slab.h 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322
  1. #ifndef MM_SLAB_H
  2. #define MM_SLAB_H
  3. /*
  4. * Internal slab definitions
  5. */
  6. /*
  7. * State of the slab allocator.
  8. *
  9. * This is used to describe the states of the allocator during bootup.
  10. * Allocators use this to gradually bootstrap themselves. Most allocators
  11. * have the problem that the structures used for managing slab caches are
  12. * allocated from slab caches themselves.
  13. */
  14. enum slab_state {
  15. DOWN, /* No slab functionality yet */
  16. PARTIAL, /* SLUB: kmem_cache_node available */
  17. PARTIAL_ARRAYCACHE, /* SLAB: kmalloc size for arraycache available */
  18. PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
  19. UP, /* Slab caches usable but not all extras yet */
  20. FULL /* Everything is working */
  21. };
  22. extern enum slab_state slab_state;
  23. /* The slab cache mutex protects the management structures during changes */
  24. extern struct mutex slab_mutex;
  25. /* The list of all slab caches on the system */
  26. extern struct list_head slab_caches;
  27. /* The slab cache that manages slab cache information */
  28. extern struct kmem_cache *kmem_cache;
  29. unsigned long calculate_alignment(unsigned long flags,
  30. unsigned long align, unsigned long size);
  31. #ifndef CONFIG_SLOB
  32. /* Kmalloc array related functions */
  33. void create_kmalloc_caches(unsigned long);
  34. /* Find the kmalloc slab corresponding for a certain size */
  35. struct kmem_cache *kmalloc_slab(size_t, gfp_t);
  36. #endif
  37. /* Functions provided by the slab allocators */
  38. extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
  39. extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
  40. unsigned long flags);
  41. extern void create_boot_cache(struct kmem_cache *, const char *name,
  42. size_t size, unsigned long flags);
  43. struct mem_cgroup;
  44. #ifdef CONFIG_SLUB
  45. struct kmem_cache *
  46. __kmem_cache_alias(const char *name, size_t size, size_t align,
  47. unsigned long flags, void (*ctor)(void *));
  48. #else
  49. static inline struct kmem_cache *
  50. __kmem_cache_alias(const char *name, size_t size, size_t align,
  51. unsigned long flags, void (*ctor)(void *))
  52. { return NULL; }
  53. #endif
  54. /* Legal flag mask for kmem_cache_create(), for various configurations */
  55. #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
  56. SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
  57. #if defined(CONFIG_DEBUG_SLAB)
  58. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  59. #elif defined(CONFIG_SLUB_DEBUG)
  60. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  61. SLAB_TRACE | SLAB_DEBUG_FREE)
  62. #else
  63. #define SLAB_DEBUG_FLAGS (0)
  64. #endif
  65. #if defined(CONFIG_SLAB)
  66. #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
  67. SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK)
  68. #elif defined(CONFIG_SLUB)
  69. #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
  70. SLAB_TEMPORARY | SLAB_NOTRACK)
  71. #else
  72. #define SLAB_CACHE_FLAGS (0)
  73. #endif
  74. #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
  75. int __kmem_cache_shutdown(struct kmem_cache *);
  76. int __kmem_cache_shrink(struct kmem_cache *);
  77. void slab_kmem_cache_release(struct kmem_cache *);
  78. struct seq_file;
  79. struct file;
  80. struct slabinfo {
  81. unsigned long active_objs;
  82. unsigned long num_objs;
  83. unsigned long active_slabs;
  84. unsigned long num_slabs;
  85. unsigned long shared_avail;
  86. unsigned int limit;
  87. unsigned int batchcount;
  88. unsigned int shared;
  89. unsigned int objects_per_slab;
  90. unsigned int cache_order;
  91. };
  92. void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
  93. void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
  94. ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  95. size_t count, loff_t *ppos);
  96. #ifdef CONFIG_MEMCG_KMEM
  97. static inline bool is_root_cache(struct kmem_cache *s)
  98. {
  99. return !s->memcg_params || s->memcg_params->is_root_cache;
  100. }
  101. static inline void memcg_bind_pages(struct kmem_cache *s, int order)
  102. {
  103. if (!is_root_cache(s))
  104. atomic_add(1 << order, &s->memcg_params->nr_pages);
  105. }
  106. static inline void memcg_release_pages(struct kmem_cache *s, int order)
  107. {
  108. if (is_root_cache(s))
  109. return;
  110. if (atomic_sub_and_test((1 << order), &s->memcg_params->nr_pages))
  111. mem_cgroup_destroy_cache(s);
  112. }
  113. static inline bool slab_equal_or_root(struct kmem_cache *s,
  114. struct kmem_cache *p)
  115. {
  116. return (p == s) ||
  117. (s->memcg_params && (p == s->memcg_params->root_cache));
  118. }
  119. /*
  120. * We use suffixes to the name in memcg because we can't have caches
  121. * created in the system with the same name. But when we print them
  122. * locally, better refer to them with the base name
  123. */
  124. static inline const char *cache_name(struct kmem_cache *s)
  125. {
  126. if (!is_root_cache(s))
  127. return s->memcg_params->root_cache->name;
  128. return s->name;
  129. }
  130. /*
  131. * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
  132. * That said the caller must assure the memcg's cache won't go away. Since once
  133. * created a memcg's cache is destroyed only along with the root cache, it is
  134. * true if we are going to allocate from the cache or hold a reference to the
  135. * root cache by other means. Otherwise, we should hold either the slab_mutex
  136. * or the memcg's slab_caches_mutex while calling this function and accessing
  137. * the returned value.
  138. */
  139. static inline struct kmem_cache *
  140. cache_from_memcg_idx(struct kmem_cache *s, int idx)
  141. {
  142. struct kmem_cache *cachep;
  143. struct memcg_cache_params *params;
  144. if (!s->memcg_params)
  145. return NULL;
  146. rcu_read_lock();
  147. params = rcu_dereference(s->memcg_params);
  148. cachep = params->memcg_caches[idx];
  149. rcu_read_unlock();
  150. /*
  151. * Make sure we will access the up-to-date value. The code updating
  152. * memcg_caches issues a write barrier to match this (see
  153. * memcg_register_cache()).
  154. */
  155. smp_read_barrier_depends();
  156. return cachep;
  157. }
  158. static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
  159. {
  160. if (is_root_cache(s))
  161. return s;
  162. return s->memcg_params->root_cache;
  163. }
  164. static __always_inline int memcg_charge_slab(struct kmem_cache *s,
  165. gfp_t gfp, int order)
  166. {
  167. if (!memcg_kmem_enabled())
  168. return 0;
  169. if (is_root_cache(s))
  170. return 0;
  171. return memcg_charge_kmem(s->memcg_params->memcg, gfp,
  172. PAGE_SIZE << order);
  173. }
  174. static __always_inline void memcg_uncharge_slab(struct kmem_cache *s, int order)
  175. {
  176. if (!memcg_kmem_enabled())
  177. return;
  178. if (is_root_cache(s))
  179. return;
  180. memcg_uncharge_kmem(s->memcg_params->memcg, PAGE_SIZE << order);
  181. }
  182. #else
  183. static inline bool is_root_cache(struct kmem_cache *s)
  184. {
  185. return true;
  186. }
  187. static inline void memcg_bind_pages(struct kmem_cache *s, int order)
  188. {
  189. }
  190. static inline void memcg_release_pages(struct kmem_cache *s, int order)
  191. {
  192. }
  193. static inline bool slab_equal_or_root(struct kmem_cache *s,
  194. struct kmem_cache *p)
  195. {
  196. return true;
  197. }
  198. static inline const char *cache_name(struct kmem_cache *s)
  199. {
  200. return s->name;
  201. }
  202. static inline struct kmem_cache *
  203. cache_from_memcg_idx(struct kmem_cache *s, int idx)
  204. {
  205. return NULL;
  206. }
  207. static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
  208. {
  209. return s;
  210. }
  211. static inline int memcg_charge_slab(struct kmem_cache *s, gfp_t gfp, int order)
  212. {
  213. return 0;
  214. }
  215. static inline void memcg_uncharge_slab(struct kmem_cache *s, int order)
  216. {
  217. }
  218. #endif
  219. static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
  220. {
  221. struct kmem_cache *cachep;
  222. struct page *page;
  223. /*
  224. * When kmemcg is not being used, both assignments should return the
  225. * same value. but we don't want to pay the assignment price in that
  226. * case. If it is not compiled in, the compiler should be smart enough
  227. * to not do even the assignment. In that case, slab_equal_or_root
  228. * will also be a constant.
  229. */
  230. if (!memcg_kmem_enabled() && !unlikely(s->flags & SLAB_DEBUG_FREE))
  231. return s;
  232. page = virt_to_head_page(x);
  233. cachep = page->slab_cache;
  234. if (slab_equal_or_root(cachep, s))
  235. return cachep;
  236. pr_err("%s: Wrong slab cache. %s but object is from %s\n",
  237. __FUNCTION__, cachep->name, s->name);
  238. WARN_ON_ONCE(1);
  239. return s;
  240. }
  241. #endif
  242. /*
  243. * The slab lists for all objects.
  244. */
  245. struct kmem_cache_node {
  246. spinlock_t list_lock;
  247. #ifdef CONFIG_SLAB
  248. struct list_head slabs_partial; /* partial list first, better asm code */
  249. struct list_head slabs_full;
  250. struct list_head slabs_free;
  251. unsigned long free_objects;
  252. unsigned int free_limit;
  253. unsigned int colour_next; /* Per-node cache coloring */
  254. struct array_cache *shared; /* shared per node */
  255. struct array_cache **alien; /* on other nodes */
  256. unsigned long next_reap; /* updated without locking */
  257. int free_touched; /* updated without locking */
  258. #endif
  259. #ifdef CONFIG_SLUB
  260. unsigned long nr_partial;
  261. struct list_head partial;
  262. #ifdef CONFIG_SLUB_DEBUG
  263. atomic_long_t nr_slabs;
  264. atomic_long_t total_objects;
  265. struct list_head full;
  266. #endif
  267. #endif
  268. };
  269. void *slab_next(struct seq_file *m, void *p, loff_t *pos);
  270. void slab_stop(struct seq_file *m, void *p);