esp6.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907
  1. /*
  2. * Copyright (C)2002 USAGI/WIDE Project
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, see <http://www.gnu.org/licenses/>.
  16. *
  17. * Authors
  18. *
  19. * Mitsuru KANDA @USAGI : IPv6 Support
  20. * Kazunori MIYAZAWA @USAGI :
  21. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  22. *
  23. * This file is derived from net/ipv4/esp.c
  24. */
  25. #define pr_fmt(fmt) "IPv6: " fmt
  26. #include <crypto/aead.h>
  27. #include <crypto/authenc.h>
  28. #include <linux/err.h>
  29. #include <linux/module.h>
  30. #include <net/ip.h>
  31. #include <net/xfrm.h>
  32. #include <net/esp.h>
  33. #include <linux/scatterlist.h>
  34. #include <linux/kernel.h>
  35. #include <linux/pfkeyv2.h>
  36. #include <linux/random.h>
  37. #include <linux/slab.h>
  38. #include <linux/spinlock.h>
  39. #include <net/ip6_route.h>
  40. #include <net/icmp.h>
  41. #include <net/ipv6.h>
  42. #include <net/protocol.h>
  43. #include <linux/icmpv6.h>
  44. #include <linux/highmem.h>
  45. struct esp_skb_cb {
  46. struct xfrm_skb_cb xfrm;
  47. void *tmp;
  48. };
  49. #define ESP_SKB_CB(__skb) ((struct esp_skb_cb *)&((__skb)->cb[0]))
  50. static u32 esp6_get_mtu(struct xfrm_state *x, int mtu);
  51. /*
  52. * Allocate an AEAD request structure with extra space for SG and IV.
  53. *
  54. * For alignment considerations the upper 32 bits of the sequence number are
  55. * placed at the front, if present. Followed by the IV, the request and finally
  56. * the SG list.
  57. *
  58. * TODO: Use spare space in skb for this where possible.
  59. */
  60. static void *esp_alloc_tmp(struct crypto_aead *aead, int nfrags, int seqihlen)
  61. {
  62. unsigned int len;
  63. len = seqihlen;
  64. len += crypto_aead_ivsize(aead);
  65. if (len) {
  66. len += crypto_aead_alignmask(aead) &
  67. ~(crypto_tfm_ctx_alignment() - 1);
  68. len = ALIGN(len, crypto_tfm_ctx_alignment());
  69. }
  70. len += sizeof(struct aead_request) + crypto_aead_reqsize(aead);
  71. len = ALIGN(len, __alignof__(struct scatterlist));
  72. len += sizeof(struct scatterlist) * nfrags;
  73. return kmalloc(len, GFP_ATOMIC);
  74. }
  75. static inline __be32 *esp_tmp_seqhi(void *tmp)
  76. {
  77. return PTR_ALIGN((__be32 *)tmp, __alignof__(__be32));
  78. }
  79. static inline u8 *esp_tmp_iv(struct crypto_aead *aead, void *tmp, int seqhilen)
  80. {
  81. return crypto_aead_ivsize(aead) ?
  82. PTR_ALIGN((u8 *)tmp + seqhilen,
  83. crypto_aead_alignmask(aead) + 1) : tmp + seqhilen;
  84. }
  85. static inline struct aead_request *esp_tmp_req(struct crypto_aead *aead, u8 *iv)
  86. {
  87. struct aead_request *req;
  88. req = (void *)PTR_ALIGN(iv + crypto_aead_ivsize(aead),
  89. crypto_tfm_ctx_alignment());
  90. aead_request_set_tfm(req, aead);
  91. return req;
  92. }
  93. static inline struct scatterlist *esp_req_sg(struct crypto_aead *aead,
  94. struct aead_request *req)
  95. {
  96. return (void *)ALIGN((unsigned long)(req + 1) +
  97. crypto_aead_reqsize(aead),
  98. __alignof__(struct scatterlist));
  99. }
  100. static void esp_ssg_unref(struct xfrm_state *x, void *tmp)
  101. {
  102. __be32 *seqhi;
  103. struct crypto_aead *aead = x->data;
  104. int seqhilen = 0;
  105. u8 *iv;
  106. struct aead_request *req;
  107. struct scatterlist *sg;
  108. if (x->props.flags & XFRM_STATE_ESN)
  109. seqhilen += sizeof(__be32);
  110. seqhi = esp_tmp_seqhi(tmp);
  111. iv = esp_tmp_iv(aead, tmp, seqhilen);
  112. req = esp_tmp_req(aead, iv);
  113. /* Unref skb_frag_pages in the src scatterlist if necessary.
  114. * Skip the first sg which comes from skb->data.
  115. */
  116. if (req->src != req->dst)
  117. for (sg = sg_next(req->src); sg; sg = sg_next(sg))
  118. put_page(sg_page(sg));
  119. }
  120. static void esp_output_done(struct crypto_async_request *base, int err)
  121. {
  122. struct sk_buff *skb = base->data;
  123. void *tmp;
  124. struct dst_entry *dst = skb_dst(skb);
  125. struct xfrm_state *x = dst->xfrm;
  126. tmp = ESP_SKB_CB(skb)->tmp;
  127. esp_ssg_unref(x, tmp);
  128. kfree(tmp);
  129. xfrm_output_resume(skb, err);
  130. }
  131. /* Move ESP header back into place. */
  132. static void esp_restore_header(struct sk_buff *skb, unsigned int offset)
  133. {
  134. struct ip_esp_hdr *esph = (void *)(skb->data + offset);
  135. void *tmp = ESP_SKB_CB(skb)->tmp;
  136. __be32 *seqhi = esp_tmp_seqhi(tmp);
  137. esph->seq_no = esph->spi;
  138. esph->spi = *seqhi;
  139. }
  140. static void esp_output_restore_header(struct sk_buff *skb)
  141. {
  142. esp_restore_header(skb, skb_transport_offset(skb) - sizeof(__be32));
  143. }
  144. static struct ip_esp_hdr *esp_output_set_esn(struct sk_buff *skb,
  145. struct ip_esp_hdr *esph,
  146. __be32 *seqhi)
  147. {
  148. struct xfrm_state *x = skb_dst(skb)->xfrm;
  149. /* For ESN we move the header forward by 4 bytes to
  150. * accomodate the high bits. We will move it back after
  151. * encryption.
  152. */
  153. if ((x->props.flags & XFRM_STATE_ESN)) {
  154. esph = (void *)(skb_transport_header(skb) - sizeof(__be32));
  155. *seqhi = esph->spi;
  156. esph->seq_no = htonl(XFRM_SKB_CB(skb)->seq.output.hi);
  157. }
  158. esph->spi = x->id.spi;
  159. return esph;
  160. }
  161. static void esp_output_done_esn(struct crypto_async_request *base, int err)
  162. {
  163. struct sk_buff *skb = base->data;
  164. esp_output_restore_header(skb);
  165. esp_output_done(base, err);
  166. }
  167. static int esp6_output(struct xfrm_state *x, struct sk_buff *skb)
  168. {
  169. int err;
  170. struct ip_esp_hdr *esph;
  171. struct crypto_aead *aead;
  172. struct aead_request *req;
  173. struct scatterlist *sg, *dsg;
  174. struct sk_buff *trailer;
  175. struct page *page;
  176. void *tmp;
  177. int blksize;
  178. int clen;
  179. int alen;
  180. int plen;
  181. int ivlen;
  182. int tfclen;
  183. int nfrags;
  184. int assoclen;
  185. int seqhilen;
  186. int tailen;
  187. u8 *iv;
  188. u8 *tail;
  189. u8 *vaddr;
  190. __be32 *seqhi;
  191. __be64 seqno;
  192. __u8 proto = *skb_mac_header(skb);
  193. /* skb is pure payload to encrypt */
  194. aead = x->data;
  195. alen = crypto_aead_authsize(aead);
  196. ivlen = crypto_aead_ivsize(aead);
  197. tfclen = 0;
  198. if (x->tfcpad) {
  199. struct xfrm_dst *dst = (struct xfrm_dst *)skb_dst(skb);
  200. u32 padto;
  201. padto = min(x->tfcpad, esp6_get_mtu(x, dst->child_mtu_cached));
  202. if (skb->len < padto)
  203. tfclen = padto - skb->len;
  204. }
  205. blksize = ALIGN(crypto_aead_blocksize(aead), 4);
  206. clen = ALIGN(skb->len + 2 + tfclen, blksize);
  207. plen = clen - skb->len - tfclen;
  208. tailen = tfclen + plen + alen;
  209. assoclen = sizeof(*esph);
  210. seqhilen = 0;
  211. if (x->props.flags & XFRM_STATE_ESN) {
  212. seqhilen += sizeof(__be32);
  213. assoclen += seqhilen;
  214. }
  215. *skb_mac_header(skb) = IPPROTO_ESP;
  216. esph = ip_esp_hdr(skb);
  217. if (!skb_cloned(skb)) {
  218. if (tailen <= skb_availroom(skb)) {
  219. nfrags = 1;
  220. trailer = skb;
  221. tail = skb_tail_pointer(trailer);
  222. goto skip_cow;
  223. } else if ((skb_shinfo(skb)->nr_frags < MAX_SKB_FRAGS)
  224. && !skb_has_frag_list(skb)) {
  225. int allocsize;
  226. struct sock *sk = skb->sk;
  227. struct page_frag *pfrag = &x->xfrag;
  228. allocsize = ALIGN(tailen, L1_CACHE_BYTES);
  229. spin_lock_bh(&x->lock);
  230. if (unlikely(!skb_page_frag_refill(allocsize, pfrag, GFP_ATOMIC))) {
  231. spin_unlock_bh(&x->lock);
  232. goto cow;
  233. }
  234. page = pfrag->page;
  235. get_page(page);
  236. vaddr = kmap_atomic(page);
  237. tail = vaddr + pfrag->offset;
  238. /* Fill padding... */
  239. if (tfclen) {
  240. memset(tail, 0, tfclen);
  241. tail += tfclen;
  242. }
  243. do {
  244. int i;
  245. for (i = 0; i < plen - 2; i++)
  246. tail[i] = i + 1;
  247. } while (0);
  248. tail[plen - 2] = plen - 2;
  249. tail[plen - 1] = proto;
  250. kunmap_atomic(vaddr);
  251. nfrags = skb_shinfo(skb)->nr_frags;
  252. __skb_fill_page_desc(skb, nfrags, page, pfrag->offset,
  253. tailen);
  254. skb_shinfo(skb)->nr_frags = ++nfrags;
  255. pfrag->offset = pfrag->offset + allocsize;
  256. nfrags++;
  257. skb->len += tailen;
  258. skb->data_len += tailen;
  259. skb->truesize += tailen;
  260. if (sk)
  261. atomic_add(tailen, &sk->sk_wmem_alloc);
  262. skb_push(skb, -skb_network_offset(skb));
  263. esph->seq_no = htonl(XFRM_SKB_CB(skb)->seq.output.low);
  264. esph->spi = x->id.spi;
  265. tmp = esp_alloc_tmp(aead, nfrags + 2, seqhilen);
  266. if (!tmp) {
  267. spin_unlock_bh(&x->lock);
  268. err = -ENOMEM;
  269. goto error;
  270. }
  271. seqhi = esp_tmp_seqhi(tmp);
  272. iv = esp_tmp_iv(aead, tmp, seqhilen);
  273. req = esp_tmp_req(aead, iv);
  274. sg = esp_req_sg(aead, req);
  275. dsg = &sg[nfrags];
  276. esph = esp_output_set_esn(skb, esph, seqhi);
  277. sg_init_table(sg, nfrags);
  278. skb_to_sgvec(skb, sg,
  279. (unsigned char *)esph - skb->data,
  280. assoclen + ivlen + clen + alen);
  281. allocsize = ALIGN(skb->data_len, L1_CACHE_BYTES);
  282. if (unlikely(!skb_page_frag_refill(allocsize, pfrag, GFP_ATOMIC))) {
  283. spin_unlock_bh(&x->lock);
  284. err = -ENOMEM;
  285. goto error;
  286. }
  287. skb_shinfo(skb)->nr_frags = 1;
  288. page = pfrag->page;
  289. get_page(page);
  290. /* replace page frags in skb with new page */
  291. __skb_fill_page_desc(skb, 0, page, pfrag->offset, skb->data_len);
  292. pfrag->offset = pfrag->offset + allocsize;
  293. sg_init_table(dsg, skb_shinfo(skb)->nr_frags + 1);
  294. skb_to_sgvec(skb, dsg,
  295. (unsigned char *)esph - skb->data,
  296. assoclen + ivlen + clen + alen);
  297. spin_unlock_bh(&x->lock);
  298. goto skip_cow2;
  299. }
  300. }
  301. cow:
  302. err = skb_cow_data(skb, tailen, &trailer);
  303. if (err < 0)
  304. goto error;
  305. nfrags = err;
  306. tail = skb_tail_pointer(trailer);
  307. esph = ip_esp_hdr(skb);
  308. skip_cow:
  309. /* Fill padding... */
  310. if (tfclen) {
  311. memset(tail, 0, tfclen);
  312. tail += tfclen;
  313. }
  314. do {
  315. int i;
  316. for (i = 0; i < plen - 2; i++)
  317. tail[i] = i + 1;
  318. } while (0);
  319. tail[plen - 2] = plen - 2;
  320. tail[plen - 1] = proto;
  321. pskb_put(skb, trailer, clen - skb->len + alen);
  322. skb_push(skb, -skb_network_offset(skb));
  323. esph->seq_no = htonl(XFRM_SKB_CB(skb)->seq.output.low);
  324. esph->spi = x->id.spi;
  325. tmp = esp_alloc_tmp(aead, nfrags, seqhilen);
  326. if (!tmp) {
  327. err = -ENOMEM;
  328. goto error;
  329. }
  330. seqhi = esp_tmp_seqhi(tmp);
  331. iv = esp_tmp_iv(aead, tmp, seqhilen);
  332. req = esp_tmp_req(aead, iv);
  333. sg = esp_req_sg(aead, req);
  334. dsg = sg;
  335. esph = esp_output_set_esn(skb, esph, seqhi);
  336. sg_init_table(sg, nfrags);
  337. skb_to_sgvec(skb, sg,
  338. (unsigned char *)esph - skb->data,
  339. assoclen + ivlen + clen + alen);
  340. skip_cow2:
  341. if ((x->props.flags & XFRM_STATE_ESN))
  342. aead_request_set_callback(req, 0, esp_output_done_esn, skb);
  343. else
  344. aead_request_set_callback(req, 0, esp_output_done, skb);
  345. aead_request_set_crypt(req, sg, dsg, ivlen + clen, iv);
  346. aead_request_set_ad(req, assoclen);
  347. seqno = cpu_to_be64(XFRM_SKB_CB(skb)->seq.output.low +
  348. ((u64)XFRM_SKB_CB(skb)->seq.output.hi << 32));
  349. memset(iv, 0, ivlen);
  350. memcpy(iv + ivlen - min(ivlen, 8), (u8 *)&seqno + 8 - min(ivlen, 8),
  351. min(ivlen, 8));
  352. ESP_SKB_CB(skb)->tmp = tmp;
  353. err = crypto_aead_encrypt(req);
  354. switch (err) {
  355. case -EINPROGRESS:
  356. goto error;
  357. case -EBUSY:
  358. err = NET_XMIT_DROP;
  359. break;
  360. case 0:
  361. if ((x->props.flags & XFRM_STATE_ESN))
  362. esp_output_restore_header(skb);
  363. }
  364. if (sg != dsg)
  365. esp_ssg_unref(x, tmp);
  366. kfree(tmp);
  367. error:
  368. return err;
  369. }
  370. static int esp_input_done2(struct sk_buff *skb, int err)
  371. {
  372. struct xfrm_state *x = xfrm_input_state(skb);
  373. struct crypto_aead *aead = x->data;
  374. int alen = crypto_aead_authsize(aead);
  375. int hlen = sizeof(struct ip_esp_hdr) + crypto_aead_ivsize(aead);
  376. int elen = skb->len - hlen;
  377. int hdr_len = skb_network_header_len(skb);
  378. int padlen;
  379. u8 nexthdr[2];
  380. kfree(ESP_SKB_CB(skb)->tmp);
  381. if (unlikely(err))
  382. goto out;
  383. if (skb_copy_bits(skb, skb->len - alen - 2, nexthdr, 2))
  384. BUG();
  385. err = -EINVAL;
  386. padlen = nexthdr[0];
  387. if (padlen + 2 + alen >= elen) {
  388. net_dbg_ratelimited("ipsec esp packet is garbage padlen=%d, elen=%d\n",
  389. padlen + 2, elen - alen);
  390. goto out;
  391. }
  392. /* ... check padding bits here. Silly. :-) */
  393. pskb_trim(skb, skb->len - alen - padlen - 2);
  394. __skb_pull(skb, hlen);
  395. if (x->props.mode == XFRM_MODE_TUNNEL)
  396. skb_reset_transport_header(skb);
  397. else
  398. skb_set_transport_header(skb, -hdr_len);
  399. err = nexthdr[1];
  400. /* RFC4303: Drop dummy packets without any error */
  401. if (err == IPPROTO_NONE)
  402. err = -EINVAL;
  403. out:
  404. return err;
  405. }
  406. static void esp_input_done(struct crypto_async_request *base, int err)
  407. {
  408. struct sk_buff *skb = base->data;
  409. xfrm_input_resume(skb, esp_input_done2(skb, err));
  410. }
  411. static void esp_input_restore_header(struct sk_buff *skb)
  412. {
  413. esp_restore_header(skb, 0);
  414. __skb_pull(skb, 4);
  415. }
  416. static void esp_input_set_header(struct sk_buff *skb, __be32 *seqhi)
  417. {
  418. struct xfrm_state *x = xfrm_input_state(skb);
  419. struct ip_esp_hdr *esph = (struct ip_esp_hdr *)skb->data;
  420. /* For ESN we move the header forward by 4 bytes to
  421. * accomodate the high bits. We will move it back after
  422. * decryption.
  423. */
  424. if ((x->props.flags & XFRM_STATE_ESN)) {
  425. esph = (void *)skb_push(skb, 4);
  426. *seqhi = esph->spi;
  427. esph->spi = esph->seq_no;
  428. esph->seq_no = XFRM_SKB_CB(skb)->seq.input.hi;
  429. }
  430. }
  431. static void esp_input_done_esn(struct crypto_async_request *base, int err)
  432. {
  433. struct sk_buff *skb = base->data;
  434. esp_input_restore_header(skb);
  435. esp_input_done(base, err);
  436. }
  437. static int esp6_input(struct xfrm_state *x, struct sk_buff *skb)
  438. {
  439. struct ip_esp_hdr *esph;
  440. struct crypto_aead *aead = x->data;
  441. struct aead_request *req;
  442. struct sk_buff *trailer;
  443. int ivlen = crypto_aead_ivsize(aead);
  444. int elen = skb->len - sizeof(*esph) - ivlen;
  445. int nfrags;
  446. int assoclen;
  447. int seqhilen;
  448. int ret = 0;
  449. void *tmp;
  450. __be32 *seqhi;
  451. u8 *iv;
  452. struct scatterlist *sg;
  453. if (!pskb_may_pull(skb, sizeof(*esph) + ivlen)) {
  454. ret = -EINVAL;
  455. goto out;
  456. }
  457. if (elen <= 0) {
  458. ret = -EINVAL;
  459. goto out;
  460. }
  461. assoclen = sizeof(*esph);
  462. seqhilen = 0;
  463. if (x->props.flags & XFRM_STATE_ESN) {
  464. seqhilen += sizeof(__be32);
  465. assoclen += seqhilen;
  466. }
  467. if (!skb_cloned(skb)) {
  468. if (!skb_is_nonlinear(skb)) {
  469. nfrags = 1;
  470. goto skip_cow;
  471. } else if (!skb_has_frag_list(skb)) {
  472. nfrags = skb_shinfo(skb)->nr_frags;
  473. nfrags++;
  474. goto skip_cow;
  475. }
  476. }
  477. nfrags = skb_cow_data(skb, 0, &trailer);
  478. if (nfrags < 0) {
  479. ret = -EINVAL;
  480. goto out;
  481. }
  482. skip_cow:
  483. ret = -ENOMEM;
  484. tmp = esp_alloc_tmp(aead, nfrags, seqhilen);
  485. if (!tmp)
  486. goto out;
  487. ESP_SKB_CB(skb)->tmp = tmp;
  488. seqhi = esp_tmp_seqhi(tmp);
  489. iv = esp_tmp_iv(aead, tmp, seqhilen);
  490. req = esp_tmp_req(aead, iv);
  491. sg = esp_req_sg(aead, req);
  492. esp_input_set_header(skb, seqhi);
  493. sg_init_table(sg, nfrags);
  494. skb_to_sgvec(skb, sg, 0, skb->len);
  495. skb->ip_summed = CHECKSUM_NONE;
  496. if ((x->props.flags & XFRM_STATE_ESN))
  497. aead_request_set_callback(req, 0, esp_input_done_esn, skb);
  498. else
  499. aead_request_set_callback(req, 0, esp_input_done, skb);
  500. aead_request_set_crypt(req, sg, sg, elen + ivlen, iv);
  501. aead_request_set_ad(req, assoclen);
  502. ret = crypto_aead_decrypt(req);
  503. if (ret == -EINPROGRESS)
  504. goto out;
  505. if ((x->props.flags & XFRM_STATE_ESN))
  506. esp_input_restore_header(skb);
  507. ret = esp_input_done2(skb, ret);
  508. out:
  509. return ret;
  510. }
  511. static u32 esp6_get_mtu(struct xfrm_state *x, int mtu)
  512. {
  513. struct crypto_aead *aead = x->data;
  514. u32 blksize = ALIGN(crypto_aead_blocksize(aead), 4);
  515. unsigned int net_adj;
  516. if (x->props.mode != XFRM_MODE_TUNNEL)
  517. net_adj = sizeof(struct ipv6hdr);
  518. else
  519. net_adj = 0;
  520. return ((mtu - x->props.header_len - crypto_aead_authsize(aead) -
  521. net_adj) & ~(blksize - 1)) + net_adj - 2;
  522. }
  523. static int esp6_err(struct sk_buff *skb, struct inet6_skb_parm *opt,
  524. u8 type, u8 code, int offset, __be32 info)
  525. {
  526. struct net *net = dev_net(skb->dev);
  527. const struct ipv6hdr *iph = (const struct ipv6hdr *)skb->data;
  528. struct ip_esp_hdr *esph = (struct ip_esp_hdr *)(skb->data + offset);
  529. struct xfrm_state *x;
  530. if (type != ICMPV6_PKT_TOOBIG &&
  531. type != NDISC_REDIRECT)
  532. return 0;
  533. x = xfrm_state_lookup(net, skb->mark, (const xfrm_address_t *)&iph->daddr,
  534. esph->spi, IPPROTO_ESP, AF_INET6);
  535. if (!x)
  536. return 0;
  537. if (type == NDISC_REDIRECT)
  538. ip6_redirect(skb, net, skb->dev->ifindex, 0,
  539. sock_net_uid(net, NULL));
  540. else
  541. ip6_update_pmtu(skb, net, info, 0, 0, sock_net_uid(net, NULL));
  542. xfrm_state_put(x);
  543. return 0;
  544. }
  545. static void esp6_destroy(struct xfrm_state *x)
  546. {
  547. struct crypto_aead *aead = x->data;
  548. if (!aead)
  549. return;
  550. crypto_free_aead(aead);
  551. }
  552. static int esp_init_aead(struct xfrm_state *x)
  553. {
  554. char aead_name[CRYPTO_MAX_ALG_NAME];
  555. struct crypto_aead *aead;
  556. int err;
  557. err = -ENAMETOOLONG;
  558. if (snprintf(aead_name, CRYPTO_MAX_ALG_NAME, "%s(%s)",
  559. x->geniv, x->aead->alg_name) >= CRYPTO_MAX_ALG_NAME)
  560. goto error;
  561. aead = crypto_alloc_aead(aead_name, 0, 0);
  562. err = PTR_ERR(aead);
  563. if (IS_ERR(aead))
  564. goto error;
  565. x->data = aead;
  566. err = crypto_aead_setkey(aead, x->aead->alg_key,
  567. (x->aead->alg_key_len + 7) / 8);
  568. if (err)
  569. goto error;
  570. err = crypto_aead_setauthsize(aead, x->aead->alg_icv_len / 8);
  571. if (err)
  572. goto error;
  573. error:
  574. return err;
  575. }
  576. static int esp_init_authenc(struct xfrm_state *x)
  577. {
  578. struct crypto_aead *aead;
  579. struct crypto_authenc_key_param *param;
  580. struct rtattr *rta;
  581. char *key;
  582. char *p;
  583. char authenc_name[CRYPTO_MAX_ALG_NAME];
  584. unsigned int keylen;
  585. int err;
  586. err = -EINVAL;
  587. if (!x->ealg)
  588. goto error;
  589. err = -ENAMETOOLONG;
  590. if ((x->props.flags & XFRM_STATE_ESN)) {
  591. if (snprintf(authenc_name, CRYPTO_MAX_ALG_NAME,
  592. "%s%sauthencesn(%s,%s)%s",
  593. x->geniv ?: "", x->geniv ? "(" : "",
  594. x->aalg ? x->aalg->alg_name : "digest_null",
  595. x->ealg->alg_name,
  596. x->geniv ? ")" : "") >= CRYPTO_MAX_ALG_NAME)
  597. goto error;
  598. } else {
  599. if (snprintf(authenc_name, CRYPTO_MAX_ALG_NAME,
  600. "%s%sauthenc(%s,%s)%s",
  601. x->geniv ?: "", x->geniv ? "(" : "",
  602. x->aalg ? x->aalg->alg_name : "digest_null",
  603. x->ealg->alg_name,
  604. x->geniv ? ")" : "") >= CRYPTO_MAX_ALG_NAME)
  605. goto error;
  606. }
  607. aead = crypto_alloc_aead(authenc_name, 0, 0);
  608. err = PTR_ERR(aead);
  609. if (IS_ERR(aead))
  610. goto error;
  611. x->data = aead;
  612. keylen = (x->aalg ? (x->aalg->alg_key_len + 7) / 8 : 0) +
  613. (x->ealg->alg_key_len + 7) / 8 + RTA_SPACE(sizeof(*param));
  614. err = -ENOMEM;
  615. key = kmalloc(keylen, GFP_KERNEL);
  616. if (!key)
  617. goto error;
  618. p = key;
  619. rta = (void *)p;
  620. rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
  621. rta->rta_len = RTA_LENGTH(sizeof(*param));
  622. param = RTA_DATA(rta);
  623. p += RTA_SPACE(sizeof(*param));
  624. if (x->aalg) {
  625. struct xfrm_algo_desc *aalg_desc;
  626. memcpy(p, x->aalg->alg_key, (x->aalg->alg_key_len + 7) / 8);
  627. p += (x->aalg->alg_key_len + 7) / 8;
  628. aalg_desc = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  629. BUG_ON(!aalg_desc);
  630. err = -EINVAL;
  631. if (aalg_desc->uinfo.auth.icv_fullbits / 8 !=
  632. crypto_aead_authsize(aead)) {
  633. pr_info("ESP: %s digestsize %u != %hu\n",
  634. x->aalg->alg_name,
  635. crypto_aead_authsize(aead),
  636. aalg_desc->uinfo.auth.icv_fullbits / 8);
  637. goto free_key;
  638. }
  639. err = crypto_aead_setauthsize(
  640. aead, x->aalg->alg_trunc_len / 8);
  641. if (err)
  642. goto free_key;
  643. }
  644. param->enckeylen = cpu_to_be32((x->ealg->alg_key_len + 7) / 8);
  645. memcpy(p, x->ealg->alg_key, (x->ealg->alg_key_len + 7) / 8);
  646. err = crypto_aead_setkey(aead, key, keylen);
  647. free_key:
  648. kfree(key);
  649. error:
  650. return err;
  651. }
  652. static int esp6_init_state(struct xfrm_state *x)
  653. {
  654. struct crypto_aead *aead;
  655. u32 align;
  656. int err;
  657. if (x->encap)
  658. return -EINVAL;
  659. x->data = NULL;
  660. if (x->aead)
  661. err = esp_init_aead(x);
  662. else
  663. err = esp_init_authenc(x);
  664. if (err)
  665. goto error;
  666. aead = x->data;
  667. x->props.header_len = sizeof(struct ip_esp_hdr) +
  668. crypto_aead_ivsize(aead);
  669. switch (x->props.mode) {
  670. case XFRM_MODE_BEET:
  671. if (x->sel.family != AF_INET6)
  672. x->props.header_len += IPV4_BEET_PHMAXLEN +
  673. (sizeof(struct ipv6hdr) - sizeof(struct iphdr));
  674. break;
  675. case XFRM_MODE_TRANSPORT:
  676. break;
  677. case XFRM_MODE_TUNNEL:
  678. x->props.header_len += sizeof(struct ipv6hdr);
  679. break;
  680. default:
  681. goto error;
  682. }
  683. align = ALIGN(crypto_aead_blocksize(aead), 4);
  684. x->props.trailer_len = align + 1 + crypto_aead_authsize(aead);
  685. error:
  686. return err;
  687. }
  688. static int esp6_rcv_cb(struct sk_buff *skb, int err)
  689. {
  690. return 0;
  691. }
  692. static const struct xfrm_type esp6_type = {
  693. .description = "ESP6",
  694. .owner = THIS_MODULE,
  695. .proto = IPPROTO_ESP,
  696. .flags = XFRM_TYPE_REPLAY_PROT,
  697. .init_state = esp6_init_state,
  698. .destructor = esp6_destroy,
  699. .get_mtu = esp6_get_mtu,
  700. .input = esp6_input,
  701. .output = esp6_output,
  702. .hdr_offset = xfrm6_find_1stfragopt,
  703. };
  704. static struct xfrm6_protocol esp6_protocol = {
  705. .handler = xfrm6_rcv,
  706. .cb_handler = esp6_rcv_cb,
  707. .err_handler = esp6_err,
  708. .priority = 0,
  709. };
  710. static int __init esp6_init(void)
  711. {
  712. if (xfrm_register_type(&esp6_type, AF_INET6) < 0) {
  713. pr_info("%s: can't add xfrm type\n", __func__);
  714. return -EAGAIN;
  715. }
  716. if (xfrm6_protocol_register(&esp6_protocol, IPPROTO_ESP) < 0) {
  717. pr_info("%s: can't add protocol\n", __func__);
  718. xfrm_unregister_type(&esp6_type, AF_INET6);
  719. return -EAGAIN;
  720. }
  721. return 0;
  722. }
  723. static void __exit esp6_fini(void)
  724. {
  725. if (xfrm6_protocol_deregister(&esp6_protocol, IPPROTO_ESP) < 0)
  726. pr_info("%s: can't remove protocol\n", __func__);
  727. if (xfrm_unregister_type(&esp6_type, AF_INET6) < 0)
  728. pr_info("%s: can't remove xfrm type\n", __func__);
  729. }
  730. module_init(esp6_init);
  731. module_exit(esp6_fini);
  732. MODULE_LICENSE("GPL");
  733. MODULE_ALIAS_XFRM_TYPE(AF_INET6, XFRM_PROTO_ESP);