kvm_main.c 30 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "iodev.h"
  18. #include <linux/kvm_host.h>
  19. #include <linux/kvm.h>
  20. #include <linux/module.h>
  21. #include <linux/errno.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <asm/processor.h>
  42. #include <asm/io.h>
  43. #include <asm/uaccess.h>
  44. #include <asm/pgtable.h>
  45. MODULE_AUTHOR("Qumranet");
  46. MODULE_LICENSE("GPL");
  47. DEFINE_SPINLOCK(kvm_lock);
  48. LIST_HEAD(vm_list);
  49. static cpumask_t cpus_hardware_enabled;
  50. struct kmem_cache *kvm_vcpu_cache;
  51. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  52. static __read_mostly struct preempt_ops kvm_preempt_ops;
  53. static struct dentry *debugfs_dir;
  54. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  55. unsigned long arg);
  56. static inline int valid_vcpu(int n)
  57. {
  58. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  59. }
  60. /*
  61. * Switches to specified vcpu, until a matching vcpu_put()
  62. */
  63. void vcpu_load(struct kvm_vcpu *vcpu)
  64. {
  65. int cpu;
  66. mutex_lock(&vcpu->mutex);
  67. cpu = get_cpu();
  68. preempt_notifier_register(&vcpu->preempt_notifier);
  69. kvm_arch_vcpu_load(vcpu, cpu);
  70. put_cpu();
  71. }
  72. void vcpu_put(struct kvm_vcpu *vcpu)
  73. {
  74. preempt_disable();
  75. kvm_arch_vcpu_put(vcpu);
  76. preempt_notifier_unregister(&vcpu->preempt_notifier);
  77. preempt_enable();
  78. mutex_unlock(&vcpu->mutex);
  79. }
  80. static void ack_flush(void *_completed)
  81. {
  82. }
  83. void kvm_flush_remote_tlbs(struct kvm *kvm)
  84. {
  85. int i, cpu;
  86. cpumask_t cpus;
  87. struct kvm_vcpu *vcpu;
  88. cpus_clear(cpus);
  89. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  90. vcpu = kvm->vcpus[i];
  91. if (!vcpu)
  92. continue;
  93. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  94. continue;
  95. cpu = vcpu->cpu;
  96. if (cpu != -1 && cpu != raw_smp_processor_id())
  97. cpu_set(cpu, cpus);
  98. }
  99. if (cpus_empty(cpus))
  100. return;
  101. ++kvm->stat.remote_tlb_flush;
  102. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  103. }
  104. void kvm_reload_remote_mmus(struct kvm *kvm)
  105. {
  106. int i, cpu;
  107. cpumask_t cpus;
  108. struct kvm_vcpu *vcpu;
  109. cpus_clear(cpus);
  110. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  111. vcpu = kvm->vcpus[i];
  112. if (!vcpu)
  113. continue;
  114. if (test_and_set_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  115. continue;
  116. cpu = vcpu->cpu;
  117. if (cpu != -1 && cpu != raw_smp_processor_id())
  118. cpu_set(cpu, cpus);
  119. }
  120. if (cpus_empty(cpus))
  121. return;
  122. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  123. }
  124. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  125. {
  126. struct page *page;
  127. int r;
  128. mutex_init(&vcpu->mutex);
  129. vcpu->cpu = -1;
  130. vcpu->kvm = kvm;
  131. vcpu->vcpu_id = id;
  132. init_waitqueue_head(&vcpu->wq);
  133. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  134. if (!page) {
  135. r = -ENOMEM;
  136. goto fail;
  137. }
  138. vcpu->run = page_address(page);
  139. r = kvm_arch_vcpu_init(vcpu);
  140. if (r < 0)
  141. goto fail_free_run;
  142. return 0;
  143. fail_free_run:
  144. free_page((unsigned long)vcpu->run);
  145. fail:
  146. return r;
  147. }
  148. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  149. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  150. {
  151. kvm_arch_vcpu_uninit(vcpu);
  152. free_page((unsigned long)vcpu->run);
  153. }
  154. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  155. static struct kvm *kvm_create_vm(void)
  156. {
  157. struct kvm *kvm = kvm_arch_create_vm();
  158. if (IS_ERR(kvm))
  159. goto out;
  160. kvm->mm = current->mm;
  161. atomic_inc(&kvm->mm->mm_count);
  162. spin_lock_init(&kvm->mmu_lock);
  163. kvm_io_bus_init(&kvm->pio_bus);
  164. mutex_init(&kvm->lock);
  165. kvm_io_bus_init(&kvm->mmio_bus);
  166. init_rwsem(&kvm->slots_lock);
  167. spin_lock(&kvm_lock);
  168. list_add(&kvm->vm_list, &vm_list);
  169. spin_unlock(&kvm_lock);
  170. out:
  171. return kvm;
  172. }
  173. /*
  174. * Free any memory in @free but not in @dont.
  175. */
  176. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  177. struct kvm_memory_slot *dont)
  178. {
  179. if (!dont || free->rmap != dont->rmap)
  180. vfree(free->rmap);
  181. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  182. vfree(free->dirty_bitmap);
  183. if (!dont || free->lpage_info != dont->lpage_info)
  184. vfree(free->lpage_info);
  185. free->npages = 0;
  186. free->dirty_bitmap = NULL;
  187. free->rmap = NULL;
  188. free->lpage_info = NULL;
  189. }
  190. void kvm_free_physmem(struct kvm *kvm)
  191. {
  192. int i;
  193. for (i = 0; i < kvm->nmemslots; ++i)
  194. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  195. }
  196. static void kvm_destroy_vm(struct kvm *kvm)
  197. {
  198. struct mm_struct *mm = kvm->mm;
  199. spin_lock(&kvm_lock);
  200. list_del(&kvm->vm_list);
  201. spin_unlock(&kvm_lock);
  202. kvm_io_bus_destroy(&kvm->pio_bus);
  203. kvm_io_bus_destroy(&kvm->mmio_bus);
  204. kvm_arch_destroy_vm(kvm);
  205. mmdrop(mm);
  206. }
  207. static int kvm_vm_release(struct inode *inode, struct file *filp)
  208. {
  209. struct kvm *kvm = filp->private_data;
  210. kvm_destroy_vm(kvm);
  211. return 0;
  212. }
  213. /*
  214. * Allocate some memory and give it an address in the guest physical address
  215. * space.
  216. *
  217. * Discontiguous memory is allowed, mostly for framebuffers.
  218. *
  219. * Must be called holding mmap_sem for write.
  220. */
  221. int __kvm_set_memory_region(struct kvm *kvm,
  222. struct kvm_userspace_memory_region *mem,
  223. int user_alloc)
  224. {
  225. int r;
  226. gfn_t base_gfn;
  227. unsigned long npages;
  228. unsigned long i;
  229. struct kvm_memory_slot *memslot;
  230. struct kvm_memory_slot old, new;
  231. r = -EINVAL;
  232. /* General sanity checks */
  233. if (mem->memory_size & (PAGE_SIZE - 1))
  234. goto out;
  235. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  236. goto out;
  237. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  238. goto out;
  239. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  240. goto out;
  241. memslot = &kvm->memslots[mem->slot];
  242. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  243. npages = mem->memory_size >> PAGE_SHIFT;
  244. if (!npages)
  245. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  246. new = old = *memslot;
  247. new.base_gfn = base_gfn;
  248. new.npages = npages;
  249. new.flags = mem->flags;
  250. /* Disallow changing a memory slot's size. */
  251. r = -EINVAL;
  252. if (npages && old.npages && npages != old.npages)
  253. goto out_free;
  254. /* Check for overlaps */
  255. r = -EEXIST;
  256. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  257. struct kvm_memory_slot *s = &kvm->memslots[i];
  258. if (s == memslot)
  259. continue;
  260. if (!((base_gfn + npages <= s->base_gfn) ||
  261. (base_gfn >= s->base_gfn + s->npages)))
  262. goto out_free;
  263. }
  264. /* Free page dirty bitmap if unneeded */
  265. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  266. new.dirty_bitmap = NULL;
  267. r = -ENOMEM;
  268. /* Allocate if a slot is being created */
  269. if (npages && !new.rmap) {
  270. new.rmap = vmalloc(npages * sizeof(struct page *));
  271. if (!new.rmap)
  272. goto out_free;
  273. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  274. new.user_alloc = user_alloc;
  275. new.userspace_addr = mem->userspace_addr;
  276. }
  277. if (npages && !new.lpage_info) {
  278. int largepages = npages / KVM_PAGES_PER_HPAGE;
  279. if (npages % KVM_PAGES_PER_HPAGE)
  280. largepages++;
  281. if (base_gfn % KVM_PAGES_PER_HPAGE)
  282. largepages++;
  283. new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
  284. if (!new.lpage_info)
  285. goto out_free;
  286. memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
  287. if (base_gfn % KVM_PAGES_PER_HPAGE)
  288. new.lpage_info[0].write_count = 1;
  289. if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
  290. new.lpage_info[largepages-1].write_count = 1;
  291. }
  292. /* Allocate page dirty bitmap if needed */
  293. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  294. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  295. new.dirty_bitmap = vmalloc(dirty_bytes);
  296. if (!new.dirty_bitmap)
  297. goto out_free;
  298. memset(new.dirty_bitmap, 0, dirty_bytes);
  299. }
  300. if (mem->slot >= kvm->nmemslots)
  301. kvm->nmemslots = mem->slot + 1;
  302. *memslot = new;
  303. r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
  304. if (r) {
  305. *memslot = old;
  306. goto out_free;
  307. }
  308. kvm_free_physmem_slot(&old, &new);
  309. return 0;
  310. out_free:
  311. kvm_free_physmem_slot(&new, &old);
  312. out:
  313. return r;
  314. }
  315. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  316. int kvm_set_memory_region(struct kvm *kvm,
  317. struct kvm_userspace_memory_region *mem,
  318. int user_alloc)
  319. {
  320. int r;
  321. down_write(&kvm->slots_lock);
  322. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  323. up_write(&kvm->slots_lock);
  324. return r;
  325. }
  326. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  327. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  328. struct
  329. kvm_userspace_memory_region *mem,
  330. int user_alloc)
  331. {
  332. if (mem->slot >= KVM_MEMORY_SLOTS)
  333. return -EINVAL;
  334. return kvm_set_memory_region(kvm, mem, user_alloc);
  335. }
  336. int kvm_get_dirty_log(struct kvm *kvm,
  337. struct kvm_dirty_log *log, int *is_dirty)
  338. {
  339. struct kvm_memory_slot *memslot;
  340. int r, i;
  341. int n;
  342. unsigned long any = 0;
  343. r = -EINVAL;
  344. if (log->slot >= KVM_MEMORY_SLOTS)
  345. goto out;
  346. memslot = &kvm->memslots[log->slot];
  347. r = -ENOENT;
  348. if (!memslot->dirty_bitmap)
  349. goto out;
  350. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  351. for (i = 0; !any && i < n/sizeof(long); ++i)
  352. any = memslot->dirty_bitmap[i];
  353. r = -EFAULT;
  354. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  355. goto out;
  356. if (any)
  357. *is_dirty = 1;
  358. r = 0;
  359. out:
  360. return r;
  361. }
  362. int is_error_page(struct page *page)
  363. {
  364. return page == bad_page;
  365. }
  366. EXPORT_SYMBOL_GPL(is_error_page);
  367. static inline unsigned long bad_hva(void)
  368. {
  369. return PAGE_OFFSET;
  370. }
  371. int kvm_is_error_hva(unsigned long addr)
  372. {
  373. return addr == bad_hva();
  374. }
  375. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  376. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  377. {
  378. int i;
  379. for (i = 0; i < kvm->nmemslots; ++i) {
  380. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  381. if (gfn >= memslot->base_gfn
  382. && gfn < memslot->base_gfn + memslot->npages)
  383. return memslot;
  384. }
  385. return NULL;
  386. }
  387. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  388. {
  389. gfn = unalias_gfn(kvm, gfn);
  390. return __gfn_to_memslot(kvm, gfn);
  391. }
  392. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  393. {
  394. int i;
  395. gfn = unalias_gfn(kvm, gfn);
  396. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  397. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  398. if (gfn >= memslot->base_gfn
  399. && gfn < memslot->base_gfn + memslot->npages)
  400. return 1;
  401. }
  402. return 0;
  403. }
  404. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  405. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  406. {
  407. struct kvm_memory_slot *slot;
  408. gfn = unalias_gfn(kvm, gfn);
  409. slot = __gfn_to_memslot(kvm, gfn);
  410. if (!slot)
  411. return bad_hva();
  412. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  413. }
  414. /*
  415. * Requires current->mm->mmap_sem to be held
  416. */
  417. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  418. {
  419. struct page *page[1];
  420. unsigned long addr;
  421. int npages;
  422. might_sleep();
  423. addr = gfn_to_hva(kvm, gfn);
  424. if (kvm_is_error_hva(addr)) {
  425. get_page(bad_page);
  426. return bad_page;
  427. }
  428. npages = get_user_pages(current, current->mm, addr, 1, 1, 1, page,
  429. NULL);
  430. if (npages != 1) {
  431. get_page(bad_page);
  432. return bad_page;
  433. }
  434. return page[0];
  435. }
  436. EXPORT_SYMBOL_GPL(gfn_to_page);
  437. void kvm_release_page_clean(struct page *page)
  438. {
  439. put_page(page);
  440. }
  441. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  442. void kvm_release_page_dirty(struct page *page)
  443. {
  444. if (!PageReserved(page))
  445. SetPageDirty(page);
  446. put_page(page);
  447. }
  448. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  449. static int next_segment(unsigned long len, int offset)
  450. {
  451. if (len > PAGE_SIZE - offset)
  452. return PAGE_SIZE - offset;
  453. else
  454. return len;
  455. }
  456. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  457. int len)
  458. {
  459. int r;
  460. unsigned long addr;
  461. addr = gfn_to_hva(kvm, gfn);
  462. if (kvm_is_error_hva(addr))
  463. return -EFAULT;
  464. r = copy_from_user(data, (void __user *)addr + offset, len);
  465. if (r)
  466. return -EFAULT;
  467. return 0;
  468. }
  469. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  470. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  471. {
  472. gfn_t gfn = gpa >> PAGE_SHIFT;
  473. int seg;
  474. int offset = offset_in_page(gpa);
  475. int ret;
  476. while ((seg = next_segment(len, offset)) != 0) {
  477. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  478. if (ret < 0)
  479. return ret;
  480. offset = 0;
  481. len -= seg;
  482. data += seg;
  483. ++gfn;
  484. }
  485. return 0;
  486. }
  487. EXPORT_SYMBOL_GPL(kvm_read_guest);
  488. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  489. unsigned long len)
  490. {
  491. int r;
  492. unsigned long addr;
  493. gfn_t gfn = gpa >> PAGE_SHIFT;
  494. int offset = offset_in_page(gpa);
  495. addr = gfn_to_hva(kvm, gfn);
  496. if (kvm_is_error_hva(addr))
  497. return -EFAULT;
  498. pagefault_disable();
  499. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  500. pagefault_enable();
  501. if (r)
  502. return -EFAULT;
  503. return 0;
  504. }
  505. EXPORT_SYMBOL(kvm_read_guest_atomic);
  506. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  507. int offset, int len)
  508. {
  509. int r;
  510. unsigned long addr;
  511. addr = gfn_to_hva(kvm, gfn);
  512. if (kvm_is_error_hva(addr))
  513. return -EFAULT;
  514. r = copy_to_user((void __user *)addr + offset, data, len);
  515. if (r)
  516. return -EFAULT;
  517. mark_page_dirty(kvm, gfn);
  518. return 0;
  519. }
  520. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  521. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  522. unsigned long len)
  523. {
  524. gfn_t gfn = gpa >> PAGE_SHIFT;
  525. int seg;
  526. int offset = offset_in_page(gpa);
  527. int ret;
  528. while ((seg = next_segment(len, offset)) != 0) {
  529. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  530. if (ret < 0)
  531. return ret;
  532. offset = 0;
  533. len -= seg;
  534. data += seg;
  535. ++gfn;
  536. }
  537. return 0;
  538. }
  539. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  540. {
  541. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  542. }
  543. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  544. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  545. {
  546. gfn_t gfn = gpa >> PAGE_SHIFT;
  547. int seg;
  548. int offset = offset_in_page(gpa);
  549. int ret;
  550. while ((seg = next_segment(len, offset)) != 0) {
  551. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  552. if (ret < 0)
  553. return ret;
  554. offset = 0;
  555. len -= seg;
  556. ++gfn;
  557. }
  558. return 0;
  559. }
  560. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  561. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  562. {
  563. struct kvm_memory_slot *memslot;
  564. gfn = unalias_gfn(kvm, gfn);
  565. memslot = __gfn_to_memslot(kvm, gfn);
  566. if (memslot && memslot->dirty_bitmap) {
  567. unsigned long rel_gfn = gfn - memslot->base_gfn;
  568. /* avoid RMW */
  569. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  570. set_bit(rel_gfn, memslot->dirty_bitmap);
  571. }
  572. }
  573. /*
  574. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  575. */
  576. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  577. {
  578. DECLARE_WAITQUEUE(wait, current);
  579. add_wait_queue(&vcpu->wq, &wait);
  580. /*
  581. * We will block until either an interrupt or a signal wakes us up
  582. */
  583. while (!kvm_cpu_has_interrupt(vcpu)
  584. && !signal_pending(current)
  585. && !kvm_arch_vcpu_runnable(vcpu)) {
  586. set_current_state(TASK_INTERRUPTIBLE);
  587. vcpu_put(vcpu);
  588. schedule();
  589. vcpu_load(vcpu);
  590. }
  591. __set_current_state(TASK_RUNNING);
  592. remove_wait_queue(&vcpu->wq, &wait);
  593. }
  594. void kvm_resched(struct kvm_vcpu *vcpu)
  595. {
  596. if (!need_resched())
  597. return;
  598. cond_resched();
  599. }
  600. EXPORT_SYMBOL_GPL(kvm_resched);
  601. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  602. {
  603. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  604. struct page *page;
  605. if (vmf->pgoff == 0)
  606. page = virt_to_page(vcpu->run);
  607. #ifdef CONFIG_X86
  608. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  609. page = virt_to_page(vcpu->arch.pio_data);
  610. #endif
  611. else
  612. return VM_FAULT_SIGBUS;
  613. get_page(page);
  614. vmf->page = page;
  615. return 0;
  616. }
  617. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  618. .fault = kvm_vcpu_fault,
  619. };
  620. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  621. {
  622. vma->vm_ops = &kvm_vcpu_vm_ops;
  623. return 0;
  624. }
  625. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  626. {
  627. struct kvm_vcpu *vcpu = filp->private_data;
  628. fput(vcpu->kvm->filp);
  629. return 0;
  630. }
  631. static const struct file_operations kvm_vcpu_fops = {
  632. .release = kvm_vcpu_release,
  633. .unlocked_ioctl = kvm_vcpu_ioctl,
  634. .compat_ioctl = kvm_vcpu_ioctl,
  635. .mmap = kvm_vcpu_mmap,
  636. };
  637. /*
  638. * Allocates an inode for the vcpu.
  639. */
  640. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  641. {
  642. int fd, r;
  643. struct inode *inode;
  644. struct file *file;
  645. r = anon_inode_getfd(&fd, &inode, &file,
  646. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  647. if (r)
  648. return r;
  649. atomic_inc(&vcpu->kvm->filp->f_count);
  650. return fd;
  651. }
  652. /*
  653. * Creates some virtual cpus. Good luck creating more than one.
  654. */
  655. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  656. {
  657. int r;
  658. struct kvm_vcpu *vcpu;
  659. if (!valid_vcpu(n))
  660. return -EINVAL;
  661. vcpu = kvm_arch_vcpu_create(kvm, n);
  662. if (IS_ERR(vcpu))
  663. return PTR_ERR(vcpu);
  664. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  665. r = kvm_arch_vcpu_setup(vcpu);
  666. if (r)
  667. goto vcpu_destroy;
  668. mutex_lock(&kvm->lock);
  669. if (kvm->vcpus[n]) {
  670. r = -EEXIST;
  671. mutex_unlock(&kvm->lock);
  672. goto vcpu_destroy;
  673. }
  674. kvm->vcpus[n] = vcpu;
  675. mutex_unlock(&kvm->lock);
  676. /* Now it's all set up, let userspace reach it */
  677. r = create_vcpu_fd(vcpu);
  678. if (r < 0)
  679. goto unlink;
  680. return r;
  681. unlink:
  682. mutex_lock(&kvm->lock);
  683. kvm->vcpus[n] = NULL;
  684. mutex_unlock(&kvm->lock);
  685. vcpu_destroy:
  686. kvm_arch_vcpu_destroy(vcpu);
  687. return r;
  688. }
  689. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  690. {
  691. if (sigset) {
  692. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  693. vcpu->sigset_active = 1;
  694. vcpu->sigset = *sigset;
  695. } else
  696. vcpu->sigset_active = 0;
  697. return 0;
  698. }
  699. static long kvm_vcpu_ioctl(struct file *filp,
  700. unsigned int ioctl, unsigned long arg)
  701. {
  702. struct kvm_vcpu *vcpu = filp->private_data;
  703. void __user *argp = (void __user *)arg;
  704. int r;
  705. if (vcpu->kvm->mm != current->mm)
  706. return -EIO;
  707. switch (ioctl) {
  708. case KVM_RUN:
  709. r = -EINVAL;
  710. if (arg)
  711. goto out;
  712. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  713. break;
  714. case KVM_GET_REGS: {
  715. struct kvm_regs kvm_regs;
  716. memset(&kvm_regs, 0, sizeof kvm_regs);
  717. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  718. if (r)
  719. goto out;
  720. r = -EFAULT;
  721. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  722. goto out;
  723. r = 0;
  724. break;
  725. }
  726. case KVM_SET_REGS: {
  727. struct kvm_regs kvm_regs;
  728. r = -EFAULT;
  729. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  730. goto out;
  731. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  732. if (r)
  733. goto out;
  734. r = 0;
  735. break;
  736. }
  737. case KVM_GET_SREGS: {
  738. struct kvm_sregs kvm_sregs;
  739. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  740. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  741. if (r)
  742. goto out;
  743. r = -EFAULT;
  744. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  745. goto out;
  746. r = 0;
  747. break;
  748. }
  749. case KVM_SET_SREGS: {
  750. struct kvm_sregs kvm_sregs;
  751. r = -EFAULT;
  752. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  753. goto out;
  754. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  755. if (r)
  756. goto out;
  757. r = 0;
  758. break;
  759. }
  760. case KVM_TRANSLATE: {
  761. struct kvm_translation tr;
  762. r = -EFAULT;
  763. if (copy_from_user(&tr, argp, sizeof tr))
  764. goto out;
  765. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  766. if (r)
  767. goto out;
  768. r = -EFAULT;
  769. if (copy_to_user(argp, &tr, sizeof tr))
  770. goto out;
  771. r = 0;
  772. break;
  773. }
  774. case KVM_DEBUG_GUEST: {
  775. struct kvm_debug_guest dbg;
  776. r = -EFAULT;
  777. if (copy_from_user(&dbg, argp, sizeof dbg))
  778. goto out;
  779. r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
  780. if (r)
  781. goto out;
  782. r = 0;
  783. break;
  784. }
  785. case KVM_SET_SIGNAL_MASK: {
  786. struct kvm_signal_mask __user *sigmask_arg = argp;
  787. struct kvm_signal_mask kvm_sigmask;
  788. sigset_t sigset, *p;
  789. p = NULL;
  790. if (argp) {
  791. r = -EFAULT;
  792. if (copy_from_user(&kvm_sigmask, argp,
  793. sizeof kvm_sigmask))
  794. goto out;
  795. r = -EINVAL;
  796. if (kvm_sigmask.len != sizeof sigset)
  797. goto out;
  798. r = -EFAULT;
  799. if (copy_from_user(&sigset, sigmask_arg->sigset,
  800. sizeof sigset))
  801. goto out;
  802. p = &sigset;
  803. }
  804. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  805. break;
  806. }
  807. case KVM_GET_FPU: {
  808. struct kvm_fpu fpu;
  809. memset(&fpu, 0, sizeof fpu);
  810. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, &fpu);
  811. if (r)
  812. goto out;
  813. r = -EFAULT;
  814. if (copy_to_user(argp, &fpu, sizeof fpu))
  815. goto out;
  816. r = 0;
  817. break;
  818. }
  819. case KVM_SET_FPU: {
  820. struct kvm_fpu fpu;
  821. r = -EFAULT;
  822. if (copy_from_user(&fpu, argp, sizeof fpu))
  823. goto out;
  824. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, &fpu);
  825. if (r)
  826. goto out;
  827. r = 0;
  828. break;
  829. }
  830. default:
  831. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  832. }
  833. out:
  834. return r;
  835. }
  836. static long kvm_vm_ioctl(struct file *filp,
  837. unsigned int ioctl, unsigned long arg)
  838. {
  839. struct kvm *kvm = filp->private_data;
  840. void __user *argp = (void __user *)arg;
  841. int r;
  842. if (kvm->mm != current->mm)
  843. return -EIO;
  844. switch (ioctl) {
  845. case KVM_CREATE_VCPU:
  846. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  847. if (r < 0)
  848. goto out;
  849. break;
  850. case KVM_SET_USER_MEMORY_REGION: {
  851. struct kvm_userspace_memory_region kvm_userspace_mem;
  852. r = -EFAULT;
  853. if (copy_from_user(&kvm_userspace_mem, argp,
  854. sizeof kvm_userspace_mem))
  855. goto out;
  856. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  857. if (r)
  858. goto out;
  859. break;
  860. }
  861. case KVM_GET_DIRTY_LOG: {
  862. struct kvm_dirty_log log;
  863. r = -EFAULT;
  864. if (copy_from_user(&log, argp, sizeof log))
  865. goto out;
  866. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  867. if (r)
  868. goto out;
  869. break;
  870. }
  871. default:
  872. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  873. }
  874. out:
  875. return r;
  876. }
  877. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  878. {
  879. struct kvm *kvm = vma->vm_file->private_data;
  880. struct page *page;
  881. if (!kvm_is_visible_gfn(kvm, vmf->pgoff))
  882. return VM_FAULT_SIGBUS;
  883. page = gfn_to_page(kvm, vmf->pgoff);
  884. if (is_error_page(page)) {
  885. kvm_release_page_clean(page);
  886. return VM_FAULT_SIGBUS;
  887. }
  888. vmf->page = page;
  889. return 0;
  890. }
  891. static struct vm_operations_struct kvm_vm_vm_ops = {
  892. .fault = kvm_vm_fault,
  893. };
  894. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  895. {
  896. vma->vm_ops = &kvm_vm_vm_ops;
  897. return 0;
  898. }
  899. static const struct file_operations kvm_vm_fops = {
  900. .release = kvm_vm_release,
  901. .unlocked_ioctl = kvm_vm_ioctl,
  902. .compat_ioctl = kvm_vm_ioctl,
  903. .mmap = kvm_vm_mmap,
  904. };
  905. static int kvm_dev_ioctl_create_vm(void)
  906. {
  907. int fd, r;
  908. struct inode *inode;
  909. struct file *file;
  910. struct kvm *kvm;
  911. kvm = kvm_create_vm();
  912. if (IS_ERR(kvm))
  913. return PTR_ERR(kvm);
  914. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  915. if (r) {
  916. kvm_destroy_vm(kvm);
  917. return r;
  918. }
  919. kvm->filp = file;
  920. return fd;
  921. }
  922. static long kvm_dev_ioctl(struct file *filp,
  923. unsigned int ioctl, unsigned long arg)
  924. {
  925. void __user *argp = (void __user *)arg;
  926. long r = -EINVAL;
  927. switch (ioctl) {
  928. case KVM_GET_API_VERSION:
  929. r = -EINVAL;
  930. if (arg)
  931. goto out;
  932. r = KVM_API_VERSION;
  933. break;
  934. case KVM_CREATE_VM:
  935. r = -EINVAL;
  936. if (arg)
  937. goto out;
  938. r = kvm_dev_ioctl_create_vm();
  939. break;
  940. case KVM_CHECK_EXTENSION:
  941. r = kvm_dev_ioctl_check_extension((long)argp);
  942. break;
  943. case KVM_GET_VCPU_MMAP_SIZE:
  944. r = -EINVAL;
  945. if (arg)
  946. goto out;
  947. r = PAGE_SIZE; /* struct kvm_run */
  948. #ifdef CONFIG_X86
  949. r += PAGE_SIZE; /* pio data page */
  950. #endif
  951. break;
  952. default:
  953. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  954. }
  955. out:
  956. return r;
  957. }
  958. static struct file_operations kvm_chardev_ops = {
  959. .unlocked_ioctl = kvm_dev_ioctl,
  960. .compat_ioctl = kvm_dev_ioctl,
  961. };
  962. static struct miscdevice kvm_dev = {
  963. KVM_MINOR,
  964. "kvm",
  965. &kvm_chardev_ops,
  966. };
  967. static void hardware_enable(void *junk)
  968. {
  969. int cpu = raw_smp_processor_id();
  970. if (cpu_isset(cpu, cpus_hardware_enabled))
  971. return;
  972. cpu_set(cpu, cpus_hardware_enabled);
  973. kvm_arch_hardware_enable(NULL);
  974. }
  975. static void hardware_disable(void *junk)
  976. {
  977. int cpu = raw_smp_processor_id();
  978. if (!cpu_isset(cpu, cpus_hardware_enabled))
  979. return;
  980. cpu_clear(cpu, cpus_hardware_enabled);
  981. decache_vcpus_on_cpu(cpu);
  982. kvm_arch_hardware_disable(NULL);
  983. }
  984. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  985. void *v)
  986. {
  987. int cpu = (long)v;
  988. val &= ~CPU_TASKS_FROZEN;
  989. switch (val) {
  990. case CPU_DYING:
  991. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  992. cpu);
  993. hardware_disable(NULL);
  994. break;
  995. case CPU_UP_CANCELED:
  996. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  997. cpu);
  998. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  999. break;
  1000. case CPU_ONLINE:
  1001. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1002. cpu);
  1003. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  1004. break;
  1005. }
  1006. return NOTIFY_OK;
  1007. }
  1008. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1009. void *v)
  1010. {
  1011. if (val == SYS_RESTART) {
  1012. /*
  1013. * Some (well, at least mine) BIOSes hang on reboot if
  1014. * in vmx root mode.
  1015. */
  1016. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1017. on_each_cpu(hardware_disable, NULL, 0, 1);
  1018. }
  1019. return NOTIFY_OK;
  1020. }
  1021. static struct notifier_block kvm_reboot_notifier = {
  1022. .notifier_call = kvm_reboot,
  1023. .priority = 0,
  1024. };
  1025. void kvm_io_bus_init(struct kvm_io_bus *bus)
  1026. {
  1027. memset(bus, 0, sizeof(*bus));
  1028. }
  1029. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1030. {
  1031. int i;
  1032. for (i = 0; i < bus->dev_count; i++) {
  1033. struct kvm_io_device *pos = bus->devs[i];
  1034. kvm_iodevice_destructor(pos);
  1035. }
  1036. }
  1037. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  1038. {
  1039. int i;
  1040. for (i = 0; i < bus->dev_count; i++) {
  1041. struct kvm_io_device *pos = bus->devs[i];
  1042. if (pos->in_range(pos, addr))
  1043. return pos;
  1044. }
  1045. return NULL;
  1046. }
  1047. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  1048. {
  1049. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  1050. bus->devs[bus->dev_count++] = dev;
  1051. }
  1052. static struct notifier_block kvm_cpu_notifier = {
  1053. .notifier_call = kvm_cpu_hotplug,
  1054. .priority = 20, /* must be > scheduler priority */
  1055. };
  1056. static int vm_stat_get(void *_offset, u64 *val)
  1057. {
  1058. unsigned offset = (long)_offset;
  1059. struct kvm *kvm;
  1060. *val = 0;
  1061. spin_lock(&kvm_lock);
  1062. list_for_each_entry(kvm, &vm_list, vm_list)
  1063. *val += *(u32 *)((void *)kvm + offset);
  1064. spin_unlock(&kvm_lock);
  1065. return 0;
  1066. }
  1067. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1068. static int vcpu_stat_get(void *_offset, u64 *val)
  1069. {
  1070. unsigned offset = (long)_offset;
  1071. struct kvm *kvm;
  1072. struct kvm_vcpu *vcpu;
  1073. int i;
  1074. *val = 0;
  1075. spin_lock(&kvm_lock);
  1076. list_for_each_entry(kvm, &vm_list, vm_list)
  1077. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1078. vcpu = kvm->vcpus[i];
  1079. if (vcpu)
  1080. *val += *(u32 *)((void *)vcpu + offset);
  1081. }
  1082. spin_unlock(&kvm_lock);
  1083. return 0;
  1084. }
  1085. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1086. static struct file_operations *stat_fops[] = {
  1087. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1088. [KVM_STAT_VM] = &vm_stat_fops,
  1089. };
  1090. static void kvm_init_debug(void)
  1091. {
  1092. struct kvm_stats_debugfs_item *p;
  1093. debugfs_dir = debugfs_create_dir("kvm", NULL);
  1094. for (p = debugfs_entries; p->name; ++p)
  1095. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  1096. (void *)(long)p->offset,
  1097. stat_fops[p->kind]);
  1098. }
  1099. static void kvm_exit_debug(void)
  1100. {
  1101. struct kvm_stats_debugfs_item *p;
  1102. for (p = debugfs_entries; p->name; ++p)
  1103. debugfs_remove(p->dentry);
  1104. debugfs_remove(debugfs_dir);
  1105. }
  1106. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1107. {
  1108. hardware_disable(NULL);
  1109. return 0;
  1110. }
  1111. static int kvm_resume(struct sys_device *dev)
  1112. {
  1113. hardware_enable(NULL);
  1114. return 0;
  1115. }
  1116. static struct sysdev_class kvm_sysdev_class = {
  1117. .name = "kvm",
  1118. .suspend = kvm_suspend,
  1119. .resume = kvm_resume,
  1120. };
  1121. static struct sys_device kvm_sysdev = {
  1122. .id = 0,
  1123. .cls = &kvm_sysdev_class,
  1124. };
  1125. struct page *bad_page;
  1126. static inline
  1127. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1128. {
  1129. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1130. }
  1131. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1132. {
  1133. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1134. kvm_arch_vcpu_load(vcpu, cpu);
  1135. }
  1136. static void kvm_sched_out(struct preempt_notifier *pn,
  1137. struct task_struct *next)
  1138. {
  1139. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1140. kvm_arch_vcpu_put(vcpu);
  1141. }
  1142. int kvm_init(void *opaque, unsigned int vcpu_size,
  1143. struct module *module)
  1144. {
  1145. int r;
  1146. int cpu;
  1147. kvm_init_debug();
  1148. r = kvm_arch_init(opaque);
  1149. if (r)
  1150. goto out_fail;
  1151. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1152. if (bad_page == NULL) {
  1153. r = -ENOMEM;
  1154. goto out;
  1155. }
  1156. r = kvm_arch_hardware_setup();
  1157. if (r < 0)
  1158. goto out_free_0;
  1159. for_each_online_cpu(cpu) {
  1160. smp_call_function_single(cpu,
  1161. kvm_arch_check_processor_compat,
  1162. &r, 0, 1);
  1163. if (r < 0)
  1164. goto out_free_1;
  1165. }
  1166. on_each_cpu(hardware_enable, NULL, 0, 1);
  1167. r = register_cpu_notifier(&kvm_cpu_notifier);
  1168. if (r)
  1169. goto out_free_2;
  1170. register_reboot_notifier(&kvm_reboot_notifier);
  1171. r = sysdev_class_register(&kvm_sysdev_class);
  1172. if (r)
  1173. goto out_free_3;
  1174. r = sysdev_register(&kvm_sysdev);
  1175. if (r)
  1176. goto out_free_4;
  1177. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1178. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1179. __alignof__(struct kvm_vcpu),
  1180. 0, NULL);
  1181. if (!kvm_vcpu_cache) {
  1182. r = -ENOMEM;
  1183. goto out_free_5;
  1184. }
  1185. kvm_chardev_ops.owner = module;
  1186. r = misc_register(&kvm_dev);
  1187. if (r) {
  1188. printk(KERN_ERR "kvm: misc device register failed\n");
  1189. goto out_free;
  1190. }
  1191. kvm_preempt_ops.sched_in = kvm_sched_in;
  1192. kvm_preempt_ops.sched_out = kvm_sched_out;
  1193. return 0;
  1194. out_free:
  1195. kmem_cache_destroy(kvm_vcpu_cache);
  1196. out_free_5:
  1197. sysdev_unregister(&kvm_sysdev);
  1198. out_free_4:
  1199. sysdev_class_unregister(&kvm_sysdev_class);
  1200. out_free_3:
  1201. unregister_reboot_notifier(&kvm_reboot_notifier);
  1202. unregister_cpu_notifier(&kvm_cpu_notifier);
  1203. out_free_2:
  1204. on_each_cpu(hardware_disable, NULL, 0, 1);
  1205. out_free_1:
  1206. kvm_arch_hardware_unsetup();
  1207. out_free_0:
  1208. __free_page(bad_page);
  1209. out:
  1210. kvm_arch_exit();
  1211. kvm_exit_debug();
  1212. out_fail:
  1213. return r;
  1214. }
  1215. EXPORT_SYMBOL_GPL(kvm_init);
  1216. void kvm_exit(void)
  1217. {
  1218. misc_deregister(&kvm_dev);
  1219. kmem_cache_destroy(kvm_vcpu_cache);
  1220. sysdev_unregister(&kvm_sysdev);
  1221. sysdev_class_unregister(&kvm_sysdev_class);
  1222. unregister_reboot_notifier(&kvm_reboot_notifier);
  1223. unregister_cpu_notifier(&kvm_cpu_notifier);
  1224. on_each_cpu(hardware_disable, NULL, 0, 1);
  1225. kvm_arch_hardware_unsetup();
  1226. kvm_arch_exit();
  1227. kvm_exit_debug();
  1228. __free_page(bad_page);
  1229. }
  1230. EXPORT_SYMBOL_GPL(kvm_exit);