segment.c 83 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320
  1. /*
  2. * fs/f2fs/segment.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/bio.h>
  14. #include <linux/blkdev.h>
  15. #include <linux/prefetch.h>
  16. #include <linux/kthread.h>
  17. #include <linux/swap.h>
  18. #include <linux/timer.h>
  19. #include "f2fs.h"
  20. #include "segment.h"
  21. #include "node.h"
  22. #include "trace.h"
  23. #include <trace/events/f2fs.h>
  24. #define __reverse_ffz(x) __reverse_ffs(~(x))
  25. static struct kmem_cache *discard_entry_slab;
  26. static struct kmem_cache *discard_cmd_slab;
  27. static struct kmem_cache *sit_entry_set_slab;
  28. static struct kmem_cache *inmem_entry_slab;
  29. static unsigned long __reverse_ulong(unsigned char *str)
  30. {
  31. unsigned long tmp = 0;
  32. int shift = 24, idx = 0;
  33. #if BITS_PER_LONG == 64
  34. shift = 56;
  35. #endif
  36. while (shift >= 0) {
  37. tmp |= (unsigned long)str[idx++] << shift;
  38. shift -= BITS_PER_BYTE;
  39. }
  40. return tmp;
  41. }
  42. /*
  43. * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  44. * MSB and LSB are reversed in a byte by f2fs_set_bit.
  45. */
  46. static inline unsigned long __reverse_ffs(unsigned long word)
  47. {
  48. int num = 0;
  49. #if BITS_PER_LONG == 64
  50. if ((word & 0xffffffff00000000UL) == 0)
  51. num += 32;
  52. else
  53. word >>= 32;
  54. #endif
  55. if ((word & 0xffff0000) == 0)
  56. num += 16;
  57. else
  58. word >>= 16;
  59. if ((word & 0xff00) == 0)
  60. num += 8;
  61. else
  62. word >>= 8;
  63. if ((word & 0xf0) == 0)
  64. num += 4;
  65. else
  66. word >>= 4;
  67. if ((word & 0xc) == 0)
  68. num += 2;
  69. else
  70. word >>= 2;
  71. if ((word & 0x2) == 0)
  72. num += 1;
  73. return num;
  74. }
  75. /*
  76. * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  77. * f2fs_set_bit makes MSB and LSB reversed in a byte.
  78. * @size must be integral times of unsigned long.
  79. * Example:
  80. * MSB <--> LSB
  81. * f2fs_set_bit(0, bitmap) => 1000 0000
  82. * f2fs_set_bit(7, bitmap) => 0000 0001
  83. */
  84. static unsigned long __find_rev_next_bit(const unsigned long *addr,
  85. unsigned long size, unsigned long offset)
  86. {
  87. const unsigned long *p = addr + BIT_WORD(offset);
  88. unsigned long result = size;
  89. unsigned long tmp;
  90. if (offset >= size)
  91. return size;
  92. size -= (offset & ~(BITS_PER_LONG - 1));
  93. offset %= BITS_PER_LONG;
  94. while (1) {
  95. if (*p == 0)
  96. goto pass;
  97. tmp = __reverse_ulong((unsigned char *)p);
  98. tmp &= ~0UL >> offset;
  99. if (size < BITS_PER_LONG)
  100. tmp &= (~0UL << (BITS_PER_LONG - size));
  101. if (tmp)
  102. goto found;
  103. pass:
  104. if (size <= BITS_PER_LONG)
  105. break;
  106. size -= BITS_PER_LONG;
  107. offset = 0;
  108. p++;
  109. }
  110. return result;
  111. found:
  112. return result - size + __reverse_ffs(tmp);
  113. }
  114. static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
  115. unsigned long size, unsigned long offset)
  116. {
  117. const unsigned long *p = addr + BIT_WORD(offset);
  118. unsigned long result = size;
  119. unsigned long tmp;
  120. if (offset >= size)
  121. return size;
  122. size -= (offset & ~(BITS_PER_LONG - 1));
  123. offset %= BITS_PER_LONG;
  124. while (1) {
  125. if (*p == ~0UL)
  126. goto pass;
  127. tmp = __reverse_ulong((unsigned char *)p);
  128. if (offset)
  129. tmp |= ~0UL << (BITS_PER_LONG - offset);
  130. if (size < BITS_PER_LONG)
  131. tmp |= ~0UL >> size;
  132. if (tmp != ~0UL)
  133. goto found;
  134. pass:
  135. if (size <= BITS_PER_LONG)
  136. break;
  137. size -= BITS_PER_LONG;
  138. offset = 0;
  139. p++;
  140. }
  141. return result;
  142. found:
  143. return result - size + __reverse_ffz(tmp);
  144. }
  145. void register_inmem_page(struct inode *inode, struct page *page)
  146. {
  147. struct f2fs_inode_info *fi = F2FS_I(inode);
  148. struct inmem_pages *new;
  149. f2fs_trace_pid(page);
  150. set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
  151. SetPagePrivate(page);
  152. new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
  153. /* add atomic page indices to the list */
  154. new->page = page;
  155. INIT_LIST_HEAD(&new->list);
  156. /* increase reference count with clean state */
  157. mutex_lock(&fi->inmem_lock);
  158. get_page(page);
  159. list_add_tail(&new->list, &fi->inmem_pages);
  160. inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
  161. mutex_unlock(&fi->inmem_lock);
  162. trace_f2fs_register_inmem_page(page, INMEM);
  163. }
  164. static int __revoke_inmem_pages(struct inode *inode,
  165. struct list_head *head, bool drop, bool recover)
  166. {
  167. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  168. struct inmem_pages *cur, *tmp;
  169. int err = 0;
  170. list_for_each_entry_safe(cur, tmp, head, list) {
  171. struct page *page = cur->page;
  172. if (drop)
  173. trace_f2fs_commit_inmem_page(page, INMEM_DROP);
  174. lock_page(page);
  175. if (recover) {
  176. struct dnode_of_data dn;
  177. struct node_info ni;
  178. trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
  179. set_new_dnode(&dn, inode, NULL, NULL, 0);
  180. if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
  181. err = -EAGAIN;
  182. goto next;
  183. }
  184. get_node_info(sbi, dn.nid, &ni);
  185. f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
  186. cur->old_addr, ni.version, true, true);
  187. f2fs_put_dnode(&dn);
  188. }
  189. next:
  190. /* we don't need to invalidate this in the sccessful status */
  191. if (drop || recover)
  192. ClearPageUptodate(page);
  193. set_page_private(page, 0);
  194. ClearPagePrivate(page);
  195. f2fs_put_page(page, 1);
  196. list_del(&cur->list);
  197. kmem_cache_free(inmem_entry_slab, cur);
  198. dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
  199. }
  200. return err;
  201. }
  202. void drop_inmem_pages(struct inode *inode)
  203. {
  204. struct f2fs_inode_info *fi = F2FS_I(inode);
  205. mutex_lock(&fi->inmem_lock);
  206. __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
  207. mutex_unlock(&fi->inmem_lock);
  208. clear_inode_flag(inode, FI_ATOMIC_FILE);
  209. stat_dec_atomic_write(inode);
  210. }
  211. void drop_inmem_page(struct inode *inode, struct page *page)
  212. {
  213. struct f2fs_inode_info *fi = F2FS_I(inode);
  214. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  215. struct list_head *head = &fi->inmem_pages;
  216. struct inmem_pages *cur = NULL;
  217. f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
  218. mutex_lock(&fi->inmem_lock);
  219. list_for_each_entry(cur, head, list) {
  220. if (cur->page == page)
  221. break;
  222. }
  223. f2fs_bug_on(sbi, !cur || cur->page != page);
  224. list_del(&cur->list);
  225. mutex_unlock(&fi->inmem_lock);
  226. dec_page_count(sbi, F2FS_INMEM_PAGES);
  227. kmem_cache_free(inmem_entry_slab, cur);
  228. ClearPageUptodate(page);
  229. set_page_private(page, 0);
  230. ClearPagePrivate(page);
  231. f2fs_put_page(page, 0);
  232. trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
  233. }
  234. static int __commit_inmem_pages(struct inode *inode,
  235. struct list_head *revoke_list)
  236. {
  237. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  238. struct f2fs_inode_info *fi = F2FS_I(inode);
  239. struct inmem_pages *cur, *tmp;
  240. struct f2fs_io_info fio = {
  241. .sbi = sbi,
  242. .type = DATA,
  243. .op = REQ_OP_WRITE,
  244. .op_flags = REQ_SYNC | REQ_PRIO,
  245. .encrypted_page = NULL,
  246. };
  247. pgoff_t last_idx = ULONG_MAX;
  248. int err = 0;
  249. list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
  250. struct page *page = cur->page;
  251. lock_page(page);
  252. if (page->mapping == inode->i_mapping) {
  253. trace_f2fs_commit_inmem_page(page, INMEM);
  254. set_page_dirty(page);
  255. f2fs_wait_on_page_writeback(page, DATA, true);
  256. if (clear_page_dirty_for_io(page)) {
  257. inode_dec_dirty_pages(inode);
  258. remove_dirty_inode(inode);
  259. }
  260. fio.page = page;
  261. err = do_write_data_page(&fio);
  262. if (err) {
  263. unlock_page(page);
  264. break;
  265. }
  266. /* record old blkaddr for revoking */
  267. cur->old_addr = fio.old_blkaddr;
  268. last_idx = page->index;
  269. }
  270. unlock_page(page);
  271. list_move_tail(&cur->list, revoke_list);
  272. }
  273. if (last_idx != ULONG_MAX)
  274. f2fs_submit_merged_bio_cond(sbi, inode, 0, last_idx,
  275. DATA, WRITE);
  276. if (!err)
  277. __revoke_inmem_pages(inode, revoke_list, false, false);
  278. return err;
  279. }
  280. int commit_inmem_pages(struct inode *inode)
  281. {
  282. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  283. struct f2fs_inode_info *fi = F2FS_I(inode);
  284. struct list_head revoke_list;
  285. int err;
  286. INIT_LIST_HEAD(&revoke_list);
  287. f2fs_balance_fs(sbi, true);
  288. f2fs_lock_op(sbi);
  289. set_inode_flag(inode, FI_ATOMIC_COMMIT);
  290. mutex_lock(&fi->inmem_lock);
  291. err = __commit_inmem_pages(inode, &revoke_list);
  292. if (err) {
  293. int ret;
  294. /*
  295. * try to revoke all committed pages, but still we could fail
  296. * due to no memory or other reason, if that happened, EAGAIN
  297. * will be returned, which means in such case, transaction is
  298. * already not integrity, caller should use journal to do the
  299. * recovery or rewrite & commit last transaction. For other
  300. * error number, revoking was done by filesystem itself.
  301. */
  302. ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
  303. if (ret)
  304. err = ret;
  305. /* drop all uncommitted pages */
  306. __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
  307. }
  308. mutex_unlock(&fi->inmem_lock);
  309. clear_inode_flag(inode, FI_ATOMIC_COMMIT);
  310. f2fs_unlock_op(sbi);
  311. return err;
  312. }
  313. /*
  314. * This function balances dirty node and dentry pages.
  315. * In addition, it controls garbage collection.
  316. */
  317. void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
  318. {
  319. #ifdef CONFIG_F2FS_FAULT_INJECTION
  320. if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
  321. f2fs_show_injection_info(FAULT_CHECKPOINT);
  322. f2fs_stop_checkpoint(sbi, false);
  323. }
  324. #endif
  325. if (!need)
  326. return;
  327. /* balance_fs_bg is able to be pending */
  328. if (excess_cached_nats(sbi))
  329. f2fs_balance_fs_bg(sbi);
  330. /*
  331. * We should do GC or end up with checkpoint, if there are so many dirty
  332. * dir/node pages without enough free segments.
  333. */
  334. if (has_not_enough_free_secs(sbi, 0, 0)) {
  335. mutex_lock(&sbi->gc_mutex);
  336. f2fs_gc(sbi, false, false);
  337. }
  338. }
  339. void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
  340. {
  341. /* try to shrink extent cache when there is no enough memory */
  342. if (!available_free_memory(sbi, EXTENT_CACHE))
  343. f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
  344. /* check the # of cached NAT entries */
  345. if (!available_free_memory(sbi, NAT_ENTRIES))
  346. try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
  347. if (!available_free_memory(sbi, FREE_NIDS))
  348. try_to_free_nids(sbi, MAX_FREE_NIDS);
  349. else
  350. build_free_nids(sbi, false, false);
  351. if (!is_idle(sbi))
  352. return;
  353. /* checkpoint is the only way to shrink partial cached entries */
  354. if (!available_free_memory(sbi, NAT_ENTRIES) ||
  355. !available_free_memory(sbi, INO_ENTRIES) ||
  356. excess_prefree_segs(sbi) ||
  357. excess_dirty_nats(sbi) ||
  358. f2fs_time_over(sbi, CP_TIME)) {
  359. if (test_opt(sbi, DATA_FLUSH)) {
  360. struct blk_plug plug;
  361. blk_start_plug(&plug);
  362. sync_dirty_inodes(sbi, FILE_INODE);
  363. blk_finish_plug(&plug);
  364. }
  365. f2fs_sync_fs(sbi->sb, true);
  366. stat_inc_bg_cp_count(sbi->stat_info);
  367. }
  368. }
  369. static int __submit_flush_wait(struct f2fs_sb_info *sbi,
  370. struct block_device *bdev)
  371. {
  372. struct bio *bio = f2fs_bio_alloc(0);
  373. int ret;
  374. bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
  375. bio->bi_bdev = bdev;
  376. ret = submit_bio_wait(bio);
  377. bio_put(bio);
  378. trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
  379. test_opt(sbi, FLUSH_MERGE), ret);
  380. return ret;
  381. }
  382. static int submit_flush_wait(struct f2fs_sb_info *sbi)
  383. {
  384. int ret = __submit_flush_wait(sbi, sbi->sb->s_bdev);
  385. int i;
  386. if (!sbi->s_ndevs || ret)
  387. return ret;
  388. for (i = 1; i < sbi->s_ndevs; i++) {
  389. ret = __submit_flush_wait(sbi, FDEV(i).bdev);
  390. if (ret)
  391. break;
  392. }
  393. return ret;
  394. }
  395. static int issue_flush_thread(void *data)
  396. {
  397. struct f2fs_sb_info *sbi = data;
  398. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  399. wait_queue_head_t *q = &fcc->flush_wait_queue;
  400. repeat:
  401. if (kthread_should_stop())
  402. return 0;
  403. if (!llist_empty(&fcc->issue_list)) {
  404. struct flush_cmd *cmd, *next;
  405. int ret;
  406. fcc->dispatch_list = llist_del_all(&fcc->issue_list);
  407. fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
  408. ret = submit_flush_wait(sbi);
  409. atomic_inc(&fcc->issued_flush);
  410. llist_for_each_entry_safe(cmd, next,
  411. fcc->dispatch_list, llnode) {
  412. cmd->ret = ret;
  413. complete(&cmd->wait);
  414. }
  415. fcc->dispatch_list = NULL;
  416. }
  417. wait_event_interruptible(*q,
  418. kthread_should_stop() || !llist_empty(&fcc->issue_list));
  419. goto repeat;
  420. }
  421. int f2fs_issue_flush(struct f2fs_sb_info *sbi)
  422. {
  423. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  424. struct flush_cmd cmd;
  425. int ret;
  426. if (test_opt(sbi, NOBARRIER))
  427. return 0;
  428. if (!test_opt(sbi, FLUSH_MERGE)) {
  429. ret = submit_flush_wait(sbi);
  430. atomic_inc(&fcc->issued_flush);
  431. return ret;
  432. }
  433. if (!atomic_read(&fcc->issing_flush)) {
  434. atomic_inc(&fcc->issing_flush);
  435. ret = submit_flush_wait(sbi);
  436. atomic_dec(&fcc->issing_flush);
  437. atomic_inc(&fcc->issued_flush);
  438. return ret;
  439. }
  440. init_completion(&cmd.wait);
  441. atomic_inc(&fcc->issing_flush);
  442. llist_add(&cmd.llnode, &fcc->issue_list);
  443. if (!fcc->dispatch_list)
  444. wake_up(&fcc->flush_wait_queue);
  445. if (fcc->f2fs_issue_flush) {
  446. wait_for_completion(&cmd.wait);
  447. atomic_dec(&fcc->issing_flush);
  448. } else {
  449. llist_del_all(&fcc->issue_list);
  450. atomic_set(&fcc->issing_flush, 0);
  451. }
  452. return cmd.ret;
  453. }
  454. int create_flush_cmd_control(struct f2fs_sb_info *sbi)
  455. {
  456. dev_t dev = sbi->sb->s_bdev->bd_dev;
  457. struct flush_cmd_control *fcc;
  458. int err = 0;
  459. if (SM_I(sbi)->fcc_info) {
  460. fcc = SM_I(sbi)->fcc_info;
  461. goto init_thread;
  462. }
  463. fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
  464. if (!fcc)
  465. return -ENOMEM;
  466. atomic_set(&fcc->issued_flush, 0);
  467. atomic_set(&fcc->issing_flush, 0);
  468. init_waitqueue_head(&fcc->flush_wait_queue);
  469. init_llist_head(&fcc->issue_list);
  470. SM_I(sbi)->fcc_info = fcc;
  471. init_thread:
  472. fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
  473. "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
  474. if (IS_ERR(fcc->f2fs_issue_flush)) {
  475. err = PTR_ERR(fcc->f2fs_issue_flush);
  476. kfree(fcc);
  477. SM_I(sbi)->fcc_info = NULL;
  478. return err;
  479. }
  480. return err;
  481. }
  482. void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
  483. {
  484. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  485. if (fcc && fcc->f2fs_issue_flush) {
  486. struct task_struct *flush_thread = fcc->f2fs_issue_flush;
  487. fcc->f2fs_issue_flush = NULL;
  488. kthread_stop(flush_thread);
  489. }
  490. if (free) {
  491. kfree(fcc);
  492. SM_I(sbi)->fcc_info = NULL;
  493. }
  494. }
  495. static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
  496. enum dirty_type dirty_type)
  497. {
  498. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  499. /* need not be added */
  500. if (IS_CURSEG(sbi, segno))
  501. return;
  502. if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
  503. dirty_i->nr_dirty[dirty_type]++;
  504. if (dirty_type == DIRTY) {
  505. struct seg_entry *sentry = get_seg_entry(sbi, segno);
  506. enum dirty_type t = sentry->type;
  507. if (unlikely(t >= DIRTY)) {
  508. f2fs_bug_on(sbi, 1);
  509. return;
  510. }
  511. if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
  512. dirty_i->nr_dirty[t]++;
  513. }
  514. }
  515. static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
  516. enum dirty_type dirty_type)
  517. {
  518. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  519. if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
  520. dirty_i->nr_dirty[dirty_type]--;
  521. if (dirty_type == DIRTY) {
  522. struct seg_entry *sentry = get_seg_entry(sbi, segno);
  523. enum dirty_type t = sentry->type;
  524. if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
  525. dirty_i->nr_dirty[t]--;
  526. if (get_valid_blocks(sbi, segno, true) == 0)
  527. clear_bit(GET_SEC_FROM_SEG(sbi, segno),
  528. dirty_i->victim_secmap);
  529. }
  530. }
  531. /*
  532. * Should not occur error such as -ENOMEM.
  533. * Adding dirty entry into seglist is not critical operation.
  534. * If a given segment is one of current working segments, it won't be added.
  535. */
  536. static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
  537. {
  538. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  539. unsigned short valid_blocks;
  540. if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
  541. return;
  542. mutex_lock(&dirty_i->seglist_lock);
  543. valid_blocks = get_valid_blocks(sbi, segno, false);
  544. if (valid_blocks == 0) {
  545. __locate_dirty_segment(sbi, segno, PRE);
  546. __remove_dirty_segment(sbi, segno, DIRTY);
  547. } else if (valid_blocks < sbi->blocks_per_seg) {
  548. __locate_dirty_segment(sbi, segno, DIRTY);
  549. } else {
  550. /* Recovery routine with SSR needs this */
  551. __remove_dirty_segment(sbi, segno, DIRTY);
  552. }
  553. mutex_unlock(&dirty_i->seglist_lock);
  554. }
  555. static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
  556. struct block_device *bdev, block_t lstart,
  557. block_t start, block_t len)
  558. {
  559. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  560. struct list_head *pend_list;
  561. struct discard_cmd *dc;
  562. f2fs_bug_on(sbi, !len);
  563. pend_list = &dcc->pend_list[plist_idx(len)];
  564. dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
  565. INIT_LIST_HEAD(&dc->list);
  566. dc->bdev = bdev;
  567. dc->lstart = lstart;
  568. dc->start = start;
  569. dc->len = len;
  570. dc->state = D_PREP;
  571. dc->error = 0;
  572. init_completion(&dc->wait);
  573. list_add_tail(&dc->list, pend_list);
  574. atomic_inc(&dcc->discard_cmd_cnt);
  575. return dc;
  576. }
  577. static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
  578. struct block_device *bdev, block_t lstart,
  579. block_t start, block_t len,
  580. struct rb_node *parent, struct rb_node **p)
  581. {
  582. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  583. struct discard_cmd *dc;
  584. dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
  585. rb_link_node(&dc->rb_node, parent, p);
  586. rb_insert_color(&dc->rb_node, &dcc->root);
  587. return dc;
  588. }
  589. static void __detach_discard_cmd(struct discard_cmd_control *dcc,
  590. struct discard_cmd *dc)
  591. {
  592. if (dc->state == D_DONE)
  593. atomic_dec(&dcc->issing_discard);
  594. list_del(&dc->list);
  595. rb_erase(&dc->rb_node, &dcc->root);
  596. kmem_cache_free(discard_cmd_slab, dc);
  597. atomic_dec(&dcc->discard_cmd_cnt);
  598. }
  599. static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
  600. struct discard_cmd *dc)
  601. {
  602. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  603. if (dc->error == -EOPNOTSUPP)
  604. dc->error = 0;
  605. if (dc->error)
  606. f2fs_msg(sbi->sb, KERN_INFO,
  607. "Issue discard failed, ret: %d", dc->error);
  608. __detach_discard_cmd(dcc, dc);
  609. }
  610. static void f2fs_submit_discard_endio(struct bio *bio)
  611. {
  612. struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
  613. dc->error = bio->bi_error;
  614. dc->state = D_DONE;
  615. complete(&dc->wait);
  616. bio_put(bio);
  617. }
  618. /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
  619. static void __submit_discard_cmd(struct f2fs_sb_info *sbi,
  620. struct discard_cmd *dc)
  621. {
  622. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  623. struct bio *bio = NULL;
  624. if (dc->state != D_PREP)
  625. return;
  626. trace_f2fs_issue_discard(dc->bdev, dc->start, dc->len);
  627. dc->error = __blkdev_issue_discard(dc->bdev,
  628. SECTOR_FROM_BLOCK(dc->start),
  629. SECTOR_FROM_BLOCK(dc->len),
  630. GFP_NOFS, 0, &bio);
  631. if (!dc->error) {
  632. /* should keep before submission to avoid D_DONE right away */
  633. dc->state = D_SUBMIT;
  634. atomic_inc(&dcc->issued_discard);
  635. atomic_inc(&dcc->issing_discard);
  636. if (bio) {
  637. bio->bi_private = dc;
  638. bio->bi_end_io = f2fs_submit_discard_endio;
  639. bio->bi_opf |= REQ_SYNC;
  640. submit_bio(bio);
  641. list_move_tail(&dc->list, &dcc->wait_list);
  642. }
  643. } else {
  644. __remove_discard_cmd(sbi, dc);
  645. }
  646. }
  647. static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
  648. struct block_device *bdev, block_t lstart,
  649. block_t start, block_t len,
  650. struct rb_node **insert_p,
  651. struct rb_node *insert_parent)
  652. {
  653. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  654. struct rb_node **p = &dcc->root.rb_node;
  655. struct rb_node *parent = NULL;
  656. struct discard_cmd *dc = NULL;
  657. if (insert_p && insert_parent) {
  658. parent = insert_parent;
  659. p = insert_p;
  660. goto do_insert;
  661. }
  662. p = __lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart);
  663. do_insert:
  664. dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p);
  665. if (!dc)
  666. return NULL;
  667. return dc;
  668. }
  669. static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
  670. struct discard_cmd *dc)
  671. {
  672. list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
  673. }
  674. static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
  675. struct discard_cmd *dc, block_t blkaddr)
  676. {
  677. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  678. struct discard_info di = dc->di;
  679. bool modified = false;
  680. if (dc->state == D_DONE || dc->len == 1) {
  681. __remove_discard_cmd(sbi, dc);
  682. return;
  683. }
  684. if (blkaddr > di.lstart) {
  685. dc->len = blkaddr - dc->lstart;
  686. __relocate_discard_cmd(dcc, dc);
  687. modified = true;
  688. }
  689. if (blkaddr < di.lstart + di.len - 1) {
  690. if (modified) {
  691. __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
  692. di.start + blkaddr + 1 - di.lstart,
  693. di.lstart + di.len - 1 - blkaddr,
  694. NULL, NULL);
  695. } else {
  696. dc->lstart++;
  697. dc->len--;
  698. dc->start++;
  699. __relocate_discard_cmd(dcc, dc);
  700. }
  701. }
  702. }
  703. static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
  704. struct block_device *bdev, block_t lstart,
  705. block_t start, block_t len)
  706. {
  707. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  708. struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
  709. struct discard_cmd *dc;
  710. struct discard_info di = {0};
  711. struct rb_node **insert_p = NULL, *insert_parent = NULL;
  712. block_t end = lstart + len;
  713. mutex_lock(&dcc->cmd_lock);
  714. dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
  715. NULL, lstart,
  716. (struct rb_entry **)&prev_dc,
  717. (struct rb_entry **)&next_dc,
  718. &insert_p, &insert_parent, true);
  719. if (dc)
  720. prev_dc = dc;
  721. if (!prev_dc) {
  722. di.lstart = lstart;
  723. di.len = next_dc ? next_dc->lstart - lstart : len;
  724. di.len = min(di.len, len);
  725. di.start = start;
  726. }
  727. while (1) {
  728. struct rb_node *node;
  729. bool merged = false;
  730. struct discard_cmd *tdc = NULL;
  731. if (prev_dc) {
  732. di.lstart = prev_dc->lstart + prev_dc->len;
  733. if (di.lstart < lstart)
  734. di.lstart = lstart;
  735. if (di.lstart >= end)
  736. break;
  737. if (!next_dc || next_dc->lstart > end)
  738. di.len = end - di.lstart;
  739. else
  740. di.len = next_dc->lstart - di.lstart;
  741. di.start = start + di.lstart - lstart;
  742. }
  743. if (!di.len)
  744. goto next;
  745. if (prev_dc && prev_dc->state == D_PREP &&
  746. prev_dc->bdev == bdev &&
  747. __is_discard_back_mergeable(&di, &prev_dc->di)) {
  748. prev_dc->di.len += di.len;
  749. __relocate_discard_cmd(dcc, prev_dc);
  750. di = prev_dc->di;
  751. tdc = prev_dc;
  752. merged = true;
  753. }
  754. if (next_dc && next_dc->state == D_PREP &&
  755. next_dc->bdev == bdev &&
  756. __is_discard_front_mergeable(&di, &next_dc->di)) {
  757. next_dc->di.lstart = di.lstart;
  758. next_dc->di.len += di.len;
  759. next_dc->di.start = di.start;
  760. __relocate_discard_cmd(dcc, next_dc);
  761. if (tdc)
  762. __remove_discard_cmd(sbi, tdc);
  763. merged = true;
  764. }
  765. if (!merged)
  766. __insert_discard_tree(sbi, bdev, di.lstart, di.start,
  767. di.len, NULL, NULL);
  768. next:
  769. prev_dc = next_dc;
  770. if (!prev_dc)
  771. break;
  772. node = rb_next(&prev_dc->rb_node);
  773. next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
  774. }
  775. mutex_unlock(&dcc->cmd_lock);
  776. }
  777. static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
  778. struct block_device *bdev, block_t blkstart, block_t blklen)
  779. {
  780. block_t lblkstart = blkstart;
  781. trace_f2fs_queue_discard(bdev, blkstart, blklen);
  782. if (sbi->s_ndevs) {
  783. int devi = f2fs_target_device_index(sbi, blkstart);
  784. blkstart -= FDEV(devi).start_blk;
  785. }
  786. __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
  787. wake_up(&SM_I(sbi)->dcc_info->discard_wait_queue);
  788. return 0;
  789. }
  790. /* This should be covered by global mutex, &sit_i->sentry_lock */
  791. void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
  792. {
  793. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  794. struct discard_cmd *dc;
  795. mutex_lock(&dcc->cmd_lock);
  796. dc = (struct discard_cmd *)__lookup_rb_tree(&dcc->root, NULL, blkaddr);
  797. if (dc) {
  798. if (dc->state != D_PREP)
  799. wait_for_completion_io(&dc->wait);
  800. __punch_discard_cmd(sbi, dc, blkaddr);
  801. }
  802. mutex_unlock(&dcc->cmd_lock);
  803. }
  804. /* This comes from f2fs_put_super */
  805. void f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
  806. {
  807. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  808. struct list_head *pend_list;
  809. struct list_head *wait_list = &(dcc->wait_list);
  810. struct discard_cmd *dc, *tmp;
  811. struct blk_plug plug;
  812. int i;
  813. mutex_lock(&dcc->cmd_lock);
  814. blk_start_plug(&plug);
  815. for (i = 0; i < MAX_PLIST_NUM; i++) {
  816. pend_list = &dcc->pend_list[i];
  817. list_for_each_entry_safe(dc, tmp, pend_list, list)
  818. __submit_discard_cmd(sbi, dc);
  819. }
  820. blk_finish_plug(&plug);
  821. list_for_each_entry_safe(dc, tmp, wait_list, list) {
  822. wait_for_completion_io(&dc->wait);
  823. __remove_discard_cmd(sbi, dc);
  824. }
  825. mutex_unlock(&dcc->cmd_lock);
  826. }
  827. static int issue_discard_thread(void *data)
  828. {
  829. struct f2fs_sb_info *sbi = data;
  830. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  831. wait_queue_head_t *q = &dcc->discard_wait_queue;
  832. struct list_head *pend_list;
  833. struct list_head *wait_list = &dcc->wait_list;
  834. struct discard_cmd *dc, *tmp;
  835. struct blk_plug plug;
  836. int iter = 0, i;
  837. repeat:
  838. if (kthread_should_stop())
  839. return 0;
  840. mutex_lock(&dcc->cmd_lock);
  841. blk_start_plug(&plug);
  842. for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
  843. pend_list = &dcc->pend_list[i];
  844. list_for_each_entry_safe(dc, tmp, pend_list, list) {
  845. f2fs_bug_on(sbi, dc->state != D_PREP);
  846. if (is_idle(sbi))
  847. __submit_discard_cmd(sbi, dc);
  848. if (iter++ > DISCARD_ISSUE_RATE)
  849. goto next_step;
  850. }
  851. }
  852. next_step:
  853. blk_finish_plug(&plug);
  854. list_for_each_entry_safe(dc, tmp, wait_list, list) {
  855. if (dc->state == D_DONE) {
  856. wait_for_completion_io(&dc->wait);
  857. __remove_discard_cmd(sbi, dc);
  858. }
  859. }
  860. mutex_unlock(&dcc->cmd_lock);
  861. iter = 0;
  862. congestion_wait(BLK_RW_SYNC, HZ/50);
  863. wait_event_interruptible(*q, kthread_should_stop() ||
  864. atomic_read(&dcc->discard_cmd_cnt));
  865. goto repeat;
  866. }
  867. #ifdef CONFIG_BLK_DEV_ZONED
  868. static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
  869. struct block_device *bdev, block_t blkstart, block_t blklen)
  870. {
  871. sector_t sector, nr_sects;
  872. block_t lblkstart = blkstart;
  873. int devi = 0;
  874. if (sbi->s_ndevs) {
  875. devi = f2fs_target_device_index(sbi, blkstart);
  876. blkstart -= FDEV(devi).start_blk;
  877. }
  878. /*
  879. * We need to know the type of the zone: for conventional zones,
  880. * use regular discard if the drive supports it. For sequential
  881. * zones, reset the zone write pointer.
  882. */
  883. switch (get_blkz_type(sbi, bdev, blkstart)) {
  884. case BLK_ZONE_TYPE_CONVENTIONAL:
  885. if (!blk_queue_discard(bdev_get_queue(bdev)))
  886. return 0;
  887. return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
  888. case BLK_ZONE_TYPE_SEQWRITE_REQ:
  889. case BLK_ZONE_TYPE_SEQWRITE_PREF:
  890. sector = SECTOR_FROM_BLOCK(blkstart);
  891. nr_sects = SECTOR_FROM_BLOCK(blklen);
  892. if (sector & (bdev_zone_sectors(bdev) - 1) ||
  893. nr_sects != bdev_zone_sectors(bdev)) {
  894. f2fs_msg(sbi->sb, KERN_INFO,
  895. "(%d) %s: Unaligned discard attempted (block %x + %x)",
  896. devi, sbi->s_ndevs ? FDEV(devi).path: "",
  897. blkstart, blklen);
  898. return -EIO;
  899. }
  900. trace_f2fs_issue_reset_zone(bdev, blkstart);
  901. return blkdev_reset_zones(bdev, sector,
  902. nr_sects, GFP_NOFS);
  903. default:
  904. /* Unknown zone type: broken device ? */
  905. return -EIO;
  906. }
  907. }
  908. #endif
  909. static int __issue_discard_async(struct f2fs_sb_info *sbi,
  910. struct block_device *bdev, block_t blkstart, block_t blklen)
  911. {
  912. #ifdef CONFIG_BLK_DEV_ZONED
  913. if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
  914. bdev_zoned_model(bdev) != BLK_ZONED_NONE)
  915. return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
  916. #endif
  917. return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
  918. }
  919. static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
  920. block_t blkstart, block_t blklen)
  921. {
  922. sector_t start = blkstart, len = 0;
  923. struct block_device *bdev;
  924. struct seg_entry *se;
  925. unsigned int offset;
  926. block_t i;
  927. int err = 0;
  928. bdev = f2fs_target_device(sbi, blkstart, NULL);
  929. for (i = blkstart; i < blkstart + blklen; i++, len++) {
  930. if (i != start) {
  931. struct block_device *bdev2 =
  932. f2fs_target_device(sbi, i, NULL);
  933. if (bdev2 != bdev) {
  934. err = __issue_discard_async(sbi, bdev,
  935. start, len);
  936. if (err)
  937. return err;
  938. bdev = bdev2;
  939. start = i;
  940. len = 0;
  941. }
  942. }
  943. se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
  944. offset = GET_BLKOFF_FROM_SEG0(sbi, i);
  945. if (!f2fs_test_and_set_bit(offset, se->discard_map))
  946. sbi->discard_blks--;
  947. }
  948. if (len)
  949. err = __issue_discard_async(sbi, bdev, start, len);
  950. return err;
  951. }
  952. static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
  953. bool check_only)
  954. {
  955. int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
  956. int max_blocks = sbi->blocks_per_seg;
  957. struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
  958. unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
  959. unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
  960. unsigned long *discard_map = (unsigned long *)se->discard_map;
  961. unsigned long *dmap = SIT_I(sbi)->tmp_map;
  962. unsigned int start = 0, end = -1;
  963. bool force = (cpc->reason == CP_DISCARD);
  964. struct discard_entry *de = NULL;
  965. struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
  966. int i;
  967. if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
  968. return false;
  969. if (!force) {
  970. if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
  971. SM_I(sbi)->dcc_info->nr_discards >=
  972. SM_I(sbi)->dcc_info->max_discards)
  973. return false;
  974. }
  975. /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
  976. for (i = 0; i < entries; i++)
  977. dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
  978. (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
  979. while (force || SM_I(sbi)->dcc_info->nr_discards <=
  980. SM_I(sbi)->dcc_info->max_discards) {
  981. start = __find_rev_next_bit(dmap, max_blocks, end + 1);
  982. if (start >= max_blocks)
  983. break;
  984. end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
  985. if (force && start && end != max_blocks
  986. && (end - start) < cpc->trim_minlen)
  987. continue;
  988. if (check_only)
  989. return true;
  990. if (!de) {
  991. de = f2fs_kmem_cache_alloc(discard_entry_slab,
  992. GFP_F2FS_ZERO);
  993. de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
  994. list_add_tail(&de->list, head);
  995. }
  996. for (i = start; i < end; i++)
  997. __set_bit_le(i, (void *)de->discard_map);
  998. SM_I(sbi)->dcc_info->nr_discards += end - start;
  999. }
  1000. return false;
  1001. }
  1002. void release_discard_addrs(struct f2fs_sb_info *sbi)
  1003. {
  1004. struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
  1005. struct discard_entry *entry, *this;
  1006. /* drop caches */
  1007. list_for_each_entry_safe(entry, this, head, list) {
  1008. list_del(&entry->list);
  1009. kmem_cache_free(discard_entry_slab, entry);
  1010. }
  1011. }
  1012. /*
  1013. * Should call clear_prefree_segments after checkpoint is done.
  1014. */
  1015. static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
  1016. {
  1017. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1018. unsigned int segno;
  1019. mutex_lock(&dirty_i->seglist_lock);
  1020. for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
  1021. __set_test_and_free(sbi, segno);
  1022. mutex_unlock(&dirty_i->seglist_lock);
  1023. }
  1024. void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  1025. {
  1026. struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
  1027. struct discard_entry *entry, *this;
  1028. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1029. unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
  1030. unsigned int start = 0, end = -1;
  1031. unsigned int secno, start_segno;
  1032. bool force = (cpc->reason == CP_DISCARD);
  1033. mutex_lock(&dirty_i->seglist_lock);
  1034. while (1) {
  1035. int i;
  1036. start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
  1037. if (start >= MAIN_SEGS(sbi))
  1038. break;
  1039. end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
  1040. start + 1);
  1041. for (i = start; i < end; i++)
  1042. clear_bit(i, prefree_map);
  1043. dirty_i->nr_dirty[PRE] -= end - start;
  1044. if (!test_opt(sbi, DISCARD))
  1045. continue;
  1046. if (force && start >= cpc->trim_start &&
  1047. (end - 1) <= cpc->trim_end)
  1048. continue;
  1049. if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
  1050. f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
  1051. (end - start) << sbi->log_blocks_per_seg);
  1052. continue;
  1053. }
  1054. next:
  1055. secno = GET_SEC_FROM_SEG(sbi, start);
  1056. start_segno = GET_SEG_FROM_SEC(sbi, secno);
  1057. if (!IS_CURSEC(sbi, secno) &&
  1058. !get_valid_blocks(sbi, start, true))
  1059. f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
  1060. sbi->segs_per_sec << sbi->log_blocks_per_seg);
  1061. start = start_segno + sbi->segs_per_sec;
  1062. if (start < end)
  1063. goto next;
  1064. else
  1065. end = start - 1;
  1066. }
  1067. mutex_unlock(&dirty_i->seglist_lock);
  1068. /* send small discards */
  1069. list_for_each_entry_safe(entry, this, head, list) {
  1070. unsigned int cur_pos = 0, next_pos, len, total_len = 0;
  1071. bool is_valid = test_bit_le(0, entry->discard_map);
  1072. find_next:
  1073. if (is_valid) {
  1074. next_pos = find_next_zero_bit_le(entry->discard_map,
  1075. sbi->blocks_per_seg, cur_pos);
  1076. len = next_pos - cur_pos;
  1077. if (force && len < cpc->trim_minlen)
  1078. goto skip;
  1079. f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
  1080. len);
  1081. cpc->trimmed += len;
  1082. total_len += len;
  1083. } else {
  1084. next_pos = find_next_bit_le(entry->discard_map,
  1085. sbi->blocks_per_seg, cur_pos);
  1086. }
  1087. skip:
  1088. cur_pos = next_pos;
  1089. is_valid = !is_valid;
  1090. if (cur_pos < sbi->blocks_per_seg)
  1091. goto find_next;
  1092. list_del(&entry->list);
  1093. SM_I(sbi)->dcc_info->nr_discards -= total_len;
  1094. kmem_cache_free(discard_entry_slab, entry);
  1095. }
  1096. }
  1097. static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
  1098. {
  1099. dev_t dev = sbi->sb->s_bdev->bd_dev;
  1100. struct discard_cmd_control *dcc;
  1101. int err = 0, i;
  1102. if (SM_I(sbi)->dcc_info) {
  1103. dcc = SM_I(sbi)->dcc_info;
  1104. goto init_thread;
  1105. }
  1106. dcc = kzalloc(sizeof(struct discard_cmd_control), GFP_KERNEL);
  1107. if (!dcc)
  1108. return -ENOMEM;
  1109. INIT_LIST_HEAD(&dcc->entry_list);
  1110. for (i = 0; i < MAX_PLIST_NUM; i++)
  1111. INIT_LIST_HEAD(&dcc->pend_list[i]);
  1112. INIT_LIST_HEAD(&dcc->wait_list);
  1113. mutex_init(&dcc->cmd_lock);
  1114. atomic_set(&dcc->issued_discard, 0);
  1115. atomic_set(&dcc->issing_discard, 0);
  1116. atomic_set(&dcc->discard_cmd_cnt, 0);
  1117. dcc->nr_discards = 0;
  1118. dcc->max_discards = 0;
  1119. dcc->root = RB_ROOT;
  1120. init_waitqueue_head(&dcc->discard_wait_queue);
  1121. SM_I(sbi)->dcc_info = dcc;
  1122. init_thread:
  1123. dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
  1124. "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
  1125. if (IS_ERR(dcc->f2fs_issue_discard)) {
  1126. err = PTR_ERR(dcc->f2fs_issue_discard);
  1127. kfree(dcc);
  1128. SM_I(sbi)->dcc_info = NULL;
  1129. return err;
  1130. }
  1131. return err;
  1132. }
  1133. static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
  1134. {
  1135. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1136. if (!dcc)
  1137. return;
  1138. if (dcc->f2fs_issue_discard) {
  1139. struct task_struct *discard_thread = dcc->f2fs_issue_discard;
  1140. dcc->f2fs_issue_discard = NULL;
  1141. kthread_stop(discard_thread);
  1142. }
  1143. kfree(dcc);
  1144. SM_I(sbi)->dcc_info = NULL;
  1145. }
  1146. static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
  1147. {
  1148. struct sit_info *sit_i = SIT_I(sbi);
  1149. if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
  1150. sit_i->dirty_sentries++;
  1151. return false;
  1152. }
  1153. return true;
  1154. }
  1155. static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
  1156. unsigned int segno, int modified)
  1157. {
  1158. struct seg_entry *se = get_seg_entry(sbi, segno);
  1159. se->type = type;
  1160. if (modified)
  1161. __mark_sit_entry_dirty(sbi, segno);
  1162. }
  1163. static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
  1164. {
  1165. struct seg_entry *se;
  1166. unsigned int segno, offset;
  1167. long int new_vblocks;
  1168. segno = GET_SEGNO(sbi, blkaddr);
  1169. se = get_seg_entry(sbi, segno);
  1170. new_vblocks = se->valid_blocks + del;
  1171. offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  1172. f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
  1173. (new_vblocks > sbi->blocks_per_seg)));
  1174. se->valid_blocks = new_vblocks;
  1175. se->mtime = get_mtime(sbi);
  1176. SIT_I(sbi)->max_mtime = se->mtime;
  1177. /* Update valid block bitmap */
  1178. if (del > 0) {
  1179. if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) {
  1180. #ifdef CONFIG_F2FS_CHECK_FS
  1181. if (f2fs_test_and_set_bit(offset,
  1182. se->cur_valid_map_mir))
  1183. f2fs_bug_on(sbi, 1);
  1184. else
  1185. WARN_ON(1);
  1186. #else
  1187. f2fs_bug_on(sbi, 1);
  1188. #endif
  1189. }
  1190. if (f2fs_discard_en(sbi) &&
  1191. !f2fs_test_and_set_bit(offset, se->discard_map))
  1192. sbi->discard_blks--;
  1193. /* don't overwrite by SSR to keep node chain */
  1194. if (se->type == CURSEG_WARM_NODE) {
  1195. if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
  1196. se->ckpt_valid_blocks++;
  1197. }
  1198. } else {
  1199. if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) {
  1200. #ifdef CONFIG_F2FS_CHECK_FS
  1201. if (!f2fs_test_and_clear_bit(offset,
  1202. se->cur_valid_map_mir))
  1203. f2fs_bug_on(sbi, 1);
  1204. else
  1205. WARN_ON(1);
  1206. #else
  1207. f2fs_bug_on(sbi, 1);
  1208. #endif
  1209. }
  1210. if (f2fs_discard_en(sbi) &&
  1211. f2fs_test_and_clear_bit(offset, se->discard_map))
  1212. sbi->discard_blks++;
  1213. }
  1214. if (!f2fs_test_bit(offset, se->ckpt_valid_map))
  1215. se->ckpt_valid_blocks += del;
  1216. __mark_sit_entry_dirty(sbi, segno);
  1217. /* update total number of valid blocks to be written in ckpt area */
  1218. SIT_I(sbi)->written_valid_blocks += del;
  1219. if (sbi->segs_per_sec > 1)
  1220. get_sec_entry(sbi, segno)->valid_blocks += del;
  1221. }
  1222. void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
  1223. {
  1224. update_sit_entry(sbi, new, 1);
  1225. if (GET_SEGNO(sbi, old) != NULL_SEGNO)
  1226. update_sit_entry(sbi, old, -1);
  1227. locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
  1228. locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
  1229. }
  1230. void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
  1231. {
  1232. unsigned int segno = GET_SEGNO(sbi, addr);
  1233. struct sit_info *sit_i = SIT_I(sbi);
  1234. f2fs_bug_on(sbi, addr == NULL_ADDR);
  1235. if (addr == NEW_ADDR)
  1236. return;
  1237. /* add it into sit main buffer */
  1238. mutex_lock(&sit_i->sentry_lock);
  1239. update_sit_entry(sbi, addr, -1);
  1240. /* add it into dirty seglist */
  1241. locate_dirty_segment(sbi, segno);
  1242. mutex_unlock(&sit_i->sentry_lock);
  1243. }
  1244. bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
  1245. {
  1246. struct sit_info *sit_i = SIT_I(sbi);
  1247. unsigned int segno, offset;
  1248. struct seg_entry *se;
  1249. bool is_cp = false;
  1250. if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
  1251. return true;
  1252. mutex_lock(&sit_i->sentry_lock);
  1253. segno = GET_SEGNO(sbi, blkaddr);
  1254. se = get_seg_entry(sbi, segno);
  1255. offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  1256. if (f2fs_test_bit(offset, se->ckpt_valid_map))
  1257. is_cp = true;
  1258. mutex_unlock(&sit_i->sentry_lock);
  1259. return is_cp;
  1260. }
  1261. /*
  1262. * This function should be resided under the curseg_mutex lock
  1263. */
  1264. static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
  1265. struct f2fs_summary *sum)
  1266. {
  1267. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1268. void *addr = curseg->sum_blk;
  1269. addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
  1270. memcpy(addr, sum, sizeof(struct f2fs_summary));
  1271. }
  1272. /*
  1273. * Calculate the number of current summary pages for writing
  1274. */
  1275. int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
  1276. {
  1277. int valid_sum_count = 0;
  1278. int i, sum_in_page;
  1279. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1280. if (sbi->ckpt->alloc_type[i] == SSR)
  1281. valid_sum_count += sbi->blocks_per_seg;
  1282. else {
  1283. if (for_ra)
  1284. valid_sum_count += le16_to_cpu(
  1285. F2FS_CKPT(sbi)->cur_data_blkoff[i]);
  1286. else
  1287. valid_sum_count += curseg_blkoff(sbi, i);
  1288. }
  1289. }
  1290. sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
  1291. SUM_FOOTER_SIZE) / SUMMARY_SIZE;
  1292. if (valid_sum_count <= sum_in_page)
  1293. return 1;
  1294. else if ((valid_sum_count - sum_in_page) <=
  1295. (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
  1296. return 2;
  1297. return 3;
  1298. }
  1299. /*
  1300. * Caller should put this summary page
  1301. */
  1302. struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
  1303. {
  1304. return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
  1305. }
  1306. void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
  1307. {
  1308. struct page *page = grab_meta_page(sbi, blk_addr);
  1309. void *dst = page_address(page);
  1310. if (src)
  1311. memcpy(dst, src, PAGE_SIZE);
  1312. else
  1313. memset(dst, 0, PAGE_SIZE);
  1314. set_page_dirty(page);
  1315. f2fs_put_page(page, 1);
  1316. }
  1317. static void write_sum_page(struct f2fs_sb_info *sbi,
  1318. struct f2fs_summary_block *sum_blk, block_t blk_addr)
  1319. {
  1320. update_meta_page(sbi, (void *)sum_blk, blk_addr);
  1321. }
  1322. static void write_current_sum_page(struct f2fs_sb_info *sbi,
  1323. int type, block_t blk_addr)
  1324. {
  1325. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1326. struct page *page = grab_meta_page(sbi, blk_addr);
  1327. struct f2fs_summary_block *src = curseg->sum_blk;
  1328. struct f2fs_summary_block *dst;
  1329. dst = (struct f2fs_summary_block *)page_address(page);
  1330. mutex_lock(&curseg->curseg_mutex);
  1331. down_read(&curseg->journal_rwsem);
  1332. memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
  1333. up_read(&curseg->journal_rwsem);
  1334. memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
  1335. memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
  1336. mutex_unlock(&curseg->curseg_mutex);
  1337. set_page_dirty(page);
  1338. f2fs_put_page(page, 1);
  1339. }
  1340. /*
  1341. * Find a new segment from the free segments bitmap to right order
  1342. * This function should be returned with success, otherwise BUG
  1343. */
  1344. static void get_new_segment(struct f2fs_sb_info *sbi,
  1345. unsigned int *newseg, bool new_sec, int dir)
  1346. {
  1347. struct free_segmap_info *free_i = FREE_I(sbi);
  1348. unsigned int segno, secno, zoneno;
  1349. unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
  1350. unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
  1351. unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
  1352. unsigned int left_start = hint;
  1353. bool init = true;
  1354. int go_left = 0;
  1355. int i;
  1356. spin_lock(&free_i->segmap_lock);
  1357. if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
  1358. segno = find_next_zero_bit(free_i->free_segmap,
  1359. GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
  1360. if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
  1361. goto got_it;
  1362. }
  1363. find_other_zone:
  1364. secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
  1365. if (secno >= MAIN_SECS(sbi)) {
  1366. if (dir == ALLOC_RIGHT) {
  1367. secno = find_next_zero_bit(free_i->free_secmap,
  1368. MAIN_SECS(sbi), 0);
  1369. f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
  1370. } else {
  1371. go_left = 1;
  1372. left_start = hint - 1;
  1373. }
  1374. }
  1375. if (go_left == 0)
  1376. goto skip_left;
  1377. while (test_bit(left_start, free_i->free_secmap)) {
  1378. if (left_start > 0) {
  1379. left_start--;
  1380. continue;
  1381. }
  1382. left_start = find_next_zero_bit(free_i->free_secmap,
  1383. MAIN_SECS(sbi), 0);
  1384. f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
  1385. break;
  1386. }
  1387. secno = left_start;
  1388. skip_left:
  1389. hint = secno;
  1390. segno = GET_SEG_FROM_SEC(sbi, secno);
  1391. zoneno = GET_ZONE_FROM_SEC(sbi, secno);
  1392. /* give up on finding another zone */
  1393. if (!init)
  1394. goto got_it;
  1395. if (sbi->secs_per_zone == 1)
  1396. goto got_it;
  1397. if (zoneno == old_zoneno)
  1398. goto got_it;
  1399. if (dir == ALLOC_LEFT) {
  1400. if (!go_left && zoneno + 1 >= total_zones)
  1401. goto got_it;
  1402. if (go_left && zoneno == 0)
  1403. goto got_it;
  1404. }
  1405. for (i = 0; i < NR_CURSEG_TYPE; i++)
  1406. if (CURSEG_I(sbi, i)->zone == zoneno)
  1407. break;
  1408. if (i < NR_CURSEG_TYPE) {
  1409. /* zone is in user, try another */
  1410. if (go_left)
  1411. hint = zoneno * sbi->secs_per_zone - 1;
  1412. else if (zoneno + 1 >= total_zones)
  1413. hint = 0;
  1414. else
  1415. hint = (zoneno + 1) * sbi->secs_per_zone;
  1416. init = false;
  1417. goto find_other_zone;
  1418. }
  1419. got_it:
  1420. /* set it as dirty segment in free segmap */
  1421. f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
  1422. __set_inuse(sbi, segno);
  1423. *newseg = segno;
  1424. spin_unlock(&free_i->segmap_lock);
  1425. }
  1426. static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
  1427. {
  1428. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1429. struct summary_footer *sum_footer;
  1430. curseg->segno = curseg->next_segno;
  1431. curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
  1432. curseg->next_blkoff = 0;
  1433. curseg->next_segno = NULL_SEGNO;
  1434. sum_footer = &(curseg->sum_blk->footer);
  1435. memset(sum_footer, 0, sizeof(struct summary_footer));
  1436. if (IS_DATASEG(type))
  1437. SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
  1438. if (IS_NODESEG(type))
  1439. SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
  1440. __set_sit_entry_type(sbi, type, curseg->segno, modified);
  1441. }
  1442. static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
  1443. {
  1444. if (type == CURSEG_HOT_DATA || IS_NODESEG(type))
  1445. return 0;
  1446. return CURSEG_I(sbi, type)->segno;
  1447. }
  1448. /*
  1449. * Allocate a current working segment.
  1450. * This function always allocates a free segment in LFS manner.
  1451. */
  1452. static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
  1453. {
  1454. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1455. unsigned int segno = curseg->segno;
  1456. int dir = ALLOC_LEFT;
  1457. write_sum_page(sbi, curseg->sum_blk,
  1458. GET_SUM_BLOCK(sbi, segno));
  1459. if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
  1460. dir = ALLOC_RIGHT;
  1461. if (test_opt(sbi, NOHEAP))
  1462. dir = ALLOC_RIGHT;
  1463. segno = __get_next_segno(sbi, type);
  1464. get_new_segment(sbi, &segno, new_sec, dir);
  1465. curseg->next_segno = segno;
  1466. reset_curseg(sbi, type, 1);
  1467. curseg->alloc_type = LFS;
  1468. }
  1469. static void __next_free_blkoff(struct f2fs_sb_info *sbi,
  1470. struct curseg_info *seg, block_t start)
  1471. {
  1472. struct seg_entry *se = get_seg_entry(sbi, seg->segno);
  1473. int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
  1474. unsigned long *target_map = SIT_I(sbi)->tmp_map;
  1475. unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
  1476. unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
  1477. int i, pos;
  1478. for (i = 0; i < entries; i++)
  1479. target_map[i] = ckpt_map[i] | cur_map[i];
  1480. pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
  1481. seg->next_blkoff = pos;
  1482. }
  1483. /*
  1484. * If a segment is written by LFS manner, next block offset is just obtained
  1485. * by increasing the current block offset. However, if a segment is written by
  1486. * SSR manner, next block offset obtained by calling __next_free_blkoff
  1487. */
  1488. static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
  1489. struct curseg_info *seg)
  1490. {
  1491. if (seg->alloc_type == SSR)
  1492. __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
  1493. else
  1494. seg->next_blkoff++;
  1495. }
  1496. /*
  1497. * This function always allocates a used segment(from dirty seglist) by SSR
  1498. * manner, so it should recover the existing segment information of valid blocks
  1499. */
  1500. static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
  1501. {
  1502. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1503. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1504. unsigned int new_segno = curseg->next_segno;
  1505. struct f2fs_summary_block *sum_node;
  1506. struct page *sum_page;
  1507. write_sum_page(sbi, curseg->sum_blk,
  1508. GET_SUM_BLOCK(sbi, curseg->segno));
  1509. __set_test_and_inuse(sbi, new_segno);
  1510. mutex_lock(&dirty_i->seglist_lock);
  1511. __remove_dirty_segment(sbi, new_segno, PRE);
  1512. __remove_dirty_segment(sbi, new_segno, DIRTY);
  1513. mutex_unlock(&dirty_i->seglist_lock);
  1514. reset_curseg(sbi, type, 1);
  1515. curseg->alloc_type = SSR;
  1516. __next_free_blkoff(sbi, curseg, 0);
  1517. if (reuse) {
  1518. sum_page = get_sum_page(sbi, new_segno);
  1519. sum_node = (struct f2fs_summary_block *)page_address(sum_page);
  1520. memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
  1521. f2fs_put_page(sum_page, 1);
  1522. }
  1523. }
  1524. static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
  1525. {
  1526. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1527. const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
  1528. int i, cnt;
  1529. bool reversed = false;
  1530. /* need_SSR() already forces to do this */
  1531. if (v_ops->get_victim(sbi, &(curseg)->next_segno, BG_GC, type, SSR))
  1532. return 1;
  1533. /* For node segments, let's do SSR more intensively */
  1534. if (IS_NODESEG(type)) {
  1535. if (type >= CURSEG_WARM_NODE) {
  1536. reversed = true;
  1537. i = CURSEG_COLD_NODE;
  1538. } else {
  1539. i = CURSEG_HOT_NODE;
  1540. }
  1541. cnt = NR_CURSEG_NODE_TYPE;
  1542. } else {
  1543. if (type >= CURSEG_WARM_DATA) {
  1544. reversed = true;
  1545. i = CURSEG_COLD_DATA;
  1546. } else {
  1547. i = CURSEG_HOT_DATA;
  1548. }
  1549. cnt = NR_CURSEG_DATA_TYPE;
  1550. }
  1551. for (; cnt-- > 0; reversed ? i-- : i++) {
  1552. if (i == type)
  1553. continue;
  1554. if (v_ops->get_victim(sbi, &(curseg)->next_segno,
  1555. BG_GC, i, SSR))
  1556. return 1;
  1557. }
  1558. return 0;
  1559. }
  1560. /*
  1561. * flush out current segment and replace it with new segment
  1562. * This function should be returned with success, otherwise BUG
  1563. */
  1564. static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
  1565. int type, bool force)
  1566. {
  1567. if (force)
  1568. new_curseg(sbi, type, true);
  1569. else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
  1570. type == CURSEG_WARM_NODE)
  1571. new_curseg(sbi, type, false);
  1572. else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
  1573. change_curseg(sbi, type, true);
  1574. else
  1575. new_curseg(sbi, type, false);
  1576. stat_inc_seg_type(sbi, CURSEG_I(sbi, type));
  1577. }
  1578. void allocate_new_segments(struct f2fs_sb_info *sbi)
  1579. {
  1580. struct curseg_info *curseg;
  1581. unsigned int old_segno;
  1582. int i;
  1583. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1584. curseg = CURSEG_I(sbi, i);
  1585. old_segno = curseg->segno;
  1586. SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
  1587. locate_dirty_segment(sbi, old_segno);
  1588. }
  1589. }
  1590. static const struct segment_allocation default_salloc_ops = {
  1591. .allocate_segment = allocate_segment_by_default,
  1592. };
  1593. bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  1594. {
  1595. __u64 trim_start = cpc->trim_start;
  1596. bool has_candidate = false;
  1597. mutex_lock(&SIT_I(sbi)->sentry_lock);
  1598. for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
  1599. if (add_discard_addrs(sbi, cpc, true)) {
  1600. has_candidate = true;
  1601. break;
  1602. }
  1603. }
  1604. mutex_unlock(&SIT_I(sbi)->sentry_lock);
  1605. cpc->trim_start = trim_start;
  1606. return has_candidate;
  1607. }
  1608. int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
  1609. {
  1610. __u64 start = F2FS_BYTES_TO_BLK(range->start);
  1611. __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
  1612. unsigned int start_segno, end_segno;
  1613. struct cp_control cpc;
  1614. int err = 0;
  1615. if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
  1616. return -EINVAL;
  1617. cpc.trimmed = 0;
  1618. if (end <= MAIN_BLKADDR(sbi))
  1619. goto out;
  1620. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
  1621. f2fs_msg(sbi->sb, KERN_WARNING,
  1622. "Found FS corruption, run fsck to fix.");
  1623. goto out;
  1624. }
  1625. /* start/end segment number in main_area */
  1626. start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
  1627. end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
  1628. GET_SEGNO(sbi, end);
  1629. cpc.reason = CP_DISCARD;
  1630. cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
  1631. /* do checkpoint to issue discard commands safely */
  1632. for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
  1633. cpc.trim_start = start_segno;
  1634. if (sbi->discard_blks == 0)
  1635. break;
  1636. else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
  1637. cpc.trim_end = end_segno;
  1638. else
  1639. cpc.trim_end = min_t(unsigned int,
  1640. rounddown(start_segno +
  1641. BATCHED_TRIM_SEGMENTS(sbi),
  1642. sbi->segs_per_sec) - 1, end_segno);
  1643. mutex_lock(&sbi->gc_mutex);
  1644. err = write_checkpoint(sbi, &cpc);
  1645. mutex_unlock(&sbi->gc_mutex);
  1646. if (err)
  1647. break;
  1648. schedule();
  1649. }
  1650. out:
  1651. range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
  1652. return err;
  1653. }
  1654. static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
  1655. {
  1656. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1657. if (curseg->next_blkoff < sbi->blocks_per_seg)
  1658. return true;
  1659. return false;
  1660. }
  1661. static int __get_segment_type_2(struct page *page, enum page_type p_type)
  1662. {
  1663. if (p_type == DATA)
  1664. return CURSEG_HOT_DATA;
  1665. else
  1666. return CURSEG_HOT_NODE;
  1667. }
  1668. static int __get_segment_type_4(struct page *page, enum page_type p_type)
  1669. {
  1670. if (p_type == DATA) {
  1671. struct inode *inode = page->mapping->host;
  1672. if (S_ISDIR(inode->i_mode))
  1673. return CURSEG_HOT_DATA;
  1674. else
  1675. return CURSEG_COLD_DATA;
  1676. } else {
  1677. if (IS_DNODE(page) && is_cold_node(page))
  1678. return CURSEG_WARM_NODE;
  1679. else
  1680. return CURSEG_COLD_NODE;
  1681. }
  1682. }
  1683. static int __get_segment_type_6(struct page *page, enum page_type p_type)
  1684. {
  1685. if (p_type == DATA) {
  1686. struct inode *inode = page->mapping->host;
  1687. if (is_cold_data(page) || file_is_cold(inode))
  1688. return CURSEG_COLD_DATA;
  1689. if (is_inode_flag_set(inode, FI_HOT_DATA))
  1690. return CURSEG_HOT_DATA;
  1691. return CURSEG_WARM_DATA;
  1692. } else {
  1693. if (IS_DNODE(page))
  1694. return is_cold_node(page) ? CURSEG_WARM_NODE :
  1695. CURSEG_HOT_NODE;
  1696. return CURSEG_COLD_NODE;
  1697. }
  1698. }
  1699. static int __get_segment_type(struct page *page, enum page_type p_type)
  1700. {
  1701. switch (F2FS_P_SB(page)->active_logs) {
  1702. case 2:
  1703. return __get_segment_type_2(page, p_type);
  1704. case 4:
  1705. return __get_segment_type_4(page, p_type);
  1706. }
  1707. /* NR_CURSEG_TYPE(6) logs by default */
  1708. f2fs_bug_on(F2FS_P_SB(page),
  1709. F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
  1710. return __get_segment_type_6(page, p_type);
  1711. }
  1712. void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
  1713. block_t old_blkaddr, block_t *new_blkaddr,
  1714. struct f2fs_summary *sum, int type)
  1715. {
  1716. struct sit_info *sit_i = SIT_I(sbi);
  1717. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1718. mutex_lock(&curseg->curseg_mutex);
  1719. mutex_lock(&sit_i->sentry_lock);
  1720. *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  1721. f2fs_wait_discard_bio(sbi, *new_blkaddr);
  1722. /*
  1723. * __add_sum_entry should be resided under the curseg_mutex
  1724. * because, this function updates a summary entry in the
  1725. * current summary block.
  1726. */
  1727. __add_sum_entry(sbi, type, sum);
  1728. __refresh_next_blkoff(sbi, curseg);
  1729. stat_inc_block_count(sbi, curseg);
  1730. if (!__has_curseg_space(sbi, type))
  1731. sit_i->s_ops->allocate_segment(sbi, type, false);
  1732. /*
  1733. * SIT information should be updated after segment allocation,
  1734. * since we need to keep dirty segments precisely under SSR.
  1735. */
  1736. refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
  1737. mutex_unlock(&sit_i->sentry_lock);
  1738. if (page && IS_NODESEG(type))
  1739. fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
  1740. mutex_unlock(&curseg->curseg_mutex);
  1741. }
  1742. static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
  1743. {
  1744. int type = __get_segment_type(fio->page, fio->type);
  1745. int err;
  1746. if (fio->type == NODE || fio->type == DATA)
  1747. mutex_lock(&fio->sbi->wio_mutex[fio->type]);
  1748. reallocate:
  1749. allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
  1750. &fio->new_blkaddr, sum, type);
  1751. /* writeout dirty page into bdev */
  1752. err = f2fs_submit_page_mbio(fio);
  1753. if (err == -EAGAIN) {
  1754. fio->old_blkaddr = fio->new_blkaddr;
  1755. goto reallocate;
  1756. }
  1757. if (fio->type == NODE || fio->type == DATA)
  1758. mutex_unlock(&fio->sbi->wio_mutex[fio->type]);
  1759. }
  1760. void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
  1761. {
  1762. struct f2fs_io_info fio = {
  1763. .sbi = sbi,
  1764. .type = META,
  1765. .op = REQ_OP_WRITE,
  1766. .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
  1767. .old_blkaddr = page->index,
  1768. .new_blkaddr = page->index,
  1769. .page = page,
  1770. .encrypted_page = NULL,
  1771. };
  1772. if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
  1773. fio.op_flags &= ~REQ_META;
  1774. set_page_writeback(page);
  1775. f2fs_submit_page_mbio(&fio);
  1776. }
  1777. void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
  1778. {
  1779. struct f2fs_summary sum;
  1780. set_summary(&sum, nid, 0, 0);
  1781. do_write_page(&sum, fio);
  1782. }
  1783. void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
  1784. {
  1785. struct f2fs_sb_info *sbi = fio->sbi;
  1786. struct f2fs_summary sum;
  1787. struct node_info ni;
  1788. f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
  1789. get_node_info(sbi, dn->nid, &ni);
  1790. set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
  1791. do_write_page(&sum, fio);
  1792. f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
  1793. }
  1794. int rewrite_data_page(struct f2fs_io_info *fio)
  1795. {
  1796. fio->new_blkaddr = fio->old_blkaddr;
  1797. stat_inc_inplace_blocks(fio->sbi);
  1798. return f2fs_submit_page_bio(fio);
  1799. }
  1800. void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
  1801. block_t old_blkaddr, block_t new_blkaddr,
  1802. bool recover_curseg, bool recover_newaddr)
  1803. {
  1804. struct sit_info *sit_i = SIT_I(sbi);
  1805. struct curseg_info *curseg;
  1806. unsigned int segno, old_cursegno;
  1807. struct seg_entry *se;
  1808. int type;
  1809. unsigned short old_blkoff;
  1810. segno = GET_SEGNO(sbi, new_blkaddr);
  1811. se = get_seg_entry(sbi, segno);
  1812. type = se->type;
  1813. if (!recover_curseg) {
  1814. /* for recovery flow */
  1815. if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
  1816. if (old_blkaddr == NULL_ADDR)
  1817. type = CURSEG_COLD_DATA;
  1818. else
  1819. type = CURSEG_WARM_DATA;
  1820. }
  1821. } else {
  1822. if (!IS_CURSEG(sbi, segno))
  1823. type = CURSEG_WARM_DATA;
  1824. }
  1825. curseg = CURSEG_I(sbi, type);
  1826. mutex_lock(&curseg->curseg_mutex);
  1827. mutex_lock(&sit_i->sentry_lock);
  1828. old_cursegno = curseg->segno;
  1829. old_blkoff = curseg->next_blkoff;
  1830. /* change the current segment */
  1831. if (segno != curseg->segno) {
  1832. curseg->next_segno = segno;
  1833. change_curseg(sbi, type, true);
  1834. }
  1835. curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
  1836. __add_sum_entry(sbi, type, sum);
  1837. if (!recover_curseg || recover_newaddr)
  1838. update_sit_entry(sbi, new_blkaddr, 1);
  1839. if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
  1840. update_sit_entry(sbi, old_blkaddr, -1);
  1841. locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
  1842. locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
  1843. locate_dirty_segment(sbi, old_cursegno);
  1844. if (recover_curseg) {
  1845. if (old_cursegno != curseg->segno) {
  1846. curseg->next_segno = old_cursegno;
  1847. change_curseg(sbi, type, true);
  1848. }
  1849. curseg->next_blkoff = old_blkoff;
  1850. }
  1851. mutex_unlock(&sit_i->sentry_lock);
  1852. mutex_unlock(&curseg->curseg_mutex);
  1853. }
  1854. void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
  1855. block_t old_addr, block_t new_addr,
  1856. unsigned char version, bool recover_curseg,
  1857. bool recover_newaddr)
  1858. {
  1859. struct f2fs_summary sum;
  1860. set_summary(&sum, dn->nid, dn->ofs_in_node, version);
  1861. __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
  1862. recover_curseg, recover_newaddr);
  1863. f2fs_update_data_blkaddr(dn, new_addr);
  1864. }
  1865. void f2fs_wait_on_page_writeback(struct page *page,
  1866. enum page_type type, bool ordered)
  1867. {
  1868. if (PageWriteback(page)) {
  1869. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  1870. f2fs_submit_merged_bio_cond(sbi, page->mapping->host,
  1871. 0, page->index, type, WRITE);
  1872. if (ordered)
  1873. wait_on_page_writeback(page);
  1874. else
  1875. wait_for_stable_page(page);
  1876. }
  1877. }
  1878. void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
  1879. block_t blkaddr)
  1880. {
  1881. struct page *cpage;
  1882. if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
  1883. return;
  1884. cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
  1885. if (cpage) {
  1886. f2fs_wait_on_page_writeback(cpage, DATA, true);
  1887. f2fs_put_page(cpage, 1);
  1888. }
  1889. }
  1890. static int read_compacted_summaries(struct f2fs_sb_info *sbi)
  1891. {
  1892. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  1893. struct curseg_info *seg_i;
  1894. unsigned char *kaddr;
  1895. struct page *page;
  1896. block_t start;
  1897. int i, j, offset;
  1898. start = start_sum_block(sbi);
  1899. page = get_meta_page(sbi, start++);
  1900. kaddr = (unsigned char *)page_address(page);
  1901. /* Step 1: restore nat cache */
  1902. seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1903. memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
  1904. /* Step 2: restore sit cache */
  1905. seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
  1906. memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
  1907. offset = 2 * SUM_JOURNAL_SIZE;
  1908. /* Step 3: restore summary entries */
  1909. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1910. unsigned short blk_off;
  1911. unsigned int segno;
  1912. seg_i = CURSEG_I(sbi, i);
  1913. segno = le32_to_cpu(ckpt->cur_data_segno[i]);
  1914. blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
  1915. seg_i->next_segno = segno;
  1916. reset_curseg(sbi, i, 0);
  1917. seg_i->alloc_type = ckpt->alloc_type[i];
  1918. seg_i->next_blkoff = blk_off;
  1919. if (seg_i->alloc_type == SSR)
  1920. blk_off = sbi->blocks_per_seg;
  1921. for (j = 0; j < blk_off; j++) {
  1922. struct f2fs_summary *s;
  1923. s = (struct f2fs_summary *)(kaddr + offset);
  1924. seg_i->sum_blk->entries[j] = *s;
  1925. offset += SUMMARY_SIZE;
  1926. if (offset + SUMMARY_SIZE <= PAGE_SIZE -
  1927. SUM_FOOTER_SIZE)
  1928. continue;
  1929. f2fs_put_page(page, 1);
  1930. page = NULL;
  1931. page = get_meta_page(sbi, start++);
  1932. kaddr = (unsigned char *)page_address(page);
  1933. offset = 0;
  1934. }
  1935. }
  1936. f2fs_put_page(page, 1);
  1937. return 0;
  1938. }
  1939. static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
  1940. {
  1941. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  1942. struct f2fs_summary_block *sum;
  1943. struct curseg_info *curseg;
  1944. struct page *new;
  1945. unsigned short blk_off;
  1946. unsigned int segno = 0;
  1947. block_t blk_addr = 0;
  1948. /* get segment number and block addr */
  1949. if (IS_DATASEG(type)) {
  1950. segno = le32_to_cpu(ckpt->cur_data_segno[type]);
  1951. blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
  1952. CURSEG_HOT_DATA]);
  1953. if (__exist_node_summaries(sbi))
  1954. blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
  1955. else
  1956. blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
  1957. } else {
  1958. segno = le32_to_cpu(ckpt->cur_node_segno[type -
  1959. CURSEG_HOT_NODE]);
  1960. blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
  1961. CURSEG_HOT_NODE]);
  1962. if (__exist_node_summaries(sbi))
  1963. blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
  1964. type - CURSEG_HOT_NODE);
  1965. else
  1966. blk_addr = GET_SUM_BLOCK(sbi, segno);
  1967. }
  1968. new = get_meta_page(sbi, blk_addr);
  1969. sum = (struct f2fs_summary_block *)page_address(new);
  1970. if (IS_NODESEG(type)) {
  1971. if (__exist_node_summaries(sbi)) {
  1972. struct f2fs_summary *ns = &sum->entries[0];
  1973. int i;
  1974. for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
  1975. ns->version = 0;
  1976. ns->ofs_in_node = 0;
  1977. }
  1978. } else {
  1979. int err;
  1980. err = restore_node_summary(sbi, segno, sum);
  1981. if (err) {
  1982. f2fs_put_page(new, 1);
  1983. return err;
  1984. }
  1985. }
  1986. }
  1987. /* set uncompleted segment to curseg */
  1988. curseg = CURSEG_I(sbi, type);
  1989. mutex_lock(&curseg->curseg_mutex);
  1990. /* update journal info */
  1991. down_write(&curseg->journal_rwsem);
  1992. memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
  1993. up_write(&curseg->journal_rwsem);
  1994. memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
  1995. memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
  1996. curseg->next_segno = segno;
  1997. reset_curseg(sbi, type, 0);
  1998. curseg->alloc_type = ckpt->alloc_type[type];
  1999. curseg->next_blkoff = blk_off;
  2000. mutex_unlock(&curseg->curseg_mutex);
  2001. f2fs_put_page(new, 1);
  2002. return 0;
  2003. }
  2004. static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
  2005. {
  2006. int type = CURSEG_HOT_DATA;
  2007. int err;
  2008. if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
  2009. int npages = npages_for_summary_flush(sbi, true);
  2010. if (npages >= 2)
  2011. ra_meta_pages(sbi, start_sum_block(sbi), npages,
  2012. META_CP, true);
  2013. /* restore for compacted data summary */
  2014. if (read_compacted_summaries(sbi))
  2015. return -EINVAL;
  2016. type = CURSEG_HOT_NODE;
  2017. }
  2018. if (__exist_node_summaries(sbi))
  2019. ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
  2020. NR_CURSEG_TYPE - type, META_CP, true);
  2021. for (; type <= CURSEG_COLD_NODE; type++) {
  2022. err = read_normal_summaries(sbi, type);
  2023. if (err)
  2024. return err;
  2025. }
  2026. return 0;
  2027. }
  2028. static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
  2029. {
  2030. struct page *page;
  2031. unsigned char *kaddr;
  2032. struct f2fs_summary *summary;
  2033. struct curseg_info *seg_i;
  2034. int written_size = 0;
  2035. int i, j;
  2036. page = grab_meta_page(sbi, blkaddr++);
  2037. kaddr = (unsigned char *)page_address(page);
  2038. /* Step 1: write nat cache */
  2039. seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2040. memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
  2041. written_size += SUM_JOURNAL_SIZE;
  2042. /* Step 2: write sit cache */
  2043. seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2044. memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
  2045. written_size += SUM_JOURNAL_SIZE;
  2046. /* Step 3: write summary entries */
  2047. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  2048. unsigned short blkoff;
  2049. seg_i = CURSEG_I(sbi, i);
  2050. if (sbi->ckpt->alloc_type[i] == SSR)
  2051. blkoff = sbi->blocks_per_seg;
  2052. else
  2053. blkoff = curseg_blkoff(sbi, i);
  2054. for (j = 0; j < blkoff; j++) {
  2055. if (!page) {
  2056. page = grab_meta_page(sbi, blkaddr++);
  2057. kaddr = (unsigned char *)page_address(page);
  2058. written_size = 0;
  2059. }
  2060. summary = (struct f2fs_summary *)(kaddr + written_size);
  2061. *summary = seg_i->sum_blk->entries[j];
  2062. written_size += SUMMARY_SIZE;
  2063. if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
  2064. SUM_FOOTER_SIZE)
  2065. continue;
  2066. set_page_dirty(page);
  2067. f2fs_put_page(page, 1);
  2068. page = NULL;
  2069. }
  2070. }
  2071. if (page) {
  2072. set_page_dirty(page);
  2073. f2fs_put_page(page, 1);
  2074. }
  2075. }
  2076. static void write_normal_summaries(struct f2fs_sb_info *sbi,
  2077. block_t blkaddr, int type)
  2078. {
  2079. int i, end;
  2080. if (IS_DATASEG(type))
  2081. end = type + NR_CURSEG_DATA_TYPE;
  2082. else
  2083. end = type + NR_CURSEG_NODE_TYPE;
  2084. for (i = type; i < end; i++)
  2085. write_current_sum_page(sbi, i, blkaddr + (i - type));
  2086. }
  2087. void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
  2088. {
  2089. if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
  2090. write_compacted_summaries(sbi, start_blk);
  2091. else
  2092. write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
  2093. }
  2094. void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
  2095. {
  2096. write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
  2097. }
  2098. int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
  2099. unsigned int val, int alloc)
  2100. {
  2101. int i;
  2102. if (type == NAT_JOURNAL) {
  2103. for (i = 0; i < nats_in_cursum(journal); i++) {
  2104. if (le32_to_cpu(nid_in_journal(journal, i)) == val)
  2105. return i;
  2106. }
  2107. if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
  2108. return update_nats_in_cursum(journal, 1);
  2109. } else if (type == SIT_JOURNAL) {
  2110. for (i = 0; i < sits_in_cursum(journal); i++)
  2111. if (le32_to_cpu(segno_in_journal(journal, i)) == val)
  2112. return i;
  2113. if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
  2114. return update_sits_in_cursum(journal, 1);
  2115. }
  2116. return -1;
  2117. }
  2118. static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
  2119. unsigned int segno)
  2120. {
  2121. return get_meta_page(sbi, current_sit_addr(sbi, segno));
  2122. }
  2123. static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
  2124. unsigned int start)
  2125. {
  2126. struct sit_info *sit_i = SIT_I(sbi);
  2127. struct page *src_page, *dst_page;
  2128. pgoff_t src_off, dst_off;
  2129. void *src_addr, *dst_addr;
  2130. src_off = current_sit_addr(sbi, start);
  2131. dst_off = next_sit_addr(sbi, src_off);
  2132. /* get current sit block page without lock */
  2133. src_page = get_meta_page(sbi, src_off);
  2134. dst_page = grab_meta_page(sbi, dst_off);
  2135. f2fs_bug_on(sbi, PageDirty(src_page));
  2136. src_addr = page_address(src_page);
  2137. dst_addr = page_address(dst_page);
  2138. memcpy(dst_addr, src_addr, PAGE_SIZE);
  2139. set_page_dirty(dst_page);
  2140. f2fs_put_page(src_page, 1);
  2141. set_to_next_sit(sit_i, start);
  2142. return dst_page;
  2143. }
  2144. static struct sit_entry_set *grab_sit_entry_set(void)
  2145. {
  2146. struct sit_entry_set *ses =
  2147. f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
  2148. ses->entry_cnt = 0;
  2149. INIT_LIST_HEAD(&ses->set_list);
  2150. return ses;
  2151. }
  2152. static void release_sit_entry_set(struct sit_entry_set *ses)
  2153. {
  2154. list_del(&ses->set_list);
  2155. kmem_cache_free(sit_entry_set_slab, ses);
  2156. }
  2157. static void adjust_sit_entry_set(struct sit_entry_set *ses,
  2158. struct list_head *head)
  2159. {
  2160. struct sit_entry_set *next = ses;
  2161. if (list_is_last(&ses->set_list, head))
  2162. return;
  2163. list_for_each_entry_continue(next, head, set_list)
  2164. if (ses->entry_cnt <= next->entry_cnt)
  2165. break;
  2166. list_move_tail(&ses->set_list, &next->set_list);
  2167. }
  2168. static void add_sit_entry(unsigned int segno, struct list_head *head)
  2169. {
  2170. struct sit_entry_set *ses;
  2171. unsigned int start_segno = START_SEGNO(segno);
  2172. list_for_each_entry(ses, head, set_list) {
  2173. if (ses->start_segno == start_segno) {
  2174. ses->entry_cnt++;
  2175. adjust_sit_entry_set(ses, head);
  2176. return;
  2177. }
  2178. }
  2179. ses = grab_sit_entry_set();
  2180. ses->start_segno = start_segno;
  2181. ses->entry_cnt++;
  2182. list_add(&ses->set_list, head);
  2183. }
  2184. static void add_sits_in_set(struct f2fs_sb_info *sbi)
  2185. {
  2186. struct f2fs_sm_info *sm_info = SM_I(sbi);
  2187. struct list_head *set_list = &sm_info->sit_entry_set;
  2188. unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
  2189. unsigned int segno;
  2190. for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
  2191. add_sit_entry(segno, set_list);
  2192. }
  2193. static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
  2194. {
  2195. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2196. struct f2fs_journal *journal = curseg->journal;
  2197. int i;
  2198. down_write(&curseg->journal_rwsem);
  2199. for (i = 0; i < sits_in_cursum(journal); i++) {
  2200. unsigned int segno;
  2201. bool dirtied;
  2202. segno = le32_to_cpu(segno_in_journal(journal, i));
  2203. dirtied = __mark_sit_entry_dirty(sbi, segno);
  2204. if (!dirtied)
  2205. add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
  2206. }
  2207. update_sits_in_cursum(journal, -i);
  2208. up_write(&curseg->journal_rwsem);
  2209. }
  2210. /*
  2211. * CP calls this function, which flushes SIT entries including sit_journal,
  2212. * and moves prefree segs to free segs.
  2213. */
  2214. void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  2215. {
  2216. struct sit_info *sit_i = SIT_I(sbi);
  2217. unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
  2218. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2219. struct f2fs_journal *journal = curseg->journal;
  2220. struct sit_entry_set *ses, *tmp;
  2221. struct list_head *head = &SM_I(sbi)->sit_entry_set;
  2222. bool to_journal = true;
  2223. struct seg_entry *se;
  2224. mutex_lock(&sit_i->sentry_lock);
  2225. if (!sit_i->dirty_sentries)
  2226. goto out;
  2227. /*
  2228. * add and account sit entries of dirty bitmap in sit entry
  2229. * set temporarily
  2230. */
  2231. add_sits_in_set(sbi);
  2232. /*
  2233. * if there are no enough space in journal to store dirty sit
  2234. * entries, remove all entries from journal and add and account
  2235. * them in sit entry set.
  2236. */
  2237. if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
  2238. remove_sits_in_journal(sbi);
  2239. /*
  2240. * there are two steps to flush sit entries:
  2241. * #1, flush sit entries to journal in current cold data summary block.
  2242. * #2, flush sit entries to sit page.
  2243. */
  2244. list_for_each_entry_safe(ses, tmp, head, set_list) {
  2245. struct page *page = NULL;
  2246. struct f2fs_sit_block *raw_sit = NULL;
  2247. unsigned int start_segno = ses->start_segno;
  2248. unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
  2249. (unsigned long)MAIN_SEGS(sbi));
  2250. unsigned int segno = start_segno;
  2251. if (to_journal &&
  2252. !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
  2253. to_journal = false;
  2254. if (to_journal) {
  2255. down_write(&curseg->journal_rwsem);
  2256. } else {
  2257. page = get_next_sit_page(sbi, start_segno);
  2258. raw_sit = page_address(page);
  2259. }
  2260. /* flush dirty sit entries in region of current sit set */
  2261. for_each_set_bit_from(segno, bitmap, end) {
  2262. int offset, sit_offset;
  2263. se = get_seg_entry(sbi, segno);
  2264. /* add discard candidates */
  2265. if (cpc->reason != CP_DISCARD) {
  2266. cpc->trim_start = segno;
  2267. add_discard_addrs(sbi, cpc, false);
  2268. }
  2269. if (to_journal) {
  2270. offset = lookup_journal_in_cursum(journal,
  2271. SIT_JOURNAL, segno, 1);
  2272. f2fs_bug_on(sbi, offset < 0);
  2273. segno_in_journal(journal, offset) =
  2274. cpu_to_le32(segno);
  2275. seg_info_to_raw_sit(se,
  2276. &sit_in_journal(journal, offset));
  2277. } else {
  2278. sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
  2279. seg_info_to_raw_sit(se,
  2280. &raw_sit->entries[sit_offset]);
  2281. }
  2282. __clear_bit(segno, bitmap);
  2283. sit_i->dirty_sentries--;
  2284. ses->entry_cnt--;
  2285. }
  2286. if (to_journal)
  2287. up_write(&curseg->journal_rwsem);
  2288. else
  2289. f2fs_put_page(page, 1);
  2290. f2fs_bug_on(sbi, ses->entry_cnt);
  2291. release_sit_entry_set(ses);
  2292. }
  2293. f2fs_bug_on(sbi, !list_empty(head));
  2294. f2fs_bug_on(sbi, sit_i->dirty_sentries);
  2295. out:
  2296. if (cpc->reason == CP_DISCARD) {
  2297. __u64 trim_start = cpc->trim_start;
  2298. for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
  2299. add_discard_addrs(sbi, cpc, false);
  2300. cpc->trim_start = trim_start;
  2301. }
  2302. mutex_unlock(&sit_i->sentry_lock);
  2303. set_prefree_as_free_segments(sbi);
  2304. }
  2305. static int build_sit_info(struct f2fs_sb_info *sbi)
  2306. {
  2307. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  2308. struct sit_info *sit_i;
  2309. unsigned int sit_segs, start;
  2310. char *src_bitmap;
  2311. unsigned int bitmap_size;
  2312. /* allocate memory for SIT information */
  2313. sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
  2314. if (!sit_i)
  2315. return -ENOMEM;
  2316. SM_I(sbi)->sit_info = sit_i;
  2317. sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
  2318. sizeof(struct seg_entry), GFP_KERNEL);
  2319. if (!sit_i->sentries)
  2320. return -ENOMEM;
  2321. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  2322. sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
  2323. if (!sit_i->dirty_sentries_bitmap)
  2324. return -ENOMEM;
  2325. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  2326. sit_i->sentries[start].cur_valid_map
  2327. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2328. sit_i->sentries[start].ckpt_valid_map
  2329. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2330. if (!sit_i->sentries[start].cur_valid_map ||
  2331. !sit_i->sentries[start].ckpt_valid_map)
  2332. return -ENOMEM;
  2333. #ifdef CONFIG_F2FS_CHECK_FS
  2334. sit_i->sentries[start].cur_valid_map_mir
  2335. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2336. if (!sit_i->sentries[start].cur_valid_map_mir)
  2337. return -ENOMEM;
  2338. #endif
  2339. if (f2fs_discard_en(sbi)) {
  2340. sit_i->sentries[start].discard_map
  2341. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2342. if (!sit_i->sentries[start].discard_map)
  2343. return -ENOMEM;
  2344. }
  2345. }
  2346. sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2347. if (!sit_i->tmp_map)
  2348. return -ENOMEM;
  2349. if (sbi->segs_per_sec > 1) {
  2350. sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
  2351. sizeof(struct sec_entry), GFP_KERNEL);
  2352. if (!sit_i->sec_entries)
  2353. return -ENOMEM;
  2354. }
  2355. /* get information related with SIT */
  2356. sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
  2357. /* setup SIT bitmap from ckeckpoint pack */
  2358. bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
  2359. src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
  2360. sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
  2361. if (!sit_i->sit_bitmap)
  2362. return -ENOMEM;
  2363. #ifdef CONFIG_F2FS_CHECK_FS
  2364. sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
  2365. if (!sit_i->sit_bitmap_mir)
  2366. return -ENOMEM;
  2367. #endif
  2368. /* init SIT information */
  2369. sit_i->s_ops = &default_salloc_ops;
  2370. sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
  2371. sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
  2372. sit_i->written_valid_blocks = 0;
  2373. sit_i->bitmap_size = bitmap_size;
  2374. sit_i->dirty_sentries = 0;
  2375. sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
  2376. sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
  2377. sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
  2378. mutex_init(&sit_i->sentry_lock);
  2379. return 0;
  2380. }
  2381. static int build_free_segmap(struct f2fs_sb_info *sbi)
  2382. {
  2383. struct free_segmap_info *free_i;
  2384. unsigned int bitmap_size, sec_bitmap_size;
  2385. /* allocate memory for free segmap information */
  2386. free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
  2387. if (!free_i)
  2388. return -ENOMEM;
  2389. SM_I(sbi)->free_info = free_i;
  2390. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  2391. free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
  2392. if (!free_i->free_segmap)
  2393. return -ENOMEM;
  2394. sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
  2395. free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
  2396. if (!free_i->free_secmap)
  2397. return -ENOMEM;
  2398. /* set all segments as dirty temporarily */
  2399. memset(free_i->free_segmap, 0xff, bitmap_size);
  2400. memset(free_i->free_secmap, 0xff, sec_bitmap_size);
  2401. /* init free segmap information */
  2402. free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
  2403. free_i->free_segments = 0;
  2404. free_i->free_sections = 0;
  2405. spin_lock_init(&free_i->segmap_lock);
  2406. return 0;
  2407. }
  2408. static int build_curseg(struct f2fs_sb_info *sbi)
  2409. {
  2410. struct curseg_info *array;
  2411. int i;
  2412. array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
  2413. if (!array)
  2414. return -ENOMEM;
  2415. SM_I(sbi)->curseg_array = array;
  2416. for (i = 0; i < NR_CURSEG_TYPE; i++) {
  2417. mutex_init(&array[i].curseg_mutex);
  2418. array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
  2419. if (!array[i].sum_blk)
  2420. return -ENOMEM;
  2421. init_rwsem(&array[i].journal_rwsem);
  2422. array[i].journal = kzalloc(sizeof(struct f2fs_journal),
  2423. GFP_KERNEL);
  2424. if (!array[i].journal)
  2425. return -ENOMEM;
  2426. array[i].segno = NULL_SEGNO;
  2427. array[i].next_blkoff = 0;
  2428. }
  2429. return restore_curseg_summaries(sbi);
  2430. }
  2431. static void build_sit_entries(struct f2fs_sb_info *sbi)
  2432. {
  2433. struct sit_info *sit_i = SIT_I(sbi);
  2434. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2435. struct f2fs_journal *journal = curseg->journal;
  2436. struct seg_entry *se;
  2437. struct f2fs_sit_entry sit;
  2438. int sit_blk_cnt = SIT_BLK_CNT(sbi);
  2439. unsigned int i, start, end;
  2440. unsigned int readed, start_blk = 0;
  2441. do {
  2442. readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
  2443. META_SIT, true);
  2444. start = start_blk * sit_i->sents_per_block;
  2445. end = (start_blk + readed) * sit_i->sents_per_block;
  2446. for (; start < end && start < MAIN_SEGS(sbi); start++) {
  2447. struct f2fs_sit_block *sit_blk;
  2448. struct page *page;
  2449. se = &sit_i->sentries[start];
  2450. page = get_current_sit_page(sbi, start);
  2451. sit_blk = (struct f2fs_sit_block *)page_address(page);
  2452. sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
  2453. f2fs_put_page(page, 1);
  2454. check_block_count(sbi, start, &sit);
  2455. seg_info_from_raw_sit(se, &sit);
  2456. /* build discard map only one time */
  2457. if (f2fs_discard_en(sbi)) {
  2458. memcpy(se->discard_map, se->cur_valid_map,
  2459. SIT_VBLOCK_MAP_SIZE);
  2460. sbi->discard_blks += sbi->blocks_per_seg -
  2461. se->valid_blocks;
  2462. }
  2463. if (sbi->segs_per_sec > 1)
  2464. get_sec_entry(sbi, start)->valid_blocks +=
  2465. se->valid_blocks;
  2466. }
  2467. start_blk += readed;
  2468. } while (start_blk < sit_blk_cnt);
  2469. down_read(&curseg->journal_rwsem);
  2470. for (i = 0; i < sits_in_cursum(journal); i++) {
  2471. unsigned int old_valid_blocks;
  2472. start = le32_to_cpu(segno_in_journal(journal, i));
  2473. se = &sit_i->sentries[start];
  2474. sit = sit_in_journal(journal, i);
  2475. old_valid_blocks = se->valid_blocks;
  2476. check_block_count(sbi, start, &sit);
  2477. seg_info_from_raw_sit(se, &sit);
  2478. if (f2fs_discard_en(sbi)) {
  2479. memcpy(se->discard_map, se->cur_valid_map,
  2480. SIT_VBLOCK_MAP_SIZE);
  2481. sbi->discard_blks += old_valid_blocks -
  2482. se->valid_blocks;
  2483. }
  2484. if (sbi->segs_per_sec > 1)
  2485. get_sec_entry(sbi, start)->valid_blocks +=
  2486. se->valid_blocks - old_valid_blocks;
  2487. }
  2488. up_read(&curseg->journal_rwsem);
  2489. }
  2490. static void init_free_segmap(struct f2fs_sb_info *sbi)
  2491. {
  2492. unsigned int start;
  2493. int type;
  2494. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  2495. struct seg_entry *sentry = get_seg_entry(sbi, start);
  2496. if (!sentry->valid_blocks)
  2497. __set_free(sbi, start);
  2498. else
  2499. SIT_I(sbi)->written_valid_blocks +=
  2500. sentry->valid_blocks;
  2501. }
  2502. /* set use the current segments */
  2503. for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
  2504. struct curseg_info *curseg_t = CURSEG_I(sbi, type);
  2505. __set_test_and_inuse(sbi, curseg_t->segno);
  2506. }
  2507. }
  2508. static void init_dirty_segmap(struct f2fs_sb_info *sbi)
  2509. {
  2510. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2511. struct free_segmap_info *free_i = FREE_I(sbi);
  2512. unsigned int segno = 0, offset = 0;
  2513. unsigned short valid_blocks;
  2514. while (1) {
  2515. /* find dirty segment based on free segmap */
  2516. segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
  2517. if (segno >= MAIN_SEGS(sbi))
  2518. break;
  2519. offset = segno + 1;
  2520. valid_blocks = get_valid_blocks(sbi, segno, false);
  2521. if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
  2522. continue;
  2523. if (valid_blocks > sbi->blocks_per_seg) {
  2524. f2fs_bug_on(sbi, 1);
  2525. continue;
  2526. }
  2527. mutex_lock(&dirty_i->seglist_lock);
  2528. __locate_dirty_segment(sbi, segno, DIRTY);
  2529. mutex_unlock(&dirty_i->seglist_lock);
  2530. }
  2531. }
  2532. static int init_victim_secmap(struct f2fs_sb_info *sbi)
  2533. {
  2534. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2535. unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
  2536. dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
  2537. if (!dirty_i->victim_secmap)
  2538. return -ENOMEM;
  2539. return 0;
  2540. }
  2541. static int build_dirty_segmap(struct f2fs_sb_info *sbi)
  2542. {
  2543. struct dirty_seglist_info *dirty_i;
  2544. unsigned int bitmap_size, i;
  2545. /* allocate memory for dirty segments list information */
  2546. dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
  2547. if (!dirty_i)
  2548. return -ENOMEM;
  2549. SM_I(sbi)->dirty_info = dirty_i;
  2550. mutex_init(&dirty_i->seglist_lock);
  2551. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  2552. for (i = 0; i < NR_DIRTY_TYPE; i++) {
  2553. dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
  2554. if (!dirty_i->dirty_segmap[i])
  2555. return -ENOMEM;
  2556. }
  2557. init_dirty_segmap(sbi);
  2558. return init_victim_secmap(sbi);
  2559. }
  2560. /*
  2561. * Update min, max modified time for cost-benefit GC algorithm
  2562. */
  2563. static void init_min_max_mtime(struct f2fs_sb_info *sbi)
  2564. {
  2565. struct sit_info *sit_i = SIT_I(sbi);
  2566. unsigned int segno;
  2567. mutex_lock(&sit_i->sentry_lock);
  2568. sit_i->min_mtime = LLONG_MAX;
  2569. for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
  2570. unsigned int i;
  2571. unsigned long long mtime = 0;
  2572. for (i = 0; i < sbi->segs_per_sec; i++)
  2573. mtime += get_seg_entry(sbi, segno + i)->mtime;
  2574. mtime = div_u64(mtime, sbi->segs_per_sec);
  2575. if (sit_i->min_mtime > mtime)
  2576. sit_i->min_mtime = mtime;
  2577. }
  2578. sit_i->max_mtime = get_mtime(sbi);
  2579. mutex_unlock(&sit_i->sentry_lock);
  2580. }
  2581. int build_segment_manager(struct f2fs_sb_info *sbi)
  2582. {
  2583. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  2584. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  2585. struct f2fs_sm_info *sm_info;
  2586. int err;
  2587. sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
  2588. if (!sm_info)
  2589. return -ENOMEM;
  2590. /* init sm info */
  2591. sbi->sm_info = sm_info;
  2592. sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
  2593. sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
  2594. sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
  2595. sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
  2596. sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
  2597. sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
  2598. sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
  2599. sm_info->rec_prefree_segments = sm_info->main_segments *
  2600. DEF_RECLAIM_PREFREE_SEGMENTS / 100;
  2601. if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
  2602. sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
  2603. if (!test_opt(sbi, LFS))
  2604. sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
  2605. sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
  2606. sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
  2607. sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
  2608. sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
  2609. INIT_LIST_HEAD(&sm_info->sit_entry_set);
  2610. if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
  2611. err = create_flush_cmd_control(sbi);
  2612. if (err)
  2613. return err;
  2614. }
  2615. err = create_discard_cmd_control(sbi);
  2616. if (err)
  2617. return err;
  2618. err = build_sit_info(sbi);
  2619. if (err)
  2620. return err;
  2621. err = build_free_segmap(sbi);
  2622. if (err)
  2623. return err;
  2624. err = build_curseg(sbi);
  2625. if (err)
  2626. return err;
  2627. /* reinit free segmap based on SIT */
  2628. build_sit_entries(sbi);
  2629. init_free_segmap(sbi);
  2630. err = build_dirty_segmap(sbi);
  2631. if (err)
  2632. return err;
  2633. init_min_max_mtime(sbi);
  2634. return 0;
  2635. }
  2636. static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
  2637. enum dirty_type dirty_type)
  2638. {
  2639. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2640. mutex_lock(&dirty_i->seglist_lock);
  2641. kvfree(dirty_i->dirty_segmap[dirty_type]);
  2642. dirty_i->nr_dirty[dirty_type] = 0;
  2643. mutex_unlock(&dirty_i->seglist_lock);
  2644. }
  2645. static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
  2646. {
  2647. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2648. kvfree(dirty_i->victim_secmap);
  2649. }
  2650. static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
  2651. {
  2652. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2653. int i;
  2654. if (!dirty_i)
  2655. return;
  2656. /* discard pre-free/dirty segments list */
  2657. for (i = 0; i < NR_DIRTY_TYPE; i++)
  2658. discard_dirty_segmap(sbi, i);
  2659. destroy_victim_secmap(sbi);
  2660. SM_I(sbi)->dirty_info = NULL;
  2661. kfree(dirty_i);
  2662. }
  2663. static void destroy_curseg(struct f2fs_sb_info *sbi)
  2664. {
  2665. struct curseg_info *array = SM_I(sbi)->curseg_array;
  2666. int i;
  2667. if (!array)
  2668. return;
  2669. SM_I(sbi)->curseg_array = NULL;
  2670. for (i = 0; i < NR_CURSEG_TYPE; i++) {
  2671. kfree(array[i].sum_blk);
  2672. kfree(array[i].journal);
  2673. }
  2674. kfree(array);
  2675. }
  2676. static void destroy_free_segmap(struct f2fs_sb_info *sbi)
  2677. {
  2678. struct free_segmap_info *free_i = SM_I(sbi)->free_info;
  2679. if (!free_i)
  2680. return;
  2681. SM_I(sbi)->free_info = NULL;
  2682. kvfree(free_i->free_segmap);
  2683. kvfree(free_i->free_secmap);
  2684. kfree(free_i);
  2685. }
  2686. static void destroy_sit_info(struct f2fs_sb_info *sbi)
  2687. {
  2688. struct sit_info *sit_i = SIT_I(sbi);
  2689. unsigned int start;
  2690. if (!sit_i)
  2691. return;
  2692. if (sit_i->sentries) {
  2693. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  2694. kfree(sit_i->sentries[start].cur_valid_map);
  2695. #ifdef CONFIG_F2FS_CHECK_FS
  2696. kfree(sit_i->sentries[start].cur_valid_map_mir);
  2697. #endif
  2698. kfree(sit_i->sentries[start].ckpt_valid_map);
  2699. kfree(sit_i->sentries[start].discard_map);
  2700. }
  2701. }
  2702. kfree(sit_i->tmp_map);
  2703. kvfree(sit_i->sentries);
  2704. kvfree(sit_i->sec_entries);
  2705. kvfree(sit_i->dirty_sentries_bitmap);
  2706. SM_I(sbi)->sit_info = NULL;
  2707. kfree(sit_i->sit_bitmap);
  2708. #ifdef CONFIG_F2FS_CHECK_FS
  2709. kfree(sit_i->sit_bitmap_mir);
  2710. #endif
  2711. kfree(sit_i);
  2712. }
  2713. void destroy_segment_manager(struct f2fs_sb_info *sbi)
  2714. {
  2715. struct f2fs_sm_info *sm_info = SM_I(sbi);
  2716. if (!sm_info)
  2717. return;
  2718. destroy_flush_cmd_control(sbi, true);
  2719. destroy_discard_cmd_control(sbi);
  2720. destroy_dirty_segmap(sbi);
  2721. destroy_curseg(sbi);
  2722. destroy_free_segmap(sbi);
  2723. destroy_sit_info(sbi);
  2724. sbi->sm_info = NULL;
  2725. kfree(sm_info);
  2726. }
  2727. int __init create_segment_manager_caches(void)
  2728. {
  2729. discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
  2730. sizeof(struct discard_entry));
  2731. if (!discard_entry_slab)
  2732. goto fail;
  2733. discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
  2734. sizeof(struct discard_cmd));
  2735. if (!discard_cmd_slab)
  2736. goto destroy_discard_entry;
  2737. sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
  2738. sizeof(struct sit_entry_set));
  2739. if (!sit_entry_set_slab)
  2740. goto destroy_discard_cmd;
  2741. inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
  2742. sizeof(struct inmem_pages));
  2743. if (!inmem_entry_slab)
  2744. goto destroy_sit_entry_set;
  2745. return 0;
  2746. destroy_sit_entry_set:
  2747. kmem_cache_destroy(sit_entry_set_slab);
  2748. destroy_discard_cmd:
  2749. kmem_cache_destroy(discard_cmd_slab);
  2750. destroy_discard_entry:
  2751. kmem_cache_destroy(discard_entry_slab);
  2752. fail:
  2753. return -ENOMEM;
  2754. }
  2755. void destroy_segment_manager_caches(void)
  2756. {
  2757. kmem_cache_destroy(sit_entry_set_slab);
  2758. kmem_cache_destroy(discard_cmd_slab);
  2759. kmem_cache_destroy(discard_entry_slab);
  2760. kmem_cache_destroy(inmem_entry_slab);
  2761. }