
  2172. ring->flush = gen6_render_ring_flush;
  2173. ring->irq_get = gen6_ring_get_irq;
  2174. ring->irq_put = gen6_ring_put_irq;
  2175. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2176. ring->get_seqno = gen6_ring_get_seqno;
  2177. ring->set_seqno = ring_set_seqno;
  2178. if (i915_semaphore_is_enabled(dev)) {
  2179. ring->semaphore.sync_to = gen6_ring_sync;
  2180. ring->semaphore.signal = gen6_signal;
  2181. /*
  2182. * The current semaphore is only applied on pre-gen8
  2183. * platform. And there is no VCS2 ring on the pre-gen8
  2184. * platform. So the semaphore between RCS and VCS2 is
  2185. * initialized as INVALID. Gen8 will initialize the
  2186. * sema between VCS2 and RCS later.
  2187. */
  2188. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  2189. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  2190. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  2191. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  2192. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2193. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  2194. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  2195. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  2196. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  2197. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2198. }
  2199. } else if (IS_GEN5(dev)) {
  2200. ring->add_request = pc_render_add_request;
  2201. ring->flush = gen4_render_ring_flush;
  2202. ring->get_seqno = pc_render_get_seqno;
  2203. ring->set_seqno = pc_render_set_seqno;
  2204. ring->irq_get = gen5_ring_get_irq;
  2205. ring->irq_put = gen5_ring_put_irq;
  2206. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2207. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2208. } else {
  2209. ring->add_request = i9xx_add_request;
  2210. if (INTEL_INFO(dev)->gen < 4)
  2211. ring->flush = gen2_render_ring_flush;
  2212. else
  2213. ring->flush = gen4_render_ring_flush;
  2214. ring->get_seqno = ring_get_seqno;
  2215. ring->set_seqno = ring_set_seqno;
  2216. if (IS_GEN2(dev)) {
  2217. ring->irq_get = i8xx_ring_get_irq;
  2218. ring->irq_put = i8xx_ring_put_irq;
  2219. } else {
  2220. ring->irq_get = i9xx_ring_get_irq;
  2221. ring->irq_put = i9xx_ring_put_irq;
  2222. }
  2223. ring->irq_enable_mask = I915_USER_INTERRUPT;
  2224. }
  2225. ring->write_tail = ring_write_tail;
  2226. if (IS_HASWELL(dev))
  2227. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2228. else if (IS_GEN8(dev))
  2229. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2230. else if (INTEL_INFO(dev)->gen >= 6)
  2231. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2232. else if (INTEL_INFO(dev)->gen >= 4)
  2233. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2234. else if (IS_I830(dev) || IS_845G(dev))
  2235. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  2236. else
  2237. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  2238. ring->init_hw = init_render_ring;
  2239. ring->cleanup = render_ring_cleanup;
  2240. /* Workaround batchbuffer to combat CS tlb bug. */
  2241. if (HAS_BROKEN_CS_TLB(dev)) {
  2242. obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
  2243. if (obj == NULL) {
  2244. DRM_ERROR("Failed to allocate batch bo\n");
  2245. return -ENOMEM;
  2246. }
  2247. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2248. if (ret != 0) {
  2249. drm_gem_object_unreference(&obj->base);
  2250. DRM_ERROR("Failed to ping batch bo\n");
  2251. return ret;
  2252. }
  2253. ring->scratch.obj = obj;
  2254. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2255. }
  2256. ret = intel_init_ring_buffer(dev, ring);
  2257. if (ret)
  2258. return ret;
  2259. if (INTEL_INFO(dev)->gen >= 5) {
  2260. ret = intel_init_pipe_control(ring);
  2261. if (ret)
  2262. return ret;
  2263. }
  2264. return 0;
  2265. }
  2266. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2267. {
  2268. struct drm_i915_private *dev_priv = dev->dev_private;
  2269. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  2270. ring->name = "bsd ring";
  2271. ring->id = VCS;
  2272. ring->write_tail = ring_write_tail;
  2273. if (INTEL_INFO(dev)->gen >= 6) {
  2274. ring->mmio_base = GEN6_BSD_RING_BASE;
  2275. /* gen6 bsd needs a special wa for tail updates */
  2276. if (IS_GEN6(dev))
  2277. ring->write_tail = gen6_bsd_ring_write_tail;
  2278. ring->flush = gen6_bsd_ring_flush;
  2279. ring->add_request = gen6_add_request;
  2280. ring->get_seqno = gen6_ring_get_seqno;
  2281. ring->set_seqno = ring_set_seqno;
  2282. if (INTEL_INFO(dev)->gen >= 8) {
  2283. ring->irq_enable_mask =
  2284. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2285. ring->irq_get = gen8_ring_get_irq;
  2286. ring->irq_put = gen8_ring_put_irq;
  2287. ring->dispatch_execbuffer =
  2288. gen8_ring_dispatch_execbuffer;
  2289. if (i915_semaphore_is_enabled(dev)) {
  2290. ring->semaphore.sync_to = gen8_ring_sync;
  2291. ring->semaphore.signal = gen8_xcs_signal;
  2292. GEN8_RING_SEMAPHORE_INIT;
  2293. }
  2294. } else {
  2295. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2296. ring->irq_get = gen6_ring_get_irq;
  2297. ring->irq_put = gen6_ring_put_irq;
  2298. ring->dispatch_execbuffer =
  2299. gen6_ring_dispatch_execbuffer;
  2300. if (i915_semaphore_is_enabled(dev)) {
  2301. ring->semaphore.sync_to = gen6_ring_sync;
  2302. ring->semaphore.signal = gen6_signal;
  2303. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2304. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2305. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2306. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2307. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2308. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2309. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2310. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2311. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2312. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2313. }
  2314. }
  2315. } else {
  2316. ring->mmio_base = BSD_RING_BASE;
  2317. ring->flush = bsd_ring_flush;
  2318. ring->add_request = i9xx_add_request;
  2319. ring->get_seqno = ring_get_seqno;
  2320. ring->set_seqno = ring_set_seqno;
  2321. if (IS_GEN5(dev)) {
  2322. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2323. ring->irq_get = gen5_ring_get_irq;
  2324. ring->irq_put = gen5_ring_put_irq;
  2325. } else {
  2326. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2327. ring->irq_get = i9xx_ring_get_irq;
  2328. ring->irq_put = i9xx_ring_put_irq;
  2329. }
  2330. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2331. }
  2332. ring->init_hw = init_ring_common;
  2333. return intel_init_ring_buffer(dev, ring);
  2334. }
  2335. /**
  2336. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2337. */
  2338. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2339. {
  2340. struct drm_i915_private *dev_priv = dev->dev_private;
  2341. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  2342. ring->name = "bsd2 ring";
  2343. ring->id = VCS2;
  2344. ring->write_tail = ring_write_tail;
  2345. ring->mmio_base = GEN8_BSD2_RING_BASE;
  2346. ring->flush = gen6_bsd_ring_flush;
  2347. ring->add_request = gen6_add_request;
  2348. ring->get_seqno = gen6_ring_get_seqno;
  2349. ring->set_seqno = ring_set_seqno;
  2350. ring->irq_enable_mask =
  2351. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2352. ring->irq_get = gen8_ring_get_irq;
  2353. ring->irq_put = gen8_ring_put_irq;
  2354. ring->dispatch_execbuffer =
  2355. gen8_ring_dispatch_execbuffer;
  2356. if (i915_semaphore_is_enabled(dev)) {
  2357. ring->semaphore.sync_to = gen8_ring_sync;
  2358. ring->semaphore.signal = gen8_xcs_signal;
  2359. GEN8_RING_SEMAPHORE_INIT;
  2360. }
  2361. ring->init_hw = init_ring_common;
  2362. return intel_init_ring_buffer(dev, ring);
  2363. }
  2364. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2365. {
  2366. struct drm_i915_private *dev_priv = dev->dev_private;
  2367. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  2368. ring->name = "blitter ring";
  2369. ring->id = BCS;
  2370. ring->mmio_base = BLT_RING_BASE;
  2371. ring->write_tail = ring_write_tail;
  2372. ring->flush = gen6_ring_flush;
  2373. ring->add_request = gen6_add_request;
  2374. ring->get_seqno = gen6_ring_get_seqno;
  2375. ring->set_seqno = ring_set_seqno;
  2376. if (INTEL_INFO(dev)->gen >= 8) {
  2377. ring->irq_enable_mask =
  2378. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2379. ring->irq_get = gen8_ring_get_irq;
  2380. ring->irq_put = gen8_ring_put_irq;
  2381. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2382. if (i915_semaphore_is_enabled(dev)) {
  2383. ring->semaphore.sync_to = gen8_ring_sync;
  2384. ring->semaphore.signal = gen8_xcs_signal;
  2385. GEN8_RING_SEMAPHORE_INIT;
  2386. }
  2387. } else {
  2388. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2389. ring->irq_get = gen6_ring_get_irq;
  2390. ring->irq_put = gen6_ring_put_irq;
  2391. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2392. if (i915_semaphore_is_enabled(dev)) {
  2393. ring->semaphore.signal = gen6_signal;
  2394. ring->semaphore.sync_to = gen6_ring_sync;
  2395. /*
  2396. * The current semaphore is only applied on pre-gen8
  2397. * platform. And there is no VCS2 ring on the pre-gen8
  2398. * platform. So the semaphore between BCS and VCS2 is
  2399. * initialized as INVALID. Gen8 will initialize the
  2400. * sema between BCS and VCS2 later.
  2401. */
  2402. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2403. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2404. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2405. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2406. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2407. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2408. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2409. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2410. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2411. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2412. }
  2413. }
  2414. ring->init_hw = init_ring_common;
  2415. return intel_init_ring_buffer(dev, ring);
  2416. }
  2417. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2418. {
  2419. struct drm_i915_private *dev_priv = dev->dev_private;
  2420. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  2421. ring->name = "video enhancement ring";
  2422. ring->id = VECS;
  2423. ring->mmio_base = VEBOX_RING_BASE;
  2424. ring->write_tail = ring_write_tail;
  2425. ring->flush = gen6_ring_flush;
  2426. ring->add_request = gen6_add_request;
  2427. ring->get_seqno = gen6_ring_get_seqno;
  2428. ring->set_seqno = ring_set_seqno;
  2429. if (INTEL_INFO(dev)->gen >= 8) {
  2430. ring->irq_enable_mask =
  2431. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2432. ring->irq_get = gen8_ring_get_irq;
  2433. ring->irq_put = gen8_ring_put_irq;
  2434. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2435. if (i915_semaphore_is_enabled(dev)) {
  2436. ring->semaphore.sync_to = gen8_ring_sync;
  2437. ring->semaphore.signal = gen8_xcs_signal;
  2438. GEN8_RING_SEMAPHORE_INIT;
  2439. }
  2440. } else {
  2441. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2442. ring->irq_get = hsw_vebox_get_irq;
  2443. ring->irq_put = hsw_vebox_put_irq;
  2444. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2445. if (i915_semaphore_is_enabled(dev)) {
  2446. ring->semaphore.sync_to = gen6_ring_sync;
  2447. ring->semaphore.signal = gen6_signal;
  2448. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2449. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2450. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2451. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2452. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2453. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2454. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2455. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2456. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2457. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2458. }
  2459. }
  2460. ring->init_hw = init_ring_common;
  2461. return intel_init_ring_buffer(dev, ring);
  2462. }
  2463. int
  2464. intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
  2465. {
  2466. struct intel_engine_cs *ring = req->ring;
  2467. int ret;
  2468. if (!ring->gpu_caches_dirty)
  2469. return 0;
  2470. ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
  2471. if (ret)
  2472. return ret;
  2473. trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
  2474. ring->gpu_caches_dirty = false;
  2475. return 0;
  2476. }
  2477. int
  2478. intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
  2479. {
  2480. struct intel_engine_cs *ring = req->ring;
  2481. uint32_t flush_domains;
  2482. int ret;
  2483. flush_domains = 0;
  2484. if (ring->gpu_caches_dirty)
  2485. flush_domains = I915_GEM_GPU_DOMAINS;
  2486. ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2487. if (ret)
  2488. return ret;
  2489. trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2490. ring->gpu_caches_dirty = false;
  2491. return 0;
  2492. }
  2493. void
  2494. intel_stop_ring_buffer(struct intel_engine_cs *ring)
  2495. {
  2496. int ret;
  2497. if (!intel_ring_initialized(ring))
  2498. return;
  2499. ret = intel_ring_idle(ring);
  2500. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  2501. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2502. ring->name, ret);
  2503. stop_ring(ring);
  2504. }