xfs_log_recover.c 108 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_trans.h"
  25. #include "xfs_sb.h"
  26. #include "xfs_ag.h"
  27. #include "xfs_dir2.h"
  28. #include "xfs_dmapi.h"
  29. #include "xfs_mount.h"
  30. #include "xfs_error.h"
  31. #include "xfs_bmap_btree.h"
  32. #include "xfs_alloc_btree.h"
  33. #include "xfs_ialloc_btree.h"
  34. #include "xfs_dir2_sf.h"
  35. #include "xfs_attr_sf.h"
  36. #include "xfs_dinode.h"
  37. #include "xfs_inode.h"
  38. #include "xfs_inode_item.h"
  39. #include "xfs_alloc.h"
  40. #include "xfs_ialloc.h"
  41. #include "xfs_log_priv.h"
  42. #include "xfs_buf_item.h"
  43. #include "xfs_log_recover.h"
  44. #include "xfs_extfree_item.h"
  45. #include "xfs_trans_priv.h"
  46. #include "xfs_quota.h"
  47. #include "xfs_rw.h"
  48. #include "xfs_utils.h"
  49. STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
  50. STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
  51. STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q,
  52. xlog_recover_item_t *item);
  53. #if defined(DEBUG)
  54. STATIC void xlog_recover_check_summary(xlog_t *);
  55. #else
  56. #define xlog_recover_check_summary(log)
  57. #endif
  58. /*
  59. * Sector aligned buffer routines for buffer create/read/write/access
  60. */
  61. #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
  62. ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
  63. ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
  64. #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
  65. xfs_buf_t *
  66. xlog_get_bp(
  67. xlog_t *log,
  68. int nbblks)
  69. {
  70. if (nbblks <= 0 || nbblks > log->l_logBBsize) {
  71. xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
  72. XFS_ERROR_REPORT("xlog_get_bp(1)",
  73. XFS_ERRLEVEL_HIGH, log->l_mp);
  74. return NULL;
  75. }
  76. if (log->l_sectbb_log) {
  77. if (nbblks > 1)
  78. nbblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
  79. nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
  80. }
  81. return xfs_buf_get_noaddr(BBTOB(nbblks), log->l_mp->m_logdev_targp);
  82. }
  83. void
  84. xlog_put_bp(
  85. xfs_buf_t *bp)
  86. {
  87. xfs_buf_free(bp);
  88. }
  89. STATIC xfs_caddr_t
  90. xlog_align(
  91. xlog_t *log,
  92. xfs_daddr_t blk_no,
  93. int nbblks,
  94. xfs_buf_t *bp)
  95. {
  96. xfs_caddr_t ptr;
  97. if (!log->l_sectbb_log)
  98. return XFS_BUF_PTR(bp);
  99. ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
  100. ASSERT(XFS_BUF_SIZE(bp) >=
  101. BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
  102. return ptr;
  103. }
  104. /*
  105. * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
  106. */
  107. STATIC int
  108. xlog_bread_noalign(
  109. xlog_t *log,
  110. xfs_daddr_t blk_no,
  111. int nbblks,
  112. xfs_buf_t *bp)
  113. {
  114. int error;
  115. if (nbblks <= 0 || nbblks > log->l_logBBsize) {
  116. xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
  117. XFS_ERROR_REPORT("xlog_bread(1)",
  118. XFS_ERRLEVEL_HIGH, log->l_mp);
  119. return EFSCORRUPTED;
  120. }
  121. if (log->l_sectbb_log) {
  122. blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
  123. nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
  124. }
  125. ASSERT(nbblks > 0);
  126. ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
  127. ASSERT(bp);
  128. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  129. XFS_BUF_READ(bp);
  130. XFS_BUF_BUSY(bp);
  131. XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
  132. XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
  133. xfsbdstrat(log->l_mp, bp);
  134. error = xfs_iowait(bp);
  135. if (error)
  136. xfs_ioerror_alert("xlog_bread", log->l_mp,
  137. bp, XFS_BUF_ADDR(bp));
  138. return error;
  139. }
  140. STATIC int
  141. xlog_bread(
  142. xlog_t *log,
  143. xfs_daddr_t blk_no,
  144. int nbblks,
  145. xfs_buf_t *bp,
  146. xfs_caddr_t *offset)
  147. {
  148. int error;
  149. error = xlog_bread_noalign(log, blk_no, nbblks, bp);
  150. if (error)
  151. return error;
  152. *offset = xlog_align(log, blk_no, nbblks, bp);
  153. return 0;
  154. }
  155. /*
  156. * Write out the buffer at the given block for the given number of blocks.
  157. * The buffer is kept locked across the write and is returned locked.
  158. * This can only be used for synchronous log writes.
  159. */
  160. STATIC int
  161. xlog_bwrite(
  162. xlog_t *log,
  163. xfs_daddr_t blk_no,
  164. int nbblks,
  165. xfs_buf_t *bp)
  166. {
  167. int error;
  168. if (nbblks <= 0 || nbblks > log->l_logBBsize) {
  169. xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
  170. XFS_ERROR_REPORT("xlog_bwrite(1)",
  171. XFS_ERRLEVEL_HIGH, log->l_mp);
  172. return EFSCORRUPTED;
  173. }
  174. if (log->l_sectbb_log) {
  175. blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
  176. nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
  177. }
  178. ASSERT(nbblks > 0);
  179. ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
  180. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  181. XFS_BUF_ZEROFLAGS(bp);
  182. XFS_BUF_BUSY(bp);
  183. XFS_BUF_HOLD(bp);
  184. XFS_BUF_PSEMA(bp, PRIBIO);
  185. XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
  186. XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
  187. if ((error = xfs_bwrite(log->l_mp, bp)))
  188. xfs_ioerror_alert("xlog_bwrite", log->l_mp,
  189. bp, XFS_BUF_ADDR(bp));
  190. return error;
  191. }
  192. #ifdef DEBUG
  193. /*
  194. * dump debug superblock and log record information
  195. */
  196. STATIC void
  197. xlog_header_check_dump(
  198. xfs_mount_t *mp,
  199. xlog_rec_header_t *head)
  200. {
  201. cmn_err(CE_DEBUG, "%s: SB : uuid = %pU, fmt = %d\n",
  202. __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
  203. cmn_err(CE_DEBUG, " log : uuid = %pU, fmt = %d\n",
  204. &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
  205. }
  206. #else
  207. #define xlog_header_check_dump(mp, head)
  208. #endif
  209. /*
  210. * check log record header for recovery
  211. */
  212. STATIC int
  213. xlog_header_check_recover(
  214. xfs_mount_t *mp,
  215. xlog_rec_header_t *head)
  216. {
  217. ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
  218. /*
  219. * IRIX doesn't write the h_fmt field and leaves it zeroed
  220. * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
  221. * a dirty log created in IRIX.
  222. */
  223. if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
  224. xlog_warn(
  225. "XFS: dirty log written in incompatible format - can't recover");
  226. xlog_header_check_dump(mp, head);
  227. XFS_ERROR_REPORT("xlog_header_check_recover(1)",
  228. XFS_ERRLEVEL_HIGH, mp);
  229. return XFS_ERROR(EFSCORRUPTED);
  230. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  231. xlog_warn(
  232. "XFS: dirty log entry has mismatched uuid - can't recover");
  233. xlog_header_check_dump(mp, head);
  234. XFS_ERROR_REPORT("xlog_header_check_recover(2)",
  235. XFS_ERRLEVEL_HIGH, mp);
  236. return XFS_ERROR(EFSCORRUPTED);
  237. }
  238. return 0;
  239. }
  240. /*
  241. * read the head block of the log and check the header
  242. */
  243. STATIC int
  244. xlog_header_check_mount(
  245. xfs_mount_t *mp,
  246. xlog_rec_header_t *head)
  247. {
  248. ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
  249. if (uuid_is_nil(&head->h_fs_uuid)) {
  250. /*
  251. * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
  252. * h_fs_uuid is nil, we assume this log was last mounted
  253. * by IRIX and continue.
  254. */
  255. xlog_warn("XFS: nil uuid in log - IRIX style log");
  256. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  257. xlog_warn("XFS: log has mismatched uuid - can't recover");
  258. xlog_header_check_dump(mp, head);
  259. XFS_ERROR_REPORT("xlog_header_check_mount",
  260. XFS_ERRLEVEL_HIGH, mp);
  261. return XFS_ERROR(EFSCORRUPTED);
  262. }
  263. return 0;
  264. }
  265. STATIC void
  266. xlog_recover_iodone(
  267. struct xfs_buf *bp)
  268. {
  269. if (XFS_BUF_GETERROR(bp)) {
  270. /*
  271. * We're not going to bother about retrying
  272. * this during recovery. One strike!
  273. */
  274. xfs_ioerror_alert("xlog_recover_iodone",
  275. bp->b_mount, bp, XFS_BUF_ADDR(bp));
  276. xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
  277. }
  278. bp->b_mount = NULL;
  279. XFS_BUF_CLR_IODONE_FUNC(bp);
  280. xfs_biodone(bp);
  281. }
  282. /*
  283. * This routine finds (to an approximation) the first block in the physical
  284. * log which contains the given cycle. It uses a binary search algorithm.
  285. * Note that the algorithm can not be perfect because the disk will not
  286. * necessarily be perfect.
  287. */
  288. STATIC int
  289. xlog_find_cycle_start(
  290. xlog_t *log,
  291. xfs_buf_t *bp,
  292. xfs_daddr_t first_blk,
  293. xfs_daddr_t *last_blk,
  294. uint cycle)
  295. {
  296. xfs_caddr_t offset;
  297. xfs_daddr_t mid_blk;
  298. uint mid_cycle;
  299. int error;
  300. mid_blk = BLK_AVG(first_blk, *last_blk);
  301. while (mid_blk != first_blk && mid_blk != *last_blk) {
  302. error = xlog_bread(log, mid_blk, 1, bp, &offset);
  303. if (error)
  304. return error;
  305. mid_cycle = xlog_get_cycle(offset);
  306. if (mid_cycle == cycle) {
  307. *last_blk = mid_blk;
  308. /* last_half_cycle == mid_cycle */
  309. } else {
  310. first_blk = mid_blk;
  311. /* first_half_cycle == mid_cycle */
  312. }
  313. mid_blk = BLK_AVG(first_blk, *last_blk);
  314. }
  315. ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
  316. (mid_blk == *last_blk && mid_blk-1 == first_blk));
  317. return 0;
  318. }
  319. /*
  320. * Check that the range of blocks does not contain the cycle number
  321. * given. The scan needs to occur from front to back and the ptr into the
  322. * region must be updated since a later routine will need to perform another
  323. * test. If the region is completely good, we end up returning the same
  324. * last block number.
  325. *
  326. * Set blkno to -1 if we encounter no errors. This is an invalid block number
  327. * since we don't ever expect logs to get this large.
  328. */
  329. STATIC int
  330. xlog_find_verify_cycle(
  331. xlog_t *log,
  332. xfs_daddr_t start_blk,
  333. int nbblks,
  334. uint stop_on_cycle_no,
  335. xfs_daddr_t *new_blk)
  336. {
  337. xfs_daddr_t i, j;
  338. uint cycle;
  339. xfs_buf_t *bp;
  340. xfs_daddr_t bufblks;
  341. xfs_caddr_t buf = NULL;
  342. int error = 0;
  343. bufblks = 1 << ffs(nbblks);
  344. while (!(bp = xlog_get_bp(log, bufblks))) {
  345. /* can't get enough memory to do everything in one big buffer */
  346. bufblks >>= 1;
  347. if (bufblks <= log->l_sectbb_log)
  348. return ENOMEM;
  349. }
  350. for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
  351. int bcount;
  352. bcount = min(bufblks, (start_blk + nbblks - i));
  353. error = xlog_bread(log, i, bcount, bp, &buf);
  354. if (error)
  355. goto out;
  356. for (j = 0; j < bcount; j++) {
  357. cycle = xlog_get_cycle(buf);
  358. if (cycle == stop_on_cycle_no) {
  359. *new_blk = i+j;
  360. goto out;
  361. }
  362. buf += BBSIZE;
  363. }
  364. }
  365. *new_blk = -1;
  366. out:
  367. xlog_put_bp(bp);
  368. return error;
  369. }
  370. /*
  371. * Potentially backup over partial log record write.
  372. *
  373. * In the typical case, last_blk is the number of the block directly after
  374. * a good log record. Therefore, we subtract one to get the block number
  375. * of the last block in the given buffer. extra_bblks contains the number
  376. * of blocks we would have read on a previous read. This happens when the
  377. * last log record is split over the end of the physical log.
  378. *
  379. * extra_bblks is the number of blocks potentially verified on a previous
  380. * call to this routine.
  381. */
  382. STATIC int
  383. xlog_find_verify_log_record(
  384. xlog_t *log,
  385. xfs_daddr_t start_blk,
  386. xfs_daddr_t *last_blk,
  387. int extra_bblks)
  388. {
  389. xfs_daddr_t i;
  390. xfs_buf_t *bp;
  391. xfs_caddr_t offset = NULL;
  392. xlog_rec_header_t *head = NULL;
  393. int error = 0;
  394. int smallmem = 0;
  395. int num_blks = *last_blk - start_blk;
  396. int xhdrs;
  397. ASSERT(start_blk != 0 || *last_blk != start_blk);
  398. if (!(bp = xlog_get_bp(log, num_blks))) {
  399. if (!(bp = xlog_get_bp(log, 1)))
  400. return ENOMEM;
  401. smallmem = 1;
  402. } else {
  403. error = xlog_bread(log, start_blk, num_blks, bp, &offset);
  404. if (error)
  405. goto out;
  406. offset += ((num_blks - 1) << BBSHIFT);
  407. }
  408. for (i = (*last_blk) - 1; i >= 0; i--) {
  409. if (i < start_blk) {
  410. /* valid log record not found */
  411. xlog_warn(
  412. "XFS: Log inconsistent (didn't find previous header)");
  413. ASSERT(0);
  414. error = XFS_ERROR(EIO);
  415. goto out;
  416. }
  417. if (smallmem) {
  418. error = xlog_bread(log, i, 1, bp, &offset);
  419. if (error)
  420. goto out;
  421. }
  422. head = (xlog_rec_header_t *)offset;
  423. if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
  424. break;
  425. if (!smallmem)
  426. offset -= BBSIZE;
  427. }
  428. /*
  429. * We hit the beginning of the physical log & still no header. Return
  430. * to caller. If caller can handle a return of -1, then this routine
  431. * will be called again for the end of the physical log.
  432. */
  433. if (i == -1) {
  434. error = -1;
  435. goto out;
  436. }
  437. /*
  438. * We have the final block of the good log (the first block
  439. * of the log record _before_ the head. So we check the uuid.
  440. */
  441. if ((error = xlog_header_check_mount(log->l_mp, head)))
  442. goto out;
  443. /*
  444. * We may have found a log record header before we expected one.
  445. * last_blk will be the 1st block # with a given cycle #. We may end
  446. * up reading an entire log record. In this case, we don't want to
  447. * reset last_blk. Only when last_blk points in the middle of a log
  448. * record do we update last_blk.
  449. */
  450. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  451. uint h_size = be32_to_cpu(head->h_size);
  452. xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
  453. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  454. xhdrs++;
  455. } else {
  456. xhdrs = 1;
  457. }
  458. if (*last_blk - i + extra_bblks !=
  459. BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
  460. *last_blk = i;
  461. out:
  462. xlog_put_bp(bp);
  463. return error;
  464. }
  465. /*
  466. * Head is defined to be the point of the log where the next log write
  467. * write could go. This means that incomplete LR writes at the end are
  468. * eliminated when calculating the head. We aren't guaranteed that previous
  469. * LR have complete transactions. We only know that a cycle number of
  470. * current cycle number -1 won't be present in the log if we start writing
  471. * from our current block number.
  472. *
  473. * last_blk contains the block number of the first block with a given
  474. * cycle number.
  475. *
  476. * Return: zero if normal, non-zero if error.
  477. */
  478. STATIC int
  479. xlog_find_head(
  480. xlog_t *log,
  481. xfs_daddr_t *return_head_blk)
  482. {
  483. xfs_buf_t *bp;
  484. xfs_caddr_t offset;
  485. xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
  486. int num_scan_bblks;
  487. uint first_half_cycle, last_half_cycle;
  488. uint stop_on_cycle;
  489. int error, log_bbnum = log->l_logBBsize;
  490. /* Is the end of the log device zeroed? */
  491. if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
  492. *return_head_blk = first_blk;
  493. /* Is the whole lot zeroed? */
  494. if (!first_blk) {
  495. /* Linux XFS shouldn't generate totally zeroed logs -
  496. * mkfs etc write a dummy unmount record to a fresh
  497. * log so we can store the uuid in there
  498. */
  499. xlog_warn("XFS: totally zeroed log");
  500. }
  501. return 0;
  502. } else if (error) {
  503. xlog_warn("XFS: empty log check failed");
  504. return error;
  505. }
  506. first_blk = 0; /* get cycle # of 1st block */
  507. bp = xlog_get_bp(log, 1);
  508. if (!bp)
  509. return ENOMEM;
  510. error = xlog_bread(log, 0, 1, bp, &offset);
  511. if (error)
  512. goto bp_err;
  513. first_half_cycle = xlog_get_cycle(offset);
  514. last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
  515. error = xlog_bread(log, last_blk, 1, bp, &offset);
  516. if (error)
  517. goto bp_err;
  518. last_half_cycle = xlog_get_cycle(offset);
  519. ASSERT(last_half_cycle != 0);
  520. /*
  521. * If the 1st half cycle number is equal to the last half cycle number,
  522. * then the entire log is stamped with the same cycle number. In this
  523. * case, head_blk can't be set to zero (which makes sense). The below
  524. * math doesn't work out properly with head_blk equal to zero. Instead,
  525. * we set it to log_bbnum which is an invalid block number, but this
  526. * value makes the math correct. If head_blk doesn't changed through
  527. * all the tests below, *head_blk is set to zero at the very end rather
  528. * than log_bbnum. In a sense, log_bbnum and zero are the same block
  529. * in a circular file.
  530. */
  531. if (first_half_cycle == last_half_cycle) {
  532. /*
  533. * In this case we believe that the entire log should have
  534. * cycle number last_half_cycle. We need to scan backwards
  535. * from the end verifying that there are no holes still
  536. * containing last_half_cycle - 1. If we find such a hole,
  537. * then the start of that hole will be the new head. The
  538. * simple case looks like
  539. * x | x ... | x - 1 | x
  540. * Another case that fits this picture would be
  541. * x | x + 1 | x ... | x
  542. * In this case the head really is somewhere at the end of the
  543. * log, as one of the latest writes at the beginning was
  544. * incomplete.
  545. * One more case is
  546. * x | x + 1 | x ... | x - 1 | x
  547. * This is really the combination of the above two cases, and
  548. * the head has to end up at the start of the x-1 hole at the
  549. * end of the log.
  550. *
  551. * In the 256k log case, we will read from the beginning to the
  552. * end of the log and search for cycle numbers equal to x-1.
  553. * We don't worry about the x+1 blocks that we encounter,
  554. * because we know that they cannot be the head since the log
  555. * started with x.
  556. */
  557. head_blk = log_bbnum;
  558. stop_on_cycle = last_half_cycle - 1;
  559. } else {
  560. /*
  561. * In this case we want to find the first block with cycle
  562. * number matching last_half_cycle. We expect the log to be
  563. * some variation on
  564. * x + 1 ... | x ...
  565. * The first block with cycle number x (last_half_cycle) will
  566. * be where the new head belongs. First we do a binary search
  567. * for the first occurrence of last_half_cycle. The binary
  568. * search may not be totally accurate, so then we scan back
  569. * from there looking for occurrences of last_half_cycle before
  570. * us. If that backwards scan wraps around the beginning of
  571. * the log, then we look for occurrences of last_half_cycle - 1
  572. * at the end of the log. The cases we're looking for look
  573. * like
  574. * x + 1 ... | x | x + 1 | x ...
  575. * ^ binary search stopped here
  576. * or
  577. * x + 1 ... | x ... | x - 1 | x
  578. * <---------> less than scan distance
  579. */
  580. stop_on_cycle = last_half_cycle;
  581. if ((error = xlog_find_cycle_start(log, bp, first_blk,
  582. &head_blk, last_half_cycle)))
  583. goto bp_err;
  584. }
  585. /*
  586. * Now validate the answer. Scan back some number of maximum possible
  587. * blocks and make sure each one has the expected cycle number. The
  588. * maximum is determined by the total possible amount of buffering
  589. * in the in-core log. The following number can be made tighter if
  590. * we actually look at the block size of the filesystem.
  591. */
  592. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  593. if (head_blk >= num_scan_bblks) {
  594. /*
  595. * We are guaranteed that the entire check can be performed
  596. * in one buffer.
  597. */
  598. start_blk = head_blk - num_scan_bblks;
  599. if ((error = xlog_find_verify_cycle(log,
  600. start_blk, num_scan_bblks,
  601. stop_on_cycle, &new_blk)))
  602. goto bp_err;
  603. if (new_blk != -1)
  604. head_blk = new_blk;
  605. } else { /* need to read 2 parts of log */
  606. /*
  607. * We are going to scan backwards in the log in two parts.
  608. * First we scan the physical end of the log. In this part
  609. * of the log, we are looking for blocks with cycle number
  610. * last_half_cycle - 1.
  611. * If we find one, then we know that the log starts there, as
  612. * we've found a hole that didn't get written in going around
  613. * the end of the physical log. The simple case for this is
  614. * x + 1 ... | x ... | x - 1 | x
  615. * <---------> less than scan distance
  616. * If all of the blocks at the end of the log have cycle number
  617. * last_half_cycle, then we check the blocks at the start of
  618. * the log looking for occurrences of last_half_cycle. If we
  619. * find one, then our current estimate for the location of the
  620. * first occurrence of last_half_cycle is wrong and we move
  621. * back to the hole we've found. This case looks like
  622. * x + 1 ... | x | x + 1 | x ...
  623. * ^ binary search stopped here
  624. * Another case we need to handle that only occurs in 256k
  625. * logs is
  626. * x + 1 ... | x ... | x+1 | x ...
  627. * ^ binary search stops here
  628. * In a 256k log, the scan at the end of the log will see the
  629. * x + 1 blocks. We need to skip past those since that is
  630. * certainly not the head of the log. By searching for
  631. * last_half_cycle-1 we accomplish that.
  632. */
  633. start_blk = log_bbnum - num_scan_bblks + head_blk;
  634. ASSERT(head_blk <= INT_MAX &&
  635. (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
  636. if ((error = xlog_find_verify_cycle(log, start_blk,
  637. num_scan_bblks - (int)head_blk,
  638. (stop_on_cycle - 1), &new_blk)))
  639. goto bp_err;
  640. if (new_blk != -1) {
  641. head_blk = new_blk;
  642. goto bad_blk;
  643. }
  644. /*
  645. * Scan beginning of log now. The last part of the physical
  646. * log is good. This scan needs to verify that it doesn't find
  647. * the last_half_cycle.
  648. */
  649. start_blk = 0;
  650. ASSERT(head_blk <= INT_MAX);
  651. if ((error = xlog_find_verify_cycle(log,
  652. start_blk, (int)head_blk,
  653. stop_on_cycle, &new_blk)))
  654. goto bp_err;
  655. if (new_blk != -1)
  656. head_blk = new_blk;
  657. }
  658. bad_blk:
  659. /*
  660. * Now we need to make sure head_blk is not pointing to a block in
  661. * the middle of a log record.
  662. */
  663. num_scan_bblks = XLOG_REC_SHIFT(log);
  664. if (head_blk >= num_scan_bblks) {
  665. start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
  666. /* start ptr at last block ptr before head_blk */
  667. if ((error = xlog_find_verify_log_record(log, start_blk,
  668. &head_blk, 0)) == -1) {
  669. error = XFS_ERROR(EIO);
  670. goto bp_err;
  671. } else if (error)
  672. goto bp_err;
  673. } else {
  674. start_blk = 0;
  675. ASSERT(head_blk <= INT_MAX);
  676. if ((error = xlog_find_verify_log_record(log, start_blk,
  677. &head_blk, 0)) == -1) {
  678. /* We hit the beginning of the log during our search */
  679. start_blk = log_bbnum - num_scan_bblks + head_blk;
  680. new_blk = log_bbnum;
  681. ASSERT(start_blk <= INT_MAX &&
  682. (xfs_daddr_t) log_bbnum-start_blk >= 0);
  683. ASSERT(head_blk <= INT_MAX);
  684. if ((error = xlog_find_verify_log_record(log,
  685. start_blk, &new_blk,
  686. (int)head_blk)) == -1) {
  687. error = XFS_ERROR(EIO);
  688. goto bp_err;
  689. } else if (error)
  690. goto bp_err;
  691. if (new_blk != log_bbnum)
  692. head_blk = new_blk;
  693. } else if (error)
  694. goto bp_err;
  695. }
  696. xlog_put_bp(bp);
  697. if (head_blk == log_bbnum)
  698. *return_head_blk = 0;
  699. else
  700. *return_head_blk = head_blk;
  701. /*
  702. * When returning here, we have a good block number. Bad block
  703. * means that during a previous crash, we didn't have a clean break
  704. * from cycle number N to cycle number N-1. In this case, we need
  705. * to find the first block with cycle number N-1.
  706. */
  707. return 0;
  708. bp_err:
  709. xlog_put_bp(bp);
  710. if (error)
  711. xlog_warn("XFS: failed to find log head");
  712. return error;
  713. }
  714. /*
  715. * Find the sync block number or the tail of the log.
  716. *
  717. * This will be the block number of the last record to have its
  718. * associated buffers synced to disk. Every log record header has
  719. * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
  720. * to get a sync block number. The only concern is to figure out which
  721. * log record header to believe.
  722. *
  723. * The following algorithm uses the log record header with the largest
  724. * lsn. The entire log record does not need to be valid. We only care
  725. * that the header is valid.
  726. *
  727. * We could speed up search by using current head_blk buffer, but it is not
  728. * available.
  729. */
  730. int
  731. xlog_find_tail(
  732. xlog_t *log,
  733. xfs_daddr_t *head_blk,
  734. xfs_daddr_t *tail_blk)
  735. {
  736. xlog_rec_header_t *rhead;
  737. xlog_op_header_t *op_head;
  738. xfs_caddr_t offset = NULL;
  739. xfs_buf_t *bp;
  740. int error, i, found;
  741. xfs_daddr_t umount_data_blk;
  742. xfs_daddr_t after_umount_blk;
  743. xfs_lsn_t tail_lsn;
  744. int hblks;
  745. found = 0;
  746. /*
  747. * Find previous log record
  748. */
  749. if ((error = xlog_find_head(log, head_blk)))
  750. return error;
  751. bp = xlog_get_bp(log, 1);
  752. if (!bp)
  753. return ENOMEM;
  754. if (*head_blk == 0) { /* special case */
  755. error = xlog_bread(log, 0, 1, bp, &offset);
  756. if (error)
  757. goto bread_err;
  758. if (xlog_get_cycle(offset) == 0) {
  759. *tail_blk = 0;
  760. /* leave all other log inited values alone */
  761. goto exit;
  762. }
  763. }
  764. /*
  765. * Search backwards looking for log record header block
  766. */
  767. ASSERT(*head_blk < INT_MAX);
  768. for (i = (int)(*head_blk) - 1; i >= 0; i--) {
  769. error = xlog_bread(log, i, 1, bp, &offset);
  770. if (error)
  771. goto bread_err;
  772. if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
  773. found = 1;
  774. break;
  775. }
  776. }
  777. /*
  778. * If we haven't found the log record header block, start looking
  779. * again from the end of the physical log. XXXmiken: There should be
  780. * a check here to make sure we didn't search more than N blocks in
  781. * the previous code.
  782. */
  783. if (!found) {
  784. for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
  785. error = xlog_bread(log, i, 1, bp, &offset);
  786. if (error)
  787. goto bread_err;
  788. if (XLOG_HEADER_MAGIC_NUM ==
  789. be32_to_cpu(*(__be32 *)offset)) {
  790. found = 2;
  791. break;
  792. }
  793. }
  794. }
  795. if (!found) {
  796. xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
  797. ASSERT(0);
  798. return XFS_ERROR(EIO);
  799. }
  800. /* find blk_no of tail of log */
  801. rhead = (xlog_rec_header_t *)offset;
  802. *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
  803. /*
  804. * Reset log values according to the state of the log when we
  805. * crashed. In the case where head_blk == 0, we bump curr_cycle
  806. * one because the next write starts a new cycle rather than
  807. * continuing the cycle of the last good log record. At this
  808. * point we have guaranteed that all partial log records have been
  809. * accounted for. Therefore, we know that the last good log record
  810. * written was complete and ended exactly on the end boundary
  811. * of the physical log.
  812. */
  813. log->l_prev_block = i;
  814. log->l_curr_block = (int)*head_blk;
  815. log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
  816. if (found == 2)
  817. log->l_curr_cycle++;
  818. log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
  819. log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
  820. log->l_grant_reserve_cycle = log->l_curr_cycle;
  821. log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
  822. log->l_grant_write_cycle = log->l_curr_cycle;
  823. log->l_grant_write_bytes = BBTOB(log->l_curr_block);
  824. /*
  825. * Look for unmount record. If we find it, then we know there
  826. * was a clean unmount. Since 'i' could be the last block in
  827. * the physical log, we convert to a log block before comparing
  828. * to the head_blk.
  829. *
  830. * Save the current tail lsn to use to pass to
  831. * xlog_clear_stale_blocks() below. We won't want to clear the
  832. * unmount record if there is one, so we pass the lsn of the
  833. * unmount record rather than the block after it.
  834. */
  835. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  836. int h_size = be32_to_cpu(rhead->h_size);
  837. int h_version = be32_to_cpu(rhead->h_version);
  838. if ((h_version & XLOG_VERSION_2) &&
  839. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  840. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  841. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  842. hblks++;
  843. } else {
  844. hblks = 1;
  845. }
  846. } else {
  847. hblks = 1;
  848. }
  849. after_umount_blk = (i + hblks + (int)
  850. BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
  851. tail_lsn = log->l_tail_lsn;
  852. if (*head_blk == after_umount_blk &&
  853. be32_to_cpu(rhead->h_num_logops) == 1) {
  854. umount_data_blk = (i + hblks) % log->l_logBBsize;
  855. error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
  856. if (error)
  857. goto bread_err;
  858. op_head = (xlog_op_header_t *)offset;
  859. if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
  860. /*
  861. * Set tail and last sync so that newly written
  862. * log records will point recovery to after the
  863. * current unmount record.
  864. */
  865. log->l_tail_lsn =
  866. xlog_assign_lsn(log->l_curr_cycle,
  867. after_umount_blk);
  868. log->l_last_sync_lsn =
  869. xlog_assign_lsn(log->l_curr_cycle,
  870. after_umount_blk);
  871. *tail_blk = after_umount_blk;
  872. /*
  873. * Note that the unmount was clean. If the unmount
  874. * was not clean, we need to know this to rebuild the
  875. * superblock counters from the perag headers if we
  876. * have a filesystem using non-persistent counters.
  877. */
  878. log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
  879. }
  880. }
  881. /*
  882. * Make sure that there are no blocks in front of the head
  883. * with the same cycle number as the head. This can happen
  884. * because we allow multiple outstanding log writes concurrently,
  885. * and the later writes might make it out before earlier ones.
  886. *
  887. * We use the lsn from before modifying it so that we'll never
  888. * overwrite the unmount record after a clean unmount.
  889. *
  890. * Do this only if we are going to recover the filesystem
  891. *
  892. * NOTE: This used to say "if (!readonly)"
  893. * However on Linux, we can & do recover a read-only filesystem.
  894. * We only skip recovery if NORECOVERY is specified on mount,
  895. * in which case we would not be here.
  896. *
  897. * But... if the -device- itself is readonly, just skip this.
  898. * We can't recover this device anyway, so it won't matter.
  899. */
  900. if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
  901. error = xlog_clear_stale_blocks(log, tail_lsn);
  902. }
  903. bread_err:
  904. exit:
  905. xlog_put_bp(bp);
  906. if (error)
  907. xlog_warn("XFS: failed to locate log tail");
  908. return error;
  909. }
  910. /*
  911. * Is the log zeroed at all?
  912. *
  913. * The last binary search should be changed to perform an X block read
  914. * once X becomes small enough. You can then search linearly through
  915. * the X blocks. This will cut down on the number of reads we need to do.
  916. *
  917. * If the log is partially zeroed, this routine will pass back the blkno
  918. * of the first block with cycle number 0. It won't have a complete LR
  919. * preceding it.
  920. *
  921. * Return:
  922. * 0 => the log is completely written to
  923. * -1 => use *blk_no as the first block of the log
  924. * >0 => error has occurred
  925. */
  926. STATIC int
  927. xlog_find_zeroed(
  928. xlog_t *log,
  929. xfs_daddr_t *blk_no)
  930. {
  931. xfs_buf_t *bp;
  932. xfs_caddr_t offset;
  933. uint first_cycle, last_cycle;
  934. xfs_daddr_t new_blk, last_blk, start_blk;
  935. xfs_daddr_t num_scan_bblks;
  936. int error, log_bbnum = log->l_logBBsize;
  937. *blk_no = 0;
  938. /* check totally zeroed log */
  939. bp = xlog_get_bp(log, 1);
  940. if (!bp)
  941. return ENOMEM;
  942. error = xlog_bread(log, 0, 1, bp, &offset);
  943. if (error)
  944. goto bp_err;
  945. first_cycle = xlog_get_cycle(offset);
  946. if (first_cycle == 0) { /* completely zeroed log */
  947. *blk_no = 0;
  948. xlog_put_bp(bp);
  949. return -1;
  950. }
  951. /* check partially zeroed log */
  952. error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
  953. if (error)
  954. goto bp_err;
  955. last_cycle = xlog_get_cycle(offset);
  956. if (last_cycle != 0) { /* log completely written to */
  957. xlog_put_bp(bp);
  958. return 0;
  959. } else if (first_cycle != 1) {
  960. /*
  961. * If the cycle of the last block is zero, the cycle of
  962. * the first block must be 1. If it's not, maybe we're
  963. * not looking at a log... Bail out.
  964. */
  965. xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
  966. return XFS_ERROR(EINVAL);
  967. }
  968. /* we have a partially zeroed log */
  969. last_blk = log_bbnum-1;
  970. if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
  971. goto bp_err;
  972. /*
  973. * Validate the answer. Because there is no way to guarantee that
  974. * the entire log is made up of log records which are the same size,
  975. * we scan over the defined maximum blocks. At this point, the maximum
  976. * is not chosen to mean anything special. XXXmiken
  977. */
  978. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  979. ASSERT(num_scan_bblks <= INT_MAX);
  980. if (last_blk < num_scan_bblks)
  981. num_scan_bblks = last_blk;
  982. start_blk = last_blk - num_scan_bblks;
  983. /*
  984. * We search for any instances of cycle number 0 that occur before
  985. * our current estimate of the head. What we're trying to detect is
  986. * 1 ... | 0 | 1 | 0...
  987. * ^ binary search ends here
  988. */
  989. if ((error = xlog_find_verify_cycle(log, start_blk,
  990. (int)num_scan_bblks, 0, &new_blk)))
  991. goto bp_err;
  992. if (new_blk != -1)
  993. last_blk = new_blk;
  994. /*
  995. * Potentially backup over partial log record write. We don't need
  996. * to search the end of the log because we know it is zero.
  997. */
  998. if ((error = xlog_find_verify_log_record(log, start_blk,
  999. &last_blk, 0)) == -1) {
  1000. error = XFS_ERROR(EIO);
  1001. goto bp_err;
  1002. } else if (error)
  1003. goto bp_err;
  1004. *blk_no = last_blk;
  1005. bp_err:
  1006. xlog_put_bp(bp);
  1007. if (error)
  1008. return error;
  1009. return -1;
  1010. }
  1011. /*
  1012. * These are simple subroutines used by xlog_clear_stale_blocks() below
  1013. * to initialize a buffer full of empty log record headers and write
  1014. * them into the log.
  1015. */
  1016. STATIC void
  1017. xlog_add_record(
  1018. xlog_t *log,
  1019. xfs_caddr_t buf,
  1020. int cycle,
  1021. int block,
  1022. int tail_cycle,
  1023. int tail_block)
  1024. {
  1025. xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
  1026. memset(buf, 0, BBSIZE);
  1027. recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
  1028. recp->h_cycle = cpu_to_be32(cycle);
  1029. recp->h_version = cpu_to_be32(
  1030. xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
  1031. recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
  1032. recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
  1033. recp->h_fmt = cpu_to_be32(XLOG_FMT);
  1034. memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
  1035. }
  1036. STATIC int
  1037. xlog_write_log_records(
  1038. xlog_t *log,
  1039. int cycle,
  1040. int start_block,
  1041. int blocks,
  1042. int tail_cycle,
  1043. int tail_block)
  1044. {
  1045. xfs_caddr_t offset;
  1046. xfs_buf_t *bp;
  1047. int balign, ealign;
  1048. int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
  1049. int end_block = start_block + blocks;
  1050. int bufblks;
  1051. int error = 0;
  1052. int i, j = 0;
  1053. bufblks = 1 << ffs(blocks);
  1054. while (!(bp = xlog_get_bp(log, bufblks))) {
  1055. bufblks >>= 1;
  1056. if (bufblks <= log->l_sectbb_log)
  1057. return ENOMEM;
  1058. }
  1059. /* We may need to do a read at the start to fill in part of
  1060. * the buffer in the starting sector not covered by the first
  1061. * write below.
  1062. */
  1063. balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
  1064. if (balign != start_block) {
  1065. error = xlog_bread_noalign(log, start_block, 1, bp);
  1066. if (error)
  1067. goto out_put_bp;
  1068. j = start_block - balign;
  1069. }
  1070. for (i = start_block; i < end_block; i += bufblks) {
  1071. int bcount, endcount;
  1072. bcount = min(bufblks, end_block - start_block);
  1073. endcount = bcount - j;
  1074. /* We may need to do a read at the end to fill in part of
  1075. * the buffer in the final sector not covered by the write.
  1076. * If this is the same sector as the above read, skip it.
  1077. */
  1078. ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
  1079. if (j == 0 && (start_block + endcount > ealign)) {
  1080. offset = XFS_BUF_PTR(bp);
  1081. balign = BBTOB(ealign - start_block);
  1082. error = XFS_BUF_SET_PTR(bp, offset + balign,
  1083. BBTOB(sectbb));
  1084. if (error)
  1085. break;
  1086. error = xlog_bread_noalign(log, ealign, sectbb, bp);
  1087. if (error)
  1088. break;
  1089. error = XFS_BUF_SET_PTR(bp, offset, bufblks);
  1090. if (error)
  1091. break;
  1092. }
  1093. offset = xlog_align(log, start_block, endcount, bp);
  1094. for (; j < endcount; j++) {
  1095. xlog_add_record(log, offset, cycle, i+j,
  1096. tail_cycle, tail_block);
  1097. offset += BBSIZE;
  1098. }
  1099. error = xlog_bwrite(log, start_block, endcount, bp);
  1100. if (error)
  1101. break;
  1102. start_block += endcount;
  1103. j = 0;
  1104. }
  1105. out_put_bp:
  1106. xlog_put_bp(bp);
  1107. return error;
  1108. }
  1109. /*
  1110. * This routine is called to blow away any incomplete log writes out
  1111. * in front of the log head. We do this so that we won't become confused
  1112. * if we come up, write only a little bit more, and then crash again.
  1113. * If we leave the partial log records out there, this situation could
  1114. * cause us to think those partial writes are valid blocks since they
  1115. * have the current cycle number. We get rid of them by overwriting them
  1116. * with empty log records with the old cycle number rather than the
  1117. * current one.
  1118. *
  1119. * The tail lsn is passed in rather than taken from
  1120. * the log so that we will not write over the unmount record after a
  1121. * clean unmount in a 512 block log. Doing so would leave the log without
  1122. * any valid log records in it until a new one was written. If we crashed
  1123. * during that time we would not be able to recover.
  1124. */
  1125. STATIC int
  1126. xlog_clear_stale_blocks(
  1127. xlog_t *log,
  1128. xfs_lsn_t tail_lsn)
  1129. {
  1130. int tail_cycle, head_cycle;
  1131. int tail_block, head_block;
  1132. int tail_distance, max_distance;
  1133. int distance;
  1134. int error;
  1135. tail_cycle = CYCLE_LSN(tail_lsn);
  1136. tail_block = BLOCK_LSN(tail_lsn);
  1137. head_cycle = log->l_curr_cycle;
  1138. head_block = log->l_curr_block;
  1139. /*
  1140. * Figure out the distance between the new head of the log
  1141. * and the tail. We want to write over any blocks beyond the
  1142. * head that we may have written just before the crash, but
  1143. * we don't want to overwrite the tail of the log.
  1144. */
  1145. if (head_cycle == tail_cycle) {
  1146. /*
  1147. * The tail is behind the head in the physical log,
  1148. * so the distance from the head to the tail is the
  1149. * distance from the head to the end of the log plus
  1150. * the distance from the beginning of the log to the
  1151. * tail.
  1152. */
  1153. if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
  1154. XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
  1155. XFS_ERRLEVEL_LOW, log->l_mp);
  1156. return XFS_ERROR(EFSCORRUPTED);
  1157. }
  1158. tail_distance = tail_block + (log->l_logBBsize - head_block);
  1159. } else {
  1160. /*
  1161. * The head is behind the tail in the physical log,
  1162. * so the distance from the head to the tail is just
  1163. * the tail block minus the head block.
  1164. */
  1165. if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
  1166. XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
  1167. XFS_ERRLEVEL_LOW, log->l_mp);
  1168. return XFS_ERROR(EFSCORRUPTED);
  1169. }
  1170. tail_distance = tail_block - head_block;
  1171. }
  1172. /*
  1173. * If the head is right up against the tail, we can't clear
  1174. * anything.
  1175. */
  1176. if (tail_distance <= 0) {
  1177. ASSERT(tail_distance == 0);
  1178. return 0;
  1179. }
  1180. max_distance = XLOG_TOTAL_REC_SHIFT(log);
  1181. /*
  1182. * Take the smaller of the maximum amount of outstanding I/O
  1183. * we could have and the distance to the tail to clear out.
  1184. * We take the smaller so that we don't overwrite the tail and
  1185. * we don't waste all day writing from the head to the tail
  1186. * for no reason.
  1187. */
  1188. max_distance = MIN(max_distance, tail_distance);
  1189. if ((head_block + max_distance) <= log->l_logBBsize) {
  1190. /*
  1191. * We can stomp all the blocks we need to without
  1192. * wrapping around the end of the log. Just do it
  1193. * in a single write. Use the cycle number of the
  1194. * current cycle minus one so that the log will look like:
  1195. * n ... | n - 1 ...
  1196. */
  1197. error = xlog_write_log_records(log, (head_cycle - 1),
  1198. head_block, max_distance, tail_cycle,
  1199. tail_block);
  1200. if (error)
  1201. return error;
  1202. } else {
  1203. /*
  1204. * We need to wrap around the end of the physical log in
  1205. * order to clear all the blocks. Do it in two separate
  1206. * I/Os. The first write should be from the head to the
  1207. * end of the physical log, and it should use the current
  1208. * cycle number minus one just like above.
  1209. */
  1210. distance = log->l_logBBsize - head_block;
  1211. error = xlog_write_log_records(log, (head_cycle - 1),
  1212. head_block, distance, tail_cycle,
  1213. tail_block);
  1214. if (error)
  1215. return error;
  1216. /*
  1217. * Now write the blocks at the start of the physical log.
  1218. * This writes the remainder of the blocks we want to clear.
  1219. * It uses the current cycle number since we're now on the
  1220. * same cycle as the head so that we get:
  1221. * n ... n ... | n - 1 ...
  1222. * ^^^^^ blocks we're writing
  1223. */
  1224. distance = max_distance - (log->l_logBBsize - head_block);
  1225. error = xlog_write_log_records(log, head_cycle, 0, distance,
  1226. tail_cycle, tail_block);
  1227. if (error)
  1228. return error;
  1229. }
  1230. return 0;
  1231. }
  1232. /******************************************************************************
  1233. *
  1234. * Log recover routines
  1235. *
  1236. ******************************************************************************
  1237. */
  1238. STATIC xlog_recover_t *
  1239. xlog_recover_find_tid(
  1240. xlog_recover_t *q,
  1241. xlog_tid_t tid)
  1242. {
  1243. xlog_recover_t *p = q;
  1244. while (p != NULL) {
  1245. if (p->r_log_tid == tid)
  1246. break;
  1247. p = p->r_next;
  1248. }
  1249. return p;
  1250. }
  1251. STATIC void
  1252. xlog_recover_put_hashq(
  1253. xlog_recover_t **q,
  1254. xlog_recover_t *trans)
  1255. {
  1256. trans->r_next = *q;
  1257. *q = trans;
  1258. }
  1259. STATIC void
  1260. xlog_recover_add_item(
  1261. xlog_recover_item_t **itemq)
  1262. {
  1263. xlog_recover_item_t *item;
  1264. item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
  1265. xlog_recover_insert_item_backq(itemq, item);
  1266. }
  1267. STATIC int
  1268. xlog_recover_add_to_cont_trans(
  1269. xlog_recover_t *trans,
  1270. xfs_caddr_t dp,
  1271. int len)
  1272. {
  1273. xlog_recover_item_t *item;
  1274. xfs_caddr_t ptr, old_ptr;
  1275. int old_len;
  1276. item = trans->r_itemq;
  1277. if (item == NULL) {
  1278. /* finish copying rest of trans header */
  1279. xlog_recover_add_item(&trans->r_itemq);
  1280. ptr = (xfs_caddr_t) &trans->r_theader +
  1281. sizeof(xfs_trans_header_t) - len;
  1282. memcpy(ptr, dp, len); /* d, s, l */
  1283. return 0;
  1284. }
  1285. item = item->ri_prev;
  1286. old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
  1287. old_len = item->ri_buf[item->ri_cnt-1].i_len;
  1288. ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
  1289. memcpy(&ptr[old_len], dp, len); /* d, s, l */
  1290. item->ri_buf[item->ri_cnt-1].i_len += len;
  1291. item->ri_buf[item->ri_cnt-1].i_addr = ptr;
  1292. return 0;
  1293. }
  1294. /*
  1295. * The next region to add is the start of a new region. It could be
  1296. * a whole region or it could be the first part of a new region. Because
  1297. * of this, the assumption here is that the type and size fields of all
  1298. * format structures fit into the first 32 bits of the structure.
  1299. *
  1300. * This works because all regions must be 32 bit aligned. Therefore, we
  1301. * either have both fields or we have neither field. In the case we have
  1302. * neither field, the data part of the region is zero length. We only have
  1303. * a log_op_header and can throw away the header since a new one will appear
  1304. * later. If we have at least 4 bytes, then we can determine how many regions
  1305. * will appear in the current log item.
  1306. */
  1307. STATIC int
  1308. xlog_recover_add_to_trans(
  1309. xlog_recover_t *trans,
  1310. xfs_caddr_t dp,
  1311. int len)
  1312. {
  1313. xfs_inode_log_format_t *in_f; /* any will do */
  1314. xlog_recover_item_t *item;
  1315. xfs_caddr_t ptr;
  1316. if (!len)
  1317. return 0;
  1318. item = trans->r_itemq;
  1319. if (item == NULL) {
  1320. /* we need to catch log corruptions here */
  1321. if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
  1322. xlog_warn("XFS: xlog_recover_add_to_trans: "
  1323. "bad header magic number");
  1324. ASSERT(0);
  1325. return XFS_ERROR(EIO);
  1326. }
  1327. if (len == sizeof(xfs_trans_header_t))
  1328. xlog_recover_add_item(&trans->r_itemq);
  1329. memcpy(&trans->r_theader, dp, len); /* d, s, l */
  1330. return 0;
  1331. }
  1332. ptr = kmem_alloc(len, KM_SLEEP);
  1333. memcpy(ptr, dp, len);
  1334. in_f = (xfs_inode_log_format_t *)ptr;
  1335. if (item->ri_prev->ri_total != 0 &&
  1336. item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
  1337. xlog_recover_add_item(&trans->r_itemq);
  1338. }
  1339. item = trans->r_itemq;
  1340. item = item->ri_prev;
  1341. if (item->ri_total == 0) { /* first region to be added */
  1342. if (in_f->ilf_size == 0 ||
  1343. in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
  1344. xlog_warn(
  1345. "XFS: bad number of regions (%d) in inode log format",
  1346. in_f->ilf_size);
  1347. ASSERT(0);
  1348. return XFS_ERROR(EIO);
  1349. }
  1350. item->ri_total = in_f->ilf_size;
  1351. item->ri_buf =
  1352. kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
  1353. KM_SLEEP);
  1354. }
  1355. ASSERT(item->ri_total > item->ri_cnt);
  1356. /* Description region is ri_buf[0] */
  1357. item->ri_buf[item->ri_cnt].i_addr = ptr;
  1358. item->ri_buf[item->ri_cnt].i_len = len;
  1359. item->ri_cnt++;
  1360. return 0;
  1361. }
  1362. STATIC void
  1363. xlog_recover_new_tid(
  1364. xlog_recover_t **q,
  1365. xlog_tid_t tid,
  1366. xfs_lsn_t lsn)
  1367. {
  1368. xlog_recover_t *trans;
  1369. trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
  1370. trans->r_log_tid = tid;
  1371. trans->r_lsn = lsn;
  1372. xlog_recover_put_hashq(q, trans);
  1373. }
  1374. STATIC int
  1375. xlog_recover_unlink_tid(
  1376. xlog_recover_t **q,
  1377. xlog_recover_t *trans)
  1378. {
  1379. xlog_recover_t *tp;
  1380. int found = 0;
  1381. ASSERT(trans != NULL);
  1382. if (trans == *q) {
  1383. *q = (*q)->r_next;
  1384. } else {
  1385. tp = *q;
  1386. while (tp) {
  1387. if (tp->r_next == trans) {
  1388. found = 1;
  1389. break;
  1390. }
  1391. tp = tp->r_next;
  1392. }
  1393. if (!found) {
  1394. xlog_warn(
  1395. "XFS: xlog_recover_unlink_tid: trans not found");
  1396. ASSERT(0);
  1397. return XFS_ERROR(EIO);
  1398. }
  1399. tp->r_next = tp->r_next->r_next;
  1400. }
  1401. return 0;
  1402. }
  1403. STATIC void
  1404. xlog_recover_insert_item_backq(
  1405. xlog_recover_item_t **q,
  1406. xlog_recover_item_t *item)
  1407. {
  1408. if (*q == NULL) {
  1409. item->ri_prev = item->ri_next = item;
  1410. *q = item;
  1411. } else {
  1412. item->ri_next = *q;
  1413. item->ri_prev = (*q)->ri_prev;
  1414. (*q)->ri_prev = item;
  1415. item->ri_prev->ri_next = item;
  1416. }
  1417. }
  1418. STATIC void
  1419. xlog_recover_insert_item_frontq(
  1420. xlog_recover_item_t **q,
  1421. xlog_recover_item_t *item)
  1422. {
  1423. xlog_recover_insert_item_backq(q, item);
  1424. *q = item;
  1425. }
  1426. STATIC int
  1427. xlog_recover_reorder_trans(
  1428. xlog_recover_t *trans)
  1429. {
  1430. xlog_recover_item_t *first_item, *itemq, *itemq_next;
  1431. xfs_buf_log_format_t *buf_f;
  1432. ushort flags = 0;
  1433. first_item = itemq = trans->r_itemq;
  1434. trans->r_itemq = NULL;
  1435. do {
  1436. itemq_next = itemq->ri_next;
  1437. buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
  1438. switch (ITEM_TYPE(itemq)) {
  1439. case XFS_LI_BUF:
  1440. flags = buf_f->blf_flags;
  1441. if (!(flags & XFS_BLI_CANCEL)) {
  1442. xlog_recover_insert_item_frontq(&trans->r_itemq,
  1443. itemq);
  1444. break;
  1445. }
  1446. case XFS_LI_INODE:
  1447. case XFS_LI_DQUOT:
  1448. case XFS_LI_QUOTAOFF:
  1449. case XFS_LI_EFD:
  1450. case XFS_LI_EFI:
  1451. xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
  1452. break;
  1453. default:
  1454. xlog_warn(
  1455. "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
  1456. ASSERT(0);
  1457. return XFS_ERROR(EIO);
  1458. }
  1459. itemq = itemq_next;
  1460. } while (first_item != itemq);
  1461. return 0;
  1462. }
  1463. /*
  1464. * Build up the table of buf cancel records so that we don't replay
  1465. * cancelled data in the second pass. For buffer records that are
  1466. * not cancel records, there is nothing to do here so we just return.
  1467. *
  1468. * If we get a cancel record which is already in the table, this indicates
  1469. * that the buffer was cancelled multiple times. In order to ensure
  1470. * that during pass 2 we keep the record in the table until we reach its
  1471. * last occurrence in the log, we keep a reference count in the cancel
  1472. * record in the table to tell us how many times we expect to see this
  1473. * record during the second pass.
  1474. */
  1475. STATIC void
  1476. xlog_recover_do_buffer_pass1(
  1477. xlog_t *log,
  1478. xfs_buf_log_format_t *buf_f)
  1479. {
  1480. xfs_buf_cancel_t *bcp;
  1481. xfs_buf_cancel_t *nextp;
  1482. xfs_buf_cancel_t *prevp;
  1483. xfs_buf_cancel_t **bucket;
  1484. xfs_daddr_t blkno = 0;
  1485. uint len = 0;
  1486. ushort flags = 0;
  1487. switch (buf_f->blf_type) {
  1488. case XFS_LI_BUF:
  1489. blkno = buf_f->blf_blkno;
  1490. len = buf_f->blf_len;
  1491. flags = buf_f->blf_flags;
  1492. break;
  1493. }
  1494. /*
  1495. * If this isn't a cancel buffer item, then just return.
  1496. */
  1497. if (!(flags & XFS_BLI_CANCEL))
  1498. return;
  1499. /*
  1500. * Insert an xfs_buf_cancel record into the hash table of
  1501. * them. If there is already an identical record, bump
  1502. * its reference count.
  1503. */
  1504. bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
  1505. XLOG_BC_TABLE_SIZE];
  1506. /*
  1507. * If the hash bucket is empty then just insert a new record into
  1508. * the bucket.
  1509. */
  1510. if (*bucket == NULL) {
  1511. bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
  1512. KM_SLEEP);
  1513. bcp->bc_blkno = blkno;
  1514. bcp->bc_len = len;
  1515. bcp->bc_refcount = 1;
  1516. bcp->bc_next = NULL;
  1517. *bucket = bcp;
  1518. return;
  1519. }
  1520. /*
  1521. * The hash bucket is not empty, so search for duplicates of our
  1522. * record. If we find one them just bump its refcount. If not
  1523. * then add us at the end of the list.
  1524. */
  1525. prevp = NULL;
  1526. nextp = *bucket;
  1527. while (nextp != NULL) {
  1528. if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
  1529. nextp->bc_refcount++;
  1530. return;
  1531. }
  1532. prevp = nextp;
  1533. nextp = nextp->bc_next;
  1534. }
  1535. ASSERT(prevp != NULL);
  1536. bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
  1537. KM_SLEEP);
  1538. bcp->bc_blkno = blkno;
  1539. bcp->bc_len = len;
  1540. bcp->bc_refcount = 1;
  1541. bcp->bc_next = NULL;
  1542. prevp->bc_next = bcp;
  1543. }
  1544. /*
  1545. * Check to see whether the buffer being recovered has a corresponding
  1546. * entry in the buffer cancel record table. If it does then return 1
  1547. * so that it will be cancelled, otherwise return 0. If the buffer is
  1548. * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
  1549. * the refcount on the entry in the table and remove it from the table
  1550. * if this is the last reference.
  1551. *
  1552. * We remove the cancel record from the table when we encounter its
  1553. * last occurrence in the log so that if the same buffer is re-used
  1554. * again after its last cancellation we actually replay the changes
  1555. * made at that point.
  1556. */
  1557. STATIC int
  1558. xlog_check_buffer_cancelled(
  1559. xlog_t *log,
  1560. xfs_daddr_t blkno,
  1561. uint len,
  1562. ushort flags)
  1563. {
  1564. xfs_buf_cancel_t *bcp;
  1565. xfs_buf_cancel_t *prevp;
  1566. xfs_buf_cancel_t **bucket;
  1567. if (log->l_buf_cancel_table == NULL) {
  1568. /*
  1569. * There is nothing in the table built in pass one,
  1570. * so this buffer must not be cancelled.
  1571. */
  1572. ASSERT(!(flags & XFS_BLI_CANCEL));
  1573. return 0;
  1574. }
  1575. bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
  1576. XLOG_BC_TABLE_SIZE];
  1577. bcp = *bucket;
  1578. if (bcp == NULL) {
  1579. /*
  1580. * There is no corresponding entry in the table built
  1581. * in pass one, so this buffer has not been cancelled.
  1582. */
  1583. ASSERT(!(flags & XFS_BLI_CANCEL));
  1584. return 0;
  1585. }
  1586. /*
  1587. * Search for an entry in the buffer cancel table that
  1588. * matches our buffer.
  1589. */
  1590. prevp = NULL;
  1591. while (bcp != NULL) {
  1592. if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
  1593. /*
  1594. * We've go a match, so return 1 so that the
  1595. * recovery of this buffer is cancelled.
  1596. * If this buffer is actually a buffer cancel
  1597. * log item, then decrement the refcount on the
  1598. * one in the table and remove it if this is the
  1599. * last reference.
  1600. */
  1601. if (flags & XFS_BLI_CANCEL) {
  1602. bcp->bc_refcount--;
  1603. if (bcp->bc_refcount == 0) {
  1604. if (prevp == NULL) {
  1605. *bucket = bcp->bc_next;
  1606. } else {
  1607. prevp->bc_next = bcp->bc_next;
  1608. }
  1609. kmem_free(bcp);
  1610. }
  1611. }
  1612. return 1;
  1613. }
  1614. prevp = bcp;
  1615. bcp = bcp->bc_next;
  1616. }
  1617. /*
  1618. * We didn't find a corresponding entry in the table, so
  1619. * return 0 so that the buffer is NOT cancelled.
  1620. */
  1621. ASSERT(!(flags & XFS_BLI_CANCEL));
  1622. return 0;
  1623. }
  1624. STATIC int
  1625. xlog_recover_do_buffer_pass2(
  1626. xlog_t *log,
  1627. xfs_buf_log_format_t *buf_f)
  1628. {
  1629. xfs_daddr_t blkno = 0;
  1630. ushort flags = 0;
  1631. uint len = 0;
  1632. switch (buf_f->blf_type) {
  1633. case XFS_LI_BUF:
  1634. blkno = buf_f->blf_blkno;
  1635. flags = buf_f->blf_flags;
  1636. len = buf_f->blf_len;
  1637. break;
  1638. }
  1639. return xlog_check_buffer_cancelled(log, blkno, len, flags);
  1640. }
  1641. /*
  1642. * Perform recovery for a buffer full of inodes. In these buffers,
  1643. * the only data which should be recovered is that which corresponds
  1644. * to the di_next_unlinked pointers in the on disk inode structures.
  1645. * The rest of the data for the inodes is always logged through the
  1646. * inodes themselves rather than the inode buffer and is recovered
  1647. * in xlog_recover_do_inode_trans().
  1648. *
  1649. * The only time when buffers full of inodes are fully recovered is
  1650. * when the buffer is full of newly allocated inodes. In this case
  1651. * the buffer will not be marked as an inode buffer and so will be
  1652. * sent to xlog_recover_do_reg_buffer() below during recovery.
  1653. */
  1654. STATIC int
  1655. xlog_recover_do_inode_buffer(
  1656. xfs_mount_t *mp,
  1657. xlog_recover_item_t *item,
  1658. xfs_buf_t *bp,
  1659. xfs_buf_log_format_t *buf_f)
  1660. {
  1661. int i;
  1662. int item_index;
  1663. int bit;
  1664. int nbits;
  1665. int reg_buf_offset;
  1666. int reg_buf_bytes;
  1667. int next_unlinked_offset;
  1668. int inodes_per_buf;
  1669. xfs_agino_t *logged_nextp;
  1670. xfs_agino_t *buffer_nextp;
  1671. unsigned int *data_map = NULL;
  1672. unsigned int map_size = 0;
  1673. switch (buf_f->blf_type) {
  1674. case XFS_LI_BUF:
  1675. data_map = buf_f->blf_data_map;
  1676. map_size = buf_f->blf_map_size;
  1677. break;
  1678. }
  1679. /*
  1680. * Set the variables corresponding to the current region to
  1681. * 0 so that we'll initialize them on the first pass through
  1682. * the loop.
  1683. */
  1684. reg_buf_offset = 0;
  1685. reg_buf_bytes = 0;
  1686. bit = 0;
  1687. nbits = 0;
  1688. item_index = 0;
  1689. inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
  1690. for (i = 0; i < inodes_per_buf; i++) {
  1691. next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
  1692. offsetof(xfs_dinode_t, di_next_unlinked);
  1693. while (next_unlinked_offset >=
  1694. (reg_buf_offset + reg_buf_bytes)) {
  1695. /*
  1696. * The next di_next_unlinked field is beyond
  1697. * the current logged region. Find the next
  1698. * logged region that contains or is beyond
  1699. * the current di_next_unlinked field.
  1700. */
  1701. bit += nbits;
  1702. bit = xfs_next_bit(data_map, map_size, bit);
  1703. /*
  1704. * If there are no more logged regions in the
  1705. * buffer, then we're done.
  1706. */
  1707. if (bit == -1) {
  1708. return 0;
  1709. }
  1710. nbits = xfs_contig_bits(data_map, map_size,
  1711. bit);
  1712. ASSERT(nbits > 0);
  1713. reg_buf_offset = bit << XFS_BLI_SHIFT;
  1714. reg_buf_bytes = nbits << XFS_BLI_SHIFT;
  1715. item_index++;
  1716. }
  1717. /*
  1718. * If the current logged region starts after the current
  1719. * di_next_unlinked field, then move on to the next
  1720. * di_next_unlinked field.
  1721. */
  1722. if (next_unlinked_offset < reg_buf_offset) {
  1723. continue;
  1724. }
  1725. ASSERT(item->ri_buf[item_index].i_addr != NULL);
  1726. ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
  1727. ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
  1728. /*
  1729. * The current logged region contains a copy of the
  1730. * current di_next_unlinked field. Extract its value
  1731. * and copy it to the buffer copy.
  1732. */
  1733. logged_nextp = (xfs_agino_t *)
  1734. ((char *)(item->ri_buf[item_index].i_addr) +
  1735. (next_unlinked_offset - reg_buf_offset));
  1736. if (unlikely(*logged_nextp == 0)) {
  1737. xfs_fs_cmn_err(CE_ALERT, mp,
  1738. "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
  1739. item, bp);
  1740. XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
  1741. XFS_ERRLEVEL_LOW, mp);
  1742. return XFS_ERROR(EFSCORRUPTED);
  1743. }
  1744. buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
  1745. next_unlinked_offset);
  1746. *buffer_nextp = *logged_nextp;
  1747. }
  1748. return 0;
  1749. }
  1750. /*
  1751. * Perform a 'normal' buffer recovery. Each logged region of the
  1752. * buffer should be copied over the corresponding region in the
  1753. * given buffer. The bitmap in the buf log format structure indicates
  1754. * where to place the logged data.
  1755. */
  1756. /*ARGSUSED*/
  1757. STATIC void
  1758. xlog_recover_do_reg_buffer(
  1759. xlog_recover_item_t *item,
  1760. xfs_buf_t *bp,
  1761. xfs_buf_log_format_t *buf_f)
  1762. {
  1763. int i;
  1764. int bit;
  1765. int nbits;
  1766. unsigned int *data_map = NULL;
  1767. unsigned int map_size = 0;
  1768. int error;
  1769. switch (buf_f->blf_type) {
  1770. case XFS_LI_BUF:
  1771. data_map = buf_f->blf_data_map;
  1772. map_size = buf_f->blf_map_size;
  1773. break;
  1774. }
  1775. bit = 0;
  1776. i = 1; /* 0 is the buf format structure */
  1777. while (1) {
  1778. bit = xfs_next_bit(data_map, map_size, bit);
  1779. if (bit == -1)
  1780. break;
  1781. nbits = xfs_contig_bits(data_map, map_size, bit);
  1782. ASSERT(nbits > 0);
  1783. ASSERT(item->ri_buf[i].i_addr != NULL);
  1784. ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
  1785. ASSERT(XFS_BUF_COUNT(bp) >=
  1786. ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
  1787. /*
  1788. * Do a sanity check if this is a dquot buffer. Just checking
  1789. * the first dquot in the buffer should do. XXXThis is
  1790. * probably a good thing to do for other buf types also.
  1791. */
  1792. error = 0;
  1793. if (buf_f->blf_flags &
  1794. (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
  1795. if (item->ri_buf[i].i_addr == NULL) {
  1796. cmn_err(CE_ALERT,
  1797. "XFS: NULL dquot in %s.", __func__);
  1798. goto next;
  1799. }
  1800. if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
  1801. cmn_err(CE_ALERT,
  1802. "XFS: dquot too small (%d) in %s.",
  1803. item->ri_buf[i].i_len, __func__);
  1804. goto next;
  1805. }
  1806. error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
  1807. item->ri_buf[i].i_addr,
  1808. -1, 0, XFS_QMOPT_DOWARN,
  1809. "dquot_buf_recover");
  1810. if (error)
  1811. goto next;
  1812. }
  1813. memcpy(xfs_buf_offset(bp,
  1814. (uint)bit << XFS_BLI_SHIFT), /* dest */
  1815. item->ri_buf[i].i_addr, /* source */
  1816. nbits<<XFS_BLI_SHIFT); /* length */
  1817. next:
  1818. i++;
  1819. bit += nbits;
  1820. }
  1821. /* Shouldn't be any more regions */
  1822. ASSERT(i == item->ri_total);
  1823. }
  1824. /*
  1825. * Do some primitive error checking on ondisk dquot data structures.
  1826. */
  1827. int
  1828. xfs_qm_dqcheck(
  1829. xfs_disk_dquot_t *ddq,
  1830. xfs_dqid_t id,
  1831. uint type, /* used only when IO_dorepair is true */
  1832. uint flags,
  1833. char *str)
  1834. {
  1835. xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
  1836. int errs = 0;
  1837. /*
  1838. * We can encounter an uninitialized dquot buffer for 2 reasons:
  1839. * 1. If we crash while deleting the quotainode(s), and those blks got
  1840. * used for user data. This is because we take the path of regular
  1841. * file deletion; however, the size field of quotainodes is never
  1842. * updated, so all the tricks that we play in itruncate_finish
  1843. * don't quite matter.
  1844. *
  1845. * 2. We don't play the quota buffers when there's a quotaoff logitem.
  1846. * But the allocation will be replayed so we'll end up with an
  1847. * uninitialized quota block.
  1848. *
  1849. * This is all fine; things are still consistent, and we haven't lost
  1850. * any quota information. Just don't complain about bad dquot blks.
  1851. */
  1852. if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
  1853. if (flags & XFS_QMOPT_DOWARN)
  1854. cmn_err(CE_ALERT,
  1855. "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
  1856. str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
  1857. errs++;
  1858. }
  1859. if (ddq->d_version != XFS_DQUOT_VERSION) {
  1860. if (flags & XFS_QMOPT_DOWARN)
  1861. cmn_err(CE_ALERT,
  1862. "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
  1863. str, id, ddq->d_version, XFS_DQUOT_VERSION);
  1864. errs++;
  1865. }
  1866. if (ddq->d_flags != XFS_DQ_USER &&
  1867. ddq->d_flags != XFS_DQ_PROJ &&
  1868. ddq->d_flags != XFS_DQ_GROUP) {
  1869. if (flags & XFS_QMOPT_DOWARN)
  1870. cmn_err(CE_ALERT,
  1871. "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
  1872. str, id, ddq->d_flags);
  1873. errs++;
  1874. }
  1875. if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
  1876. if (flags & XFS_QMOPT_DOWARN)
  1877. cmn_err(CE_ALERT,
  1878. "%s : ondisk-dquot 0x%p, ID mismatch: "
  1879. "0x%x expected, found id 0x%x",
  1880. str, ddq, id, be32_to_cpu(ddq->d_id));
  1881. errs++;
  1882. }
  1883. if (!errs && ddq->d_id) {
  1884. if (ddq->d_blk_softlimit &&
  1885. be64_to_cpu(ddq->d_bcount) >=
  1886. be64_to_cpu(ddq->d_blk_softlimit)) {
  1887. if (!ddq->d_btimer) {
  1888. if (flags & XFS_QMOPT_DOWARN)
  1889. cmn_err(CE_ALERT,
  1890. "%s : Dquot ID 0x%x (0x%p) "
  1891. "BLK TIMER NOT STARTED",
  1892. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1893. errs++;
  1894. }
  1895. }
  1896. if (ddq->d_ino_softlimit &&
  1897. be64_to_cpu(ddq->d_icount) >=
  1898. be64_to_cpu(ddq->d_ino_softlimit)) {
  1899. if (!ddq->d_itimer) {
  1900. if (flags & XFS_QMOPT_DOWARN)
  1901. cmn_err(CE_ALERT,
  1902. "%s : Dquot ID 0x%x (0x%p) "
  1903. "INODE TIMER NOT STARTED",
  1904. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1905. errs++;
  1906. }
  1907. }
  1908. if (ddq->d_rtb_softlimit &&
  1909. be64_to_cpu(ddq->d_rtbcount) >=
  1910. be64_to_cpu(ddq->d_rtb_softlimit)) {
  1911. if (!ddq->d_rtbtimer) {
  1912. if (flags & XFS_QMOPT_DOWARN)
  1913. cmn_err(CE_ALERT,
  1914. "%s : Dquot ID 0x%x (0x%p) "
  1915. "RTBLK TIMER NOT STARTED",
  1916. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1917. errs++;
  1918. }
  1919. }
  1920. }
  1921. if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
  1922. return errs;
  1923. if (flags & XFS_QMOPT_DOWARN)
  1924. cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
  1925. /*
  1926. * Typically, a repair is only requested by quotacheck.
  1927. */
  1928. ASSERT(id != -1);
  1929. ASSERT(flags & XFS_QMOPT_DQREPAIR);
  1930. memset(d, 0, sizeof(xfs_dqblk_t));
  1931. d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
  1932. d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
  1933. d->dd_diskdq.d_flags = type;
  1934. d->dd_diskdq.d_id = cpu_to_be32(id);
  1935. return errs;
  1936. }
  1937. /*
  1938. * Perform a dquot buffer recovery.
  1939. * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
  1940. * (ie. USR or GRP), then just toss this buffer away; don't recover it.
  1941. * Else, treat it as a regular buffer and do recovery.
  1942. */
  1943. STATIC void
  1944. xlog_recover_do_dquot_buffer(
  1945. xfs_mount_t *mp,
  1946. xlog_t *log,
  1947. xlog_recover_item_t *item,
  1948. xfs_buf_t *bp,
  1949. xfs_buf_log_format_t *buf_f)
  1950. {
  1951. uint type;
  1952. /*
  1953. * Filesystems are required to send in quota flags at mount time.
  1954. */
  1955. if (mp->m_qflags == 0) {
  1956. return;
  1957. }
  1958. type = 0;
  1959. if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
  1960. type |= XFS_DQ_USER;
  1961. if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
  1962. type |= XFS_DQ_PROJ;
  1963. if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
  1964. type |= XFS_DQ_GROUP;
  1965. /*
  1966. * This type of quotas was turned off, so ignore this buffer
  1967. */
  1968. if (log->l_quotaoffs_flag & type)
  1969. return;
  1970. xlog_recover_do_reg_buffer(item, bp, buf_f);
  1971. }
  1972. /*
  1973. * This routine replays a modification made to a buffer at runtime.
  1974. * There are actually two types of buffer, regular and inode, which
  1975. * are handled differently. Inode buffers are handled differently
  1976. * in that we only recover a specific set of data from them, namely
  1977. * the inode di_next_unlinked fields. This is because all other inode
  1978. * data is actually logged via inode records and any data we replay
  1979. * here which overlaps that may be stale.
  1980. *
  1981. * When meta-data buffers are freed at run time we log a buffer item
  1982. * with the XFS_BLI_CANCEL bit set to indicate that previous copies
  1983. * of the buffer in the log should not be replayed at recovery time.
  1984. * This is so that if the blocks covered by the buffer are reused for
  1985. * file data before we crash we don't end up replaying old, freed
  1986. * meta-data into a user's file.
  1987. *
  1988. * To handle the cancellation of buffer log items, we make two passes
  1989. * over the log during recovery. During the first we build a table of
  1990. * those buffers which have been cancelled, and during the second we
  1991. * only replay those buffers which do not have corresponding cancel
  1992. * records in the table. See xlog_recover_do_buffer_pass[1,2] above
  1993. * for more details on the implementation of the table of cancel records.
  1994. */
  1995. STATIC int
  1996. xlog_recover_do_buffer_trans(
  1997. xlog_t *log,
  1998. xlog_recover_item_t *item,
  1999. int pass)
  2000. {
  2001. xfs_buf_log_format_t *buf_f;
  2002. xfs_mount_t *mp;
  2003. xfs_buf_t *bp;
  2004. int error;
  2005. int cancel;
  2006. xfs_daddr_t blkno;
  2007. int len;
  2008. ushort flags;
  2009. uint buf_flags;
  2010. buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
  2011. if (pass == XLOG_RECOVER_PASS1) {
  2012. /*
  2013. * In this pass we're only looking for buf items
  2014. * with the XFS_BLI_CANCEL bit set.
  2015. */
  2016. xlog_recover_do_buffer_pass1(log, buf_f);
  2017. return 0;
  2018. } else {
  2019. /*
  2020. * In this pass we want to recover all the buffers
  2021. * which have not been cancelled and are not
  2022. * cancellation buffers themselves. The routine
  2023. * we call here will tell us whether or not to
  2024. * continue with the replay of this buffer.
  2025. */
  2026. cancel = xlog_recover_do_buffer_pass2(log, buf_f);
  2027. if (cancel) {
  2028. return 0;
  2029. }
  2030. }
  2031. switch (buf_f->blf_type) {
  2032. case XFS_LI_BUF:
  2033. blkno = buf_f->blf_blkno;
  2034. len = buf_f->blf_len;
  2035. flags = buf_f->blf_flags;
  2036. break;
  2037. default:
  2038. xfs_fs_cmn_err(CE_ALERT, log->l_mp,
  2039. "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
  2040. buf_f->blf_type, log->l_mp->m_logname ?
  2041. log->l_mp->m_logname : "internal");
  2042. XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
  2043. XFS_ERRLEVEL_LOW, log->l_mp);
  2044. return XFS_ERROR(EFSCORRUPTED);
  2045. }
  2046. mp = log->l_mp;
  2047. buf_flags = XFS_BUF_LOCK;
  2048. if (!(flags & XFS_BLI_INODE_BUF))
  2049. buf_flags |= XFS_BUF_MAPPED;
  2050. bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, buf_flags);
  2051. if (XFS_BUF_ISERROR(bp)) {
  2052. xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
  2053. bp, blkno);
  2054. error = XFS_BUF_GETERROR(bp);
  2055. xfs_buf_relse(bp);
  2056. return error;
  2057. }
  2058. error = 0;
  2059. if (flags & XFS_BLI_INODE_BUF) {
  2060. error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
  2061. } else if (flags &
  2062. (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
  2063. xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
  2064. } else {
  2065. xlog_recover_do_reg_buffer(item, bp, buf_f);
  2066. }
  2067. if (error)
  2068. return XFS_ERROR(error);
  2069. /*
  2070. * Perform delayed write on the buffer. Asynchronous writes will be
  2071. * slower when taking into account all the buffers to be flushed.
  2072. *
  2073. * Also make sure that only inode buffers with good sizes stay in
  2074. * the buffer cache. The kernel moves inodes in buffers of 1 block
  2075. * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
  2076. * buffers in the log can be a different size if the log was generated
  2077. * by an older kernel using unclustered inode buffers or a newer kernel
  2078. * running with a different inode cluster size. Regardless, if the
  2079. * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
  2080. * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
  2081. * the buffer out of the buffer cache so that the buffer won't
  2082. * overlap with future reads of those inodes.
  2083. */
  2084. if (XFS_DINODE_MAGIC ==
  2085. be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
  2086. (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
  2087. (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
  2088. XFS_BUF_STALE(bp);
  2089. error = xfs_bwrite(mp, bp);
  2090. } else {
  2091. ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
  2092. bp->b_mount = mp;
  2093. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2094. xfs_bdwrite(mp, bp);
  2095. }
  2096. return (error);
  2097. }
  2098. STATIC int
  2099. xlog_recover_do_inode_trans(
  2100. xlog_t *log,
  2101. xlog_recover_item_t *item,
  2102. int pass)
  2103. {
  2104. xfs_inode_log_format_t *in_f;
  2105. xfs_mount_t *mp;
  2106. xfs_buf_t *bp;
  2107. xfs_dinode_t *dip;
  2108. xfs_ino_t ino;
  2109. int len;
  2110. xfs_caddr_t src;
  2111. xfs_caddr_t dest;
  2112. int error;
  2113. int attr_index;
  2114. uint fields;
  2115. xfs_icdinode_t *dicp;
  2116. int need_free = 0;
  2117. if (pass == XLOG_RECOVER_PASS1) {
  2118. return 0;
  2119. }
  2120. if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
  2121. in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
  2122. } else {
  2123. in_f = (xfs_inode_log_format_t *)kmem_alloc(
  2124. sizeof(xfs_inode_log_format_t), KM_SLEEP);
  2125. need_free = 1;
  2126. error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
  2127. if (error)
  2128. goto error;
  2129. }
  2130. ino = in_f->ilf_ino;
  2131. mp = log->l_mp;
  2132. /*
  2133. * Inode buffers can be freed, look out for it,
  2134. * and do not replay the inode.
  2135. */
  2136. if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
  2137. in_f->ilf_len, 0)) {
  2138. error = 0;
  2139. goto error;
  2140. }
  2141. bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
  2142. XFS_BUF_LOCK);
  2143. if (XFS_BUF_ISERROR(bp)) {
  2144. xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
  2145. bp, in_f->ilf_blkno);
  2146. error = XFS_BUF_GETERROR(bp);
  2147. xfs_buf_relse(bp);
  2148. goto error;
  2149. }
  2150. error = 0;
  2151. ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
  2152. dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
  2153. /*
  2154. * Make sure the place we're flushing out to really looks
  2155. * like an inode!
  2156. */
  2157. if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
  2158. xfs_buf_relse(bp);
  2159. xfs_fs_cmn_err(CE_ALERT, mp,
  2160. "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
  2161. dip, bp, ino);
  2162. XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
  2163. XFS_ERRLEVEL_LOW, mp);
  2164. error = EFSCORRUPTED;
  2165. goto error;
  2166. }
  2167. dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
  2168. if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
  2169. xfs_buf_relse(bp);
  2170. xfs_fs_cmn_err(CE_ALERT, mp,
  2171. "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
  2172. item, ino);
  2173. XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
  2174. XFS_ERRLEVEL_LOW, mp);
  2175. error = EFSCORRUPTED;
  2176. goto error;
  2177. }
  2178. /* Skip replay when the on disk inode is newer than the log one */
  2179. if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
  2180. /*
  2181. * Deal with the wrap case, DI_MAX_FLUSH is less
  2182. * than smaller numbers
  2183. */
  2184. if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
  2185. dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
  2186. /* do nothing */
  2187. } else {
  2188. xfs_buf_relse(bp);
  2189. error = 0;
  2190. goto error;
  2191. }
  2192. }
  2193. /* Take the opportunity to reset the flush iteration count */
  2194. dicp->di_flushiter = 0;
  2195. if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
  2196. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2197. (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
  2198. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
  2199. XFS_ERRLEVEL_LOW, mp, dicp);
  2200. xfs_buf_relse(bp);
  2201. xfs_fs_cmn_err(CE_ALERT, mp,
  2202. "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2203. item, dip, bp, ino);
  2204. error = EFSCORRUPTED;
  2205. goto error;
  2206. }
  2207. } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
  2208. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2209. (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
  2210. (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
  2211. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
  2212. XFS_ERRLEVEL_LOW, mp, dicp);
  2213. xfs_buf_relse(bp);
  2214. xfs_fs_cmn_err(CE_ALERT, mp,
  2215. "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2216. item, dip, bp, ino);
  2217. error = EFSCORRUPTED;
  2218. goto error;
  2219. }
  2220. }
  2221. if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
  2222. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
  2223. XFS_ERRLEVEL_LOW, mp, dicp);
  2224. xfs_buf_relse(bp);
  2225. xfs_fs_cmn_err(CE_ALERT, mp,
  2226. "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
  2227. item, dip, bp, ino,
  2228. dicp->di_nextents + dicp->di_anextents,
  2229. dicp->di_nblocks);
  2230. error = EFSCORRUPTED;
  2231. goto error;
  2232. }
  2233. if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
  2234. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
  2235. XFS_ERRLEVEL_LOW, mp, dicp);
  2236. xfs_buf_relse(bp);
  2237. xfs_fs_cmn_err(CE_ALERT, mp,
  2238. "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
  2239. item, dip, bp, ino, dicp->di_forkoff);
  2240. error = EFSCORRUPTED;
  2241. goto error;
  2242. }
  2243. if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
  2244. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
  2245. XFS_ERRLEVEL_LOW, mp, dicp);
  2246. xfs_buf_relse(bp);
  2247. xfs_fs_cmn_err(CE_ALERT, mp,
  2248. "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
  2249. item->ri_buf[1].i_len, item);
  2250. error = EFSCORRUPTED;
  2251. goto error;
  2252. }
  2253. /* The core is in in-core format */
  2254. xfs_dinode_to_disk(dip, (xfs_icdinode_t *)item->ri_buf[1].i_addr);
  2255. /* the rest is in on-disk format */
  2256. if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
  2257. memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
  2258. item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
  2259. item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
  2260. }
  2261. fields = in_f->ilf_fields;
  2262. switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
  2263. case XFS_ILOG_DEV:
  2264. xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
  2265. break;
  2266. case XFS_ILOG_UUID:
  2267. memcpy(XFS_DFORK_DPTR(dip),
  2268. &in_f->ilf_u.ilfu_uuid,
  2269. sizeof(uuid_t));
  2270. break;
  2271. }
  2272. if (in_f->ilf_size == 2)
  2273. goto write_inode_buffer;
  2274. len = item->ri_buf[2].i_len;
  2275. src = item->ri_buf[2].i_addr;
  2276. ASSERT(in_f->ilf_size <= 4);
  2277. ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
  2278. ASSERT(!(fields & XFS_ILOG_DFORK) ||
  2279. (len == in_f->ilf_dsize));
  2280. switch (fields & XFS_ILOG_DFORK) {
  2281. case XFS_ILOG_DDATA:
  2282. case XFS_ILOG_DEXT:
  2283. memcpy(XFS_DFORK_DPTR(dip), src, len);
  2284. break;
  2285. case XFS_ILOG_DBROOT:
  2286. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
  2287. (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
  2288. XFS_DFORK_DSIZE(dip, mp));
  2289. break;
  2290. default:
  2291. /*
  2292. * There are no data fork flags set.
  2293. */
  2294. ASSERT((fields & XFS_ILOG_DFORK) == 0);
  2295. break;
  2296. }
  2297. /*
  2298. * If we logged any attribute data, recover it. There may or
  2299. * may not have been any other non-core data logged in this
  2300. * transaction.
  2301. */
  2302. if (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2303. if (in_f->ilf_fields & XFS_ILOG_DFORK) {
  2304. attr_index = 3;
  2305. } else {
  2306. attr_index = 2;
  2307. }
  2308. len = item->ri_buf[attr_index].i_len;
  2309. src = item->ri_buf[attr_index].i_addr;
  2310. ASSERT(len == in_f->ilf_asize);
  2311. switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2312. case XFS_ILOG_ADATA:
  2313. case XFS_ILOG_AEXT:
  2314. dest = XFS_DFORK_APTR(dip);
  2315. ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
  2316. memcpy(dest, src, len);
  2317. break;
  2318. case XFS_ILOG_ABROOT:
  2319. dest = XFS_DFORK_APTR(dip);
  2320. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
  2321. len, (xfs_bmdr_block_t*)dest,
  2322. XFS_DFORK_ASIZE(dip, mp));
  2323. break;
  2324. default:
  2325. xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
  2326. ASSERT(0);
  2327. xfs_buf_relse(bp);
  2328. error = EIO;
  2329. goto error;
  2330. }
  2331. }
  2332. write_inode_buffer:
  2333. ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
  2334. bp->b_mount = mp;
  2335. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2336. xfs_bdwrite(mp, bp);
  2337. error:
  2338. if (need_free)
  2339. kmem_free(in_f);
  2340. return XFS_ERROR(error);
  2341. }
  2342. /*
  2343. * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
  2344. * structure, so that we know not to do any dquot item or dquot buffer recovery,
  2345. * of that type.
  2346. */
  2347. STATIC int
  2348. xlog_recover_do_quotaoff_trans(
  2349. xlog_t *log,
  2350. xlog_recover_item_t *item,
  2351. int pass)
  2352. {
  2353. xfs_qoff_logformat_t *qoff_f;
  2354. if (pass == XLOG_RECOVER_PASS2) {
  2355. return (0);
  2356. }
  2357. qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
  2358. ASSERT(qoff_f);
  2359. /*
  2360. * The logitem format's flag tells us if this was user quotaoff,
  2361. * group/project quotaoff or both.
  2362. */
  2363. if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
  2364. log->l_quotaoffs_flag |= XFS_DQ_USER;
  2365. if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
  2366. log->l_quotaoffs_flag |= XFS_DQ_PROJ;
  2367. if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
  2368. log->l_quotaoffs_flag |= XFS_DQ_GROUP;
  2369. return (0);
  2370. }
  2371. /*
  2372. * Recover a dquot record
  2373. */
  2374. STATIC int
  2375. xlog_recover_do_dquot_trans(
  2376. xlog_t *log,
  2377. xlog_recover_item_t *item,
  2378. int pass)
  2379. {
  2380. xfs_mount_t *mp;
  2381. xfs_buf_t *bp;
  2382. struct xfs_disk_dquot *ddq, *recddq;
  2383. int error;
  2384. xfs_dq_logformat_t *dq_f;
  2385. uint type;
  2386. if (pass == XLOG_RECOVER_PASS1) {
  2387. return 0;
  2388. }
  2389. mp = log->l_mp;
  2390. /*
  2391. * Filesystems are required to send in quota flags at mount time.
  2392. */
  2393. if (mp->m_qflags == 0)
  2394. return (0);
  2395. recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
  2396. if (item->ri_buf[1].i_addr == NULL) {
  2397. cmn_err(CE_ALERT,
  2398. "XFS: NULL dquot in %s.", __func__);
  2399. return XFS_ERROR(EIO);
  2400. }
  2401. if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
  2402. cmn_err(CE_ALERT,
  2403. "XFS: dquot too small (%d) in %s.",
  2404. item->ri_buf[1].i_len, __func__);
  2405. return XFS_ERROR(EIO);
  2406. }
  2407. /*
  2408. * This type of quotas was turned off, so ignore this record.
  2409. */
  2410. type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
  2411. ASSERT(type);
  2412. if (log->l_quotaoffs_flag & type)
  2413. return (0);
  2414. /*
  2415. * At this point we know that quota was _not_ turned off.
  2416. * Since the mount flags are not indicating to us otherwise, this
  2417. * must mean that quota is on, and the dquot needs to be replayed.
  2418. * Remember that we may not have fully recovered the superblock yet,
  2419. * so we can't do the usual trick of looking at the SB quota bits.
  2420. *
  2421. * The other possibility, of course, is that the quota subsystem was
  2422. * removed since the last mount - ENOSYS.
  2423. */
  2424. dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
  2425. ASSERT(dq_f);
  2426. if ((error = xfs_qm_dqcheck(recddq,
  2427. dq_f->qlf_id,
  2428. 0, XFS_QMOPT_DOWARN,
  2429. "xlog_recover_do_dquot_trans (log copy)"))) {
  2430. return XFS_ERROR(EIO);
  2431. }
  2432. ASSERT(dq_f->qlf_len == 1);
  2433. error = xfs_read_buf(mp, mp->m_ddev_targp,
  2434. dq_f->qlf_blkno,
  2435. XFS_FSB_TO_BB(mp, dq_f->qlf_len),
  2436. 0, &bp);
  2437. if (error) {
  2438. xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
  2439. bp, dq_f->qlf_blkno);
  2440. return error;
  2441. }
  2442. ASSERT(bp);
  2443. ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
  2444. /*
  2445. * At least the magic num portion should be on disk because this
  2446. * was among a chunk of dquots created earlier, and we did some
  2447. * minimal initialization then.
  2448. */
  2449. if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
  2450. "xlog_recover_do_dquot_trans")) {
  2451. xfs_buf_relse(bp);
  2452. return XFS_ERROR(EIO);
  2453. }
  2454. memcpy(ddq, recddq, item->ri_buf[1].i_len);
  2455. ASSERT(dq_f->qlf_size == 2);
  2456. ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
  2457. bp->b_mount = mp;
  2458. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2459. xfs_bdwrite(mp, bp);
  2460. return (0);
  2461. }
  2462. /*
  2463. * This routine is called to create an in-core extent free intent
  2464. * item from the efi format structure which was logged on disk.
  2465. * It allocates an in-core efi, copies the extents from the format
  2466. * structure into it, and adds the efi to the AIL with the given
  2467. * LSN.
  2468. */
  2469. STATIC int
  2470. xlog_recover_do_efi_trans(
  2471. xlog_t *log,
  2472. xlog_recover_item_t *item,
  2473. xfs_lsn_t lsn,
  2474. int pass)
  2475. {
  2476. int error;
  2477. xfs_mount_t *mp;
  2478. xfs_efi_log_item_t *efip;
  2479. xfs_efi_log_format_t *efi_formatp;
  2480. if (pass == XLOG_RECOVER_PASS1) {
  2481. return 0;
  2482. }
  2483. efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
  2484. mp = log->l_mp;
  2485. efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
  2486. if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
  2487. &(efip->efi_format)))) {
  2488. xfs_efi_item_free(efip);
  2489. return error;
  2490. }
  2491. efip->efi_next_extent = efi_formatp->efi_nextents;
  2492. efip->efi_flags |= XFS_EFI_COMMITTED;
  2493. spin_lock(&log->l_ailp->xa_lock);
  2494. /*
  2495. * xfs_trans_ail_update() drops the AIL lock.
  2496. */
  2497. xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn);
  2498. return 0;
  2499. }
  2500. /*
  2501. * This routine is called when an efd format structure is found in
  2502. * a committed transaction in the log. It's purpose is to cancel
  2503. * the corresponding efi if it was still in the log. To do this
  2504. * it searches the AIL for the efi with an id equal to that in the
  2505. * efd format structure. If we find it, we remove the efi from the
  2506. * AIL and free it.
  2507. */
  2508. STATIC void
  2509. xlog_recover_do_efd_trans(
  2510. xlog_t *log,
  2511. xlog_recover_item_t *item,
  2512. int pass)
  2513. {
  2514. xfs_efd_log_format_t *efd_formatp;
  2515. xfs_efi_log_item_t *efip = NULL;
  2516. xfs_log_item_t *lip;
  2517. __uint64_t efi_id;
  2518. struct xfs_ail_cursor cur;
  2519. struct xfs_ail *ailp = log->l_ailp;
  2520. if (pass == XLOG_RECOVER_PASS1) {
  2521. return;
  2522. }
  2523. efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
  2524. ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
  2525. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
  2526. (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
  2527. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
  2528. efi_id = efd_formatp->efd_efi_id;
  2529. /*
  2530. * Search for the efi with the id in the efd format structure
  2531. * in the AIL.
  2532. */
  2533. spin_lock(&ailp->xa_lock);
  2534. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2535. while (lip != NULL) {
  2536. if (lip->li_type == XFS_LI_EFI) {
  2537. efip = (xfs_efi_log_item_t *)lip;
  2538. if (efip->efi_format.efi_id == efi_id) {
  2539. /*
  2540. * xfs_trans_ail_delete() drops the
  2541. * AIL lock.
  2542. */
  2543. xfs_trans_ail_delete(ailp, lip);
  2544. xfs_efi_item_free(efip);
  2545. spin_lock(&ailp->xa_lock);
  2546. break;
  2547. }
  2548. }
  2549. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2550. }
  2551. xfs_trans_ail_cursor_done(ailp, &cur);
  2552. spin_unlock(&ailp->xa_lock);
  2553. }
  2554. /*
  2555. * Perform the transaction
  2556. *
  2557. * If the transaction modifies a buffer or inode, do it now. Otherwise,
  2558. * EFIs and EFDs get queued up by adding entries into the AIL for them.
  2559. */
  2560. STATIC int
  2561. xlog_recover_do_trans(
  2562. xlog_t *log,
  2563. xlog_recover_t *trans,
  2564. int pass)
  2565. {
  2566. int error = 0;
  2567. xlog_recover_item_t *item, *first_item;
  2568. error = xlog_recover_reorder_trans(trans);
  2569. if (error)
  2570. return error;
  2571. first_item = item = trans->r_itemq;
  2572. do {
  2573. switch (ITEM_TYPE(item)) {
  2574. case XFS_LI_BUF:
  2575. error = xlog_recover_do_buffer_trans(log, item, pass);
  2576. break;
  2577. case XFS_LI_INODE:
  2578. error = xlog_recover_do_inode_trans(log, item, pass);
  2579. break;
  2580. case XFS_LI_EFI:
  2581. error = xlog_recover_do_efi_trans(log, item,
  2582. trans->r_lsn, pass);
  2583. break;
  2584. case XFS_LI_EFD:
  2585. xlog_recover_do_efd_trans(log, item, pass);
  2586. error = 0;
  2587. break;
  2588. case XFS_LI_DQUOT:
  2589. error = xlog_recover_do_dquot_trans(log, item, pass);
  2590. break;
  2591. case XFS_LI_QUOTAOFF:
  2592. error = xlog_recover_do_quotaoff_trans(log, item,
  2593. pass);
  2594. break;
  2595. default:
  2596. xlog_warn(
  2597. "XFS: invalid item type (%d) xlog_recover_do_trans", ITEM_TYPE(item));
  2598. ASSERT(0);
  2599. error = XFS_ERROR(EIO);
  2600. break;
  2601. }
  2602. if (error)
  2603. return error;
  2604. item = item->ri_next;
  2605. } while (first_item != item);
  2606. return 0;
  2607. }
  2608. /*
  2609. * Free up any resources allocated by the transaction
  2610. *
  2611. * Remember that EFIs, EFDs, and IUNLINKs are handled later.
  2612. */
  2613. STATIC void
  2614. xlog_recover_free_trans(
  2615. xlog_recover_t *trans)
  2616. {
  2617. xlog_recover_item_t *first_item, *item, *free_item;
  2618. int i;
  2619. item = first_item = trans->r_itemq;
  2620. do {
  2621. free_item = item;
  2622. item = item->ri_next;
  2623. /* Free the regions in the item. */
  2624. for (i = 0; i < free_item->ri_cnt; i++) {
  2625. kmem_free(free_item->ri_buf[i].i_addr);
  2626. }
  2627. /* Free the item itself */
  2628. kmem_free(free_item->ri_buf);
  2629. kmem_free(free_item);
  2630. } while (first_item != item);
  2631. /* Free the transaction recover structure */
  2632. kmem_free(trans);
  2633. }
  2634. STATIC int
  2635. xlog_recover_commit_trans(
  2636. xlog_t *log,
  2637. xlog_recover_t **q,
  2638. xlog_recover_t *trans,
  2639. int pass)
  2640. {
  2641. int error;
  2642. if ((error = xlog_recover_unlink_tid(q, trans)))
  2643. return error;
  2644. if ((error = xlog_recover_do_trans(log, trans, pass)))
  2645. return error;
  2646. xlog_recover_free_trans(trans); /* no error */
  2647. return 0;
  2648. }
  2649. STATIC int
  2650. xlog_recover_unmount_trans(
  2651. xlog_recover_t *trans)
  2652. {
  2653. /* Do nothing now */
  2654. xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
  2655. return 0;
  2656. }
  2657. /*
  2658. * There are two valid states of the r_state field. 0 indicates that the
  2659. * transaction structure is in a normal state. We have either seen the
  2660. * start of the transaction or the last operation we added was not a partial
  2661. * operation. If the last operation we added to the transaction was a
  2662. * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
  2663. *
  2664. * NOTE: skip LRs with 0 data length.
  2665. */
  2666. STATIC int
  2667. xlog_recover_process_data(
  2668. xlog_t *log,
  2669. xlog_recover_t *rhash[],
  2670. xlog_rec_header_t *rhead,
  2671. xfs_caddr_t dp,
  2672. int pass)
  2673. {
  2674. xfs_caddr_t lp;
  2675. int num_logops;
  2676. xlog_op_header_t *ohead;
  2677. xlog_recover_t *trans;
  2678. xlog_tid_t tid;
  2679. int error;
  2680. unsigned long hash;
  2681. uint flags;
  2682. lp = dp + be32_to_cpu(rhead->h_len);
  2683. num_logops = be32_to_cpu(rhead->h_num_logops);
  2684. /* check the log format matches our own - else we can't recover */
  2685. if (xlog_header_check_recover(log->l_mp, rhead))
  2686. return (XFS_ERROR(EIO));
  2687. while ((dp < lp) && num_logops) {
  2688. ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
  2689. ohead = (xlog_op_header_t *)dp;
  2690. dp += sizeof(xlog_op_header_t);
  2691. if (ohead->oh_clientid != XFS_TRANSACTION &&
  2692. ohead->oh_clientid != XFS_LOG) {
  2693. xlog_warn(
  2694. "XFS: xlog_recover_process_data: bad clientid");
  2695. ASSERT(0);
  2696. return (XFS_ERROR(EIO));
  2697. }
  2698. tid = be32_to_cpu(ohead->oh_tid);
  2699. hash = XLOG_RHASH(tid);
  2700. trans = xlog_recover_find_tid(rhash[hash], tid);
  2701. if (trans == NULL) { /* not found; add new tid */
  2702. if (ohead->oh_flags & XLOG_START_TRANS)
  2703. xlog_recover_new_tid(&rhash[hash], tid,
  2704. be64_to_cpu(rhead->h_lsn));
  2705. } else {
  2706. if (dp + be32_to_cpu(ohead->oh_len) > lp) {
  2707. xlog_warn(
  2708. "XFS: xlog_recover_process_data: bad length");
  2709. WARN_ON(1);
  2710. return (XFS_ERROR(EIO));
  2711. }
  2712. flags = ohead->oh_flags & ~XLOG_END_TRANS;
  2713. if (flags & XLOG_WAS_CONT_TRANS)
  2714. flags &= ~XLOG_CONTINUE_TRANS;
  2715. switch (flags) {
  2716. case XLOG_COMMIT_TRANS:
  2717. error = xlog_recover_commit_trans(log,
  2718. &rhash[hash], trans, pass);
  2719. break;
  2720. case XLOG_UNMOUNT_TRANS:
  2721. error = xlog_recover_unmount_trans(trans);
  2722. break;
  2723. case XLOG_WAS_CONT_TRANS:
  2724. error = xlog_recover_add_to_cont_trans(trans,
  2725. dp, be32_to_cpu(ohead->oh_len));
  2726. break;
  2727. case XLOG_START_TRANS:
  2728. xlog_warn(
  2729. "XFS: xlog_recover_process_data: bad transaction");
  2730. ASSERT(0);
  2731. error = XFS_ERROR(EIO);
  2732. break;
  2733. case 0:
  2734. case XLOG_CONTINUE_TRANS:
  2735. error = xlog_recover_add_to_trans(trans,
  2736. dp, be32_to_cpu(ohead->oh_len));
  2737. break;
  2738. default:
  2739. xlog_warn(
  2740. "XFS: xlog_recover_process_data: bad flag");
  2741. ASSERT(0);
  2742. error = XFS_ERROR(EIO);
  2743. break;
  2744. }
  2745. if (error)
  2746. return error;
  2747. }
  2748. dp += be32_to_cpu(ohead->oh_len);
  2749. num_logops--;
  2750. }
  2751. return 0;
  2752. }
  2753. /*
  2754. * Process an extent free intent item that was recovered from
  2755. * the log. We need to free the extents that it describes.
  2756. */
  2757. STATIC int
  2758. xlog_recover_process_efi(
  2759. xfs_mount_t *mp,
  2760. xfs_efi_log_item_t *efip)
  2761. {
  2762. xfs_efd_log_item_t *efdp;
  2763. xfs_trans_t *tp;
  2764. int i;
  2765. int error = 0;
  2766. xfs_extent_t *extp;
  2767. xfs_fsblock_t startblock_fsb;
  2768. ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
  2769. /*
  2770. * First check the validity of the extents described by the
  2771. * EFI. If any are bad, then assume that all are bad and
  2772. * just toss the EFI.
  2773. */
  2774. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2775. extp = &(efip->efi_format.efi_extents[i]);
  2776. startblock_fsb = XFS_BB_TO_FSB(mp,
  2777. XFS_FSB_TO_DADDR(mp, extp->ext_start));
  2778. if ((startblock_fsb == 0) ||
  2779. (extp->ext_len == 0) ||
  2780. (startblock_fsb >= mp->m_sb.sb_dblocks) ||
  2781. (extp->ext_len >= mp->m_sb.sb_agblocks)) {
  2782. /*
  2783. * This will pull the EFI from the AIL and
  2784. * free the memory associated with it.
  2785. */
  2786. xfs_efi_release(efip, efip->efi_format.efi_nextents);
  2787. return XFS_ERROR(EIO);
  2788. }
  2789. }
  2790. tp = xfs_trans_alloc(mp, 0);
  2791. error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
  2792. if (error)
  2793. goto abort_error;
  2794. efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
  2795. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2796. extp = &(efip->efi_format.efi_extents[i]);
  2797. error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
  2798. if (error)
  2799. goto abort_error;
  2800. xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
  2801. extp->ext_len);
  2802. }
  2803. efip->efi_flags |= XFS_EFI_RECOVERED;
  2804. error = xfs_trans_commit(tp, 0);
  2805. return error;
  2806. abort_error:
  2807. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2808. return error;
  2809. }
  2810. /*
  2811. * When this is called, all of the EFIs which did not have
  2812. * corresponding EFDs should be in the AIL. What we do now
  2813. * is free the extents associated with each one.
  2814. *
  2815. * Since we process the EFIs in normal transactions, they
  2816. * will be removed at some point after the commit. This prevents
  2817. * us from just walking down the list processing each one.
  2818. * We'll use a flag in the EFI to skip those that we've already
  2819. * processed and use the AIL iteration mechanism's generation
  2820. * count to try to speed this up at least a bit.
  2821. *
  2822. * When we start, we know that the EFIs are the only things in
  2823. * the AIL. As we process them, however, other items are added
  2824. * to the AIL. Since everything added to the AIL must come after
  2825. * everything already in the AIL, we stop processing as soon as
  2826. * we see something other than an EFI in the AIL.
  2827. */
  2828. STATIC int
  2829. xlog_recover_process_efis(
  2830. xlog_t *log)
  2831. {
  2832. xfs_log_item_t *lip;
  2833. xfs_efi_log_item_t *efip;
  2834. int error = 0;
  2835. struct xfs_ail_cursor cur;
  2836. struct xfs_ail *ailp;
  2837. ailp = log->l_ailp;
  2838. spin_lock(&ailp->xa_lock);
  2839. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2840. while (lip != NULL) {
  2841. /*
  2842. * We're done when we see something other than an EFI.
  2843. * There should be no EFIs left in the AIL now.
  2844. */
  2845. if (lip->li_type != XFS_LI_EFI) {
  2846. #ifdef DEBUG
  2847. for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
  2848. ASSERT(lip->li_type != XFS_LI_EFI);
  2849. #endif
  2850. break;
  2851. }
  2852. /*
  2853. * Skip EFIs that we've already processed.
  2854. */
  2855. efip = (xfs_efi_log_item_t *)lip;
  2856. if (efip->efi_flags & XFS_EFI_RECOVERED) {
  2857. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2858. continue;
  2859. }
  2860. spin_unlock(&ailp->xa_lock);
  2861. error = xlog_recover_process_efi(log->l_mp, efip);
  2862. spin_lock(&ailp->xa_lock);
  2863. if (error)
  2864. goto out;
  2865. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2866. }
  2867. out:
  2868. xfs_trans_ail_cursor_done(ailp, &cur);
  2869. spin_unlock(&ailp->xa_lock);
  2870. return error;
  2871. }
  2872. /*
  2873. * This routine performs a transaction to null out a bad inode pointer
  2874. * in an agi unlinked inode hash bucket.
  2875. */
  2876. STATIC void
  2877. xlog_recover_clear_agi_bucket(
  2878. xfs_mount_t *mp,
  2879. xfs_agnumber_t agno,
  2880. int bucket)
  2881. {
  2882. xfs_trans_t *tp;
  2883. xfs_agi_t *agi;
  2884. xfs_buf_t *agibp;
  2885. int offset;
  2886. int error;
  2887. tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
  2888. error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
  2889. 0, 0, 0);
  2890. if (error)
  2891. goto out_abort;
  2892. error = xfs_read_agi(mp, tp, agno, &agibp);
  2893. if (error)
  2894. goto out_abort;
  2895. agi = XFS_BUF_TO_AGI(agibp);
  2896. agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
  2897. offset = offsetof(xfs_agi_t, agi_unlinked) +
  2898. (sizeof(xfs_agino_t) * bucket);
  2899. xfs_trans_log_buf(tp, agibp, offset,
  2900. (offset + sizeof(xfs_agino_t) - 1));
  2901. error = xfs_trans_commit(tp, 0);
  2902. if (error)
  2903. goto out_error;
  2904. return;
  2905. out_abort:
  2906. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2907. out_error:
  2908. xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
  2909. "failed to clear agi %d. Continuing.", agno);
  2910. return;
  2911. }
  2912. STATIC xfs_agino_t
  2913. xlog_recover_process_one_iunlink(
  2914. struct xfs_mount *mp,
  2915. xfs_agnumber_t agno,
  2916. xfs_agino_t agino,
  2917. int bucket)
  2918. {
  2919. struct xfs_buf *ibp;
  2920. struct xfs_dinode *dip;
  2921. struct xfs_inode *ip;
  2922. xfs_ino_t ino;
  2923. int error;
  2924. ino = XFS_AGINO_TO_INO(mp, agno, agino);
  2925. error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
  2926. if (error)
  2927. goto fail;
  2928. /*
  2929. * Get the on disk inode to find the next inode in the bucket.
  2930. */
  2931. error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XFS_BUF_LOCK);
  2932. if (error)
  2933. goto fail_iput;
  2934. ASSERT(ip->i_d.di_nlink == 0);
  2935. ASSERT(ip->i_d.di_mode != 0);
  2936. /* setup for the next pass */
  2937. agino = be32_to_cpu(dip->di_next_unlinked);
  2938. xfs_buf_relse(ibp);
  2939. /*
  2940. * Prevent any DMAPI event from being sent when the reference on
  2941. * the inode is dropped.
  2942. */
  2943. ip->i_d.di_dmevmask = 0;
  2944. IRELE(ip);
  2945. return agino;
  2946. fail_iput:
  2947. IRELE(ip);
  2948. fail:
  2949. /*
  2950. * We can't read in the inode this bucket points to, or this inode
  2951. * is messed up. Just ditch this bucket of inodes. We will lose
  2952. * some inodes and space, but at least we won't hang.
  2953. *
  2954. * Call xlog_recover_clear_agi_bucket() to perform a transaction to
  2955. * clear the inode pointer in the bucket.
  2956. */
  2957. xlog_recover_clear_agi_bucket(mp, agno, bucket);
  2958. return NULLAGINO;
  2959. }
  2960. /*
  2961. * xlog_iunlink_recover
  2962. *
  2963. * This is called during recovery to process any inodes which
  2964. * we unlinked but not freed when the system crashed. These
  2965. * inodes will be on the lists in the AGI blocks. What we do
  2966. * here is scan all the AGIs and fully truncate and free any
  2967. * inodes found on the lists. Each inode is removed from the
  2968. * lists when it has been fully truncated and is freed. The
  2969. * freeing of the inode and its removal from the list must be
  2970. * atomic.
  2971. */
  2972. STATIC void
  2973. xlog_recover_process_iunlinks(
  2974. xlog_t *log)
  2975. {
  2976. xfs_mount_t *mp;
  2977. xfs_agnumber_t agno;
  2978. xfs_agi_t *agi;
  2979. xfs_buf_t *agibp;
  2980. xfs_agino_t agino;
  2981. int bucket;
  2982. int error;
  2983. uint mp_dmevmask;
  2984. mp = log->l_mp;
  2985. /*
  2986. * Prevent any DMAPI event from being sent while in this function.
  2987. */
  2988. mp_dmevmask = mp->m_dmevmask;
  2989. mp->m_dmevmask = 0;
  2990. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  2991. /*
  2992. * Find the agi for this ag.
  2993. */
  2994. error = xfs_read_agi(mp, NULL, agno, &agibp);
  2995. if (error) {
  2996. /*
  2997. * AGI is b0rked. Don't process it.
  2998. *
  2999. * We should probably mark the filesystem as corrupt
  3000. * after we've recovered all the ag's we can....
  3001. */
  3002. continue;
  3003. }
  3004. agi = XFS_BUF_TO_AGI(agibp);
  3005. for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
  3006. agino = be32_to_cpu(agi->agi_unlinked[bucket]);
  3007. while (agino != NULLAGINO) {
  3008. /*
  3009. * Release the agi buffer so that it can
  3010. * be acquired in the normal course of the
  3011. * transaction to truncate and free the inode.
  3012. */
  3013. xfs_buf_relse(agibp);
  3014. agino = xlog_recover_process_one_iunlink(mp,
  3015. agno, agino, bucket);
  3016. /*
  3017. * Reacquire the agibuffer and continue around
  3018. * the loop. This should never fail as we know
  3019. * the buffer was good earlier on.
  3020. */
  3021. error = xfs_read_agi(mp, NULL, agno, &agibp);
  3022. ASSERT(error == 0);
  3023. agi = XFS_BUF_TO_AGI(agibp);
  3024. }
  3025. }
  3026. /*
  3027. * Release the buffer for the current agi so we can
  3028. * go on to the next one.
  3029. */
  3030. xfs_buf_relse(agibp);
  3031. }
  3032. mp->m_dmevmask = mp_dmevmask;
  3033. }
  3034. #ifdef DEBUG
  3035. STATIC void
  3036. xlog_pack_data_checksum(
  3037. xlog_t *log,
  3038. xlog_in_core_t *iclog,
  3039. int size)
  3040. {
  3041. int i;
  3042. __be32 *up;
  3043. uint chksum = 0;
  3044. up = (__be32 *)iclog->ic_datap;
  3045. /* divide length by 4 to get # words */
  3046. for (i = 0; i < (size >> 2); i++) {
  3047. chksum ^= be32_to_cpu(*up);
  3048. up++;
  3049. }
  3050. iclog->ic_header.h_chksum = cpu_to_be32(chksum);
  3051. }
  3052. #else
  3053. #define xlog_pack_data_checksum(log, iclog, size)
  3054. #endif
  3055. /*
  3056. * Stamp cycle number in every block
  3057. */
  3058. void
  3059. xlog_pack_data(
  3060. xlog_t *log,
  3061. xlog_in_core_t *iclog,
  3062. int roundoff)
  3063. {
  3064. int i, j, k;
  3065. int size = iclog->ic_offset + roundoff;
  3066. __be32 cycle_lsn;
  3067. xfs_caddr_t dp;
  3068. xlog_pack_data_checksum(log, iclog, size);
  3069. cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
  3070. dp = iclog->ic_datap;
  3071. for (i = 0; i < BTOBB(size) &&
  3072. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  3073. iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
  3074. *(__be32 *)dp = cycle_lsn;
  3075. dp += BBSIZE;
  3076. }
  3077. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3078. xlog_in_core_2_t *xhdr = iclog->ic_data;
  3079. for ( ; i < BTOBB(size); i++) {
  3080. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3081. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3082. xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
  3083. *(__be32 *)dp = cycle_lsn;
  3084. dp += BBSIZE;
  3085. }
  3086. for (i = 1; i < log->l_iclog_heads; i++) {
  3087. xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
  3088. }
  3089. }
  3090. }
  3091. #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
  3092. STATIC void
  3093. xlog_unpack_data_checksum(
  3094. xlog_rec_header_t *rhead,
  3095. xfs_caddr_t dp,
  3096. xlog_t *log)
  3097. {
  3098. __be32 *up = (__be32 *)dp;
  3099. uint chksum = 0;
  3100. int i;
  3101. /* divide length by 4 to get # words */
  3102. for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
  3103. chksum ^= be32_to_cpu(*up);
  3104. up++;
  3105. }
  3106. if (chksum != be32_to_cpu(rhead->h_chksum)) {
  3107. if (rhead->h_chksum ||
  3108. ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
  3109. cmn_err(CE_DEBUG,
  3110. "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
  3111. be32_to_cpu(rhead->h_chksum), chksum);
  3112. cmn_err(CE_DEBUG,
  3113. "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
  3114. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3115. cmn_err(CE_DEBUG,
  3116. "XFS: LogR this is a LogV2 filesystem\n");
  3117. }
  3118. log->l_flags |= XLOG_CHKSUM_MISMATCH;
  3119. }
  3120. }
  3121. }
  3122. #else
  3123. #define xlog_unpack_data_checksum(rhead, dp, log)
  3124. #endif
  3125. STATIC void
  3126. xlog_unpack_data(
  3127. xlog_rec_header_t *rhead,
  3128. xfs_caddr_t dp,
  3129. xlog_t *log)
  3130. {
  3131. int i, j, k;
  3132. for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
  3133. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  3134. *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
  3135. dp += BBSIZE;
  3136. }
  3137. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3138. xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
  3139. for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
  3140. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3141. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3142. *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
  3143. dp += BBSIZE;
  3144. }
  3145. }
  3146. xlog_unpack_data_checksum(rhead, dp, log);
  3147. }
  3148. STATIC int
  3149. xlog_valid_rec_header(
  3150. xlog_t *log,
  3151. xlog_rec_header_t *rhead,
  3152. xfs_daddr_t blkno)
  3153. {
  3154. int hlen;
  3155. if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
  3156. XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
  3157. XFS_ERRLEVEL_LOW, log->l_mp);
  3158. return XFS_ERROR(EFSCORRUPTED);
  3159. }
  3160. if (unlikely(
  3161. (!rhead->h_version ||
  3162. (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
  3163. xlog_warn("XFS: %s: unrecognised log version (%d).",
  3164. __func__, be32_to_cpu(rhead->h_version));
  3165. return XFS_ERROR(EIO);
  3166. }
  3167. /* LR body must have data or it wouldn't have been written */
  3168. hlen = be32_to_cpu(rhead->h_len);
  3169. if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
  3170. XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
  3171. XFS_ERRLEVEL_LOW, log->l_mp);
  3172. return XFS_ERROR(EFSCORRUPTED);
  3173. }
  3174. if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
  3175. XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
  3176. XFS_ERRLEVEL_LOW, log->l_mp);
  3177. return XFS_ERROR(EFSCORRUPTED);
  3178. }
  3179. return 0;
  3180. }
  3181. /*
  3182. * Read the log from tail to head and process the log records found.
  3183. * Handle the two cases where the tail and head are in the same cycle
  3184. * and where the active portion of the log wraps around the end of
  3185. * the physical log separately. The pass parameter is passed through
  3186. * to the routines called to process the data and is not looked at
  3187. * here.
  3188. */
  3189. STATIC int
  3190. xlog_do_recovery_pass(
  3191. xlog_t *log,
  3192. xfs_daddr_t head_blk,
  3193. xfs_daddr_t tail_blk,
  3194. int pass)
  3195. {
  3196. xlog_rec_header_t *rhead;
  3197. xfs_daddr_t blk_no;
  3198. xfs_caddr_t offset;
  3199. xfs_buf_t *hbp, *dbp;
  3200. int error = 0, h_size;
  3201. int bblks, split_bblks;
  3202. int hblks, split_hblks, wrapped_hblks;
  3203. xlog_recover_t *rhash[XLOG_RHASH_SIZE];
  3204. ASSERT(head_blk != tail_blk);
  3205. /*
  3206. * Read the header of the tail block and get the iclog buffer size from
  3207. * h_size. Use this to tell how many sectors make up the log header.
  3208. */
  3209. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3210. /*
  3211. * When using variable length iclogs, read first sector of
  3212. * iclog header and extract the header size from it. Get a
  3213. * new hbp that is the correct size.
  3214. */
  3215. hbp = xlog_get_bp(log, 1);
  3216. if (!hbp)
  3217. return ENOMEM;
  3218. error = xlog_bread(log, tail_blk, 1, hbp, &offset);
  3219. if (error)
  3220. goto bread_err1;
  3221. rhead = (xlog_rec_header_t *)offset;
  3222. error = xlog_valid_rec_header(log, rhead, tail_blk);
  3223. if (error)
  3224. goto bread_err1;
  3225. h_size = be32_to_cpu(rhead->h_size);
  3226. if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
  3227. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  3228. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  3229. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  3230. hblks++;
  3231. xlog_put_bp(hbp);
  3232. hbp = xlog_get_bp(log, hblks);
  3233. } else {
  3234. hblks = 1;
  3235. }
  3236. } else {
  3237. ASSERT(log->l_sectbb_log == 0);
  3238. hblks = 1;
  3239. hbp = xlog_get_bp(log, 1);
  3240. h_size = XLOG_BIG_RECORD_BSIZE;
  3241. }
  3242. if (!hbp)
  3243. return ENOMEM;
  3244. dbp = xlog_get_bp(log, BTOBB(h_size));
  3245. if (!dbp) {
  3246. xlog_put_bp(hbp);
  3247. return ENOMEM;
  3248. }
  3249. memset(rhash, 0, sizeof(rhash));
  3250. if (tail_blk <= head_blk) {
  3251. for (blk_no = tail_blk; blk_no < head_blk; ) {
  3252. error = xlog_bread(log, blk_no, hblks, hbp, &offset);
  3253. if (error)
  3254. goto bread_err2;
  3255. rhead = (xlog_rec_header_t *)offset;
  3256. error = xlog_valid_rec_header(log, rhead, blk_no);
  3257. if (error)
  3258. goto bread_err2;
  3259. /* blocks in data section */
  3260. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3261. error = xlog_bread(log, blk_no + hblks, bblks, dbp,
  3262. &offset);
  3263. if (error)
  3264. goto bread_err2;
  3265. xlog_unpack_data(rhead, offset, log);
  3266. if ((error = xlog_recover_process_data(log,
  3267. rhash, rhead, offset, pass)))
  3268. goto bread_err2;
  3269. blk_no += bblks + hblks;
  3270. }
  3271. } else {
  3272. /*
  3273. * Perform recovery around the end of the physical log.
  3274. * When the head is not on the same cycle number as the tail,
  3275. * we can't do a sequential recovery as above.
  3276. */
  3277. blk_no = tail_blk;
  3278. while (blk_no < log->l_logBBsize) {
  3279. /*
  3280. * Check for header wrapping around physical end-of-log
  3281. */
  3282. offset = XFS_BUF_PTR(hbp);
  3283. split_hblks = 0;
  3284. wrapped_hblks = 0;
  3285. if (blk_no + hblks <= log->l_logBBsize) {
  3286. /* Read header in one read */
  3287. error = xlog_bread(log, blk_no, hblks, hbp,
  3288. &offset);
  3289. if (error)
  3290. goto bread_err2;
  3291. } else {
  3292. /* This LR is split across physical log end */
  3293. if (blk_no != log->l_logBBsize) {
  3294. /* some data before physical log end */
  3295. ASSERT(blk_no <= INT_MAX);
  3296. split_hblks = log->l_logBBsize - (int)blk_no;
  3297. ASSERT(split_hblks > 0);
  3298. error = xlog_bread(log, blk_no,
  3299. split_hblks, hbp,
  3300. &offset);
  3301. if (error)
  3302. goto bread_err2;
  3303. }
  3304. /*
  3305. * Note: this black magic still works with
  3306. * large sector sizes (non-512) only because:
  3307. * - we increased the buffer size originally
  3308. * by 1 sector giving us enough extra space
  3309. * for the second read;
  3310. * - the log start is guaranteed to be sector
  3311. * aligned;
  3312. * - we read the log end (LR header start)
  3313. * _first_, then the log start (LR header end)
  3314. * - order is important.
  3315. */
  3316. wrapped_hblks = hblks - split_hblks;
  3317. error = XFS_BUF_SET_PTR(hbp,
  3318. offset + BBTOB(split_hblks),
  3319. BBTOB(hblks - split_hblks));
  3320. if (error)
  3321. goto bread_err2;
  3322. error = xlog_bread_noalign(log, 0,
  3323. wrapped_hblks, hbp);
  3324. if (error)
  3325. goto bread_err2;
  3326. error = XFS_BUF_SET_PTR(hbp, offset,
  3327. BBTOB(hblks));
  3328. if (error)
  3329. goto bread_err2;
  3330. }
  3331. rhead = (xlog_rec_header_t *)offset;
  3332. error = xlog_valid_rec_header(log, rhead,
  3333. split_hblks ? blk_no : 0);
  3334. if (error)
  3335. goto bread_err2;
  3336. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3337. blk_no += hblks;
  3338. /* Read in data for log record */
  3339. if (blk_no + bblks <= log->l_logBBsize) {
  3340. error = xlog_bread(log, blk_no, bblks, dbp,
  3341. &offset);
  3342. if (error)
  3343. goto bread_err2;
  3344. } else {
  3345. /* This log record is split across the
  3346. * physical end of log */
  3347. offset = XFS_BUF_PTR(dbp);
  3348. split_bblks = 0;
  3349. if (blk_no != log->l_logBBsize) {
  3350. /* some data is before the physical
  3351. * end of log */
  3352. ASSERT(!wrapped_hblks);
  3353. ASSERT(blk_no <= INT_MAX);
  3354. split_bblks =
  3355. log->l_logBBsize - (int)blk_no;
  3356. ASSERT(split_bblks > 0);
  3357. error = xlog_bread(log, blk_no,
  3358. split_bblks, dbp,
  3359. &offset);
  3360. if (error)
  3361. goto bread_err2;
  3362. }
  3363. /*
  3364. * Note: this black magic still works with
  3365. * large sector sizes (non-512) only because:
  3366. * - we increased the buffer size originally
  3367. * by 1 sector giving us enough extra space
  3368. * for the second read;
  3369. * - the log start is guaranteed to be sector
  3370. * aligned;
  3371. * - we read the log end (LR header start)
  3372. * _first_, then the log start (LR header end)
  3373. * - order is important.
  3374. */
  3375. error = XFS_BUF_SET_PTR(dbp,
  3376. offset + BBTOB(split_bblks),
  3377. BBTOB(bblks - split_bblks));
  3378. if (error)
  3379. goto bread_err2;
  3380. error = xlog_bread_noalign(log, wrapped_hblks,
  3381. bblks - split_bblks,
  3382. dbp);
  3383. if (error)
  3384. goto bread_err2;
  3385. error = XFS_BUF_SET_PTR(dbp, offset, h_size);
  3386. if (error)
  3387. goto bread_err2;
  3388. }
  3389. xlog_unpack_data(rhead, offset, log);
  3390. if ((error = xlog_recover_process_data(log, rhash,
  3391. rhead, offset, pass)))
  3392. goto bread_err2;
  3393. blk_no += bblks;
  3394. }
  3395. ASSERT(blk_no >= log->l_logBBsize);
  3396. blk_no -= log->l_logBBsize;
  3397. /* read first part of physical log */
  3398. while (blk_no < head_blk) {
  3399. error = xlog_bread(log, blk_no, hblks, hbp, &offset);
  3400. if (error)
  3401. goto bread_err2;
  3402. rhead = (xlog_rec_header_t *)offset;
  3403. error = xlog_valid_rec_header(log, rhead, blk_no);
  3404. if (error)
  3405. goto bread_err2;
  3406. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3407. error = xlog_bread(log, blk_no+hblks, bblks, dbp,
  3408. &offset);
  3409. if (error)
  3410. goto bread_err2;
  3411. xlog_unpack_data(rhead, offset, log);
  3412. if ((error = xlog_recover_process_data(log, rhash,
  3413. rhead, offset, pass)))
  3414. goto bread_err2;
  3415. blk_no += bblks + hblks;
  3416. }
  3417. }
  3418. bread_err2:
  3419. xlog_put_bp(dbp);
  3420. bread_err1:
  3421. xlog_put_bp(hbp);
  3422. return error;
  3423. }
  3424. /*
  3425. * Do the recovery of the log. We actually do this in two phases.
  3426. * The two passes are necessary in order to implement the function
  3427. * of cancelling a record written into the log. The first pass
  3428. * determines those things which have been cancelled, and the
  3429. * second pass replays log items normally except for those which
  3430. * have been cancelled. The handling of the replay and cancellations
  3431. * takes place in the log item type specific routines.
  3432. *
  3433. * The table of items which have cancel records in the log is allocated
  3434. * and freed at this level, since only here do we know when all of
  3435. * the log recovery has been completed.
  3436. */
  3437. STATIC int
  3438. xlog_do_log_recovery(
  3439. xlog_t *log,
  3440. xfs_daddr_t head_blk,
  3441. xfs_daddr_t tail_blk)
  3442. {
  3443. int error;
  3444. ASSERT(head_blk != tail_blk);
  3445. /*
  3446. * First do a pass to find all of the cancelled buf log items.
  3447. * Store them in the buf_cancel_table for use in the second pass.
  3448. */
  3449. log->l_buf_cancel_table =
  3450. (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
  3451. sizeof(xfs_buf_cancel_t*),
  3452. KM_SLEEP);
  3453. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3454. XLOG_RECOVER_PASS1);
  3455. if (error != 0) {
  3456. kmem_free(log->l_buf_cancel_table);
  3457. log->l_buf_cancel_table = NULL;
  3458. return error;
  3459. }
  3460. /*
  3461. * Then do a second pass to actually recover the items in the log.
  3462. * When it is complete free the table of buf cancel items.
  3463. */
  3464. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3465. XLOG_RECOVER_PASS2);
  3466. #ifdef DEBUG
  3467. if (!error) {
  3468. int i;
  3469. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3470. ASSERT(log->l_buf_cancel_table[i] == NULL);
  3471. }
  3472. #endif /* DEBUG */
  3473. kmem_free(log->l_buf_cancel_table);
  3474. log->l_buf_cancel_table = NULL;
  3475. return error;
  3476. }
  3477. /*
  3478. * Do the actual recovery
  3479. */
  3480. STATIC int
  3481. xlog_do_recover(
  3482. xlog_t *log,
  3483. xfs_daddr_t head_blk,
  3484. xfs_daddr_t tail_blk)
  3485. {
  3486. int error;
  3487. xfs_buf_t *bp;
  3488. xfs_sb_t *sbp;
  3489. /*
  3490. * First replay the images in the log.
  3491. */
  3492. error = xlog_do_log_recovery(log, head_blk, tail_blk);
  3493. if (error) {
  3494. return error;
  3495. }
  3496. XFS_bflush(log->l_mp->m_ddev_targp);
  3497. /*
  3498. * If IO errors happened during recovery, bail out.
  3499. */
  3500. if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
  3501. return (EIO);
  3502. }
  3503. /*
  3504. * We now update the tail_lsn since much of the recovery has completed
  3505. * and there may be space available to use. If there were no extent
  3506. * or iunlinks, we can free up the entire log and set the tail_lsn to
  3507. * be the last_sync_lsn. This was set in xlog_find_tail to be the
  3508. * lsn of the last known good LR on disk. If there are extent frees
  3509. * or iunlinks they will have some entries in the AIL; so we look at
  3510. * the AIL to determine how to set the tail_lsn.
  3511. */
  3512. xlog_assign_tail_lsn(log->l_mp);
  3513. /*
  3514. * Now that we've finished replaying all buffer and inode
  3515. * updates, re-read in the superblock.
  3516. */
  3517. bp = xfs_getsb(log->l_mp, 0);
  3518. XFS_BUF_UNDONE(bp);
  3519. ASSERT(!(XFS_BUF_ISWRITE(bp)));
  3520. ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
  3521. XFS_BUF_READ(bp);
  3522. XFS_BUF_UNASYNC(bp);
  3523. xfsbdstrat(log->l_mp, bp);
  3524. error = xfs_iowait(bp);
  3525. if (error) {
  3526. xfs_ioerror_alert("xlog_do_recover",
  3527. log->l_mp, bp, XFS_BUF_ADDR(bp));
  3528. ASSERT(0);
  3529. xfs_buf_relse(bp);
  3530. return error;
  3531. }
  3532. /* Convert superblock from on-disk format */
  3533. sbp = &log->l_mp->m_sb;
  3534. xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
  3535. ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
  3536. ASSERT(xfs_sb_good_version(sbp));
  3537. xfs_buf_relse(bp);
  3538. /* We've re-read the superblock so re-initialize per-cpu counters */
  3539. xfs_icsb_reinit_counters(log->l_mp);
  3540. xlog_recover_check_summary(log);
  3541. /* Normal transactions can now occur */
  3542. log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
  3543. return 0;
  3544. }
  3545. /*
  3546. * Perform recovery and re-initialize some log variables in xlog_find_tail.
  3547. *
  3548. * Return error or zero.
  3549. */
  3550. int
  3551. xlog_recover(
  3552. xlog_t *log)
  3553. {
  3554. xfs_daddr_t head_blk, tail_blk;
  3555. int error;
  3556. /* find the tail of the log */
  3557. if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
  3558. return error;
  3559. if (tail_blk != head_blk) {
  3560. /* There used to be a comment here:
  3561. *
  3562. * disallow recovery on read-only mounts. note -- mount
  3563. * checks for ENOSPC and turns it into an intelligent
  3564. * error message.
  3565. * ...but this is no longer true. Now, unless you specify
  3566. * NORECOVERY (in which case this function would never be
  3567. * called), we just go ahead and recover. We do this all
  3568. * under the vfs layer, so we can get away with it unless
  3569. * the device itself is read-only, in which case we fail.
  3570. */
  3571. if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
  3572. return error;
  3573. }
  3574. cmn_err(CE_NOTE,
  3575. "Starting XFS recovery on filesystem: %s (logdev: %s)",
  3576. log->l_mp->m_fsname, log->l_mp->m_logname ?
  3577. log->l_mp->m_logname : "internal");
  3578. error = xlog_do_recover(log, head_blk, tail_blk);
  3579. log->l_flags |= XLOG_RECOVERY_NEEDED;
  3580. }
  3581. return error;
  3582. }
  3583. /*
  3584. * In the first part of recovery we replay inodes and buffers and build
  3585. * up the list of extent free items which need to be processed. Here
  3586. * we process the extent free items and clean up the on disk unlinked
  3587. * inode lists. This is separated from the first part of recovery so
  3588. * that the root and real-time bitmap inodes can be read in from disk in
  3589. * between the two stages. This is necessary so that we can free space
  3590. * in the real-time portion of the file system.
  3591. */
  3592. int
  3593. xlog_recover_finish(
  3594. xlog_t *log)
  3595. {
  3596. /*
  3597. * Now we're ready to do the transactions needed for the
  3598. * rest of recovery. Start with completing all the extent
  3599. * free intent records and then process the unlinked inode
  3600. * lists. At this point, we essentially run in normal mode
  3601. * except that we're still performing recovery actions
  3602. * rather than accepting new requests.
  3603. */
  3604. if (log->l_flags & XLOG_RECOVERY_NEEDED) {
  3605. int error;
  3606. error = xlog_recover_process_efis(log);
  3607. if (error) {
  3608. cmn_err(CE_ALERT,
  3609. "Failed to recover EFIs on filesystem: %s",
  3610. log->l_mp->m_fsname);
  3611. return error;
  3612. }
  3613. /*
  3614. * Sync the log to get all the EFIs out of the AIL.
  3615. * This isn't absolutely necessary, but it helps in
  3616. * case the unlink transactions would have problems
  3617. * pushing the EFIs out of the way.
  3618. */
  3619. xfs_log_force(log->l_mp, (xfs_lsn_t)0,
  3620. (XFS_LOG_FORCE | XFS_LOG_SYNC));
  3621. xlog_recover_process_iunlinks(log);
  3622. xlog_recover_check_summary(log);
  3623. cmn_err(CE_NOTE,
  3624. "Ending XFS recovery on filesystem: %s (logdev: %s)",
  3625. log->l_mp->m_fsname, log->l_mp->m_logname ?
  3626. log->l_mp->m_logname : "internal");
  3627. log->l_flags &= ~XLOG_RECOVERY_NEEDED;
  3628. } else {
  3629. cmn_err(CE_DEBUG,
  3630. "!Ending clean XFS mount for filesystem: %s\n",
  3631. log->l_mp->m_fsname);
  3632. }
  3633. return 0;
  3634. }
  3635. #if defined(DEBUG)
  3636. /*
  3637. * Read all of the agf and agi counters and check that they
  3638. * are consistent with the superblock counters.
  3639. */
  3640. void
  3641. xlog_recover_check_summary(
  3642. xlog_t *log)
  3643. {
  3644. xfs_mount_t *mp;
  3645. xfs_agf_t *agfp;
  3646. xfs_buf_t *agfbp;
  3647. xfs_buf_t *agibp;
  3648. xfs_buf_t *sbbp;
  3649. #ifdef XFS_LOUD_RECOVERY
  3650. xfs_sb_t *sbp;
  3651. #endif
  3652. xfs_agnumber_t agno;
  3653. __uint64_t freeblks;
  3654. __uint64_t itotal;
  3655. __uint64_t ifree;
  3656. int error;
  3657. mp = log->l_mp;
  3658. freeblks = 0LL;
  3659. itotal = 0LL;
  3660. ifree = 0LL;
  3661. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  3662. error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
  3663. if (error) {
  3664. xfs_fs_cmn_err(CE_ALERT, mp,
  3665. "xlog_recover_check_summary(agf)"
  3666. "agf read failed agno %d error %d",
  3667. agno, error);
  3668. } else {
  3669. agfp = XFS_BUF_TO_AGF(agfbp);
  3670. freeblks += be32_to_cpu(agfp->agf_freeblks) +
  3671. be32_to_cpu(agfp->agf_flcount);
  3672. xfs_buf_relse(agfbp);
  3673. }
  3674. error = xfs_read_agi(mp, NULL, agno, &agibp);
  3675. if (!error) {
  3676. struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
  3677. itotal += be32_to_cpu(agi->agi_count);
  3678. ifree += be32_to_cpu(agi->agi_freecount);
  3679. xfs_buf_relse(agibp);
  3680. }
  3681. }
  3682. sbbp = xfs_getsb(mp, 0);
  3683. #ifdef XFS_LOUD_RECOVERY
  3684. sbp = &mp->m_sb;
  3685. xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
  3686. cmn_err(CE_NOTE,
  3687. "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
  3688. sbp->sb_icount, itotal);
  3689. cmn_err(CE_NOTE,
  3690. "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
  3691. sbp->sb_ifree, ifree);
  3692. cmn_err(CE_NOTE,
  3693. "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
  3694. sbp->sb_fdblocks, freeblks);
  3695. #if 0
  3696. /*
  3697. * This is turned off until I account for the allocation
  3698. * btree blocks which live in free space.
  3699. */
  3700. ASSERT(sbp->sb_icount == itotal);
  3701. ASSERT(sbp->sb_ifree == ifree);
  3702. ASSERT(sbp->sb_fdblocks == freeblks);
  3703. #endif
  3704. #endif
  3705. xfs_buf_relse(sbbp);
  3706. }
  3707. #endif /* DEBUG */