mmu.c 129 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "irq.h"
  21. #include "mmu.h"
  22. #include "x86.h"
  23. #include "kvm_cache_regs.h"
  24. #include "cpuid.h"
  25. #include <linux/kvm_host.h>
  26. #include <linux/types.h>
  27. #include <linux/string.h>
  28. #include <linux/mm.h>
  29. #include <linux/highmem.h>
  30. #include <linux/module.h>
  31. #include <linux/swap.h>
  32. #include <linux/hugetlb.h>
  33. #include <linux/compiler.h>
  34. #include <linux/srcu.h>
  35. #include <linux/slab.h>
  36. #include <linux/uaccess.h>
  37. #include <asm/page.h>
  38. #include <asm/cmpxchg.h>
  39. #include <asm/io.h>
  40. #include <asm/vmx.h>
  41. #include <asm/kvm_page_track.h>
  42. /*
  43. * When setting this variable to true it enables Two-Dimensional-Paging
  44. * where the hardware walks 2 page tables:
  45. * 1. the guest-virtual to guest-physical
  46. * 2. while doing 1. it walks guest-physical to host-physical
  47. * If the hardware supports that we don't need to do shadow paging.
  48. */
  49. bool tdp_enabled = false;
  50. enum {
  51. AUDIT_PRE_PAGE_FAULT,
  52. AUDIT_POST_PAGE_FAULT,
  53. AUDIT_PRE_PTE_WRITE,
  54. AUDIT_POST_PTE_WRITE,
  55. AUDIT_PRE_SYNC,
  56. AUDIT_POST_SYNC
  57. };
  58. #undef MMU_DEBUG
  59. #ifdef MMU_DEBUG
  60. static bool dbg = 0;
  61. module_param(dbg, bool, 0644);
  62. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  63. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  64. #define MMU_WARN_ON(x) WARN_ON(x)
  65. #else
  66. #define pgprintk(x...) do { } while (0)
  67. #define rmap_printk(x...) do { } while (0)
  68. #define MMU_WARN_ON(x) do { } while (0)
  69. #endif
  70. #define PTE_PREFETCH_NUM 8
  71. #define PT_FIRST_AVAIL_BITS_SHIFT 10
  72. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  73. #define PT64_LEVEL_BITS 9
  74. #define PT64_LEVEL_SHIFT(level) \
  75. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  76. #define PT64_INDEX(address, level)\
  77. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  78. #define PT32_LEVEL_BITS 10
  79. #define PT32_LEVEL_SHIFT(level) \
  80. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  81. #define PT32_LVL_OFFSET_MASK(level) \
  82. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  83. * PT32_LEVEL_BITS))) - 1))
  84. #define PT32_INDEX(address, level)\
  85. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  86. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  87. #define PT64_DIR_BASE_ADDR_MASK \
  88. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  89. #define PT64_LVL_ADDR_MASK(level) \
  90. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  91. * PT64_LEVEL_BITS))) - 1))
  92. #define PT64_LVL_OFFSET_MASK(level) \
  93. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  94. * PT64_LEVEL_BITS))) - 1))
  95. #define PT32_BASE_ADDR_MASK PAGE_MASK
  96. #define PT32_DIR_BASE_ADDR_MASK \
  97. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  98. #define PT32_LVL_ADDR_MASK(level) \
  99. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  100. * PT32_LEVEL_BITS))) - 1))
  101. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
  102. | shadow_x_mask | shadow_nx_mask)
  103. #define ACC_EXEC_MASK 1
  104. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  105. #define ACC_USER_MASK PT_USER_MASK
  106. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  107. #include <trace/events/kvm.h>
  108. #define CREATE_TRACE_POINTS
  109. #include "mmutrace.h"
  110. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  111. #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
  112. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  113. /* make pte_list_desc fit well in cache line */
  114. #define PTE_LIST_EXT 3
  115. struct pte_list_desc {
  116. u64 *sptes[PTE_LIST_EXT];
  117. struct pte_list_desc *more;
  118. };
  119. struct kvm_shadow_walk_iterator {
  120. u64 addr;
  121. hpa_t shadow_addr;
  122. u64 *sptep;
  123. int level;
  124. unsigned index;
  125. };
  126. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  127. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  128. shadow_walk_okay(&(_walker)); \
  129. shadow_walk_next(&(_walker)))
  130. #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
  131. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  132. shadow_walk_okay(&(_walker)) && \
  133. ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
  134. __shadow_walk_next(&(_walker), spte))
  135. static struct kmem_cache *pte_list_desc_cache;
  136. static struct kmem_cache *mmu_page_header_cache;
  137. static struct percpu_counter kvm_total_used_mmu_pages;
  138. static u64 __read_mostly shadow_nx_mask;
  139. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  140. static u64 __read_mostly shadow_user_mask;
  141. static u64 __read_mostly shadow_accessed_mask;
  142. static u64 __read_mostly shadow_dirty_mask;
  143. static u64 __read_mostly shadow_mmio_mask;
  144. static void mmu_spte_set(u64 *sptep, u64 spte);
  145. static void mmu_free_roots(struct kvm_vcpu *vcpu);
  146. void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
  147. {
  148. shadow_mmio_mask = mmio_mask;
  149. }
  150. EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
  151. /*
  152. * the low bit of the generation number is always presumed to be zero.
  153. * This disables mmio caching during memslot updates. The concept is
  154. * similar to a seqcount but instead of retrying the access we just punt
  155. * and ignore the cache.
  156. *
  157. * spte bits 3-11 are used as bits 1-9 of the generation number,
  158. * the bits 52-61 are used as bits 10-19 of the generation number.
  159. */
  160. #define MMIO_SPTE_GEN_LOW_SHIFT 2
  161. #define MMIO_SPTE_GEN_HIGH_SHIFT 52
  162. #define MMIO_GEN_SHIFT 20
  163. #define MMIO_GEN_LOW_SHIFT 10
  164. #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
  165. #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
  166. static u64 generation_mmio_spte_mask(unsigned int gen)
  167. {
  168. u64 mask;
  169. WARN_ON(gen & ~MMIO_GEN_MASK);
  170. mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
  171. mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
  172. return mask;
  173. }
  174. static unsigned int get_mmio_spte_generation(u64 spte)
  175. {
  176. unsigned int gen;
  177. spte &= ~shadow_mmio_mask;
  178. gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
  179. gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
  180. return gen;
  181. }
  182. static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
  183. {
  184. return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
  185. }
  186. static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
  187. unsigned access)
  188. {
  189. unsigned int gen = kvm_current_mmio_generation(vcpu);
  190. u64 mask = generation_mmio_spte_mask(gen);
  191. access &= ACC_WRITE_MASK | ACC_USER_MASK;
  192. mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
  193. trace_mark_mmio_spte(sptep, gfn, access, gen);
  194. mmu_spte_set(sptep, mask);
  195. }
  196. static bool is_mmio_spte(u64 spte)
  197. {
  198. return (spte & shadow_mmio_mask) == shadow_mmio_mask;
  199. }
  200. static gfn_t get_mmio_spte_gfn(u64 spte)
  201. {
  202. u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
  203. return (spte & ~mask) >> PAGE_SHIFT;
  204. }
  205. static unsigned get_mmio_spte_access(u64 spte)
  206. {
  207. u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
  208. return (spte & ~mask) & ~PAGE_MASK;
  209. }
  210. static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
  211. kvm_pfn_t pfn, unsigned access)
  212. {
  213. if (unlikely(is_noslot_pfn(pfn))) {
  214. mark_mmio_spte(vcpu, sptep, gfn, access);
  215. return true;
  216. }
  217. return false;
  218. }
  219. static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
  220. {
  221. unsigned int kvm_gen, spte_gen;
  222. kvm_gen = kvm_current_mmio_generation(vcpu);
  223. spte_gen = get_mmio_spte_generation(spte);
  224. trace_check_mmio_spte(spte, kvm_gen, spte_gen);
  225. return likely(kvm_gen == spte_gen);
  226. }
  227. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  228. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  229. {
  230. shadow_user_mask = user_mask;
  231. shadow_accessed_mask = accessed_mask;
  232. shadow_dirty_mask = dirty_mask;
  233. shadow_nx_mask = nx_mask;
  234. shadow_x_mask = x_mask;
  235. }
  236. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  237. static int is_cpuid_PSE36(void)
  238. {
  239. return 1;
  240. }
  241. static int is_nx(struct kvm_vcpu *vcpu)
  242. {
  243. return vcpu->arch.efer & EFER_NX;
  244. }
  245. static int is_shadow_present_pte(u64 pte)
  246. {
  247. return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
  248. }
  249. static int is_large_pte(u64 pte)
  250. {
  251. return pte & PT_PAGE_SIZE_MASK;
  252. }
  253. static int is_last_spte(u64 pte, int level)
  254. {
  255. if (level == PT_PAGE_TABLE_LEVEL)
  256. return 1;
  257. if (is_large_pte(pte))
  258. return 1;
  259. return 0;
  260. }
  261. static kvm_pfn_t spte_to_pfn(u64 pte)
  262. {
  263. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  264. }
  265. static gfn_t pse36_gfn_delta(u32 gpte)
  266. {
  267. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  268. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  269. }
  270. #ifdef CONFIG_X86_64
  271. static void __set_spte(u64 *sptep, u64 spte)
  272. {
  273. *sptep = spte;
  274. }
  275. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  276. {
  277. *sptep = spte;
  278. }
  279. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  280. {
  281. return xchg(sptep, spte);
  282. }
  283. static u64 __get_spte_lockless(u64 *sptep)
  284. {
  285. return ACCESS_ONCE(*sptep);
  286. }
  287. #else
  288. union split_spte {
  289. struct {
  290. u32 spte_low;
  291. u32 spte_high;
  292. };
  293. u64 spte;
  294. };
  295. static void count_spte_clear(u64 *sptep, u64 spte)
  296. {
  297. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  298. if (is_shadow_present_pte(spte))
  299. return;
  300. /* Ensure the spte is completely set before we increase the count */
  301. smp_wmb();
  302. sp->clear_spte_count++;
  303. }
  304. static void __set_spte(u64 *sptep, u64 spte)
  305. {
  306. union split_spte *ssptep, sspte;
  307. ssptep = (union split_spte *)sptep;
  308. sspte = (union split_spte)spte;
  309. ssptep->spte_high = sspte.spte_high;
  310. /*
  311. * If we map the spte from nonpresent to present, We should store
  312. * the high bits firstly, then set present bit, so cpu can not
  313. * fetch this spte while we are setting the spte.
  314. */
  315. smp_wmb();
  316. ssptep->spte_low = sspte.spte_low;
  317. }
  318. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  319. {
  320. union split_spte *ssptep, sspte;
  321. ssptep = (union split_spte *)sptep;
  322. sspte = (union split_spte)spte;
  323. ssptep->spte_low = sspte.spte_low;
  324. /*
  325. * If we map the spte from present to nonpresent, we should clear
  326. * present bit firstly to avoid vcpu fetch the old high bits.
  327. */
  328. smp_wmb();
  329. ssptep->spte_high = sspte.spte_high;
  330. count_spte_clear(sptep, spte);
  331. }
  332. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  333. {
  334. union split_spte *ssptep, sspte, orig;
  335. ssptep = (union split_spte *)sptep;
  336. sspte = (union split_spte)spte;
  337. /* xchg acts as a barrier before the setting of the high bits */
  338. orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
  339. orig.spte_high = ssptep->spte_high;
  340. ssptep->spte_high = sspte.spte_high;
  341. count_spte_clear(sptep, spte);
  342. return orig.spte;
  343. }
  344. /*
  345. * The idea using the light way get the spte on x86_32 guest is from
  346. * gup_get_pte(arch/x86/mm/gup.c).
  347. *
  348. * An spte tlb flush may be pending, because kvm_set_pte_rmapp
  349. * coalesces them and we are running out of the MMU lock. Therefore
  350. * we need to protect against in-progress updates of the spte.
  351. *
  352. * Reading the spte while an update is in progress may get the old value
  353. * for the high part of the spte. The race is fine for a present->non-present
  354. * change (because the high part of the spte is ignored for non-present spte),
  355. * but for a present->present change we must reread the spte.
  356. *
  357. * All such changes are done in two steps (present->non-present and
  358. * non-present->present), hence it is enough to count the number of
  359. * present->non-present updates: if it changed while reading the spte,
  360. * we might have hit the race. This is done using clear_spte_count.
  361. */
  362. static u64 __get_spte_lockless(u64 *sptep)
  363. {
  364. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  365. union split_spte spte, *orig = (union split_spte *)sptep;
  366. int count;
  367. retry:
  368. count = sp->clear_spte_count;
  369. smp_rmb();
  370. spte.spte_low = orig->spte_low;
  371. smp_rmb();
  372. spte.spte_high = orig->spte_high;
  373. smp_rmb();
  374. if (unlikely(spte.spte_low != orig->spte_low ||
  375. count != sp->clear_spte_count))
  376. goto retry;
  377. return spte.spte;
  378. }
  379. #endif
  380. static bool spte_is_locklessly_modifiable(u64 spte)
  381. {
  382. return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
  383. (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
  384. }
  385. static bool spte_has_volatile_bits(u64 spte)
  386. {
  387. /*
  388. * Always atomically update spte if it can be updated
  389. * out of mmu-lock, it can ensure dirty bit is not lost,
  390. * also, it can help us to get a stable is_writable_pte()
  391. * to ensure tlb flush is not missed.
  392. */
  393. if (spte_is_locklessly_modifiable(spte))
  394. return true;
  395. if (!shadow_accessed_mask)
  396. return false;
  397. if (!is_shadow_present_pte(spte))
  398. return false;
  399. if ((spte & shadow_accessed_mask) &&
  400. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  401. return false;
  402. return true;
  403. }
  404. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  405. {
  406. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  407. }
  408. static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
  409. {
  410. return (old_spte & bit_mask) != (new_spte & bit_mask);
  411. }
  412. /* Rules for using mmu_spte_set:
  413. * Set the sptep from nonpresent to present.
  414. * Note: the sptep being assigned *must* be either not present
  415. * or in a state where the hardware will not attempt to update
  416. * the spte.
  417. */
  418. static void mmu_spte_set(u64 *sptep, u64 new_spte)
  419. {
  420. WARN_ON(is_shadow_present_pte(*sptep));
  421. __set_spte(sptep, new_spte);
  422. }
  423. /* Rules for using mmu_spte_update:
  424. * Update the state bits, it means the mapped pfn is not changged.
  425. *
  426. * Whenever we overwrite a writable spte with a read-only one we
  427. * should flush remote TLBs. Otherwise rmap_write_protect
  428. * will find a read-only spte, even though the writable spte
  429. * might be cached on a CPU's TLB, the return value indicates this
  430. * case.
  431. */
  432. static bool mmu_spte_update(u64 *sptep, u64 new_spte)
  433. {
  434. u64 old_spte = *sptep;
  435. bool ret = false;
  436. WARN_ON(!is_shadow_present_pte(new_spte));
  437. if (!is_shadow_present_pte(old_spte)) {
  438. mmu_spte_set(sptep, new_spte);
  439. return ret;
  440. }
  441. if (!spte_has_volatile_bits(old_spte))
  442. __update_clear_spte_fast(sptep, new_spte);
  443. else
  444. old_spte = __update_clear_spte_slow(sptep, new_spte);
  445. /*
  446. * For the spte updated out of mmu-lock is safe, since
  447. * we always atomically update it, see the comments in
  448. * spte_has_volatile_bits().
  449. */
  450. if (spte_is_locklessly_modifiable(old_spte) &&
  451. !is_writable_pte(new_spte))
  452. ret = true;
  453. if (!shadow_accessed_mask) {
  454. /*
  455. * We don't set page dirty when dropping non-writable spte.
  456. * So do it now if the new spte is becoming non-writable.
  457. */
  458. if (ret)
  459. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  460. return ret;
  461. }
  462. /*
  463. * Flush TLB when accessed/dirty bits are changed in the page tables,
  464. * to guarantee consistency between TLB and page tables.
  465. */
  466. if (spte_is_bit_changed(old_spte, new_spte,
  467. shadow_accessed_mask | shadow_dirty_mask))
  468. ret = true;
  469. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  470. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  471. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  472. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  473. return ret;
  474. }
  475. /*
  476. * Rules for using mmu_spte_clear_track_bits:
  477. * It sets the sptep from present to nonpresent, and track the
  478. * state bits, it is used to clear the last level sptep.
  479. */
  480. static int mmu_spte_clear_track_bits(u64 *sptep)
  481. {
  482. kvm_pfn_t pfn;
  483. u64 old_spte = *sptep;
  484. if (!spte_has_volatile_bits(old_spte))
  485. __update_clear_spte_fast(sptep, 0ull);
  486. else
  487. old_spte = __update_clear_spte_slow(sptep, 0ull);
  488. if (!is_shadow_present_pte(old_spte))
  489. return 0;
  490. pfn = spte_to_pfn(old_spte);
  491. /*
  492. * KVM does not hold the refcount of the page used by
  493. * kvm mmu, before reclaiming the page, we should
  494. * unmap it from mmu first.
  495. */
  496. WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
  497. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  498. kvm_set_pfn_accessed(pfn);
  499. if (old_spte & (shadow_dirty_mask ? shadow_dirty_mask :
  500. PT_WRITABLE_MASK))
  501. kvm_set_pfn_dirty(pfn);
  502. return 1;
  503. }
  504. /*
  505. * Rules for using mmu_spte_clear_no_track:
  506. * Directly clear spte without caring the state bits of sptep,
  507. * it is used to set the upper level spte.
  508. */
  509. static void mmu_spte_clear_no_track(u64 *sptep)
  510. {
  511. __update_clear_spte_fast(sptep, 0ull);
  512. }
  513. static u64 mmu_spte_get_lockless(u64 *sptep)
  514. {
  515. return __get_spte_lockless(sptep);
  516. }
  517. static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
  518. {
  519. /*
  520. * Prevent page table teardown by making any free-er wait during
  521. * kvm_flush_remote_tlbs() IPI to all active vcpus.
  522. */
  523. local_irq_disable();
  524. /*
  525. * Make sure a following spte read is not reordered ahead of the write
  526. * to vcpu->mode.
  527. */
  528. smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
  529. }
  530. static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
  531. {
  532. /*
  533. * Make sure the write to vcpu->mode is not reordered in front of
  534. * reads to sptes. If it does, kvm_commit_zap_page() can see us
  535. * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
  536. */
  537. smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
  538. local_irq_enable();
  539. }
  540. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  541. struct kmem_cache *base_cache, int min)
  542. {
  543. void *obj;
  544. if (cache->nobjs >= min)
  545. return 0;
  546. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  547. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  548. if (!obj)
  549. return -ENOMEM;
  550. cache->objects[cache->nobjs++] = obj;
  551. }
  552. return 0;
  553. }
  554. static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
  555. {
  556. return cache->nobjs;
  557. }
  558. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  559. struct kmem_cache *cache)
  560. {
  561. while (mc->nobjs)
  562. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  563. }
  564. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  565. int min)
  566. {
  567. void *page;
  568. if (cache->nobjs >= min)
  569. return 0;
  570. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  571. page = (void *)__get_free_page(GFP_KERNEL);
  572. if (!page)
  573. return -ENOMEM;
  574. cache->objects[cache->nobjs++] = page;
  575. }
  576. return 0;
  577. }
  578. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  579. {
  580. while (mc->nobjs)
  581. free_page((unsigned long)mc->objects[--mc->nobjs]);
  582. }
  583. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  584. {
  585. int r;
  586. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  587. pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
  588. if (r)
  589. goto out;
  590. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  591. if (r)
  592. goto out;
  593. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  594. mmu_page_header_cache, 4);
  595. out:
  596. return r;
  597. }
  598. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  599. {
  600. mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  601. pte_list_desc_cache);
  602. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  603. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  604. mmu_page_header_cache);
  605. }
  606. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
  607. {
  608. void *p;
  609. BUG_ON(!mc->nobjs);
  610. p = mc->objects[--mc->nobjs];
  611. return p;
  612. }
  613. static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
  614. {
  615. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
  616. }
  617. static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
  618. {
  619. kmem_cache_free(pte_list_desc_cache, pte_list_desc);
  620. }
  621. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  622. {
  623. if (!sp->role.direct)
  624. return sp->gfns[index];
  625. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  626. }
  627. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  628. {
  629. if (sp->role.direct)
  630. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  631. else
  632. sp->gfns[index] = gfn;
  633. }
  634. /*
  635. * Return the pointer to the large page information for a given gfn,
  636. * handling slots that are not large page aligned.
  637. */
  638. static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
  639. struct kvm_memory_slot *slot,
  640. int level)
  641. {
  642. unsigned long idx;
  643. idx = gfn_to_index(gfn, slot->base_gfn, level);
  644. return &slot->arch.lpage_info[level - 2][idx];
  645. }
  646. static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
  647. gfn_t gfn, int count)
  648. {
  649. struct kvm_lpage_info *linfo;
  650. int i;
  651. for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
  652. linfo = lpage_info_slot(gfn, slot, i);
  653. linfo->disallow_lpage += count;
  654. WARN_ON(linfo->disallow_lpage < 0);
  655. }
  656. }
  657. void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
  658. {
  659. update_gfn_disallow_lpage_count(slot, gfn, 1);
  660. }
  661. void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
  662. {
  663. update_gfn_disallow_lpage_count(slot, gfn, -1);
  664. }
  665. static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
  666. {
  667. struct kvm_memslots *slots;
  668. struct kvm_memory_slot *slot;
  669. gfn_t gfn;
  670. kvm->arch.indirect_shadow_pages++;
  671. gfn = sp->gfn;
  672. slots = kvm_memslots_for_spte_role(kvm, sp->role);
  673. slot = __gfn_to_memslot(slots, gfn);
  674. /* the non-leaf shadow pages are keeping readonly. */
  675. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  676. return kvm_slot_page_track_add_page(kvm, slot, gfn,
  677. KVM_PAGE_TRACK_WRITE);
  678. kvm_mmu_gfn_disallow_lpage(slot, gfn);
  679. }
  680. static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
  681. {
  682. struct kvm_memslots *slots;
  683. struct kvm_memory_slot *slot;
  684. gfn_t gfn;
  685. kvm->arch.indirect_shadow_pages--;
  686. gfn = sp->gfn;
  687. slots = kvm_memslots_for_spte_role(kvm, sp->role);
  688. slot = __gfn_to_memslot(slots, gfn);
  689. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  690. return kvm_slot_page_track_remove_page(kvm, slot, gfn,
  691. KVM_PAGE_TRACK_WRITE);
  692. kvm_mmu_gfn_allow_lpage(slot, gfn);
  693. }
  694. static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
  695. struct kvm_memory_slot *slot)
  696. {
  697. struct kvm_lpage_info *linfo;
  698. if (slot) {
  699. linfo = lpage_info_slot(gfn, slot, level);
  700. return !!linfo->disallow_lpage;
  701. }
  702. return true;
  703. }
  704. static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
  705. int level)
  706. {
  707. struct kvm_memory_slot *slot;
  708. slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
  709. return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
  710. }
  711. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  712. {
  713. unsigned long page_size;
  714. int i, ret = 0;
  715. page_size = kvm_host_page_size(kvm, gfn);
  716. for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
  717. if (page_size >= KVM_HPAGE_SIZE(i))
  718. ret = i;
  719. else
  720. break;
  721. }
  722. return ret;
  723. }
  724. static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
  725. bool no_dirty_log)
  726. {
  727. if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
  728. return false;
  729. if (no_dirty_log && slot->dirty_bitmap)
  730. return false;
  731. return true;
  732. }
  733. static struct kvm_memory_slot *
  734. gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
  735. bool no_dirty_log)
  736. {
  737. struct kvm_memory_slot *slot;
  738. slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
  739. if (!memslot_valid_for_gpte(slot, no_dirty_log))
  740. slot = NULL;
  741. return slot;
  742. }
  743. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
  744. bool *force_pt_level)
  745. {
  746. int host_level, level, max_level;
  747. struct kvm_memory_slot *slot;
  748. if (unlikely(*force_pt_level))
  749. return PT_PAGE_TABLE_LEVEL;
  750. slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
  751. *force_pt_level = !memslot_valid_for_gpte(slot, true);
  752. if (unlikely(*force_pt_level))
  753. return PT_PAGE_TABLE_LEVEL;
  754. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  755. if (host_level == PT_PAGE_TABLE_LEVEL)
  756. return host_level;
  757. max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
  758. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  759. if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
  760. break;
  761. return level - 1;
  762. }
  763. /*
  764. * About rmap_head encoding:
  765. *
  766. * If the bit zero of rmap_head->val is clear, then it points to the only spte
  767. * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
  768. * pte_list_desc containing more mappings.
  769. */
  770. /*
  771. * Returns the number of pointers in the rmap chain, not counting the new one.
  772. */
  773. static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
  774. struct kvm_rmap_head *rmap_head)
  775. {
  776. struct pte_list_desc *desc;
  777. int i, count = 0;
  778. if (!rmap_head->val) {
  779. rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
  780. rmap_head->val = (unsigned long)spte;
  781. } else if (!(rmap_head->val & 1)) {
  782. rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
  783. desc = mmu_alloc_pte_list_desc(vcpu);
  784. desc->sptes[0] = (u64 *)rmap_head->val;
  785. desc->sptes[1] = spte;
  786. rmap_head->val = (unsigned long)desc | 1;
  787. ++count;
  788. } else {
  789. rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
  790. desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
  791. while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
  792. desc = desc->more;
  793. count += PTE_LIST_EXT;
  794. }
  795. if (desc->sptes[PTE_LIST_EXT-1]) {
  796. desc->more = mmu_alloc_pte_list_desc(vcpu);
  797. desc = desc->more;
  798. }
  799. for (i = 0; desc->sptes[i]; ++i)
  800. ++count;
  801. desc->sptes[i] = spte;
  802. }
  803. return count;
  804. }
  805. static void
  806. pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
  807. struct pte_list_desc *desc, int i,
  808. struct pte_list_desc *prev_desc)
  809. {
  810. int j;
  811. for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
  812. ;
  813. desc->sptes[i] = desc->sptes[j];
  814. desc->sptes[j] = NULL;
  815. if (j != 0)
  816. return;
  817. if (!prev_desc && !desc->more)
  818. rmap_head->val = (unsigned long)desc->sptes[0];
  819. else
  820. if (prev_desc)
  821. prev_desc->more = desc->more;
  822. else
  823. rmap_head->val = (unsigned long)desc->more | 1;
  824. mmu_free_pte_list_desc(desc);
  825. }
  826. static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
  827. {
  828. struct pte_list_desc *desc;
  829. struct pte_list_desc *prev_desc;
  830. int i;
  831. if (!rmap_head->val) {
  832. printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
  833. BUG();
  834. } else if (!(rmap_head->val & 1)) {
  835. rmap_printk("pte_list_remove: %p 1->0\n", spte);
  836. if ((u64 *)rmap_head->val != spte) {
  837. printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
  838. BUG();
  839. }
  840. rmap_head->val = 0;
  841. } else {
  842. rmap_printk("pte_list_remove: %p many->many\n", spte);
  843. desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
  844. prev_desc = NULL;
  845. while (desc) {
  846. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
  847. if (desc->sptes[i] == spte) {
  848. pte_list_desc_remove_entry(rmap_head,
  849. desc, i, prev_desc);
  850. return;
  851. }
  852. }
  853. prev_desc = desc;
  854. desc = desc->more;
  855. }
  856. pr_err("pte_list_remove: %p many->many\n", spte);
  857. BUG();
  858. }
  859. }
  860. static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
  861. struct kvm_memory_slot *slot)
  862. {
  863. unsigned long idx;
  864. idx = gfn_to_index(gfn, slot->base_gfn, level);
  865. return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
  866. }
  867. static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
  868. struct kvm_mmu_page *sp)
  869. {
  870. struct kvm_memslots *slots;
  871. struct kvm_memory_slot *slot;
  872. slots = kvm_memslots_for_spte_role(kvm, sp->role);
  873. slot = __gfn_to_memslot(slots, gfn);
  874. return __gfn_to_rmap(gfn, sp->role.level, slot);
  875. }
  876. static bool rmap_can_add(struct kvm_vcpu *vcpu)
  877. {
  878. struct kvm_mmu_memory_cache *cache;
  879. cache = &vcpu->arch.mmu_pte_list_desc_cache;
  880. return mmu_memory_cache_free_objects(cache);
  881. }
  882. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  883. {
  884. struct kvm_mmu_page *sp;
  885. struct kvm_rmap_head *rmap_head;
  886. sp = page_header(__pa(spte));
  887. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  888. rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
  889. return pte_list_add(vcpu, spte, rmap_head);
  890. }
  891. static void rmap_remove(struct kvm *kvm, u64 *spte)
  892. {
  893. struct kvm_mmu_page *sp;
  894. gfn_t gfn;
  895. struct kvm_rmap_head *rmap_head;
  896. sp = page_header(__pa(spte));
  897. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  898. rmap_head = gfn_to_rmap(kvm, gfn, sp);
  899. pte_list_remove(spte, rmap_head);
  900. }
  901. /*
  902. * Used by the following functions to iterate through the sptes linked by a
  903. * rmap. All fields are private and not assumed to be used outside.
  904. */
  905. struct rmap_iterator {
  906. /* private fields */
  907. struct pte_list_desc *desc; /* holds the sptep if not NULL */
  908. int pos; /* index of the sptep */
  909. };
  910. /*
  911. * Iteration must be started by this function. This should also be used after
  912. * removing/dropping sptes from the rmap link because in such cases the
  913. * information in the itererator may not be valid.
  914. *
  915. * Returns sptep if found, NULL otherwise.
  916. */
  917. static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
  918. struct rmap_iterator *iter)
  919. {
  920. u64 *sptep;
  921. if (!rmap_head->val)
  922. return NULL;
  923. if (!(rmap_head->val & 1)) {
  924. iter->desc = NULL;
  925. sptep = (u64 *)rmap_head->val;
  926. goto out;
  927. }
  928. iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
  929. iter->pos = 0;
  930. sptep = iter->desc->sptes[iter->pos];
  931. out:
  932. BUG_ON(!is_shadow_present_pte(*sptep));
  933. return sptep;
  934. }
  935. /*
  936. * Must be used with a valid iterator: e.g. after rmap_get_first().
  937. *
  938. * Returns sptep if found, NULL otherwise.
  939. */
  940. static u64 *rmap_get_next(struct rmap_iterator *iter)
  941. {
  942. u64 *sptep;
  943. if (iter->desc) {
  944. if (iter->pos < PTE_LIST_EXT - 1) {
  945. ++iter->pos;
  946. sptep = iter->desc->sptes[iter->pos];
  947. if (sptep)
  948. goto out;
  949. }
  950. iter->desc = iter->desc->more;
  951. if (iter->desc) {
  952. iter->pos = 0;
  953. /* desc->sptes[0] cannot be NULL */
  954. sptep = iter->desc->sptes[iter->pos];
  955. goto out;
  956. }
  957. }
  958. return NULL;
  959. out:
  960. BUG_ON(!is_shadow_present_pte(*sptep));
  961. return sptep;
  962. }
  963. #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
  964. for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
  965. _spte_; _spte_ = rmap_get_next(_iter_))
  966. static void drop_spte(struct kvm *kvm, u64 *sptep)
  967. {
  968. if (mmu_spte_clear_track_bits(sptep))
  969. rmap_remove(kvm, sptep);
  970. }
  971. static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
  972. {
  973. if (is_large_pte(*sptep)) {
  974. WARN_ON(page_header(__pa(sptep))->role.level ==
  975. PT_PAGE_TABLE_LEVEL);
  976. drop_spte(kvm, sptep);
  977. --kvm->stat.lpages;
  978. return true;
  979. }
  980. return false;
  981. }
  982. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  983. {
  984. if (__drop_large_spte(vcpu->kvm, sptep))
  985. kvm_flush_remote_tlbs(vcpu->kvm);
  986. }
  987. /*
  988. * Write-protect on the specified @sptep, @pt_protect indicates whether
  989. * spte write-protection is caused by protecting shadow page table.
  990. *
  991. * Note: write protection is difference between dirty logging and spte
  992. * protection:
  993. * - for dirty logging, the spte can be set to writable at anytime if
  994. * its dirty bitmap is properly set.
  995. * - for spte protection, the spte can be writable only after unsync-ing
  996. * shadow page.
  997. *
  998. * Return true if tlb need be flushed.
  999. */
  1000. static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
  1001. {
  1002. u64 spte = *sptep;
  1003. if (!is_writable_pte(spte) &&
  1004. !(pt_protect && spte_is_locklessly_modifiable(spte)))
  1005. return false;
  1006. rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
  1007. if (pt_protect)
  1008. spte &= ~SPTE_MMU_WRITEABLE;
  1009. spte = spte & ~PT_WRITABLE_MASK;
  1010. return mmu_spte_update(sptep, spte);
  1011. }
  1012. static bool __rmap_write_protect(struct kvm *kvm,
  1013. struct kvm_rmap_head *rmap_head,
  1014. bool pt_protect)
  1015. {
  1016. u64 *sptep;
  1017. struct rmap_iterator iter;
  1018. bool flush = false;
  1019. for_each_rmap_spte(rmap_head, &iter, sptep)
  1020. flush |= spte_write_protect(kvm, sptep, pt_protect);
  1021. return flush;
  1022. }
  1023. static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
  1024. {
  1025. u64 spte = *sptep;
  1026. rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
  1027. spte &= ~shadow_dirty_mask;
  1028. return mmu_spte_update(sptep, spte);
  1029. }
  1030. static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
  1031. {
  1032. u64 *sptep;
  1033. struct rmap_iterator iter;
  1034. bool flush = false;
  1035. for_each_rmap_spte(rmap_head, &iter, sptep)
  1036. flush |= spte_clear_dirty(kvm, sptep);
  1037. return flush;
  1038. }
  1039. static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
  1040. {
  1041. u64 spte = *sptep;
  1042. rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
  1043. spte |= shadow_dirty_mask;
  1044. return mmu_spte_update(sptep, spte);
  1045. }
  1046. static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
  1047. {
  1048. u64 *sptep;
  1049. struct rmap_iterator iter;
  1050. bool flush = false;
  1051. for_each_rmap_spte(rmap_head, &iter, sptep)
  1052. flush |= spte_set_dirty(kvm, sptep);
  1053. return flush;
  1054. }
  1055. /**
  1056. * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
  1057. * @kvm: kvm instance
  1058. * @slot: slot to protect
  1059. * @gfn_offset: start of the BITS_PER_LONG pages we care about
  1060. * @mask: indicates which pages we should protect
  1061. *
  1062. * Used when we do not need to care about huge page mappings: e.g. during dirty
  1063. * logging we do not have any such mappings.
  1064. */
  1065. static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
  1066. struct kvm_memory_slot *slot,
  1067. gfn_t gfn_offset, unsigned long mask)
  1068. {
  1069. struct kvm_rmap_head *rmap_head;
  1070. while (mask) {
  1071. rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
  1072. PT_PAGE_TABLE_LEVEL, slot);
  1073. __rmap_write_protect(kvm, rmap_head, false);
  1074. /* clear the first set bit */
  1075. mask &= mask - 1;
  1076. }
  1077. }
  1078. /**
  1079. * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
  1080. * @kvm: kvm instance
  1081. * @slot: slot to clear D-bit
  1082. * @gfn_offset: start of the BITS_PER_LONG pages we care about
  1083. * @mask: indicates which pages we should clear D-bit
  1084. *
  1085. * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
  1086. */
  1087. void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
  1088. struct kvm_memory_slot *slot,
  1089. gfn_t gfn_offset, unsigned long mask)
  1090. {
  1091. struct kvm_rmap_head *rmap_head;
  1092. while (mask) {
  1093. rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
  1094. PT_PAGE_TABLE_LEVEL, slot);
  1095. __rmap_clear_dirty(kvm, rmap_head);
  1096. /* clear the first set bit */
  1097. mask &= mask - 1;
  1098. }
  1099. }
  1100. EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
  1101. /**
  1102. * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
  1103. * PT level pages.
  1104. *
  1105. * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
  1106. * enable dirty logging for them.
  1107. *
  1108. * Used when we do not need to care about huge page mappings: e.g. during dirty
  1109. * logging we do not have any such mappings.
  1110. */
  1111. void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
  1112. struct kvm_memory_slot *slot,
  1113. gfn_t gfn_offset, unsigned long mask)
  1114. {
  1115. if (kvm_x86_ops->enable_log_dirty_pt_masked)
  1116. kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
  1117. mask);
  1118. else
  1119. kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
  1120. }
  1121. bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
  1122. struct kvm_memory_slot *slot, u64 gfn)
  1123. {
  1124. struct kvm_rmap_head *rmap_head;
  1125. int i;
  1126. bool write_protected = false;
  1127. for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
  1128. rmap_head = __gfn_to_rmap(gfn, i, slot);
  1129. write_protected |= __rmap_write_protect(kvm, rmap_head, true);
  1130. }
  1131. return write_protected;
  1132. }
  1133. static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
  1134. {
  1135. struct kvm_memory_slot *slot;
  1136. slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
  1137. return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
  1138. }
  1139. static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
  1140. {
  1141. u64 *sptep;
  1142. struct rmap_iterator iter;
  1143. bool flush = false;
  1144. while ((sptep = rmap_get_first(rmap_head, &iter))) {
  1145. rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
  1146. drop_spte(kvm, sptep);
  1147. flush = true;
  1148. }
  1149. return flush;
  1150. }
  1151. static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
  1152. struct kvm_memory_slot *slot, gfn_t gfn, int level,
  1153. unsigned long data)
  1154. {
  1155. return kvm_zap_rmapp(kvm, rmap_head);
  1156. }
  1157. static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
  1158. struct kvm_memory_slot *slot, gfn_t gfn, int level,
  1159. unsigned long data)
  1160. {
  1161. u64 *sptep;
  1162. struct rmap_iterator iter;
  1163. int need_flush = 0;
  1164. u64 new_spte;
  1165. pte_t *ptep = (pte_t *)data;
  1166. kvm_pfn_t new_pfn;
  1167. WARN_ON(pte_huge(*ptep));
  1168. new_pfn = pte_pfn(*ptep);
  1169. restart:
  1170. for_each_rmap_spte(rmap_head, &iter, sptep) {
  1171. rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
  1172. sptep, *sptep, gfn, level);
  1173. need_flush = 1;
  1174. if (pte_write(*ptep)) {
  1175. drop_spte(kvm, sptep);
  1176. goto restart;
  1177. } else {
  1178. new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
  1179. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  1180. new_spte &= ~PT_WRITABLE_MASK;
  1181. new_spte &= ~SPTE_HOST_WRITEABLE;
  1182. new_spte &= ~shadow_accessed_mask;
  1183. mmu_spte_clear_track_bits(sptep);
  1184. mmu_spte_set(sptep, new_spte);
  1185. }
  1186. }
  1187. if (need_flush)
  1188. kvm_flush_remote_tlbs(kvm);
  1189. return 0;
  1190. }
  1191. struct slot_rmap_walk_iterator {
  1192. /* input fields. */
  1193. struct kvm_memory_slot *slot;
  1194. gfn_t start_gfn;
  1195. gfn_t end_gfn;
  1196. int start_level;
  1197. int end_level;
  1198. /* output fields. */
  1199. gfn_t gfn;
  1200. struct kvm_rmap_head *rmap;
  1201. int level;
  1202. /* private field. */
  1203. struct kvm_rmap_head *end_rmap;
  1204. };
  1205. static void
  1206. rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
  1207. {
  1208. iterator->level = level;
  1209. iterator->gfn = iterator->start_gfn;
  1210. iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
  1211. iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
  1212. iterator->slot);
  1213. }
  1214. static void
  1215. slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
  1216. struct kvm_memory_slot *slot, int start_level,
  1217. int end_level, gfn_t start_gfn, gfn_t end_gfn)
  1218. {
  1219. iterator->slot = slot;
  1220. iterator->start_level = start_level;
  1221. iterator->end_level = end_level;
  1222. iterator->start_gfn = start_gfn;
  1223. iterator->end_gfn = end_gfn;
  1224. rmap_walk_init_level(iterator, iterator->start_level);
  1225. }
  1226. static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
  1227. {
  1228. return !!iterator->rmap;
  1229. }
  1230. static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
  1231. {
  1232. if (++iterator->rmap <= iterator->end_rmap) {
  1233. iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
  1234. return;
  1235. }
  1236. if (++iterator->level > iterator->end_level) {
  1237. iterator->rmap = NULL;
  1238. return;
  1239. }
  1240. rmap_walk_init_level(iterator, iterator->level);
  1241. }
  1242. #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
  1243. _start_gfn, _end_gfn, _iter_) \
  1244. for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
  1245. _end_level_, _start_gfn, _end_gfn); \
  1246. slot_rmap_walk_okay(_iter_); \
  1247. slot_rmap_walk_next(_iter_))
  1248. static int kvm_handle_hva_range(struct kvm *kvm,
  1249. unsigned long start,
  1250. unsigned long end,
  1251. unsigned long data,
  1252. int (*handler)(struct kvm *kvm,
  1253. struct kvm_rmap_head *rmap_head,
  1254. struct kvm_memory_slot *slot,
  1255. gfn_t gfn,
  1256. int level,
  1257. unsigned long data))
  1258. {
  1259. struct kvm_memslots *slots;
  1260. struct kvm_memory_slot *memslot;
  1261. struct slot_rmap_walk_iterator iterator;
  1262. int ret = 0;
  1263. int i;
  1264. for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
  1265. slots = __kvm_memslots(kvm, i);
  1266. kvm_for_each_memslot(memslot, slots) {
  1267. unsigned long hva_start, hva_end;
  1268. gfn_t gfn_start, gfn_end;
  1269. hva_start = max(start, memslot->userspace_addr);
  1270. hva_end = min(end, memslot->userspace_addr +
  1271. (memslot->npages << PAGE_SHIFT));
  1272. if (hva_start >= hva_end)
  1273. continue;
  1274. /*
  1275. * {gfn(page) | page intersects with [hva_start, hva_end)} =
  1276. * {gfn_start, gfn_start+1, ..., gfn_end-1}.
  1277. */
  1278. gfn_start = hva_to_gfn_memslot(hva_start, memslot);
  1279. gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
  1280. for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
  1281. PT_MAX_HUGEPAGE_LEVEL,
  1282. gfn_start, gfn_end - 1,
  1283. &iterator)
  1284. ret |= handler(kvm, iterator.rmap, memslot,
  1285. iterator.gfn, iterator.level, data);
  1286. }
  1287. }
  1288. return ret;
  1289. }
  1290. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  1291. unsigned long data,
  1292. int (*handler)(struct kvm *kvm,
  1293. struct kvm_rmap_head *rmap_head,
  1294. struct kvm_memory_slot *slot,
  1295. gfn_t gfn, int level,
  1296. unsigned long data))
  1297. {
  1298. return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
  1299. }
  1300. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  1301. {
  1302. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  1303. }
  1304. int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
  1305. {
  1306. return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
  1307. }
  1308. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  1309. {
  1310. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  1311. }
  1312. static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
  1313. struct kvm_memory_slot *slot, gfn_t gfn, int level,
  1314. unsigned long data)
  1315. {
  1316. u64 *sptep;
  1317. struct rmap_iterator uninitialized_var(iter);
  1318. int young = 0;
  1319. BUG_ON(!shadow_accessed_mask);
  1320. for_each_rmap_spte(rmap_head, &iter, sptep) {
  1321. if (*sptep & shadow_accessed_mask) {
  1322. young = 1;
  1323. clear_bit((ffs(shadow_accessed_mask) - 1),
  1324. (unsigned long *)sptep);
  1325. }
  1326. }
  1327. trace_kvm_age_page(gfn, level, slot, young);
  1328. return young;
  1329. }
  1330. static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
  1331. struct kvm_memory_slot *slot, gfn_t gfn,
  1332. int level, unsigned long data)
  1333. {
  1334. u64 *sptep;
  1335. struct rmap_iterator iter;
  1336. int young = 0;
  1337. /*
  1338. * If there's no access bit in the secondary pte set by the
  1339. * hardware it's up to gup-fast/gup to set the access bit in
  1340. * the primary pte or in the page structure.
  1341. */
  1342. if (!shadow_accessed_mask)
  1343. goto out;
  1344. for_each_rmap_spte(rmap_head, &iter, sptep) {
  1345. if (*sptep & shadow_accessed_mask) {
  1346. young = 1;
  1347. break;
  1348. }
  1349. }
  1350. out:
  1351. return young;
  1352. }
  1353. #define RMAP_RECYCLE_THRESHOLD 1000
  1354. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  1355. {
  1356. struct kvm_rmap_head *rmap_head;
  1357. struct kvm_mmu_page *sp;
  1358. sp = page_header(__pa(spte));
  1359. rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
  1360. kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
  1361. kvm_flush_remote_tlbs(vcpu->kvm);
  1362. }
  1363. int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
  1364. {
  1365. /*
  1366. * In case of absence of EPT Access and Dirty Bits supports,
  1367. * emulate the accessed bit for EPT, by checking if this page has
  1368. * an EPT mapping, and clearing it if it does. On the next access,
  1369. * a new EPT mapping will be established.
  1370. * This has some overhead, but not as much as the cost of swapping
  1371. * out actively used pages or breaking up actively used hugepages.
  1372. */
  1373. if (!shadow_accessed_mask) {
  1374. /*
  1375. * We are holding the kvm->mmu_lock, and we are blowing up
  1376. * shadow PTEs. MMU notifier consumers need to be kept at bay.
  1377. * This is correct as long as we don't decouple the mmu_lock
  1378. * protected regions (like invalidate_range_start|end does).
  1379. */
  1380. kvm->mmu_notifier_seq++;
  1381. return kvm_handle_hva_range(kvm, start, end, 0,
  1382. kvm_unmap_rmapp);
  1383. }
  1384. return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
  1385. }
  1386. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  1387. {
  1388. return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
  1389. }
  1390. #ifdef MMU_DEBUG
  1391. static int is_empty_shadow_page(u64 *spt)
  1392. {
  1393. u64 *pos;
  1394. u64 *end;
  1395. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  1396. if (is_shadow_present_pte(*pos)) {
  1397. printk(KERN_ERR "%s: %p %llx\n", __func__,
  1398. pos, *pos);
  1399. return 0;
  1400. }
  1401. return 1;
  1402. }
  1403. #endif
  1404. /*
  1405. * This value is the sum of all of the kvm instances's
  1406. * kvm->arch.n_used_mmu_pages values. We need a global,
  1407. * aggregate version in order to make the slab shrinker
  1408. * faster
  1409. */
  1410. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  1411. {
  1412. kvm->arch.n_used_mmu_pages += nr;
  1413. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  1414. }
  1415. static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
  1416. {
  1417. MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
  1418. hlist_del(&sp->hash_link);
  1419. list_del(&sp->link);
  1420. free_page((unsigned long)sp->spt);
  1421. if (!sp->role.direct)
  1422. free_page((unsigned long)sp->gfns);
  1423. kmem_cache_free(mmu_page_header_cache, sp);
  1424. }
  1425. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  1426. {
  1427. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  1428. }
  1429. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  1430. struct kvm_mmu_page *sp, u64 *parent_pte)
  1431. {
  1432. if (!parent_pte)
  1433. return;
  1434. pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
  1435. }
  1436. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  1437. u64 *parent_pte)
  1438. {
  1439. pte_list_remove(parent_pte, &sp->parent_ptes);
  1440. }
  1441. static void drop_parent_pte(struct kvm_mmu_page *sp,
  1442. u64 *parent_pte)
  1443. {
  1444. mmu_page_remove_parent_pte(sp, parent_pte);
  1445. mmu_spte_clear_no_track(parent_pte);
  1446. }
  1447. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
  1448. {
  1449. struct kvm_mmu_page *sp;
  1450. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
  1451. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1452. if (!direct)
  1453. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1454. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  1455. /*
  1456. * The active_mmu_pages list is the FIFO list, do not move the
  1457. * page until it is zapped. kvm_zap_obsolete_pages depends on
  1458. * this feature. See the comments in kvm_zap_obsolete_pages().
  1459. */
  1460. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  1461. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  1462. return sp;
  1463. }
  1464. static void mark_unsync(u64 *spte);
  1465. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  1466. {
  1467. u64 *sptep;
  1468. struct rmap_iterator iter;
  1469. for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
  1470. mark_unsync(sptep);
  1471. }
  1472. }
  1473. static void mark_unsync(u64 *spte)
  1474. {
  1475. struct kvm_mmu_page *sp;
  1476. unsigned int index;
  1477. sp = page_header(__pa(spte));
  1478. index = spte - sp->spt;
  1479. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  1480. return;
  1481. if (sp->unsync_children++)
  1482. return;
  1483. kvm_mmu_mark_parents_unsync(sp);
  1484. }
  1485. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  1486. struct kvm_mmu_page *sp)
  1487. {
  1488. return 0;
  1489. }
  1490. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  1491. {
  1492. }
  1493. static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
  1494. struct kvm_mmu_page *sp, u64 *spte,
  1495. const void *pte)
  1496. {
  1497. WARN_ON(1);
  1498. }
  1499. #define KVM_PAGE_ARRAY_NR 16
  1500. struct kvm_mmu_pages {
  1501. struct mmu_page_and_offset {
  1502. struct kvm_mmu_page *sp;
  1503. unsigned int idx;
  1504. } page[KVM_PAGE_ARRAY_NR];
  1505. unsigned int nr;
  1506. };
  1507. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  1508. int idx)
  1509. {
  1510. int i;
  1511. if (sp->unsync)
  1512. for (i=0; i < pvec->nr; i++)
  1513. if (pvec->page[i].sp == sp)
  1514. return 0;
  1515. pvec->page[pvec->nr].sp = sp;
  1516. pvec->page[pvec->nr].idx = idx;
  1517. pvec->nr++;
  1518. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  1519. }
  1520. static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
  1521. {
  1522. --sp->unsync_children;
  1523. WARN_ON((int)sp->unsync_children < 0);
  1524. __clear_bit(idx, sp->unsync_child_bitmap);
  1525. }
  1526. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  1527. struct kvm_mmu_pages *pvec)
  1528. {
  1529. int i, ret, nr_unsync_leaf = 0;
  1530. for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
  1531. struct kvm_mmu_page *child;
  1532. u64 ent = sp->spt[i];
  1533. if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
  1534. clear_unsync_child_bit(sp, i);
  1535. continue;
  1536. }
  1537. child = page_header(ent & PT64_BASE_ADDR_MASK);
  1538. if (child->unsync_children) {
  1539. if (mmu_pages_add(pvec, child, i))
  1540. return -ENOSPC;
  1541. ret = __mmu_unsync_walk(child, pvec);
  1542. if (!ret) {
  1543. clear_unsync_child_bit(sp, i);
  1544. continue;
  1545. } else if (ret > 0) {
  1546. nr_unsync_leaf += ret;
  1547. } else
  1548. return ret;
  1549. } else if (child->unsync) {
  1550. nr_unsync_leaf++;
  1551. if (mmu_pages_add(pvec, child, i))
  1552. return -ENOSPC;
  1553. } else
  1554. clear_unsync_child_bit(sp, i);
  1555. }
  1556. return nr_unsync_leaf;
  1557. }
  1558. #define INVALID_INDEX (-1)
  1559. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1560. struct kvm_mmu_pages *pvec)
  1561. {
  1562. pvec->nr = 0;
  1563. if (!sp->unsync_children)
  1564. return 0;
  1565. mmu_pages_add(pvec, sp, INVALID_INDEX);
  1566. return __mmu_unsync_walk(sp, pvec);
  1567. }
  1568. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1569. {
  1570. WARN_ON(!sp->unsync);
  1571. trace_kvm_mmu_sync_page(sp);
  1572. sp->unsync = 0;
  1573. --kvm->stat.mmu_unsync;
  1574. }
  1575. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1576. struct list_head *invalid_list);
  1577. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1578. struct list_head *invalid_list);
  1579. /*
  1580. * NOTE: we should pay more attention on the zapped-obsolete page
  1581. * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
  1582. * since it has been deleted from active_mmu_pages but still can be found
  1583. * at hast list.
  1584. *
  1585. * for_each_gfn_indirect_valid_sp has skipped that kind of page and
  1586. * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
  1587. * all the obsolete pages.
  1588. */
  1589. #define for_each_gfn_sp(_kvm, _sp, _gfn) \
  1590. hlist_for_each_entry(_sp, \
  1591. &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
  1592. if ((_sp)->gfn != (_gfn)) {} else
  1593. #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
  1594. for_each_gfn_sp(_kvm, _sp, _gfn) \
  1595. if ((_sp)->role.direct || (_sp)->role.invalid) {} else
  1596. /* @sp->gfn should be write-protected at the call site */
  1597. static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1598. struct list_head *invalid_list)
  1599. {
  1600. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1601. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1602. return false;
  1603. }
  1604. if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
  1605. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1606. return false;
  1607. }
  1608. return true;
  1609. }
  1610. static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
  1611. struct list_head *invalid_list,
  1612. bool remote_flush, bool local_flush)
  1613. {
  1614. if (!list_empty(invalid_list)) {
  1615. kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
  1616. return;
  1617. }
  1618. if (remote_flush)
  1619. kvm_flush_remote_tlbs(vcpu->kvm);
  1620. else if (local_flush)
  1621. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1622. }
  1623. #ifdef CONFIG_KVM_MMU_AUDIT
  1624. #include "mmu_audit.c"
  1625. #else
  1626. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
  1627. static void mmu_audit_disable(void) { }
  1628. #endif
  1629. static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1630. struct list_head *invalid_list)
  1631. {
  1632. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1633. return __kvm_sync_page(vcpu, sp, invalid_list);
  1634. }
  1635. /* @gfn should be write-protected at the call site */
  1636. static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
  1637. struct list_head *invalid_list)
  1638. {
  1639. struct kvm_mmu_page *s;
  1640. bool ret = false;
  1641. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  1642. if (!s->unsync)
  1643. continue;
  1644. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1645. ret |= kvm_sync_page(vcpu, s, invalid_list);
  1646. }
  1647. return ret;
  1648. }
  1649. struct mmu_page_path {
  1650. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
  1651. unsigned int idx[PT64_ROOT_LEVEL];
  1652. };
  1653. #define for_each_sp(pvec, sp, parents, i) \
  1654. for (i = mmu_pages_first(&pvec, &parents); \
  1655. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1656. i = mmu_pages_next(&pvec, &parents, i))
  1657. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1658. struct mmu_page_path *parents,
  1659. int i)
  1660. {
  1661. int n;
  1662. for (n = i+1; n < pvec->nr; n++) {
  1663. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1664. unsigned idx = pvec->page[n].idx;
  1665. int level = sp->role.level;
  1666. parents->idx[level-1] = idx;
  1667. if (level == PT_PAGE_TABLE_LEVEL)
  1668. break;
  1669. parents->parent[level-2] = sp;
  1670. }
  1671. return n;
  1672. }
  1673. static int mmu_pages_first(struct kvm_mmu_pages *pvec,
  1674. struct mmu_page_path *parents)
  1675. {
  1676. struct kvm_mmu_page *sp;
  1677. int level;
  1678. if (pvec->nr == 0)
  1679. return 0;
  1680. WARN_ON(pvec->page[0].idx != INVALID_INDEX);
  1681. sp = pvec->page[0].sp;
  1682. level = sp->role.level;
  1683. WARN_ON(level == PT_PAGE_TABLE_LEVEL);
  1684. parents->parent[level-2] = sp;
  1685. /* Also set up a sentinel. Further entries in pvec are all
  1686. * children of sp, so this element is never overwritten.
  1687. */
  1688. parents->parent[level-1] = NULL;
  1689. return mmu_pages_next(pvec, parents, 0);
  1690. }
  1691. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1692. {
  1693. struct kvm_mmu_page *sp;
  1694. unsigned int level = 0;
  1695. do {
  1696. unsigned int idx = parents->idx[level];
  1697. sp = parents->parent[level];
  1698. if (!sp)
  1699. return;
  1700. WARN_ON(idx == INVALID_INDEX);
  1701. clear_unsync_child_bit(sp, idx);
  1702. level++;
  1703. } while (!sp->unsync_children);
  1704. }
  1705. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1706. struct kvm_mmu_page *parent)
  1707. {
  1708. int i;
  1709. struct kvm_mmu_page *sp;
  1710. struct mmu_page_path parents;
  1711. struct kvm_mmu_pages pages;
  1712. LIST_HEAD(invalid_list);
  1713. bool flush = false;
  1714. while (mmu_unsync_walk(parent, &pages)) {
  1715. bool protected = false;
  1716. for_each_sp(pages, sp, parents, i)
  1717. protected |= rmap_write_protect(vcpu, sp->gfn);
  1718. if (protected) {
  1719. kvm_flush_remote_tlbs(vcpu->kvm);
  1720. flush = false;
  1721. }
  1722. for_each_sp(pages, sp, parents, i) {
  1723. flush |= kvm_sync_page(vcpu, sp, &invalid_list);
  1724. mmu_pages_clear_parents(&parents);
  1725. }
  1726. if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
  1727. kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
  1728. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1729. flush = false;
  1730. }
  1731. }
  1732. kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
  1733. }
  1734. static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
  1735. {
  1736. atomic_set(&sp->write_flooding_count, 0);
  1737. }
  1738. static void clear_sp_write_flooding_count(u64 *spte)
  1739. {
  1740. struct kvm_mmu_page *sp = page_header(__pa(spte));
  1741. __clear_sp_write_flooding_count(sp);
  1742. }
  1743. static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
  1744. {
  1745. return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
  1746. }
  1747. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1748. gfn_t gfn,
  1749. gva_t gaddr,
  1750. unsigned level,
  1751. int direct,
  1752. unsigned access)
  1753. {
  1754. union kvm_mmu_page_role role;
  1755. unsigned quadrant;
  1756. struct kvm_mmu_page *sp;
  1757. bool need_sync = false;
  1758. bool flush = false;
  1759. LIST_HEAD(invalid_list);
  1760. role = vcpu->arch.mmu.base_role;
  1761. role.level = level;
  1762. role.direct = direct;
  1763. if (role.direct)
  1764. role.cr4_pae = 0;
  1765. role.access = access;
  1766. if (!vcpu->arch.mmu.direct_map
  1767. && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1768. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1769. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1770. role.quadrant = quadrant;
  1771. }
  1772. for_each_gfn_sp(vcpu->kvm, sp, gfn) {
  1773. if (is_obsolete_sp(vcpu->kvm, sp))
  1774. continue;
  1775. if (!need_sync && sp->unsync)
  1776. need_sync = true;
  1777. if (sp->role.word != role.word)
  1778. continue;
  1779. if (sp->unsync) {
  1780. /* The page is good, but __kvm_sync_page might still end
  1781. * up zapping it. If so, break in order to rebuild it.
  1782. */
  1783. if (!__kvm_sync_page(vcpu, sp, &invalid_list))
  1784. break;
  1785. WARN_ON(!list_empty(&invalid_list));
  1786. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1787. }
  1788. if (sp->unsync_children)
  1789. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1790. __clear_sp_write_flooding_count(sp);
  1791. trace_kvm_mmu_get_page(sp, false);
  1792. return sp;
  1793. }
  1794. ++vcpu->kvm->stat.mmu_cache_miss;
  1795. sp = kvm_mmu_alloc_page(vcpu, direct);
  1796. sp->gfn = gfn;
  1797. sp->role = role;
  1798. hlist_add_head(&sp->hash_link,
  1799. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1800. if (!direct) {
  1801. /*
  1802. * we should do write protection before syncing pages
  1803. * otherwise the content of the synced shadow page may
  1804. * be inconsistent with guest page table.
  1805. */
  1806. account_shadowed(vcpu->kvm, sp);
  1807. if (level == PT_PAGE_TABLE_LEVEL &&
  1808. rmap_write_protect(vcpu, gfn))
  1809. kvm_flush_remote_tlbs(vcpu->kvm);
  1810. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1811. flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
  1812. }
  1813. sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
  1814. clear_page(sp->spt);
  1815. trace_kvm_mmu_get_page(sp, true);
  1816. kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
  1817. return sp;
  1818. }
  1819. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1820. struct kvm_vcpu *vcpu, u64 addr)
  1821. {
  1822. iterator->addr = addr;
  1823. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1824. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1825. if (iterator->level == PT64_ROOT_LEVEL &&
  1826. vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
  1827. !vcpu->arch.mmu.direct_map)
  1828. --iterator->level;
  1829. if (iterator->level == PT32E_ROOT_LEVEL) {
  1830. iterator->shadow_addr
  1831. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1832. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1833. --iterator->level;
  1834. if (!iterator->shadow_addr)
  1835. iterator->level = 0;
  1836. }
  1837. }
  1838. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1839. {
  1840. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1841. return false;
  1842. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1843. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1844. return true;
  1845. }
  1846. static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
  1847. u64 spte)
  1848. {
  1849. if (is_last_spte(spte, iterator->level)) {
  1850. iterator->level = 0;
  1851. return;
  1852. }
  1853. iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
  1854. --iterator->level;
  1855. }
  1856. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1857. {
  1858. return __shadow_walk_next(iterator, *iterator->sptep);
  1859. }
  1860. static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
  1861. struct kvm_mmu_page *sp)
  1862. {
  1863. u64 spte;
  1864. BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
  1865. VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
  1866. spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
  1867. shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
  1868. mmu_spte_set(sptep, spte);
  1869. mmu_page_add_parent_pte(vcpu, sp, sptep);
  1870. if (sp->unsync_children || sp->unsync)
  1871. mark_unsync(sptep);
  1872. }
  1873. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1874. unsigned direct_access)
  1875. {
  1876. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1877. struct kvm_mmu_page *child;
  1878. /*
  1879. * For the direct sp, if the guest pte's dirty bit
  1880. * changed form clean to dirty, it will corrupt the
  1881. * sp's access: allow writable in the read-only sp,
  1882. * so we should update the spte at this point to get
  1883. * a new sp with the correct access.
  1884. */
  1885. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1886. if (child->role.access == direct_access)
  1887. return;
  1888. drop_parent_pte(child, sptep);
  1889. kvm_flush_remote_tlbs(vcpu->kvm);
  1890. }
  1891. }
  1892. static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
  1893. u64 *spte)
  1894. {
  1895. u64 pte;
  1896. struct kvm_mmu_page *child;
  1897. pte = *spte;
  1898. if (is_shadow_present_pte(pte)) {
  1899. if (is_last_spte(pte, sp->role.level)) {
  1900. drop_spte(kvm, spte);
  1901. if (is_large_pte(pte))
  1902. --kvm->stat.lpages;
  1903. } else {
  1904. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1905. drop_parent_pte(child, spte);
  1906. }
  1907. return true;
  1908. }
  1909. if (is_mmio_spte(pte))
  1910. mmu_spte_clear_no_track(spte);
  1911. return false;
  1912. }
  1913. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1914. struct kvm_mmu_page *sp)
  1915. {
  1916. unsigned i;
  1917. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1918. mmu_page_zap_pte(kvm, sp, sp->spt + i);
  1919. }
  1920. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1921. {
  1922. u64 *sptep;
  1923. struct rmap_iterator iter;
  1924. while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
  1925. drop_parent_pte(sp, sptep);
  1926. }
  1927. static int mmu_zap_unsync_children(struct kvm *kvm,
  1928. struct kvm_mmu_page *parent,
  1929. struct list_head *invalid_list)
  1930. {
  1931. int i, zapped = 0;
  1932. struct mmu_page_path parents;
  1933. struct kvm_mmu_pages pages;
  1934. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1935. return 0;
  1936. while (mmu_unsync_walk(parent, &pages)) {
  1937. struct kvm_mmu_page *sp;
  1938. for_each_sp(pages, sp, parents, i) {
  1939. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1940. mmu_pages_clear_parents(&parents);
  1941. zapped++;
  1942. }
  1943. }
  1944. return zapped;
  1945. }
  1946. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1947. struct list_head *invalid_list)
  1948. {
  1949. int ret;
  1950. trace_kvm_mmu_prepare_zap_page(sp);
  1951. ++kvm->stat.mmu_shadow_zapped;
  1952. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1953. kvm_mmu_page_unlink_children(kvm, sp);
  1954. kvm_mmu_unlink_parents(kvm, sp);
  1955. if (!sp->role.invalid && !sp->role.direct)
  1956. unaccount_shadowed(kvm, sp);
  1957. if (sp->unsync)
  1958. kvm_unlink_unsync_page(kvm, sp);
  1959. if (!sp->root_count) {
  1960. /* Count self */
  1961. ret++;
  1962. list_move(&sp->link, invalid_list);
  1963. kvm_mod_used_mmu_pages(kvm, -1);
  1964. } else {
  1965. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1966. /*
  1967. * The obsolete pages can not be used on any vcpus.
  1968. * See the comments in kvm_mmu_invalidate_zap_all_pages().
  1969. */
  1970. if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
  1971. kvm_reload_remote_mmus(kvm);
  1972. }
  1973. sp->role.invalid = 1;
  1974. return ret;
  1975. }
  1976. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1977. struct list_head *invalid_list)
  1978. {
  1979. struct kvm_mmu_page *sp, *nsp;
  1980. if (list_empty(invalid_list))
  1981. return;
  1982. /*
  1983. * We need to make sure everyone sees our modifications to
  1984. * the page tables and see changes to vcpu->mode here. The barrier
  1985. * in the kvm_flush_remote_tlbs() achieves this. This pairs
  1986. * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
  1987. *
  1988. * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
  1989. * guest mode and/or lockless shadow page table walks.
  1990. */
  1991. kvm_flush_remote_tlbs(kvm);
  1992. list_for_each_entry_safe(sp, nsp, invalid_list, link) {
  1993. WARN_ON(!sp->role.invalid || sp->root_count);
  1994. kvm_mmu_free_page(sp);
  1995. }
  1996. }
  1997. static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
  1998. struct list_head *invalid_list)
  1999. {
  2000. struct kvm_mmu_page *sp;
  2001. if (list_empty(&kvm->arch.active_mmu_pages))
  2002. return false;
  2003. sp = list_last_entry(&kvm->arch.active_mmu_pages,
  2004. struct kvm_mmu_page, link);
  2005. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  2006. return true;
  2007. }
  2008. /*
  2009. * Changing the number of mmu pages allocated to the vm
  2010. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  2011. */
  2012. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  2013. {
  2014. LIST_HEAD(invalid_list);
  2015. spin_lock(&kvm->mmu_lock);
  2016. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  2017. /* Need to free some mmu pages to achieve the goal. */
  2018. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
  2019. if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
  2020. break;
  2021. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2022. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  2023. }
  2024. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  2025. spin_unlock(&kvm->mmu_lock);
  2026. }
  2027. int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  2028. {
  2029. struct kvm_mmu_page *sp;
  2030. LIST_HEAD(invalid_list);
  2031. int r;
  2032. pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
  2033. r = 0;
  2034. spin_lock(&kvm->mmu_lock);
  2035. for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
  2036. pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
  2037. sp->role.word);
  2038. r = 1;
  2039. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  2040. }
  2041. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2042. spin_unlock(&kvm->mmu_lock);
  2043. return r;
  2044. }
  2045. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
  2046. static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  2047. {
  2048. trace_kvm_mmu_unsync_page(sp);
  2049. ++vcpu->kvm->stat.mmu_unsync;
  2050. sp->unsync = 1;
  2051. kvm_mmu_mark_parents_unsync(sp);
  2052. }
  2053. static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  2054. bool can_unsync)
  2055. {
  2056. struct kvm_mmu_page *sp;
  2057. if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
  2058. return true;
  2059. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
  2060. if (!can_unsync)
  2061. return true;
  2062. if (sp->unsync)
  2063. continue;
  2064. WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
  2065. kvm_unsync_page(vcpu, sp);
  2066. }
  2067. return false;
  2068. }
  2069. static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
  2070. {
  2071. if (pfn_valid(pfn))
  2072. return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
  2073. return true;
  2074. }
  2075. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  2076. unsigned pte_access, int level,
  2077. gfn_t gfn, kvm_pfn_t pfn, bool speculative,
  2078. bool can_unsync, bool host_writable)
  2079. {
  2080. u64 spte;
  2081. int ret = 0;
  2082. if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
  2083. return 0;
  2084. spte = PT_PRESENT_MASK;
  2085. if (!speculative)
  2086. spte |= shadow_accessed_mask;
  2087. if (pte_access & ACC_EXEC_MASK)
  2088. spte |= shadow_x_mask;
  2089. else
  2090. spte |= shadow_nx_mask;
  2091. if (pte_access & ACC_USER_MASK)
  2092. spte |= shadow_user_mask;
  2093. if (level > PT_PAGE_TABLE_LEVEL)
  2094. spte |= PT_PAGE_SIZE_MASK;
  2095. if (tdp_enabled)
  2096. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  2097. kvm_is_mmio_pfn(pfn));
  2098. if (host_writable)
  2099. spte |= SPTE_HOST_WRITEABLE;
  2100. else
  2101. pte_access &= ~ACC_WRITE_MASK;
  2102. spte |= (u64)pfn << PAGE_SHIFT;
  2103. if (pte_access & ACC_WRITE_MASK) {
  2104. /*
  2105. * Other vcpu creates new sp in the window between
  2106. * mapping_level() and acquiring mmu-lock. We can
  2107. * allow guest to retry the access, the mapping can
  2108. * be fixed if guest refault.
  2109. */
  2110. if (level > PT_PAGE_TABLE_LEVEL &&
  2111. mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
  2112. goto done;
  2113. spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
  2114. /*
  2115. * Optimization: for pte sync, if spte was writable the hash
  2116. * lookup is unnecessary (and expensive). Write protection
  2117. * is responsibility of mmu_get_page / kvm_sync_page.
  2118. * Same reasoning can be applied to dirty page accounting.
  2119. */
  2120. if (!can_unsync && is_writable_pte(*sptep))
  2121. goto set_pte;
  2122. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  2123. pgprintk("%s: found shadow page for %llx, marking ro\n",
  2124. __func__, gfn);
  2125. ret = 1;
  2126. pte_access &= ~ACC_WRITE_MASK;
  2127. spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
  2128. }
  2129. }
  2130. if (pte_access & ACC_WRITE_MASK) {
  2131. kvm_vcpu_mark_page_dirty(vcpu, gfn);
  2132. spte |= shadow_dirty_mask;
  2133. }
  2134. set_pte:
  2135. if (mmu_spte_update(sptep, spte))
  2136. kvm_flush_remote_tlbs(vcpu->kvm);
  2137. done:
  2138. return ret;
  2139. }
  2140. static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
  2141. int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
  2142. bool speculative, bool host_writable)
  2143. {
  2144. int was_rmapped = 0;
  2145. int rmap_count;
  2146. bool emulate = false;
  2147. pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
  2148. *sptep, write_fault, gfn);
  2149. if (is_shadow_present_pte(*sptep)) {
  2150. /*
  2151. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  2152. * the parent of the now unreachable PTE.
  2153. */
  2154. if (level > PT_PAGE_TABLE_LEVEL &&
  2155. !is_large_pte(*sptep)) {
  2156. struct kvm_mmu_page *child;
  2157. u64 pte = *sptep;
  2158. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2159. drop_parent_pte(child, sptep);
  2160. kvm_flush_remote_tlbs(vcpu->kvm);
  2161. } else if (pfn != spte_to_pfn(*sptep)) {
  2162. pgprintk("hfn old %llx new %llx\n",
  2163. spte_to_pfn(*sptep), pfn);
  2164. drop_spte(vcpu->kvm, sptep);
  2165. kvm_flush_remote_tlbs(vcpu->kvm);
  2166. } else
  2167. was_rmapped = 1;
  2168. }
  2169. if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
  2170. true, host_writable)) {
  2171. if (write_fault)
  2172. emulate = true;
  2173. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2174. }
  2175. if (unlikely(is_mmio_spte(*sptep)))
  2176. emulate = true;
  2177. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  2178. pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
  2179. is_large_pte(*sptep)? "2MB" : "4kB",
  2180. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  2181. *sptep, sptep);
  2182. if (!was_rmapped && is_large_pte(*sptep))
  2183. ++vcpu->kvm->stat.lpages;
  2184. if (is_shadow_present_pte(*sptep)) {
  2185. if (!was_rmapped) {
  2186. rmap_count = rmap_add(vcpu, sptep, gfn);
  2187. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  2188. rmap_recycle(vcpu, sptep, gfn);
  2189. }
  2190. }
  2191. kvm_release_pfn_clean(pfn);
  2192. return emulate;
  2193. }
  2194. static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
  2195. bool no_dirty_log)
  2196. {
  2197. struct kvm_memory_slot *slot;
  2198. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
  2199. if (!slot)
  2200. return KVM_PFN_ERR_FAULT;
  2201. return gfn_to_pfn_memslot_atomic(slot, gfn);
  2202. }
  2203. static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
  2204. struct kvm_mmu_page *sp,
  2205. u64 *start, u64 *end)
  2206. {
  2207. struct page *pages[PTE_PREFETCH_NUM];
  2208. struct kvm_memory_slot *slot;
  2209. unsigned access = sp->role.access;
  2210. int i, ret;
  2211. gfn_t gfn;
  2212. gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
  2213. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
  2214. if (!slot)
  2215. return -1;
  2216. ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
  2217. if (ret <= 0)
  2218. return -1;
  2219. for (i = 0; i < ret; i++, gfn++, start++)
  2220. mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
  2221. page_to_pfn(pages[i]), true, true);
  2222. return 0;
  2223. }
  2224. static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
  2225. struct kvm_mmu_page *sp, u64 *sptep)
  2226. {
  2227. u64 *spte, *start = NULL;
  2228. int i;
  2229. WARN_ON(!sp->role.direct);
  2230. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  2231. spte = sp->spt + i;
  2232. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  2233. if (is_shadow_present_pte(*spte) || spte == sptep) {
  2234. if (!start)
  2235. continue;
  2236. if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
  2237. break;
  2238. start = NULL;
  2239. } else if (!start)
  2240. start = spte;
  2241. }
  2242. }
  2243. static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
  2244. {
  2245. struct kvm_mmu_page *sp;
  2246. /*
  2247. * Since it's no accessed bit on EPT, it's no way to
  2248. * distinguish between actually accessed translations
  2249. * and prefetched, so disable pte prefetch if EPT is
  2250. * enabled.
  2251. */
  2252. if (!shadow_accessed_mask)
  2253. return;
  2254. sp = page_header(__pa(sptep));
  2255. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2256. return;
  2257. __direct_pte_prefetch(vcpu, sp, sptep);
  2258. }
  2259. static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
  2260. int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
  2261. {
  2262. struct kvm_shadow_walk_iterator iterator;
  2263. struct kvm_mmu_page *sp;
  2264. int emulate = 0;
  2265. gfn_t pseudo_gfn;
  2266. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2267. return 0;
  2268. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  2269. if (iterator.level == level) {
  2270. emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
  2271. write, level, gfn, pfn, prefault,
  2272. map_writable);
  2273. direct_pte_prefetch(vcpu, iterator.sptep);
  2274. ++vcpu->stat.pf_fixed;
  2275. break;
  2276. }
  2277. drop_large_spte(vcpu, iterator.sptep);
  2278. if (!is_shadow_present_pte(*iterator.sptep)) {
  2279. u64 base_addr = iterator.addr;
  2280. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  2281. pseudo_gfn = base_addr >> PAGE_SHIFT;
  2282. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  2283. iterator.level - 1, 1, ACC_ALL);
  2284. link_shadow_page(vcpu, iterator.sptep, sp);
  2285. }
  2286. }
  2287. return emulate;
  2288. }
  2289. static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
  2290. {
  2291. siginfo_t info;
  2292. info.si_signo = SIGBUS;
  2293. info.si_errno = 0;
  2294. info.si_code = BUS_MCEERR_AR;
  2295. info.si_addr = (void __user *)address;
  2296. info.si_addr_lsb = PAGE_SHIFT;
  2297. send_sig_info(SIGBUS, &info, tsk);
  2298. }
  2299. static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
  2300. {
  2301. /*
  2302. * Do not cache the mmio info caused by writing the readonly gfn
  2303. * into the spte otherwise read access on readonly gfn also can
  2304. * caused mmio page fault and treat it as mmio access.
  2305. * Return 1 to tell kvm to emulate it.
  2306. */
  2307. if (pfn == KVM_PFN_ERR_RO_FAULT)
  2308. return 1;
  2309. if (pfn == KVM_PFN_ERR_HWPOISON) {
  2310. kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
  2311. return 0;
  2312. }
  2313. return -EFAULT;
  2314. }
  2315. static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
  2316. gfn_t *gfnp, kvm_pfn_t *pfnp,
  2317. int *levelp)
  2318. {
  2319. kvm_pfn_t pfn = *pfnp;
  2320. gfn_t gfn = *gfnp;
  2321. int level = *levelp;
  2322. /*
  2323. * Check if it's a transparent hugepage. If this would be an
  2324. * hugetlbfs page, level wouldn't be set to
  2325. * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
  2326. * here.
  2327. */
  2328. if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
  2329. level == PT_PAGE_TABLE_LEVEL &&
  2330. PageTransCompound(pfn_to_page(pfn)) &&
  2331. !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
  2332. unsigned long mask;
  2333. /*
  2334. * mmu_notifier_retry was successful and we hold the
  2335. * mmu_lock here, so the pmd can't become splitting
  2336. * from under us, and in turn
  2337. * __split_huge_page_refcount() can't run from under
  2338. * us and we can safely transfer the refcount from
  2339. * PG_tail to PG_head as we switch the pfn to tail to
  2340. * head.
  2341. */
  2342. *levelp = level = PT_DIRECTORY_LEVEL;
  2343. mask = KVM_PAGES_PER_HPAGE(level) - 1;
  2344. VM_BUG_ON((gfn & mask) != (pfn & mask));
  2345. if (pfn & mask) {
  2346. gfn &= ~mask;
  2347. *gfnp = gfn;
  2348. kvm_release_pfn_clean(pfn);
  2349. pfn &= ~mask;
  2350. kvm_get_pfn(pfn);
  2351. *pfnp = pfn;
  2352. }
  2353. }
  2354. }
  2355. static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
  2356. kvm_pfn_t pfn, unsigned access, int *ret_val)
  2357. {
  2358. /* The pfn is invalid, report the error! */
  2359. if (unlikely(is_error_pfn(pfn))) {
  2360. *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
  2361. return true;
  2362. }
  2363. if (unlikely(is_noslot_pfn(pfn)))
  2364. vcpu_cache_mmio_info(vcpu, gva, gfn, access);
  2365. return false;
  2366. }
  2367. static bool page_fault_can_be_fast(u32 error_code)
  2368. {
  2369. /*
  2370. * Do not fix the mmio spte with invalid generation number which
  2371. * need to be updated by slow page fault path.
  2372. */
  2373. if (unlikely(error_code & PFERR_RSVD_MASK))
  2374. return false;
  2375. /*
  2376. * #PF can be fast only if the shadow page table is present and it
  2377. * is caused by write-protect, that means we just need change the
  2378. * W bit of the spte which can be done out of mmu-lock.
  2379. */
  2380. if (!(error_code & PFERR_PRESENT_MASK) ||
  2381. !(error_code & PFERR_WRITE_MASK))
  2382. return false;
  2383. return true;
  2384. }
  2385. static bool
  2386. fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  2387. u64 *sptep, u64 spte)
  2388. {
  2389. gfn_t gfn;
  2390. WARN_ON(!sp->role.direct);
  2391. /*
  2392. * The gfn of direct spte is stable since it is calculated
  2393. * by sp->gfn.
  2394. */
  2395. gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
  2396. /*
  2397. * Theoretically we could also set dirty bit (and flush TLB) here in
  2398. * order to eliminate unnecessary PML logging. See comments in
  2399. * set_spte. But fast_page_fault is very unlikely to happen with PML
  2400. * enabled, so we do not do this. This might result in the same GPA
  2401. * to be logged in PML buffer again when the write really happens, and
  2402. * eventually to be called by mark_page_dirty twice. But it's also no
  2403. * harm. This also avoids the TLB flush needed after setting dirty bit
  2404. * so non-PML cases won't be impacted.
  2405. *
  2406. * Compare with set_spte where instead shadow_dirty_mask is set.
  2407. */
  2408. if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
  2409. kvm_vcpu_mark_page_dirty(vcpu, gfn);
  2410. return true;
  2411. }
  2412. /*
  2413. * Return value:
  2414. * - true: let the vcpu to access on the same address again.
  2415. * - false: let the real page fault path to fix it.
  2416. */
  2417. static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
  2418. u32 error_code)
  2419. {
  2420. struct kvm_shadow_walk_iterator iterator;
  2421. struct kvm_mmu_page *sp;
  2422. bool ret = false;
  2423. u64 spte = 0ull;
  2424. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2425. return false;
  2426. if (!page_fault_can_be_fast(error_code))
  2427. return false;
  2428. walk_shadow_page_lockless_begin(vcpu);
  2429. for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
  2430. if (!is_shadow_present_pte(spte) || iterator.level < level)
  2431. break;
  2432. /*
  2433. * If the mapping has been changed, let the vcpu fault on the
  2434. * same address again.
  2435. */
  2436. if (!is_shadow_present_pte(spte)) {
  2437. ret = true;
  2438. goto exit;
  2439. }
  2440. sp = page_header(__pa(iterator.sptep));
  2441. if (!is_last_spte(spte, sp->role.level))
  2442. goto exit;
  2443. /*
  2444. * Check if it is a spurious fault caused by TLB lazily flushed.
  2445. *
  2446. * Need not check the access of upper level table entries since
  2447. * they are always ACC_ALL.
  2448. */
  2449. if (is_writable_pte(spte)) {
  2450. ret = true;
  2451. goto exit;
  2452. }
  2453. /*
  2454. * Currently, to simplify the code, only the spte write-protected
  2455. * by dirty-log can be fast fixed.
  2456. */
  2457. if (!spte_is_locklessly_modifiable(spte))
  2458. goto exit;
  2459. /*
  2460. * Do not fix write-permission on the large spte since we only dirty
  2461. * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
  2462. * that means other pages are missed if its slot is dirty-logged.
  2463. *
  2464. * Instead, we let the slow page fault path create a normal spte to
  2465. * fix the access.
  2466. *
  2467. * See the comments in kvm_arch_commit_memory_region().
  2468. */
  2469. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2470. goto exit;
  2471. /*
  2472. * Currently, fast page fault only works for direct mapping since
  2473. * the gfn is not stable for indirect shadow page.
  2474. * See Documentation/virtual/kvm/locking.txt to get more detail.
  2475. */
  2476. ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
  2477. exit:
  2478. trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
  2479. spte, ret);
  2480. walk_shadow_page_lockless_end(vcpu);
  2481. return ret;
  2482. }
  2483. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2484. gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
  2485. static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
  2486. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
  2487. gfn_t gfn, bool prefault)
  2488. {
  2489. int r;
  2490. int level;
  2491. bool force_pt_level = false;
  2492. kvm_pfn_t pfn;
  2493. unsigned long mmu_seq;
  2494. bool map_writable, write = error_code & PFERR_WRITE_MASK;
  2495. level = mapping_level(vcpu, gfn, &force_pt_level);
  2496. if (likely(!force_pt_level)) {
  2497. /*
  2498. * This path builds a PAE pagetable - so we can map
  2499. * 2mb pages at maximum. Therefore check if the level
  2500. * is larger than that.
  2501. */
  2502. if (level > PT_DIRECTORY_LEVEL)
  2503. level = PT_DIRECTORY_LEVEL;
  2504. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2505. }
  2506. if (fast_page_fault(vcpu, v, level, error_code))
  2507. return 0;
  2508. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2509. smp_rmb();
  2510. if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
  2511. return 0;
  2512. if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
  2513. return r;
  2514. spin_lock(&vcpu->kvm->mmu_lock);
  2515. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2516. goto out_unlock;
  2517. make_mmu_pages_available(vcpu);
  2518. if (likely(!force_pt_level))
  2519. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2520. r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
  2521. spin_unlock(&vcpu->kvm->mmu_lock);
  2522. return r;
  2523. out_unlock:
  2524. spin_unlock(&vcpu->kvm->mmu_lock);
  2525. kvm_release_pfn_clean(pfn);
  2526. return 0;
  2527. }
  2528. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  2529. {
  2530. int i;
  2531. struct kvm_mmu_page *sp;
  2532. LIST_HEAD(invalid_list);
  2533. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2534. return;
  2535. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
  2536. (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
  2537. vcpu->arch.mmu.direct_map)) {
  2538. hpa_t root = vcpu->arch.mmu.root_hpa;
  2539. spin_lock(&vcpu->kvm->mmu_lock);
  2540. sp = page_header(root);
  2541. --sp->root_count;
  2542. if (!sp->root_count && sp->role.invalid) {
  2543. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2544. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2545. }
  2546. spin_unlock(&vcpu->kvm->mmu_lock);
  2547. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2548. return;
  2549. }
  2550. spin_lock(&vcpu->kvm->mmu_lock);
  2551. for (i = 0; i < 4; ++i) {
  2552. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2553. if (root) {
  2554. root &= PT64_BASE_ADDR_MASK;
  2555. sp = page_header(root);
  2556. --sp->root_count;
  2557. if (!sp->root_count && sp->role.invalid)
  2558. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2559. &invalid_list);
  2560. }
  2561. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2562. }
  2563. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2564. spin_unlock(&vcpu->kvm->mmu_lock);
  2565. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2566. }
  2567. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  2568. {
  2569. int ret = 0;
  2570. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  2571. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2572. ret = 1;
  2573. }
  2574. return ret;
  2575. }
  2576. static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
  2577. {
  2578. struct kvm_mmu_page *sp;
  2579. unsigned i;
  2580. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2581. spin_lock(&vcpu->kvm->mmu_lock);
  2582. make_mmu_pages_available(vcpu);
  2583. sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
  2584. ++sp->root_count;
  2585. spin_unlock(&vcpu->kvm->mmu_lock);
  2586. vcpu->arch.mmu.root_hpa = __pa(sp->spt);
  2587. } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
  2588. for (i = 0; i < 4; ++i) {
  2589. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2590. MMU_WARN_ON(VALID_PAGE(root));
  2591. spin_lock(&vcpu->kvm->mmu_lock);
  2592. make_mmu_pages_available(vcpu);
  2593. sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
  2594. i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
  2595. root = __pa(sp->spt);
  2596. ++sp->root_count;
  2597. spin_unlock(&vcpu->kvm->mmu_lock);
  2598. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  2599. }
  2600. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2601. } else
  2602. BUG();
  2603. return 0;
  2604. }
  2605. static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
  2606. {
  2607. struct kvm_mmu_page *sp;
  2608. u64 pdptr, pm_mask;
  2609. gfn_t root_gfn;
  2610. int i;
  2611. root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
  2612. if (mmu_check_root(vcpu, root_gfn))
  2613. return 1;
  2614. /*
  2615. * Do we shadow a long mode page table? If so we need to
  2616. * write-protect the guests page table root.
  2617. */
  2618. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2619. hpa_t root = vcpu->arch.mmu.root_hpa;
  2620. MMU_WARN_ON(VALID_PAGE(root));
  2621. spin_lock(&vcpu->kvm->mmu_lock);
  2622. make_mmu_pages_available(vcpu);
  2623. sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
  2624. 0, ACC_ALL);
  2625. root = __pa(sp->spt);
  2626. ++sp->root_count;
  2627. spin_unlock(&vcpu->kvm->mmu_lock);
  2628. vcpu->arch.mmu.root_hpa = root;
  2629. return 0;
  2630. }
  2631. /*
  2632. * We shadow a 32 bit page table. This may be a legacy 2-level
  2633. * or a PAE 3-level page table. In either case we need to be aware that
  2634. * the shadow page table may be a PAE or a long mode page table.
  2635. */
  2636. pm_mask = PT_PRESENT_MASK;
  2637. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
  2638. pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
  2639. for (i = 0; i < 4; ++i) {
  2640. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2641. MMU_WARN_ON(VALID_PAGE(root));
  2642. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  2643. pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
  2644. if (!is_present_gpte(pdptr)) {
  2645. vcpu->arch.mmu.pae_root[i] = 0;
  2646. continue;
  2647. }
  2648. root_gfn = pdptr >> PAGE_SHIFT;
  2649. if (mmu_check_root(vcpu, root_gfn))
  2650. return 1;
  2651. }
  2652. spin_lock(&vcpu->kvm->mmu_lock);
  2653. make_mmu_pages_available(vcpu);
  2654. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
  2655. 0, ACC_ALL);
  2656. root = __pa(sp->spt);
  2657. ++sp->root_count;
  2658. spin_unlock(&vcpu->kvm->mmu_lock);
  2659. vcpu->arch.mmu.pae_root[i] = root | pm_mask;
  2660. }
  2661. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2662. /*
  2663. * If we shadow a 32 bit page table with a long mode page
  2664. * table we enter this path.
  2665. */
  2666. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2667. if (vcpu->arch.mmu.lm_root == NULL) {
  2668. /*
  2669. * The additional page necessary for this is only
  2670. * allocated on demand.
  2671. */
  2672. u64 *lm_root;
  2673. lm_root = (void*)get_zeroed_page(GFP_KERNEL);
  2674. if (lm_root == NULL)
  2675. return 1;
  2676. lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
  2677. vcpu->arch.mmu.lm_root = lm_root;
  2678. }
  2679. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
  2680. }
  2681. return 0;
  2682. }
  2683. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  2684. {
  2685. if (vcpu->arch.mmu.direct_map)
  2686. return mmu_alloc_direct_roots(vcpu);
  2687. else
  2688. return mmu_alloc_shadow_roots(vcpu);
  2689. }
  2690. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  2691. {
  2692. int i;
  2693. struct kvm_mmu_page *sp;
  2694. if (vcpu->arch.mmu.direct_map)
  2695. return;
  2696. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2697. return;
  2698. vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
  2699. kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
  2700. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2701. hpa_t root = vcpu->arch.mmu.root_hpa;
  2702. sp = page_header(root);
  2703. mmu_sync_children(vcpu, sp);
  2704. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2705. return;
  2706. }
  2707. for (i = 0; i < 4; ++i) {
  2708. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2709. if (root && VALID_PAGE(root)) {
  2710. root &= PT64_BASE_ADDR_MASK;
  2711. sp = page_header(root);
  2712. mmu_sync_children(vcpu, sp);
  2713. }
  2714. }
  2715. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2716. }
  2717. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  2718. {
  2719. spin_lock(&vcpu->kvm->mmu_lock);
  2720. mmu_sync_roots(vcpu);
  2721. spin_unlock(&vcpu->kvm->mmu_lock);
  2722. }
  2723. EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
  2724. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  2725. u32 access, struct x86_exception *exception)
  2726. {
  2727. if (exception)
  2728. exception->error_code = 0;
  2729. return vaddr;
  2730. }
  2731. static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
  2732. u32 access,
  2733. struct x86_exception *exception)
  2734. {
  2735. if (exception)
  2736. exception->error_code = 0;
  2737. return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
  2738. }
  2739. static bool
  2740. __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
  2741. {
  2742. int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
  2743. return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
  2744. ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
  2745. }
  2746. static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
  2747. {
  2748. return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
  2749. }
  2750. static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
  2751. {
  2752. return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
  2753. }
  2754. static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2755. {
  2756. if (direct)
  2757. return vcpu_match_mmio_gpa(vcpu, addr);
  2758. return vcpu_match_mmio_gva(vcpu, addr);
  2759. }
  2760. /* return true if reserved bit is detected on spte. */
  2761. static bool
  2762. walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
  2763. {
  2764. struct kvm_shadow_walk_iterator iterator;
  2765. u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
  2766. int root, leaf;
  2767. bool reserved = false;
  2768. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2769. goto exit;
  2770. walk_shadow_page_lockless_begin(vcpu);
  2771. for (shadow_walk_init(&iterator, vcpu, addr),
  2772. leaf = root = iterator.level;
  2773. shadow_walk_okay(&iterator);
  2774. __shadow_walk_next(&iterator, spte)) {
  2775. spte = mmu_spte_get_lockless(iterator.sptep);
  2776. sptes[leaf - 1] = spte;
  2777. leaf--;
  2778. if (!is_shadow_present_pte(spte))
  2779. break;
  2780. reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
  2781. iterator.level);
  2782. }
  2783. walk_shadow_page_lockless_end(vcpu);
  2784. if (reserved) {
  2785. pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
  2786. __func__, addr);
  2787. while (root > leaf) {
  2788. pr_err("------ spte 0x%llx level %d.\n",
  2789. sptes[root - 1], root);
  2790. root--;
  2791. }
  2792. }
  2793. exit:
  2794. *sptep = spte;
  2795. return reserved;
  2796. }
  2797. int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2798. {
  2799. u64 spte;
  2800. bool reserved;
  2801. if (mmio_info_in_cache(vcpu, addr, direct))
  2802. return RET_MMIO_PF_EMULATE;
  2803. reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
  2804. if (WARN_ON(reserved))
  2805. return RET_MMIO_PF_BUG;
  2806. if (is_mmio_spte(spte)) {
  2807. gfn_t gfn = get_mmio_spte_gfn(spte);
  2808. unsigned access = get_mmio_spte_access(spte);
  2809. if (!check_mmio_spte(vcpu, spte))
  2810. return RET_MMIO_PF_INVALID;
  2811. if (direct)
  2812. addr = 0;
  2813. trace_handle_mmio_page_fault(addr, gfn, access);
  2814. vcpu_cache_mmio_info(vcpu, addr, gfn, access);
  2815. return RET_MMIO_PF_EMULATE;
  2816. }
  2817. /*
  2818. * If the page table is zapped by other cpus, let CPU fault again on
  2819. * the address.
  2820. */
  2821. return RET_MMIO_PF_RETRY;
  2822. }
  2823. EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
  2824. static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
  2825. u32 error_code, gfn_t gfn)
  2826. {
  2827. if (unlikely(error_code & PFERR_RSVD_MASK))
  2828. return false;
  2829. if (!(error_code & PFERR_PRESENT_MASK) ||
  2830. !(error_code & PFERR_WRITE_MASK))
  2831. return false;
  2832. /*
  2833. * guest is writing the page which is write tracked which can
  2834. * not be fixed by page fault handler.
  2835. */
  2836. if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
  2837. return true;
  2838. return false;
  2839. }
  2840. static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
  2841. {
  2842. struct kvm_shadow_walk_iterator iterator;
  2843. u64 spte;
  2844. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2845. return;
  2846. walk_shadow_page_lockless_begin(vcpu);
  2847. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
  2848. clear_sp_write_flooding_count(iterator.sptep);
  2849. if (!is_shadow_present_pte(spte))
  2850. break;
  2851. }
  2852. walk_shadow_page_lockless_end(vcpu);
  2853. }
  2854. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  2855. u32 error_code, bool prefault)
  2856. {
  2857. gfn_t gfn = gva >> PAGE_SHIFT;
  2858. int r;
  2859. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  2860. if (page_fault_handle_page_track(vcpu, error_code, gfn))
  2861. return 1;
  2862. r = mmu_topup_memory_caches(vcpu);
  2863. if (r)
  2864. return r;
  2865. MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2866. return nonpaging_map(vcpu, gva & PAGE_MASK,
  2867. error_code, gfn, prefault);
  2868. }
  2869. static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
  2870. {
  2871. struct kvm_arch_async_pf arch;
  2872. arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
  2873. arch.gfn = gfn;
  2874. arch.direct_map = vcpu->arch.mmu.direct_map;
  2875. arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
  2876. return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
  2877. }
  2878. static bool can_do_async_pf(struct kvm_vcpu *vcpu)
  2879. {
  2880. if (unlikely(!lapic_in_kernel(vcpu) ||
  2881. kvm_event_needs_reinjection(vcpu)))
  2882. return false;
  2883. return kvm_x86_ops->interrupt_allowed(vcpu);
  2884. }
  2885. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2886. gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
  2887. {
  2888. struct kvm_memory_slot *slot;
  2889. bool async;
  2890. slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
  2891. async = false;
  2892. *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
  2893. if (!async)
  2894. return false; /* *pfn has correct page already */
  2895. if (!prefault && can_do_async_pf(vcpu)) {
  2896. trace_kvm_try_async_get_page(gva, gfn);
  2897. if (kvm_find_async_pf_gfn(vcpu, gfn)) {
  2898. trace_kvm_async_pf_doublefault(gva, gfn);
  2899. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  2900. return true;
  2901. } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
  2902. return true;
  2903. }
  2904. *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
  2905. return false;
  2906. }
  2907. static bool
  2908. check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
  2909. {
  2910. int page_num = KVM_PAGES_PER_HPAGE(level);
  2911. gfn &= ~(page_num - 1);
  2912. return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
  2913. }
  2914. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
  2915. bool prefault)
  2916. {
  2917. kvm_pfn_t pfn;
  2918. int r;
  2919. int level;
  2920. bool force_pt_level;
  2921. gfn_t gfn = gpa >> PAGE_SHIFT;
  2922. unsigned long mmu_seq;
  2923. int write = error_code & PFERR_WRITE_MASK;
  2924. bool map_writable;
  2925. MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2926. if (page_fault_handle_page_track(vcpu, error_code, gfn))
  2927. return 1;
  2928. r = mmu_topup_memory_caches(vcpu);
  2929. if (r)
  2930. return r;
  2931. force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
  2932. PT_DIRECTORY_LEVEL);
  2933. level = mapping_level(vcpu, gfn, &force_pt_level);
  2934. if (likely(!force_pt_level)) {
  2935. if (level > PT_DIRECTORY_LEVEL &&
  2936. !check_hugepage_cache_consistency(vcpu, gfn, level))
  2937. level = PT_DIRECTORY_LEVEL;
  2938. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2939. }
  2940. if (fast_page_fault(vcpu, gpa, level, error_code))
  2941. return 0;
  2942. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2943. smp_rmb();
  2944. if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
  2945. return 0;
  2946. if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
  2947. return r;
  2948. spin_lock(&vcpu->kvm->mmu_lock);
  2949. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2950. goto out_unlock;
  2951. make_mmu_pages_available(vcpu);
  2952. if (likely(!force_pt_level))
  2953. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2954. r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
  2955. spin_unlock(&vcpu->kvm->mmu_lock);
  2956. return r;
  2957. out_unlock:
  2958. spin_unlock(&vcpu->kvm->mmu_lock);
  2959. kvm_release_pfn_clean(pfn);
  2960. return 0;
  2961. }
  2962. static void nonpaging_init_context(struct kvm_vcpu *vcpu,
  2963. struct kvm_mmu *context)
  2964. {
  2965. context->page_fault = nonpaging_page_fault;
  2966. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2967. context->sync_page = nonpaging_sync_page;
  2968. context->invlpg = nonpaging_invlpg;
  2969. context->update_pte = nonpaging_update_pte;
  2970. context->root_level = 0;
  2971. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2972. context->root_hpa = INVALID_PAGE;
  2973. context->direct_map = true;
  2974. context->nx = false;
  2975. }
  2976. void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
  2977. {
  2978. mmu_free_roots(vcpu);
  2979. }
  2980. static unsigned long get_cr3(struct kvm_vcpu *vcpu)
  2981. {
  2982. return kvm_read_cr3(vcpu);
  2983. }
  2984. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2985. struct x86_exception *fault)
  2986. {
  2987. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  2988. }
  2989. static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
  2990. unsigned access, int *nr_present)
  2991. {
  2992. if (unlikely(is_mmio_spte(*sptep))) {
  2993. if (gfn != get_mmio_spte_gfn(*sptep)) {
  2994. mmu_spte_clear_no_track(sptep);
  2995. return true;
  2996. }
  2997. (*nr_present)++;
  2998. mark_mmio_spte(vcpu, sptep, gfn, access);
  2999. return true;
  3000. }
  3001. return false;
  3002. }
  3003. static inline bool is_last_gpte(struct kvm_mmu *mmu,
  3004. unsigned level, unsigned gpte)
  3005. {
  3006. /*
  3007. * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
  3008. * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
  3009. * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
  3010. */
  3011. gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
  3012. /*
  3013. * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
  3014. * If it is clear, there are no large pages at this level, so clear
  3015. * PT_PAGE_SIZE_MASK in gpte if that is the case.
  3016. */
  3017. gpte &= level - mmu->last_nonleaf_level;
  3018. return gpte & PT_PAGE_SIZE_MASK;
  3019. }
  3020. #define PTTYPE_EPT 18 /* arbitrary */
  3021. #define PTTYPE PTTYPE_EPT
  3022. #include "paging_tmpl.h"
  3023. #undef PTTYPE
  3024. #define PTTYPE 64
  3025. #include "paging_tmpl.h"
  3026. #undef PTTYPE
  3027. #define PTTYPE 32
  3028. #include "paging_tmpl.h"
  3029. #undef PTTYPE
  3030. static void
  3031. __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  3032. struct rsvd_bits_validate *rsvd_check,
  3033. int maxphyaddr, int level, bool nx, bool gbpages,
  3034. bool pse, bool amd)
  3035. {
  3036. u64 exb_bit_rsvd = 0;
  3037. u64 gbpages_bit_rsvd = 0;
  3038. u64 nonleaf_bit8_rsvd = 0;
  3039. rsvd_check->bad_mt_xwr = 0;
  3040. if (!nx)
  3041. exb_bit_rsvd = rsvd_bits(63, 63);
  3042. if (!gbpages)
  3043. gbpages_bit_rsvd = rsvd_bits(7, 7);
  3044. /*
  3045. * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
  3046. * leaf entries) on AMD CPUs only.
  3047. */
  3048. if (amd)
  3049. nonleaf_bit8_rsvd = rsvd_bits(8, 8);
  3050. switch (level) {
  3051. case PT32_ROOT_LEVEL:
  3052. /* no rsvd bits for 2 level 4K page table entries */
  3053. rsvd_check->rsvd_bits_mask[0][1] = 0;
  3054. rsvd_check->rsvd_bits_mask[0][0] = 0;
  3055. rsvd_check->rsvd_bits_mask[1][0] =
  3056. rsvd_check->rsvd_bits_mask[0][0];
  3057. if (!pse) {
  3058. rsvd_check->rsvd_bits_mask[1][1] = 0;
  3059. break;
  3060. }
  3061. if (is_cpuid_PSE36())
  3062. /* 36bits PSE 4MB page */
  3063. rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  3064. else
  3065. /* 32 bits PSE 4MB page */
  3066. rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  3067. break;
  3068. case PT32E_ROOT_LEVEL:
  3069. rsvd_check->rsvd_bits_mask[0][2] =
  3070. rsvd_bits(maxphyaddr, 63) |
  3071. rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
  3072. rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  3073. rsvd_bits(maxphyaddr, 62); /* PDE */
  3074. rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  3075. rsvd_bits(maxphyaddr, 62); /* PTE */
  3076. rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  3077. rsvd_bits(maxphyaddr, 62) |
  3078. rsvd_bits(13, 20); /* large page */
  3079. rsvd_check->rsvd_bits_mask[1][0] =
  3080. rsvd_check->rsvd_bits_mask[0][0];
  3081. break;
  3082. case PT64_ROOT_LEVEL:
  3083. rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  3084. nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
  3085. rsvd_bits(maxphyaddr, 51);
  3086. rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  3087. nonleaf_bit8_rsvd | gbpages_bit_rsvd |
  3088. rsvd_bits(maxphyaddr, 51);
  3089. rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  3090. rsvd_bits(maxphyaddr, 51);
  3091. rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  3092. rsvd_bits(maxphyaddr, 51);
  3093. rsvd_check->rsvd_bits_mask[1][3] =
  3094. rsvd_check->rsvd_bits_mask[0][3];
  3095. rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  3096. gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
  3097. rsvd_bits(13, 29);
  3098. rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  3099. rsvd_bits(maxphyaddr, 51) |
  3100. rsvd_bits(13, 20); /* large page */
  3101. rsvd_check->rsvd_bits_mask[1][0] =
  3102. rsvd_check->rsvd_bits_mask[0][0];
  3103. break;
  3104. }
  3105. }
  3106. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  3107. struct kvm_mmu *context)
  3108. {
  3109. __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
  3110. cpuid_maxphyaddr(vcpu), context->root_level,
  3111. context->nx, guest_cpuid_has_gbpages(vcpu),
  3112. is_pse(vcpu), guest_cpuid_is_amd(vcpu));
  3113. }
  3114. static void
  3115. __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
  3116. int maxphyaddr, bool execonly)
  3117. {
  3118. u64 bad_mt_xwr;
  3119. rsvd_check->rsvd_bits_mask[0][3] =
  3120. rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
  3121. rsvd_check->rsvd_bits_mask[0][2] =
  3122. rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
  3123. rsvd_check->rsvd_bits_mask[0][1] =
  3124. rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
  3125. rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
  3126. /* large page */
  3127. rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
  3128. rsvd_check->rsvd_bits_mask[1][2] =
  3129. rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
  3130. rsvd_check->rsvd_bits_mask[1][1] =
  3131. rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
  3132. rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
  3133. bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
  3134. bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
  3135. bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
  3136. bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
  3137. bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
  3138. if (!execonly) {
  3139. /* bits 0..2 must not be 100 unless VMX capabilities allow it */
  3140. bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
  3141. }
  3142. rsvd_check->bad_mt_xwr = bad_mt_xwr;
  3143. }
  3144. static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
  3145. struct kvm_mmu *context, bool execonly)
  3146. {
  3147. __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
  3148. cpuid_maxphyaddr(vcpu), execonly);
  3149. }
  3150. /*
  3151. * the page table on host is the shadow page table for the page
  3152. * table in guest or amd nested guest, its mmu features completely
  3153. * follow the features in guest.
  3154. */
  3155. void
  3156. reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
  3157. {
  3158. bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
  3159. /*
  3160. * Passing "true" to the last argument is okay; it adds a check
  3161. * on bit 8 of the SPTEs which KVM doesn't use anyway.
  3162. */
  3163. __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
  3164. boot_cpu_data.x86_phys_bits,
  3165. context->shadow_root_level, uses_nx,
  3166. guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
  3167. true);
  3168. }
  3169. EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
  3170. static inline bool boot_cpu_is_amd(void)
  3171. {
  3172. WARN_ON_ONCE(!tdp_enabled);
  3173. return shadow_x_mask == 0;
  3174. }
  3175. /*
  3176. * the direct page table on host, use as much mmu features as
  3177. * possible, however, kvm currently does not do execution-protection.
  3178. */
  3179. static void
  3180. reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
  3181. struct kvm_mmu *context)
  3182. {
  3183. if (boot_cpu_is_amd())
  3184. __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
  3185. boot_cpu_data.x86_phys_bits,
  3186. context->shadow_root_level, false,
  3187. cpu_has_gbpages, true, true);
  3188. else
  3189. __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
  3190. boot_cpu_data.x86_phys_bits,
  3191. false);
  3192. }
  3193. /*
  3194. * as the comments in reset_shadow_zero_bits_mask() except it
  3195. * is the shadow page table for intel nested guest.
  3196. */
  3197. static void
  3198. reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
  3199. struct kvm_mmu *context, bool execonly)
  3200. {
  3201. __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
  3202. boot_cpu_data.x86_phys_bits, execonly);
  3203. }
  3204. static void update_permission_bitmask(struct kvm_vcpu *vcpu,
  3205. struct kvm_mmu *mmu, bool ept)
  3206. {
  3207. unsigned bit, byte, pfec;
  3208. u8 map;
  3209. bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
  3210. cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  3211. cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
  3212. for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
  3213. pfec = byte << 1;
  3214. map = 0;
  3215. wf = pfec & PFERR_WRITE_MASK;
  3216. uf = pfec & PFERR_USER_MASK;
  3217. ff = pfec & PFERR_FETCH_MASK;
  3218. /*
  3219. * PFERR_RSVD_MASK bit is set in PFEC if the access is not
  3220. * subject to SMAP restrictions, and cleared otherwise. The
  3221. * bit is only meaningful if the SMAP bit is set in CR4.
  3222. */
  3223. smapf = !(pfec & PFERR_RSVD_MASK);
  3224. for (bit = 0; bit < 8; ++bit) {
  3225. x = bit & ACC_EXEC_MASK;
  3226. w = bit & ACC_WRITE_MASK;
  3227. u = bit & ACC_USER_MASK;
  3228. if (!ept) {
  3229. /* Not really needed: !nx will cause pte.nx to fault */
  3230. x |= !mmu->nx;
  3231. /* Allow supervisor writes if !cr0.wp */
  3232. w |= !is_write_protection(vcpu) && !uf;
  3233. /* Disallow supervisor fetches of user code if cr4.smep */
  3234. x &= !(cr4_smep && u && !uf);
  3235. /*
  3236. * SMAP:kernel-mode data accesses from user-mode
  3237. * mappings should fault. A fault is considered
  3238. * as a SMAP violation if all of the following
  3239. * conditions are ture:
  3240. * - X86_CR4_SMAP is set in CR4
  3241. * - An user page is accessed
  3242. * - Page fault in kernel mode
  3243. * - if CPL = 3 or X86_EFLAGS_AC is clear
  3244. *
  3245. * Here, we cover the first three conditions.
  3246. * The fourth is computed dynamically in
  3247. * permission_fault() and is in smapf.
  3248. *
  3249. * Also, SMAP does not affect instruction
  3250. * fetches, add the !ff check here to make it
  3251. * clearer.
  3252. */
  3253. smap = cr4_smap && u && !uf && !ff;
  3254. } else
  3255. /* Not really needed: no U/S accesses on ept */
  3256. u = 1;
  3257. fault = (ff && !x) || (uf && !u) || (wf && !w) ||
  3258. (smapf && smap);
  3259. map |= fault << bit;
  3260. }
  3261. mmu->permissions[byte] = map;
  3262. }
  3263. }
  3264. /*
  3265. * PKU is an additional mechanism by which the paging controls access to
  3266. * user-mode addresses based on the value in the PKRU register. Protection
  3267. * key violations are reported through a bit in the page fault error code.
  3268. * Unlike other bits of the error code, the PK bit is not known at the
  3269. * call site of e.g. gva_to_gpa; it must be computed directly in
  3270. * permission_fault based on two bits of PKRU, on some machine state (CR4,
  3271. * CR0, EFER, CPL), and on other bits of the error code and the page tables.
  3272. *
  3273. * In particular the following conditions come from the error code, the
  3274. * page tables and the machine state:
  3275. * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
  3276. * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
  3277. * - PK is always zero if U=0 in the page tables
  3278. * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
  3279. *
  3280. * The PKRU bitmask caches the result of these four conditions. The error
  3281. * code (minus the P bit) and the page table's U bit form an index into the
  3282. * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
  3283. * with the two bits of the PKRU register corresponding to the protection key.
  3284. * For the first three conditions above the bits will be 00, thus masking
  3285. * away both AD and WD. For all reads or if the last condition holds, WD
  3286. * only will be masked away.
  3287. */
  3288. static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  3289. bool ept)
  3290. {
  3291. unsigned bit;
  3292. bool wp;
  3293. if (ept) {
  3294. mmu->pkru_mask = 0;
  3295. return;
  3296. }
  3297. /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
  3298. if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
  3299. mmu->pkru_mask = 0;
  3300. return;
  3301. }
  3302. wp = is_write_protection(vcpu);
  3303. for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
  3304. unsigned pfec, pkey_bits;
  3305. bool check_pkey, check_write, ff, uf, wf, pte_user;
  3306. pfec = bit << 1;
  3307. ff = pfec & PFERR_FETCH_MASK;
  3308. uf = pfec & PFERR_USER_MASK;
  3309. wf = pfec & PFERR_WRITE_MASK;
  3310. /* PFEC.RSVD is replaced by ACC_USER_MASK. */
  3311. pte_user = pfec & PFERR_RSVD_MASK;
  3312. /*
  3313. * Only need to check the access which is not an
  3314. * instruction fetch and is to a user page.
  3315. */
  3316. check_pkey = (!ff && pte_user);
  3317. /*
  3318. * write access is controlled by PKRU if it is a
  3319. * user access or CR0.WP = 1.
  3320. */
  3321. check_write = check_pkey && wf && (uf || wp);
  3322. /* PKRU.AD stops both read and write access. */
  3323. pkey_bits = !!check_pkey;
  3324. /* PKRU.WD stops write access. */
  3325. pkey_bits |= (!!check_write) << 1;
  3326. mmu->pkru_mask |= (pkey_bits & 3) << pfec;
  3327. }
  3328. }
  3329. static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
  3330. {
  3331. unsigned root_level = mmu->root_level;
  3332. mmu->last_nonleaf_level = root_level;
  3333. if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
  3334. mmu->last_nonleaf_level++;
  3335. }
  3336. static void paging64_init_context_common(struct kvm_vcpu *vcpu,
  3337. struct kvm_mmu *context,
  3338. int level)
  3339. {
  3340. context->nx = is_nx(vcpu);
  3341. context->root_level = level;
  3342. reset_rsvds_bits_mask(vcpu, context);
  3343. update_permission_bitmask(vcpu, context, false);
  3344. update_pkru_bitmask(vcpu, context, false);
  3345. update_last_nonleaf_level(vcpu, context);
  3346. MMU_WARN_ON(!is_pae(vcpu));
  3347. context->page_fault = paging64_page_fault;
  3348. context->gva_to_gpa = paging64_gva_to_gpa;
  3349. context->sync_page = paging64_sync_page;
  3350. context->invlpg = paging64_invlpg;
  3351. context->update_pte = paging64_update_pte;
  3352. context->shadow_root_level = level;
  3353. context->root_hpa = INVALID_PAGE;
  3354. context->direct_map = false;
  3355. }
  3356. static void paging64_init_context(struct kvm_vcpu *vcpu,
  3357. struct kvm_mmu *context)
  3358. {
  3359. paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
  3360. }
  3361. static void paging32_init_context(struct kvm_vcpu *vcpu,
  3362. struct kvm_mmu *context)
  3363. {
  3364. context->nx = false;
  3365. context->root_level = PT32_ROOT_LEVEL;
  3366. reset_rsvds_bits_mask(vcpu, context);
  3367. update_permission_bitmask(vcpu, context, false);
  3368. update_pkru_bitmask(vcpu, context, false);
  3369. update_last_nonleaf_level(vcpu, context);
  3370. context->page_fault = paging32_page_fault;
  3371. context->gva_to_gpa = paging32_gva_to_gpa;
  3372. context->sync_page = paging32_sync_page;
  3373. context->invlpg = paging32_invlpg;
  3374. context->update_pte = paging32_update_pte;
  3375. context->shadow_root_level = PT32E_ROOT_LEVEL;
  3376. context->root_hpa = INVALID_PAGE;
  3377. context->direct_map = false;
  3378. }
  3379. static void paging32E_init_context(struct kvm_vcpu *vcpu,
  3380. struct kvm_mmu *context)
  3381. {
  3382. paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
  3383. }
  3384. static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  3385. {
  3386. struct kvm_mmu *context = &vcpu->arch.mmu;
  3387. context->base_role.word = 0;
  3388. context->base_role.smm = is_smm(vcpu);
  3389. context->page_fault = tdp_page_fault;
  3390. context->sync_page = nonpaging_sync_page;
  3391. context->invlpg = nonpaging_invlpg;
  3392. context->update_pte = nonpaging_update_pte;
  3393. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  3394. context->root_hpa = INVALID_PAGE;
  3395. context->direct_map = true;
  3396. context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
  3397. context->get_cr3 = get_cr3;
  3398. context->get_pdptr = kvm_pdptr_read;
  3399. context->inject_page_fault = kvm_inject_page_fault;
  3400. if (!is_paging(vcpu)) {
  3401. context->nx = false;
  3402. context->gva_to_gpa = nonpaging_gva_to_gpa;
  3403. context->root_level = 0;
  3404. } else if (is_long_mode(vcpu)) {
  3405. context->nx = is_nx(vcpu);
  3406. context->root_level = PT64_ROOT_LEVEL;
  3407. reset_rsvds_bits_mask(vcpu, context);
  3408. context->gva_to_gpa = paging64_gva_to_gpa;
  3409. } else if (is_pae(vcpu)) {
  3410. context->nx = is_nx(vcpu);
  3411. context->root_level = PT32E_ROOT_LEVEL;
  3412. reset_rsvds_bits_mask(vcpu, context);
  3413. context->gva_to_gpa = paging64_gva_to_gpa;
  3414. } else {
  3415. context->nx = false;
  3416. context->root_level = PT32_ROOT_LEVEL;
  3417. reset_rsvds_bits_mask(vcpu, context);
  3418. context->gva_to_gpa = paging32_gva_to_gpa;
  3419. }
  3420. update_permission_bitmask(vcpu, context, false);
  3421. update_pkru_bitmask(vcpu, context, false);
  3422. update_last_nonleaf_level(vcpu, context);
  3423. reset_tdp_shadow_zero_bits_mask(vcpu, context);
  3424. }
  3425. void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
  3426. {
  3427. bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  3428. bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
  3429. struct kvm_mmu *context = &vcpu->arch.mmu;
  3430. MMU_WARN_ON(VALID_PAGE(context->root_hpa));
  3431. if (!is_paging(vcpu))
  3432. nonpaging_init_context(vcpu, context);
  3433. else if (is_long_mode(vcpu))
  3434. paging64_init_context(vcpu, context);
  3435. else if (is_pae(vcpu))
  3436. paging32E_init_context(vcpu, context);
  3437. else
  3438. paging32_init_context(vcpu, context);
  3439. context->base_role.nxe = is_nx(vcpu);
  3440. context->base_role.cr4_pae = !!is_pae(vcpu);
  3441. context->base_role.cr0_wp = is_write_protection(vcpu);
  3442. context->base_role.smep_andnot_wp
  3443. = smep && !is_write_protection(vcpu);
  3444. context->base_role.smap_andnot_wp
  3445. = smap && !is_write_protection(vcpu);
  3446. context->base_role.smm = is_smm(vcpu);
  3447. reset_shadow_zero_bits_mask(vcpu, context);
  3448. }
  3449. EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
  3450. void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
  3451. {
  3452. struct kvm_mmu *context = &vcpu->arch.mmu;
  3453. MMU_WARN_ON(VALID_PAGE(context->root_hpa));
  3454. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  3455. context->nx = true;
  3456. context->page_fault = ept_page_fault;
  3457. context->gva_to_gpa = ept_gva_to_gpa;
  3458. context->sync_page = ept_sync_page;
  3459. context->invlpg = ept_invlpg;
  3460. context->update_pte = ept_update_pte;
  3461. context->root_level = context->shadow_root_level;
  3462. context->root_hpa = INVALID_PAGE;
  3463. context->direct_map = false;
  3464. update_permission_bitmask(vcpu, context, true);
  3465. update_pkru_bitmask(vcpu, context, true);
  3466. reset_rsvds_bits_mask_ept(vcpu, context, execonly);
  3467. reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
  3468. }
  3469. EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
  3470. static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
  3471. {
  3472. struct kvm_mmu *context = &vcpu->arch.mmu;
  3473. kvm_init_shadow_mmu(vcpu);
  3474. context->set_cr3 = kvm_x86_ops->set_cr3;
  3475. context->get_cr3 = get_cr3;
  3476. context->get_pdptr = kvm_pdptr_read;
  3477. context->inject_page_fault = kvm_inject_page_fault;
  3478. }
  3479. static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
  3480. {
  3481. struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
  3482. g_context->get_cr3 = get_cr3;
  3483. g_context->get_pdptr = kvm_pdptr_read;
  3484. g_context->inject_page_fault = kvm_inject_page_fault;
  3485. /*
  3486. * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
  3487. * L1's nested page tables (e.g. EPT12). The nested translation
  3488. * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
  3489. * L2's page tables as the first level of translation and L1's
  3490. * nested page tables as the second level of translation. Basically
  3491. * the gva_to_gpa functions between mmu and nested_mmu are swapped.
  3492. */
  3493. if (!is_paging(vcpu)) {
  3494. g_context->nx = false;
  3495. g_context->root_level = 0;
  3496. g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
  3497. } else if (is_long_mode(vcpu)) {
  3498. g_context->nx = is_nx(vcpu);
  3499. g_context->root_level = PT64_ROOT_LEVEL;
  3500. reset_rsvds_bits_mask(vcpu, g_context);
  3501. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3502. } else if (is_pae(vcpu)) {
  3503. g_context->nx = is_nx(vcpu);
  3504. g_context->root_level = PT32E_ROOT_LEVEL;
  3505. reset_rsvds_bits_mask(vcpu, g_context);
  3506. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3507. } else {
  3508. g_context->nx = false;
  3509. g_context->root_level = PT32_ROOT_LEVEL;
  3510. reset_rsvds_bits_mask(vcpu, g_context);
  3511. g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
  3512. }
  3513. update_permission_bitmask(vcpu, g_context, false);
  3514. update_pkru_bitmask(vcpu, g_context, false);
  3515. update_last_nonleaf_level(vcpu, g_context);
  3516. }
  3517. static void init_kvm_mmu(struct kvm_vcpu *vcpu)
  3518. {
  3519. if (mmu_is_nested(vcpu))
  3520. init_kvm_nested_mmu(vcpu);
  3521. else if (tdp_enabled)
  3522. init_kvm_tdp_mmu(vcpu);
  3523. else
  3524. init_kvm_softmmu(vcpu);
  3525. }
  3526. void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  3527. {
  3528. kvm_mmu_unload(vcpu);
  3529. init_kvm_mmu(vcpu);
  3530. }
  3531. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  3532. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  3533. {
  3534. int r;
  3535. r = mmu_topup_memory_caches(vcpu);
  3536. if (r)
  3537. goto out;
  3538. r = mmu_alloc_roots(vcpu);
  3539. kvm_mmu_sync_roots(vcpu);
  3540. if (r)
  3541. goto out;
  3542. /* set_cr3() should ensure TLB has been flushed */
  3543. vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  3544. out:
  3545. return r;
  3546. }
  3547. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  3548. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  3549. {
  3550. mmu_free_roots(vcpu);
  3551. WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3552. }
  3553. EXPORT_SYMBOL_GPL(kvm_mmu_unload);
  3554. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  3555. struct kvm_mmu_page *sp, u64 *spte,
  3556. const void *new)
  3557. {
  3558. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  3559. ++vcpu->kvm->stat.mmu_pde_zapped;
  3560. return;
  3561. }
  3562. ++vcpu->kvm->stat.mmu_pte_updated;
  3563. vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
  3564. }
  3565. static bool need_remote_flush(u64 old, u64 new)
  3566. {
  3567. if (!is_shadow_present_pte(old))
  3568. return false;
  3569. if (!is_shadow_present_pte(new))
  3570. return true;
  3571. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  3572. return true;
  3573. old ^= shadow_nx_mask;
  3574. new ^= shadow_nx_mask;
  3575. return (old & ~new & PT64_PERM_MASK) != 0;
  3576. }
  3577. static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
  3578. const u8 *new, int *bytes)
  3579. {
  3580. u64 gentry;
  3581. int r;
  3582. /*
  3583. * Assume that the pte write on a page table of the same type
  3584. * as the current vcpu paging mode since we update the sptes only
  3585. * when they have the same mode.
  3586. */
  3587. if (is_pae(vcpu) && *bytes == 4) {
  3588. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  3589. *gpa &= ~(gpa_t)7;
  3590. *bytes = 8;
  3591. r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
  3592. if (r)
  3593. gentry = 0;
  3594. new = (const u8 *)&gentry;
  3595. }
  3596. switch (*bytes) {
  3597. case 4:
  3598. gentry = *(const u32 *)new;
  3599. break;
  3600. case 8:
  3601. gentry = *(const u64 *)new;
  3602. break;
  3603. default:
  3604. gentry = 0;
  3605. break;
  3606. }
  3607. return gentry;
  3608. }
  3609. /*
  3610. * If we're seeing too many writes to a page, it may no longer be a page table,
  3611. * or we may be forking, in which case it is better to unmap the page.
  3612. */
  3613. static bool detect_write_flooding(struct kvm_mmu_page *sp)
  3614. {
  3615. /*
  3616. * Skip write-flooding detected for the sp whose level is 1, because
  3617. * it can become unsync, then the guest page is not write-protected.
  3618. */
  3619. if (sp->role.level == PT_PAGE_TABLE_LEVEL)
  3620. return false;
  3621. atomic_inc(&sp->write_flooding_count);
  3622. return atomic_read(&sp->write_flooding_count) >= 3;
  3623. }
  3624. /*
  3625. * Misaligned accesses are too much trouble to fix up; also, they usually
  3626. * indicate a page is not used as a page table.
  3627. */
  3628. static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
  3629. int bytes)
  3630. {
  3631. unsigned offset, pte_size, misaligned;
  3632. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  3633. gpa, bytes, sp->role.word);
  3634. offset = offset_in_page(gpa);
  3635. pte_size = sp->role.cr4_pae ? 8 : 4;
  3636. /*
  3637. * Sometimes, the OS only writes the last one bytes to update status
  3638. * bits, for example, in linux, andb instruction is used in clear_bit().
  3639. */
  3640. if (!(offset & (pte_size - 1)) && bytes == 1)
  3641. return false;
  3642. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  3643. misaligned |= bytes < 4;
  3644. return misaligned;
  3645. }
  3646. static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
  3647. {
  3648. unsigned page_offset, quadrant;
  3649. u64 *spte;
  3650. int level;
  3651. page_offset = offset_in_page(gpa);
  3652. level = sp->role.level;
  3653. *nspte = 1;
  3654. if (!sp->role.cr4_pae) {
  3655. page_offset <<= 1; /* 32->64 */
  3656. /*
  3657. * A 32-bit pde maps 4MB while the shadow pdes map
  3658. * only 2MB. So we need to double the offset again
  3659. * and zap two pdes instead of one.
  3660. */
  3661. if (level == PT32_ROOT_LEVEL) {
  3662. page_offset &= ~7; /* kill rounding error */
  3663. page_offset <<= 1;
  3664. *nspte = 2;
  3665. }
  3666. quadrant = page_offset >> PAGE_SHIFT;
  3667. page_offset &= ~PAGE_MASK;
  3668. if (quadrant != sp->role.quadrant)
  3669. return NULL;
  3670. }
  3671. spte = &sp->spt[page_offset / sizeof(*spte)];
  3672. return spte;
  3673. }
  3674. static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  3675. const u8 *new, int bytes)
  3676. {
  3677. gfn_t gfn = gpa >> PAGE_SHIFT;
  3678. struct kvm_mmu_page *sp;
  3679. LIST_HEAD(invalid_list);
  3680. u64 entry, gentry, *spte;
  3681. int npte;
  3682. bool remote_flush, local_flush;
  3683. union kvm_mmu_page_role mask = { };
  3684. mask.cr0_wp = 1;
  3685. mask.cr4_pae = 1;
  3686. mask.nxe = 1;
  3687. mask.smep_andnot_wp = 1;
  3688. mask.smap_andnot_wp = 1;
  3689. mask.smm = 1;
  3690. /*
  3691. * If we don't have indirect shadow pages, it means no page is
  3692. * write-protected, so we can exit simply.
  3693. */
  3694. if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
  3695. return;
  3696. remote_flush = local_flush = false;
  3697. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  3698. gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
  3699. /*
  3700. * No need to care whether allocation memory is successful
  3701. * or not since pte prefetch is skiped if it does not have
  3702. * enough objects in the cache.
  3703. */
  3704. mmu_topup_memory_caches(vcpu);
  3705. spin_lock(&vcpu->kvm->mmu_lock);
  3706. ++vcpu->kvm->stat.mmu_pte_write;
  3707. kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
  3708. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
  3709. if (detect_write_misaligned(sp, gpa, bytes) ||
  3710. detect_write_flooding(sp)) {
  3711. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  3712. ++vcpu->kvm->stat.mmu_flooded;
  3713. continue;
  3714. }
  3715. spte = get_written_sptes(sp, gpa, &npte);
  3716. if (!spte)
  3717. continue;
  3718. local_flush = true;
  3719. while (npte--) {
  3720. entry = *spte;
  3721. mmu_page_zap_pte(vcpu->kvm, sp, spte);
  3722. if (gentry &&
  3723. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  3724. & mask.word) && rmap_can_add(vcpu))
  3725. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  3726. if (need_remote_flush(entry, *spte))
  3727. remote_flush = true;
  3728. ++spte;
  3729. }
  3730. }
  3731. kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
  3732. kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
  3733. spin_unlock(&vcpu->kvm->mmu_lock);
  3734. }
  3735. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  3736. {
  3737. gpa_t gpa;
  3738. int r;
  3739. if (vcpu->arch.mmu.direct_map)
  3740. return 0;
  3741. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  3742. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3743. return r;
  3744. }
  3745. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  3746. static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
  3747. {
  3748. LIST_HEAD(invalid_list);
  3749. if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
  3750. return;
  3751. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
  3752. if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
  3753. break;
  3754. ++vcpu->kvm->stat.mmu_recycled;
  3755. }
  3756. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3757. }
  3758. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
  3759. void *insn, int insn_len)
  3760. {
  3761. int r, emulation_type = EMULTYPE_RETRY;
  3762. enum emulation_result er;
  3763. bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
  3764. if (unlikely(error_code & PFERR_RSVD_MASK)) {
  3765. r = handle_mmio_page_fault(vcpu, cr2, direct);
  3766. if (r == RET_MMIO_PF_EMULATE) {
  3767. emulation_type = 0;
  3768. goto emulate;
  3769. }
  3770. if (r == RET_MMIO_PF_RETRY)
  3771. return 1;
  3772. if (r < 0)
  3773. return r;
  3774. }
  3775. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
  3776. if (r < 0)
  3777. return r;
  3778. if (!r)
  3779. return 1;
  3780. if (mmio_info_in_cache(vcpu, cr2, direct))
  3781. emulation_type = 0;
  3782. emulate:
  3783. er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
  3784. switch (er) {
  3785. case EMULATE_DONE:
  3786. return 1;
  3787. case EMULATE_USER_EXIT:
  3788. ++vcpu->stat.mmio_exits;
  3789. /* fall through */
  3790. case EMULATE_FAIL:
  3791. return 0;
  3792. default:
  3793. BUG();
  3794. }
  3795. }
  3796. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  3797. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  3798. {
  3799. vcpu->arch.mmu.invlpg(vcpu, gva);
  3800. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  3801. ++vcpu->stat.invlpg;
  3802. }
  3803. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  3804. void kvm_enable_tdp(void)
  3805. {
  3806. tdp_enabled = true;
  3807. }
  3808. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  3809. void kvm_disable_tdp(void)
  3810. {
  3811. tdp_enabled = false;
  3812. }
  3813. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  3814. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  3815. {
  3816. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  3817. if (vcpu->arch.mmu.lm_root != NULL)
  3818. free_page((unsigned long)vcpu->arch.mmu.lm_root);
  3819. }
  3820. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  3821. {
  3822. struct page *page;
  3823. int i;
  3824. /*
  3825. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  3826. * Therefore we need to allocate shadow page tables in the first
  3827. * 4GB of memory, which happens to fit the DMA32 zone.
  3828. */
  3829. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  3830. if (!page)
  3831. return -ENOMEM;
  3832. vcpu->arch.mmu.pae_root = page_address(page);
  3833. for (i = 0; i < 4; ++i)
  3834. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  3835. return 0;
  3836. }
  3837. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  3838. {
  3839. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  3840. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3841. vcpu->arch.mmu.translate_gpa = translate_gpa;
  3842. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  3843. return alloc_mmu_pages(vcpu);
  3844. }
  3845. void kvm_mmu_setup(struct kvm_vcpu *vcpu)
  3846. {
  3847. MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3848. init_kvm_mmu(vcpu);
  3849. }
  3850. void kvm_mmu_init_vm(struct kvm *kvm)
  3851. {
  3852. struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
  3853. node->track_write = kvm_mmu_pte_write;
  3854. kvm_page_track_register_notifier(kvm, node);
  3855. }
  3856. void kvm_mmu_uninit_vm(struct kvm *kvm)
  3857. {
  3858. struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
  3859. kvm_page_track_unregister_notifier(kvm, node);
  3860. }
  3861. /* The return value indicates if tlb flush on all vcpus is needed. */
  3862. typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
  3863. /* The caller should hold mmu-lock before calling this function. */
  3864. static bool
  3865. slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
  3866. slot_level_handler fn, int start_level, int end_level,
  3867. gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
  3868. {
  3869. struct slot_rmap_walk_iterator iterator;
  3870. bool flush = false;
  3871. for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
  3872. end_gfn, &iterator) {
  3873. if (iterator.rmap)
  3874. flush |= fn(kvm, iterator.rmap);
  3875. if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
  3876. if (flush && lock_flush_tlb) {
  3877. kvm_flush_remote_tlbs(kvm);
  3878. flush = false;
  3879. }
  3880. cond_resched_lock(&kvm->mmu_lock);
  3881. }
  3882. }
  3883. if (flush && lock_flush_tlb) {
  3884. kvm_flush_remote_tlbs(kvm);
  3885. flush = false;
  3886. }
  3887. return flush;
  3888. }
  3889. static bool
  3890. slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
  3891. slot_level_handler fn, int start_level, int end_level,
  3892. bool lock_flush_tlb)
  3893. {
  3894. return slot_handle_level_range(kvm, memslot, fn, start_level,
  3895. end_level, memslot->base_gfn,
  3896. memslot->base_gfn + memslot->npages - 1,
  3897. lock_flush_tlb);
  3898. }
  3899. static bool
  3900. slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
  3901. slot_level_handler fn, bool lock_flush_tlb)
  3902. {
  3903. return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
  3904. PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
  3905. }
  3906. static bool
  3907. slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
  3908. slot_level_handler fn, bool lock_flush_tlb)
  3909. {
  3910. return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
  3911. PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
  3912. }
  3913. static bool
  3914. slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
  3915. slot_level_handler fn, bool lock_flush_tlb)
  3916. {
  3917. return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
  3918. PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
  3919. }
  3920. void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
  3921. {
  3922. struct kvm_memslots *slots;
  3923. struct kvm_memory_slot *memslot;
  3924. int i;
  3925. spin_lock(&kvm->mmu_lock);
  3926. for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
  3927. slots = __kvm_memslots(kvm, i);
  3928. kvm_for_each_memslot(memslot, slots) {
  3929. gfn_t start, end;
  3930. start = max(gfn_start, memslot->base_gfn);
  3931. end = min(gfn_end, memslot->base_gfn + memslot->npages);
  3932. if (start >= end)
  3933. continue;
  3934. slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
  3935. PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
  3936. start, end - 1, true);
  3937. }
  3938. }
  3939. spin_unlock(&kvm->mmu_lock);
  3940. }
  3941. static bool slot_rmap_write_protect(struct kvm *kvm,
  3942. struct kvm_rmap_head *rmap_head)
  3943. {
  3944. return __rmap_write_protect(kvm, rmap_head, false);
  3945. }
  3946. void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
  3947. struct kvm_memory_slot *memslot)
  3948. {
  3949. bool flush;
  3950. spin_lock(&kvm->mmu_lock);
  3951. flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
  3952. false);
  3953. spin_unlock(&kvm->mmu_lock);
  3954. /*
  3955. * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
  3956. * which do tlb flush out of mmu-lock should be serialized by
  3957. * kvm->slots_lock otherwise tlb flush would be missed.
  3958. */
  3959. lockdep_assert_held(&kvm->slots_lock);
  3960. /*
  3961. * We can flush all the TLBs out of the mmu lock without TLB
  3962. * corruption since we just change the spte from writable to
  3963. * readonly so that we only need to care the case of changing
  3964. * spte from present to present (changing the spte from present
  3965. * to nonpresent will flush all the TLBs immediately), in other
  3966. * words, the only case we care is mmu_spte_update() where we
  3967. * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
  3968. * instead of PT_WRITABLE_MASK, that means it does not depend
  3969. * on PT_WRITABLE_MASK anymore.
  3970. */
  3971. if (flush)
  3972. kvm_flush_remote_tlbs(kvm);
  3973. }
  3974. static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
  3975. struct kvm_rmap_head *rmap_head)
  3976. {
  3977. u64 *sptep;
  3978. struct rmap_iterator iter;
  3979. int need_tlb_flush = 0;
  3980. kvm_pfn_t pfn;
  3981. struct kvm_mmu_page *sp;
  3982. restart:
  3983. for_each_rmap_spte(rmap_head, &iter, sptep) {
  3984. sp = page_header(__pa(sptep));
  3985. pfn = spte_to_pfn(*sptep);
  3986. /*
  3987. * We cannot do huge page mapping for indirect shadow pages,
  3988. * which are found on the last rmap (level = 1) when not using
  3989. * tdp; such shadow pages are synced with the page table in
  3990. * the guest, and the guest page table is using 4K page size
  3991. * mapping if the indirect sp has level = 1.
  3992. */
  3993. if (sp->role.direct &&
  3994. !kvm_is_reserved_pfn(pfn) &&
  3995. PageTransCompound(pfn_to_page(pfn))) {
  3996. drop_spte(kvm, sptep);
  3997. need_tlb_flush = 1;
  3998. goto restart;
  3999. }
  4000. }
  4001. return need_tlb_flush;
  4002. }
  4003. void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
  4004. const struct kvm_memory_slot *memslot)
  4005. {
  4006. /* FIXME: const-ify all uses of struct kvm_memory_slot. */
  4007. spin_lock(&kvm->mmu_lock);
  4008. slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
  4009. kvm_mmu_zap_collapsible_spte, true);
  4010. spin_unlock(&kvm->mmu_lock);
  4011. }
  4012. void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
  4013. struct kvm_memory_slot *memslot)
  4014. {
  4015. bool flush;
  4016. spin_lock(&kvm->mmu_lock);
  4017. flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
  4018. spin_unlock(&kvm->mmu_lock);
  4019. lockdep_assert_held(&kvm->slots_lock);
  4020. /*
  4021. * It's also safe to flush TLBs out of mmu lock here as currently this
  4022. * function is only used for dirty logging, in which case flushing TLB
  4023. * out of mmu lock also guarantees no dirty pages will be lost in
  4024. * dirty_bitmap.
  4025. */
  4026. if (flush)
  4027. kvm_flush_remote_tlbs(kvm);
  4028. }
  4029. EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
  4030. void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
  4031. struct kvm_memory_slot *memslot)
  4032. {
  4033. bool flush;
  4034. spin_lock(&kvm->mmu_lock);
  4035. flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
  4036. false);
  4037. spin_unlock(&kvm->mmu_lock);
  4038. /* see kvm_mmu_slot_remove_write_access */
  4039. lockdep_assert_held(&kvm->slots_lock);
  4040. if (flush)
  4041. kvm_flush_remote_tlbs(kvm);
  4042. }
  4043. EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
  4044. void kvm_mmu_slot_set_dirty(struct kvm *kvm,
  4045. struct kvm_memory_slot *memslot)
  4046. {
  4047. bool flush;
  4048. spin_lock(&kvm->mmu_lock);
  4049. flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
  4050. spin_unlock(&kvm->mmu_lock);
  4051. lockdep_assert_held(&kvm->slots_lock);
  4052. /* see kvm_mmu_slot_leaf_clear_dirty */
  4053. if (flush)
  4054. kvm_flush_remote_tlbs(kvm);
  4055. }
  4056. EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
  4057. #define BATCH_ZAP_PAGES 10
  4058. static void kvm_zap_obsolete_pages(struct kvm *kvm)
  4059. {
  4060. struct kvm_mmu_page *sp, *node;
  4061. int batch = 0;
  4062. restart:
  4063. list_for_each_entry_safe_reverse(sp, node,
  4064. &kvm->arch.active_mmu_pages, link) {
  4065. int ret;
  4066. /*
  4067. * No obsolete page exists before new created page since
  4068. * active_mmu_pages is the FIFO list.
  4069. */
  4070. if (!is_obsolete_sp(kvm, sp))
  4071. break;
  4072. /*
  4073. * Since we are reversely walking the list and the invalid
  4074. * list will be moved to the head, skip the invalid page
  4075. * can help us to avoid the infinity list walking.
  4076. */
  4077. if (sp->role.invalid)
  4078. continue;
  4079. /*
  4080. * Need not flush tlb since we only zap the sp with invalid
  4081. * generation number.
  4082. */
  4083. if (batch >= BATCH_ZAP_PAGES &&
  4084. cond_resched_lock(&kvm->mmu_lock)) {
  4085. batch = 0;
  4086. goto restart;
  4087. }
  4088. ret = kvm_mmu_prepare_zap_page(kvm, sp,
  4089. &kvm->arch.zapped_obsolete_pages);
  4090. batch += ret;
  4091. if (ret)
  4092. goto restart;
  4093. }
  4094. /*
  4095. * Should flush tlb before free page tables since lockless-walking
  4096. * may use the pages.
  4097. */
  4098. kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
  4099. }
  4100. /*
  4101. * Fast invalidate all shadow pages and use lock-break technique
  4102. * to zap obsolete pages.
  4103. *
  4104. * It's required when memslot is being deleted or VM is being
  4105. * destroyed, in these cases, we should ensure that KVM MMU does
  4106. * not use any resource of the being-deleted slot or all slots
  4107. * after calling the function.
  4108. */
  4109. void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
  4110. {
  4111. spin_lock(&kvm->mmu_lock);
  4112. trace_kvm_mmu_invalidate_zap_all_pages(kvm);
  4113. kvm->arch.mmu_valid_gen++;
  4114. /*
  4115. * Notify all vcpus to reload its shadow page table
  4116. * and flush TLB. Then all vcpus will switch to new
  4117. * shadow page table with the new mmu_valid_gen.
  4118. *
  4119. * Note: we should do this under the protection of
  4120. * mmu-lock, otherwise, vcpu would purge shadow page
  4121. * but miss tlb flush.
  4122. */
  4123. kvm_reload_remote_mmus(kvm);
  4124. kvm_zap_obsolete_pages(kvm);
  4125. spin_unlock(&kvm->mmu_lock);
  4126. }
  4127. static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
  4128. {
  4129. return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
  4130. }
  4131. void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
  4132. {
  4133. /*
  4134. * The very rare case: if the generation-number is round,
  4135. * zap all shadow pages.
  4136. */
  4137. if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
  4138. printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
  4139. kvm_mmu_invalidate_zap_all_pages(kvm);
  4140. }
  4141. }
  4142. static unsigned long
  4143. mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
  4144. {
  4145. struct kvm *kvm;
  4146. int nr_to_scan = sc->nr_to_scan;
  4147. unsigned long freed = 0;
  4148. spin_lock(&kvm_lock);
  4149. list_for_each_entry(kvm, &vm_list, vm_list) {
  4150. int idx;
  4151. LIST_HEAD(invalid_list);
  4152. /*
  4153. * Never scan more than sc->nr_to_scan VM instances.
  4154. * Will not hit this condition practically since we do not try
  4155. * to shrink more than one VM and it is very unlikely to see
  4156. * !n_used_mmu_pages so many times.
  4157. */
  4158. if (!nr_to_scan--)
  4159. break;
  4160. /*
  4161. * n_used_mmu_pages is accessed without holding kvm->mmu_lock
  4162. * here. We may skip a VM instance errorneosly, but we do not
  4163. * want to shrink a VM that only started to populate its MMU
  4164. * anyway.
  4165. */
  4166. if (!kvm->arch.n_used_mmu_pages &&
  4167. !kvm_has_zapped_obsolete_pages(kvm))
  4168. continue;
  4169. idx = srcu_read_lock(&kvm->srcu);
  4170. spin_lock(&kvm->mmu_lock);
  4171. if (kvm_has_zapped_obsolete_pages(kvm)) {
  4172. kvm_mmu_commit_zap_page(kvm,
  4173. &kvm->arch.zapped_obsolete_pages);
  4174. goto unlock;
  4175. }
  4176. if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
  4177. freed++;
  4178. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  4179. unlock:
  4180. spin_unlock(&kvm->mmu_lock);
  4181. srcu_read_unlock(&kvm->srcu, idx);
  4182. /*
  4183. * unfair on small ones
  4184. * per-vm shrinkers cry out
  4185. * sadness comes quickly
  4186. */
  4187. list_move_tail(&kvm->vm_list, &vm_list);
  4188. break;
  4189. }
  4190. spin_unlock(&kvm_lock);
  4191. return freed;
  4192. }
  4193. static unsigned long
  4194. mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
  4195. {
  4196. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  4197. }
  4198. static struct shrinker mmu_shrinker = {
  4199. .count_objects = mmu_shrink_count,
  4200. .scan_objects = mmu_shrink_scan,
  4201. .seeks = DEFAULT_SEEKS * 10,
  4202. };
  4203. static void mmu_destroy_caches(void)
  4204. {
  4205. if (pte_list_desc_cache)
  4206. kmem_cache_destroy(pte_list_desc_cache);
  4207. if (mmu_page_header_cache)
  4208. kmem_cache_destroy(mmu_page_header_cache);
  4209. }
  4210. int kvm_mmu_module_init(void)
  4211. {
  4212. pte_list_desc_cache = kmem_cache_create("pte_list_desc",
  4213. sizeof(struct pte_list_desc),
  4214. 0, 0, NULL);
  4215. if (!pte_list_desc_cache)
  4216. goto nomem;
  4217. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  4218. sizeof(struct kvm_mmu_page),
  4219. 0, 0, NULL);
  4220. if (!mmu_page_header_cache)
  4221. goto nomem;
  4222. if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
  4223. goto nomem;
  4224. register_shrinker(&mmu_shrinker);
  4225. return 0;
  4226. nomem:
  4227. mmu_destroy_caches();
  4228. return -ENOMEM;
  4229. }
  4230. /*
  4231. * Caculate mmu pages needed for kvm.
  4232. */
  4233. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  4234. {
  4235. unsigned int nr_mmu_pages;
  4236. unsigned int nr_pages = 0;
  4237. struct kvm_memslots *slots;
  4238. struct kvm_memory_slot *memslot;
  4239. int i;
  4240. for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
  4241. slots = __kvm_memslots(kvm, i);
  4242. kvm_for_each_memslot(memslot, slots)
  4243. nr_pages += memslot->npages;
  4244. }
  4245. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  4246. nr_mmu_pages = max(nr_mmu_pages,
  4247. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  4248. return nr_mmu_pages;
  4249. }
  4250. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  4251. {
  4252. kvm_mmu_unload(vcpu);
  4253. free_mmu_pages(vcpu);
  4254. mmu_free_memory_caches(vcpu);
  4255. }
  4256. void kvm_mmu_module_exit(void)
  4257. {
  4258. mmu_destroy_caches();
  4259. percpu_counter_destroy(&kvm_total_used_mmu_pages);
  4260. unregister_shrinker(&mmu_shrinker);
  4261. mmu_audit_disable();
  4262. }