spi.c 83 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076
  1. /*
  2. * SPI init/core code
  3. *
  4. * Copyright (C) 2005 David Brownell
  5. * Copyright (C) 2008 Secret Lab Technologies Ltd.
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. */
  17. #include <linux/kernel.h>
  18. #include <linux/device.h>
  19. #include <linux/init.h>
  20. #include <linux/cache.h>
  21. #include <linux/dma-mapping.h>
  22. #include <linux/dmaengine.h>
  23. #include <linux/mutex.h>
  24. #include <linux/of_device.h>
  25. #include <linux/of_irq.h>
  26. #include <linux/clk/clk-conf.h>
  27. #include <linux/slab.h>
  28. #include <linux/mod_devicetable.h>
  29. #include <linux/spi/spi.h>
  30. #include <linux/of_gpio.h>
  31. #include <linux/pm_runtime.h>
  32. #include <linux/pm_domain.h>
  33. #include <linux/export.h>
  34. #include <linux/sched/rt.h>
  35. #include <linux/delay.h>
  36. #include <linux/kthread.h>
  37. #include <linux/ioport.h>
  38. #include <linux/acpi.h>
  39. #define CREATE_TRACE_POINTS
  40. #include <trace/events/spi.h>
  41. static void spidev_release(struct device *dev)
  42. {
  43. struct spi_device *spi = to_spi_device(dev);
  44. /* spi masters may cleanup for released devices */
  45. if (spi->master->cleanup)
  46. spi->master->cleanup(spi);
  47. spi_master_put(spi->master);
  48. kfree(spi);
  49. }
  50. static ssize_t
  51. modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  52. {
  53. const struct spi_device *spi = to_spi_device(dev);
  54. int len;
  55. len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  56. if (len != -ENODEV)
  57. return len;
  58. return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  59. }
  60. static DEVICE_ATTR_RO(modalias);
  61. #define SPI_STATISTICS_ATTRS(field, file) \
  62. static ssize_t spi_master_##field##_show(struct device *dev, \
  63. struct device_attribute *attr, \
  64. char *buf) \
  65. { \
  66. struct spi_master *master = container_of(dev, \
  67. struct spi_master, dev); \
  68. return spi_statistics_##field##_show(&master->statistics, buf); \
  69. } \
  70. static struct device_attribute dev_attr_spi_master_##field = { \
  71. .attr = { .name = file, .mode = S_IRUGO }, \
  72. .show = spi_master_##field##_show, \
  73. }; \
  74. static ssize_t spi_device_##field##_show(struct device *dev, \
  75. struct device_attribute *attr, \
  76. char *buf) \
  77. { \
  78. struct spi_device *spi = to_spi_device(dev); \
  79. return spi_statistics_##field##_show(&spi->statistics, buf); \
  80. } \
  81. static struct device_attribute dev_attr_spi_device_##field = { \
  82. .attr = { .name = file, .mode = S_IRUGO }, \
  83. .show = spi_device_##field##_show, \
  84. }
  85. #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
  86. static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
  87. char *buf) \
  88. { \
  89. unsigned long flags; \
  90. ssize_t len; \
  91. spin_lock_irqsave(&stat->lock, flags); \
  92. len = sprintf(buf, format_string, stat->field); \
  93. spin_unlock_irqrestore(&stat->lock, flags); \
  94. return len; \
  95. } \
  96. SPI_STATISTICS_ATTRS(name, file)
  97. #define SPI_STATISTICS_SHOW(field, format_string) \
  98. SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
  99. field, format_string)
  100. SPI_STATISTICS_SHOW(messages, "%lu");
  101. SPI_STATISTICS_SHOW(transfers, "%lu");
  102. SPI_STATISTICS_SHOW(errors, "%lu");
  103. SPI_STATISTICS_SHOW(timedout, "%lu");
  104. SPI_STATISTICS_SHOW(spi_sync, "%lu");
  105. SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
  106. SPI_STATISTICS_SHOW(spi_async, "%lu");
  107. SPI_STATISTICS_SHOW(bytes, "%llu");
  108. SPI_STATISTICS_SHOW(bytes_rx, "%llu");
  109. SPI_STATISTICS_SHOW(bytes_tx, "%llu");
  110. #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
  111. SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
  112. "transfer_bytes_histo_" number, \
  113. transfer_bytes_histo[index], "%lu")
  114. SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
  115. SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
  116. SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
  117. SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
  118. SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
  119. SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
  120. SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
  121. SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
  122. SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
  123. SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
  124. SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
  125. SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
  126. SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
  127. SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
  128. SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
  129. SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
  130. SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
  131. SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
  132. static struct attribute *spi_dev_attrs[] = {
  133. &dev_attr_modalias.attr,
  134. NULL,
  135. };
  136. static const struct attribute_group spi_dev_group = {
  137. .attrs = spi_dev_attrs,
  138. };
  139. static struct attribute *spi_device_statistics_attrs[] = {
  140. &dev_attr_spi_device_messages.attr,
  141. &dev_attr_spi_device_transfers.attr,
  142. &dev_attr_spi_device_errors.attr,
  143. &dev_attr_spi_device_timedout.attr,
  144. &dev_attr_spi_device_spi_sync.attr,
  145. &dev_attr_spi_device_spi_sync_immediate.attr,
  146. &dev_attr_spi_device_spi_async.attr,
  147. &dev_attr_spi_device_bytes.attr,
  148. &dev_attr_spi_device_bytes_rx.attr,
  149. &dev_attr_spi_device_bytes_tx.attr,
  150. &dev_attr_spi_device_transfer_bytes_histo0.attr,
  151. &dev_attr_spi_device_transfer_bytes_histo1.attr,
  152. &dev_attr_spi_device_transfer_bytes_histo2.attr,
  153. &dev_attr_spi_device_transfer_bytes_histo3.attr,
  154. &dev_attr_spi_device_transfer_bytes_histo4.attr,
  155. &dev_attr_spi_device_transfer_bytes_histo5.attr,
  156. &dev_attr_spi_device_transfer_bytes_histo6.attr,
  157. &dev_attr_spi_device_transfer_bytes_histo7.attr,
  158. &dev_attr_spi_device_transfer_bytes_histo8.attr,
  159. &dev_attr_spi_device_transfer_bytes_histo9.attr,
  160. &dev_attr_spi_device_transfer_bytes_histo10.attr,
  161. &dev_attr_spi_device_transfer_bytes_histo11.attr,
  162. &dev_attr_spi_device_transfer_bytes_histo12.attr,
  163. &dev_attr_spi_device_transfer_bytes_histo13.attr,
  164. &dev_attr_spi_device_transfer_bytes_histo14.attr,
  165. &dev_attr_spi_device_transfer_bytes_histo15.attr,
  166. &dev_attr_spi_device_transfer_bytes_histo16.attr,
  167. &dev_attr_spi_device_transfers_split_maxsize.attr,
  168. NULL,
  169. };
  170. static const struct attribute_group spi_device_statistics_group = {
  171. .name = "statistics",
  172. .attrs = spi_device_statistics_attrs,
  173. };
  174. static const struct attribute_group *spi_dev_groups[] = {
  175. &spi_dev_group,
  176. &spi_device_statistics_group,
  177. NULL,
  178. };
  179. static struct attribute *spi_master_statistics_attrs[] = {
  180. &dev_attr_spi_master_messages.attr,
  181. &dev_attr_spi_master_transfers.attr,
  182. &dev_attr_spi_master_errors.attr,
  183. &dev_attr_spi_master_timedout.attr,
  184. &dev_attr_spi_master_spi_sync.attr,
  185. &dev_attr_spi_master_spi_sync_immediate.attr,
  186. &dev_attr_spi_master_spi_async.attr,
  187. &dev_attr_spi_master_bytes.attr,
  188. &dev_attr_spi_master_bytes_rx.attr,
  189. &dev_attr_spi_master_bytes_tx.attr,
  190. &dev_attr_spi_master_transfer_bytes_histo0.attr,
  191. &dev_attr_spi_master_transfer_bytes_histo1.attr,
  192. &dev_attr_spi_master_transfer_bytes_histo2.attr,
  193. &dev_attr_spi_master_transfer_bytes_histo3.attr,
  194. &dev_attr_spi_master_transfer_bytes_histo4.attr,
  195. &dev_attr_spi_master_transfer_bytes_histo5.attr,
  196. &dev_attr_spi_master_transfer_bytes_histo6.attr,
  197. &dev_attr_spi_master_transfer_bytes_histo7.attr,
  198. &dev_attr_spi_master_transfer_bytes_histo8.attr,
  199. &dev_attr_spi_master_transfer_bytes_histo9.attr,
  200. &dev_attr_spi_master_transfer_bytes_histo10.attr,
  201. &dev_attr_spi_master_transfer_bytes_histo11.attr,
  202. &dev_attr_spi_master_transfer_bytes_histo12.attr,
  203. &dev_attr_spi_master_transfer_bytes_histo13.attr,
  204. &dev_attr_spi_master_transfer_bytes_histo14.attr,
  205. &dev_attr_spi_master_transfer_bytes_histo15.attr,
  206. &dev_attr_spi_master_transfer_bytes_histo16.attr,
  207. &dev_attr_spi_master_transfers_split_maxsize.attr,
  208. NULL,
  209. };
  210. static const struct attribute_group spi_master_statistics_group = {
  211. .name = "statistics",
  212. .attrs = spi_master_statistics_attrs,
  213. };
  214. static const struct attribute_group *spi_master_groups[] = {
  215. &spi_master_statistics_group,
  216. NULL,
  217. };
  218. void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
  219. struct spi_transfer *xfer,
  220. struct spi_master *master)
  221. {
  222. unsigned long flags;
  223. int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
  224. if (l2len < 0)
  225. l2len = 0;
  226. spin_lock_irqsave(&stats->lock, flags);
  227. stats->transfers++;
  228. stats->transfer_bytes_histo[l2len]++;
  229. stats->bytes += xfer->len;
  230. if ((xfer->tx_buf) &&
  231. (xfer->tx_buf != master->dummy_tx))
  232. stats->bytes_tx += xfer->len;
  233. if ((xfer->rx_buf) &&
  234. (xfer->rx_buf != master->dummy_rx))
  235. stats->bytes_rx += xfer->len;
  236. spin_unlock_irqrestore(&stats->lock, flags);
  237. }
  238. EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
  239. /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
  240. * and the sysfs version makes coldplug work too.
  241. */
  242. static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
  243. const struct spi_device *sdev)
  244. {
  245. while (id->name[0]) {
  246. if (!strcmp(sdev->modalias, id->name))
  247. return id;
  248. id++;
  249. }
  250. return NULL;
  251. }
  252. const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
  253. {
  254. const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
  255. return spi_match_id(sdrv->id_table, sdev);
  256. }
  257. EXPORT_SYMBOL_GPL(spi_get_device_id);
  258. static int spi_match_device(struct device *dev, struct device_driver *drv)
  259. {
  260. const struct spi_device *spi = to_spi_device(dev);
  261. const struct spi_driver *sdrv = to_spi_driver(drv);
  262. /* Attempt an OF style match */
  263. if (of_driver_match_device(dev, drv))
  264. return 1;
  265. /* Then try ACPI */
  266. if (acpi_driver_match_device(dev, drv))
  267. return 1;
  268. if (sdrv->id_table)
  269. return !!spi_match_id(sdrv->id_table, spi);
  270. return strcmp(spi->modalias, drv->name) == 0;
  271. }
  272. static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
  273. {
  274. const struct spi_device *spi = to_spi_device(dev);
  275. int rc;
  276. rc = acpi_device_uevent_modalias(dev, env);
  277. if (rc != -ENODEV)
  278. return rc;
  279. add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
  280. return 0;
  281. }
  282. struct bus_type spi_bus_type = {
  283. .name = "spi",
  284. .dev_groups = spi_dev_groups,
  285. .match = spi_match_device,
  286. .uevent = spi_uevent,
  287. };
  288. EXPORT_SYMBOL_GPL(spi_bus_type);
  289. static int spi_drv_probe(struct device *dev)
  290. {
  291. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  292. struct spi_device *spi = to_spi_device(dev);
  293. int ret;
  294. ret = of_clk_set_defaults(dev->of_node, false);
  295. if (ret)
  296. return ret;
  297. if (dev->of_node) {
  298. spi->irq = of_irq_get(dev->of_node, 0);
  299. if (spi->irq == -EPROBE_DEFER)
  300. return -EPROBE_DEFER;
  301. if (spi->irq < 0)
  302. spi->irq = 0;
  303. }
  304. ret = dev_pm_domain_attach(dev, true);
  305. if (ret != -EPROBE_DEFER) {
  306. ret = sdrv->probe(spi);
  307. if (ret)
  308. dev_pm_domain_detach(dev, true);
  309. }
  310. return ret;
  311. }
  312. static int spi_drv_remove(struct device *dev)
  313. {
  314. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  315. int ret;
  316. ret = sdrv->remove(to_spi_device(dev));
  317. dev_pm_domain_detach(dev, true);
  318. return ret;
  319. }
  320. static void spi_drv_shutdown(struct device *dev)
  321. {
  322. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  323. sdrv->shutdown(to_spi_device(dev));
  324. }
  325. /**
  326. * __spi_register_driver - register a SPI driver
  327. * @owner: owner module of the driver to register
  328. * @sdrv: the driver to register
  329. * Context: can sleep
  330. *
  331. * Return: zero on success, else a negative error code.
  332. */
  333. int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
  334. {
  335. sdrv->driver.owner = owner;
  336. sdrv->driver.bus = &spi_bus_type;
  337. if (sdrv->probe)
  338. sdrv->driver.probe = spi_drv_probe;
  339. if (sdrv->remove)
  340. sdrv->driver.remove = spi_drv_remove;
  341. if (sdrv->shutdown)
  342. sdrv->driver.shutdown = spi_drv_shutdown;
  343. return driver_register(&sdrv->driver);
  344. }
  345. EXPORT_SYMBOL_GPL(__spi_register_driver);
  346. /*-------------------------------------------------------------------------*/
  347. /* SPI devices should normally not be created by SPI device drivers; that
  348. * would make them board-specific. Similarly with SPI master drivers.
  349. * Device registration normally goes into like arch/.../mach.../board-YYY.c
  350. * with other readonly (flashable) information about mainboard devices.
  351. */
  352. struct boardinfo {
  353. struct list_head list;
  354. struct spi_board_info board_info;
  355. };
  356. static LIST_HEAD(board_list);
  357. static LIST_HEAD(spi_master_list);
  358. /*
  359. * Used to protect add/del opertion for board_info list and
  360. * spi_master list, and their matching process
  361. */
  362. static DEFINE_MUTEX(board_lock);
  363. /**
  364. * spi_alloc_device - Allocate a new SPI device
  365. * @master: Controller to which device is connected
  366. * Context: can sleep
  367. *
  368. * Allows a driver to allocate and initialize a spi_device without
  369. * registering it immediately. This allows a driver to directly
  370. * fill the spi_device with device parameters before calling
  371. * spi_add_device() on it.
  372. *
  373. * Caller is responsible to call spi_add_device() on the returned
  374. * spi_device structure to add it to the SPI master. If the caller
  375. * needs to discard the spi_device without adding it, then it should
  376. * call spi_dev_put() on it.
  377. *
  378. * Return: a pointer to the new device, or NULL.
  379. */
  380. struct spi_device *spi_alloc_device(struct spi_master *master)
  381. {
  382. struct spi_device *spi;
  383. if (!spi_master_get(master))
  384. return NULL;
  385. spi = kzalloc(sizeof(*spi), GFP_KERNEL);
  386. if (!spi) {
  387. spi_master_put(master);
  388. return NULL;
  389. }
  390. spi->master = master;
  391. spi->dev.parent = &master->dev;
  392. spi->dev.bus = &spi_bus_type;
  393. spi->dev.release = spidev_release;
  394. spi->cs_gpio = -ENOENT;
  395. spin_lock_init(&spi->statistics.lock);
  396. device_initialize(&spi->dev);
  397. return spi;
  398. }
  399. EXPORT_SYMBOL_GPL(spi_alloc_device);
  400. static void spi_dev_set_name(struct spi_device *spi)
  401. {
  402. struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
  403. if (adev) {
  404. dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
  405. return;
  406. }
  407. dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
  408. spi->chip_select);
  409. }
  410. static int spi_dev_check(struct device *dev, void *data)
  411. {
  412. struct spi_device *spi = to_spi_device(dev);
  413. struct spi_device *new_spi = data;
  414. if (spi->master == new_spi->master &&
  415. spi->chip_select == new_spi->chip_select)
  416. return -EBUSY;
  417. return 0;
  418. }
  419. /**
  420. * spi_add_device - Add spi_device allocated with spi_alloc_device
  421. * @spi: spi_device to register
  422. *
  423. * Companion function to spi_alloc_device. Devices allocated with
  424. * spi_alloc_device can be added onto the spi bus with this function.
  425. *
  426. * Return: 0 on success; negative errno on failure
  427. */
  428. int spi_add_device(struct spi_device *spi)
  429. {
  430. static DEFINE_MUTEX(spi_add_lock);
  431. struct spi_master *master = spi->master;
  432. struct device *dev = master->dev.parent;
  433. int status;
  434. /* Chipselects are numbered 0..max; validate. */
  435. if (spi->chip_select >= master->num_chipselect) {
  436. dev_err(dev, "cs%d >= max %d\n",
  437. spi->chip_select,
  438. master->num_chipselect);
  439. return -EINVAL;
  440. }
  441. /* Set the bus ID string */
  442. spi_dev_set_name(spi);
  443. /* We need to make sure there's no other device with this
  444. * chipselect **BEFORE** we call setup(), else we'll trash
  445. * its configuration. Lock against concurrent add() calls.
  446. */
  447. mutex_lock(&spi_add_lock);
  448. status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
  449. if (status) {
  450. dev_err(dev, "chipselect %d already in use\n",
  451. spi->chip_select);
  452. goto done;
  453. }
  454. if (master->cs_gpios)
  455. spi->cs_gpio = master->cs_gpios[spi->chip_select];
  456. /* Drivers may modify this initial i/o setup, but will
  457. * normally rely on the device being setup. Devices
  458. * using SPI_CS_HIGH can't coexist well otherwise...
  459. */
  460. status = spi_setup(spi);
  461. if (status < 0) {
  462. dev_err(dev, "can't setup %s, status %d\n",
  463. dev_name(&spi->dev), status);
  464. goto done;
  465. }
  466. /* Device may be bound to an active driver when this returns */
  467. status = device_add(&spi->dev);
  468. if (status < 0)
  469. dev_err(dev, "can't add %s, status %d\n",
  470. dev_name(&spi->dev), status);
  471. else
  472. dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
  473. done:
  474. mutex_unlock(&spi_add_lock);
  475. return status;
  476. }
  477. EXPORT_SYMBOL_GPL(spi_add_device);
  478. /**
  479. * spi_new_device - instantiate one new SPI device
  480. * @master: Controller to which device is connected
  481. * @chip: Describes the SPI device
  482. * Context: can sleep
  483. *
  484. * On typical mainboards, this is purely internal; and it's not needed
  485. * after board init creates the hard-wired devices. Some development
  486. * platforms may not be able to use spi_register_board_info though, and
  487. * this is exported so that for example a USB or parport based adapter
  488. * driver could add devices (which it would learn about out-of-band).
  489. *
  490. * Return: the new device, or NULL.
  491. */
  492. struct spi_device *spi_new_device(struct spi_master *master,
  493. struct spi_board_info *chip)
  494. {
  495. struct spi_device *proxy;
  496. int status;
  497. /* NOTE: caller did any chip->bus_num checks necessary.
  498. *
  499. * Also, unless we change the return value convention to use
  500. * error-or-pointer (not NULL-or-pointer), troubleshootability
  501. * suggests syslogged diagnostics are best here (ugh).
  502. */
  503. proxy = spi_alloc_device(master);
  504. if (!proxy)
  505. return NULL;
  506. WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
  507. proxy->chip_select = chip->chip_select;
  508. proxy->max_speed_hz = chip->max_speed_hz;
  509. proxy->mode = chip->mode;
  510. proxy->irq = chip->irq;
  511. strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
  512. proxy->dev.platform_data = (void *) chip->platform_data;
  513. proxy->controller_data = chip->controller_data;
  514. proxy->controller_state = NULL;
  515. status = spi_add_device(proxy);
  516. if (status < 0) {
  517. spi_dev_put(proxy);
  518. return NULL;
  519. }
  520. return proxy;
  521. }
  522. EXPORT_SYMBOL_GPL(spi_new_device);
  523. /**
  524. * spi_unregister_device - unregister a single SPI device
  525. * @spi: spi_device to unregister
  526. *
  527. * Start making the passed SPI device vanish. Normally this would be handled
  528. * by spi_unregister_master().
  529. */
  530. void spi_unregister_device(struct spi_device *spi)
  531. {
  532. if (!spi)
  533. return;
  534. if (spi->dev.of_node)
  535. of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
  536. device_unregister(&spi->dev);
  537. }
  538. EXPORT_SYMBOL_GPL(spi_unregister_device);
  539. static void spi_match_master_to_boardinfo(struct spi_master *master,
  540. struct spi_board_info *bi)
  541. {
  542. struct spi_device *dev;
  543. if (master->bus_num != bi->bus_num)
  544. return;
  545. dev = spi_new_device(master, bi);
  546. if (!dev)
  547. dev_err(master->dev.parent, "can't create new device for %s\n",
  548. bi->modalias);
  549. }
  550. /**
  551. * spi_register_board_info - register SPI devices for a given board
  552. * @info: array of chip descriptors
  553. * @n: how many descriptors are provided
  554. * Context: can sleep
  555. *
  556. * Board-specific early init code calls this (probably during arch_initcall)
  557. * with segments of the SPI device table. Any device nodes are created later,
  558. * after the relevant parent SPI controller (bus_num) is defined. We keep
  559. * this table of devices forever, so that reloading a controller driver will
  560. * not make Linux forget about these hard-wired devices.
  561. *
  562. * Other code can also call this, e.g. a particular add-on board might provide
  563. * SPI devices through its expansion connector, so code initializing that board
  564. * would naturally declare its SPI devices.
  565. *
  566. * The board info passed can safely be __initdata ... but be careful of
  567. * any embedded pointers (platform_data, etc), they're copied as-is.
  568. *
  569. * Return: zero on success, else a negative error code.
  570. */
  571. int spi_register_board_info(struct spi_board_info const *info, unsigned n)
  572. {
  573. struct boardinfo *bi;
  574. int i;
  575. if (!n)
  576. return -EINVAL;
  577. bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
  578. if (!bi)
  579. return -ENOMEM;
  580. for (i = 0; i < n; i++, bi++, info++) {
  581. struct spi_master *master;
  582. memcpy(&bi->board_info, info, sizeof(*info));
  583. mutex_lock(&board_lock);
  584. list_add_tail(&bi->list, &board_list);
  585. list_for_each_entry(master, &spi_master_list, list)
  586. spi_match_master_to_boardinfo(master, &bi->board_info);
  587. mutex_unlock(&board_lock);
  588. }
  589. return 0;
  590. }
  591. /*-------------------------------------------------------------------------*/
  592. static void spi_set_cs(struct spi_device *spi, bool enable)
  593. {
  594. if (spi->mode & SPI_CS_HIGH)
  595. enable = !enable;
  596. if (gpio_is_valid(spi->cs_gpio))
  597. gpio_set_value(spi->cs_gpio, !enable);
  598. else if (spi->master->set_cs)
  599. spi->master->set_cs(spi, !enable);
  600. }
  601. #ifdef CONFIG_HAS_DMA
  602. static int spi_map_buf(struct spi_master *master, struct device *dev,
  603. struct sg_table *sgt, void *buf, size_t len,
  604. enum dma_data_direction dir)
  605. {
  606. const bool vmalloced_buf = is_vmalloc_addr(buf);
  607. int desc_len;
  608. int sgs;
  609. struct page *vm_page;
  610. void *sg_buf;
  611. size_t min;
  612. int i, ret;
  613. if (vmalloced_buf) {
  614. desc_len = PAGE_SIZE;
  615. sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
  616. } else {
  617. desc_len = master->max_dma_len;
  618. sgs = DIV_ROUND_UP(len, desc_len);
  619. }
  620. ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
  621. if (ret != 0)
  622. return ret;
  623. for (i = 0; i < sgs; i++) {
  624. if (vmalloced_buf) {
  625. min = min_t(size_t,
  626. len, desc_len - offset_in_page(buf));
  627. vm_page = vmalloc_to_page(buf);
  628. if (!vm_page) {
  629. sg_free_table(sgt);
  630. return -ENOMEM;
  631. }
  632. sg_set_page(&sgt->sgl[i], vm_page,
  633. min, offset_in_page(buf));
  634. } else {
  635. min = min_t(size_t, len, desc_len);
  636. sg_buf = buf;
  637. sg_set_buf(&sgt->sgl[i], sg_buf, min);
  638. }
  639. buf += min;
  640. len -= min;
  641. }
  642. ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
  643. if (!ret)
  644. ret = -ENOMEM;
  645. if (ret < 0) {
  646. sg_free_table(sgt);
  647. return ret;
  648. }
  649. sgt->nents = ret;
  650. return 0;
  651. }
  652. static void spi_unmap_buf(struct spi_master *master, struct device *dev,
  653. struct sg_table *sgt, enum dma_data_direction dir)
  654. {
  655. if (sgt->orig_nents) {
  656. dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
  657. sg_free_table(sgt);
  658. }
  659. }
  660. static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
  661. {
  662. struct device *tx_dev, *rx_dev;
  663. struct spi_transfer *xfer;
  664. int ret;
  665. if (!master->can_dma)
  666. return 0;
  667. if (master->dma_tx)
  668. tx_dev = master->dma_tx->device->dev;
  669. else
  670. tx_dev = &master->dev;
  671. if (master->dma_rx)
  672. rx_dev = master->dma_rx->device->dev;
  673. else
  674. rx_dev = &master->dev;
  675. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  676. if (!master->can_dma(master, msg->spi, xfer))
  677. continue;
  678. if (xfer->tx_buf != NULL) {
  679. ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
  680. (void *)xfer->tx_buf, xfer->len,
  681. DMA_TO_DEVICE);
  682. if (ret != 0)
  683. return ret;
  684. }
  685. if (xfer->rx_buf != NULL) {
  686. ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
  687. xfer->rx_buf, xfer->len,
  688. DMA_FROM_DEVICE);
  689. if (ret != 0) {
  690. spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
  691. DMA_TO_DEVICE);
  692. return ret;
  693. }
  694. }
  695. }
  696. master->cur_msg_mapped = true;
  697. return 0;
  698. }
  699. static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
  700. {
  701. struct spi_transfer *xfer;
  702. struct device *tx_dev, *rx_dev;
  703. if (!master->cur_msg_mapped || !master->can_dma)
  704. return 0;
  705. if (master->dma_tx)
  706. tx_dev = master->dma_tx->device->dev;
  707. else
  708. tx_dev = &master->dev;
  709. if (master->dma_rx)
  710. rx_dev = master->dma_rx->device->dev;
  711. else
  712. rx_dev = &master->dev;
  713. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  714. if (!master->can_dma(master, msg->spi, xfer))
  715. continue;
  716. spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
  717. spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
  718. }
  719. return 0;
  720. }
  721. #else /* !CONFIG_HAS_DMA */
  722. static inline int __spi_map_msg(struct spi_master *master,
  723. struct spi_message *msg)
  724. {
  725. return 0;
  726. }
  727. static inline int __spi_unmap_msg(struct spi_master *master,
  728. struct spi_message *msg)
  729. {
  730. return 0;
  731. }
  732. #endif /* !CONFIG_HAS_DMA */
  733. static inline int spi_unmap_msg(struct spi_master *master,
  734. struct spi_message *msg)
  735. {
  736. struct spi_transfer *xfer;
  737. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  738. /*
  739. * Restore the original value of tx_buf or rx_buf if they are
  740. * NULL.
  741. */
  742. if (xfer->tx_buf == master->dummy_tx)
  743. xfer->tx_buf = NULL;
  744. if (xfer->rx_buf == master->dummy_rx)
  745. xfer->rx_buf = NULL;
  746. }
  747. return __spi_unmap_msg(master, msg);
  748. }
  749. static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
  750. {
  751. struct spi_transfer *xfer;
  752. void *tmp;
  753. unsigned int max_tx, max_rx;
  754. if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
  755. max_tx = 0;
  756. max_rx = 0;
  757. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  758. if ((master->flags & SPI_MASTER_MUST_TX) &&
  759. !xfer->tx_buf)
  760. max_tx = max(xfer->len, max_tx);
  761. if ((master->flags & SPI_MASTER_MUST_RX) &&
  762. !xfer->rx_buf)
  763. max_rx = max(xfer->len, max_rx);
  764. }
  765. if (max_tx) {
  766. tmp = krealloc(master->dummy_tx, max_tx,
  767. GFP_KERNEL | GFP_DMA);
  768. if (!tmp)
  769. return -ENOMEM;
  770. master->dummy_tx = tmp;
  771. memset(tmp, 0, max_tx);
  772. }
  773. if (max_rx) {
  774. tmp = krealloc(master->dummy_rx, max_rx,
  775. GFP_KERNEL | GFP_DMA);
  776. if (!tmp)
  777. return -ENOMEM;
  778. master->dummy_rx = tmp;
  779. }
  780. if (max_tx || max_rx) {
  781. list_for_each_entry(xfer, &msg->transfers,
  782. transfer_list) {
  783. if (!xfer->tx_buf)
  784. xfer->tx_buf = master->dummy_tx;
  785. if (!xfer->rx_buf)
  786. xfer->rx_buf = master->dummy_rx;
  787. }
  788. }
  789. }
  790. return __spi_map_msg(master, msg);
  791. }
  792. /*
  793. * spi_transfer_one_message - Default implementation of transfer_one_message()
  794. *
  795. * This is a standard implementation of transfer_one_message() for
  796. * drivers which impelment a transfer_one() operation. It provides
  797. * standard handling of delays and chip select management.
  798. */
  799. static int spi_transfer_one_message(struct spi_master *master,
  800. struct spi_message *msg)
  801. {
  802. struct spi_transfer *xfer;
  803. bool keep_cs = false;
  804. int ret = 0;
  805. unsigned long ms = 1;
  806. struct spi_statistics *statm = &master->statistics;
  807. struct spi_statistics *stats = &msg->spi->statistics;
  808. spi_set_cs(msg->spi, true);
  809. SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
  810. SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
  811. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  812. trace_spi_transfer_start(msg, xfer);
  813. spi_statistics_add_transfer_stats(statm, xfer, master);
  814. spi_statistics_add_transfer_stats(stats, xfer, master);
  815. if (xfer->tx_buf || xfer->rx_buf) {
  816. reinit_completion(&master->xfer_completion);
  817. ret = master->transfer_one(master, msg->spi, xfer);
  818. if (ret < 0) {
  819. SPI_STATISTICS_INCREMENT_FIELD(statm,
  820. errors);
  821. SPI_STATISTICS_INCREMENT_FIELD(stats,
  822. errors);
  823. dev_err(&msg->spi->dev,
  824. "SPI transfer failed: %d\n", ret);
  825. goto out;
  826. }
  827. if (ret > 0) {
  828. ret = 0;
  829. ms = xfer->len * 8 * 1000 / xfer->speed_hz;
  830. ms += ms + 100; /* some tolerance */
  831. ms = wait_for_completion_timeout(&master->xfer_completion,
  832. msecs_to_jiffies(ms));
  833. }
  834. if (ms == 0) {
  835. SPI_STATISTICS_INCREMENT_FIELD(statm,
  836. timedout);
  837. SPI_STATISTICS_INCREMENT_FIELD(stats,
  838. timedout);
  839. dev_err(&msg->spi->dev,
  840. "SPI transfer timed out\n");
  841. msg->status = -ETIMEDOUT;
  842. }
  843. } else {
  844. if (xfer->len)
  845. dev_err(&msg->spi->dev,
  846. "Bufferless transfer has length %u\n",
  847. xfer->len);
  848. }
  849. trace_spi_transfer_stop(msg, xfer);
  850. if (msg->status != -EINPROGRESS)
  851. goto out;
  852. if (xfer->delay_usecs)
  853. udelay(xfer->delay_usecs);
  854. if (xfer->cs_change) {
  855. if (list_is_last(&xfer->transfer_list,
  856. &msg->transfers)) {
  857. keep_cs = true;
  858. } else {
  859. spi_set_cs(msg->spi, false);
  860. udelay(10);
  861. spi_set_cs(msg->spi, true);
  862. }
  863. }
  864. msg->actual_length += xfer->len;
  865. }
  866. out:
  867. if (ret != 0 || !keep_cs)
  868. spi_set_cs(msg->spi, false);
  869. if (msg->status == -EINPROGRESS)
  870. msg->status = ret;
  871. if (msg->status && master->handle_err)
  872. master->handle_err(master, msg);
  873. spi_res_release(master, msg);
  874. spi_finalize_current_message(master);
  875. return ret;
  876. }
  877. /**
  878. * spi_finalize_current_transfer - report completion of a transfer
  879. * @master: the master reporting completion
  880. *
  881. * Called by SPI drivers using the core transfer_one_message()
  882. * implementation to notify it that the current interrupt driven
  883. * transfer has finished and the next one may be scheduled.
  884. */
  885. void spi_finalize_current_transfer(struct spi_master *master)
  886. {
  887. complete(&master->xfer_completion);
  888. }
  889. EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
  890. /**
  891. * __spi_pump_messages - function which processes spi message queue
  892. * @master: master to process queue for
  893. * @in_kthread: true if we are in the context of the message pump thread
  894. *
  895. * This function checks if there is any spi message in the queue that
  896. * needs processing and if so call out to the driver to initialize hardware
  897. * and transfer each message.
  898. *
  899. * Note that it is called both from the kthread itself and also from
  900. * inside spi_sync(); the queue extraction handling at the top of the
  901. * function should deal with this safely.
  902. */
  903. static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
  904. {
  905. unsigned long flags;
  906. bool was_busy = false;
  907. int ret;
  908. /* Lock queue */
  909. spin_lock_irqsave(&master->queue_lock, flags);
  910. /* Make sure we are not already running a message */
  911. if (master->cur_msg) {
  912. spin_unlock_irqrestore(&master->queue_lock, flags);
  913. return;
  914. }
  915. /* If another context is idling the device then defer */
  916. if (master->idling) {
  917. queue_kthread_work(&master->kworker, &master->pump_messages);
  918. spin_unlock_irqrestore(&master->queue_lock, flags);
  919. return;
  920. }
  921. /* Check if the queue is idle */
  922. if (list_empty(&master->queue) || !master->running) {
  923. if (!master->busy) {
  924. spin_unlock_irqrestore(&master->queue_lock, flags);
  925. return;
  926. }
  927. /* Only do teardown in the thread */
  928. if (!in_kthread) {
  929. queue_kthread_work(&master->kworker,
  930. &master->pump_messages);
  931. spin_unlock_irqrestore(&master->queue_lock, flags);
  932. return;
  933. }
  934. master->busy = false;
  935. master->idling = true;
  936. spin_unlock_irqrestore(&master->queue_lock, flags);
  937. kfree(master->dummy_rx);
  938. master->dummy_rx = NULL;
  939. kfree(master->dummy_tx);
  940. master->dummy_tx = NULL;
  941. if (master->unprepare_transfer_hardware &&
  942. master->unprepare_transfer_hardware(master))
  943. dev_err(&master->dev,
  944. "failed to unprepare transfer hardware\n");
  945. if (master->auto_runtime_pm) {
  946. pm_runtime_mark_last_busy(master->dev.parent);
  947. pm_runtime_put_autosuspend(master->dev.parent);
  948. }
  949. trace_spi_master_idle(master);
  950. spin_lock_irqsave(&master->queue_lock, flags);
  951. master->idling = false;
  952. spin_unlock_irqrestore(&master->queue_lock, flags);
  953. return;
  954. }
  955. /* Extract head of queue */
  956. master->cur_msg =
  957. list_first_entry(&master->queue, struct spi_message, queue);
  958. list_del_init(&master->cur_msg->queue);
  959. if (master->busy)
  960. was_busy = true;
  961. else
  962. master->busy = true;
  963. spin_unlock_irqrestore(&master->queue_lock, flags);
  964. if (!was_busy && master->auto_runtime_pm) {
  965. ret = pm_runtime_get_sync(master->dev.parent);
  966. if (ret < 0) {
  967. dev_err(&master->dev, "Failed to power device: %d\n",
  968. ret);
  969. return;
  970. }
  971. }
  972. if (!was_busy)
  973. trace_spi_master_busy(master);
  974. if (!was_busy && master->prepare_transfer_hardware) {
  975. ret = master->prepare_transfer_hardware(master);
  976. if (ret) {
  977. dev_err(&master->dev,
  978. "failed to prepare transfer hardware\n");
  979. if (master->auto_runtime_pm)
  980. pm_runtime_put(master->dev.parent);
  981. return;
  982. }
  983. }
  984. trace_spi_message_start(master->cur_msg);
  985. if (master->prepare_message) {
  986. ret = master->prepare_message(master, master->cur_msg);
  987. if (ret) {
  988. dev_err(&master->dev,
  989. "failed to prepare message: %d\n", ret);
  990. master->cur_msg->status = ret;
  991. spi_finalize_current_message(master);
  992. return;
  993. }
  994. master->cur_msg_prepared = true;
  995. }
  996. ret = spi_map_msg(master, master->cur_msg);
  997. if (ret) {
  998. master->cur_msg->status = ret;
  999. spi_finalize_current_message(master);
  1000. return;
  1001. }
  1002. ret = master->transfer_one_message(master, master->cur_msg);
  1003. if (ret) {
  1004. dev_err(&master->dev,
  1005. "failed to transfer one message from queue\n");
  1006. return;
  1007. }
  1008. }
  1009. /**
  1010. * spi_pump_messages - kthread work function which processes spi message queue
  1011. * @work: pointer to kthread work struct contained in the master struct
  1012. */
  1013. static void spi_pump_messages(struct kthread_work *work)
  1014. {
  1015. struct spi_master *master =
  1016. container_of(work, struct spi_master, pump_messages);
  1017. __spi_pump_messages(master, true);
  1018. }
  1019. static int spi_init_queue(struct spi_master *master)
  1020. {
  1021. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1022. master->running = false;
  1023. master->busy = false;
  1024. init_kthread_worker(&master->kworker);
  1025. master->kworker_task = kthread_run(kthread_worker_fn,
  1026. &master->kworker, "%s",
  1027. dev_name(&master->dev));
  1028. if (IS_ERR(master->kworker_task)) {
  1029. dev_err(&master->dev, "failed to create message pump task\n");
  1030. return PTR_ERR(master->kworker_task);
  1031. }
  1032. init_kthread_work(&master->pump_messages, spi_pump_messages);
  1033. /*
  1034. * Master config will indicate if this controller should run the
  1035. * message pump with high (realtime) priority to reduce the transfer
  1036. * latency on the bus by minimising the delay between a transfer
  1037. * request and the scheduling of the message pump thread. Without this
  1038. * setting the message pump thread will remain at default priority.
  1039. */
  1040. if (master->rt) {
  1041. dev_info(&master->dev,
  1042. "will run message pump with realtime priority\n");
  1043. sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
  1044. }
  1045. return 0;
  1046. }
  1047. /**
  1048. * spi_get_next_queued_message() - called by driver to check for queued
  1049. * messages
  1050. * @master: the master to check for queued messages
  1051. *
  1052. * If there are more messages in the queue, the next message is returned from
  1053. * this call.
  1054. *
  1055. * Return: the next message in the queue, else NULL if the queue is empty.
  1056. */
  1057. struct spi_message *spi_get_next_queued_message(struct spi_master *master)
  1058. {
  1059. struct spi_message *next;
  1060. unsigned long flags;
  1061. /* get a pointer to the next message, if any */
  1062. spin_lock_irqsave(&master->queue_lock, flags);
  1063. next = list_first_entry_or_null(&master->queue, struct spi_message,
  1064. queue);
  1065. spin_unlock_irqrestore(&master->queue_lock, flags);
  1066. return next;
  1067. }
  1068. EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
  1069. /**
  1070. * spi_finalize_current_message() - the current message is complete
  1071. * @master: the master to return the message to
  1072. *
  1073. * Called by the driver to notify the core that the message in the front of the
  1074. * queue is complete and can be removed from the queue.
  1075. */
  1076. void spi_finalize_current_message(struct spi_master *master)
  1077. {
  1078. struct spi_message *mesg;
  1079. unsigned long flags;
  1080. int ret;
  1081. spin_lock_irqsave(&master->queue_lock, flags);
  1082. mesg = master->cur_msg;
  1083. spin_unlock_irqrestore(&master->queue_lock, flags);
  1084. spi_unmap_msg(master, mesg);
  1085. if (master->cur_msg_prepared && master->unprepare_message) {
  1086. ret = master->unprepare_message(master, mesg);
  1087. if (ret) {
  1088. dev_err(&master->dev,
  1089. "failed to unprepare message: %d\n", ret);
  1090. }
  1091. }
  1092. spin_lock_irqsave(&master->queue_lock, flags);
  1093. master->cur_msg = NULL;
  1094. master->cur_msg_prepared = false;
  1095. queue_kthread_work(&master->kworker, &master->pump_messages);
  1096. spin_unlock_irqrestore(&master->queue_lock, flags);
  1097. trace_spi_message_done(mesg);
  1098. mesg->state = NULL;
  1099. if (mesg->complete)
  1100. mesg->complete(mesg->context);
  1101. }
  1102. EXPORT_SYMBOL_GPL(spi_finalize_current_message);
  1103. static int spi_start_queue(struct spi_master *master)
  1104. {
  1105. unsigned long flags;
  1106. spin_lock_irqsave(&master->queue_lock, flags);
  1107. if (master->running || master->busy) {
  1108. spin_unlock_irqrestore(&master->queue_lock, flags);
  1109. return -EBUSY;
  1110. }
  1111. master->running = true;
  1112. master->cur_msg = NULL;
  1113. spin_unlock_irqrestore(&master->queue_lock, flags);
  1114. queue_kthread_work(&master->kworker, &master->pump_messages);
  1115. return 0;
  1116. }
  1117. static int spi_stop_queue(struct spi_master *master)
  1118. {
  1119. unsigned long flags;
  1120. unsigned limit = 500;
  1121. int ret = 0;
  1122. spin_lock_irqsave(&master->queue_lock, flags);
  1123. /*
  1124. * This is a bit lame, but is optimized for the common execution path.
  1125. * A wait_queue on the master->busy could be used, but then the common
  1126. * execution path (pump_messages) would be required to call wake_up or
  1127. * friends on every SPI message. Do this instead.
  1128. */
  1129. while ((!list_empty(&master->queue) || master->busy) && limit--) {
  1130. spin_unlock_irqrestore(&master->queue_lock, flags);
  1131. usleep_range(10000, 11000);
  1132. spin_lock_irqsave(&master->queue_lock, flags);
  1133. }
  1134. if (!list_empty(&master->queue) || master->busy)
  1135. ret = -EBUSY;
  1136. else
  1137. master->running = false;
  1138. spin_unlock_irqrestore(&master->queue_lock, flags);
  1139. if (ret) {
  1140. dev_warn(&master->dev,
  1141. "could not stop message queue\n");
  1142. return ret;
  1143. }
  1144. return ret;
  1145. }
  1146. static int spi_destroy_queue(struct spi_master *master)
  1147. {
  1148. int ret;
  1149. ret = spi_stop_queue(master);
  1150. /*
  1151. * flush_kthread_worker will block until all work is done.
  1152. * If the reason that stop_queue timed out is that the work will never
  1153. * finish, then it does no good to call flush/stop thread, so
  1154. * return anyway.
  1155. */
  1156. if (ret) {
  1157. dev_err(&master->dev, "problem destroying queue\n");
  1158. return ret;
  1159. }
  1160. flush_kthread_worker(&master->kworker);
  1161. kthread_stop(master->kworker_task);
  1162. return 0;
  1163. }
  1164. static int __spi_queued_transfer(struct spi_device *spi,
  1165. struct spi_message *msg,
  1166. bool need_pump)
  1167. {
  1168. struct spi_master *master = spi->master;
  1169. unsigned long flags;
  1170. spin_lock_irqsave(&master->queue_lock, flags);
  1171. if (!master->running) {
  1172. spin_unlock_irqrestore(&master->queue_lock, flags);
  1173. return -ESHUTDOWN;
  1174. }
  1175. msg->actual_length = 0;
  1176. msg->status = -EINPROGRESS;
  1177. list_add_tail(&msg->queue, &master->queue);
  1178. if (!master->busy && need_pump)
  1179. queue_kthread_work(&master->kworker, &master->pump_messages);
  1180. spin_unlock_irqrestore(&master->queue_lock, flags);
  1181. return 0;
  1182. }
  1183. /**
  1184. * spi_queued_transfer - transfer function for queued transfers
  1185. * @spi: spi device which is requesting transfer
  1186. * @msg: spi message which is to handled is queued to driver queue
  1187. *
  1188. * Return: zero on success, else a negative error code.
  1189. */
  1190. static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
  1191. {
  1192. return __spi_queued_transfer(spi, msg, true);
  1193. }
  1194. static int spi_master_initialize_queue(struct spi_master *master)
  1195. {
  1196. int ret;
  1197. master->transfer = spi_queued_transfer;
  1198. if (!master->transfer_one_message)
  1199. master->transfer_one_message = spi_transfer_one_message;
  1200. /* Initialize and start queue */
  1201. ret = spi_init_queue(master);
  1202. if (ret) {
  1203. dev_err(&master->dev, "problem initializing queue\n");
  1204. goto err_init_queue;
  1205. }
  1206. master->queued = true;
  1207. ret = spi_start_queue(master);
  1208. if (ret) {
  1209. dev_err(&master->dev, "problem starting queue\n");
  1210. goto err_start_queue;
  1211. }
  1212. return 0;
  1213. err_start_queue:
  1214. spi_destroy_queue(master);
  1215. err_init_queue:
  1216. return ret;
  1217. }
  1218. /*-------------------------------------------------------------------------*/
  1219. #if defined(CONFIG_OF)
  1220. static struct spi_device *
  1221. of_register_spi_device(struct spi_master *master, struct device_node *nc)
  1222. {
  1223. struct spi_device *spi;
  1224. int rc;
  1225. u32 value;
  1226. /* Alloc an spi_device */
  1227. spi = spi_alloc_device(master);
  1228. if (!spi) {
  1229. dev_err(&master->dev, "spi_device alloc error for %s\n",
  1230. nc->full_name);
  1231. rc = -ENOMEM;
  1232. goto err_out;
  1233. }
  1234. /* Select device driver */
  1235. rc = of_modalias_node(nc, spi->modalias,
  1236. sizeof(spi->modalias));
  1237. if (rc < 0) {
  1238. dev_err(&master->dev, "cannot find modalias for %s\n",
  1239. nc->full_name);
  1240. goto err_out;
  1241. }
  1242. /* Device address */
  1243. rc = of_property_read_u32(nc, "reg", &value);
  1244. if (rc) {
  1245. dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
  1246. nc->full_name, rc);
  1247. goto err_out;
  1248. }
  1249. spi->chip_select = value;
  1250. /* Mode (clock phase/polarity/etc.) */
  1251. if (of_find_property(nc, "spi-cpha", NULL))
  1252. spi->mode |= SPI_CPHA;
  1253. if (of_find_property(nc, "spi-cpol", NULL))
  1254. spi->mode |= SPI_CPOL;
  1255. if (of_find_property(nc, "spi-cs-high", NULL))
  1256. spi->mode |= SPI_CS_HIGH;
  1257. if (of_find_property(nc, "spi-3wire", NULL))
  1258. spi->mode |= SPI_3WIRE;
  1259. if (of_find_property(nc, "spi-lsb-first", NULL))
  1260. spi->mode |= SPI_LSB_FIRST;
  1261. /* Device DUAL/QUAD mode */
  1262. if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
  1263. switch (value) {
  1264. case 1:
  1265. break;
  1266. case 2:
  1267. spi->mode |= SPI_TX_DUAL;
  1268. break;
  1269. case 4:
  1270. spi->mode |= SPI_TX_QUAD;
  1271. break;
  1272. default:
  1273. dev_warn(&master->dev,
  1274. "spi-tx-bus-width %d not supported\n",
  1275. value);
  1276. break;
  1277. }
  1278. }
  1279. if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
  1280. switch (value) {
  1281. case 1:
  1282. break;
  1283. case 2:
  1284. spi->mode |= SPI_RX_DUAL;
  1285. break;
  1286. case 4:
  1287. spi->mode |= SPI_RX_QUAD;
  1288. break;
  1289. default:
  1290. dev_warn(&master->dev,
  1291. "spi-rx-bus-width %d not supported\n",
  1292. value);
  1293. break;
  1294. }
  1295. }
  1296. /* Device speed */
  1297. rc = of_property_read_u32(nc, "spi-max-frequency", &value);
  1298. if (rc) {
  1299. dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
  1300. nc->full_name, rc);
  1301. goto err_out;
  1302. }
  1303. spi->max_speed_hz = value;
  1304. /* Store a pointer to the node in the device structure */
  1305. of_node_get(nc);
  1306. spi->dev.of_node = nc;
  1307. /* Register the new device */
  1308. rc = spi_add_device(spi);
  1309. if (rc) {
  1310. dev_err(&master->dev, "spi_device register error %s\n",
  1311. nc->full_name);
  1312. goto err_out;
  1313. }
  1314. return spi;
  1315. err_out:
  1316. spi_dev_put(spi);
  1317. return ERR_PTR(rc);
  1318. }
  1319. /**
  1320. * of_register_spi_devices() - Register child devices onto the SPI bus
  1321. * @master: Pointer to spi_master device
  1322. *
  1323. * Registers an spi_device for each child node of master node which has a 'reg'
  1324. * property.
  1325. */
  1326. static void of_register_spi_devices(struct spi_master *master)
  1327. {
  1328. struct spi_device *spi;
  1329. struct device_node *nc;
  1330. if (!master->dev.of_node)
  1331. return;
  1332. for_each_available_child_of_node(master->dev.of_node, nc) {
  1333. if (of_node_test_and_set_flag(nc, OF_POPULATED))
  1334. continue;
  1335. spi = of_register_spi_device(master, nc);
  1336. if (IS_ERR(spi))
  1337. dev_warn(&master->dev, "Failed to create SPI device for %s\n",
  1338. nc->full_name);
  1339. }
  1340. }
  1341. #else
  1342. static void of_register_spi_devices(struct spi_master *master) { }
  1343. #endif
  1344. #ifdef CONFIG_ACPI
  1345. static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
  1346. {
  1347. struct spi_device *spi = data;
  1348. if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
  1349. struct acpi_resource_spi_serialbus *sb;
  1350. sb = &ares->data.spi_serial_bus;
  1351. if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
  1352. spi->chip_select = sb->device_selection;
  1353. spi->max_speed_hz = sb->connection_speed;
  1354. if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
  1355. spi->mode |= SPI_CPHA;
  1356. if (sb->clock_polarity == ACPI_SPI_START_HIGH)
  1357. spi->mode |= SPI_CPOL;
  1358. if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
  1359. spi->mode |= SPI_CS_HIGH;
  1360. }
  1361. } else if (spi->irq < 0) {
  1362. struct resource r;
  1363. if (acpi_dev_resource_interrupt(ares, 0, &r))
  1364. spi->irq = r.start;
  1365. }
  1366. /* Always tell the ACPI core to skip this resource */
  1367. return 1;
  1368. }
  1369. static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
  1370. void *data, void **return_value)
  1371. {
  1372. struct spi_master *master = data;
  1373. struct list_head resource_list;
  1374. struct acpi_device *adev;
  1375. struct spi_device *spi;
  1376. int ret;
  1377. if (acpi_bus_get_device(handle, &adev))
  1378. return AE_OK;
  1379. if (acpi_bus_get_status(adev) || !adev->status.present)
  1380. return AE_OK;
  1381. spi = spi_alloc_device(master);
  1382. if (!spi) {
  1383. dev_err(&master->dev, "failed to allocate SPI device for %s\n",
  1384. dev_name(&adev->dev));
  1385. return AE_NO_MEMORY;
  1386. }
  1387. ACPI_COMPANION_SET(&spi->dev, adev);
  1388. spi->irq = -1;
  1389. INIT_LIST_HEAD(&resource_list);
  1390. ret = acpi_dev_get_resources(adev, &resource_list,
  1391. acpi_spi_add_resource, spi);
  1392. acpi_dev_free_resource_list(&resource_list);
  1393. if (ret < 0 || !spi->max_speed_hz) {
  1394. spi_dev_put(spi);
  1395. return AE_OK;
  1396. }
  1397. if (spi->irq < 0)
  1398. spi->irq = acpi_dev_gpio_irq_get(adev, 0);
  1399. adev->power.flags.ignore_parent = true;
  1400. strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
  1401. if (spi_add_device(spi)) {
  1402. adev->power.flags.ignore_parent = false;
  1403. dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
  1404. dev_name(&adev->dev));
  1405. spi_dev_put(spi);
  1406. }
  1407. return AE_OK;
  1408. }
  1409. static void acpi_register_spi_devices(struct spi_master *master)
  1410. {
  1411. acpi_status status;
  1412. acpi_handle handle;
  1413. handle = ACPI_HANDLE(master->dev.parent);
  1414. if (!handle)
  1415. return;
  1416. status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
  1417. acpi_spi_add_device, NULL,
  1418. master, NULL);
  1419. if (ACPI_FAILURE(status))
  1420. dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
  1421. }
  1422. #else
  1423. static inline void acpi_register_spi_devices(struct spi_master *master) {}
  1424. #endif /* CONFIG_ACPI */
  1425. static void spi_master_release(struct device *dev)
  1426. {
  1427. struct spi_master *master;
  1428. master = container_of(dev, struct spi_master, dev);
  1429. kfree(master);
  1430. }
  1431. static struct class spi_master_class = {
  1432. .name = "spi_master",
  1433. .owner = THIS_MODULE,
  1434. .dev_release = spi_master_release,
  1435. .dev_groups = spi_master_groups,
  1436. };
  1437. /**
  1438. * spi_alloc_master - allocate SPI master controller
  1439. * @dev: the controller, possibly using the platform_bus
  1440. * @size: how much zeroed driver-private data to allocate; the pointer to this
  1441. * memory is in the driver_data field of the returned device,
  1442. * accessible with spi_master_get_devdata().
  1443. * Context: can sleep
  1444. *
  1445. * This call is used only by SPI master controller drivers, which are the
  1446. * only ones directly touching chip registers. It's how they allocate
  1447. * an spi_master structure, prior to calling spi_register_master().
  1448. *
  1449. * This must be called from context that can sleep.
  1450. *
  1451. * The caller is responsible for assigning the bus number and initializing
  1452. * the master's methods before calling spi_register_master(); and (after errors
  1453. * adding the device) calling spi_master_put() to prevent a memory leak.
  1454. *
  1455. * Return: the SPI master structure on success, else NULL.
  1456. */
  1457. struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
  1458. {
  1459. struct spi_master *master;
  1460. if (!dev)
  1461. return NULL;
  1462. master = kzalloc(size + sizeof(*master), GFP_KERNEL);
  1463. if (!master)
  1464. return NULL;
  1465. device_initialize(&master->dev);
  1466. master->bus_num = -1;
  1467. master->num_chipselect = 1;
  1468. master->dev.class = &spi_master_class;
  1469. master->dev.parent = dev;
  1470. spi_master_set_devdata(master, &master[1]);
  1471. return master;
  1472. }
  1473. EXPORT_SYMBOL_GPL(spi_alloc_master);
  1474. #ifdef CONFIG_OF
  1475. static int of_spi_register_master(struct spi_master *master)
  1476. {
  1477. int nb, i, *cs;
  1478. struct device_node *np = master->dev.of_node;
  1479. if (!np)
  1480. return 0;
  1481. nb = of_gpio_named_count(np, "cs-gpios");
  1482. master->num_chipselect = max_t(int, nb, master->num_chipselect);
  1483. /* Return error only for an incorrectly formed cs-gpios property */
  1484. if (nb == 0 || nb == -ENOENT)
  1485. return 0;
  1486. else if (nb < 0)
  1487. return nb;
  1488. cs = devm_kzalloc(&master->dev,
  1489. sizeof(int) * master->num_chipselect,
  1490. GFP_KERNEL);
  1491. master->cs_gpios = cs;
  1492. if (!master->cs_gpios)
  1493. return -ENOMEM;
  1494. for (i = 0; i < master->num_chipselect; i++)
  1495. cs[i] = -ENOENT;
  1496. for (i = 0; i < nb; i++)
  1497. cs[i] = of_get_named_gpio(np, "cs-gpios", i);
  1498. return 0;
  1499. }
  1500. #else
  1501. static int of_spi_register_master(struct spi_master *master)
  1502. {
  1503. return 0;
  1504. }
  1505. #endif
  1506. /**
  1507. * spi_register_master - register SPI master controller
  1508. * @master: initialized master, originally from spi_alloc_master()
  1509. * Context: can sleep
  1510. *
  1511. * SPI master controllers connect to their drivers using some non-SPI bus,
  1512. * such as the platform bus. The final stage of probe() in that code
  1513. * includes calling spi_register_master() to hook up to this SPI bus glue.
  1514. *
  1515. * SPI controllers use board specific (often SOC specific) bus numbers,
  1516. * and board-specific addressing for SPI devices combines those numbers
  1517. * with chip select numbers. Since SPI does not directly support dynamic
  1518. * device identification, boards need configuration tables telling which
  1519. * chip is at which address.
  1520. *
  1521. * This must be called from context that can sleep. It returns zero on
  1522. * success, else a negative error code (dropping the master's refcount).
  1523. * After a successful return, the caller is responsible for calling
  1524. * spi_unregister_master().
  1525. *
  1526. * Return: zero on success, else a negative error code.
  1527. */
  1528. int spi_register_master(struct spi_master *master)
  1529. {
  1530. static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
  1531. struct device *dev = master->dev.parent;
  1532. struct boardinfo *bi;
  1533. int status = -ENODEV;
  1534. int dynamic = 0;
  1535. if (!dev)
  1536. return -ENODEV;
  1537. status = of_spi_register_master(master);
  1538. if (status)
  1539. return status;
  1540. /* even if it's just one always-selected device, there must
  1541. * be at least one chipselect
  1542. */
  1543. if (master->num_chipselect == 0)
  1544. return -EINVAL;
  1545. if ((master->bus_num < 0) && master->dev.of_node)
  1546. master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
  1547. /* convention: dynamically assigned bus IDs count down from the max */
  1548. if (master->bus_num < 0) {
  1549. /* FIXME switch to an IDR based scheme, something like
  1550. * I2C now uses, so we can't run out of "dynamic" IDs
  1551. */
  1552. master->bus_num = atomic_dec_return(&dyn_bus_id);
  1553. dynamic = 1;
  1554. }
  1555. INIT_LIST_HEAD(&master->queue);
  1556. spin_lock_init(&master->queue_lock);
  1557. spin_lock_init(&master->bus_lock_spinlock);
  1558. mutex_init(&master->bus_lock_mutex);
  1559. master->bus_lock_flag = 0;
  1560. init_completion(&master->xfer_completion);
  1561. if (!master->max_dma_len)
  1562. master->max_dma_len = INT_MAX;
  1563. /* register the device, then userspace will see it.
  1564. * registration fails if the bus ID is in use.
  1565. */
  1566. dev_set_name(&master->dev, "spi%u", master->bus_num);
  1567. status = device_add(&master->dev);
  1568. if (status < 0)
  1569. goto done;
  1570. dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
  1571. dynamic ? " (dynamic)" : "");
  1572. /* If we're using a queued driver, start the queue */
  1573. if (master->transfer)
  1574. dev_info(dev, "master is unqueued, this is deprecated\n");
  1575. else {
  1576. status = spi_master_initialize_queue(master);
  1577. if (status) {
  1578. device_del(&master->dev);
  1579. goto done;
  1580. }
  1581. }
  1582. /* add statistics */
  1583. spin_lock_init(&master->statistics.lock);
  1584. mutex_lock(&board_lock);
  1585. list_add_tail(&master->list, &spi_master_list);
  1586. list_for_each_entry(bi, &board_list, list)
  1587. spi_match_master_to_boardinfo(master, &bi->board_info);
  1588. mutex_unlock(&board_lock);
  1589. /* Register devices from the device tree and ACPI */
  1590. of_register_spi_devices(master);
  1591. acpi_register_spi_devices(master);
  1592. done:
  1593. return status;
  1594. }
  1595. EXPORT_SYMBOL_GPL(spi_register_master);
  1596. static void devm_spi_unregister(struct device *dev, void *res)
  1597. {
  1598. spi_unregister_master(*(struct spi_master **)res);
  1599. }
  1600. /**
  1601. * dev_spi_register_master - register managed SPI master controller
  1602. * @dev: device managing SPI master
  1603. * @master: initialized master, originally from spi_alloc_master()
  1604. * Context: can sleep
  1605. *
  1606. * Register a SPI device as with spi_register_master() which will
  1607. * automatically be unregister
  1608. *
  1609. * Return: zero on success, else a negative error code.
  1610. */
  1611. int devm_spi_register_master(struct device *dev, struct spi_master *master)
  1612. {
  1613. struct spi_master **ptr;
  1614. int ret;
  1615. ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
  1616. if (!ptr)
  1617. return -ENOMEM;
  1618. ret = spi_register_master(master);
  1619. if (!ret) {
  1620. *ptr = master;
  1621. devres_add(dev, ptr);
  1622. } else {
  1623. devres_free(ptr);
  1624. }
  1625. return ret;
  1626. }
  1627. EXPORT_SYMBOL_GPL(devm_spi_register_master);
  1628. static int __unregister(struct device *dev, void *null)
  1629. {
  1630. spi_unregister_device(to_spi_device(dev));
  1631. return 0;
  1632. }
  1633. /**
  1634. * spi_unregister_master - unregister SPI master controller
  1635. * @master: the master being unregistered
  1636. * Context: can sleep
  1637. *
  1638. * This call is used only by SPI master controller drivers, which are the
  1639. * only ones directly touching chip registers.
  1640. *
  1641. * This must be called from context that can sleep.
  1642. */
  1643. void spi_unregister_master(struct spi_master *master)
  1644. {
  1645. int dummy;
  1646. if (master->queued) {
  1647. if (spi_destroy_queue(master))
  1648. dev_err(&master->dev, "queue remove failed\n");
  1649. }
  1650. mutex_lock(&board_lock);
  1651. list_del(&master->list);
  1652. mutex_unlock(&board_lock);
  1653. dummy = device_for_each_child(&master->dev, NULL, __unregister);
  1654. device_unregister(&master->dev);
  1655. }
  1656. EXPORT_SYMBOL_GPL(spi_unregister_master);
  1657. int spi_master_suspend(struct spi_master *master)
  1658. {
  1659. int ret;
  1660. /* Basically no-ops for non-queued masters */
  1661. if (!master->queued)
  1662. return 0;
  1663. ret = spi_stop_queue(master);
  1664. if (ret)
  1665. dev_err(&master->dev, "queue stop failed\n");
  1666. return ret;
  1667. }
  1668. EXPORT_SYMBOL_GPL(spi_master_suspend);
  1669. int spi_master_resume(struct spi_master *master)
  1670. {
  1671. int ret;
  1672. if (!master->queued)
  1673. return 0;
  1674. ret = spi_start_queue(master);
  1675. if (ret)
  1676. dev_err(&master->dev, "queue restart failed\n");
  1677. return ret;
  1678. }
  1679. EXPORT_SYMBOL_GPL(spi_master_resume);
  1680. static int __spi_master_match(struct device *dev, const void *data)
  1681. {
  1682. struct spi_master *m;
  1683. const u16 *bus_num = data;
  1684. m = container_of(dev, struct spi_master, dev);
  1685. return m->bus_num == *bus_num;
  1686. }
  1687. /**
  1688. * spi_busnum_to_master - look up master associated with bus_num
  1689. * @bus_num: the master's bus number
  1690. * Context: can sleep
  1691. *
  1692. * This call may be used with devices that are registered after
  1693. * arch init time. It returns a refcounted pointer to the relevant
  1694. * spi_master (which the caller must release), or NULL if there is
  1695. * no such master registered.
  1696. *
  1697. * Return: the SPI master structure on success, else NULL.
  1698. */
  1699. struct spi_master *spi_busnum_to_master(u16 bus_num)
  1700. {
  1701. struct device *dev;
  1702. struct spi_master *master = NULL;
  1703. dev = class_find_device(&spi_master_class, NULL, &bus_num,
  1704. __spi_master_match);
  1705. if (dev)
  1706. master = container_of(dev, struct spi_master, dev);
  1707. /* reference got in class_find_device */
  1708. return master;
  1709. }
  1710. EXPORT_SYMBOL_GPL(spi_busnum_to_master);
  1711. /*-------------------------------------------------------------------------*/
  1712. /* Core methods for SPI resource management */
  1713. /**
  1714. * spi_res_alloc - allocate a spi resource that is life-cycle managed
  1715. * during the processing of a spi_message while using
  1716. * spi_transfer_one
  1717. * @spi: the spi device for which we allocate memory
  1718. * @release: the release code to execute for this resource
  1719. * @size: size to alloc and return
  1720. * @gfp: GFP allocation flags
  1721. *
  1722. * Return: the pointer to the allocated data
  1723. *
  1724. * This may get enhanced in the future to allocate from a memory pool
  1725. * of the @spi_device or @spi_master to avoid repeated allocations.
  1726. */
  1727. void *spi_res_alloc(struct spi_device *spi,
  1728. spi_res_release_t release,
  1729. size_t size, gfp_t gfp)
  1730. {
  1731. struct spi_res *sres;
  1732. sres = kzalloc(sizeof(*sres) + size, gfp);
  1733. if (!sres)
  1734. return NULL;
  1735. INIT_LIST_HEAD(&sres->entry);
  1736. sres->release = release;
  1737. return sres->data;
  1738. }
  1739. EXPORT_SYMBOL_GPL(spi_res_alloc);
  1740. /**
  1741. * spi_res_free - free an spi resource
  1742. * @res: pointer to the custom data of a resource
  1743. *
  1744. */
  1745. void spi_res_free(void *res)
  1746. {
  1747. struct spi_res *sres = container_of(res, struct spi_res, data);
  1748. if (!res)
  1749. return;
  1750. WARN_ON(!list_empty(&sres->entry));
  1751. kfree(sres);
  1752. }
  1753. EXPORT_SYMBOL_GPL(spi_res_free);
  1754. /**
  1755. * spi_res_add - add a spi_res to the spi_message
  1756. * @message: the spi message
  1757. * @res: the spi_resource
  1758. */
  1759. void spi_res_add(struct spi_message *message, void *res)
  1760. {
  1761. struct spi_res *sres = container_of(res, struct spi_res, data);
  1762. WARN_ON(!list_empty(&sres->entry));
  1763. list_add_tail(&sres->entry, &message->resources);
  1764. }
  1765. EXPORT_SYMBOL_GPL(spi_res_add);
  1766. /**
  1767. * spi_res_release - release all spi resources for this message
  1768. * @master: the @spi_master
  1769. * @message: the @spi_message
  1770. */
  1771. void spi_res_release(struct spi_master *master,
  1772. struct spi_message *message)
  1773. {
  1774. struct spi_res *res;
  1775. while (!list_empty(&message->resources)) {
  1776. res = list_last_entry(&message->resources,
  1777. struct spi_res, entry);
  1778. if (res->release)
  1779. res->release(master, message, res->data);
  1780. list_del(&res->entry);
  1781. kfree(res);
  1782. }
  1783. }
  1784. EXPORT_SYMBOL_GPL(spi_res_release);
  1785. /*-------------------------------------------------------------------------*/
  1786. /* Core methods for spi_message alterations */
  1787. static void __spi_replace_transfers_release(struct spi_master *master,
  1788. struct spi_message *msg,
  1789. void *res)
  1790. {
  1791. struct spi_replaced_transfers *rxfer = res;
  1792. size_t i;
  1793. /* call extra callback if requested */
  1794. if (rxfer->release)
  1795. rxfer->release(master, msg, res);
  1796. /* insert replaced transfers back into the message */
  1797. list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
  1798. /* remove the formerly inserted entries */
  1799. for (i = 0; i < rxfer->inserted; i++)
  1800. list_del(&rxfer->inserted_transfers[i].transfer_list);
  1801. }
  1802. /**
  1803. * spi_replace_transfers - replace transfers with several transfers
  1804. * and register change with spi_message.resources
  1805. * @msg: the spi_message we work upon
  1806. * @xfer_first: the first spi_transfer we want to replace
  1807. * @remove: number of transfers to remove
  1808. * @insert: the number of transfers we want to insert instead
  1809. * @release: extra release code necessary in some circumstances
  1810. * @extradatasize: extra data to allocate (with alignment guarantees
  1811. * of struct @spi_transfer)
  1812. * @gfp: gfp flags
  1813. *
  1814. * Returns: pointer to @spi_replaced_transfers,
  1815. * PTR_ERR(...) in case of errors.
  1816. */
  1817. struct spi_replaced_transfers *spi_replace_transfers(
  1818. struct spi_message *msg,
  1819. struct spi_transfer *xfer_first,
  1820. size_t remove,
  1821. size_t insert,
  1822. spi_replaced_release_t release,
  1823. size_t extradatasize,
  1824. gfp_t gfp)
  1825. {
  1826. struct spi_replaced_transfers *rxfer;
  1827. struct spi_transfer *xfer;
  1828. size_t i;
  1829. /* allocate the structure using spi_res */
  1830. rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
  1831. insert * sizeof(struct spi_transfer)
  1832. + sizeof(struct spi_replaced_transfers)
  1833. + extradatasize,
  1834. gfp);
  1835. if (!rxfer)
  1836. return ERR_PTR(-ENOMEM);
  1837. /* the release code to invoke before running the generic release */
  1838. rxfer->release = release;
  1839. /* assign extradata */
  1840. if (extradatasize)
  1841. rxfer->extradata =
  1842. &rxfer->inserted_transfers[insert];
  1843. /* init the replaced_transfers list */
  1844. INIT_LIST_HEAD(&rxfer->replaced_transfers);
  1845. /* assign the list_entry after which we should reinsert
  1846. * the @replaced_transfers - it may be spi_message.messages!
  1847. */
  1848. rxfer->replaced_after = xfer_first->transfer_list.prev;
  1849. /* remove the requested number of transfers */
  1850. for (i = 0; i < remove; i++) {
  1851. /* if the entry after replaced_after it is msg->transfers
  1852. * then we have been requested to remove more transfers
  1853. * than are in the list
  1854. */
  1855. if (rxfer->replaced_after->next == &msg->transfers) {
  1856. dev_err(&msg->spi->dev,
  1857. "requested to remove more spi_transfers than are available\n");
  1858. /* insert replaced transfers back into the message */
  1859. list_splice(&rxfer->replaced_transfers,
  1860. rxfer->replaced_after);
  1861. /* free the spi_replace_transfer structure */
  1862. spi_res_free(rxfer);
  1863. /* and return with an error */
  1864. return ERR_PTR(-EINVAL);
  1865. }
  1866. /* remove the entry after replaced_after from list of
  1867. * transfers and add it to list of replaced_transfers
  1868. */
  1869. list_move_tail(rxfer->replaced_after->next,
  1870. &rxfer->replaced_transfers);
  1871. }
  1872. /* create copy of the given xfer with identical settings
  1873. * based on the first transfer to get removed
  1874. */
  1875. for (i = 0; i < insert; i++) {
  1876. /* we need to run in reverse order */
  1877. xfer = &rxfer->inserted_transfers[insert - 1 - i];
  1878. /* copy all spi_transfer data */
  1879. memcpy(xfer, xfer_first, sizeof(*xfer));
  1880. /* add to list */
  1881. list_add(&xfer->transfer_list, rxfer->replaced_after);
  1882. /* clear cs_change and delay_usecs for all but the last */
  1883. if (i) {
  1884. xfer->cs_change = false;
  1885. xfer->delay_usecs = 0;
  1886. }
  1887. }
  1888. /* set up inserted */
  1889. rxfer->inserted = insert;
  1890. /* and register it with spi_res/spi_message */
  1891. spi_res_add(msg, rxfer);
  1892. return rxfer;
  1893. }
  1894. EXPORT_SYMBOL_GPL(spi_replace_transfers);
  1895. static int __spi_split_transfer_maxsize(struct spi_master *master,
  1896. struct spi_message *msg,
  1897. struct spi_transfer **xferp,
  1898. size_t maxsize,
  1899. gfp_t gfp)
  1900. {
  1901. struct spi_transfer *xfer = *xferp, *xfers;
  1902. struct spi_replaced_transfers *srt;
  1903. size_t offset;
  1904. size_t count, i;
  1905. /* warn once about this fact that we are splitting a transfer */
  1906. dev_warn_once(&msg->spi->dev,
  1907. "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
  1908. xfer->len, maxsize);
  1909. /* calculate how many we have to replace */
  1910. count = DIV_ROUND_UP(xfer->len, maxsize);
  1911. /* create replacement */
  1912. srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
  1913. if (IS_ERR(srt))
  1914. return PTR_ERR(srt);
  1915. xfers = srt->inserted_transfers;
  1916. /* now handle each of those newly inserted spi_transfers
  1917. * note that the replacements spi_transfers all are preset
  1918. * to the same values as *xferp, so tx_buf, rx_buf and len
  1919. * are all identical (as well as most others)
  1920. * so we just have to fix up len and the pointers.
  1921. *
  1922. * this also includes support for the depreciated
  1923. * spi_message.is_dma_mapped interface
  1924. */
  1925. /* the first transfer just needs the length modified, so we
  1926. * run it outside the loop
  1927. */
  1928. xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
  1929. /* all the others need rx_buf/tx_buf also set */
  1930. for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
  1931. /* update rx_buf, tx_buf and dma */
  1932. if (xfers[i].rx_buf)
  1933. xfers[i].rx_buf += offset;
  1934. if (xfers[i].rx_dma)
  1935. xfers[i].rx_dma += offset;
  1936. if (xfers[i].tx_buf)
  1937. xfers[i].tx_buf += offset;
  1938. if (xfers[i].tx_dma)
  1939. xfers[i].tx_dma += offset;
  1940. /* update length */
  1941. xfers[i].len = min(maxsize, xfers[i].len - offset);
  1942. }
  1943. /* we set up xferp to the last entry we have inserted,
  1944. * so that we skip those already split transfers
  1945. */
  1946. *xferp = &xfers[count - 1];
  1947. /* increment statistics counters */
  1948. SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
  1949. transfers_split_maxsize);
  1950. SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
  1951. transfers_split_maxsize);
  1952. return 0;
  1953. }
  1954. /**
  1955. * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
  1956. * when an individual transfer exceeds a
  1957. * certain size
  1958. * @master: the @spi_master for this transfer
  1959. * @message: the @spi_message to transform
  1960. * @max_size: the maximum when to apply this
  1961. *
  1962. * Return: status of transformation
  1963. */
  1964. int spi_split_transfers_maxsize(struct spi_master *master,
  1965. struct spi_message *msg,
  1966. size_t maxsize,
  1967. gfp_t gfp)
  1968. {
  1969. struct spi_transfer *xfer;
  1970. int ret;
  1971. /* iterate over the transfer_list,
  1972. * but note that xfer is advanced to the last transfer inserted
  1973. * to avoid checking sizes again unnecessarily (also xfer does
  1974. * potentiall belong to a different list by the time the
  1975. * replacement has happened
  1976. */
  1977. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  1978. if (xfer->len > maxsize) {
  1979. ret = __spi_split_transfer_maxsize(
  1980. master, msg, &xfer, maxsize, gfp);
  1981. if (ret)
  1982. return ret;
  1983. }
  1984. }
  1985. return 0;
  1986. }
  1987. EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
  1988. /*-------------------------------------------------------------------------*/
  1989. /* Core methods for SPI master protocol drivers. Some of the
  1990. * other core methods are currently defined as inline functions.
  1991. */
  1992. static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
  1993. {
  1994. if (master->bits_per_word_mask) {
  1995. /* Only 32 bits fit in the mask */
  1996. if (bits_per_word > 32)
  1997. return -EINVAL;
  1998. if (!(master->bits_per_word_mask &
  1999. SPI_BPW_MASK(bits_per_word)))
  2000. return -EINVAL;
  2001. }
  2002. return 0;
  2003. }
  2004. /**
  2005. * spi_setup - setup SPI mode and clock rate
  2006. * @spi: the device whose settings are being modified
  2007. * Context: can sleep, and no requests are queued to the device
  2008. *
  2009. * SPI protocol drivers may need to update the transfer mode if the
  2010. * device doesn't work with its default. They may likewise need
  2011. * to update clock rates or word sizes from initial values. This function
  2012. * changes those settings, and must be called from a context that can sleep.
  2013. * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
  2014. * effect the next time the device is selected and data is transferred to
  2015. * or from it. When this function returns, the spi device is deselected.
  2016. *
  2017. * Note that this call will fail if the protocol driver specifies an option
  2018. * that the underlying controller or its driver does not support. For
  2019. * example, not all hardware supports wire transfers using nine bit words,
  2020. * LSB-first wire encoding, or active-high chipselects.
  2021. *
  2022. * Return: zero on success, else a negative error code.
  2023. */
  2024. int spi_setup(struct spi_device *spi)
  2025. {
  2026. unsigned bad_bits, ugly_bits;
  2027. int status;
  2028. /* check mode to prevent that DUAL and QUAD set at the same time
  2029. */
  2030. if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
  2031. ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
  2032. dev_err(&spi->dev,
  2033. "setup: can not select dual and quad at the same time\n");
  2034. return -EINVAL;
  2035. }
  2036. /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
  2037. */
  2038. if ((spi->mode & SPI_3WIRE) && (spi->mode &
  2039. (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
  2040. return -EINVAL;
  2041. /* help drivers fail *cleanly* when they need options
  2042. * that aren't supported with their current master
  2043. */
  2044. bad_bits = spi->mode & ~spi->master->mode_bits;
  2045. ugly_bits = bad_bits &
  2046. (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
  2047. if (ugly_bits) {
  2048. dev_warn(&spi->dev,
  2049. "setup: ignoring unsupported mode bits %x\n",
  2050. ugly_bits);
  2051. spi->mode &= ~ugly_bits;
  2052. bad_bits &= ~ugly_bits;
  2053. }
  2054. if (bad_bits) {
  2055. dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
  2056. bad_bits);
  2057. return -EINVAL;
  2058. }
  2059. if (!spi->bits_per_word)
  2060. spi->bits_per_word = 8;
  2061. status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
  2062. if (status)
  2063. return status;
  2064. if (!spi->max_speed_hz)
  2065. spi->max_speed_hz = spi->master->max_speed_hz;
  2066. if (spi->master->setup)
  2067. status = spi->master->setup(spi);
  2068. spi_set_cs(spi, false);
  2069. dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
  2070. (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
  2071. (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
  2072. (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
  2073. (spi->mode & SPI_3WIRE) ? "3wire, " : "",
  2074. (spi->mode & SPI_LOOP) ? "loopback, " : "",
  2075. spi->bits_per_word, spi->max_speed_hz,
  2076. status);
  2077. return status;
  2078. }
  2079. EXPORT_SYMBOL_GPL(spi_setup);
  2080. static int __spi_validate(struct spi_device *spi, struct spi_message *message)
  2081. {
  2082. struct spi_master *master = spi->master;
  2083. struct spi_transfer *xfer;
  2084. int w_size;
  2085. if (list_empty(&message->transfers))
  2086. return -EINVAL;
  2087. /* Half-duplex links include original MicroWire, and ones with
  2088. * only one data pin like SPI_3WIRE (switches direction) or where
  2089. * either MOSI or MISO is missing. They can also be caused by
  2090. * software limitations.
  2091. */
  2092. if ((master->flags & SPI_MASTER_HALF_DUPLEX)
  2093. || (spi->mode & SPI_3WIRE)) {
  2094. unsigned flags = master->flags;
  2095. list_for_each_entry(xfer, &message->transfers, transfer_list) {
  2096. if (xfer->rx_buf && xfer->tx_buf)
  2097. return -EINVAL;
  2098. if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
  2099. return -EINVAL;
  2100. if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
  2101. return -EINVAL;
  2102. }
  2103. }
  2104. /**
  2105. * Set transfer bits_per_word and max speed as spi device default if
  2106. * it is not set for this transfer.
  2107. * Set transfer tx_nbits and rx_nbits as single transfer default
  2108. * (SPI_NBITS_SINGLE) if it is not set for this transfer.
  2109. */
  2110. message->frame_length = 0;
  2111. list_for_each_entry(xfer, &message->transfers, transfer_list) {
  2112. message->frame_length += xfer->len;
  2113. if (!xfer->bits_per_word)
  2114. xfer->bits_per_word = spi->bits_per_word;
  2115. if (!xfer->speed_hz)
  2116. xfer->speed_hz = spi->max_speed_hz;
  2117. if (!xfer->speed_hz)
  2118. xfer->speed_hz = master->max_speed_hz;
  2119. if (master->max_speed_hz &&
  2120. xfer->speed_hz > master->max_speed_hz)
  2121. xfer->speed_hz = master->max_speed_hz;
  2122. if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
  2123. return -EINVAL;
  2124. /*
  2125. * SPI transfer length should be multiple of SPI word size
  2126. * where SPI word size should be power-of-two multiple
  2127. */
  2128. if (xfer->bits_per_word <= 8)
  2129. w_size = 1;
  2130. else if (xfer->bits_per_word <= 16)
  2131. w_size = 2;
  2132. else
  2133. w_size = 4;
  2134. /* No partial transfers accepted */
  2135. if (xfer->len % w_size)
  2136. return -EINVAL;
  2137. if (xfer->speed_hz && master->min_speed_hz &&
  2138. xfer->speed_hz < master->min_speed_hz)
  2139. return -EINVAL;
  2140. if (xfer->tx_buf && !xfer->tx_nbits)
  2141. xfer->tx_nbits = SPI_NBITS_SINGLE;
  2142. if (xfer->rx_buf && !xfer->rx_nbits)
  2143. xfer->rx_nbits = SPI_NBITS_SINGLE;
  2144. /* check transfer tx/rx_nbits:
  2145. * 1. check the value matches one of single, dual and quad
  2146. * 2. check tx/rx_nbits match the mode in spi_device
  2147. */
  2148. if (xfer->tx_buf) {
  2149. if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
  2150. xfer->tx_nbits != SPI_NBITS_DUAL &&
  2151. xfer->tx_nbits != SPI_NBITS_QUAD)
  2152. return -EINVAL;
  2153. if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
  2154. !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
  2155. return -EINVAL;
  2156. if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
  2157. !(spi->mode & SPI_TX_QUAD))
  2158. return -EINVAL;
  2159. }
  2160. /* check transfer rx_nbits */
  2161. if (xfer->rx_buf) {
  2162. if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
  2163. xfer->rx_nbits != SPI_NBITS_DUAL &&
  2164. xfer->rx_nbits != SPI_NBITS_QUAD)
  2165. return -EINVAL;
  2166. if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
  2167. !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
  2168. return -EINVAL;
  2169. if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
  2170. !(spi->mode & SPI_RX_QUAD))
  2171. return -EINVAL;
  2172. }
  2173. }
  2174. message->status = -EINPROGRESS;
  2175. return 0;
  2176. }
  2177. static int __spi_async(struct spi_device *spi, struct spi_message *message)
  2178. {
  2179. struct spi_master *master = spi->master;
  2180. message->spi = spi;
  2181. SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
  2182. SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
  2183. trace_spi_message_submit(message);
  2184. return master->transfer(spi, message);
  2185. }
  2186. /**
  2187. * spi_async - asynchronous SPI transfer
  2188. * @spi: device with which data will be exchanged
  2189. * @message: describes the data transfers, including completion callback
  2190. * Context: any (irqs may be blocked, etc)
  2191. *
  2192. * This call may be used in_irq and other contexts which can't sleep,
  2193. * as well as from task contexts which can sleep.
  2194. *
  2195. * The completion callback is invoked in a context which can't sleep.
  2196. * Before that invocation, the value of message->status is undefined.
  2197. * When the callback is issued, message->status holds either zero (to
  2198. * indicate complete success) or a negative error code. After that
  2199. * callback returns, the driver which issued the transfer request may
  2200. * deallocate the associated memory; it's no longer in use by any SPI
  2201. * core or controller driver code.
  2202. *
  2203. * Note that although all messages to a spi_device are handled in
  2204. * FIFO order, messages may go to different devices in other orders.
  2205. * Some device might be higher priority, or have various "hard" access
  2206. * time requirements, for example.
  2207. *
  2208. * On detection of any fault during the transfer, processing of
  2209. * the entire message is aborted, and the device is deselected.
  2210. * Until returning from the associated message completion callback,
  2211. * no other spi_message queued to that device will be processed.
  2212. * (This rule applies equally to all the synchronous transfer calls,
  2213. * which are wrappers around this core asynchronous primitive.)
  2214. *
  2215. * Return: zero on success, else a negative error code.
  2216. */
  2217. int spi_async(struct spi_device *spi, struct spi_message *message)
  2218. {
  2219. struct spi_master *master = spi->master;
  2220. int ret;
  2221. unsigned long flags;
  2222. ret = __spi_validate(spi, message);
  2223. if (ret != 0)
  2224. return ret;
  2225. spin_lock_irqsave(&master->bus_lock_spinlock, flags);
  2226. if (master->bus_lock_flag)
  2227. ret = -EBUSY;
  2228. else
  2229. ret = __spi_async(spi, message);
  2230. spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
  2231. return ret;
  2232. }
  2233. EXPORT_SYMBOL_GPL(spi_async);
  2234. /**
  2235. * spi_async_locked - version of spi_async with exclusive bus usage
  2236. * @spi: device with which data will be exchanged
  2237. * @message: describes the data transfers, including completion callback
  2238. * Context: any (irqs may be blocked, etc)
  2239. *
  2240. * This call may be used in_irq and other contexts which can't sleep,
  2241. * as well as from task contexts which can sleep.
  2242. *
  2243. * The completion callback is invoked in a context which can't sleep.
  2244. * Before that invocation, the value of message->status is undefined.
  2245. * When the callback is issued, message->status holds either zero (to
  2246. * indicate complete success) or a negative error code. After that
  2247. * callback returns, the driver which issued the transfer request may
  2248. * deallocate the associated memory; it's no longer in use by any SPI
  2249. * core or controller driver code.
  2250. *
  2251. * Note that although all messages to a spi_device are handled in
  2252. * FIFO order, messages may go to different devices in other orders.
  2253. * Some device might be higher priority, or have various "hard" access
  2254. * time requirements, for example.
  2255. *
  2256. * On detection of any fault during the transfer, processing of
  2257. * the entire message is aborted, and the device is deselected.
  2258. * Until returning from the associated message completion callback,
  2259. * no other spi_message queued to that device will be processed.
  2260. * (This rule applies equally to all the synchronous transfer calls,
  2261. * which are wrappers around this core asynchronous primitive.)
  2262. *
  2263. * Return: zero on success, else a negative error code.
  2264. */
  2265. int spi_async_locked(struct spi_device *spi, struct spi_message *message)
  2266. {
  2267. struct spi_master *master = spi->master;
  2268. int ret;
  2269. unsigned long flags;
  2270. ret = __spi_validate(spi, message);
  2271. if (ret != 0)
  2272. return ret;
  2273. spin_lock_irqsave(&master->bus_lock_spinlock, flags);
  2274. ret = __spi_async(spi, message);
  2275. spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
  2276. return ret;
  2277. }
  2278. EXPORT_SYMBOL_GPL(spi_async_locked);
  2279. /*-------------------------------------------------------------------------*/
  2280. /* Utility methods for SPI master protocol drivers, layered on
  2281. * top of the core. Some other utility methods are defined as
  2282. * inline functions.
  2283. */
  2284. static void spi_complete(void *arg)
  2285. {
  2286. complete(arg);
  2287. }
  2288. static int __spi_sync(struct spi_device *spi, struct spi_message *message,
  2289. int bus_locked)
  2290. {
  2291. DECLARE_COMPLETION_ONSTACK(done);
  2292. int status;
  2293. struct spi_master *master = spi->master;
  2294. unsigned long flags;
  2295. status = __spi_validate(spi, message);
  2296. if (status != 0)
  2297. return status;
  2298. message->complete = spi_complete;
  2299. message->context = &done;
  2300. message->spi = spi;
  2301. SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
  2302. SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
  2303. if (!bus_locked)
  2304. mutex_lock(&master->bus_lock_mutex);
  2305. /* If we're not using the legacy transfer method then we will
  2306. * try to transfer in the calling context so special case.
  2307. * This code would be less tricky if we could remove the
  2308. * support for driver implemented message queues.
  2309. */
  2310. if (master->transfer == spi_queued_transfer) {
  2311. spin_lock_irqsave(&master->bus_lock_spinlock, flags);
  2312. trace_spi_message_submit(message);
  2313. status = __spi_queued_transfer(spi, message, false);
  2314. spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
  2315. } else {
  2316. status = spi_async_locked(spi, message);
  2317. }
  2318. if (!bus_locked)
  2319. mutex_unlock(&master->bus_lock_mutex);
  2320. if (status == 0) {
  2321. /* Push out the messages in the calling context if we
  2322. * can.
  2323. */
  2324. if (master->transfer == spi_queued_transfer) {
  2325. SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
  2326. spi_sync_immediate);
  2327. SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
  2328. spi_sync_immediate);
  2329. __spi_pump_messages(master, false);
  2330. }
  2331. wait_for_completion(&done);
  2332. status = message->status;
  2333. }
  2334. message->context = NULL;
  2335. return status;
  2336. }
  2337. /**
  2338. * spi_sync - blocking/synchronous SPI data transfers
  2339. * @spi: device with which data will be exchanged
  2340. * @message: describes the data transfers
  2341. * Context: can sleep
  2342. *
  2343. * This call may only be used from a context that may sleep. The sleep
  2344. * is non-interruptible, and has no timeout. Low-overhead controller
  2345. * drivers may DMA directly into and out of the message buffers.
  2346. *
  2347. * Note that the SPI device's chip select is active during the message,
  2348. * and then is normally disabled between messages. Drivers for some
  2349. * frequently-used devices may want to minimize costs of selecting a chip,
  2350. * by leaving it selected in anticipation that the next message will go
  2351. * to the same chip. (That may increase power usage.)
  2352. *
  2353. * Also, the caller is guaranteeing that the memory associated with the
  2354. * message will not be freed before this call returns.
  2355. *
  2356. * Return: zero on success, else a negative error code.
  2357. */
  2358. int spi_sync(struct spi_device *spi, struct spi_message *message)
  2359. {
  2360. return __spi_sync(spi, message, 0);
  2361. }
  2362. EXPORT_SYMBOL_GPL(spi_sync);
  2363. /**
  2364. * spi_sync_locked - version of spi_sync with exclusive bus usage
  2365. * @spi: device with which data will be exchanged
  2366. * @message: describes the data transfers
  2367. * Context: can sleep
  2368. *
  2369. * This call may only be used from a context that may sleep. The sleep
  2370. * is non-interruptible, and has no timeout. Low-overhead controller
  2371. * drivers may DMA directly into and out of the message buffers.
  2372. *
  2373. * This call should be used by drivers that require exclusive access to the
  2374. * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
  2375. * be released by a spi_bus_unlock call when the exclusive access is over.
  2376. *
  2377. * Return: zero on success, else a negative error code.
  2378. */
  2379. int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
  2380. {
  2381. return __spi_sync(spi, message, 1);
  2382. }
  2383. EXPORT_SYMBOL_GPL(spi_sync_locked);
  2384. /**
  2385. * spi_bus_lock - obtain a lock for exclusive SPI bus usage
  2386. * @master: SPI bus master that should be locked for exclusive bus access
  2387. * Context: can sleep
  2388. *
  2389. * This call may only be used from a context that may sleep. The sleep
  2390. * is non-interruptible, and has no timeout.
  2391. *
  2392. * This call should be used by drivers that require exclusive access to the
  2393. * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
  2394. * exclusive access is over. Data transfer must be done by spi_sync_locked
  2395. * and spi_async_locked calls when the SPI bus lock is held.
  2396. *
  2397. * Return: always zero.
  2398. */
  2399. int spi_bus_lock(struct spi_master *master)
  2400. {
  2401. unsigned long flags;
  2402. mutex_lock(&master->bus_lock_mutex);
  2403. spin_lock_irqsave(&master->bus_lock_spinlock, flags);
  2404. master->bus_lock_flag = 1;
  2405. spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
  2406. /* mutex remains locked until spi_bus_unlock is called */
  2407. return 0;
  2408. }
  2409. EXPORT_SYMBOL_GPL(spi_bus_lock);
  2410. /**
  2411. * spi_bus_unlock - release the lock for exclusive SPI bus usage
  2412. * @master: SPI bus master that was locked for exclusive bus access
  2413. * Context: can sleep
  2414. *
  2415. * This call may only be used from a context that may sleep. The sleep
  2416. * is non-interruptible, and has no timeout.
  2417. *
  2418. * This call releases an SPI bus lock previously obtained by an spi_bus_lock
  2419. * call.
  2420. *
  2421. * Return: always zero.
  2422. */
  2423. int spi_bus_unlock(struct spi_master *master)
  2424. {
  2425. master->bus_lock_flag = 0;
  2426. mutex_unlock(&master->bus_lock_mutex);
  2427. return 0;
  2428. }
  2429. EXPORT_SYMBOL_GPL(spi_bus_unlock);
  2430. /* portable code must never pass more than 32 bytes */
  2431. #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
  2432. static u8 *buf;
  2433. /**
  2434. * spi_write_then_read - SPI synchronous write followed by read
  2435. * @spi: device with which data will be exchanged
  2436. * @txbuf: data to be written (need not be dma-safe)
  2437. * @n_tx: size of txbuf, in bytes
  2438. * @rxbuf: buffer into which data will be read (need not be dma-safe)
  2439. * @n_rx: size of rxbuf, in bytes
  2440. * Context: can sleep
  2441. *
  2442. * This performs a half duplex MicroWire style transaction with the
  2443. * device, sending txbuf and then reading rxbuf. The return value
  2444. * is zero for success, else a negative errno status code.
  2445. * This call may only be used from a context that may sleep.
  2446. *
  2447. * Parameters to this routine are always copied using a small buffer;
  2448. * portable code should never use this for more than 32 bytes.
  2449. * Performance-sensitive or bulk transfer code should instead use
  2450. * spi_{async,sync}() calls with dma-safe buffers.
  2451. *
  2452. * Return: zero on success, else a negative error code.
  2453. */
  2454. int spi_write_then_read(struct spi_device *spi,
  2455. const void *txbuf, unsigned n_tx,
  2456. void *rxbuf, unsigned n_rx)
  2457. {
  2458. static DEFINE_MUTEX(lock);
  2459. int status;
  2460. struct spi_message message;
  2461. struct spi_transfer x[2];
  2462. u8 *local_buf;
  2463. /* Use preallocated DMA-safe buffer if we can. We can't avoid
  2464. * copying here, (as a pure convenience thing), but we can
  2465. * keep heap costs out of the hot path unless someone else is
  2466. * using the pre-allocated buffer or the transfer is too large.
  2467. */
  2468. if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
  2469. local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
  2470. GFP_KERNEL | GFP_DMA);
  2471. if (!local_buf)
  2472. return -ENOMEM;
  2473. } else {
  2474. local_buf = buf;
  2475. }
  2476. spi_message_init(&message);
  2477. memset(x, 0, sizeof(x));
  2478. if (n_tx) {
  2479. x[0].len = n_tx;
  2480. spi_message_add_tail(&x[0], &message);
  2481. }
  2482. if (n_rx) {
  2483. x[1].len = n_rx;
  2484. spi_message_add_tail(&x[1], &message);
  2485. }
  2486. memcpy(local_buf, txbuf, n_tx);
  2487. x[0].tx_buf = local_buf;
  2488. x[1].rx_buf = local_buf + n_tx;
  2489. /* do the i/o */
  2490. status = spi_sync(spi, &message);
  2491. if (status == 0)
  2492. memcpy(rxbuf, x[1].rx_buf, n_rx);
  2493. if (x[0].tx_buf == buf)
  2494. mutex_unlock(&lock);
  2495. else
  2496. kfree(local_buf);
  2497. return status;
  2498. }
  2499. EXPORT_SYMBOL_GPL(spi_write_then_read);
  2500. /*-------------------------------------------------------------------------*/
  2501. #if IS_ENABLED(CONFIG_OF_DYNAMIC)
  2502. static int __spi_of_device_match(struct device *dev, void *data)
  2503. {
  2504. return dev->of_node == data;
  2505. }
  2506. /* must call put_device() when done with returned spi_device device */
  2507. static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
  2508. {
  2509. struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
  2510. __spi_of_device_match);
  2511. return dev ? to_spi_device(dev) : NULL;
  2512. }
  2513. static int __spi_of_master_match(struct device *dev, const void *data)
  2514. {
  2515. return dev->of_node == data;
  2516. }
  2517. /* the spi masters are not using spi_bus, so we find it with another way */
  2518. static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
  2519. {
  2520. struct device *dev;
  2521. dev = class_find_device(&spi_master_class, NULL, node,
  2522. __spi_of_master_match);
  2523. if (!dev)
  2524. return NULL;
  2525. /* reference got in class_find_device */
  2526. return container_of(dev, struct spi_master, dev);
  2527. }
  2528. static int of_spi_notify(struct notifier_block *nb, unsigned long action,
  2529. void *arg)
  2530. {
  2531. struct of_reconfig_data *rd = arg;
  2532. struct spi_master *master;
  2533. struct spi_device *spi;
  2534. switch (of_reconfig_get_state_change(action, arg)) {
  2535. case OF_RECONFIG_CHANGE_ADD:
  2536. master = of_find_spi_master_by_node(rd->dn->parent);
  2537. if (master == NULL)
  2538. return NOTIFY_OK; /* not for us */
  2539. if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
  2540. put_device(&master->dev);
  2541. return NOTIFY_OK;
  2542. }
  2543. spi = of_register_spi_device(master, rd->dn);
  2544. put_device(&master->dev);
  2545. if (IS_ERR(spi)) {
  2546. pr_err("%s: failed to create for '%s'\n",
  2547. __func__, rd->dn->full_name);
  2548. return notifier_from_errno(PTR_ERR(spi));
  2549. }
  2550. break;
  2551. case OF_RECONFIG_CHANGE_REMOVE:
  2552. /* already depopulated? */
  2553. if (!of_node_check_flag(rd->dn, OF_POPULATED))
  2554. return NOTIFY_OK;
  2555. /* find our device by node */
  2556. spi = of_find_spi_device_by_node(rd->dn);
  2557. if (spi == NULL)
  2558. return NOTIFY_OK; /* no? not meant for us */
  2559. /* unregister takes one ref away */
  2560. spi_unregister_device(spi);
  2561. /* and put the reference of the find */
  2562. put_device(&spi->dev);
  2563. break;
  2564. }
  2565. return NOTIFY_OK;
  2566. }
  2567. static struct notifier_block spi_of_notifier = {
  2568. .notifier_call = of_spi_notify,
  2569. };
  2570. #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
  2571. extern struct notifier_block spi_of_notifier;
  2572. #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
  2573. static int __init spi_init(void)
  2574. {
  2575. int status;
  2576. buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
  2577. if (!buf) {
  2578. status = -ENOMEM;
  2579. goto err0;
  2580. }
  2581. status = bus_register(&spi_bus_type);
  2582. if (status < 0)
  2583. goto err1;
  2584. status = class_register(&spi_master_class);
  2585. if (status < 0)
  2586. goto err2;
  2587. if (IS_ENABLED(CONFIG_OF_DYNAMIC))
  2588. WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
  2589. return 0;
  2590. err2:
  2591. bus_unregister(&spi_bus_type);
  2592. err1:
  2593. kfree(buf);
  2594. buf = NULL;
  2595. err0:
  2596. return status;
  2597. }
  2598. /* board_info is normally registered in arch_initcall(),
  2599. * but even essential drivers wait till later
  2600. *
  2601. * REVISIT only boardinfo really needs static linking. the rest (device and
  2602. * driver registration) _could_ be dynamically linked (modular) ... costs
  2603. * include needing to have boardinfo data structures be much more public.
  2604. */
  2605. postcore_initcall(spi_init);