radix-tree.c 62 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295
  1. /*
  2. * Copyright (C) 2001 Momchil Velikov
  3. * Portions Copyright (C) 2001 Christoph Hellwig
  4. * Copyright (C) 2005 SGI, Christoph Lameter
  5. * Copyright (C) 2006 Nick Piggin
  6. * Copyright (C) 2012 Konstantin Khlebnikov
  7. * Copyright (C) 2016 Intel, Matthew Wilcox
  8. * Copyright (C) 2016 Intel, Ross Zwisler
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; either version 2, or (at
  13. * your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful, but
  16. * WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23. */
  24. #include <linux/bitmap.h>
  25. #include <linux/bitops.h>
  26. #include <linux/cpu.h>
  27. #include <linux/errno.h>
  28. #include <linux/export.h>
  29. #include <linux/idr.h>
  30. #include <linux/init.h>
  31. #include <linux/kernel.h>
  32. #include <linux/kmemleak.h>
  33. #include <linux/percpu.h>
  34. #include <linux/preempt.h> /* in_interrupt() */
  35. #include <linux/radix-tree.h>
  36. #include <linux/rcupdate.h>
  37. #include <linux/slab.h>
  38. #include <linux/string.h>
  39. /* Number of nodes in fully populated tree of given height */
  40. static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
  41. /*
  42. * Radix tree node cache.
  43. */
  44. static struct kmem_cache *radix_tree_node_cachep;
  45. /*
  46. * The radix tree is variable-height, so an insert operation not only has
  47. * to build the branch to its corresponding item, it also has to build the
  48. * branch to existing items if the size has to be increased (by
  49. * radix_tree_extend).
  50. *
  51. * The worst case is a zero height tree with just a single item at index 0,
  52. * and then inserting an item at index ULONG_MAX. This requires 2 new branches
  53. * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
  54. * Hence:
  55. */
  56. #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
  57. /*
  58. * The IDR does not have to be as high as the radix tree since it uses
  59. * signed integers, not unsigned longs.
  60. */
  61. #define IDR_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(int) - 1)
  62. #define IDR_MAX_PATH (DIV_ROUND_UP(IDR_INDEX_BITS, \
  63. RADIX_TREE_MAP_SHIFT))
  64. #define IDR_PRELOAD_SIZE (IDR_MAX_PATH * 2 - 1)
  65. /*
  66. * The IDA is even shorter since it uses a bitmap at the last level.
  67. */
  68. #define IDA_INDEX_BITS (8 * sizeof(int) - 1 - ilog2(IDA_BITMAP_BITS))
  69. #define IDA_MAX_PATH (DIV_ROUND_UP(IDA_INDEX_BITS, \
  70. RADIX_TREE_MAP_SHIFT))
  71. #define IDA_PRELOAD_SIZE (IDA_MAX_PATH * 2 - 1)
  72. /*
  73. * Per-cpu pool of preloaded nodes
  74. */
  75. struct radix_tree_preload {
  76. unsigned nr;
  77. /* nodes->parent points to next preallocated node */
  78. struct radix_tree_node *nodes;
  79. };
  80. static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
  81. static inline struct radix_tree_node *entry_to_node(void *ptr)
  82. {
  83. return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
  84. }
  85. static inline void *node_to_entry(void *ptr)
  86. {
  87. return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
  88. }
  89. #define RADIX_TREE_RETRY node_to_entry(NULL)
  90. #ifdef CONFIG_RADIX_TREE_MULTIORDER
  91. /* Sibling slots point directly to another slot in the same node */
  92. static inline
  93. bool is_sibling_entry(const struct radix_tree_node *parent, void *node)
  94. {
  95. void __rcu **ptr = node;
  96. return (parent->slots <= ptr) &&
  97. (ptr < parent->slots + RADIX_TREE_MAP_SIZE);
  98. }
  99. #else
  100. static inline
  101. bool is_sibling_entry(const struct radix_tree_node *parent, void *node)
  102. {
  103. return false;
  104. }
  105. #endif
  106. static inline unsigned long
  107. get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot)
  108. {
  109. return slot - parent->slots;
  110. }
  111. static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
  112. struct radix_tree_node **nodep, unsigned long index)
  113. {
  114. unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
  115. void __rcu **entry = rcu_dereference_raw(parent->slots[offset]);
  116. #ifdef CONFIG_RADIX_TREE_MULTIORDER
  117. if (radix_tree_is_internal_node(entry)) {
  118. if (is_sibling_entry(parent, entry)) {
  119. void __rcu **sibentry;
  120. sibentry = (void __rcu **) entry_to_node(entry);
  121. offset = get_slot_offset(parent, sibentry);
  122. entry = rcu_dereference_raw(*sibentry);
  123. }
  124. }
  125. #endif
  126. *nodep = (void *)entry;
  127. return offset;
  128. }
  129. static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
  130. {
  131. return root->gfp_mask & __GFP_BITS_MASK;
  132. }
  133. static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
  134. int offset)
  135. {
  136. __set_bit(offset, node->tags[tag]);
  137. }
  138. static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
  139. int offset)
  140. {
  141. __clear_bit(offset, node->tags[tag]);
  142. }
  143. static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
  144. int offset)
  145. {
  146. return test_bit(offset, node->tags[tag]);
  147. }
  148. static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
  149. {
  150. root->gfp_mask |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
  151. }
  152. static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
  153. {
  154. root->gfp_mask &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
  155. }
  156. static inline void root_tag_clear_all(struct radix_tree_root *root)
  157. {
  158. root->gfp_mask &= (1 << ROOT_TAG_SHIFT) - 1;
  159. }
  160. static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
  161. {
  162. return (__force int)root->gfp_mask & (1 << (tag + ROOT_TAG_SHIFT));
  163. }
  164. static inline unsigned root_tags_get(const struct radix_tree_root *root)
  165. {
  166. return (__force unsigned)root->gfp_mask >> ROOT_TAG_SHIFT;
  167. }
  168. static inline bool is_idr(const struct radix_tree_root *root)
  169. {
  170. return !!(root->gfp_mask & ROOT_IS_IDR);
  171. }
  172. /*
  173. * Returns 1 if any slot in the node has this tag set.
  174. * Otherwise returns 0.
  175. */
  176. static inline int any_tag_set(const struct radix_tree_node *node,
  177. unsigned int tag)
  178. {
  179. unsigned idx;
  180. for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
  181. if (node->tags[tag][idx])
  182. return 1;
  183. }
  184. return 0;
  185. }
  186. static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
  187. {
  188. bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
  189. }
  190. /**
  191. * radix_tree_find_next_bit - find the next set bit in a memory region
  192. *
  193. * @addr: The address to base the search on
  194. * @size: The bitmap size in bits
  195. * @offset: The bitnumber to start searching at
  196. *
  197. * Unrollable variant of find_next_bit() for constant size arrays.
  198. * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
  199. * Returns next bit offset, or size if nothing found.
  200. */
  201. static __always_inline unsigned long
  202. radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
  203. unsigned long offset)
  204. {
  205. const unsigned long *addr = node->tags[tag];
  206. if (offset < RADIX_TREE_MAP_SIZE) {
  207. unsigned long tmp;
  208. addr += offset / BITS_PER_LONG;
  209. tmp = *addr >> (offset % BITS_PER_LONG);
  210. if (tmp)
  211. return __ffs(tmp) + offset;
  212. offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
  213. while (offset < RADIX_TREE_MAP_SIZE) {
  214. tmp = *++addr;
  215. if (tmp)
  216. return __ffs(tmp) + offset;
  217. offset += BITS_PER_LONG;
  218. }
  219. }
  220. return RADIX_TREE_MAP_SIZE;
  221. }
  222. static unsigned int iter_offset(const struct radix_tree_iter *iter)
  223. {
  224. return (iter->index >> iter_shift(iter)) & RADIX_TREE_MAP_MASK;
  225. }
  226. /*
  227. * The maximum index which can be stored in a radix tree
  228. */
  229. static inline unsigned long shift_maxindex(unsigned int shift)
  230. {
  231. return (RADIX_TREE_MAP_SIZE << shift) - 1;
  232. }
  233. static inline unsigned long node_maxindex(const struct radix_tree_node *node)
  234. {
  235. return shift_maxindex(node->shift);
  236. }
  237. static unsigned long next_index(unsigned long index,
  238. const struct radix_tree_node *node,
  239. unsigned long offset)
  240. {
  241. return (index & ~node_maxindex(node)) + (offset << node->shift);
  242. }
  243. #ifndef __KERNEL__
  244. static void dump_node(struct radix_tree_node *node, unsigned long index)
  245. {
  246. unsigned long i;
  247. pr_debug("radix node: %p offset %d indices %lu-%lu parent %p tags %lx %lx %lx shift %d count %d exceptional %d\n",
  248. node, node->offset, index, index | node_maxindex(node),
  249. node->parent,
  250. node->tags[0][0], node->tags[1][0], node->tags[2][0],
  251. node->shift, node->count, node->exceptional);
  252. for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
  253. unsigned long first = index | (i << node->shift);
  254. unsigned long last = first | ((1UL << node->shift) - 1);
  255. void *entry = node->slots[i];
  256. if (!entry)
  257. continue;
  258. if (entry == RADIX_TREE_RETRY) {
  259. pr_debug("radix retry offset %ld indices %lu-%lu parent %p\n",
  260. i, first, last, node);
  261. } else if (!radix_tree_is_internal_node(entry)) {
  262. pr_debug("radix entry %p offset %ld indices %lu-%lu parent %p\n",
  263. entry, i, first, last, node);
  264. } else if (is_sibling_entry(node, entry)) {
  265. pr_debug("radix sblng %p offset %ld indices %lu-%lu parent %p val %p\n",
  266. entry, i, first, last, node,
  267. *(void **)entry_to_node(entry));
  268. } else {
  269. dump_node(entry_to_node(entry), first);
  270. }
  271. }
  272. }
  273. /* For debug */
  274. static void radix_tree_dump(struct radix_tree_root *root)
  275. {
  276. pr_debug("radix root: %p rnode %p tags %x\n",
  277. root, root->rnode,
  278. root->gfp_mask >> ROOT_TAG_SHIFT);
  279. if (!radix_tree_is_internal_node(root->rnode))
  280. return;
  281. dump_node(entry_to_node(root->rnode), 0);
  282. }
  283. static void dump_ida_node(void *entry, unsigned long index)
  284. {
  285. unsigned long i;
  286. if (!entry)
  287. return;
  288. if (radix_tree_is_internal_node(entry)) {
  289. struct radix_tree_node *node = entry_to_node(entry);
  290. pr_debug("ida node: %p offset %d indices %lu-%lu parent %p free %lx shift %d count %d\n",
  291. node, node->offset, index * IDA_BITMAP_BITS,
  292. ((index | node_maxindex(node)) + 1) *
  293. IDA_BITMAP_BITS - 1,
  294. node->parent, node->tags[0][0], node->shift,
  295. node->count);
  296. for (i = 0; i < RADIX_TREE_MAP_SIZE; i++)
  297. dump_ida_node(node->slots[i],
  298. index | (i << node->shift));
  299. } else if (radix_tree_exceptional_entry(entry)) {
  300. pr_debug("ida excp: %p offset %d indices %lu-%lu data %lx\n",
  301. entry, (int)(index & RADIX_TREE_MAP_MASK),
  302. index * IDA_BITMAP_BITS,
  303. index * IDA_BITMAP_BITS + BITS_PER_LONG -
  304. RADIX_TREE_EXCEPTIONAL_SHIFT,
  305. (unsigned long)entry >>
  306. RADIX_TREE_EXCEPTIONAL_SHIFT);
  307. } else {
  308. struct ida_bitmap *bitmap = entry;
  309. pr_debug("ida btmp: %p offset %d indices %lu-%lu data", bitmap,
  310. (int)(index & RADIX_TREE_MAP_MASK),
  311. index * IDA_BITMAP_BITS,
  312. (index + 1) * IDA_BITMAP_BITS - 1);
  313. for (i = 0; i < IDA_BITMAP_LONGS; i++)
  314. pr_cont(" %lx", bitmap->bitmap[i]);
  315. pr_cont("\n");
  316. }
  317. }
  318. static void ida_dump(struct ida *ida)
  319. {
  320. struct radix_tree_root *root = &ida->ida_rt;
  321. pr_debug("ida: %p node %p free %d\n", ida, root->rnode,
  322. root->gfp_mask >> ROOT_TAG_SHIFT);
  323. dump_ida_node(root->rnode, 0);
  324. }
  325. #endif
  326. /*
  327. * This assumes that the caller has performed appropriate preallocation, and
  328. * that the caller has pinned this thread of control to the current CPU.
  329. */
  330. static struct radix_tree_node *
  331. radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
  332. struct radix_tree_root *root,
  333. unsigned int shift, unsigned int offset,
  334. unsigned int count, unsigned int exceptional)
  335. {
  336. struct radix_tree_node *ret = NULL;
  337. /*
  338. * Preload code isn't irq safe and it doesn't make sense to use
  339. * preloading during an interrupt anyway as all the allocations have
  340. * to be atomic. So just do normal allocation when in interrupt.
  341. */
  342. if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
  343. struct radix_tree_preload *rtp;
  344. /*
  345. * Even if the caller has preloaded, try to allocate from the
  346. * cache first for the new node to get accounted to the memory
  347. * cgroup.
  348. */
  349. ret = kmem_cache_alloc(radix_tree_node_cachep,
  350. gfp_mask | __GFP_NOWARN);
  351. if (ret)
  352. goto out;
  353. /*
  354. * Provided the caller has preloaded here, we will always
  355. * succeed in getting a node here (and never reach
  356. * kmem_cache_alloc)
  357. */
  358. rtp = this_cpu_ptr(&radix_tree_preloads);
  359. if (rtp->nr) {
  360. ret = rtp->nodes;
  361. rtp->nodes = ret->parent;
  362. rtp->nr--;
  363. }
  364. /*
  365. * Update the allocation stack trace as this is more useful
  366. * for debugging.
  367. */
  368. kmemleak_update_trace(ret);
  369. goto out;
  370. }
  371. ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
  372. out:
  373. BUG_ON(radix_tree_is_internal_node(ret));
  374. if (ret) {
  375. ret->shift = shift;
  376. ret->offset = offset;
  377. ret->count = count;
  378. ret->exceptional = exceptional;
  379. ret->parent = parent;
  380. ret->root = root;
  381. }
  382. return ret;
  383. }
  384. static void radix_tree_node_rcu_free(struct rcu_head *head)
  385. {
  386. struct radix_tree_node *node =
  387. container_of(head, struct radix_tree_node, rcu_head);
  388. /*
  389. * Must only free zeroed nodes into the slab. We can be left with
  390. * non-NULL entries by radix_tree_free_nodes, so clear the entries
  391. * and tags here.
  392. */
  393. memset(node->slots, 0, sizeof(node->slots));
  394. memset(node->tags, 0, sizeof(node->tags));
  395. INIT_LIST_HEAD(&node->private_list);
  396. kmem_cache_free(radix_tree_node_cachep, node);
  397. }
  398. static inline void
  399. radix_tree_node_free(struct radix_tree_node *node)
  400. {
  401. call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
  402. }
  403. /*
  404. * Load up this CPU's radix_tree_node buffer with sufficient objects to
  405. * ensure that the addition of a single element in the tree cannot fail. On
  406. * success, return zero, with preemption disabled. On error, return -ENOMEM
  407. * with preemption not disabled.
  408. *
  409. * To make use of this facility, the radix tree must be initialised without
  410. * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
  411. */
  412. static int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
  413. {
  414. struct radix_tree_preload *rtp;
  415. struct radix_tree_node *node;
  416. int ret = -ENOMEM;
  417. /*
  418. * Nodes preloaded by one cgroup can be be used by another cgroup, so
  419. * they should never be accounted to any particular memory cgroup.
  420. */
  421. gfp_mask &= ~__GFP_ACCOUNT;
  422. preempt_disable();
  423. rtp = this_cpu_ptr(&radix_tree_preloads);
  424. while (rtp->nr < nr) {
  425. preempt_enable();
  426. node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
  427. if (node == NULL)
  428. goto out;
  429. preempt_disable();
  430. rtp = this_cpu_ptr(&radix_tree_preloads);
  431. if (rtp->nr < nr) {
  432. node->parent = rtp->nodes;
  433. rtp->nodes = node;
  434. rtp->nr++;
  435. } else {
  436. kmem_cache_free(radix_tree_node_cachep, node);
  437. }
  438. }
  439. ret = 0;
  440. out:
  441. return ret;
  442. }
  443. /*
  444. * Load up this CPU's radix_tree_node buffer with sufficient objects to
  445. * ensure that the addition of a single element in the tree cannot fail. On
  446. * success, return zero, with preemption disabled. On error, return -ENOMEM
  447. * with preemption not disabled.
  448. *
  449. * To make use of this facility, the radix tree must be initialised without
  450. * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
  451. */
  452. int radix_tree_preload(gfp_t gfp_mask)
  453. {
  454. /* Warn on non-sensical use... */
  455. WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
  456. return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
  457. }
  458. EXPORT_SYMBOL(radix_tree_preload);
  459. /*
  460. * The same as above function, except we don't guarantee preloading happens.
  461. * We do it, if we decide it helps. On success, return zero with preemption
  462. * disabled. On error, return -ENOMEM with preemption not disabled.
  463. */
  464. int radix_tree_maybe_preload(gfp_t gfp_mask)
  465. {
  466. if (gfpflags_allow_blocking(gfp_mask))
  467. return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
  468. /* Preloading doesn't help anything with this gfp mask, skip it */
  469. preempt_disable();
  470. return 0;
  471. }
  472. EXPORT_SYMBOL(radix_tree_maybe_preload);
  473. #ifdef CONFIG_RADIX_TREE_MULTIORDER
  474. /*
  475. * Preload with enough objects to ensure that we can split a single entry
  476. * of order @old_order into many entries of size @new_order
  477. */
  478. int radix_tree_split_preload(unsigned int old_order, unsigned int new_order,
  479. gfp_t gfp_mask)
  480. {
  481. unsigned top = 1 << (old_order % RADIX_TREE_MAP_SHIFT);
  482. unsigned layers = (old_order / RADIX_TREE_MAP_SHIFT) -
  483. (new_order / RADIX_TREE_MAP_SHIFT);
  484. unsigned nr = 0;
  485. WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
  486. BUG_ON(new_order >= old_order);
  487. while (layers--)
  488. nr = nr * RADIX_TREE_MAP_SIZE + 1;
  489. return __radix_tree_preload(gfp_mask, top * nr);
  490. }
  491. #endif
  492. /*
  493. * The same as function above, but preload number of nodes required to insert
  494. * (1 << order) continuous naturally-aligned elements.
  495. */
  496. int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
  497. {
  498. unsigned long nr_subtrees;
  499. int nr_nodes, subtree_height;
  500. /* Preloading doesn't help anything with this gfp mask, skip it */
  501. if (!gfpflags_allow_blocking(gfp_mask)) {
  502. preempt_disable();
  503. return 0;
  504. }
  505. /*
  506. * Calculate number and height of fully populated subtrees it takes to
  507. * store (1 << order) elements.
  508. */
  509. nr_subtrees = 1 << order;
  510. for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
  511. subtree_height++)
  512. nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
  513. /*
  514. * The worst case is zero height tree with a single item at index 0 and
  515. * then inserting items starting at ULONG_MAX - (1 << order).
  516. *
  517. * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
  518. * 0-index item.
  519. */
  520. nr_nodes = RADIX_TREE_MAX_PATH;
  521. /* Plus branch to fully populated subtrees. */
  522. nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
  523. /* Root node is shared. */
  524. nr_nodes--;
  525. /* Plus nodes required to build subtrees. */
  526. nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
  527. return __radix_tree_preload(gfp_mask, nr_nodes);
  528. }
  529. static unsigned radix_tree_load_root(const struct radix_tree_root *root,
  530. struct radix_tree_node **nodep, unsigned long *maxindex)
  531. {
  532. struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
  533. *nodep = node;
  534. if (likely(radix_tree_is_internal_node(node))) {
  535. node = entry_to_node(node);
  536. *maxindex = node_maxindex(node);
  537. return node->shift + RADIX_TREE_MAP_SHIFT;
  538. }
  539. *maxindex = 0;
  540. return 0;
  541. }
  542. /*
  543. * Extend a radix tree so it can store key @index.
  544. */
  545. static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
  546. unsigned long index, unsigned int shift)
  547. {
  548. void *entry;
  549. unsigned int maxshift;
  550. int tag;
  551. /* Figure out what the shift should be. */
  552. maxshift = shift;
  553. while (index > shift_maxindex(maxshift))
  554. maxshift += RADIX_TREE_MAP_SHIFT;
  555. entry = rcu_dereference_raw(root->rnode);
  556. if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
  557. goto out;
  558. do {
  559. struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
  560. root, shift, 0, 1, 0);
  561. if (!node)
  562. return -ENOMEM;
  563. if (is_idr(root)) {
  564. all_tag_set(node, IDR_FREE);
  565. if (!root_tag_get(root, IDR_FREE)) {
  566. tag_clear(node, IDR_FREE, 0);
  567. root_tag_set(root, IDR_FREE);
  568. }
  569. } else {
  570. /* Propagate the aggregated tag info to the new child */
  571. for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
  572. if (root_tag_get(root, tag))
  573. tag_set(node, tag, 0);
  574. }
  575. }
  576. BUG_ON(shift > BITS_PER_LONG);
  577. if (radix_tree_is_internal_node(entry)) {
  578. entry_to_node(entry)->parent = node;
  579. } else if (radix_tree_exceptional_entry(entry)) {
  580. /* Moving an exceptional root->rnode to a node */
  581. node->exceptional = 1;
  582. }
  583. /*
  584. * entry was already in the radix tree, so we do not need
  585. * rcu_assign_pointer here
  586. */
  587. node->slots[0] = (void __rcu *)entry;
  588. entry = node_to_entry(node);
  589. rcu_assign_pointer(root->rnode, entry);
  590. shift += RADIX_TREE_MAP_SHIFT;
  591. } while (shift <= maxshift);
  592. out:
  593. return maxshift + RADIX_TREE_MAP_SHIFT;
  594. }
  595. /**
  596. * radix_tree_shrink - shrink radix tree to minimum height
  597. * @root radix tree root
  598. */
  599. static inline bool radix_tree_shrink(struct radix_tree_root *root,
  600. radix_tree_update_node_t update_node,
  601. void *private)
  602. {
  603. bool shrunk = false;
  604. for (;;) {
  605. struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
  606. struct radix_tree_node *child;
  607. if (!radix_tree_is_internal_node(node))
  608. break;
  609. node = entry_to_node(node);
  610. /*
  611. * The candidate node has more than one child, or its child
  612. * is not at the leftmost slot, or the child is a multiorder
  613. * entry, we cannot shrink.
  614. */
  615. if (node->count != 1)
  616. break;
  617. child = rcu_dereference_raw(node->slots[0]);
  618. if (!child)
  619. break;
  620. if (!radix_tree_is_internal_node(child) && node->shift)
  621. break;
  622. if (radix_tree_is_internal_node(child))
  623. entry_to_node(child)->parent = NULL;
  624. /*
  625. * We don't need rcu_assign_pointer(), since we are simply
  626. * moving the node from one part of the tree to another: if it
  627. * was safe to dereference the old pointer to it
  628. * (node->slots[0]), it will be safe to dereference the new
  629. * one (root->rnode) as far as dependent read barriers go.
  630. */
  631. root->rnode = (void __rcu *)child;
  632. if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
  633. root_tag_clear(root, IDR_FREE);
  634. /*
  635. * We have a dilemma here. The node's slot[0] must not be
  636. * NULLed in case there are concurrent lookups expecting to
  637. * find the item. However if this was a bottom-level node,
  638. * then it may be subject to the slot pointer being visible
  639. * to callers dereferencing it. If item corresponding to
  640. * slot[0] is subsequently deleted, these callers would expect
  641. * their slot to become empty sooner or later.
  642. *
  643. * For example, lockless pagecache will look up a slot, deref
  644. * the page pointer, and if the page has 0 refcount it means it
  645. * was concurrently deleted from pagecache so try the deref
  646. * again. Fortunately there is already a requirement for logic
  647. * to retry the entire slot lookup -- the indirect pointer
  648. * problem (replacing direct root node with an indirect pointer
  649. * also results in a stale slot). So tag the slot as indirect
  650. * to force callers to retry.
  651. */
  652. node->count = 0;
  653. if (!radix_tree_is_internal_node(child)) {
  654. node->slots[0] = (void __rcu *)RADIX_TREE_RETRY;
  655. if (update_node)
  656. update_node(node, private);
  657. }
  658. WARN_ON_ONCE(!list_empty(&node->private_list));
  659. radix_tree_node_free(node);
  660. shrunk = true;
  661. }
  662. return shrunk;
  663. }
  664. static bool delete_node(struct radix_tree_root *root,
  665. struct radix_tree_node *node,
  666. radix_tree_update_node_t update_node, void *private)
  667. {
  668. bool deleted = false;
  669. do {
  670. struct radix_tree_node *parent;
  671. if (node->count) {
  672. if (node_to_entry(node) ==
  673. rcu_dereference_raw(root->rnode))
  674. deleted |= radix_tree_shrink(root, update_node,
  675. private);
  676. return deleted;
  677. }
  678. parent = node->parent;
  679. if (parent) {
  680. parent->slots[node->offset] = NULL;
  681. parent->count--;
  682. } else {
  683. /*
  684. * Shouldn't the tags already have all been cleared
  685. * by the caller?
  686. */
  687. if (!is_idr(root))
  688. root_tag_clear_all(root);
  689. root->rnode = NULL;
  690. }
  691. WARN_ON_ONCE(!list_empty(&node->private_list));
  692. radix_tree_node_free(node);
  693. deleted = true;
  694. node = parent;
  695. } while (node);
  696. return deleted;
  697. }
  698. /**
  699. * __radix_tree_create - create a slot in a radix tree
  700. * @root: radix tree root
  701. * @index: index key
  702. * @order: index occupies 2^order aligned slots
  703. * @nodep: returns node
  704. * @slotp: returns slot
  705. *
  706. * Create, if necessary, and return the node and slot for an item
  707. * at position @index in the radix tree @root.
  708. *
  709. * Until there is more than one item in the tree, no nodes are
  710. * allocated and @root->rnode is used as a direct slot instead of
  711. * pointing to a node, in which case *@nodep will be NULL.
  712. *
  713. * Returns -ENOMEM, or 0 for success.
  714. */
  715. int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
  716. unsigned order, struct radix_tree_node **nodep,
  717. void __rcu ***slotp)
  718. {
  719. struct radix_tree_node *node = NULL, *child;
  720. void __rcu **slot = (void __rcu **)&root->rnode;
  721. unsigned long maxindex;
  722. unsigned int shift, offset = 0;
  723. unsigned long max = index | ((1UL << order) - 1);
  724. gfp_t gfp = root_gfp_mask(root);
  725. shift = radix_tree_load_root(root, &child, &maxindex);
  726. /* Make sure the tree is high enough. */
  727. if (order > 0 && max == ((1UL << order) - 1))
  728. max++;
  729. if (max > maxindex) {
  730. int error = radix_tree_extend(root, gfp, max, shift);
  731. if (error < 0)
  732. return error;
  733. shift = error;
  734. child = rcu_dereference_raw(root->rnode);
  735. }
  736. while (shift > order) {
  737. shift -= RADIX_TREE_MAP_SHIFT;
  738. if (child == NULL) {
  739. /* Have to add a child node. */
  740. child = radix_tree_node_alloc(gfp, node, root, shift,
  741. offset, 0, 0);
  742. if (!child)
  743. return -ENOMEM;
  744. rcu_assign_pointer(*slot, node_to_entry(child));
  745. if (node)
  746. node->count++;
  747. } else if (!radix_tree_is_internal_node(child))
  748. break;
  749. /* Go a level down */
  750. node = entry_to_node(child);
  751. offset = radix_tree_descend(node, &child, index);
  752. slot = &node->slots[offset];
  753. }
  754. if (nodep)
  755. *nodep = node;
  756. if (slotp)
  757. *slotp = slot;
  758. return 0;
  759. }
  760. /*
  761. * Free any nodes below this node. The tree is presumed to not need
  762. * shrinking, and any user data in the tree is presumed to not need a
  763. * destructor called on it. If we need to add a destructor, we can
  764. * add that functionality later. Note that we may not clear tags or
  765. * slots from the tree as an RCU walker may still have a pointer into
  766. * this subtree. We could replace the entries with RADIX_TREE_RETRY,
  767. * but we'll still have to clear those in rcu_free.
  768. */
  769. static void radix_tree_free_nodes(struct radix_tree_node *node)
  770. {
  771. unsigned offset = 0;
  772. struct radix_tree_node *child = entry_to_node(node);
  773. for (;;) {
  774. void *entry = rcu_dereference_raw(child->slots[offset]);
  775. if (radix_tree_is_internal_node(entry) &&
  776. !is_sibling_entry(child, entry)) {
  777. child = entry_to_node(entry);
  778. offset = 0;
  779. continue;
  780. }
  781. offset++;
  782. while (offset == RADIX_TREE_MAP_SIZE) {
  783. struct radix_tree_node *old = child;
  784. offset = child->offset + 1;
  785. child = child->parent;
  786. WARN_ON_ONCE(!list_empty(&old->private_list));
  787. radix_tree_node_free(old);
  788. if (old == entry_to_node(node))
  789. return;
  790. }
  791. }
  792. }
  793. #ifdef CONFIG_RADIX_TREE_MULTIORDER
  794. static inline int insert_entries(struct radix_tree_node *node,
  795. void __rcu **slot, void *item, unsigned order, bool replace)
  796. {
  797. struct radix_tree_node *child;
  798. unsigned i, n, tag, offset, tags = 0;
  799. if (node) {
  800. if (order > node->shift)
  801. n = 1 << (order - node->shift);
  802. else
  803. n = 1;
  804. offset = get_slot_offset(node, slot);
  805. } else {
  806. n = 1;
  807. offset = 0;
  808. }
  809. if (n > 1) {
  810. offset = offset & ~(n - 1);
  811. slot = &node->slots[offset];
  812. }
  813. child = node_to_entry(slot);
  814. for (i = 0; i < n; i++) {
  815. if (slot[i]) {
  816. if (replace) {
  817. node->count--;
  818. for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
  819. if (tag_get(node, tag, offset + i))
  820. tags |= 1 << tag;
  821. } else
  822. return -EEXIST;
  823. }
  824. }
  825. for (i = 0; i < n; i++) {
  826. struct radix_tree_node *old = rcu_dereference_raw(slot[i]);
  827. if (i) {
  828. rcu_assign_pointer(slot[i], child);
  829. for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
  830. if (tags & (1 << tag))
  831. tag_clear(node, tag, offset + i);
  832. } else {
  833. rcu_assign_pointer(slot[i], item);
  834. for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
  835. if (tags & (1 << tag))
  836. tag_set(node, tag, offset);
  837. }
  838. if (radix_tree_is_internal_node(old) &&
  839. !is_sibling_entry(node, old) &&
  840. (old != RADIX_TREE_RETRY))
  841. radix_tree_free_nodes(old);
  842. if (radix_tree_exceptional_entry(old))
  843. node->exceptional--;
  844. }
  845. if (node) {
  846. node->count += n;
  847. if (radix_tree_exceptional_entry(item))
  848. node->exceptional += n;
  849. }
  850. return n;
  851. }
  852. #else
  853. static inline int insert_entries(struct radix_tree_node *node,
  854. void __rcu **slot, void *item, unsigned order, bool replace)
  855. {
  856. if (*slot)
  857. return -EEXIST;
  858. rcu_assign_pointer(*slot, item);
  859. if (node) {
  860. node->count++;
  861. if (radix_tree_exceptional_entry(item))
  862. node->exceptional++;
  863. }
  864. return 1;
  865. }
  866. #endif
  867. /**
  868. * __radix_tree_insert - insert into a radix tree
  869. * @root: radix tree root
  870. * @index: index key
  871. * @order: key covers the 2^order indices around index
  872. * @item: item to insert
  873. *
  874. * Insert an item into the radix tree at position @index.
  875. */
  876. int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
  877. unsigned order, void *item)
  878. {
  879. struct radix_tree_node *node;
  880. void __rcu **slot;
  881. int error;
  882. BUG_ON(radix_tree_is_internal_node(item));
  883. error = __radix_tree_create(root, index, order, &node, &slot);
  884. if (error)
  885. return error;
  886. error = insert_entries(node, slot, item, order, false);
  887. if (error < 0)
  888. return error;
  889. if (node) {
  890. unsigned offset = get_slot_offset(node, slot);
  891. BUG_ON(tag_get(node, 0, offset));
  892. BUG_ON(tag_get(node, 1, offset));
  893. BUG_ON(tag_get(node, 2, offset));
  894. } else {
  895. BUG_ON(root_tags_get(root));
  896. }
  897. return 0;
  898. }
  899. EXPORT_SYMBOL(__radix_tree_insert);
  900. /**
  901. * __radix_tree_lookup - lookup an item in a radix tree
  902. * @root: radix tree root
  903. * @index: index key
  904. * @nodep: returns node
  905. * @slotp: returns slot
  906. *
  907. * Lookup and return the item at position @index in the radix
  908. * tree @root.
  909. *
  910. * Until there is more than one item in the tree, no nodes are
  911. * allocated and @root->rnode is used as a direct slot instead of
  912. * pointing to a node, in which case *@nodep will be NULL.
  913. */
  914. void *__radix_tree_lookup(const struct radix_tree_root *root,
  915. unsigned long index, struct radix_tree_node **nodep,
  916. void __rcu ***slotp)
  917. {
  918. struct radix_tree_node *node, *parent;
  919. unsigned long maxindex;
  920. void __rcu **slot;
  921. restart:
  922. parent = NULL;
  923. slot = (void __rcu **)&root->rnode;
  924. radix_tree_load_root(root, &node, &maxindex);
  925. if (index > maxindex)
  926. return NULL;
  927. while (radix_tree_is_internal_node(node)) {
  928. unsigned offset;
  929. if (node == RADIX_TREE_RETRY)
  930. goto restart;
  931. parent = entry_to_node(node);
  932. offset = radix_tree_descend(parent, &node, index);
  933. slot = parent->slots + offset;
  934. }
  935. if (nodep)
  936. *nodep = parent;
  937. if (slotp)
  938. *slotp = slot;
  939. return node;
  940. }
  941. /**
  942. * radix_tree_lookup_slot - lookup a slot in a radix tree
  943. * @root: radix tree root
  944. * @index: index key
  945. *
  946. * Returns: the slot corresponding to the position @index in the
  947. * radix tree @root. This is useful for update-if-exists operations.
  948. *
  949. * This function can be called under rcu_read_lock iff the slot is not
  950. * modified by radix_tree_replace_slot, otherwise it must be called
  951. * exclusive from other writers. Any dereference of the slot must be done
  952. * using radix_tree_deref_slot.
  953. */
  954. void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root,
  955. unsigned long index)
  956. {
  957. void __rcu **slot;
  958. if (!__radix_tree_lookup(root, index, NULL, &slot))
  959. return NULL;
  960. return slot;
  961. }
  962. EXPORT_SYMBOL(radix_tree_lookup_slot);
  963. /**
  964. * radix_tree_lookup - perform lookup operation on a radix tree
  965. * @root: radix tree root
  966. * @index: index key
  967. *
  968. * Lookup the item at the position @index in the radix tree @root.
  969. *
  970. * This function can be called under rcu_read_lock, however the caller
  971. * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
  972. * them safely). No RCU barriers are required to access or modify the
  973. * returned item, however.
  974. */
  975. void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
  976. {
  977. return __radix_tree_lookup(root, index, NULL, NULL);
  978. }
  979. EXPORT_SYMBOL(radix_tree_lookup);
  980. static inline void replace_sibling_entries(struct radix_tree_node *node,
  981. void __rcu **slot, int count, int exceptional)
  982. {
  983. #ifdef CONFIG_RADIX_TREE_MULTIORDER
  984. void *ptr = node_to_entry(slot);
  985. unsigned offset = get_slot_offset(node, slot) + 1;
  986. while (offset < RADIX_TREE_MAP_SIZE) {
  987. if (rcu_dereference_raw(node->slots[offset]) != ptr)
  988. break;
  989. if (count < 0) {
  990. node->slots[offset] = NULL;
  991. node->count--;
  992. }
  993. node->exceptional += exceptional;
  994. offset++;
  995. }
  996. #endif
  997. }
  998. static void replace_slot(void __rcu **slot, void *item,
  999. struct radix_tree_node *node, int count, int exceptional)
  1000. {
  1001. if (WARN_ON_ONCE(radix_tree_is_internal_node(item)))
  1002. return;
  1003. if (node && (count || exceptional)) {
  1004. node->count += count;
  1005. node->exceptional += exceptional;
  1006. replace_sibling_entries(node, slot, count, exceptional);
  1007. }
  1008. rcu_assign_pointer(*slot, item);
  1009. }
  1010. static bool node_tag_get(const struct radix_tree_root *root,
  1011. const struct radix_tree_node *node,
  1012. unsigned int tag, unsigned int offset)
  1013. {
  1014. if (node)
  1015. return tag_get(node, tag, offset);
  1016. return root_tag_get(root, tag);
  1017. }
  1018. /*
  1019. * IDR users want to be able to store NULL in the tree, so if the slot isn't
  1020. * free, don't adjust the count, even if it's transitioning between NULL and
  1021. * non-NULL. For the IDA, we mark slots as being IDR_FREE while they still
  1022. * have empty bits, but it only stores NULL in slots when they're being
  1023. * deleted.
  1024. */
  1025. static int calculate_count(struct radix_tree_root *root,
  1026. struct radix_tree_node *node, void __rcu **slot,
  1027. void *item, void *old)
  1028. {
  1029. if (is_idr(root)) {
  1030. unsigned offset = get_slot_offset(node, slot);
  1031. bool free = node_tag_get(root, node, IDR_FREE, offset);
  1032. if (!free)
  1033. return 0;
  1034. if (!old)
  1035. return 1;
  1036. }
  1037. return !!item - !!old;
  1038. }
  1039. /**
  1040. * __radix_tree_replace - replace item in a slot
  1041. * @root: radix tree root
  1042. * @node: pointer to tree node
  1043. * @slot: pointer to slot in @node
  1044. * @item: new item to store in the slot.
  1045. * @update_node: callback for changing leaf nodes
  1046. * @private: private data to pass to @update_node
  1047. *
  1048. * For use with __radix_tree_lookup(). Caller must hold tree write locked
  1049. * across slot lookup and replacement.
  1050. */
  1051. void __radix_tree_replace(struct radix_tree_root *root,
  1052. struct radix_tree_node *node,
  1053. void __rcu **slot, void *item,
  1054. radix_tree_update_node_t update_node, void *private)
  1055. {
  1056. void *old = rcu_dereference_raw(*slot);
  1057. int exceptional = !!radix_tree_exceptional_entry(item) -
  1058. !!radix_tree_exceptional_entry(old);
  1059. int count = calculate_count(root, node, slot, item, old);
  1060. /*
  1061. * This function supports replacing exceptional entries and
  1062. * deleting entries, but that needs accounting against the
  1063. * node unless the slot is root->rnode.
  1064. */
  1065. WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->rnode) &&
  1066. (count || exceptional));
  1067. replace_slot(slot, item, node, count, exceptional);
  1068. if (!node)
  1069. return;
  1070. if (update_node)
  1071. update_node(node, private);
  1072. delete_node(root, node, update_node, private);
  1073. }
  1074. /**
  1075. * radix_tree_replace_slot - replace item in a slot
  1076. * @root: radix tree root
  1077. * @slot: pointer to slot
  1078. * @item: new item to store in the slot.
  1079. *
  1080. * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
  1081. * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked
  1082. * across slot lookup and replacement.
  1083. *
  1084. * NOTE: This cannot be used to switch between non-entries (empty slots),
  1085. * regular entries, and exceptional entries, as that requires accounting
  1086. * inside the radix tree node. When switching from one type of entry or
  1087. * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
  1088. * radix_tree_iter_replace().
  1089. */
  1090. void radix_tree_replace_slot(struct radix_tree_root *root,
  1091. void __rcu **slot, void *item)
  1092. {
  1093. __radix_tree_replace(root, NULL, slot, item, NULL, NULL);
  1094. }
  1095. EXPORT_SYMBOL(radix_tree_replace_slot);
  1096. /**
  1097. * radix_tree_iter_replace - replace item in a slot
  1098. * @root: radix tree root
  1099. * @slot: pointer to slot
  1100. * @item: new item to store in the slot.
  1101. *
  1102. * For use with radix_tree_split() and radix_tree_for_each_slot().
  1103. * Caller must hold tree write locked across split and replacement.
  1104. */
  1105. void radix_tree_iter_replace(struct radix_tree_root *root,
  1106. const struct radix_tree_iter *iter,
  1107. void __rcu **slot, void *item)
  1108. {
  1109. __radix_tree_replace(root, iter->node, slot, item, NULL, NULL);
  1110. }
  1111. #ifdef CONFIG_RADIX_TREE_MULTIORDER
  1112. /**
  1113. * radix_tree_join - replace multiple entries with one multiorder entry
  1114. * @root: radix tree root
  1115. * @index: an index inside the new entry
  1116. * @order: order of the new entry
  1117. * @item: new entry
  1118. *
  1119. * Call this function to replace several entries with one larger entry.
  1120. * The existing entries are presumed to not need freeing as a result of
  1121. * this call.
  1122. *
  1123. * The replacement entry will have all the tags set on it that were set
  1124. * on any of the entries it is replacing.
  1125. */
  1126. int radix_tree_join(struct radix_tree_root *root, unsigned long index,
  1127. unsigned order, void *item)
  1128. {
  1129. struct radix_tree_node *node;
  1130. void __rcu **slot;
  1131. int error;
  1132. BUG_ON(radix_tree_is_internal_node(item));
  1133. error = __radix_tree_create(root, index, order, &node, &slot);
  1134. if (!error)
  1135. error = insert_entries(node, slot, item, order, true);
  1136. if (error > 0)
  1137. error = 0;
  1138. return error;
  1139. }
  1140. /**
  1141. * radix_tree_split - Split an entry into smaller entries
  1142. * @root: radix tree root
  1143. * @index: An index within the large entry
  1144. * @order: Order of new entries
  1145. *
  1146. * Call this function as the first step in replacing a multiorder entry
  1147. * with several entries of lower order. After this function returns,
  1148. * loop over the relevant portion of the tree using radix_tree_for_each_slot()
  1149. * and call radix_tree_iter_replace() to set up each new entry.
  1150. *
  1151. * The tags from this entry are replicated to all the new entries.
  1152. *
  1153. * The radix tree should be locked against modification during the entire
  1154. * replacement operation. Lock-free lookups will see RADIX_TREE_RETRY which
  1155. * should prompt RCU walkers to restart the lookup from the root.
  1156. */
  1157. int radix_tree_split(struct radix_tree_root *root, unsigned long index,
  1158. unsigned order)
  1159. {
  1160. struct radix_tree_node *parent, *node, *child;
  1161. void __rcu **slot;
  1162. unsigned int offset, end;
  1163. unsigned n, tag, tags = 0;
  1164. gfp_t gfp = root_gfp_mask(root);
  1165. if (!__radix_tree_lookup(root, index, &parent, &slot))
  1166. return -ENOENT;
  1167. if (!parent)
  1168. return -ENOENT;
  1169. offset = get_slot_offset(parent, slot);
  1170. for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
  1171. if (tag_get(parent, tag, offset))
  1172. tags |= 1 << tag;
  1173. for (end = offset + 1; end < RADIX_TREE_MAP_SIZE; end++) {
  1174. if (!is_sibling_entry(parent,
  1175. rcu_dereference_raw(parent->slots[end])))
  1176. break;
  1177. for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
  1178. if (tags & (1 << tag))
  1179. tag_set(parent, tag, end);
  1180. /* rcu_assign_pointer ensures tags are set before RETRY */
  1181. rcu_assign_pointer(parent->slots[end], RADIX_TREE_RETRY);
  1182. }
  1183. rcu_assign_pointer(parent->slots[offset], RADIX_TREE_RETRY);
  1184. parent->exceptional -= (end - offset);
  1185. if (order == parent->shift)
  1186. return 0;
  1187. if (order > parent->shift) {
  1188. while (offset < end)
  1189. offset += insert_entries(parent, &parent->slots[offset],
  1190. RADIX_TREE_RETRY, order, true);
  1191. return 0;
  1192. }
  1193. node = parent;
  1194. for (;;) {
  1195. if (node->shift > order) {
  1196. child = radix_tree_node_alloc(gfp, node, root,
  1197. node->shift - RADIX_TREE_MAP_SHIFT,
  1198. offset, 0, 0);
  1199. if (!child)
  1200. goto nomem;
  1201. if (node != parent) {
  1202. node->count++;
  1203. rcu_assign_pointer(node->slots[offset],
  1204. node_to_entry(child));
  1205. for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
  1206. if (tags & (1 << tag))
  1207. tag_set(node, tag, offset);
  1208. }
  1209. node = child;
  1210. offset = 0;
  1211. continue;
  1212. }
  1213. n = insert_entries(node, &node->slots[offset],
  1214. RADIX_TREE_RETRY, order, false);
  1215. BUG_ON(n > RADIX_TREE_MAP_SIZE);
  1216. for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
  1217. if (tags & (1 << tag))
  1218. tag_set(node, tag, offset);
  1219. offset += n;
  1220. while (offset == RADIX_TREE_MAP_SIZE) {
  1221. if (node == parent)
  1222. break;
  1223. offset = node->offset;
  1224. child = node;
  1225. node = node->parent;
  1226. rcu_assign_pointer(node->slots[offset],
  1227. node_to_entry(child));
  1228. offset++;
  1229. }
  1230. if ((node == parent) && (offset == end))
  1231. return 0;
  1232. }
  1233. nomem:
  1234. /* Shouldn't happen; did user forget to preload? */
  1235. /* TODO: free all the allocated nodes */
  1236. WARN_ON(1);
  1237. return -ENOMEM;
  1238. }
  1239. #endif
  1240. static void node_tag_set(struct radix_tree_root *root,
  1241. struct radix_tree_node *node,
  1242. unsigned int tag, unsigned int offset)
  1243. {
  1244. while (node) {
  1245. if (tag_get(node, tag, offset))
  1246. return;
  1247. tag_set(node, tag, offset);
  1248. offset = node->offset;
  1249. node = node->parent;
  1250. }
  1251. if (!root_tag_get(root, tag))
  1252. root_tag_set(root, tag);
  1253. }
  1254. /**
  1255. * radix_tree_tag_set - set a tag on a radix tree node
  1256. * @root: radix tree root
  1257. * @index: index key
  1258. * @tag: tag index
  1259. *
  1260. * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
  1261. * corresponding to @index in the radix tree. From
  1262. * the root all the way down to the leaf node.
  1263. *
  1264. * Returns the address of the tagged item. Setting a tag on a not-present
  1265. * item is a bug.
  1266. */
  1267. void *radix_tree_tag_set(struct radix_tree_root *root,
  1268. unsigned long index, unsigned int tag)
  1269. {
  1270. struct radix_tree_node *node, *parent;
  1271. unsigned long maxindex;
  1272. radix_tree_load_root(root, &node, &maxindex);
  1273. BUG_ON(index > maxindex);
  1274. while (radix_tree_is_internal_node(node)) {
  1275. unsigned offset;
  1276. parent = entry_to_node(node);
  1277. offset = radix_tree_descend(parent, &node, index);
  1278. BUG_ON(!node);
  1279. if (!tag_get(parent, tag, offset))
  1280. tag_set(parent, tag, offset);
  1281. }
  1282. /* set the root's tag bit */
  1283. if (!root_tag_get(root, tag))
  1284. root_tag_set(root, tag);
  1285. return node;
  1286. }
  1287. EXPORT_SYMBOL(radix_tree_tag_set);
  1288. /**
  1289. * radix_tree_iter_tag_set - set a tag on the current iterator entry
  1290. * @root: radix tree root
  1291. * @iter: iterator state
  1292. * @tag: tag to set
  1293. */
  1294. void radix_tree_iter_tag_set(struct radix_tree_root *root,
  1295. const struct radix_tree_iter *iter, unsigned int tag)
  1296. {
  1297. node_tag_set(root, iter->node, tag, iter_offset(iter));
  1298. }
  1299. static void node_tag_clear(struct radix_tree_root *root,
  1300. struct radix_tree_node *node,
  1301. unsigned int tag, unsigned int offset)
  1302. {
  1303. while (node) {
  1304. if (!tag_get(node, tag, offset))
  1305. return;
  1306. tag_clear(node, tag, offset);
  1307. if (any_tag_set(node, tag))
  1308. return;
  1309. offset = node->offset;
  1310. node = node->parent;
  1311. }
  1312. /* clear the root's tag bit */
  1313. if (root_tag_get(root, tag))
  1314. root_tag_clear(root, tag);
  1315. }
  1316. /**
  1317. * radix_tree_tag_clear - clear a tag on a radix tree node
  1318. * @root: radix tree root
  1319. * @index: index key
  1320. * @tag: tag index
  1321. *
  1322. * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
  1323. * corresponding to @index in the radix tree. If this causes
  1324. * the leaf node to have no tags set then clear the tag in the
  1325. * next-to-leaf node, etc.
  1326. *
  1327. * Returns the address of the tagged item on success, else NULL. ie:
  1328. * has the same return value and semantics as radix_tree_lookup().
  1329. */
  1330. void *radix_tree_tag_clear(struct radix_tree_root *root,
  1331. unsigned long index, unsigned int tag)
  1332. {
  1333. struct radix_tree_node *node, *parent;
  1334. unsigned long maxindex;
  1335. int uninitialized_var(offset);
  1336. radix_tree_load_root(root, &node, &maxindex);
  1337. if (index > maxindex)
  1338. return NULL;
  1339. parent = NULL;
  1340. while (radix_tree_is_internal_node(node)) {
  1341. parent = entry_to_node(node);
  1342. offset = radix_tree_descend(parent, &node, index);
  1343. }
  1344. if (node)
  1345. node_tag_clear(root, parent, tag, offset);
  1346. return node;
  1347. }
  1348. EXPORT_SYMBOL(radix_tree_tag_clear);
  1349. /**
  1350. * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
  1351. * @root: radix tree root
  1352. * @iter: iterator state
  1353. * @tag: tag to clear
  1354. */
  1355. void radix_tree_iter_tag_clear(struct radix_tree_root *root,
  1356. const struct radix_tree_iter *iter, unsigned int tag)
  1357. {
  1358. node_tag_clear(root, iter->node, tag, iter_offset(iter));
  1359. }
  1360. /**
  1361. * radix_tree_tag_get - get a tag on a radix tree node
  1362. * @root: radix tree root
  1363. * @index: index key
  1364. * @tag: tag index (< RADIX_TREE_MAX_TAGS)
  1365. *
  1366. * Return values:
  1367. *
  1368. * 0: tag not present or not set
  1369. * 1: tag set
  1370. *
  1371. * Note that the return value of this function may not be relied on, even if
  1372. * the RCU lock is held, unless tag modification and node deletion are excluded
  1373. * from concurrency.
  1374. */
  1375. int radix_tree_tag_get(const struct radix_tree_root *root,
  1376. unsigned long index, unsigned int tag)
  1377. {
  1378. struct radix_tree_node *node, *parent;
  1379. unsigned long maxindex;
  1380. if (!root_tag_get(root, tag))
  1381. return 0;
  1382. radix_tree_load_root(root, &node, &maxindex);
  1383. if (index > maxindex)
  1384. return 0;
  1385. while (radix_tree_is_internal_node(node)) {
  1386. unsigned offset;
  1387. parent = entry_to_node(node);
  1388. offset = radix_tree_descend(parent, &node, index);
  1389. if (!tag_get(parent, tag, offset))
  1390. return 0;
  1391. if (node == RADIX_TREE_RETRY)
  1392. break;
  1393. }
  1394. return 1;
  1395. }
  1396. EXPORT_SYMBOL(radix_tree_tag_get);
  1397. static inline void __set_iter_shift(struct radix_tree_iter *iter,
  1398. unsigned int shift)
  1399. {
  1400. #ifdef CONFIG_RADIX_TREE_MULTIORDER
  1401. iter->shift = shift;
  1402. #endif
  1403. }
  1404. /* Construct iter->tags bit-mask from node->tags[tag] array */
  1405. static void set_iter_tags(struct radix_tree_iter *iter,
  1406. struct radix_tree_node *node, unsigned offset,
  1407. unsigned tag)
  1408. {
  1409. unsigned tag_long = offset / BITS_PER_LONG;
  1410. unsigned tag_bit = offset % BITS_PER_LONG;
  1411. if (!node) {
  1412. iter->tags = 1;
  1413. return;
  1414. }
  1415. iter->tags = node->tags[tag][tag_long] >> tag_bit;
  1416. /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
  1417. if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
  1418. /* Pick tags from next element */
  1419. if (tag_bit)
  1420. iter->tags |= node->tags[tag][tag_long + 1] <<
  1421. (BITS_PER_LONG - tag_bit);
  1422. /* Clip chunk size, here only BITS_PER_LONG tags */
  1423. iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
  1424. }
  1425. }
  1426. #ifdef CONFIG_RADIX_TREE_MULTIORDER
  1427. static void __rcu **skip_siblings(struct radix_tree_node **nodep,
  1428. void __rcu **slot, struct radix_tree_iter *iter)
  1429. {
  1430. void *sib = node_to_entry(slot - 1);
  1431. while (iter->index < iter->next_index) {
  1432. *nodep = rcu_dereference_raw(*slot);
  1433. if (*nodep && *nodep != sib)
  1434. return slot;
  1435. slot++;
  1436. iter->index = __radix_tree_iter_add(iter, 1);
  1437. iter->tags >>= 1;
  1438. }
  1439. *nodep = NULL;
  1440. return NULL;
  1441. }
  1442. void __rcu **__radix_tree_next_slot(void __rcu **slot,
  1443. struct radix_tree_iter *iter, unsigned flags)
  1444. {
  1445. unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
  1446. struct radix_tree_node *node = rcu_dereference_raw(*slot);
  1447. slot = skip_siblings(&node, slot, iter);
  1448. while (radix_tree_is_internal_node(node)) {
  1449. unsigned offset;
  1450. unsigned long next_index;
  1451. if (node == RADIX_TREE_RETRY)
  1452. return slot;
  1453. node = entry_to_node(node);
  1454. iter->node = node;
  1455. iter->shift = node->shift;
  1456. if (flags & RADIX_TREE_ITER_TAGGED) {
  1457. offset = radix_tree_find_next_bit(node, tag, 0);
  1458. if (offset == RADIX_TREE_MAP_SIZE)
  1459. return NULL;
  1460. slot = &node->slots[offset];
  1461. iter->index = __radix_tree_iter_add(iter, offset);
  1462. set_iter_tags(iter, node, offset, tag);
  1463. node = rcu_dereference_raw(*slot);
  1464. } else {
  1465. offset = 0;
  1466. slot = &node->slots[0];
  1467. for (;;) {
  1468. node = rcu_dereference_raw(*slot);
  1469. if (node)
  1470. break;
  1471. slot++;
  1472. offset++;
  1473. if (offset == RADIX_TREE_MAP_SIZE)
  1474. return NULL;
  1475. }
  1476. iter->index = __radix_tree_iter_add(iter, offset);
  1477. }
  1478. if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0))
  1479. goto none;
  1480. next_index = (iter->index | shift_maxindex(iter->shift)) + 1;
  1481. if (next_index < iter->next_index)
  1482. iter->next_index = next_index;
  1483. }
  1484. return slot;
  1485. none:
  1486. iter->next_index = 0;
  1487. return NULL;
  1488. }
  1489. EXPORT_SYMBOL(__radix_tree_next_slot);
  1490. #else
  1491. static void __rcu **skip_siblings(struct radix_tree_node **nodep,
  1492. void __rcu **slot, struct radix_tree_iter *iter)
  1493. {
  1494. return slot;
  1495. }
  1496. #endif
  1497. void __rcu **radix_tree_iter_resume(void __rcu **slot,
  1498. struct radix_tree_iter *iter)
  1499. {
  1500. struct radix_tree_node *node;
  1501. slot++;
  1502. iter->index = __radix_tree_iter_add(iter, 1);
  1503. skip_siblings(&node, slot, iter);
  1504. iter->next_index = iter->index;
  1505. iter->tags = 0;
  1506. return NULL;
  1507. }
  1508. EXPORT_SYMBOL(radix_tree_iter_resume);
  1509. /**
  1510. * radix_tree_next_chunk - find next chunk of slots for iteration
  1511. *
  1512. * @root: radix tree root
  1513. * @iter: iterator state
  1514. * @flags: RADIX_TREE_ITER_* flags and tag index
  1515. * Returns: pointer to chunk first slot, or NULL if iteration is over
  1516. */
  1517. void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
  1518. struct radix_tree_iter *iter, unsigned flags)
  1519. {
  1520. unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
  1521. struct radix_tree_node *node, *child;
  1522. unsigned long index, offset, maxindex;
  1523. if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
  1524. return NULL;
  1525. /*
  1526. * Catch next_index overflow after ~0UL. iter->index never overflows
  1527. * during iterating; it can be zero only at the beginning.
  1528. * And we cannot overflow iter->next_index in a single step,
  1529. * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
  1530. *
  1531. * This condition also used by radix_tree_next_slot() to stop
  1532. * contiguous iterating, and forbid switching to the next chunk.
  1533. */
  1534. index = iter->next_index;
  1535. if (!index && iter->index)
  1536. return NULL;
  1537. restart:
  1538. radix_tree_load_root(root, &child, &maxindex);
  1539. if (index > maxindex)
  1540. return NULL;
  1541. if (!child)
  1542. return NULL;
  1543. if (!radix_tree_is_internal_node(child)) {
  1544. /* Single-slot tree */
  1545. iter->index = index;
  1546. iter->next_index = maxindex + 1;
  1547. iter->tags = 1;
  1548. iter->node = NULL;
  1549. __set_iter_shift(iter, 0);
  1550. return (void __rcu **)&root->rnode;
  1551. }
  1552. do {
  1553. node = entry_to_node(child);
  1554. offset = radix_tree_descend(node, &child, index);
  1555. if ((flags & RADIX_TREE_ITER_TAGGED) ?
  1556. !tag_get(node, tag, offset) : !child) {
  1557. /* Hole detected */
  1558. if (flags & RADIX_TREE_ITER_CONTIG)
  1559. return NULL;
  1560. if (flags & RADIX_TREE_ITER_TAGGED)
  1561. offset = radix_tree_find_next_bit(node, tag,
  1562. offset + 1);
  1563. else
  1564. while (++offset < RADIX_TREE_MAP_SIZE) {
  1565. void *slot = rcu_dereference_raw(
  1566. node->slots[offset]);
  1567. if (is_sibling_entry(node, slot))
  1568. continue;
  1569. if (slot)
  1570. break;
  1571. }
  1572. index &= ~node_maxindex(node);
  1573. index += offset << node->shift;
  1574. /* Overflow after ~0UL */
  1575. if (!index)
  1576. return NULL;
  1577. if (offset == RADIX_TREE_MAP_SIZE)
  1578. goto restart;
  1579. child = rcu_dereference_raw(node->slots[offset]);
  1580. }
  1581. if (!child)
  1582. goto restart;
  1583. if (child == RADIX_TREE_RETRY)
  1584. break;
  1585. } while (radix_tree_is_internal_node(child));
  1586. /* Update the iterator state */
  1587. iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
  1588. iter->next_index = (index | node_maxindex(node)) + 1;
  1589. iter->node = node;
  1590. __set_iter_shift(iter, node->shift);
  1591. if (flags & RADIX_TREE_ITER_TAGGED)
  1592. set_iter_tags(iter, node, offset, tag);
  1593. return node->slots + offset;
  1594. }
  1595. EXPORT_SYMBOL(radix_tree_next_chunk);
  1596. /**
  1597. * radix_tree_gang_lookup - perform multiple lookup on a radix tree
  1598. * @root: radix tree root
  1599. * @results: where the results of the lookup are placed
  1600. * @first_index: start the lookup from this key
  1601. * @max_items: place up to this many items at *results
  1602. *
  1603. * Performs an index-ascending scan of the tree for present items. Places
  1604. * them at *@results and returns the number of items which were placed at
  1605. * *@results.
  1606. *
  1607. * The implementation is naive.
  1608. *
  1609. * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
  1610. * rcu_read_lock. In this case, rather than the returned results being
  1611. * an atomic snapshot of the tree at a single point in time, the
  1612. * semantics of an RCU protected gang lookup are as though multiple
  1613. * radix_tree_lookups have been issued in individual locks, and results
  1614. * stored in 'results'.
  1615. */
  1616. unsigned int
  1617. radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
  1618. unsigned long first_index, unsigned int max_items)
  1619. {
  1620. struct radix_tree_iter iter;
  1621. void __rcu **slot;
  1622. unsigned int ret = 0;
  1623. if (unlikely(!max_items))
  1624. return 0;
  1625. radix_tree_for_each_slot(slot, root, &iter, first_index) {
  1626. results[ret] = rcu_dereference_raw(*slot);
  1627. if (!results[ret])
  1628. continue;
  1629. if (radix_tree_is_internal_node(results[ret])) {
  1630. slot = radix_tree_iter_retry(&iter);
  1631. continue;
  1632. }
  1633. if (++ret == max_items)
  1634. break;
  1635. }
  1636. return ret;
  1637. }
  1638. EXPORT_SYMBOL(radix_tree_gang_lookup);
  1639. /**
  1640. * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
  1641. * @root: radix tree root
  1642. * @results: where the results of the lookup are placed
  1643. * @indices: where their indices should be placed (but usually NULL)
  1644. * @first_index: start the lookup from this key
  1645. * @max_items: place up to this many items at *results
  1646. *
  1647. * Performs an index-ascending scan of the tree for present items. Places
  1648. * their slots at *@results and returns the number of items which were
  1649. * placed at *@results.
  1650. *
  1651. * The implementation is naive.
  1652. *
  1653. * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
  1654. * be dereferenced with radix_tree_deref_slot, and if using only RCU
  1655. * protection, radix_tree_deref_slot may fail requiring a retry.
  1656. */
  1657. unsigned int
  1658. radix_tree_gang_lookup_slot(const struct radix_tree_root *root,
  1659. void __rcu ***results, unsigned long *indices,
  1660. unsigned long first_index, unsigned int max_items)
  1661. {
  1662. struct radix_tree_iter iter;
  1663. void __rcu **slot;
  1664. unsigned int ret = 0;
  1665. if (unlikely(!max_items))
  1666. return 0;
  1667. radix_tree_for_each_slot(slot, root, &iter, first_index) {
  1668. results[ret] = slot;
  1669. if (indices)
  1670. indices[ret] = iter.index;
  1671. if (++ret == max_items)
  1672. break;
  1673. }
  1674. return ret;
  1675. }
  1676. EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
  1677. /**
  1678. * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
  1679. * based on a tag
  1680. * @root: radix tree root
  1681. * @results: where the results of the lookup are placed
  1682. * @first_index: start the lookup from this key
  1683. * @max_items: place up to this many items at *results
  1684. * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
  1685. *
  1686. * Performs an index-ascending scan of the tree for present items which
  1687. * have the tag indexed by @tag set. Places the items at *@results and
  1688. * returns the number of items which were placed at *@results.
  1689. */
  1690. unsigned int
  1691. radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
  1692. unsigned long first_index, unsigned int max_items,
  1693. unsigned int tag)
  1694. {
  1695. struct radix_tree_iter iter;
  1696. void __rcu **slot;
  1697. unsigned int ret = 0;
  1698. if (unlikely(!max_items))
  1699. return 0;
  1700. radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
  1701. results[ret] = rcu_dereference_raw(*slot);
  1702. if (!results[ret])
  1703. continue;
  1704. if (radix_tree_is_internal_node(results[ret])) {
  1705. slot = radix_tree_iter_retry(&iter);
  1706. continue;
  1707. }
  1708. if (++ret == max_items)
  1709. break;
  1710. }
  1711. return ret;
  1712. }
  1713. EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
  1714. /**
  1715. * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
  1716. * radix tree based on a tag
  1717. * @root: radix tree root
  1718. * @results: where the results of the lookup are placed
  1719. * @first_index: start the lookup from this key
  1720. * @max_items: place up to this many items at *results
  1721. * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
  1722. *
  1723. * Performs an index-ascending scan of the tree for present items which
  1724. * have the tag indexed by @tag set. Places the slots at *@results and
  1725. * returns the number of slots which were placed at *@results.
  1726. */
  1727. unsigned int
  1728. radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
  1729. void __rcu ***results, unsigned long first_index,
  1730. unsigned int max_items, unsigned int tag)
  1731. {
  1732. struct radix_tree_iter iter;
  1733. void __rcu **slot;
  1734. unsigned int ret = 0;
  1735. if (unlikely(!max_items))
  1736. return 0;
  1737. radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
  1738. results[ret] = slot;
  1739. if (++ret == max_items)
  1740. break;
  1741. }
  1742. return ret;
  1743. }
  1744. EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
  1745. /**
  1746. * __radix_tree_delete_node - try to free node after clearing a slot
  1747. * @root: radix tree root
  1748. * @node: node containing @index
  1749. * @update_node: callback for changing leaf nodes
  1750. * @private: private data to pass to @update_node
  1751. *
  1752. * After clearing the slot at @index in @node from radix tree
  1753. * rooted at @root, call this function to attempt freeing the
  1754. * node and shrinking the tree.
  1755. */
  1756. void __radix_tree_delete_node(struct radix_tree_root *root,
  1757. struct radix_tree_node *node,
  1758. radix_tree_update_node_t update_node,
  1759. void *private)
  1760. {
  1761. delete_node(root, node, update_node, private);
  1762. }
  1763. static bool __radix_tree_delete(struct radix_tree_root *root,
  1764. struct radix_tree_node *node, void __rcu **slot)
  1765. {
  1766. void *old = rcu_dereference_raw(*slot);
  1767. int exceptional = radix_tree_exceptional_entry(old) ? -1 : 0;
  1768. unsigned offset = get_slot_offset(node, slot);
  1769. int tag;
  1770. if (is_idr(root))
  1771. node_tag_set(root, node, IDR_FREE, offset);
  1772. else
  1773. for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
  1774. node_tag_clear(root, node, tag, offset);
  1775. replace_slot(slot, NULL, node, -1, exceptional);
  1776. return node && delete_node(root, node, NULL, NULL);
  1777. }
  1778. /**
  1779. * radix_tree_iter_delete - delete the entry at this iterator position
  1780. * @root: radix tree root
  1781. * @iter: iterator state
  1782. * @slot: pointer to slot
  1783. *
  1784. * Delete the entry at the position currently pointed to by the iterator.
  1785. * This may result in the current node being freed; if it is, the iterator
  1786. * is advanced so that it will not reference the freed memory. This
  1787. * function may be called without any locking if there are no other threads
  1788. * which can access this tree.
  1789. */
  1790. void radix_tree_iter_delete(struct radix_tree_root *root,
  1791. struct radix_tree_iter *iter, void __rcu **slot)
  1792. {
  1793. if (__radix_tree_delete(root, iter->node, slot))
  1794. iter->index = iter->next_index;
  1795. }
  1796. /**
  1797. * radix_tree_delete_item - delete an item from a radix tree
  1798. * @root: radix tree root
  1799. * @index: index key
  1800. * @item: expected item
  1801. *
  1802. * Remove @item at @index from the radix tree rooted at @root.
  1803. *
  1804. * Return: the deleted entry, or %NULL if it was not present
  1805. * or the entry at the given @index was not @item.
  1806. */
  1807. void *radix_tree_delete_item(struct radix_tree_root *root,
  1808. unsigned long index, void *item)
  1809. {
  1810. struct radix_tree_node *node = NULL;
  1811. void __rcu **slot;
  1812. void *entry;
  1813. entry = __radix_tree_lookup(root, index, &node, &slot);
  1814. if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
  1815. get_slot_offset(node, slot))))
  1816. return NULL;
  1817. if (item && entry != item)
  1818. return NULL;
  1819. __radix_tree_delete(root, node, slot);
  1820. return entry;
  1821. }
  1822. EXPORT_SYMBOL(radix_tree_delete_item);
  1823. /**
  1824. * radix_tree_delete - delete an entry from a radix tree
  1825. * @root: radix tree root
  1826. * @index: index key
  1827. *
  1828. * Remove the entry at @index from the radix tree rooted at @root.
  1829. *
  1830. * Return: The deleted entry, or %NULL if it was not present.
  1831. */
  1832. void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
  1833. {
  1834. return radix_tree_delete_item(root, index, NULL);
  1835. }
  1836. EXPORT_SYMBOL(radix_tree_delete);
  1837. void radix_tree_clear_tags(struct radix_tree_root *root,
  1838. struct radix_tree_node *node,
  1839. void __rcu **slot)
  1840. {
  1841. if (node) {
  1842. unsigned int tag, offset = get_slot_offset(node, slot);
  1843. for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
  1844. node_tag_clear(root, node, tag, offset);
  1845. } else {
  1846. root_tag_clear_all(root);
  1847. }
  1848. }
  1849. /**
  1850. * radix_tree_tagged - test whether any items in the tree are tagged
  1851. * @root: radix tree root
  1852. * @tag: tag to test
  1853. */
  1854. int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
  1855. {
  1856. return root_tag_get(root, tag);
  1857. }
  1858. EXPORT_SYMBOL(radix_tree_tagged);
  1859. /**
  1860. * idr_preload - preload for idr_alloc()
  1861. * @gfp_mask: allocation mask to use for preloading
  1862. *
  1863. * Preallocate memory to use for the next call to idr_alloc(). This function
  1864. * returns with preemption disabled. It will be enabled by idr_preload_end().
  1865. */
  1866. void idr_preload(gfp_t gfp_mask)
  1867. {
  1868. __radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE);
  1869. }
  1870. EXPORT_SYMBOL(idr_preload);
  1871. /**
  1872. * ida_pre_get - reserve resources for ida allocation
  1873. * @ida: ida handle
  1874. * @gfp: memory allocation flags
  1875. *
  1876. * This function should be called before calling ida_get_new_above(). If it
  1877. * is unable to allocate memory, it will return %0. On success, it returns %1.
  1878. */
  1879. int ida_pre_get(struct ida *ida, gfp_t gfp)
  1880. {
  1881. __radix_tree_preload(gfp, IDA_PRELOAD_SIZE);
  1882. /*
  1883. * The IDA API has no preload_end() equivalent. Instead,
  1884. * ida_get_new() can return -EAGAIN, prompting the caller
  1885. * to return to the ida_pre_get() step.
  1886. */
  1887. preempt_enable();
  1888. if (!this_cpu_read(ida_bitmap)) {
  1889. struct ida_bitmap *bitmap = kmalloc(sizeof(*bitmap), gfp);
  1890. if (!bitmap)
  1891. return 0;
  1892. if (this_cpu_cmpxchg(ida_bitmap, NULL, bitmap))
  1893. kfree(bitmap);
  1894. }
  1895. return 1;
  1896. }
  1897. EXPORT_SYMBOL(ida_pre_get);
  1898. void __rcu **idr_get_free(struct radix_tree_root *root,
  1899. struct radix_tree_iter *iter, gfp_t gfp, int end)
  1900. {
  1901. struct radix_tree_node *node = NULL, *child;
  1902. void __rcu **slot = (void __rcu **)&root->rnode;
  1903. unsigned long maxindex, start = iter->next_index;
  1904. unsigned long max = end > 0 ? end - 1 : INT_MAX;
  1905. unsigned int shift, offset = 0;
  1906. grow:
  1907. shift = radix_tree_load_root(root, &child, &maxindex);
  1908. if (!radix_tree_tagged(root, IDR_FREE))
  1909. start = max(start, maxindex + 1);
  1910. if (start > max)
  1911. return ERR_PTR(-ENOSPC);
  1912. if (start > maxindex) {
  1913. int error = radix_tree_extend(root, gfp, start, shift);
  1914. if (error < 0)
  1915. return ERR_PTR(error);
  1916. shift = error;
  1917. child = rcu_dereference_raw(root->rnode);
  1918. }
  1919. while (shift) {
  1920. shift -= RADIX_TREE_MAP_SHIFT;
  1921. if (child == NULL) {
  1922. /* Have to add a child node. */
  1923. child = radix_tree_node_alloc(gfp, node, root, shift,
  1924. offset, 0, 0);
  1925. if (!child)
  1926. return ERR_PTR(-ENOMEM);
  1927. all_tag_set(child, IDR_FREE);
  1928. rcu_assign_pointer(*slot, node_to_entry(child));
  1929. if (node)
  1930. node->count++;
  1931. } else if (!radix_tree_is_internal_node(child))
  1932. break;
  1933. node = entry_to_node(child);
  1934. offset = radix_tree_descend(node, &child, start);
  1935. if (!tag_get(node, IDR_FREE, offset)) {
  1936. offset = radix_tree_find_next_bit(node, IDR_FREE,
  1937. offset + 1);
  1938. start = next_index(start, node, offset);
  1939. if (start > max)
  1940. return ERR_PTR(-ENOSPC);
  1941. while (offset == RADIX_TREE_MAP_SIZE) {
  1942. offset = node->offset + 1;
  1943. node = node->parent;
  1944. if (!node)
  1945. goto grow;
  1946. shift = node->shift;
  1947. }
  1948. child = rcu_dereference_raw(node->slots[offset]);
  1949. }
  1950. slot = &node->slots[offset];
  1951. }
  1952. iter->index = start;
  1953. if (node)
  1954. iter->next_index = 1 + min(max, (start | node_maxindex(node)));
  1955. else
  1956. iter->next_index = 1;
  1957. iter->node = node;
  1958. __set_iter_shift(iter, shift);
  1959. set_iter_tags(iter, node, offset, IDR_FREE);
  1960. return slot;
  1961. }
  1962. /**
  1963. * idr_destroy - release all internal memory from an IDR
  1964. * @idr: idr handle
  1965. *
  1966. * After this function is called, the IDR is empty, and may be reused or
  1967. * the data structure containing it may be freed.
  1968. *
  1969. * A typical clean-up sequence for objects stored in an idr tree will use
  1970. * idr_for_each() to free all objects, if necessary, then idr_destroy() to
  1971. * free the memory used to keep track of those objects.
  1972. */
  1973. void idr_destroy(struct idr *idr)
  1974. {
  1975. struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.rnode);
  1976. if (radix_tree_is_internal_node(node))
  1977. radix_tree_free_nodes(node);
  1978. idr->idr_rt.rnode = NULL;
  1979. root_tag_set(&idr->idr_rt, IDR_FREE);
  1980. }
  1981. EXPORT_SYMBOL(idr_destroy);
  1982. static void
  1983. radix_tree_node_ctor(void *arg)
  1984. {
  1985. struct radix_tree_node *node = arg;
  1986. memset(node, 0, sizeof(*node));
  1987. INIT_LIST_HEAD(&node->private_list);
  1988. }
  1989. static __init unsigned long __maxindex(unsigned int height)
  1990. {
  1991. unsigned int width = height * RADIX_TREE_MAP_SHIFT;
  1992. int shift = RADIX_TREE_INDEX_BITS - width;
  1993. if (shift < 0)
  1994. return ~0UL;
  1995. if (shift >= BITS_PER_LONG)
  1996. return 0UL;
  1997. return ~0UL >> shift;
  1998. }
  1999. static __init void radix_tree_init_maxnodes(void)
  2000. {
  2001. unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
  2002. unsigned int i, j;
  2003. for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
  2004. height_to_maxindex[i] = __maxindex(i);
  2005. for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
  2006. for (j = i; j > 0; j--)
  2007. height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
  2008. }
  2009. }
  2010. static int radix_tree_cpu_dead(unsigned int cpu)
  2011. {
  2012. struct radix_tree_preload *rtp;
  2013. struct radix_tree_node *node;
  2014. /* Free per-cpu pool of preloaded nodes */
  2015. rtp = &per_cpu(radix_tree_preloads, cpu);
  2016. while (rtp->nr) {
  2017. node = rtp->nodes;
  2018. rtp->nodes = node->parent;
  2019. kmem_cache_free(radix_tree_node_cachep, node);
  2020. rtp->nr--;
  2021. }
  2022. kfree(per_cpu(ida_bitmap, cpu));
  2023. per_cpu(ida_bitmap, cpu) = NULL;
  2024. return 0;
  2025. }
  2026. void __init radix_tree_init(void)
  2027. {
  2028. int ret;
  2029. radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
  2030. sizeof(struct radix_tree_node), 0,
  2031. SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
  2032. radix_tree_node_ctor);
  2033. radix_tree_init_maxnodes();
  2034. ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
  2035. NULL, radix_tree_cpu_dead);
  2036. WARN_ON(ret < 0);
  2037. }