wmi.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207
  1. /*
  2. * Copyright (c) 2012-2014 Qualcomm Atheros, Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/etherdevice.h>
  17. #include <linux/if_arp.h>
  18. #include "wil6210.h"
  19. #include "txrx.h"
  20. #include "wmi.h"
  21. #include "trace.h"
  22. /**
  23. * WMI event receiving - theory of operations
  24. *
  25. * When firmware about to report WMI event, it fills memory area
  26. * in the mailbox and raises misc. IRQ. Thread interrupt handler invoked for
  27. * the misc IRQ, function @wmi_recv_cmd called by thread IRQ handler.
  28. *
  29. * @wmi_recv_cmd reads event, allocates memory chunk and attaches it to the
  30. * event list @wil->pending_wmi_ev. Then, work queue @wil->wmi_wq wakes up
  31. * and handles events within the @wmi_event_worker. Every event get detached
  32. * from list, processed and deleted.
  33. *
  34. * Purpose for this mechanism is to release IRQ thread; otherwise,
  35. * if WMI event handling involves another WMI command flow, this 2-nd flow
  36. * won't be completed because of blocked IRQ thread.
  37. */
  38. /**
  39. * Addressing - theory of operations
  40. *
  41. * There are several buses present on the WIL6210 card.
  42. * Same memory areas are visible at different address on
  43. * the different busses. There are 3 main bus masters:
  44. * - MAC CPU (ucode)
  45. * - User CPU (firmware)
  46. * - AHB (host)
  47. *
  48. * On the PCI bus, there is one BAR (BAR0) of 2Mb size, exposing
  49. * AHB addresses starting from 0x880000
  50. *
  51. * Internally, firmware uses addresses that allows faster access but
  52. * are invisible from the host. To read from these addresses, alternative
  53. * AHB address must be used.
  54. *
  55. * Memory mapping
  56. * Linker address PCI/Host address
  57. * 0x880000 .. 0xa80000 2Mb BAR0
  58. * 0x800000 .. 0x807000 0x900000 .. 0x907000 28k DCCM
  59. * 0x840000 .. 0x857000 0x908000 .. 0x91f000 92k PERIPH
  60. */
  61. /**
  62. * @fw_mapping provides memory remapping table
  63. *
  64. * array size should be in sync with the declaration in the wil6210.h
  65. */
  66. const struct fw_map fw_mapping[] = {
  67. {0x000000, 0x040000, 0x8c0000, "fw_code"}, /* FW code RAM 256k */
  68. {0x800000, 0x808000, 0x900000, "fw_data"}, /* FW data RAM 32k */
  69. {0x840000, 0x860000, 0x908000, "fw_peri"}, /* periph. data RAM 128k */
  70. {0x880000, 0x88a000, 0x880000, "rgf"}, /* various RGF 40k */
  71. {0x88a000, 0x88b000, 0x88a000, "AGC_tbl"}, /* AGC table 4k */
  72. {0x88b000, 0x88c000, 0x88b000, "rgf_ext"}, /* Pcie_ext_rgf 4k */
  73. {0x8c0000, 0x949000, 0x8c0000, "upper"}, /* upper area 548k */
  74. /*
  75. * 920000..930000 ucode code RAM
  76. * 930000..932000 ucode data RAM
  77. * 932000..949000 back-door debug data
  78. */
  79. };
  80. /**
  81. * return AHB address for given firmware/ucode internal (linker) address
  82. * @x - internal address
  83. * If address have no valid AHB mapping, return 0
  84. */
  85. static u32 wmi_addr_remap(u32 x)
  86. {
  87. uint i;
  88. for (i = 0; i < ARRAY_SIZE(fw_mapping); i++) {
  89. if ((x >= fw_mapping[i].from) && (x < fw_mapping[i].to))
  90. return x + fw_mapping[i].host - fw_mapping[i].from;
  91. }
  92. return 0;
  93. }
  94. /**
  95. * Check address validity for WMI buffer; remap if needed
  96. * @ptr - internal (linker) fw/ucode address
  97. *
  98. * Valid buffer should be DWORD aligned
  99. *
  100. * return address for accessing buffer from the host;
  101. * if buffer is not valid, return NULL.
  102. */
  103. void __iomem *wmi_buffer(struct wil6210_priv *wil, __le32 ptr_)
  104. {
  105. u32 off;
  106. u32 ptr = le32_to_cpu(ptr_);
  107. if (ptr % 4)
  108. return NULL;
  109. ptr = wmi_addr_remap(ptr);
  110. if (ptr < WIL6210_FW_HOST_OFF)
  111. return NULL;
  112. off = HOSTADDR(ptr);
  113. if (off > WIL6210_MEM_SIZE - 4)
  114. return NULL;
  115. return wil->csr + off;
  116. }
  117. /**
  118. * Check address validity
  119. */
  120. void __iomem *wmi_addr(struct wil6210_priv *wil, u32 ptr)
  121. {
  122. u32 off;
  123. if (ptr % 4)
  124. return NULL;
  125. if (ptr < WIL6210_FW_HOST_OFF)
  126. return NULL;
  127. off = HOSTADDR(ptr);
  128. if (off > WIL6210_MEM_SIZE - 4)
  129. return NULL;
  130. return wil->csr + off;
  131. }
  132. int wmi_read_hdr(struct wil6210_priv *wil, __le32 ptr,
  133. struct wil6210_mbox_hdr *hdr)
  134. {
  135. void __iomem *src = wmi_buffer(wil, ptr);
  136. if (!src)
  137. return -EINVAL;
  138. wil_memcpy_fromio_32(hdr, src, sizeof(*hdr));
  139. return 0;
  140. }
  141. static int __wmi_send(struct wil6210_priv *wil, u16 cmdid, void *buf, u16 len)
  142. {
  143. struct {
  144. struct wil6210_mbox_hdr hdr;
  145. struct wil6210_mbox_hdr_wmi wmi;
  146. } __packed cmd = {
  147. .hdr = {
  148. .type = WIL_MBOX_HDR_TYPE_WMI,
  149. .flags = 0,
  150. .len = cpu_to_le16(sizeof(cmd.wmi) + len),
  151. },
  152. .wmi = {
  153. .mid = 0,
  154. .id = cpu_to_le16(cmdid),
  155. },
  156. };
  157. struct wil6210_mbox_ring *r = &wil->mbox_ctl.tx;
  158. struct wil6210_mbox_ring_desc d_head;
  159. u32 next_head;
  160. void __iomem *dst;
  161. void __iomem *head = wmi_addr(wil, r->head);
  162. uint retry;
  163. if (sizeof(cmd) + len > r->entry_size) {
  164. wil_err(wil, "WMI size too large: %d bytes, max is %d\n",
  165. (int)(sizeof(cmd) + len), r->entry_size);
  166. return -ERANGE;
  167. }
  168. might_sleep();
  169. if (!test_bit(wil_status_fwready, &wil->status)) {
  170. wil_err(wil, "WMI: cannot send command while FW not ready\n");
  171. return -EAGAIN;
  172. }
  173. if (!head) {
  174. wil_err(wil, "WMI head is garbage: 0x%08x\n", r->head);
  175. return -EINVAL;
  176. }
  177. /* read Tx head till it is not busy */
  178. for (retry = 5; retry > 0; retry--) {
  179. wil_memcpy_fromio_32(&d_head, head, sizeof(d_head));
  180. if (d_head.sync == 0)
  181. break;
  182. msleep(20);
  183. }
  184. if (d_head.sync != 0) {
  185. wil_err(wil, "WMI head busy\n");
  186. return -EBUSY;
  187. }
  188. /* next head */
  189. next_head = r->base + ((r->head - r->base + sizeof(d_head)) % r->size);
  190. wil_dbg_wmi(wil, "Head 0x%08x -> 0x%08x\n", r->head, next_head);
  191. /* wait till FW finish with previous command */
  192. for (retry = 5; retry > 0; retry--) {
  193. r->tail = ioread32(wil->csr + HOST_MBOX +
  194. offsetof(struct wil6210_mbox_ctl, tx.tail));
  195. if (next_head != r->tail)
  196. break;
  197. msleep(20);
  198. }
  199. if (next_head == r->tail) {
  200. wil_err(wil, "WMI ring full\n");
  201. return -EBUSY;
  202. }
  203. dst = wmi_buffer(wil, d_head.addr);
  204. if (!dst) {
  205. wil_err(wil, "invalid WMI buffer: 0x%08x\n",
  206. le32_to_cpu(d_head.addr));
  207. return -EINVAL;
  208. }
  209. cmd.hdr.seq = cpu_to_le16(++wil->wmi_seq);
  210. /* set command */
  211. wil_dbg_wmi(wil, "WMI command 0x%04x [%d]\n", cmdid, len);
  212. wil_hex_dump_wmi("Cmd ", DUMP_PREFIX_OFFSET, 16, 1, &cmd,
  213. sizeof(cmd), true);
  214. wil_hex_dump_wmi("cmd ", DUMP_PREFIX_OFFSET, 16, 1, buf,
  215. len, true);
  216. wil_memcpy_toio_32(dst, &cmd, sizeof(cmd));
  217. wil_memcpy_toio_32(dst + sizeof(cmd), buf, len);
  218. /* mark entry as full */
  219. iowrite32(1, wil->csr + HOSTADDR(r->head) +
  220. offsetof(struct wil6210_mbox_ring_desc, sync));
  221. /* advance next ptr */
  222. iowrite32(r->head = next_head, wil->csr + HOST_MBOX +
  223. offsetof(struct wil6210_mbox_ctl, tx.head));
  224. trace_wil6210_wmi_cmd(&cmd.wmi, buf, len);
  225. /* interrupt to FW */
  226. iowrite32(SW_INT_MBOX, wil->csr + HOST_SW_INT);
  227. return 0;
  228. }
  229. int wmi_send(struct wil6210_priv *wil, u16 cmdid, void *buf, u16 len)
  230. {
  231. int rc;
  232. mutex_lock(&wil->wmi_mutex);
  233. rc = __wmi_send(wil, cmdid, buf, len);
  234. mutex_unlock(&wil->wmi_mutex);
  235. return rc;
  236. }
  237. /*=== Event handlers ===*/
  238. static void wmi_evt_ready(struct wil6210_priv *wil, int id, void *d, int len)
  239. {
  240. struct net_device *ndev = wil_to_ndev(wil);
  241. struct wireless_dev *wdev = wil->wdev;
  242. struct wmi_ready_event *evt = d;
  243. wil->fw_version = le32_to_cpu(evt->sw_version);
  244. wil->n_mids = evt->numof_additional_mids;
  245. wil_info(wil, "FW ver. %d; MAC %pM; %d MID's\n", wil->fw_version,
  246. evt->mac, wil->n_mids);
  247. if (!is_valid_ether_addr(ndev->dev_addr)) {
  248. memcpy(ndev->dev_addr, evt->mac, ETH_ALEN);
  249. memcpy(ndev->perm_addr, evt->mac, ETH_ALEN);
  250. }
  251. snprintf(wdev->wiphy->fw_version, sizeof(wdev->wiphy->fw_version),
  252. "%d", wil->fw_version);
  253. }
  254. static void wmi_evt_fw_ready(struct wil6210_priv *wil, int id, void *d,
  255. int len)
  256. {
  257. wil_dbg_wmi(wil, "WMI: got FW ready event\n");
  258. set_bit(wil_status_fwready, &wil->status);
  259. /* reuse wmi_ready for the firmware ready indication */
  260. complete(&wil->wmi_ready);
  261. }
  262. static void wmi_evt_rx_mgmt(struct wil6210_priv *wil, int id, void *d, int len)
  263. {
  264. struct wmi_rx_mgmt_packet_event *data = d;
  265. struct wiphy *wiphy = wil_to_wiphy(wil);
  266. struct ieee80211_mgmt *rx_mgmt_frame =
  267. (struct ieee80211_mgmt *)data->payload;
  268. int ch_no = data->info.channel+1;
  269. u32 freq = ieee80211_channel_to_frequency(ch_no,
  270. IEEE80211_BAND_60GHZ);
  271. struct ieee80211_channel *channel = ieee80211_get_channel(wiphy, freq);
  272. s32 signal = data->info.sqi;
  273. __le16 fc = rx_mgmt_frame->frame_control;
  274. u32 d_len = le32_to_cpu(data->info.len);
  275. u16 d_status = le16_to_cpu(data->info.status);
  276. wil_dbg_wmi(wil, "MGMT: channel %d MCS %d SNR %d SQI %d%%\n",
  277. data->info.channel, data->info.mcs, data->info.snr,
  278. data->info.sqi);
  279. wil_dbg_wmi(wil, "status 0x%04x len %d fc 0x%04x\n", d_status, d_len,
  280. le16_to_cpu(fc));
  281. wil_dbg_wmi(wil, "qid %d mid %d cid %d\n",
  282. data->info.qid, data->info.mid, data->info.cid);
  283. if (!channel) {
  284. wil_err(wil, "Frame on unsupported channel\n");
  285. return;
  286. }
  287. if (ieee80211_is_beacon(fc) || ieee80211_is_probe_resp(fc)) {
  288. struct cfg80211_bss *bss;
  289. u64 tsf = le64_to_cpu(rx_mgmt_frame->u.beacon.timestamp);
  290. u16 cap = le16_to_cpu(rx_mgmt_frame->u.beacon.capab_info);
  291. u16 bi = le16_to_cpu(rx_mgmt_frame->u.beacon.beacon_int);
  292. const u8 *ie_buf = rx_mgmt_frame->u.beacon.variable;
  293. size_t ie_len = d_len - offsetof(struct ieee80211_mgmt,
  294. u.beacon.variable);
  295. wil_dbg_wmi(wil, "Capability info : 0x%04x\n", cap);
  296. wil_dbg_wmi(wil, "TSF : 0x%016llx\n", tsf);
  297. wil_dbg_wmi(wil, "Beacon interval : %d\n", bi);
  298. wil_hex_dump_wmi("IE ", DUMP_PREFIX_OFFSET, 16, 1, ie_buf,
  299. ie_len, true);
  300. bss = cfg80211_inform_bss_frame(wiphy, channel, rx_mgmt_frame,
  301. d_len, signal, GFP_KERNEL);
  302. if (bss) {
  303. wil_dbg_wmi(wil, "Added BSS %pM\n",
  304. rx_mgmt_frame->bssid);
  305. cfg80211_put_bss(wiphy, bss);
  306. } else {
  307. wil_err(wil, "cfg80211_inform_bss() failed\n");
  308. }
  309. } else {
  310. cfg80211_rx_mgmt(wil->wdev, freq, signal,
  311. (void *)rx_mgmt_frame, d_len, 0, GFP_KERNEL);
  312. }
  313. }
  314. static void wmi_evt_scan_complete(struct wil6210_priv *wil, int id,
  315. void *d, int len)
  316. {
  317. if (wil->scan_request) {
  318. struct wmi_scan_complete_event *data = d;
  319. bool aborted = (data->status != WMI_SCAN_SUCCESS);
  320. wil_dbg_wmi(wil, "SCAN_COMPLETE(0x%08x)\n", data->status);
  321. wil_dbg_misc(wil, "Complete scan_request 0x%p aborted %d\n",
  322. wil->scan_request, aborted);
  323. del_timer_sync(&wil->scan_timer);
  324. cfg80211_scan_done(wil->scan_request, aborted);
  325. wil->scan_request = NULL;
  326. } else {
  327. wil_err(wil, "SCAN_COMPLETE while not scanning\n");
  328. }
  329. }
  330. static void wmi_evt_connect(struct wil6210_priv *wil, int id, void *d, int len)
  331. {
  332. struct net_device *ndev = wil_to_ndev(wil);
  333. struct wireless_dev *wdev = wil->wdev;
  334. struct wmi_connect_event *evt = d;
  335. int ch; /* channel number */
  336. struct station_info sinfo;
  337. u8 *assoc_req_ie, *assoc_resp_ie;
  338. size_t assoc_req_ielen, assoc_resp_ielen;
  339. /* capinfo(u16) + listen_interval(u16) + IEs */
  340. const size_t assoc_req_ie_offset = sizeof(u16) * 2;
  341. /* capinfo(u16) + status_code(u16) + associd(u16) + IEs */
  342. const size_t assoc_resp_ie_offset = sizeof(u16) * 3;
  343. if (len < sizeof(*evt)) {
  344. wil_err(wil, "Connect event too short : %d bytes\n", len);
  345. return;
  346. }
  347. if (len != sizeof(*evt) + evt->beacon_ie_len + evt->assoc_req_len +
  348. evt->assoc_resp_len) {
  349. wil_err(wil,
  350. "Connect event corrupted : %d != %d + %d + %d + %d\n",
  351. len, (int)sizeof(*evt), evt->beacon_ie_len,
  352. evt->assoc_req_len, evt->assoc_resp_len);
  353. return;
  354. }
  355. if (evt->cid >= WIL6210_MAX_CID) {
  356. wil_err(wil, "Connect CID invalid : %d\n", evt->cid);
  357. return;
  358. }
  359. ch = evt->channel + 1;
  360. wil_dbg_wmi(wil, "Connect %pM channel [%d] cid %d\n",
  361. evt->bssid, ch, evt->cid);
  362. wil_hex_dump_wmi("connect AI : ", DUMP_PREFIX_OFFSET, 16, 1,
  363. evt->assoc_info, len - sizeof(*evt), true);
  364. /* figure out IE's */
  365. assoc_req_ie = &evt->assoc_info[evt->beacon_ie_len +
  366. assoc_req_ie_offset];
  367. assoc_req_ielen = evt->assoc_req_len - assoc_req_ie_offset;
  368. if (evt->assoc_req_len <= assoc_req_ie_offset) {
  369. assoc_req_ie = NULL;
  370. assoc_req_ielen = 0;
  371. }
  372. assoc_resp_ie = &evt->assoc_info[evt->beacon_ie_len +
  373. evt->assoc_req_len +
  374. assoc_resp_ie_offset];
  375. assoc_resp_ielen = evt->assoc_resp_len - assoc_resp_ie_offset;
  376. if (evt->assoc_resp_len <= assoc_resp_ie_offset) {
  377. assoc_resp_ie = NULL;
  378. assoc_resp_ielen = 0;
  379. }
  380. if ((wdev->iftype == NL80211_IFTYPE_STATION) ||
  381. (wdev->iftype == NL80211_IFTYPE_P2P_CLIENT)) {
  382. if (!test_bit(wil_status_fwconnecting, &wil->status)) {
  383. wil_err(wil, "Not in connecting state\n");
  384. return;
  385. }
  386. del_timer_sync(&wil->connect_timer);
  387. cfg80211_connect_result(ndev, evt->bssid,
  388. assoc_req_ie, assoc_req_ielen,
  389. assoc_resp_ie, assoc_resp_ielen,
  390. WLAN_STATUS_SUCCESS, GFP_KERNEL);
  391. } else if ((wdev->iftype == NL80211_IFTYPE_AP) ||
  392. (wdev->iftype == NL80211_IFTYPE_P2P_GO)) {
  393. memset(&sinfo, 0, sizeof(sinfo));
  394. sinfo.generation = wil->sinfo_gen++;
  395. if (assoc_req_ie) {
  396. sinfo.assoc_req_ies = assoc_req_ie;
  397. sinfo.assoc_req_ies_len = assoc_req_ielen;
  398. sinfo.filled |= STATION_INFO_ASSOC_REQ_IES;
  399. }
  400. cfg80211_new_sta(ndev, evt->bssid, &sinfo, GFP_KERNEL);
  401. }
  402. clear_bit(wil_status_fwconnecting, &wil->status);
  403. set_bit(wil_status_fwconnected, &wil->status);
  404. /* FIXME FW can transmit only ucast frames to peer */
  405. /* FIXME real ring_id instead of hard coded 0 */
  406. memcpy(wil->sta[evt->cid].addr, evt->bssid, ETH_ALEN);
  407. wil->sta[evt->cid].status = wil_sta_conn_pending;
  408. wil->pending_connect_cid = evt->cid;
  409. queue_work(wil->wmi_wq_conn, &wil->connect_worker);
  410. }
  411. static void wmi_evt_disconnect(struct wil6210_priv *wil, int id,
  412. void *d, int len)
  413. {
  414. struct wmi_disconnect_event *evt = d;
  415. wil_dbg_wmi(wil, "Disconnect %pM reason %d proto %d wmi\n",
  416. evt->bssid,
  417. evt->protocol_reason_status, evt->disconnect_reason);
  418. wil->sinfo_gen++;
  419. mutex_lock(&wil->mutex);
  420. wil6210_disconnect(wil, evt->bssid);
  421. mutex_unlock(&wil->mutex);
  422. }
  423. static void wmi_evt_notify(struct wil6210_priv *wil, int id, void *d, int len)
  424. {
  425. struct wmi_notify_req_done_event *evt = d;
  426. if (len < sizeof(*evt)) {
  427. wil_err(wil, "Short NOTIFY event\n");
  428. return;
  429. }
  430. wil->stats.tsf = le64_to_cpu(evt->tsf);
  431. wil->stats.snr = le32_to_cpu(evt->snr_val);
  432. wil->stats.bf_mcs = le16_to_cpu(evt->bf_mcs);
  433. wil->stats.my_rx_sector = le16_to_cpu(evt->my_rx_sector);
  434. wil->stats.my_tx_sector = le16_to_cpu(evt->my_tx_sector);
  435. wil->stats.peer_rx_sector = le16_to_cpu(evt->other_rx_sector);
  436. wil->stats.peer_tx_sector = le16_to_cpu(evt->other_tx_sector);
  437. wil_dbg_wmi(wil, "Link status, MCS %d TSF 0x%016llx\n"
  438. "BF status 0x%08x SNR 0x%08x SQI %d%%\n"
  439. "Tx Tpt %d goodput %d Rx goodput %d\n"
  440. "Sectors(rx:tx) my %d:%d peer %d:%d\n",
  441. wil->stats.bf_mcs, wil->stats.tsf, evt->status,
  442. wil->stats.snr, evt->sqi, le32_to_cpu(evt->tx_tpt),
  443. le32_to_cpu(evt->tx_goodput), le32_to_cpu(evt->rx_goodput),
  444. wil->stats.my_rx_sector, wil->stats.my_tx_sector,
  445. wil->stats.peer_rx_sector, wil->stats.peer_tx_sector);
  446. }
  447. /*
  448. * Firmware reports EAPOL frame using WME event.
  449. * Reconstruct Ethernet frame and deliver it via normal Rx
  450. */
  451. static void wmi_evt_eapol_rx(struct wil6210_priv *wil, int id,
  452. void *d, int len)
  453. {
  454. struct net_device *ndev = wil_to_ndev(wil);
  455. struct wmi_eapol_rx_event *evt = d;
  456. u16 eapol_len = le16_to_cpu(evt->eapol_len);
  457. int sz = eapol_len + ETH_HLEN;
  458. struct sk_buff *skb;
  459. struct ethhdr *eth;
  460. int cid;
  461. struct wil_net_stats *stats = NULL;
  462. wil_dbg_wmi(wil, "EAPOL len %d from %pM\n", eapol_len,
  463. evt->src_mac);
  464. cid = wil_find_cid(wil, evt->src_mac);
  465. if (cid >= 0)
  466. stats = &wil->sta[cid].stats;
  467. if (eapol_len > 196) { /* TODO: revisit size limit */
  468. wil_err(wil, "EAPOL too large\n");
  469. return;
  470. }
  471. skb = alloc_skb(sz, GFP_KERNEL);
  472. if (!skb) {
  473. wil_err(wil, "Failed to allocate skb\n");
  474. return;
  475. }
  476. eth = (struct ethhdr *)skb_put(skb, ETH_HLEN);
  477. memcpy(eth->h_dest, ndev->dev_addr, ETH_ALEN);
  478. memcpy(eth->h_source, evt->src_mac, ETH_ALEN);
  479. eth->h_proto = cpu_to_be16(ETH_P_PAE);
  480. memcpy(skb_put(skb, eapol_len), evt->eapol, eapol_len);
  481. skb->protocol = eth_type_trans(skb, ndev);
  482. if (likely(netif_rx_ni(skb) == NET_RX_SUCCESS)) {
  483. ndev->stats.rx_packets++;
  484. ndev->stats.rx_bytes += sz;
  485. if (stats) {
  486. stats->rx_packets++;
  487. stats->rx_bytes += sz;
  488. }
  489. } else {
  490. ndev->stats.rx_dropped++;
  491. if (stats)
  492. stats->rx_dropped++;
  493. }
  494. }
  495. static void wmi_evt_linkup(struct wil6210_priv *wil, int id, void *d, int len)
  496. {
  497. struct net_device *ndev = wil_to_ndev(wil);
  498. struct wmi_data_port_open_event *evt = d;
  499. u8 cid = evt->cid;
  500. wil_dbg_wmi(wil, "Link UP for CID %d\n", cid);
  501. if (cid >= ARRAY_SIZE(wil->sta)) {
  502. wil_err(wil, "Link UP for invalid CID %d\n", cid);
  503. return;
  504. }
  505. wil->sta[cid].data_port_open = true;
  506. netif_carrier_on(ndev);
  507. }
  508. static void wmi_evt_linkdown(struct wil6210_priv *wil, int id, void *d, int len)
  509. {
  510. struct net_device *ndev = wil_to_ndev(wil);
  511. struct wmi_wbe_link_down_event *evt = d;
  512. u8 cid = evt->cid;
  513. wil_dbg_wmi(wil, "Link DOWN for CID %d, reason %d\n",
  514. cid, le32_to_cpu(evt->reason));
  515. if (cid >= ARRAY_SIZE(wil->sta)) {
  516. wil_err(wil, "Link DOWN for invalid CID %d\n", cid);
  517. return;
  518. }
  519. wil->sta[cid].data_port_open = false;
  520. netif_carrier_off(ndev);
  521. }
  522. static void wmi_evt_ba_status(struct wil6210_priv *wil, int id, void *d,
  523. int len)
  524. {
  525. struct wmi_vring_ba_status_event *evt = d;
  526. struct wil_sta_info *sta;
  527. uint i, cid;
  528. /* TODO: use Rx BA status, not Tx one */
  529. wil_dbg_wmi(wil, "BACK[%d] %s {%d} timeout %d\n",
  530. evt->ringid,
  531. evt->status == WMI_BA_AGREED ? "OK" : "N/A",
  532. evt->agg_wsize, __le16_to_cpu(evt->ba_timeout));
  533. if (evt->ringid >= WIL6210_MAX_TX_RINGS) {
  534. wil_err(wil, "invalid ring id %d\n", evt->ringid);
  535. return;
  536. }
  537. cid = wil->vring2cid_tid[evt->ringid][0];
  538. if (cid >= WIL6210_MAX_CID) {
  539. wil_err(wil, "invalid CID %d for vring %d\n", cid, evt->ringid);
  540. return;
  541. }
  542. sta = &wil->sta[cid];
  543. if (sta->status == wil_sta_unused) {
  544. wil_err(wil, "CID %d unused\n", cid);
  545. return;
  546. }
  547. wil_dbg_wmi(wil, "BACK for CID %d %pM\n", cid, sta->addr);
  548. for (i = 0; i < WIL_STA_TID_NUM; i++) {
  549. struct wil_tid_ampdu_rx *r = sta->tid_rx[i];
  550. sta->tid_rx[i] = NULL;
  551. wil_tid_ampdu_rx_free(wil, r);
  552. if ((evt->status == WMI_BA_AGREED) && evt->agg_wsize)
  553. sta->tid_rx[i] = wil_tid_ampdu_rx_alloc(wil,
  554. evt->agg_wsize, 0);
  555. }
  556. }
  557. static const struct {
  558. int eventid;
  559. void (*handler)(struct wil6210_priv *wil, int eventid,
  560. void *data, int data_len);
  561. } wmi_evt_handlers[] = {
  562. {WMI_READY_EVENTID, wmi_evt_ready},
  563. {WMI_FW_READY_EVENTID, wmi_evt_fw_ready},
  564. {WMI_RX_MGMT_PACKET_EVENTID, wmi_evt_rx_mgmt},
  565. {WMI_SCAN_COMPLETE_EVENTID, wmi_evt_scan_complete},
  566. {WMI_CONNECT_EVENTID, wmi_evt_connect},
  567. {WMI_DISCONNECT_EVENTID, wmi_evt_disconnect},
  568. {WMI_NOTIFY_REQ_DONE_EVENTID, wmi_evt_notify},
  569. {WMI_EAPOL_RX_EVENTID, wmi_evt_eapol_rx},
  570. {WMI_DATA_PORT_OPEN_EVENTID, wmi_evt_linkup},
  571. {WMI_WBE_LINKDOWN_EVENTID, wmi_evt_linkdown},
  572. {WMI_BA_STATUS_EVENTID, wmi_evt_ba_status},
  573. };
  574. /*
  575. * Run in IRQ context
  576. * Extract WMI command from mailbox. Queue it to the @wil->pending_wmi_ev
  577. * that will be eventually handled by the @wmi_event_worker in the thread
  578. * context of thread "wil6210_wmi"
  579. */
  580. void wmi_recv_cmd(struct wil6210_priv *wil)
  581. {
  582. struct wil6210_mbox_ring_desc d_tail;
  583. struct wil6210_mbox_hdr hdr;
  584. struct wil6210_mbox_ring *r = &wil->mbox_ctl.rx;
  585. struct pending_wmi_event *evt;
  586. u8 *cmd;
  587. void __iomem *src;
  588. ulong flags;
  589. unsigned n;
  590. if (!test_bit(wil_status_reset_done, &wil->status)) {
  591. wil_err(wil, "Reset not completed\n");
  592. return;
  593. }
  594. for (n = 0;; n++) {
  595. u16 len;
  596. bool q;
  597. r->head = ioread32(wil->csr + HOST_MBOX +
  598. offsetof(struct wil6210_mbox_ctl, rx.head));
  599. if (r->tail == r->head)
  600. break;
  601. wil_dbg_wmi(wil, "Mbox head %08x tail %08x\n",
  602. r->head, r->tail);
  603. /* read cmd descriptor from tail */
  604. wil_memcpy_fromio_32(&d_tail, wil->csr + HOSTADDR(r->tail),
  605. sizeof(struct wil6210_mbox_ring_desc));
  606. if (d_tail.sync == 0) {
  607. wil_err(wil, "Mbox evt not owned by FW?\n");
  608. break;
  609. }
  610. /* read cmd header from descriptor */
  611. if (0 != wmi_read_hdr(wil, d_tail.addr, &hdr)) {
  612. wil_err(wil, "Mbox evt at 0x%08x?\n",
  613. le32_to_cpu(d_tail.addr));
  614. break;
  615. }
  616. len = le16_to_cpu(hdr.len);
  617. wil_dbg_wmi(wil, "Mbox evt %04x %04x %04x %02x\n",
  618. le16_to_cpu(hdr.seq), len, le16_to_cpu(hdr.type),
  619. hdr.flags);
  620. /* read cmd buffer from descriptor */
  621. src = wmi_buffer(wil, d_tail.addr) +
  622. sizeof(struct wil6210_mbox_hdr);
  623. evt = kmalloc(ALIGN(offsetof(struct pending_wmi_event,
  624. event.wmi) + len, 4),
  625. GFP_KERNEL);
  626. if (!evt)
  627. break;
  628. evt->event.hdr = hdr;
  629. cmd = (void *)&evt->event.wmi;
  630. wil_memcpy_fromio_32(cmd, src, len);
  631. /* mark entry as empty */
  632. iowrite32(0, wil->csr + HOSTADDR(r->tail) +
  633. offsetof(struct wil6210_mbox_ring_desc, sync));
  634. /* indicate */
  635. if ((hdr.type == WIL_MBOX_HDR_TYPE_WMI) &&
  636. (len >= sizeof(struct wil6210_mbox_hdr_wmi))) {
  637. struct wil6210_mbox_hdr_wmi *wmi = &evt->event.wmi;
  638. u16 id = le16_to_cpu(wmi->id);
  639. u32 tstamp = le32_to_cpu(wmi->timestamp);
  640. wil_dbg_wmi(wil, "WMI event 0x%04x MID %d @%d msec\n",
  641. id, wmi->mid, tstamp);
  642. trace_wil6210_wmi_event(wmi, &wmi[1],
  643. len - sizeof(*wmi));
  644. }
  645. wil_hex_dump_wmi("evt ", DUMP_PREFIX_OFFSET, 16, 1,
  646. &evt->event.hdr, sizeof(hdr) + len, true);
  647. /* advance tail */
  648. r->tail = r->base + ((r->tail - r->base +
  649. sizeof(struct wil6210_mbox_ring_desc)) % r->size);
  650. iowrite32(r->tail, wil->csr + HOST_MBOX +
  651. offsetof(struct wil6210_mbox_ctl, rx.tail));
  652. /* add to the pending list */
  653. spin_lock_irqsave(&wil->wmi_ev_lock, flags);
  654. list_add_tail(&evt->list, &wil->pending_wmi_ev);
  655. spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
  656. q = queue_work(wil->wmi_wq, &wil->wmi_event_worker);
  657. wil_dbg_wmi(wil, "queue_work -> %d\n", q);
  658. }
  659. /* normally, 1 event per IRQ should be processed */
  660. wil_dbg_wmi(wil, "%s -> %d events queued\n", __func__, n);
  661. }
  662. int wmi_call(struct wil6210_priv *wil, u16 cmdid, void *buf, u16 len,
  663. u16 reply_id, void *reply, u8 reply_size, int to_msec)
  664. {
  665. int rc;
  666. int remain;
  667. mutex_lock(&wil->wmi_mutex);
  668. rc = __wmi_send(wil, cmdid, buf, len);
  669. if (rc)
  670. goto out;
  671. wil->reply_id = reply_id;
  672. wil->reply_buf = reply;
  673. wil->reply_size = reply_size;
  674. remain = wait_for_completion_timeout(&wil->wmi_ready,
  675. msecs_to_jiffies(to_msec));
  676. if (0 == remain) {
  677. wil_err(wil, "wmi_call(0x%04x->0x%04x) timeout %d msec\n",
  678. cmdid, reply_id, to_msec);
  679. rc = -ETIME;
  680. } else {
  681. wil_dbg_wmi(wil,
  682. "wmi_call(0x%04x->0x%04x) completed in %d msec\n",
  683. cmdid, reply_id,
  684. to_msec - jiffies_to_msecs(remain));
  685. }
  686. wil->reply_id = 0;
  687. wil->reply_buf = NULL;
  688. wil->reply_size = 0;
  689. out:
  690. mutex_unlock(&wil->wmi_mutex);
  691. return rc;
  692. }
  693. int wmi_echo(struct wil6210_priv *wil)
  694. {
  695. struct wmi_echo_cmd cmd = {
  696. .value = cpu_to_le32(0x12345678),
  697. };
  698. return wmi_call(wil, WMI_ECHO_CMDID, &cmd, sizeof(cmd),
  699. WMI_ECHO_RSP_EVENTID, NULL, 0, 20);
  700. }
  701. int wmi_set_mac_address(struct wil6210_priv *wil, void *addr)
  702. {
  703. struct wmi_set_mac_address_cmd cmd;
  704. memcpy(cmd.mac, addr, ETH_ALEN);
  705. wil_dbg_wmi(wil, "Set MAC %pM\n", addr);
  706. return wmi_send(wil, WMI_SET_MAC_ADDRESS_CMDID, &cmd, sizeof(cmd));
  707. }
  708. int wmi_pcp_start(struct wil6210_priv *wil, int bi, u8 wmi_nettype, u8 chan)
  709. {
  710. int rc;
  711. struct wmi_pcp_start_cmd cmd = {
  712. .bcon_interval = cpu_to_le16(bi),
  713. .network_type = wmi_nettype,
  714. .disable_sec_offload = 1,
  715. .channel = chan - 1,
  716. .pcp_max_assoc_sta = WIL6210_MAX_CID,
  717. };
  718. struct {
  719. struct wil6210_mbox_hdr_wmi wmi;
  720. struct wmi_pcp_started_event evt;
  721. } __packed reply;
  722. if (!wil->secure_pcp)
  723. cmd.disable_sec = 1;
  724. /*
  725. * Processing time may be huge, in case of secure AP it takes about
  726. * 3500ms for FW to start AP
  727. */
  728. rc = wmi_call(wil, WMI_PCP_START_CMDID, &cmd, sizeof(cmd),
  729. WMI_PCP_STARTED_EVENTID, &reply, sizeof(reply), 5000);
  730. if (rc)
  731. return rc;
  732. if (reply.evt.status != WMI_FW_STATUS_SUCCESS)
  733. rc = -EINVAL;
  734. return rc;
  735. }
  736. int wmi_pcp_stop(struct wil6210_priv *wil)
  737. {
  738. return wmi_call(wil, WMI_PCP_STOP_CMDID, NULL, 0,
  739. WMI_PCP_STOPPED_EVENTID, NULL, 0, 20);
  740. }
  741. int wmi_set_ssid(struct wil6210_priv *wil, u8 ssid_len, const void *ssid)
  742. {
  743. struct wmi_set_ssid_cmd cmd = {
  744. .ssid_len = cpu_to_le32(ssid_len),
  745. };
  746. if (ssid_len > sizeof(cmd.ssid))
  747. return -EINVAL;
  748. memcpy(cmd.ssid, ssid, ssid_len);
  749. return wmi_send(wil, WMI_SET_SSID_CMDID, &cmd, sizeof(cmd));
  750. }
  751. int wmi_get_ssid(struct wil6210_priv *wil, u8 *ssid_len, void *ssid)
  752. {
  753. int rc;
  754. struct {
  755. struct wil6210_mbox_hdr_wmi wmi;
  756. struct wmi_set_ssid_cmd cmd;
  757. } __packed reply;
  758. int len; /* reply.cmd.ssid_len in CPU order */
  759. rc = wmi_call(wil, WMI_GET_SSID_CMDID, NULL, 0, WMI_GET_SSID_EVENTID,
  760. &reply, sizeof(reply), 20);
  761. if (rc)
  762. return rc;
  763. len = le32_to_cpu(reply.cmd.ssid_len);
  764. if (len > sizeof(reply.cmd.ssid))
  765. return -EINVAL;
  766. *ssid_len = len;
  767. memcpy(ssid, reply.cmd.ssid, len);
  768. return 0;
  769. }
  770. int wmi_set_channel(struct wil6210_priv *wil, int channel)
  771. {
  772. struct wmi_set_pcp_channel_cmd cmd = {
  773. .channel = channel - 1,
  774. };
  775. return wmi_send(wil, WMI_SET_PCP_CHANNEL_CMDID, &cmd, sizeof(cmd));
  776. }
  777. int wmi_get_channel(struct wil6210_priv *wil, int *channel)
  778. {
  779. int rc;
  780. struct {
  781. struct wil6210_mbox_hdr_wmi wmi;
  782. struct wmi_set_pcp_channel_cmd cmd;
  783. } __packed reply;
  784. rc = wmi_call(wil, WMI_GET_PCP_CHANNEL_CMDID, NULL, 0,
  785. WMI_GET_PCP_CHANNEL_EVENTID, &reply, sizeof(reply), 20);
  786. if (rc)
  787. return rc;
  788. if (reply.cmd.channel > 3)
  789. return -EINVAL;
  790. *channel = reply.cmd.channel + 1;
  791. return 0;
  792. }
  793. int wmi_p2p_cfg(struct wil6210_priv *wil, int channel)
  794. {
  795. struct wmi_p2p_cfg_cmd cmd = {
  796. .discovery_mode = WMI_DISCOVERY_MODE_NON_OFFLOAD,
  797. .channel = channel - 1,
  798. };
  799. return wmi_send(wil, WMI_P2P_CFG_CMDID, &cmd, sizeof(cmd));
  800. }
  801. int wmi_del_cipher_key(struct wil6210_priv *wil, u8 key_index,
  802. const void *mac_addr)
  803. {
  804. struct wmi_delete_cipher_key_cmd cmd = {
  805. .key_index = key_index,
  806. };
  807. if (mac_addr)
  808. memcpy(cmd.mac, mac_addr, WMI_MAC_LEN);
  809. return wmi_send(wil, WMI_DELETE_CIPHER_KEY_CMDID, &cmd, sizeof(cmd));
  810. }
  811. int wmi_add_cipher_key(struct wil6210_priv *wil, u8 key_index,
  812. const void *mac_addr, int key_len, const void *key)
  813. {
  814. struct wmi_add_cipher_key_cmd cmd = {
  815. .key_index = key_index,
  816. .key_usage = WMI_KEY_USE_PAIRWISE,
  817. .key_len = key_len,
  818. };
  819. if (!key || (key_len > sizeof(cmd.key)))
  820. return -EINVAL;
  821. memcpy(cmd.key, key, key_len);
  822. if (mac_addr)
  823. memcpy(cmd.mac, mac_addr, WMI_MAC_LEN);
  824. return wmi_send(wil, WMI_ADD_CIPHER_KEY_CMDID, &cmd, sizeof(cmd));
  825. }
  826. int wmi_set_ie(struct wil6210_priv *wil, u8 type, u16 ie_len, const void *ie)
  827. {
  828. int rc;
  829. u16 len = sizeof(struct wmi_set_appie_cmd) + ie_len;
  830. struct wmi_set_appie_cmd *cmd = kzalloc(len, GFP_KERNEL);
  831. if (!cmd)
  832. return -ENOMEM;
  833. cmd->mgmt_frm_type = type;
  834. /* BUG: FW API define ieLen as u8. Will fix FW */
  835. cmd->ie_len = cpu_to_le16(ie_len);
  836. memcpy(cmd->ie_info, ie, ie_len);
  837. rc = wmi_send(wil, WMI_SET_APPIE_CMDID, cmd, len);
  838. kfree(cmd);
  839. return rc;
  840. }
  841. /**
  842. * wmi_rxon - turn radio on/off
  843. * @on: turn on if true, off otherwise
  844. *
  845. * Only switch radio. Channel should be set separately.
  846. * No timeout for rxon - radio turned on forever unless some other call
  847. * turns it off
  848. */
  849. int wmi_rxon(struct wil6210_priv *wil, bool on)
  850. {
  851. int rc;
  852. struct {
  853. struct wil6210_mbox_hdr_wmi wmi;
  854. struct wmi_listen_started_event evt;
  855. } __packed reply;
  856. wil_info(wil, "%s(%s)\n", __func__, on ? "on" : "off");
  857. if (on) {
  858. rc = wmi_call(wil, WMI_START_LISTEN_CMDID, NULL, 0,
  859. WMI_LISTEN_STARTED_EVENTID,
  860. &reply, sizeof(reply), 100);
  861. if ((rc == 0) && (reply.evt.status != WMI_FW_STATUS_SUCCESS))
  862. rc = -EINVAL;
  863. } else {
  864. rc = wmi_call(wil, WMI_DISCOVERY_STOP_CMDID, NULL, 0,
  865. WMI_DISCOVERY_STOPPED_EVENTID, NULL, 0, 20);
  866. }
  867. return rc;
  868. }
  869. int wmi_rx_chain_add(struct wil6210_priv *wil, struct vring *vring)
  870. {
  871. struct wireless_dev *wdev = wil->wdev;
  872. struct net_device *ndev = wil_to_ndev(wil);
  873. struct wmi_cfg_rx_chain_cmd cmd = {
  874. .action = WMI_RX_CHAIN_ADD,
  875. .rx_sw_ring = {
  876. .max_mpdu_size = cpu_to_le16(RX_BUF_LEN),
  877. .ring_mem_base = cpu_to_le64(vring->pa),
  878. .ring_size = cpu_to_le16(vring->size),
  879. },
  880. .mid = 0, /* TODO - what is it? */
  881. .decap_trans_type = WMI_DECAP_TYPE_802_3,
  882. .reorder_type = WMI_RX_SW_REORDER,
  883. };
  884. struct {
  885. struct wil6210_mbox_hdr_wmi wmi;
  886. struct wmi_cfg_rx_chain_done_event evt;
  887. } __packed evt;
  888. int rc;
  889. if (wdev->iftype == NL80211_IFTYPE_MONITOR) {
  890. struct ieee80211_channel *ch = wdev->preset_chandef.chan;
  891. cmd.sniffer_cfg.mode = cpu_to_le32(WMI_SNIFFER_ON);
  892. if (ch)
  893. cmd.sniffer_cfg.channel = ch->hw_value - 1;
  894. cmd.sniffer_cfg.phy_info_mode =
  895. cpu_to_le32(ndev->type == ARPHRD_IEEE80211_RADIOTAP);
  896. cmd.sniffer_cfg.phy_support =
  897. cpu_to_le32((wil->monitor_flags & MONITOR_FLAG_CONTROL)
  898. ? WMI_SNIFFER_CP : WMI_SNIFFER_DP);
  899. } else {
  900. /* Initialize offload (in non-sniffer mode).
  901. * Linux IP stack always calculates IP checksum
  902. * HW always calculate TCP/UDP checksum
  903. */
  904. cmd.l3_l4_ctrl |= (1 << L3_L4_CTRL_TCPIP_CHECKSUM_EN_POS);
  905. }
  906. /* typical time for secure PCP is 840ms */
  907. rc = wmi_call(wil, WMI_CFG_RX_CHAIN_CMDID, &cmd, sizeof(cmd),
  908. WMI_CFG_RX_CHAIN_DONE_EVENTID, &evt, sizeof(evt), 2000);
  909. if (rc)
  910. return rc;
  911. vring->hwtail = le32_to_cpu(evt.evt.rx_ring_tail_ptr);
  912. wil_dbg_misc(wil, "Rx init: status %d tail 0x%08x\n",
  913. le32_to_cpu(evt.evt.status), vring->hwtail);
  914. if (le32_to_cpu(evt.evt.status) != WMI_CFG_RX_CHAIN_SUCCESS)
  915. rc = -EINVAL;
  916. return rc;
  917. }
  918. int wmi_get_temperature(struct wil6210_priv *wil, u32 *t_m, u32 *t_r)
  919. {
  920. int rc;
  921. struct wmi_temp_sense_cmd cmd = {
  922. .measure_marlon_m_en = cpu_to_le32(!!t_m),
  923. .measure_marlon_r_en = cpu_to_le32(!!t_r),
  924. };
  925. struct {
  926. struct wil6210_mbox_hdr_wmi wmi;
  927. struct wmi_temp_sense_done_event evt;
  928. } __packed reply;
  929. rc = wmi_call(wil, WMI_TEMP_SENSE_CMDID, &cmd, sizeof(cmd),
  930. WMI_TEMP_SENSE_DONE_EVENTID, &reply, sizeof(reply), 100);
  931. if (rc)
  932. return rc;
  933. if (t_m)
  934. *t_m = le32_to_cpu(reply.evt.marlon_m_t1000);
  935. if (t_r)
  936. *t_r = le32_to_cpu(reply.evt.marlon_r_t1000);
  937. return 0;
  938. }
  939. int wmi_disconnect_sta(struct wil6210_priv *wil, const u8 *mac, u16 reason)
  940. {
  941. struct wmi_disconnect_sta_cmd cmd = {
  942. .disconnect_reason = cpu_to_le16(reason),
  943. };
  944. memcpy(cmd.dst_mac, mac, ETH_ALEN);
  945. wil_dbg_wmi(wil, "%s(%pM, reason %d)\n", __func__, mac, reason);
  946. return wmi_send(wil, WMI_DISCONNECT_STA_CMDID, &cmd, sizeof(cmd));
  947. }
  948. void wmi_event_flush(struct wil6210_priv *wil)
  949. {
  950. struct pending_wmi_event *evt, *t;
  951. wil_dbg_wmi(wil, "%s()\n", __func__);
  952. list_for_each_entry_safe(evt, t, &wil->pending_wmi_ev, list) {
  953. list_del(&evt->list);
  954. kfree(evt);
  955. }
  956. }
  957. static bool wmi_evt_call_handler(struct wil6210_priv *wil, int id,
  958. void *d, int len)
  959. {
  960. uint i;
  961. for (i = 0; i < ARRAY_SIZE(wmi_evt_handlers); i++) {
  962. if (wmi_evt_handlers[i].eventid == id) {
  963. wmi_evt_handlers[i].handler(wil, id, d, len);
  964. return true;
  965. }
  966. }
  967. return false;
  968. }
  969. static void wmi_event_handle(struct wil6210_priv *wil,
  970. struct wil6210_mbox_hdr *hdr)
  971. {
  972. u16 len = le16_to_cpu(hdr->len);
  973. if ((hdr->type == WIL_MBOX_HDR_TYPE_WMI) &&
  974. (len >= sizeof(struct wil6210_mbox_hdr_wmi))) {
  975. struct wil6210_mbox_hdr_wmi *wmi = (void *)(&hdr[1]);
  976. void *evt_data = (void *)(&wmi[1]);
  977. u16 id = le16_to_cpu(wmi->id);
  978. /* check if someone waits for this event */
  979. if (wil->reply_id && wil->reply_id == id) {
  980. if (wil->reply_buf) {
  981. memcpy(wil->reply_buf, wmi,
  982. min(len, wil->reply_size));
  983. } else {
  984. wmi_evt_call_handler(wil, id, evt_data,
  985. len - sizeof(*wmi));
  986. }
  987. wil_dbg_wmi(wil, "Complete WMI 0x%04x\n", id);
  988. complete(&wil->wmi_ready);
  989. return;
  990. }
  991. /* unsolicited event */
  992. /* search for handler */
  993. if (!wmi_evt_call_handler(wil, id, evt_data,
  994. len - sizeof(*wmi))) {
  995. wil_err(wil, "Unhandled event 0x%04x\n", id);
  996. }
  997. } else {
  998. wil_err(wil, "Unknown event type\n");
  999. print_hex_dump(KERN_ERR, "evt?? ", DUMP_PREFIX_OFFSET, 16, 1,
  1000. hdr, sizeof(*hdr) + len, true);
  1001. }
  1002. }
  1003. /*
  1004. * Retrieve next WMI event from the pending list
  1005. */
  1006. static struct list_head *next_wmi_ev(struct wil6210_priv *wil)
  1007. {
  1008. ulong flags;
  1009. struct list_head *ret = NULL;
  1010. spin_lock_irqsave(&wil->wmi_ev_lock, flags);
  1011. if (!list_empty(&wil->pending_wmi_ev)) {
  1012. ret = wil->pending_wmi_ev.next;
  1013. list_del(ret);
  1014. }
  1015. spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
  1016. return ret;
  1017. }
  1018. /*
  1019. * Handler for the WMI events
  1020. */
  1021. void wmi_event_worker(struct work_struct *work)
  1022. {
  1023. struct wil6210_priv *wil = container_of(work, struct wil6210_priv,
  1024. wmi_event_worker);
  1025. struct pending_wmi_event *evt;
  1026. struct list_head *lh;
  1027. while ((lh = next_wmi_ev(wil)) != NULL) {
  1028. evt = list_entry(lh, struct pending_wmi_event, list);
  1029. wmi_event_handle(wil, &evt->event.hdr);
  1030. kfree(evt);
  1031. }
  1032. }