intel_dp.c 61 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include "drmP.h"
  30. #include "drm.h"
  31. #include "drm_crtc.h"
  32. #include "drm_crtc_helper.h"
  33. #include "intel_drv.h"
  34. #include "i915_drm.h"
  35. #include "i915_drv.h"
  36. #include "drm_dp_helper.h"
  37. #define DP_LINK_STATUS_SIZE 6
  38. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  39. #define DP_LINK_CONFIGURATION_SIZE 9
  40. struct intel_dp {
  41. struct intel_encoder base;
  42. uint32_t output_reg;
  43. uint32_t DP;
  44. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
  45. bool has_audio;
  46. int force_audio;
  47. uint32_t color_range;
  48. int dpms_mode;
  49. uint8_t link_bw;
  50. uint8_t lane_count;
  51. uint8_t dpcd[8];
  52. struct i2c_adapter adapter;
  53. struct i2c_algo_dp_aux_data algo;
  54. bool is_pch_edp;
  55. uint8_t train_set[4];
  56. uint8_t link_status[DP_LINK_STATUS_SIZE];
  57. int panel_power_up_delay;
  58. int panel_power_down_delay;
  59. int panel_power_cycle_delay;
  60. int backlight_on_delay;
  61. int backlight_off_delay;
  62. struct drm_display_mode *panel_fixed_mode; /* for eDP */
  63. struct delayed_work panel_vdd_work;
  64. bool want_panel_vdd;
  65. unsigned long panel_off_jiffies;
  66. };
  67. /**
  68. * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  69. * @intel_dp: DP struct
  70. *
  71. * If a CPU or PCH DP output is attached to an eDP panel, this function
  72. * will return true, and false otherwise.
  73. */
  74. static bool is_edp(struct intel_dp *intel_dp)
  75. {
  76. return intel_dp->base.type == INTEL_OUTPUT_EDP;
  77. }
  78. /**
  79. * is_pch_edp - is the port on the PCH and attached to an eDP panel?
  80. * @intel_dp: DP struct
  81. *
  82. * Returns true if the given DP struct corresponds to a PCH DP port attached
  83. * to an eDP panel, false otherwise. Helpful for determining whether we
  84. * may need FDI resources for a given DP output or not.
  85. */
  86. static bool is_pch_edp(struct intel_dp *intel_dp)
  87. {
  88. return intel_dp->is_pch_edp;
  89. }
  90. static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
  91. {
  92. return container_of(encoder, struct intel_dp, base.base);
  93. }
  94. static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  95. {
  96. return container_of(intel_attached_encoder(connector),
  97. struct intel_dp, base);
  98. }
  99. /**
  100. * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
  101. * @encoder: DRM encoder
  102. *
  103. * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
  104. * by intel_display.c.
  105. */
  106. bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
  107. {
  108. struct intel_dp *intel_dp;
  109. if (!encoder)
  110. return false;
  111. intel_dp = enc_to_intel_dp(encoder);
  112. return is_pch_edp(intel_dp);
  113. }
  114. static void intel_dp_start_link_train(struct intel_dp *intel_dp);
  115. static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
  116. static void intel_dp_link_down(struct intel_dp *intel_dp);
  117. void
  118. intel_edp_link_config (struct intel_encoder *intel_encoder,
  119. int *lane_num, int *link_bw)
  120. {
  121. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  122. *lane_num = intel_dp->lane_count;
  123. if (intel_dp->link_bw == DP_LINK_BW_1_62)
  124. *link_bw = 162000;
  125. else if (intel_dp->link_bw == DP_LINK_BW_2_7)
  126. *link_bw = 270000;
  127. }
  128. static int
  129. intel_dp_max_lane_count(struct intel_dp *intel_dp)
  130. {
  131. int max_lane_count = 4;
  132. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
  133. max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
  134. switch (max_lane_count) {
  135. case 1: case 2: case 4:
  136. break;
  137. default:
  138. max_lane_count = 4;
  139. }
  140. }
  141. return max_lane_count;
  142. }
  143. static int
  144. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  145. {
  146. int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
  147. switch (max_link_bw) {
  148. case DP_LINK_BW_1_62:
  149. case DP_LINK_BW_2_7:
  150. break;
  151. default:
  152. max_link_bw = DP_LINK_BW_1_62;
  153. break;
  154. }
  155. return max_link_bw;
  156. }
  157. static int
  158. intel_dp_link_clock(uint8_t link_bw)
  159. {
  160. if (link_bw == DP_LINK_BW_2_7)
  161. return 270000;
  162. else
  163. return 162000;
  164. }
  165. /* I think this is a fiction */
  166. static int
  167. intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
  168. {
  169. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  170. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  171. int bpp = 24;
  172. if (intel_crtc)
  173. bpp = intel_crtc->bpp;
  174. return (pixel_clock * bpp + 7) / 8;
  175. }
  176. static int
  177. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  178. {
  179. return (max_link_clock * max_lanes * 8) / 10;
  180. }
  181. static int
  182. intel_dp_mode_valid(struct drm_connector *connector,
  183. struct drm_display_mode *mode)
  184. {
  185. struct intel_dp *intel_dp = intel_attached_dp(connector);
  186. int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
  187. int max_lanes = intel_dp_max_lane_count(intel_dp);
  188. if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
  189. if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
  190. return MODE_PANEL;
  191. if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
  192. return MODE_PANEL;
  193. }
  194. /* only refuse the mode on non eDP since we have seen some weird eDP panels
  195. which are outside spec tolerances but somehow work by magic */
  196. if (!is_edp(intel_dp) &&
  197. (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
  198. > intel_dp_max_data_rate(max_link_clock, max_lanes)))
  199. return MODE_CLOCK_HIGH;
  200. if (mode->clock < 10000)
  201. return MODE_CLOCK_LOW;
  202. return MODE_OK;
  203. }
  204. static uint32_t
  205. pack_aux(uint8_t *src, int src_bytes)
  206. {
  207. int i;
  208. uint32_t v = 0;
  209. if (src_bytes > 4)
  210. src_bytes = 4;
  211. for (i = 0; i < src_bytes; i++)
  212. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  213. return v;
  214. }
  215. static void
  216. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  217. {
  218. int i;
  219. if (dst_bytes > 4)
  220. dst_bytes = 4;
  221. for (i = 0; i < dst_bytes; i++)
  222. dst[i] = src >> ((3-i) * 8);
  223. }
  224. /* hrawclock is 1/4 the FSB frequency */
  225. static int
  226. intel_hrawclk(struct drm_device *dev)
  227. {
  228. struct drm_i915_private *dev_priv = dev->dev_private;
  229. uint32_t clkcfg;
  230. clkcfg = I915_READ(CLKCFG);
  231. switch (clkcfg & CLKCFG_FSB_MASK) {
  232. case CLKCFG_FSB_400:
  233. return 100;
  234. case CLKCFG_FSB_533:
  235. return 133;
  236. case CLKCFG_FSB_667:
  237. return 166;
  238. case CLKCFG_FSB_800:
  239. return 200;
  240. case CLKCFG_FSB_1067:
  241. return 266;
  242. case CLKCFG_FSB_1333:
  243. return 333;
  244. /* these two are just a guess; one of them might be right */
  245. case CLKCFG_FSB_1600:
  246. case CLKCFG_FSB_1600_ALT:
  247. return 400;
  248. default:
  249. return 133;
  250. }
  251. }
  252. static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
  253. {
  254. struct drm_device *dev = intel_dp->base.base.dev;
  255. struct drm_i915_private *dev_priv = dev->dev_private;
  256. return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
  257. }
  258. static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
  259. {
  260. struct drm_device *dev = intel_dp->base.base.dev;
  261. struct drm_i915_private *dev_priv = dev->dev_private;
  262. return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
  263. }
  264. static void
  265. intel_dp_check_edp(struct intel_dp *intel_dp)
  266. {
  267. struct drm_device *dev = intel_dp->base.base.dev;
  268. struct drm_i915_private *dev_priv = dev->dev_private;
  269. if (!is_edp(intel_dp))
  270. return;
  271. if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
  272. WARN(1, "eDP powered off while attempting aux channel communication.\n");
  273. DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
  274. I915_READ(PCH_PP_STATUS),
  275. I915_READ(PCH_PP_CONTROL));
  276. }
  277. }
  278. static int
  279. intel_dp_aux_ch(struct intel_dp *intel_dp,
  280. uint8_t *send, int send_bytes,
  281. uint8_t *recv, int recv_size)
  282. {
  283. uint32_t output_reg = intel_dp->output_reg;
  284. struct drm_device *dev = intel_dp->base.base.dev;
  285. struct drm_i915_private *dev_priv = dev->dev_private;
  286. uint32_t ch_ctl = output_reg + 0x10;
  287. uint32_t ch_data = ch_ctl + 4;
  288. int i;
  289. int recv_bytes;
  290. uint32_t status;
  291. uint32_t aux_clock_divider;
  292. int try, precharge;
  293. intel_dp_check_edp(intel_dp);
  294. /* The clock divider is based off the hrawclk,
  295. * and would like to run at 2MHz. So, take the
  296. * hrawclk value and divide by 2 and use that
  297. *
  298. * Note that PCH attached eDP panels should use a 125MHz input
  299. * clock divider.
  300. */
  301. if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
  302. if (IS_GEN6(dev))
  303. aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
  304. else
  305. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  306. } else if (HAS_PCH_SPLIT(dev))
  307. aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
  308. else
  309. aux_clock_divider = intel_hrawclk(dev) / 2;
  310. if (IS_GEN6(dev))
  311. precharge = 3;
  312. else
  313. precharge = 5;
  314. /* Try to wait for any previous AUX channel activity */
  315. for (try = 0; try < 3; try++) {
  316. status = I915_READ(ch_ctl);
  317. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  318. break;
  319. msleep(1);
  320. }
  321. if (try == 3) {
  322. WARN(1, "dp_aux_ch not started status 0x%08x\n",
  323. I915_READ(ch_ctl));
  324. return -EBUSY;
  325. }
  326. /* Must try at least 3 times according to DP spec */
  327. for (try = 0; try < 5; try++) {
  328. /* Load the send data into the aux channel data registers */
  329. for (i = 0; i < send_bytes; i += 4)
  330. I915_WRITE(ch_data + i,
  331. pack_aux(send + i, send_bytes - i));
  332. /* Send the command and wait for it to complete */
  333. I915_WRITE(ch_ctl,
  334. DP_AUX_CH_CTL_SEND_BUSY |
  335. DP_AUX_CH_CTL_TIME_OUT_400us |
  336. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  337. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  338. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  339. DP_AUX_CH_CTL_DONE |
  340. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  341. DP_AUX_CH_CTL_RECEIVE_ERROR);
  342. for (;;) {
  343. status = I915_READ(ch_ctl);
  344. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  345. break;
  346. udelay(100);
  347. }
  348. /* Clear done status and any errors */
  349. I915_WRITE(ch_ctl,
  350. status |
  351. DP_AUX_CH_CTL_DONE |
  352. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  353. DP_AUX_CH_CTL_RECEIVE_ERROR);
  354. if (status & DP_AUX_CH_CTL_DONE)
  355. break;
  356. }
  357. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  358. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  359. return -EBUSY;
  360. }
  361. /* Check for timeout or receive error.
  362. * Timeouts occur when the sink is not connected
  363. */
  364. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  365. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  366. return -EIO;
  367. }
  368. /* Timeouts occur when the device isn't connected, so they're
  369. * "normal" -- don't fill the kernel log with these */
  370. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  371. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  372. return -ETIMEDOUT;
  373. }
  374. /* Unload any bytes sent back from the other side */
  375. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  376. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  377. if (recv_bytes > recv_size)
  378. recv_bytes = recv_size;
  379. for (i = 0; i < recv_bytes; i += 4)
  380. unpack_aux(I915_READ(ch_data + i),
  381. recv + i, recv_bytes - i);
  382. return recv_bytes;
  383. }
  384. /* Write data to the aux channel in native mode */
  385. static int
  386. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  387. uint16_t address, uint8_t *send, int send_bytes)
  388. {
  389. int ret;
  390. uint8_t msg[20];
  391. int msg_bytes;
  392. uint8_t ack;
  393. intel_dp_check_edp(intel_dp);
  394. if (send_bytes > 16)
  395. return -1;
  396. msg[0] = AUX_NATIVE_WRITE << 4;
  397. msg[1] = address >> 8;
  398. msg[2] = address & 0xff;
  399. msg[3] = send_bytes - 1;
  400. memcpy(&msg[4], send, send_bytes);
  401. msg_bytes = send_bytes + 4;
  402. for (;;) {
  403. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  404. if (ret < 0)
  405. return ret;
  406. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  407. break;
  408. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  409. udelay(100);
  410. else
  411. return -EIO;
  412. }
  413. return send_bytes;
  414. }
  415. /* Write a single byte to the aux channel in native mode */
  416. static int
  417. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  418. uint16_t address, uint8_t byte)
  419. {
  420. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  421. }
  422. /* read bytes from a native aux channel */
  423. static int
  424. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  425. uint16_t address, uint8_t *recv, int recv_bytes)
  426. {
  427. uint8_t msg[4];
  428. int msg_bytes;
  429. uint8_t reply[20];
  430. int reply_bytes;
  431. uint8_t ack;
  432. int ret;
  433. intel_dp_check_edp(intel_dp);
  434. msg[0] = AUX_NATIVE_READ << 4;
  435. msg[1] = address >> 8;
  436. msg[2] = address & 0xff;
  437. msg[3] = recv_bytes - 1;
  438. msg_bytes = 4;
  439. reply_bytes = recv_bytes + 1;
  440. for (;;) {
  441. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  442. reply, reply_bytes);
  443. if (ret == 0)
  444. return -EPROTO;
  445. if (ret < 0)
  446. return ret;
  447. ack = reply[0];
  448. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  449. memcpy(recv, reply + 1, ret - 1);
  450. return ret - 1;
  451. }
  452. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  453. udelay(100);
  454. else
  455. return -EIO;
  456. }
  457. }
  458. static int
  459. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  460. uint8_t write_byte, uint8_t *read_byte)
  461. {
  462. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  463. struct intel_dp *intel_dp = container_of(adapter,
  464. struct intel_dp,
  465. adapter);
  466. uint16_t address = algo_data->address;
  467. uint8_t msg[5];
  468. uint8_t reply[2];
  469. unsigned retry;
  470. int msg_bytes;
  471. int reply_bytes;
  472. int ret;
  473. intel_dp_check_edp(intel_dp);
  474. /* Set up the command byte */
  475. if (mode & MODE_I2C_READ)
  476. msg[0] = AUX_I2C_READ << 4;
  477. else
  478. msg[0] = AUX_I2C_WRITE << 4;
  479. if (!(mode & MODE_I2C_STOP))
  480. msg[0] |= AUX_I2C_MOT << 4;
  481. msg[1] = address >> 8;
  482. msg[2] = address;
  483. switch (mode) {
  484. case MODE_I2C_WRITE:
  485. msg[3] = 0;
  486. msg[4] = write_byte;
  487. msg_bytes = 5;
  488. reply_bytes = 1;
  489. break;
  490. case MODE_I2C_READ:
  491. msg[3] = 0;
  492. msg_bytes = 4;
  493. reply_bytes = 2;
  494. break;
  495. default:
  496. msg_bytes = 3;
  497. reply_bytes = 1;
  498. break;
  499. }
  500. for (retry = 0; retry < 5; retry++) {
  501. ret = intel_dp_aux_ch(intel_dp,
  502. msg, msg_bytes,
  503. reply, reply_bytes);
  504. if (ret < 0) {
  505. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  506. return ret;
  507. }
  508. switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
  509. case AUX_NATIVE_REPLY_ACK:
  510. /* I2C-over-AUX Reply field is only valid
  511. * when paired with AUX ACK.
  512. */
  513. break;
  514. case AUX_NATIVE_REPLY_NACK:
  515. DRM_DEBUG_KMS("aux_ch native nack\n");
  516. return -EREMOTEIO;
  517. case AUX_NATIVE_REPLY_DEFER:
  518. udelay(100);
  519. continue;
  520. default:
  521. DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
  522. reply[0]);
  523. return -EREMOTEIO;
  524. }
  525. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  526. case AUX_I2C_REPLY_ACK:
  527. if (mode == MODE_I2C_READ) {
  528. *read_byte = reply[1];
  529. }
  530. return reply_bytes - 1;
  531. case AUX_I2C_REPLY_NACK:
  532. DRM_DEBUG_KMS("aux_i2c nack\n");
  533. return -EREMOTEIO;
  534. case AUX_I2C_REPLY_DEFER:
  535. DRM_DEBUG_KMS("aux_i2c defer\n");
  536. udelay(100);
  537. break;
  538. default:
  539. DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
  540. return -EREMOTEIO;
  541. }
  542. }
  543. DRM_ERROR("too many retries, giving up\n");
  544. return -EREMOTEIO;
  545. }
  546. static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
  547. static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
  548. static int
  549. intel_dp_i2c_init(struct intel_dp *intel_dp,
  550. struct intel_connector *intel_connector, const char *name)
  551. {
  552. int ret;
  553. DRM_DEBUG_KMS("i2c_init %s\n", name);
  554. intel_dp->algo.running = false;
  555. intel_dp->algo.address = 0;
  556. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  557. memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
  558. intel_dp->adapter.owner = THIS_MODULE;
  559. intel_dp->adapter.class = I2C_CLASS_DDC;
  560. strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  561. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  562. intel_dp->adapter.algo_data = &intel_dp->algo;
  563. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  564. ironlake_edp_panel_vdd_on(intel_dp);
  565. ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
  566. ironlake_edp_panel_vdd_off(intel_dp, false);
  567. return ret;
  568. }
  569. static bool
  570. intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
  571. struct drm_display_mode *adjusted_mode)
  572. {
  573. struct drm_device *dev = encoder->dev;
  574. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  575. int lane_count, clock;
  576. int max_lane_count = intel_dp_max_lane_count(intel_dp);
  577. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  578. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  579. if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
  580. intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
  581. intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
  582. mode, adjusted_mode);
  583. /*
  584. * the mode->clock is used to calculate the Data&Link M/N
  585. * of the pipe. For the eDP the fixed clock should be used.
  586. */
  587. mode->clock = intel_dp->panel_fixed_mode->clock;
  588. }
  589. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  590. for (clock = 0; clock <= max_clock; clock++) {
  591. int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
  592. if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
  593. <= link_avail) {
  594. intel_dp->link_bw = bws[clock];
  595. intel_dp->lane_count = lane_count;
  596. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  597. DRM_DEBUG_KMS("Display port link bw %02x lane "
  598. "count %d clock %d\n",
  599. intel_dp->link_bw, intel_dp->lane_count,
  600. adjusted_mode->clock);
  601. return true;
  602. }
  603. }
  604. }
  605. if (is_edp(intel_dp)) {
  606. /* okay we failed just pick the highest */
  607. intel_dp->lane_count = max_lane_count;
  608. intel_dp->link_bw = bws[max_clock];
  609. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  610. DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
  611. "count %d clock %d\n",
  612. intel_dp->link_bw, intel_dp->lane_count,
  613. adjusted_mode->clock);
  614. return true;
  615. }
  616. return false;
  617. }
  618. struct intel_dp_m_n {
  619. uint32_t tu;
  620. uint32_t gmch_m;
  621. uint32_t gmch_n;
  622. uint32_t link_m;
  623. uint32_t link_n;
  624. };
  625. static void
  626. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  627. {
  628. while (*num > 0xffffff || *den > 0xffffff) {
  629. *num >>= 1;
  630. *den >>= 1;
  631. }
  632. }
  633. static void
  634. intel_dp_compute_m_n(int bpp,
  635. int nlanes,
  636. int pixel_clock,
  637. int link_clock,
  638. struct intel_dp_m_n *m_n)
  639. {
  640. m_n->tu = 64;
  641. m_n->gmch_m = (pixel_clock * bpp) >> 3;
  642. m_n->gmch_n = link_clock * nlanes;
  643. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  644. m_n->link_m = pixel_clock;
  645. m_n->link_n = link_clock;
  646. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  647. }
  648. void
  649. intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  650. struct drm_display_mode *adjusted_mode)
  651. {
  652. struct drm_device *dev = crtc->dev;
  653. struct drm_mode_config *mode_config = &dev->mode_config;
  654. struct drm_encoder *encoder;
  655. struct drm_i915_private *dev_priv = dev->dev_private;
  656. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  657. int lane_count = 4;
  658. struct intel_dp_m_n m_n;
  659. int pipe = intel_crtc->pipe;
  660. /*
  661. * Find the lane count in the intel_encoder private
  662. */
  663. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  664. struct intel_dp *intel_dp;
  665. if (encoder->crtc != crtc)
  666. continue;
  667. intel_dp = enc_to_intel_dp(encoder);
  668. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
  669. lane_count = intel_dp->lane_count;
  670. break;
  671. } else if (is_edp(intel_dp)) {
  672. lane_count = dev_priv->edp.lanes;
  673. break;
  674. }
  675. }
  676. /*
  677. * Compute the GMCH and Link ratios. The '3' here is
  678. * the number of bytes_per_pixel post-LUT, which we always
  679. * set up for 8-bits of R/G/B, or 3 bytes total.
  680. */
  681. intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
  682. mode->clock, adjusted_mode->clock, &m_n);
  683. if (HAS_PCH_SPLIT(dev)) {
  684. I915_WRITE(TRANSDATA_M1(pipe),
  685. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  686. m_n.gmch_m);
  687. I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
  688. I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
  689. I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
  690. } else {
  691. I915_WRITE(PIPE_GMCH_DATA_M(pipe),
  692. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  693. m_n.gmch_m);
  694. I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
  695. I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
  696. I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
  697. }
  698. }
  699. static void ironlake_edp_pll_on(struct drm_encoder *encoder);
  700. static void ironlake_edp_pll_off(struct drm_encoder *encoder);
  701. static void
  702. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  703. struct drm_display_mode *adjusted_mode)
  704. {
  705. struct drm_device *dev = encoder->dev;
  706. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  707. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  708. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  709. /* Turn on the eDP PLL if needed */
  710. if (is_edp(intel_dp)) {
  711. if (!is_pch_edp(intel_dp))
  712. ironlake_edp_pll_on(encoder);
  713. else
  714. ironlake_edp_pll_off(encoder);
  715. }
  716. intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
  717. intel_dp->DP |= intel_dp->color_range;
  718. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  719. intel_dp->DP |= DP_SYNC_HS_HIGH;
  720. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  721. intel_dp->DP |= DP_SYNC_VS_HIGH;
  722. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  723. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  724. else
  725. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  726. switch (intel_dp->lane_count) {
  727. case 1:
  728. intel_dp->DP |= DP_PORT_WIDTH_1;
  729. break;
  730. case 2:
  731. intel_dp->DP |= DP_PORT_WIDTH_2;
  732. break;
  733. case 4:
  734. intel_dp->DP |= DP_PORT_WIDTH_4;
  735. break;
  736. }
  737. if (intel_dp->has_audio)
  738. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  739. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  740. intel_dp->link_configuration[0] = intel_dp->link_bw;
  741. intel_dp->link_configuration[1] = intel_dp->lane_count;
  742. intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
  743. /*
  744. * Check for DPCD version > 1.1 and enhanced framing support
  745. */
  746. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  747. (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
  748. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  749. intel_dp->DP |= DP_ENHANCED_FRAMING;
  750. }
  751. /* CPT DP's pipe select is decided in TRANS_DP_CTL */
  752. if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
  753. intel_dp->DP |= DP_PIPEB_SELECT;
  754. if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
  755. /* don't miss out required setting for eDP */
  756. intel_dp->DP |= DP_PLL_ENABLE;
  757. if (adjusted_mode->clock < 200000)
  758. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  759. else
  760. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  761. }
  762. }
  763. static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
  764. {
  765. unsigned long off_time;
  766. unsigned long delay;
  767. DRM_DEBUG_KMS("Wait for panel power off time\n");
  768. off_time = intel_dp->panel_off_jiffies + msecs_to_jiffies(intel_dp->panel_power_down_delay);
  769. if (time_after(jiffies, off_time)) {
  770. DRM_DEBUG_KMS("Time already passed");
  771. return;
  772. }
  773. delay = jiffies_to_msecs(off_time - jiffies);
  774. if (delay > intel_dp->panel_power_down_delay)
  775. delay = intel_dp->panel_power_down_delay;
  776. DRM_DEBUG_KMS("Waiting an additional %ld ms\n", delay);
  777. msleep(delay);
  778. }
  779. static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
  780. {
  781. struct drm_device *dev = intel_dp->base.base.dev;
  782. struct drm_i915_private *dev_priv = dev->dev_private;
  783. u32 pp;
  784. if (!is_edp(intel_dp))
  785. return;
  786. DRM_DEBUG_KMS("Turn eDP VDD on\n");
  787. WARN(intel_dp->want_panel_vdd,
  788. "eDP VDD already requested on\n");
  789. intel_dp->want_panel_vdd = true;
  790. if (ironlake_edp_have_panel_vdd(intel_dp)) {
  791. DRM_DEBUG_KMS("eDP VDD already on\n");
  792. return;
  793. }
  794. ironlake_wait_panel_off(intel_dp);
  795. pp = I915_READ(PCH_PP_CONTROL);
  796. pp &= ~PANEL_UNLOCK_MASK;
  797. pp |= PANEL_UNLOCK_REGS;
  798. pp |= EDP_FORCE_VDD;
  799. I915_WRITE(PCH_PP_CONTROL, pp);
  800. POSTING_READ(PCH_PP_CONTROL);
  801. DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
  802. I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
  803. /*
  804. * If the panel wasn't on, delay before accessing aux channel
  805. */
  806. if (!ironlake_edp_have_panel_power(intel_dp)) {
  807. DRM_DEBUG_KMS("eDP was not running\n");
  808. msleep(intel_dp->panel_power_up_delay);
  809. }
  810. }
  811. static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
  812. {
  813. struct drm_device *dev = intel_dp->base.base.dev;
  814. struct drm_i915_private *dev_priv = dev->dev_private;
  815. u32 pp;
  816. if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
  817. pp = I915_READ(PCH_PP_CONTROL);
  818. pp &= ~PANEL_UNLOCK_MASK;
  819. pp |= PANEL_UNLOCK_REGS;
  820. pp &= ~EDP_FORCE_VDD;
  821. I915_WRITE(PCH_PP_CONTROL, pp);
  822. POSTING_READ(PCH_PP_CONTROL);
  823. /* Make sure sequencer is idle before allowing subsequent activity */
  824. DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
  825. I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
  826. intel_dp->panel_off_jiffies = jiffies;
  827. }
  828. }
  829. static void ironlake_panel_vdd_work(struct work_struct *__work)
  830. {
  831. struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
  832. struct intel_dp, panel_vdd_work);
  833. struct drm_device *dev = intel_dp->base.base.dev;
  834. mutex_lock(&dev->struct_mutex);
  835. ironlake_panel_vdd_off_sync(intel_dp);
  836. mutex_unlock(&dev->struct_mutex);
  837. }
  838. static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
  839. {
  840. if (!is_edp(intel_dp))
  841. return;
  842. DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
  843. WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
  844. intel_dp->want_panel_vdd = false;
  845. if (sync) {
  846. ironlake_panel_vdd_off_sync(intel_dp);
  847. } else {
  848. /*
  849. * Queue the timer to fire a long
  850. * time from now (relative to the power down delay)
  851. * to keep the panel power up across a sequence of operations
  852. */
  853. schedule_delayed_work(&intel_dp->panel_vdd_work,
  854. msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
  855. }
  856. }
  857. /* Returns true if the panel was already on when called */
  858. static void ironlake_edp_panel_on (struct intel_dp *intel_dp)
  859. {
  860. struct drm_device *dev = intel_dp->base.base.dev;
  861. struct drm_i915_private *dev_priv = dev->dev_private;
  862. u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE;
  863. if (!is_edp(intel_dp))
  864. return;
  865. if (ironlake_edp_have_panel_power(intel_dp))
  866. return;
  867. ironlake_wait_panel_off(intel_dp);
  868. pp = I915_READ(PCH_PP_CONTROL);
  869. pp &= ~PANEL_UNLOCK_MASK;
  870. pp |= PANEL_UNLOCK_REGS;
  871. if (IS_GEN5(dev)) {
  872. /* ILK workaround: disable reset around power sequence */
  873. pp &= ~PANEL_POWER_RESET;
  874. I915_WRITE(PCH_PP_CONTROL, pp);
  875. POSTING_READ(PCH_PP_CONTROL);
  876. }
  877. pp |= POWER_TARGET_ON;
  878. I915_WRITE(PCH_PP_CONTROL, pp);
  879. POSTING_READ(PCH_PP_CONTROL);
  880. if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask,
  881. 5000))
  882. DRM_ERROR("panel on wait timed out: 0x%08x\n",
  883. I915_READ(PCH_PP_STATUS));
  884. if (IS_GEN5(dev)) {
  885. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  886. I915_WRITE(PCH_PP_CONTROL, pp);
  887. POSTING_READ(PCH_PP_CONTROL);
  888. }
  889. }
  890. static void ironlake_edp_panel_off(struct drm_encoder *encoder)
  891. {
  892. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  893. struct drm_device *dev = encoder->dev;
  894. struct drm_i915_private *dev_priv = dev->dev_private;
  895. u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK |
  896. PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK;
  897. if (!is_edp(intel_dp))
  898. return;
  899. pp = I915_READ(PCH_PP_CONTROL);
  900. pp &= ~PANEL_UNLOCK_MASK;
  901. pp |= PANEL_UNLOCK_REGS;
  902. if (IS_GEN5(dev)) {
  903. /* ILK workaround: disable reset around power sequence */
  904. pp &= ~PANEL_POWER_RESET;
  905. I915_WRITE(PCH_PP_CONTROL, pp);
  906. POSTING_READ(PCH_PP_CONTROL);
  907. }
  908. intel_dp->panel_off_jiffies = jiffies;
  909. if (IS_GEN5(dev)) {
  910. pp &= ~POWER_TARGET_ON;
  911. I915_WRITE(PCH_PP_CONTROL, pp);
  912. POSTING_READ(PCH_PP_CONTROL);
  913. pp &= ~POWER_TARGET_ON;
  914. I915_WRITE(PCH_PP_CONTROL, pp);
  915. POSTING_READ(PCH_PP_CONTROL);
  916. msleep(intel_dp->panel_power_cycle_delay);
  917. if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000))
  918. DRM_ERROR("panel off wait timed out: 0x%08x\n",
  919. I915_READ(PCH_PP_STATUS));
  920. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  921. I915_WRITE(PCH_PP_CONTROL, pp);
  922. POSTING_READ(PCH_PP_CONTROL);
  923. }
  924. }
  925. static void ironlake_edp_backlight_on (struct intel_dp *intel_dp)
  926. {
  927. struct drm_device *dev = intel_dp->base.base.dev;
  928. struct drm_i915_private *dev_priv = dev->dev_private;
  929. u32 pp;
  930. if (!is_edp(intel_dp))
  931. return;
  932. DRM_DEBUG_KMS("\n");
  933. /*
  934. * If we enable the backlight right away following a panel power
  935. * on, we may see slight flicker as the panel syncs with the eDP
  936. * link. So delay a bit to make sure the image is solid before
  937. * allowing it to appear.
  938. */
  939. msleep(intel_dp->backlight_on_delay);
  940. pp = I915_READ(PCH_PP_CONTROL);
  941. pp &= ~PANEL_UNLOCK_MASK;
  942. pp |= PANEL_UNLOCK_REGS;
  943. pp |= EDP_BLC_ENABLE;
  944. I915_WRITE(PCH_PP_CONTROL, pp);
  945. POSTING_READ(PCH_PP_CONTROL);
  946. }
  947. static void ironlake_edp_backlight_off (struct intel_dp *intel_dp)
  948. {
  949. struct drm_device *dev = intel_dp->base.base.dev;
  950. struct drm_i915_private *dev_priv = dev->dev_private;
  951. u32 pp;
  952. if (!is_edp(intel_dp))
  953. return;
  954. DRM_DEBUG_KMS("\n");
  955. pp = I915_READ(PCH_PP_CONTROL);
  956. pp &= ~PANEL_UNLOCK_MASK;
  957. pp |= PANEL_UNLOCK_REGS;
  958. pp &= ~EDP_BLC_ENABLE;
  959. I915_WRITE(PCH_PP_CONTROL, pp);
  960. POSTING_READ(PCH_PP_CONTROL);
  961. msleep(intel_dp->backlight_off_delay);
  962. }
  963. static void ironlake_edp_pll_on(struct drm_encoder *encoder)
  964. {
  965. struct drm_device *dev = encoder->dev;
  966. struct drm_i915_private *dev_priv = dev->dev_private;
  967. u32 dpa_ctl;
  968. DRM_DEBUG_KMS("\n");
  969. dpa_ctl = I915_READ(DP_A);
  970. dpa_ctl |= DP_PLL_ENABLE;
  971. I915_WRITE(DP_A, dpa_ctl);
  972. POSTING_READ(DP_A);
  973. udelay(200);
  974. }
  975. static void ironlake_edp_pll_off(struct drm_encoder *encoder)
  976. {
  977. struct drm_device *dev = encoder->dev;
  978. struct drm_i915_private *dev_priv = dev->dev_private;
  979. u32 dpa_ctl;
  980. dpa_ctl = I915_READ(DP_A);
  981. dpa_ctl &= ~DP_PLL_ENABLE;
  982. I915_WRITE(DP_A, dpa_ctl);
  983. POSTING_READ(DP_A);
  984. udelay(200);
  985. }
  986. /* If the sink supports it, try to set the power state appropriately */
  987. static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
  988. {
  989. int ret, i;
  990. /* Should have a valid DPCD by this point */
  991. if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
  992. return;
  993. if (mode != DRM_MODE_DPMS_ON) {
  994. ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
  995. DP_SET_POWER_D3);
  996. if (ret != 1)
  997. DRM_DEBUG_DRIVER("failed to write sink power state\n");
  998. } else {
  999. /*
  1000. * When turning on, we need to retry for 1ms to give the sink
  1001. * time to wake up.
  1002. */
  1003. for (i = 0; i < 3; i++) {
  1004. ret = intel_dp_aux_native_write_1(intel_dp,
  1005. DP_SET_POWER,
  1006. DP_SET_POWER_D0);
  1007. if (ret == 1)
  1008. break;
  1009. msleep(1);
  1010. }
  1011. }
  1012. }
  1013. static void intel_dp_prepare(struct drm_encoder *encoder)
  1014. {
  1015. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1016. /* Wake up the sink first */
  1017. ironlake_edp_panel_vdd_on(intel_dp);
  1018. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1019. ironlake_edp_panel_vdd_off(intel_dp, false);
  1020. /* Make sure the panel is off before trying to
  1021. * change the mode
  1022. */
  1023. ironlake_edp_backlight_off(intel_dp);
  1024. intel_dp_link_down(intel_dp);
  1025. ironlake_edp_panel_off(encoder);
  1026. }
  1027. static void intel_dp_commit(struct drm_encoder *encoder)
  1028. {
  1029. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1030. ironlake_edp_panel_vdd_on(intel_dp);
  1031. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1032. intel_dp_start_link_train(intel_dp);
  1033. ironlake_edp_panel_on(intel_dp);
  1034. ironlake_edp_panel_vdd_off(intel_dp, true);
  1035. intel_dp_complete_link_train(intel_dp);
  1036. ironlake_edp_backlight_on(intel_dp);
  1037. intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
  1038. }
  1039. static void
  1040. intel_dp_dpms(struct drm_encoder *encoder, int mode)
  1041. {
  1042. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1043. struct drm_device *dev = encoder->dev;
  1044. struct drm_i915_private *dev_priv = dev->dev_private;
  1045. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  1046. if (mode != DRM_MODE_DPMS_ON) {
  1047. ironlake_edp_panel_vdd_on(intel_dp);
  1048. if (is_edp(intel_dp))
  1049. ironlake_edp_backlight_off(intel_dp);
  1050. intel_dp_sink_dpms(intel_dp, mode);
  1051. intel_dp_link_down(intel_dp);
  1052. ironlake_edp_panel_off(encoder);
  1053. if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
  1054. ironlake_edp_pll_off(encoder);
  1055. ironlake_edp_panel_vdd_off(intel_dp, false);
  1056. } else {
  1057. ironlake_edp_panel_vdd_on(intel_dp);
  1058. intel_dp_sink_dpms(intel_dp, mode);
  1059. if (!(dp_reg & DP_PORT_EN)) {
  1060. intel_dp_start_link_train(intel_dp);
  1061. ironlake_edp_panel_on(intel_dp);
  1062. ironlake_edp_panel_vdd_off(intel_dp, true);
  1063. intel_dp_complete_link_train(intel_dp);
  1064. ironlake_edp_backlight_on(intel_dp);
  1065. } else
  1066. ironlake_edp_panel_vdd_off(intel_dp, false);
  1067. ironlake_edp_backlight_on(intel_dp);
  1068. }
  1069. intel_dp->dpms_mode = mode;
  1070. }
  1071. /*
  1072. * Native read with retry for link status and receiver capability reads for
  1073. * cases where the sink may still be asleep.
  1074. */
  1075. static bool
  1076. intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
  1077. uint8_t *recv, int recv_bytes)
  1078. {
  1079. int ret, i;
  1080. /*
  1081. * Sinks are *supposed* to come up within 1ms from an off state,
  1082. * but we're also supposed to retry 3 times per the spec.
  1083. */
  1084. for (i = 0; i < 3; i++) {
  1085. ret = intel_dp_aux_native_read(intel_dp, address, recv,
  1086. recv_bytes);
  1087. if (ret == recv_bytes)
  1088. return true;
  1089. msleep(1);
  1090. }
  1091. return false;
  1092. }
  1093. /*
  1094. * Fetch AUX CH registers 0x202 - 0x207 which contain
  1095. * link status information
  1096. */
  1097. static bool
  1098. intel_dp_get_link_status(struct intel_dp *intel_dp)
  1099. {
  1100. return intel_dp_aux_native_read_retry(intel_dp,
  1101. DP_LANE0_1_STATUS,
  1102. intel_dp->link_status,
  1103. DP_LINK_STATUS_SIZE);
  1104. }
  1105. static uint8_t
  1106. intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  1107. int r)
  1108. {
  1109. return link_status[r - DP_LANE0_1_STATUS];
  1110. }
  1111. static uint8_t
  1112. intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
  1113. int lane)
  1114. {
  1115. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  1116. int s = ((lane & 1) ?
  1117. DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
  1118. DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
  1119. uint8_t l = intel_dp_link_status(link_status, i);
  1120. return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
  1121. }
  1122. static uint8_t
  1123. intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
  1124. int lane)
  1125. {
  1126. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  1127. int s = ((lane & 1) ?
  1128. DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
  1129. DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
  1130. uint8_t l = intel_dp_link_status(link_status, i);
  1131. return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
  1132. }
  1133. #if 0
  1134. static char *voltage_names[] = {
  1135. "0.4V", "0.6V", "0.8V", "1.2V"
  1136. };
  1137. static char *pre_emph_names[] = {
  1138. "0dB", "3.5dB", "6dB", "9.5dB"
  1139. };
  1140. static char *link_train_names[] = {
  1141. "pattern 1", "pattern 2", "idle", "off"
  1142. };
  1143. #endif
  1144. /*
  1145. * These are source-specific values; current Intel hardware supports
  1146. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  1147. */
  1148. #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
  1149. static uint8_t
  1150. intel_dp_pre_emphasis_max(uint8_t voltage_swing)
  1151. {
  1152. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1153. case DP_TRAIN_VOLTAGE_SWING_400:
  1154. return DP_TRAIN_PRE_EMPHASIS_6;
  1155. case DP_TRAIN_VOLTAGE_SWING_600:
  1156. return DP_TRAIN_PRE_EMPHASIS_6;
  1157. case DP_TRAIN_VOLTAGE_SWING_800:
  1158. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1159. case DP_TRAIN_VOLTAGE_SWING_1200:
  1160. default:
  1161. return DP_TRAIN_PRE_EMPHASIS_0;
  1162. }
  1163. }
  1164. static void
  1165. intel_get_adjust_train(struct intel_dp *intel_dp)
  1166. {
  1167. uint8_t v = 0;
  1168. uint8_t p = 0;
  1169. int lane;
  1170. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1171. uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
  1172. uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
  1173. if (this_v > v)
  1174. v = this_v;
  1175. if (this_p > p)
  1176. p = this_p;
  1177. }
  1178. if (v >= I830_DP_VOLTAGE_MAX)
  1179. v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
  1180. if (p >= intel_dp_pre_emphasis_max(v))
  1181. p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  1182. for (lane = 0; lane < 4; lane++)
  1183. intel_dp->train_set[lane] = v | p;
  1184. }
  1185. static uint32_t
  1186. intel_dp_signal_levels(uint8_t train_set, int lane_count)
  1187. {
  1188. uint32_t signal_levels = 0;
  1189. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1190. case DP_TRAIN_VOLTAGE_SWING_400:
  1191. default:
  1192. signal_levels |= DP_VOLTAGE_0_4;
  1193. break;
  1194. case DP_TRAIN_VOLTAGE_SWING_600:
  1195. signal_levels |= DP_VOLTAGE_0_6;
  1196. break;
  1197. case DP_TRAIN_VOLTAGE_SWING_800:
  1198. signal_levels |= DP_VOLTAGE_0_8;
  1199. break;
  1200. case DP_TRAIN_VOLTAGE_SWING_1200:
  1201. signal_levels |= DP_VOLTAGE_1_2;
  1202. break;
  1203. }
  1204. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  1205. case DP_TRAIN_PRE_EMPHASIS_0:
  1206. default:
  1207. signal_levels |= DP_PRE_EMPHASIS_0;
  1208. break;
  1209. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1210. signal_levels |= DP_PRE_EMPHASIS_3_5;
  1211. break;
  1212. case DP_TRAIN_PRE_EMPHASIS_6:
  1213. signal_levels |= DP_PRE_EMPHASIS_6;
  1214. break;
  1215. case DP_TRAIN_PRE_EMPHASIS_9_5:
  1216. signal_levels |= DP_PRE_EMPHASIS_9_5;
  1217. break;
  1218. }
  1219. return signal_levels;
  1220. }
  1221. /* Gen6's DP voltage swing and pre-emphasis control */
  1222. static uint32_t
  1223. intel_gen6_edp_signal_levels(uint8_t train_set)
  1224. {
  1225. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1226. DP_TRAIN_PRE_EMPHASIS_MASK);
  1227. switch (signal_levels) {
  1228. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1229. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1230. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1231. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1232. return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
  1233. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1234. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1235. return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
  1236. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1237. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1238. return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
  1239. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1240. case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
  1241. return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
  1242. default:
  1243. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1244. "0x%x\n", signal_levels);
  1245. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1246. }
  1247. }
  1248. static uint8_t
  1249. intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  1250. int lane)
  1251. {
  1252. int i = DP_LANE0_1_STATUS + (lane >> 1);
  1253. int s = (lane & 1) * 4;
  1254. uint8_t l = intel_dp_link_status(link_status, i);
  1255. return (l >> s) & 0xf;
  1256. }
  1257. /* Check for clock recovery is done on all channels */
  1258. static bool
  1259. intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  1260. {
  1261. int lane;
  1262. uint8_t lane_status;
  1263. for (lane = 0; lane < lane_count; lane++) {
  1264. lane_status = intel_get_lane_status(link_status, lane);
  1265. if ((lane_status & DP_LANE_CR_DONE) == 0)
  1266. return false;
  1267. }
  1268. return true;
  1269. }
  1270. /* Check to see if channel eq is done on all channels */
  1271. #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
  1272. DP_LANE_CHANNEL_EQ_DONE|\
  1273. DP_LANE_SYMBOL_LOCKED)
  1274. static bool
  1275. intel_channel_eq_ok(struct intel_dp *intel_dp)
  1276. {
  1277. uint8_t lane_align;
  1278. uint8_t lane_status;
  1279. int lane;
  1280. lane_align = intel_dp_link_status(intel_dp->link_status,
  1281. DP_LANE_ALIGN_STATUS_UPDATED);
  1282. if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  1283. return false;
  1284. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1285. lane_status = intel_get_lane_status(intel_dp->link_status, lane);
  1286. if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
  1287. return false;
  1288. }
  1289. return true;
  1290. }
  1291. static bool
  1292. intel_dp_set_link_train(struct intel_dp *intel_dp,
  1293. uint32_t dp_reg_value,
  1294. uint8_t dp_train_pat)
  1295. {
  1296. struct drm_device *dev = intel_dp->base.base.dev;
  1297. struct drm_i915_private *dev_priv = dev->dev_private;
  1298. int ret;
  1299. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  1300. POSTING_READ(intel_dp->output_reg);
  1301. intel_dp_aux_native_write_1(intel_dp,
  1302. DP_TRAINING_PATTERN_SET,
  1303. dp_train_pat);
  1304. ret = intel_dp_aux_native_write(intel_dp,
  1305. DP_TRAINING_LANE0_SET,
  1306. intel_dp->train_set, 4);
  1307. if (ret != 4)
  1308. return false;
  1309. return true;
  1310. }
  1311. /* Enable corresponding port and start training pattern 1 */
  1312. static void
  1313. intel_dp_start_link_train(struct intel_dp *intel_dp)
  1314. {
  1315. struct drm_device *dev = intel_dp->base.base.dev;
  1316. struct drm_i915_private *dev_priv = dev->dev_private;
  1317. struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
  1318. int i;
  1319. uint8_t voltage;
  1320. bool clock_recovery = false;
  1321. int tries;
  1322. u32 reg;
  1323. uint32_t DP = intel_dp->DP;
  1324. /*
  1325. * On CPT we have to enable the port in training pattern 1, which
  1326. * will happen below in intel_dp_set_link_train. Otherwise, enable
  1327. * the port and wait for it to become active.
  1328. */
  1329. if (!HAS_PCH_CPT(dev)) {
  1330. I915_WRITE(intel_dp->output_reg, intel_dp->DP);
  1331. POSTING_READ(intel_dp->output_reg);
  1332. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1333. }
  1334. /* Write the link configuration data */
  1335. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  1336. intel_dp->link_configuration,
  1337. DP_LINK_CONFIGURATION_SIZE);
  1338. DP |= DP_PORT_EN;
  1339. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1340. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1341. else
  1342. DP &= ~DP_LINK_TRAIN_MASK;
  1343. memset(intel_dp->train_set, 0, 4);
  1344. voltage = 0xff;
  1345. tries = 0;
  1346. clock_recovery = false;
  1347. for (;;) {
  1348. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1349. uint32_t signal_levels;
  1350. if (IS_GEN6(dev) && is_edp(intel_dp)) {
  1351. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1352. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1353. } else {
  1354. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
  1355. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1356. }
  1357. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1358. reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
  1359. else
  1360. reg = DP | DP_LINK_TRAIN_PAT_1;
  1361. if (!intel_dp_set_link_train(intel_dp, reg,
  1362. DP_TRAINING_PATTERN_1 |
  1363. DP_LINK_SCRAMBLING_DISABLE))
  1364. break;
  1365. /* Set training pattern 1 */
  1366. udelay(100);
  1367. if (!intel_dp_get_link_status(intel_dp))
  1368. break;
  1369. if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
  1370. clock_recovery = true;
  1371. break;
  1372. }
  1373. /* Check to see if we've tried the max voltage */
  1374. for (i = 0; i < intel_dp->lane_count; i++)
  1375. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  1376. break;
  1377. if (i == intel_dp->lane_count)
  1378. break;
  1379. /* Check to see if we've tried the same voltage 5 times */
  1380. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  1381. ++tries;
  1382. if (tries == 5)
  1383. break;
  1384. } else
  1385. tries = 0;
  1386. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  1387. /* Compute new intel_dp->train_set as requested by target */
  1388. intel_get_adjust_train(intel_dp);
  1389. }
  1390. intel_dp->DP = DP;
  1391. }
  1392. static void
  1393. intel_dp_complete_link_train(struct intel_dp *intel_dp)
  1394. {
  1395. struct drm_device *dev = intel_dp->base.base.dev;
  1396. struct drm_i915_private *dev_priv = dev->dev_private;
  1397. bool channel_eq = false;
  1398. int tries, cr_tries;
  1399. u32 reg;
  1400. uint32_t DP = intel_dp->DP;
  1401. /* channel equalization */
  1402. tries = 0;
  1403. cr_tries = 0;
  1404. channel_eq = false;
  1405. for (;;) {
  1406. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1407. uint32_t signal_levels;
  1408. if (cr_tries > 5) {
  1409. DRM_ERROR("failed to train DP, aborting\n");
  1410. intel_dp_link_down(intel_dp);
  1411. break;
  1412. }
  1413. if (IS_GEN6(dev) && is_edp(intel_dp)) {
  1414. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1415. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1416. } else {
  1417. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
  1418. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1419. }
  1420. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1421. reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
  1422. else
  1423. reg = DP | DP_LINK_TRAIN_PAT_2;
  1424. /* channel eq pattern */
  1425. if (!intel_dp_set_link_train(intel_dp, reg,
  1426. DP_TRAINING_PATTERN_2 |
  1427. DP_LINK_SCRAMBLING_DISABLE))
  1428. break;
  1429. udelay(400);
  1430. if (!intel_dp_get_link_status(intel_dp))
  1431. break;
  1432. /* Make sure clock is still ok */
  1433. if (!intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
  1434. intel_dp_start_link_train(intel_dp);
  1435. cr_tries++;
  1436. continue;
  1437. }
  1438. if (intel_channel_eq_ok(intel_dp)) {
  1439. channel_eq = true;
  1440. break;
  1441. }
  1442. /* Try 5 times, then try clock recovery if that fails */
  1443. if (tries > 5) {
  1444. intel_dp_link_down(intel_dp);
  1445. intel_dp_start_link_train(intel_dp);
  1446. tries = 0;
  1447. cr_tries++;
  1448. continue;
  1449. }
  1450. /* Compute new intel_dp->train_set as requested by target */
  1451. intel_get_adjust_train(intel_dp);
  1452. ++tries;
  1453. }
  1454. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1455. reg = DP | DP_LINK_TRAIN_OFF_CPT;
  1456. else
  1457. reg = DP | DP_LINK_TRAIN_OFF;
  1458. I915_WRITE(intel_dp->output_reg, reg);
  1459. POSTING_READ(intel_dp->output_reg);
  1460. intel_dp_aux_native_write_1(intel_dp,
  1461. DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
  1462. }
  1463. static void
  1464. intel_dp_link_down(struct intel_dp *intel_dp)
  1465. {
  1466. struct drm_device *dev = intel_dp->base.base.dev;
  1467. struct drm_i915_private *dev_priv = dev->dev_private;
  1468. uint32_t DP = intel_dp->DP;
  1469. if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
  1470. return;
  1471. DRM_DEBUG_KMS("\n");
  1472. if (is_edp(intel_dp)) {
  1473. DP &= ~DP_PLL_ENABLE;
  1474. I915_WRITE(intel_dp->output_reg, DP);
  1475. POSTING_READ(intel_dp->output_reg);
  1476. udelay(100);
  1477. }
  1478. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
  1479. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1480. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1481. } else {
  1482. DP &= ~DP_LINK_TRAIN_MASK;
  1483. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1484. }
  1485. POSTING_READ(intel_dp->output_reg);
  1486. msleep(17);
  1487. if (is_edp(intel_dp))
  1488. DP |= DP_LINK_TRAIN_OFF;
  1489. if (!HAS_PCH_CPT(dev) &&
  1490. I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
  1491. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  1492. /* Hardware workaround: leaving our transcoder select
  1493. * set to transcoder B while it's off will prevent the
  1494. * corresponding HDMI output on transcoder A.
  1495. *
  1496. * Combine this with another hardware workaround:
  1497. * transcoder select bit can only be cleared while the
  1498. * port is enabled.
  1499. */
  1500. DP &= ~DP_PIPEB_SELECT;
  1501. I915_WRITE(intel_dp->output_reg, DP);
  1502. /* Changes to enable or select take place the vblank
  1503. * after being written.
  1504. */
  1505. if (crtc == NULL) {
  1506. /* We can arrive here never having been attached
  1507. * to a CRTC, for instance, due to inheriting
  1508. * random state from the BIOS.
  1509. *
  1510. * If the pipe is not running, play safe and
  1511. * wait for the clocks to stabilise before
  1512. * continuing.
  1513. */
  1514. POSTING_READ(intel_dp->output_reg);
  1515. msleep(50);
  1516. } else
  1517. intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
  1518. }
  1519. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  1520. POSTING_READ(intel_dp->output_reg);
  1521. msleep(intel_dp->panel_power_down_delay);
  1522. }
  1523. static bool
  1524. intel_dp_get_dpcd(struct intel_dp *intel_dp)
  1525. {
  1526. if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
  1527. sizeof (intel_dp->dpcd)) &&
  1528. (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
  1529. return true;
  1530. }
  1531. return false;
  1532. }
  1533. /*
  1534. * According to DP spec
  1535. * 5.1.2:
  1536. * 1. Read DPCD
  1537. * 2. Configure link according to Receiver Capabilities
  1538. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1539. * 4. Check link status on receipt of hot-plug interrupt
  1540. */
  1541. static void
  1542. intel_dp_check_link_status(struct intel_dp *intel_dp)
  1543. {
  1544. if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
  1545. return;
  1546. if (!intel_dp->base.base.crtc)
  1547. return;
  1548. /* Try to read receiver status if the link appears to be up */
  1549. if (!intel_dp_get_link_status(intel_dp)) {
  1550. intel_dp_link_down(intel_dp);
  1551. return;
  1552. }
  1553. /* Now read the DPCD to see if it's actually running */
  1554. if (!intel_dp_get_dpcd(intel_dp)) {
  1555. intel_dp_link_down(intel_dp);
  1556. return;
  1557. }
  1558. if (!intel_channel_eq_ok(intel_dp)) {
  1559. DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
  1560. drm_get_encoder_name(&intel_dp->base.base));
  1561. intel_dp_start_link_train(intel_dp);
  1562. intel_dp_complete_link_train(intel_dp);
  1563. }
  1564. }
  1565. static enum drm_connector_status
  1566. intel_dp_detect_dpcd(struct intel_dp *intel_dp)
  1567. {
  1568. if (intel_dp_get_dpcd(intel_dp))
  1569. return connector_status_connected;
  1570. return connector_status_disconnected;
  1571. }
  1572. static enum drm_connector_status
  1573. ironlake_dp_detect(struct intel_dp *intel_dp)
  1574. {
  1575. enum drm_connector_status status;
  1576. /* Can't disconnect eDP, but you can close the lid... */
  1577. if (is_edp(intel_dp)) {
  1578. status = intel_panel_detect(intel_dp->base.base.dev);
  1579. if (status == connector_status_unknown)
  1580. status = connector_status_connected;
  1581. return status;
  1582. }
  1583. return intel_dp_detect_dpcd(intel_dp);
  1584. }
  1585. static enum drm_connector_status
  1586. g4x_dp_detect(struct intel_dp *intel_dp)
  1587. {
  1588. struct drm_device *dev = intel_dp->base.base.dev;
  1589. struct drm_i915_private *dev_priv = dev->dev_private;
  1590. uint32_t temp, bit;
  1591. switch (intel_dp->output_reg) {
  1592. case DP_B:
  1593. bit = DPB_HOTPLUG_INT_STATUS;
  1594. break;
  1595. case DP_C:
  1596. bit = DPC_HOTPLUG_INT_STATUS;
  1597. break;
  1598. case DP_D:
  1599. bit = DPD_HOTPLUG_INT_STATUS;
  1600. break;
  1601. default:
  1602. return connector_status_unknown;
  1603. }
  1604. temp = I915_READ(PORT_HOTPLUG_STAT);
  1605. if ((temp & bit) == 0)
  1606. return connector_status_disconnected;
  1607. return intel_dp_detect_dpcd(intel_dp);
  1608. }
  1609. static struct edid *
  1610. intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
  1611. {
  1612. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1613. struct edid *edid;
  1614. ironlake_edp_panel_vdd_on(intel_dp);
  1615. edid = drm_get_edid(connector, adapter);
  1616. ironlake_edp_panel_vdd_off(intel_dp, false);
  1617. return edid;
  1618. }
  1619. static int
  1620. intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
  1621. {
  1622. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1623. int ret;
  1624. ironlake_edp_panel_vdd_on(intel_dp);
  1625. ret = intel_ddc_get_modes(connector, adapter);
  1626. ironlake_edp_panel_vdd_off(intel_dp, false);
  1627. return ret;
  1628. }
  1629. /**
  1630. * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
  1631. *
  1632. * \return true if DP port is connected.
  1633. * \return false if DP port is disconnected.
  1634. */
  1635. static enum drm_connector_status
  1636. intel_dp_detect(struct drm_connector *connector, bool force)
  1637. {
  1638. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1639. struct drm_device *dev = intel_dp->base.base.dev;
  1640. enum drm_connector_status status;
  1641. struct edid *edid = NULL;
  1642. intel_dp->has_audio = false;
  1643. if (HAS_PCH_SPLIT(dev))
  1644. status = ironlake_dp_detect(intel_dp);
  1645. else
  1646. status = g4x_dp_detect(intel_dp);
  1647. DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
  1648. intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
  1649. intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
  1650. intel_dp->dpcd[6], intel_dp->dpcd[7]);
  1651. if (status != connector_status_connected)
  1652. return status;
  1653. if (intel_dp->force_audio) {
  1654. intel_dp->has_audio = intel_dp->force_audio > 0;
  1655. } else {
  1656. edid = intel_dp_get_edid(connector, &intel_dp->adapter);
  1657. if (edid) {
  1658. intel_dp->has_audio = drm_detect_monitor_audio(edid);
  1659. connector->display_info.raw_edid = NULL;
  1660. kfree(edid);
  1661. }
  1662. }
  1663. return connector_status_connected;
  1664. }
  1665. static int intel_dp_get_modes(struct drm_connector *connector)
  1666. {
  1667. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1668. struct drm_device *dev = intel_dp->base.base.dev;
  1669. struct drm_i915_private *dev_priv = dev->dev_private;
  1670. int ret;
  1671. /* We should parse the EDID data and find out if it has an audio sink
  1672. */
  1673. ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
  1674. if (ret) {
  1675. if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
  1676. struct drm_display_mode *newmode;
  1677. list_for_each_entry(newmode, &connector->probed_modes,
  1678. head) {
  1679. if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
  1680. intel_dp->panel_fixed_mode =
  1681. drm_mode_duplicate(dev, newmode);
  1682. break;
  1683. }
  1684. }
  1685. }
  1686. return ret;
  1687. }
  1688. /* if eDP has no EDID, try to use fixed panel mode from VBT */
  1689. if (is_edp(intel_dp)) {
  1690. /* initialize panel mode from VBT if available for eDP */
  1691. if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
  1692. intel_dp->panel_fixed_mode =
  1693. drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  1694. if (intel_dp->panel_fixed_mode) {
  1695. intel_dp->panel_fixed_mode->type |=
  1696. DRM_MODE_TYPE_PREFERRED;
  1697. }
  1698. }
  1699. if (intel_dp->panel_fixed_mode) {
  1700. struct drm_display_mode *mode;
  1701. mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
  1702. drm_mode_probed_add(connector, mode);
  1703. return 1;
  1704. }
  1705. }
  1706. return 0;
  1707. }
  1708. static bool
  1709. intel_dp_detect_audio(struct drm_connector *connector)
  1710. {
  1711. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1712. struct edid *edid;
  1713. bool has_audio = false;
  1714. edid = intel_dp_get_edid(connector, &intel_dp->adapter);
  1715. if (edid) {
  1716. has_audio = drm_detect_monitor_audio(edid);
  1717. connector->display_info.raw_edid = NULL;
  1718. kfree(edid);
  1719. }
  1720. return has_audio;
  1721. }
  1722. static int
  1723. intel_dp_set_property(struct drm_connector *connector,
  1724. struct drm_property *property,
  1725. uint64_t val)
  1726. {
  1727. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  1728. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1729. int ret;
  1730. ret = drm_connector_property_set_value(connector, property, val);
  1731. if (ret)
  1732. return ret;
  1733. if (property == dev_priv->force_audio_property) {
  1734. int i = val;
  1735. bool has_audio;
  1736. if (i == intel_dp->force_audio)
  1737. return 0;
  1738. intel_dp->force_audio = i;
  1739. if (i == 0)
  1740. has_audio = intel_dp_detect_audio(connector);
  1741. else
  1742. has_audio = i > 0;
  1743. if (has_audio == intel_dp->has_audio)
  1744. return 0;
  1745. intel_dp->has_audio = has_audio;
  1746. goto done;
  1747. }
  1748. if (property == dev_priv->broadcast_rgb_property) {
  1749. if (val == !!intel_dp->color_range)
  1750. return 0;
  1751. intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
  1752. goto done;
  1753. }
  1754. return -EINVAL;
  1755. done:
  1756. if (intel_dp->base.base.crtc) {
  1757. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  1758. drm_crtc_helper_set_mode(crtc, &crtc->mode,
  1759. crtc->x, crtc->y,
  1760. crtc->fb);
  1761. }
  1762. return 0;
  1763. }
  1764. static void
  1765. intel_dp_destroy (struct drm_connector *connector)
  1766. {
  1767. struct drm_device *dev = connector->dev;
  1768. if (intel_dpd_is_edp(dev))
  1769. intel_panel_destroy_backlight(dev);
  1770. drm_sysfs_connector_remove(connector);
  1771. drm_connector_cleanup(connector);
  1772. kfree(connector);
  1773. }
  1774. static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
  1775. {
  1776. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1777. i2c_del_adapter(&intel_dp->adapter);
  1778. drm_encoder_cleanup(encoder);
  1779. if (is_edp(intel_dp)) {
  1780. cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
  1781. ironlake_panel_vdd_off_sync(intel_dp);
  1782. }
  1783. kfree(intel_dp);
  1784. }
  1785. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  1786. .dpms = intel_dp_dpms,
  1787. .mode_fixup = intel_dp_mode_fixup,
  1788. .prepare = intel_dp_prepare,
  1789. .mode_set = intel_dp_mode_set,
  1790. .commit = intel_dp_commit,
  1791. };
  1792. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  1793. .dpms = drm_helper_connector_dpms,
  1794. .detect = intel_dp_detect,
  1795. .fill_modes = drm_helper_probe_single_connector_modes,
  1796. .set_property = intel_dp_set_property,
  1797. .destroy = intel_dp_destroy,
  1798. };
  1799. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  1800. .get_modes = intel_dp_get_modes,
  1801. .mode_valid = intel_dp_mode_valid,
  1802. .best_encoder = intel_best_encoder,
  1803. };
  1804. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  1805. .destroy = intel_dp_encoder_destroy,
  1806. };
  1807. static void
  1808. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  1809. {
  1810. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  1811. intel_dp_check_link_status(intel_dp);
  1812. }
  1813. /* Return which DP Port should be selected for Transcoder DP control */
  1814. int
  1815. intel_trans_dp_port_sel (struct drm_crtc *crtc)
  1816. {
  1817. struct drm_device *dev = crtc->dev;
  1818. struct drm_mode_config *mode_config = &dev->mode_config;
  1819. struct drm_encoder *encoder;
  1820. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  1821. struct intel_dp *intel_dp;
  1822. if (encoder->crtc != crtc)
  1823. continue;
  1824. intel_dp = enc_to_intel_dp(encoder);
  1825. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
  1826. return intel_dp->output_reg;
  1827. }
  1828. return -1;
  1829. }
  1830. /* check the VBT to see whether the eDP is on DP-D port */
  1831. bool intel_dpd_is_edp(struct drm_device *dev)
  1832. {
  1833. struct drm_i915_private *dev_priv = dev->dev_private;
  1834. struct child_device_config *p_child;
  1835. int i;
  1836. if (!dev_priv->child_dev_num)
  1837. return false;
  1838. for (i = 0; i < dev_priv->child_dev_num; i++) {
  1839. p_child = dev_priv->child_dev + i;
  1840. if (p_child->dvo_port == PORT_IDPD &&
  1841. p_child->device_type == DEVICE_TYPE_eDP)
  1842. return true;
  1843. }
  1844. return false;
  1845. }
  1846. static void
  1847. intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
  1848. {
  1849. intel_attach_force_audio_property(connector);
  1850. intel_attach_broadcast_rgb_property(connector);
  1851. }
  1852. void
  1853. intel_dp_init(struct drm_device *dev, int output_reg)
  1854. {
  1855. struct drm_i915_private *dev_priv = dev->dev_private;
  1856. struct drm_connector *connector;
  1857. struct intel_dp *intel_dp;
  1858. struct intel_encoder *intel_encoder;
  1859. struct intel_connector *intel_connector;
  1860. const char *name = NULL;
  1861. int type;
  1862. intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
  1863. if (!intel_dp)
  1864. return;
  1865. intel_dp->output_reg = output_reg;
  1866. intel_dp->dpms_mode = -1;
  1867. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  1868. if (!intel_connector) {
  1869. kfree(intel_dp);
  1870. return;
  1871. }
  1872. intel_encoder = &intel_dp->base;
  1873. if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
  1874. if (intel_dpd_is_edp(dev))
  1875. intel_dp->is_pch_edp = true;
  1876. if (output_reg == DP_A || is_pch_edp(intel_dp)) {
  1877. type = DRM_MODE_CONNECTOR_eDP;
  1878. intel_encoder->type = INTEL_OUTPUT_EDP;
  1879. } else {
  1880. type = DRM_MODE_CONNECTOR_DisplayPort;
  1881. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  1882. }
  1883. connector = &intel_connector->base;
  1884. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  1885. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  1886. connector->polled = DRM_CONNECTOR_POLL_HPD;
  1887. if (output_reg == DP_B || output_reg == PCH_DP_B)
  1888. intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
  1889. else if (output_reg == DP_C || output_reg == PCH_DP_C)
  1890. intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
  1891. else if (output_reg == DP_D || output_reg == PCH_DP_D)
  1892. intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
  1893. if (is_edp(intel_dp)) {
  1894. intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
  1895. INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
  1896. ironlake_panel_vdd_work);
  1897. }
  1898. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  1899. connector->interlace_allowed = true;
  1900. connector->doublescan_allowed = 0;
  1901. drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
  1902. DRM_MODE_ENCODER_TMDS);
  1903. drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
  1904. intel_connector_attach_encoder(intel_connector, intel_encoder);
  1905. drm_sysfs_connector_add(connector);
  1906. /* Set up the DDC bus. */
  1907. switch (output_reg) {
  1908. case DP_A:
  1909. name = "DPDDC-A";
  1910. break;
  1911. case DP_B:
  1912. case PCH_DP_B:
  1913. dev_priv->hotplug_supported_mask |=
  1914. HDMIB_HOTPLUG_INT_STATUS;
  1915. name = "DPDDC-B";
  1916. break;
  1917. case DP_C:
  1918. case PCH_DP_C:
  1919. dev_priv->hotplug_supported_mask |=
  1920. HDMIC_HOTPLUG_INT_STATUS;
  1921. name = "DPDDC-C";
  1922. break;
  1923. case DP_D:
  1924. case PCH_DP_D:
  1925. dev_priv->hotplug_supported_mask |=
  1926. HDMID_HOTPLUG_INT_STATUS;
  1927. name = "DPDDC-D";
  1928. break;
  1929. }
  1930. /* Cache some DPCD data in the eDP case */
  1931. if (is_edp(intel_dp)) {
  1932. bool ret;
  1933. struct edp_power_seq cur, vbt;
  1934. u32 pp_on, pp_off, pp_div;
  1935. pp_on = I915_READ(PCH_PP_ON_DELAYS);
  1936. pp_off = I915_READ(PCH_PP_OFF_DELAYS);
  1937. pp_div = I915_READ(PCH_PP_DIVISOR);
  1938. /* Pull timing values out of registers */
  1939. cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
  1940. PANEL_POWER_UP_DELAY_SHIFT;
  1941. cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
  1942. PANEL_LIGHT_ON_DELAY_SHIFT;
  1943. cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
  1944. PANEL_LIGHT_OFF_DELAY_SHIFT;
  1945. cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
  1946. PANEL_POWER_DOWN_DELAY_SHIFT;
  1947. cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
  1948. PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
  1949. DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  1950. cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
  1951. vbt = dev_priv->edp.pps;
  1952. DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  1953. vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
  1954. #define get_delay(field) ((max(cur.field, vbt.field) + 9) / 10)
  1955. intel_dp->panel_power_up_delay = get_delay(t1_t3);
  1956. intel_dp->backlight_on_delay = get_delay(t8);
  1957. intel_dp->backlight_off_delay = get_delay(t9);
  1958. intel_dp->panel_power_down_delay = get_delay(t10);
  1959. intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
  1960. DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
  1961. intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
  1962. intel_dp->panel_power_cycle_delay);
  1963. DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
  1964. intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
  1965. intel_dp->panel_off_jiffies = jiffies - intel_dp->panel_power_down_delay;
  1966. ironlake_edp_panel_vdd_on(intel_dp);
  1967. ret = intel_dp_get_dpcd(intel_dp);
  1968. ironlake_edp_panel_vdd_off(intel_dp, false);
  1969. if (ret) {
  1970. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
  1971. dev_priv->no_aux_handshake =
  1972. intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
  1973. DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
  1974. } else {
  1975. /* if this fails, presume the device is a ghost */
  1976. DRM_INFO("failed to retrieve link info, disabling eDP\n");
  1977. intel_dp_encoder_destroy(&intel_dp->base.base);
  1978. intel_dp_destroy(&intel_connector->base);
  1979. return;
  1980. }
  1981. }
  1982. intel_dp_i2c_init(intel_dp, intel_connector, name);
  1983. intel_encoder->hot_plug = intel_dp_hot_plug;
  1984. if (is_edp(intel_dp)) {
  1985. dev_priv->int_edp_connector = connector;
  1986. intel_panel_setup_backlight(dev);
  1987. }
  1988. intel_dp_add_properties(intel_dp, connector);
  1989. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  1990. * 0xd. Failure to do so will result in spurious interrupts being
  1991. * generated on the port when a cable is not attached.
  1992. */
  1993. if (IS_G4X(dev) && !IS_GM45(dev)) {
  1994. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  1995. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  1996. }
  1997. }