intel_ringbuffer.c 59 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. static inline int ring_space(struct intel_ring_buffer *ring)
  35. {
  36. int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
  37. if (space < 0)
  38. space += ring->size;
  39. return space;
  40. }
  41. void __intel_ring_advance(struct intel_ring_buffer *ring)
  42. {
  43. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  44. ring->tail &= ring->size - 1;
  45. if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring))
  46. return;
  47. ring->write_tail(ring, ring->tail);
  48. }
  49. static int
  50. gen2_render_ring_flush(struct intel_ring_buffer *ring,
  51. u32 invalidate_domains,
  52. u32 flush_domains)
  53. {
  54. u32 cmd;
  55. int ret;
  56. cmd = MI_FLUSH;
  57. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  58. cmd |= MI_NO_WRITE_FLUSH;
  59. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  60. cmd |= MI_READ_FLUSH;
  61. ret = intel_ring_begin(ring, 2);
  62. if (ret)
  63. return ret;
  64. intel_ring_emit(ring, cmd);
  65. intel_ring_emit(ring, MI_NOOP);
  66. intel_ring_advance(ring);
  67. return 0;
  68. }
  69. static int
  70. gen4_render_ring_flush(struct intel_ring_buffer *ring,
  71. u32 invalidate_domains,
  72. u32 flush_domains)
  73. {
  74. struct drm_device *dev = ring->dev;
  75. u32 cmd;
  76. int ret;
  77. /*
  78. * read/write caches:
  79. *
  80. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  81. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  82. * also flushed at 2d versus 3d pipeline switches.
  83. *
  84. * read-only caches:
  85. *
  86. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  87. * MI_READ_FLUSH is set, and is always flushed on 965.
  88. *
  89. * I915_GEM_DOMAIN_COMMAND may not exist?
  90. *
  91. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  92. * invalidated when MI_EXE_FLUSH is set.
  93. *
  94. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  95. * invalidated with every MI_FLUSH.
  96. *
  97. * TLBs:
  98. *
  99. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  100. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  101. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  102. * are flushed at any MI_FLUSH.
  103. */
  104. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  105. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  106. cmd &= ~MI_NO_WRITE_FLUSH;
  107. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  108. cmd |= MI_EXE_FLUSH;
  109. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  110. (IS_G4X(dev) || IS_GEN5(dev)))
  111. cmd |= MI_INVALIDATE_ISP;
  112. ret = intel_ring_begin(ring, 2);
  113. if (ret)
  114. return ret;
  115. intel_ring_emit(ring, cmd);
  116. intel_ring_emit(ring, MI_NOOP);
  117. intel_ring_advance(ring);
  118. return 0;
  119. }
  120. /**
  121. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  122. * implementing two workarounds on gen6. From section 1.4.7.1
  123. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  124. *
  125. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  126. * produced by non-pipelined state commands), software needs to first
  127. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  128. * 0.
  129. *
  130. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  131. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  132. *
  133. * And the workaround for these two requires this workaround first:
  134. *
  135. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  136. * BEFORE the pipe-control with a post-sync op and no write-cache
  137. * flushes.
  138. *
  139. * And this last workaround is tricky because of the requirements on
  140. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  141. * volume 2 part 1:
  142. *
  143. * "1 of the following must also be set:
  144. * - Render Target Cache Flush Enable ([12] of DW1)
  145. * - Depth Cache Flush Enable ([0] of DW1)
  146. * - Stall at Pixel Scoreboard ([1] of DW1)
  147. * - Depth Stall ([13] of DW1)
  148. * - Post-Sync Operation ([13] of DW1)
  149. * - Notify Enable ([8] of DW1)"
  150. *
  151. * The cache flushes require the workaround flush that triggered this
  152. * one, so we can't use it. Depth stall would trigger the same.
  153. * Post-sync nonzero is what triggered this second workaround, so we
  154. * can't use that one either. Notify enable is IRQs, which aren't
  155. * really our business. That leaves only stall at scoreboard.
  156. */
  157. static int
  158. intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
  159. {
  160. u32 scratch_addr = ring->scratch.gtt_offset + 128;
  161. int ret;
  162. ret = intel_ring_begin(ring, 6);
  163. if (ret)
  164. return ret;
  165. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  166. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  167. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  168. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  169. intel_ring_emit(ring, 0); /* low dword */
  170. intel_ring_emit(ring, 0); /* high dword */
  171. intel_ring_emit(ring, MI_NOOP);
  172. intel_ring_advance(ring);
  173. ret = intel_ring_begin(ring, 6);
  174. if (ret)
  175. return ret;
  176. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  177. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  178. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  179. intel_ring_emit(ring, 0);
  180. intel_ring_emit(ring, 0);
  181. intel_ring_emit(ring, MI_NOOP);
  182. intel_ring_advance(ring);
  183. return 0;
  184. }
  185. static int
  186. gen6_render_ring_flush(struct intel_ring_buffer *ring,
  187. u32 invalidate_domains, u32 flush_domains)
  188. {
  189. u32 flags = 0;
  190. u32 scratch_addr = ring->scratch.gtt_offset + 128;
  191. int ret;
  192. /* Force SNB workarounds for PIPE_CONTROL flushes */
  193. ret = intel_emit_post_sync_nonzero_flush(ring);
  194. if (ret)
  195. return ret;
  196. /* Just flush everything. Experiments have shown that reducing the
  197. * number of bits based on the write domains has little performance
  198. * impact.
  199. */
  200. if (flush_domains) {
  201. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  202. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  203. /*
  204. * Ensure that any following seqno writes only happen
  205. * when the render cache is indeed flushed.
  206. */
  207. flags |= PIPE_CONTROL_CS_STALL;
  208. }
  209. if (invalidate_domains) {
  210. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  211. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  212. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  213. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  214. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  215. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  216. /*
  217. * TLB invalidate requires a post-sync write.
  218. */
  219. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  220. }
  221. ret = intel_ring_begin(ring, 4);
  222. if (ret)
  223. return ret;
  224. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  225. intel_ring_emit(ring, flags);
  226. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  227. intel_ring_emit(ring, 0);
  228. intel_ring_advance(ring);
  229. return 0;
  230. }
  231. static int
  232. gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
  233. {
  234. int ret;
  235. ret = intel_ring_begin(ring, 4);
  236. if (ret)
  237. return ret;
  238. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  239. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  240. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  241. intel_ring_emit(ring, 0);
  242. intel_ring_emit(ring, 0);
  243. intel_ring_advance(ring);
  244. return 0;
  245. }
  246. static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
  247. {
  248. int ret;
  249. if (!ring->fbc_dirty)
  250. return 0;
  251. ret = intel_ring_begin(ring, 6);
  252. if (ret)
  253. return ret;
  254. /* WaFbcNukeOn3DBlt:ivb/hsw */
  255. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  256. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  257. intel_ring_emit(ring, value);
  258. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
  259. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  260. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  261. intel_ring_advance(ring);
  262. ring->fbc_dirty = false;
  263. return 0;
  264. }
  265. static int
  266. gen7_render_ring_flush(struct intel_ring_buffer *ring,
  267. u32 invalidate_domains, u32 flush_domains)
  268. {
  269. u32 flags = 0;
  270. u32 scratch_addr = ring->scratch.gtt_offset + 128;
  271. int ret;
  272. /*
  273. * Ensure that any following seqno writes only happen when the render
  274. * cache is indeed flushed.
  275. *
  276. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  277. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  278. * don't try to be clever and just set it unconditionally.
  279. */
  280. flags |= PIPE_CONTROL_CS_STALL;
  281. /* Just flush everything. Experiments have shown that reducing the
  282. * number of bits based on the write domains has little performance
  283. * impact.
  284. */
  285. if (flush_domains) {
  286. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  287. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  288. }
  289. if (invalidate_domains) {
  290. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  291. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  292. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  293. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  294. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  295. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  296. /*
  297. * TLB invalidate requires a post-sync write.
  298. */
  299. flags |= PIPE_CONTROL_QW_WRITE;
  300. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  301. /* Workaround: we must issue a pipe_control with CS-stall bit
  302. * set before a pipe_control command that has the state cache
  303. * invalidate bit set. */
  304. gen7_render_ring_cs_stall_wa(ring);
  305. }
  306. ret = intel_ring_begin(ring, 4);
  307. if (ret)
  308. return ret;
  309. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  310. intel_ring_emit(ring, flags);
  311. intel_ring_emit(ring, scratch_addr);
  312. intel_ring_emit(ring, 0);
  313. intel_ring_advance(ring);
  314. if (!invalidate_domains && flush_domains)
  315. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  316. return 0;
  317. }
  318. static int
  319. gen8_render_ring_flush(struct intel_ring_buffer *ring,
  320. u32 invalidate_domains, u32 flush_domains)
  321. {
  322. u32 flags = 0;
  323. u32 scratch_addr = ring->scratch.gtt_offset + 128;
  324. int ret;
  325. flags |= PIPE_CONTROL_CS_STALL;
  326. if (flush_domains) {
  327. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  328. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  329. }
  330. if (invalidate_domains) {
  331. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  332. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  333. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  334. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  335. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  336. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  337. flags |= PIPE_CONTROL_QW_WRITE;
  338. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  339. }
  340. ret = intel_ring_begin(ring, 6);
  341. if (ret)
  342. return ret;
  343. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  344. intel_ring_emit(ring, flags);
  345. intel_ring_emit(ring, scratch_addr);
  346. intel_ring_emit(ring, 0);
  347. intel_ring_emit(ring, 0);
  348. intel_ring_emit(ring, 0);
  349. intel_ring_advance(ring);
  350. return 0;
  351. }
  352. static void ring_write_tail(struct intel_ring_buffer *ring,
  353. u32 value)
  354. {
  355. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  356. I915_WRITE_TAIL(ring, value);
  357. }
  358. u64 intel_ring_get_active_head(struct intel_ring_buffer *ring)
  359. {
  360. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  361. u64 acthd;
  362. if (INTEL_INFO(ring->dev)->gen >= 8)
  363. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  364. RING_ACTHD_UDW(ring->mmio_base));
  365. else if (INTEL_INFO(ring->dev)->gen >= 4)
  366. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  367. else
  368. acthd = I915_READ(ACTHD);
  369. return acthd;
  370. }
  371. static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
  372. {
  373. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  374. u32 addr;
  375. addr = dev_priv->status_page_dmah->busaddr;
  376. if (INTEL_INFO(ring->dev)->gen >= 4)
  377. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  378. I915_WRITE(HWS_PGA, addr);
  379. }
  380. static int init_ring_common(struct intel_ring_buffer *ring)
  381. {
  382. struct drm_device *dev = ring->dev;
  383. struct drm_i915_private *dev_priv = dev->dev_private;
  384. struct drm_i915_gem_object *obj = ring->obj;
  385. int ret = 0;
  386. u32 head;
  387. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  388. /* Stop the ring if it's running. */
  389. I915_WRITE_CTL(ring, 0);
  390. I915_WRITE_HEAD(ring, 0);
  391. ring->write_tail(ring, 0);
  392. if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000))
  393. DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
  394. if (I915_NEED_GFX_HWS(dev))
  395. intel_ring_setup_status_page(ring);
  396. else
  397. ring_setup_phys_status_page(ring);
  398. head = I915_READ_HEAD(ring) & HEAD_ADDR;
  399. /* G45 ring initialization fails to reset head to zero */
  400. if (head != 0) {
  401. DRM_DEBUG_KMS("%s head not reset to zero "
  402. "ctl %08x head %08x tail %08x start %08x\n",
  403. ring->name,
  404. I915_READ_CTL(ring),
  405. I915_READ_HEAD(ring),
  406. I915_READ_TAIL(ring),
  407. I915_READ_START(ring));
  408. I915_WRITE_HEAD(ring, 0);
  409. if (I915_READ_HEAD(ring) & HEAD_ADDR) {
  410. DRM_ERROR("failed to set %s head to zero "
  411. "ctl %08x head %08x tail %08x start %08x\n",
  412. ring->name,
  413. I915_READ_CTL(ring),
  414. I915_READ_HEAD(ring),
  415. I915_READ_TAIL(ring),
  416. I915_READ_START(ring));
  417. }
  418. }
  419. /* Initialize the ring. This must happen _after_ we've cleared the ring
  420. * registers with the above sequence (the readback of the HEAD registers
  421. * also enforces ordering), otherwise the hw might lose the new ring
  422. * register values. */
  423. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  424. I915_WRITE_CTL(ring,
  425. ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
  426. | RING_VALID);
  427. /* If the head is still not zero, the ring is dead */
  428. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  429. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  430. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  431. DRM_ERROR("%s initialization failed "
  432. "ctl %08x head %08x tail %08x start %08x\n",
  433. ring->name,
  434. I915_READ_CTL(ring),
  435. I915_READ_HEAD(ring),
  436. I915_READ_TAIL(ring),
  437. I915_READ_START(ring));
  438. ret = -EIO;
  439. goto out;
  440. }
  441. if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
  442. i915_kernel_lost_context(ring->dev);
  443. else {
  444. ring->head = I915_READ_HEAD(ring);
  445. ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  446. ring->space = ring_space(ring);
  447. ring->last_retired_head = -1;
  448. }
  449. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  450. out:
  451. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  452. return ret;
  453. }
  454. static int
  455. init_pipe_control(struct intel_ring_buffer *ring)
  456. {
  457. int ret;
  458. if (ring->scratch.obj)
  459. return 0;
  460. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  461. if (ring->scratch.obj == NULL) {
  462. DRM_ERROR("Failed to allocate seqno page\n");
  463. ret = -ENOMEM;
  464. goto err;
  465. }
  466. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  467. if (ret)
  468. goto err_unref;
  469. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  470. if (ret)
  471. goto err_unref;
  472. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  473. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  474. if (ring->scratch.cpu_page == NULL) {
  475. ret = -ENOMEM;
  476. goto err_unpin;
  477. }
  478. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  479. ring->name, ring->scratch.gtt_offset);
  480. return 0;
  481. err_unpin:
  482. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  483. err_unref:
  484. drm_gem_object_unreference(&ring->scratch.obj->base);
  485. err:
  486. return ret;
  487. }
  488. static int init_render_ring(struct intel_ring_buffer *ring)
  489. {
  490. struct drm_device *dev = ring->dev;
  491. struct drm_i915_private *dev_priv = dev->dev_private;
  492. int ret = init_ring_common(ring);
  493. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  494. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  495. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  496. /* We need to disable the AsyncFlip performance optimisations in order
  497. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  498. * programmed to '1' on all products.
  499. *
  500. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw
  501. */
  502. if (INTEL_INFO(dev)->gen >= 6)
  503. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  504. /* Required for the hardware to program scanline values for waiting */
  505. /* WaEnableFlushTlbInvalidationMode:snb */
  506. if (INTEL_INFO(dev)->gen == 6)
  507. I915_WRITE(GFX_MODE,
  508. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  509. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  510. if (IS_GEN7(dev))
  511. I915_WRITE(GFX_MODE_GEN7,
  512. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  513. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  514. if (INTEL_INFO(dev)->gen >= 5) {
  515. ret = init_pipe_control(ring);
  516. if (ret)
  517. return ret;
  518. }
  519. if (IS_GEN6(dev)) {
  520. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  521. * "If this bit is set, STCunit will have LRA as replacement
  522. * policy. [...] This bit must be reset. LRA replacement
  523. * policy is not supported."
  524. */
  525. I915_WRITE(CACHE_MODE_0,
  526. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  527. /* This is not explicitly set for GEN6, so read the register.
  528. * see intel_ring_mi_set_context() for why we care.
  529. * TODO: consider explicitly setting the bit for GEN5
  530. */
  531. ring->itlb_before_ctx_switch =
  532. !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_EXPLICIT);
  533. }
  534. if (INTEL_INFO(dev)->gen >= 6)
  535. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  536. if (HAS_L3_DPF(dev))
  537. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  538. return ret;
  539. }
  540. static void render_ring_cleanup(struct intel_ring_buffer *ring)
  541. {
  542. struct drm_device *dev = ring->dev;
  543. if (ring->scratch.obj == NULL)
  544. return;
  545. if (INTEL_INFO(dev)->gen >= 5) {
  546. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  547. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  548. }
  549. drm_gem_object_unreference(&ring->scratch.obj->base);
  550. ring->scratch.obj = NULL;
  551. }
  552. static void
  553. update_mboxes(struct intel_ring_buffer *ring,
  554. u32 mmio_offset)
  555. {
  556. /* NB: In order to be able to do semaphore MBOX updates for varying number
  557. * of rings, it's easiest if we round up each individual update to a
  558. * multiple of 2 (since ring updates must always be a multiple of 2)
  559. * even though the actual update only requires 3 dwords.
  560. */
  561. #define MBOX_UPDATE_DWORDS 4
  562. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  563. intel_ring_emit(ring, mmio_offset);
  564. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  565. intel_ring_emit(ring, MI_NOOP);
  566. }
  567. /**
  568. * gen6_add_request - Update the semaphore mailbox registers
  569. *
  570. * @ring - ring that is adding a request
  571. * @seqno - return seqno stuck into the ring
  572. *
  573. * Update the mailbox registers in the *other* rings with the current seqno.
  574. * This acts like a signal in the canonical semaphore.
  575. */
  576. static int
  577. gen6_add_request(struct intel_ring_buffer *ring)
  578. {
  579. struct drm_device *dev = ring->dev;
  580. struct drm_i915_private *dev_priv = dev->dev_private;
  581. struct intel_ring_buffer *useless;
  582. int i, ret, num_dwords = 4;
  583. if (i915_semaphore_is_enabled(dev))
  584. num_dwords += ((I915_NUM_RINGS-1) * MBOX_UPDATE_DWORDS);
  585. #undef MBOX_UPDATE_DWORDS
  586. ret = intel_ring_begin(ring, num_dwords);
  587. if (ret)
  588. return ret;
  589. if (i915_semaphore_is_enabled(dev)) {
  590. for_each_ring(useless, dev_priv, i) {
  591. u32 mbox_reg = ring->signal_mbox[i];
  592. if (mbox_reg != GEN6_NOSYNC)
  593. update_mboxes(ring, mbox_reg);
  594. }
  595. }
  596. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  597. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  598. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  599. intel_ring_emit(ring, MI_USER_INTERRUPT);
  600. __intel_ring_advance(ring);
  601. return 0;
  602. }
  603. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  604. u32 seqno)
  605. {
  606. struct drm_i915_private *dev_priv = dev->dev_private;
  607. return dev_priv->last_seqno < seqno;
  608. }
  609. /**
  610. * intel_ring_sync - sync the waiter to the signaller on seqno
  611. *
  612. * @waiter - ring that is waiting
  613. * @signaller - ring which has, or will signal
  614. * @seqno - seqno which the waiter will block on
  615. */
  616. static int
  617. gen6_ring_sync(struct intel_ring_buffer *waiter,
  618. struct intel_ring_buffer *signaller,
  619. u32 seqno)
  620. {
  621. int ret;
  622. u32 dw1 = MI_SEMAPHORE_MBOX |
  623. MI_SEMAPHORE_COMPARE |
  624. MI_SEMAPHORE_REGISTER;
  625. /* Throughout all of the GEM code, seqno passed implies our current
  626. * seqno is >= the last seqno executed. However for hardware the
  627. * comparison is strictly greater than.
  628. */
  629. seqno -= 1;
  630. WARN_ON(signaller->semaphore_register[waiter->id] ==
  631. MI_SEMAPHORE_SYNC_INVALID);
  632. ret = intel_ring_begin(waiter, 4);
  633. if (ret)
  634. return ret;
  635. /* If seqno wrap happened, omit the wait with no-ops */
  636. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  637. intel_ring_emit(waiter,
  638. dw1 |
  639. signaller->semaphore_register[waiter->id]);
  640. intel_ring_emit(waiter, seqno);
  641. intel_ring_emit(waiter, 0);
  642. intel_ring_emit(waiter, MI_NOOP);
  643. } else {
  644. intel_ring_emit(waiter, MI_NOOP);
  645. intel_ring_emit(waiter, MI_NOOP);
  646. intel_ring_emit(waiter, MI_NOOP);
  647. intel_ring_emit(waiter, MI_NOOP);
  648. }
  649. intel_ring_advance(waiter);
  650. return 0;
  651. }
  652. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  653. do { \
  654. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  655. PIPE_CONTROL_DEPTH_STALL); \
  656. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  657. intel_ring_emit(ring__, 0); \
  658. intel_ring_emit(ring__, 0); \
  659. } while (0)
  660. static int
  661. pc_render_add_request(struct intel_ring_buffer *ring)
  662. {
  663. u32 scratch_addr = ring->scratch.gtt_offset + 128;
  664. int ret;
  665. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  666. * incoherent with writes to memory, i.e. completely fubar,
  667. * so we need to use PIPE_NOTIFY instead.
  668. *
  669. * However, we also need to workaround the qword write
  670. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  671. * memory before requesting an interrupt.
  672. */
  673. ret = intel_ring_begin(ring, 32);
  674. if (ret)
  675. return ret;
  676. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  677. PIPE_CONTROL_WRITE_FLUSH |
  678. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  679. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  680. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  681. intel_ring_emit(ring, 0);
  682. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  683. scratch_addr += 128; /* write to separate cachelines */
  684. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  685. scratch_addr += 128;
  686. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  687. scratch_addr += 128;
  688. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  689. scratch_addr += 128;
  690. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  691. scratch_addr += 128;
  692. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  693. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  694. PIPE_CONTROL_WRITE_FLUSH |
  695. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  696. PIPE_CONTROL_NOTIFY);
  697. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  698. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  699. intel_ring_emit(ring, 0);
  700. __intel_ring_advance(ring);
  701. return 0;
  702. }
  703. static u32
  704. gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
  705. {
  706. /* Workaround to force correct ordering between irq and seqno writes on
  707. * ivb (and maybe also on snb) by reading from a CS register (like
  708. * ACTHD) before reading the status page. */
  709. if (!lazy_coherency) {
  710. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  711. POSTING_READ(RING_ACTHD(ring->mmio_base));
  712. }
  713. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  714. }
  715. static u32
  716. ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
  717. {
  718. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  719. }
  720. static void
  721. ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
  722. {
  723. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  724. }
  725. static u32
  726. pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
  727. {
  728. return ring->scratch.cpu_page[0];
  729. }
  730. static void
  731. pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
  732. {
  733. ring->scratch.cpu_page[0] = seqno;
  734. }
  735. static bool
  736. gen5_ring_get_irq(struct intel_ring_buffer *ring)
  737. {
  738. struct drm_device *dev = ring->dev;
  739. struct drm_i915_private *dev_priv = dev->dev_private;
  740. unsigned long flags;
  741. if (!dev->irq_enabled)
  742. return false;
  743. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  744. if (ring->irq_refcount++ == 0)
  745. ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  746. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  747. return true;
  748. }
  749. static void
  750. gen5_ring_put_irq(struct intel_ring_buffer *ring)
  751. {
  752. struct drm_device *dev = ring->dev;
  753. struct drm_i915_private *dev_priv = dev->dev_private;
  754. unsigned long flags;
  755. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  756. if (--ring->irq_refcount == 0)
  757. ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  758. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  759. }
  760. static bool
  761. i9xx_ring_get_irq(struct intel_ring_buffer *ring)
  762. {
  763. struct drm_device *dev = ring->dev;
  764. struct drm_i915_private *dev_priv = dev->dev_private;
  765. unsigned long flags;
  766. if (!dev->irq_enabled)
  767. return false;
  768. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  769. if (ring->irq_refcount++ == 0) {
  770. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  771. I915_WRITE(IMR, dev_priv->irq_mask);
  772. POSTING_READ(IMR);
  773. }
  774. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  775. return true;
  776. }
  777. static void
  778. i9xx_ring_put_irq(struct intel_ring_buffer *ring)
  779. {
  780. struct drm_device *dev = ring->dev;
  781. struct drm_i915_private *dev_priv = dev->dev_private;
  782. unsigned long flags;
  783. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  784. if (--ring->irq_refcount == 0) {
  785. dev_priv->irq_mask |= ring->irq_enable_mask;
  786. I915_WRITE(IMR, dev_priv->irq_mask);
  787. POSTING_READ(IMR);
  788. }
  789. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  790. }
  791. static bool
  792. i8xx_ring_get_irq(struct intel_ring_buffer *ring)
  793. {
  794. struct drm_device *dev = ring->dev;
  795. struct drm_i915_private *dev_priv = dev->dev_private;
  796. unsigned long flags;
  797. if (!dev->irq_enabled)
  798. return false;
  799. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  800. if (ring->irq_refcount++ == 0) {
  801. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  802. I915_WRITE16(IMR, dev_priv->irq_mask);
  803. POSTING_READ16(IMR);
  804. }
  805. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  806. return true;
  807. }
  808. static void
  809. i8xx_ring_put_irq(struct intel_ring_buffer *ring)
  810. {
  811. struct drm_device *dev = ring->dev;
  812. struct drm_i915_private *dev_priv = dev->dev_private;
  813. unsigned long flags;
  814. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  815. if (--ring->irq_refcount == 0) {
  816. dev_priv->irq_mask |= ring->irq_enable_mask;
  817. I915_WRITE16(IMR, dev_priv->irq_mask);
  818. POSTING_READ16(IMR);
  819. }
  820. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  821. }
  822. void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
  823. {
  824. struct drm_device *dev = ring->dev;
  825. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  826. u32 mmio = 0;
  827. /* The ring status page addresses are no longer next to the rest of
  828. * the ring registers as of gen7.
  829. */
  830. if (IS_GEN7(dev)) {
  831. switch (ring->id) {
  832. case RCS:
  833. mmio = RENDER_HWS_PGA_GEN7;
  834. break;
  835. case BCS:
  836. mmio = BLT_HWS_PGA_GEN7;
  837. break;
  838. case VCS:
  839. mmio = BSD_HWS_PGA_GEN7;
  840. break;
  841. case VECS:
  842. mmio = VEBOX_HWS_PGA_GEN7;
  843. break;
  844. }
  845. } else if (IS_GEN6(ring->dev)) {
  846. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  847. } else {
  848. /* XXX: gen8 returns to sanity */
  849. mmio = RING_HWS_PGA(ring->mmio_base);
  850. }
  851. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  852. POSTING_READ(mmio);
  853. /*
  854. * Flush the TLB for this page
  855. *
  856. * FIXME: These two bits have disappeared on gen8, so a question
  857. * arises: do we still need this and if so how should we go about
  858. * invalidating the TLB?
  859. */
  860. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  861. u32 reg = RING_INSTPM(ring->mmio_base);
  862. /* ring should be idle before issuing a sync flush*/
  863. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  864. I915_WRITE(reg,
  865. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  866. INSTPM_SYNC_FLUSH));
  867. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  868. 1000))
  869. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  870. ring->name);
  871. }
  872. }
  873. static int
  874. bsd_ring_flush(struct intel_ring_buffer *ring,
  875. u32 invalidate_domains,
  876. u32 flush_domains)
  877. {
  878. int ret;
  879. ret = intel_ring_begin(ring, 2);
  880. if (ret)
  881. return ret;
  882. intel_ring_emit(ring, MI_FLUSH);
  883. intel_ring_emit(ring, MI_NOOP);
  884. intel_ring_advance(ring);
  885. return 0;
  886. }
  887. static int
  888. i9xx_add_request(struct intel_ring_buffer *ring)
  889. {
  890. int ret;
  891. ret = intel_ring_begin(ring, 4);
  892. if (ret)
  893. return ret;
  894. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  895. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  896. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  897. intel_ring_emit(ring, MI_USER_INTERRUPT);
  898. __intel_ring_advance(ring);
  899. return 0;
  900. }
  901. static bool
  902. gen6_ring_get_irq(struct intel_ring_buffer *ring)
  903. {
  904. struct drm_device *dev = ring->dev;
  905. struct drm_i915_private *dev_priv = dev->dev_private;
  906. unsigned long flags;
  907. if (!dev->irq_enabled)
  908. return false;
  909. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  910. if (ring->irq_refcount++ == 0) {
  911. if (HAS_L3_DPF(dev) && ring->id == RCS)
  912. I915_WRITE_IMR(ring,
  913. ~(ring->irq_enable_mask |
  914. GT_PARITY_ERROR(dev)));
  915. else
  916. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  917. ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  918. }
  919. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  920. return true;
  921. }
  922. static void
  923. gen6_ring_put_irq(struct intel_ring_buffer *ring)
  924. {
  925. struct drm_device *dev = ring->dev;
  926. struct drm_i915_private *dev_priv = dev->dev_private;
  927. unsigned long flags;
  928. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  929. if (--ring->irq_refcount == 0) {
  930. if (HAS_L3_DPF(dev) && ring->id == RCS)
  931. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  932. else
  933. I915_WRITE_IMR(ring, ~0);
  934. ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  935. }
  936. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  937. }
  938. static bool
  939. hsw_vebox_get_irq(struct intel_ring_buffer *ring)
  940. {
  941. struct drm_device *dev = ring->dev;
  942. struct drm_i915_private *dev_priv = dev->dev_private;
  943. unsigned long flags;
  944. if (!dev->irq_enabled)
  945. return false;
  946. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  947. if (ring->irq_refcount++ == 0) {
  948. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  949. snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  950. }
  951. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  952. return true;
  953. }
  954. static void
  955. hsw_vebox_put_irq(struct intel_ring_buffer *ring)
  956. {
  957. struct drm_device *dev = ring->dev;
  958. struct drm_i915_private *dev_priv = dev->dev_private;
  959. unsigned long flags;
  960. if (!dev->irq_enabled)
  961. return;
  962. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  963. if (--ring->irq_refcount == 0) {
  964. I915_WRITE_IMR(ring, ~0);
  965. snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  966. }
  967. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  968. }
  969. static bool
  970. gen8_ring_get_irq(struct intel_ring_buffer *ring)
  971. {
  972. struct drm_device *dev = ring->dev;
  973. struct drm_i915_private *dev_priv = dev->dev_private;
  974. unsigned long flags;
  975. if (!dev->irq_enabled)
  976. return false;
  977. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  978. if (ring->irq_refcount++ == 0) {
  979. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  980. I915_WRITE_IMR(ring,
  981. ~(ring->irq_enable_mask |
  982. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  983. } else {
  984. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  985. }
  986. POSTING_READ(RING_IMR(ring->mmio_base));
  987. }
  988. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  989. return true;
  990. }
  991. static void
  992. gen8_ring_put_irq(struct intel_ring_buffer *ring)
  993. {
  994. struct drm_device *dev = ring->dev;
  995. struct drm_i915_private *dev_priv = dev->dev_private;
  996. unsigned long flags;
  997. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  998. if (--ring->irq_refcount == 0) {
  999. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1000. I915_WRITE_IMR(ring,
  1001. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1002. } else {
  1003. I915_WRITE_IMR(ring, ~0);
  1004. }
  1005. POSTING_READ(RING_IMR(ring->mmio_base));
  1006. }
  1007. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1008. }
  1009. static int
  1010. i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1011. u32 offset, u32 length,
  1012. unsigned flags)
  1013. {
  1014. int ret;
  1015. ret = intel_ring_begin(ring, 2);
  1016. if (ret)
  1017. return ret;
  1018. intel_ring_emit(ring,
  1019. MI_BATCH_BUFFER_START |
  1020. MI_BATCH_GTT |
  1021. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1022. intel_ring_emit(ring, offset);
  1023. intel_ring_advance(ring);
  1024. return 0;
  1025. }
  1026. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1027. #define I830_BATCH_LIMIT (256*1024)
  1028. static int
  1029. i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1030. u32 offset, u32 len,
  1031. unsigned flags)
  1032. {
  1033. int ret;
  1034. if (flags & I915_DISPATCH_PINNED) {
  1035. ret = intel_ring_begin(ring, 4);
  1036. if (ret)
  1037. return ret;
  1038. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1039. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1040. intel_ring_emit(ring, offset + len - 8);
  1041. intel_ring_emit(ring, MI_NOOP);
  1042. intel_ring_advance(ring);
  1043. } else {
  1044. u32 cs_offset = ring->scratch.gtt_offset;
  1045. if (len > I830_BATCH_LIMIT)
  1046. return -ENOSPC;
  1047. ret = intel_ring_begin(ring, 9+3);
  1048. if (ret)
  1049. return ret;
  1050. /* Blit the batch (which has now all relocs applied) to the stable batch
  1051. * scratch bo area (so that the CS never stumbles over its tlb
  1052. * invalidation bug) ... */
  1053. intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
  1054. XY_SRC_COPY_BLT_WRITE_ALPHA |
  1055. XY_SRC_COPY_BLT_WRITE_RGB);
  1056. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
  1057. intel_ring_emit(ring, 0);
  1058. intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
  1059. intel_ring_emit(ring, cs_offset);
  1060. intel_ring_emit(ring, 0);
  1061. intel_ring_emit(ring, 4096);
  1062. intel_ring_emit(ring, offset);
  1063. intel_ring_emit(ring, MI_FLUSH);
  1064. /* ... and execute it. */
  1065. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1066. intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1067. intel_ring_emit(ring, cs_offset + len - 8);
  1068. intel_ring_advance(ring);
  1069. }
  1070. return 0;
  1071. }
  1072. static int
  1073. i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1074. u32 offset, u32 len,
  1075. unsigned flags)
  1076. {
  1077. int ret;
  1078. ret = intel_ring_begin(ring, 2);
  1079. if (ret)
  1080. return ret;
  1081. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1082. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1083. intel_ring_advance(ring);
  1084. return 0;
  1085. }
  1086. static void cleanup_status_page(struct intel_ring_buffer *ring)
  1087. {
  1088. struct drm_i915_gem_object *obj;
  1089. obj = ring->status_page.obj;
  1090. if (obj == NULL)
  1091. return;
  1092. kunmap(sg_page(obj->pages->sgl));
  1093. i915_gem_object_ggtt_unpin(obj);
  1094. drm_gem_object_unreference(&obj->base);
  1095. ring->status_page.obj = NULL;
  1096. }
  1097. static int init_status_page(struct intel_ring_buffer *ring)
  1098. {
  1099. struct drm_device *dev = ring->dev;
  1100. struct drm_i915_gem_object *obj;
  1101. int ret;
  1102. obj = i915_gem_alloc_object(dev, 4096);
  1103. if (obj == NULL) {
  1104. DRM_ERROR("Failed to allocate status page\n");
  1105. ret = -ENOMEM;
  1106. goto err;
  1107. }
  1108. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1109. if (ret)
  1110. goto err_unref;
  1111. ret = i915_gem_obj_ggtt_pin(obj, 4096, 0);
  1112. if (ret)
  1113. goto err_unref;
  1114. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1115. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1116. if (ring->status_page.page_addr == NULL) {
  1117. ret = -ENOMEM;
  1118. goto err_unpin;
  1119. }
  1120. ring->status_page.obj = obj;
  1121. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1122. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1123. ring->name, ring->status_page.gfx_addr);
  1124. return 0;
  1125. err_unpin:
  1126. i915_gem_object_ggtt_unpin(obj);
  1127. err_unref:
  1128. drm_gem_object_unreference(&obj->base);
  1129. err:
  1130. return ret;
  1131. }
  1132. static int init_phys_status_page(struct intel_ring_buffer *ring)
  1133. {
  1134. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1135. if (!dev_priv->status_page_dmah) {
  1136. dev_priv->status_page_dmah =
  1137. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1138. if (!dev_priv->status_page_dmah)
  1139. return -ENOMEM;
  1140. }
  1141. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1142. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1143. return 0;
  1144. }
  1145. static int intel_init_ring_buffer(struct drm_device *dev,
  1146. struct intel_ring_buffer *ring)
  1147. {
  1148. struct drm_i915_gem_object *obj;
  1149. struct drm_i915_private *dev_priv = dev->dev_private;
  1150. int ret;
  1151. ring->dev = dev;
  1152. INIT_LIST_HEAD(&ring->active_list);
  1153. INIT_LIST_HEAD(&ring->request_list);
  1154. ring->size = 32 * PAGE_SIZE;
  1155. memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
  1156. init_waitqueue_head(&ring->irq_queue);
  1157. if (I915_NEED_GFX_HWS(dev)) {
  1158. ret = init_status_page(ring);
  1159. if (ret)
  1160. return ret;
  1161. } else {
  1162. BUG_ON(ring->id != RCS);
  1163. ret = init_phys_status_page(ring);
  1164. if (ret)
  1165. return ret;
  1166. }
  1167. obj = NULL;
  1168. if (!HAS_LLC(dev))
  1169. obj = i915_gem_object_create_stolen(dev, ring->size);
  1170. if (obj == NULL)
  1171. obj = i915_gem_alloc_object(dev, ring->size);
  1172. if (obj == NULL) {
  1173. DRM_ERROR("Failed to allocate ringbuffer\n");
  1174. ret = -ENOMEM;
  1175. goto err_hws;
  1176. }
  1177. ring->obj = obj;
  1178. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1179. if (ret)
  1180. goto err_unref;
  1181. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1182. if (ret)
  1183. goto err_unpin;
  1184. ring->virtual_start =
  1185. ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
  1186. ring->size);
  1187. if (ring->virtual_start == NULL) {
  1188. DRM_ERROR("Failed to map ringbuffer.\n");
  1189. ret = -EINVAL;
  1190. goto err_unpin;
  1191. }
  1192. ret = ring->init(ring);
  1193. if (ret)
  1194. goto err_unmap;
  1195. /* Workaround an erratum on the i830 which causes a hang if
  1196. * the TAIL pointer points to within the last 2 cachelines
  1197. * of the buffer.
  1198. */
  1199. ring->effective_size = ring->size;
  1200. if (IS_I830(ring->dev) || IS_845G(ring->dev))
  1201. ring->effective_size -= 128;
  1202. i915_cmd_parser_init_ring(ring);
  1203. return 0;
  1204. err_unmap:
  1205. iounmap(ring->virtual_start);
  1206. err_unpin:
  1207. i915_gem_object_ggtt_unpin(obj);
  1208. err_unref:
  1209. drm_gem_object_unreference(&obj->base);
  1210. ring->obj = NULL;
  1211. err_hws:
  1212. cleanup_status_page(ring);
  1213. return ret;
  1214. }
  1215. void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
  1216. {
  1217. struct drm_i915_private *dev_priv;
  1218. int ret;
  1219. if (ring->obj == NULL)
  1220. return;
  1221. /* Disable the ring buffer. The ring must be idle at this point */
  1222. dev_priv = ring->dev->dev_private;
  1223. ret = intel_ring_idle(ring);
  1224. if (ret && !i915_reset_in_progress(&dev_priv->gpu_error))
  1225. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  1226. ring->name, ret);
  1227. I915_WRITE_CTL(ring, 0);
  1228. iounmap(ring->virtual_start);
  1229. i915_gem_object_ggtt_unpin(ring->obj);
  1230. drm_gem_object_unreference(&ring->obj->base);
  1231. ring->obj = NULL;
  1232. ring->preallocated_lazy_request = NULL;
  1233. ring->outstanding_lazy_seqno = 0;
  1234. if (ring->cleanup)
  1235. ring->cleanup(ring);
  1236. cleanup_status_page(ring);
  1237. }
  1238. static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
  1239. {
  1240. struct drm_i915_gem_request *request;
  1241. u32 seqno = 0, tail;
  1242. int ret;
  1243. if (ring->last_retired_head != -1) {
  1244. ring->head = ring->last_retired_head;
  1245. ring->last_retired_head = -1;
  1246. ring->space = ring_space(ring);
  1247. if (ring->space >= n)
  1248. return 0;
  1249. }
  1250. list_for_each_entry(request, &ring->request_list, list) {
  1251. int space;
  1252. if (request->tail == -1)
  1253. continue;
  1254. space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
  1255. if (space < 0)
  1256. space += ring->size;
  1257. if (space >= n) {
  1258. seqno = request->seqno;
  1259. tail = request->tail;
  1260. break;
  1261. }
  1262. /* Consume this request in case we need more space than
  1263. * is available and so need to prevent a race between
  1264. * updating last_retired_head and direct reads of
  1265. * I915_RING_HEAD. It also provides a nice sanity check.
  1266. */
  1267. request->tail = -1;
  1268. }
  1269. if (seqno == 0)
  1270. return -ENOSPC;
  1271. ret = i915_wait_seqno(ring, seqno);
  1272. if (ret)
  1273. return ret;
  1274. ring->head = tail;
  1275. ring->space = ring_space(ring);
  1276. if (WARN_ON(ring->space < n))
  1277. return -ENOSPC;
  1278. return 0;
  1279. }
  1280. static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
  1281. {
  1282. struct drm_device *dev = ring->dev;
  1283. struct drm_i915_private *dev_priv = dev->dev_private;
  1284. unsigned long end;
  1285. int ret;
  1286. ret = intel_ring_wait_request(ring, n);
  1287. if (ret != -ENOSPC)
  1288. return ret;
  1289. /* force the tail write in case we have been skipping them */
  1290. __intel_ring_advance(ring);
  1291. trace_i915_ring_wait_begin(ring);
  1292. /* With GEM the hangcheck timer should kick us out of the loop,
  1293. * leaving it early runs the risk of corrupting GEM state (due
  1294. * to running on almost untested codepaths). But on resume
  1295. * timers don't work yet, so prevent a complete hang in that
  1296. * case by choosing an insanely large timeout. */
  1297. end = jiffies + 60 * HZ;
  1298. do {
  1299. ring->head = I915_READ_HEAD(ring);
  1300. ring->space = ring_space(ring);
  1301. if (ring->space >= n) {
  1302. trace_i915_ring_wait_end(ring);
  1303. return 0;
  1304. }
  1305. if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
  1306. dev->primary->master) {
  1307. struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
  1308. if (master_priv->sarea_priv)
  1309. master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
  1310. }
  1311. msleep(1);
  1312. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1313. dev_priv->mm.interruptible);
  1314. if (ret)
  1315. return ret;
  1316. } while (!time_after(jiffies, end));
  1317. trace_i915_ring_wait_end(ring);
  1318. return -EBUSY;
  1319. }
  1320. static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
  1321. {
  1322. uint32_t __iomem *virt;
  1323. int rem = ring->size - ring->tail;
  1324. if (ring->space < rem) {
  1325. int ret = ring_wait_for_space(ring, rem);
  1326. if (ret)
  1327. return ret;
  1328. }
  1329. virt = ring->virtual_start + ring->tail;
  1330. rem /= 4;
  1331. while (rem--)
  1332. iowrite32(MI_NOOP, virt++);
  1333. ring->tail = 0;
  1334. ring->space = ring_space(ring);
  1335. return 0;
  1336. }
  1337. int intel_ring_idle(struct intel_ring_buffer *ring)
  1338. {
  1339. u32 seqno;
  1340. int ret;
  1341. /* We need to add any requests required to flush the objects and ring */
  1342. if (ring->outstanding_lazy_seqno) {
  1343. ret = i915_add_request(ring, NULL);
  1344. if (ret)
  1345. return ret;
  1346. }
  1347. /* Wait upon the last request to be completed */
  1348. if (list_empty(&ring->request_list))
  1349. return 0;
  1350. seqno = list_entry(ring->request_list.prev,
  1351. struct drm_i915_gem_request,
  1352. list)->seqno;
  1353. return i915_wait_seqno(ring, seqno);
  1354. }
  1355. static int
  1356. intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
  1357. {
  1358. if (ring->outstanding_lazy_seqno)
  1359. return 0;
  1360. if (ring->preallocated_lazy_request == NULL) {
  1361. struct drm_i915_gem_request *request;
  1362. request = kmalloc(sizeof(*request), GFP_KERNEL);
  1363. if (request == NULL)
  1364. return -ENOMEM;
  1365. ring->preallocated_lazy_request = request;
  1366. }
  1367. return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
  1368. }
  1369. static int __intel_ring_prepare(struct intel_ring_buffer *ring,
  1370. int bytes)
  1371. {
  1372. int ret;
  1373. if (unlikely(ring->tail + bytes > ring->effective_size)) {
  1374. ret = intel_wrap_ring_buffer(ring);
  1375. if (unlikely(ret))
  1376. return ret;
  1377. }
  1378. if (unlikely(ring->space < bytes)) {
  1379. ret = ring_wait_for_space(ring, bytes);
  1380. if (unlikely(ret))
  1381. return ret;
  1382. }
  1383. return 0;
  1384. }
  1385. int intel_ring_begin(struct intel_ring_buffer *ring,
  1386. int num_dwords)
  1387. {
  1388. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1389. int ret;
  1390. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1391. dev_priv->mm.interruptible);
  1392. if (ret)
  1393. return ret;
  1394. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  1395. if (ret)
  1396. return ret;
  1397. /* Preallocate the olr before touching the ring */
  1398. ret = intel_ring_alloc_seqno(ring);
  1399. if (ret)
  1400. return ret;
  1401. ring->space -= num_dwords * sizeof(uint32_t);
  1402. return 0;
  1403. }
  1404. /* Align the ring tail to a cacheline boundary */
  1405. int intel_ring_cacheline_align(struct intel_ring_buffer *ring)
  1406. {
  1407. int num_dwords = (64 - (ring->tail & 63)) / sizeof(uint32_t);
  1408. int ret;
  1409. if (num_dwords == 0)
  1410. return 0;
  1411. ret = intel_ring_begin(ring, num_dwords);
  1412. if (ret)
  1413. return ret;
  1414. while (num_dwords--)
  1415. intel_ring_emit(ring, MI_NOOP);
  1416. intel_ring_advance(ring);
  1417. return 0;
  1418. }
  1419. void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
  1420. {
  1421. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1422. BUG_ON(ring->outstanding_lazy_seqno);
  1423. if (INTEL_INFO(ring->dev)->gen >= 6) {
  1424. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1425. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1426. if (HAS_VEBOX(ring->dev))
  1427. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1428. }
  1429. ring->set_seqno(ring, seqno);
  1430. ring->hangcheck.seqno = seqno;
  1431. }
  1432. static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
  1433. u32 value)
  1434. {
  1435. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1436. /* Every tail move must follow the sequence below */
  1437. /* Disable notification that the ring is IDLE. The GT
  1438. * will then assume that it is busy and bring it out of rc6.
  1439. */
  1440. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1441. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1442. /* Clear the context id. Here be magic! */
  1443. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1444. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1445. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1446. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1447. 50))
  1448. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1449. /* Now that the ring is fully powered up, update the tail */
  1450. I915_WRITE_TAIL(ring, value);
  1451. POSTING_READ(RING_TAIL(ring->mmio_base));
  1452. /* Let the ring send IDLE messages to the GT again,
  1453. * and so let it sleep to conserve power when idle.
  1454. */
  1455. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1456. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1457. }
  1458. static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
  1459. u32 invalidate, u32 flush)
  1460. {
  1461. uint32_t cmd;
  1462. int ret;
  1463. ret = intel_ring_begin(ring, 4);
  1464. if (ret)
  1465. return ret;
  1466. cmd = MI_FLUSH_DW;
  1467. if (INTEL_INFO(ring->dev)->gen >= 8)
  1468. cmd += 1;
  1469. /*
  1470. * Bspec vol 1c.5 - video engine command streamer:
  1471. * "If ENABLED, all TLBs will be invalidated once the flush
  1472. * operation is complete. This bit is only valid when the
  1473. * Post-Sync Operation field is a value of 1h or 3h."
  1474. */
  1475. if (invalidate & I915_GEM_GPU_DOMAINS)
  1476. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
  1477. MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1478. intel_ring_emit(ring, cmd);
  1479. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1480. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1481. intel_ring_emit(ring, 0); /* upper addr */
  1482. intel_ring_emit(ring, 0); /* value */
  1483. } else {
  1484. intel_ring_emit(ring, 0);
  1485. intel_ring_emit(ring, MI_NOOP);
  1486. }
  1487. intel_ring_advance(ring);
  1488. return 0;
  1489. }
  1490. static int
  1491. gen8_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1492. u32 offset, u32 len,
  1493. unsigned flags)
  1494. {
  1495. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1496. bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
  1497. !(flags & I915_DISPATCH_SECURE);
  1498. int ret;
  1499. ret = intel_ring_begin(ring, 4);
  1500. if (ret)
  1501. return ret;
  1502. /* FIXME(BDW): Address space and security selectors. */
  1503. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
  1504. intel_ring_emit(ring, offset);
  1505. intel_ring_emit(ring, 0);
  1506. intel_ring_emit(ring, MI_NOOP);
  1507. intel_ring_advance(ring);
  1508. return 0;
  1509. }
  1510. static int
  1511. hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1512. u32 offset, u32 len,
  1513. unsigned flags)
  1514. {
  1515. int ret;
  1516. ret = intel_ring_begin(ring, 2);
  1517. if (ret)
  1518. return ret;
  1519. intel_ring_emit(ring,
  1520. MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
  1521. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
  1522. /* bit0-7 is the length on GEN6+ */
  1523. intel_ring_emit(ring, offset);
  1524. intel_ring_advance(ring);
  1525. return 0;
  1526. }
  1527. static int
  1528. gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1529. u32 offset, u32 len,
  1530. unsigned flags)
  1531. {
  1532. int ret;
  1533. ret = intel_ring_begin(ring, 2);
  1534. if (ret)
  1535. return ret;
  1536. intel_ring_emit(ring,
  1537. MI_BATCH_BUFFER_START |
  1538. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1539. /* bit0-7 is the length on GEN6+ */
  1540. intel_ring_emit(ring, offset);
  1541. intel_ring_advance(ring);
  1542. return 0;
  1543. }
  1544. /* Blitter support (SandyBridge+) */
  1545. static int gen6_ring_flush(struct intel_ring_buffer *ring,
  1546. u32 invalidate, u32 flush)
  1547. {
  1548. struct drm_device *dev = ring->dev;
  1549. uint32_t cmd;
  1550. int ret;
  1551. ret = intel_ring_begin(ring, 4);
  1552. if (ret)
  1553. return ret;
  1554. cmd = MI_FLUSH_DW;
  1555. if (INTEL_INFO(ring->dev)->gen >= 8)
  1556. cmd += 1;
  1557. /*
  1558. * Bspec vol 1c.3 - blitter engine command streamer:
  1559. * "If ENABLED, all TLBs will be invalidated once the flush
  1560. * operation is complete. This bit is only valid when the
  1561. * Post-Sync Operation field is a value of 1h or 3h."
  1562. */
  1563. if (invalidate & I915_GEM_DOMAIN_RENDER)
  1564. cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
  1565. MI_FLUSH_DW_OP_STOREDW;
  1566. intel_ring_emit(ring, cmd);
  1567. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1568. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1569. intel_ring_emit(ring, 0); /* upper addr */
  1570. intel_ring_emit(ring, 0); /* value */
  1571. } else {
  1572. intel_ring_emit(ring, 0);
  1573. intel_ring_emit(ring, MI_NOOP);
  1574. }
  1575. intel_ring_advance(ring);
  1576. if (IS_GEN7(dev) && !invalidate && flush)
  1577. return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
  1578. return 0;
  1579. }
  1580. int intel_init_render_ring_buffer(struct drm_device *dev)
  1581. {
  1582. struct drm_i915_private *dev_priv = dev->dev_private;
  1583. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  1584. ring->name = "render ring";
  1585. ring->id = RCS;
  1586. ring->mmio_base = RENDER_RING_BASE;
  1587. if (INTEL_INFO(dev)->gen >= 6) {
  1588. ring->add_request = gen6_add_request;
  1589. ring->flush = gen7_render_ring_flush;
  1590. if (INTEL_INFO(dev)->gen == 6)
  1591. ring->flush = gen6_render_ring_flush;
  1592. if (INTEL_INFO(dev)->gen >= 8) {
  1593. ring->flush = gen8_render_ring_flush;
  1594. ring->irq_get = gen8_ring_get_irq;
  1595. ring->irq_put = gen8_ring_put_irq;
  1596. } else {
  1597. ring->irq_get = gen6_ring_get_irq;
  1598. ring->irq_put = gen6_ring_put_irq;
  1599. }
  1600. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  1601. ring->get_seqno = gen6_ring_get_seqno;
  1602. ring->set_seqno = ring_set_seqno;
  1603. ring->sync_to = gen6_ring_sync;
  1604. ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  1605. ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
  1606. ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
  1607. ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
  1608. ring->signal_mbox[RCS] = GEN6_NOSYNC;
  1609. ring->signal_mbox[VCS] = GEN6_VRSYNC;
  1610. ring->signal_mbox[BCS] = GEN6_BRSYNC;
  1611. ring->signal_mbox[VECS] = GEN6_VERSYNC;
  1612. } else if (IS_GEN5(dev)) {
  1613. ring->add_request = pc_render_add_request;
  1614. ring->flush = gen4_render_ring_flush;
  1615. ring->get_seqno = pc_render_get_seqno;
  1616. ring->set_seqno = pc_render_set_seqno;
  1617. ring->irq_get = gen5_ring_get_irq;
  1618. ring->irq_put = gen5_ring_put_irq;
  1619. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  1620. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  1621. } else {
  1622. ring->add_request = i9xx_add_request;
  1623. if (INTEL_INFO(dev)->gen < 4)
  1624. ring->flush = gen2_render_ring_flush;
  1625. else
  1626. ring->flush = gen4_render_ring_flush;
  1627. ring->get_seqno = ring_get_seqno;
  1628. ring->set_seqno = ring_set_seqno;
  1629. if (IS_GEN2(dev)) {
  1630. ring->irq_get = i8xx_ring_get_irq;
  1631. ring->irq_put = i8xx_ring_put_irq;
  1632. } else {
  1633. ring->irq_get = i9xx_ring_get_irq;
  1634. ring->irq_put = i9xx_ring_put_irq;
  1635. }
  1636. ring->irq_enable_mask = I915_USER_INTERRUPT;
  1637. }
  1638. ring->write_tail = ring_write_tail;
  1639. if (IS_HASWELL(dev))
  1640. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  1641. else if (IS_GEN8(dev))
  1642. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  1643. else if (INTEL_INFO(dev)->gen >= 6)
  1644. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1645. else if (INTEL_INFO(dev)->gen >= 4)
  1646. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1647. else if (IS_I830(dev) || IS_845G(dev))
  1648. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  1649. else
  1650. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  1651. ring->init = init_render_ring;
  1652. ring->cleanup = render_ring_cleanup;
  1653. /* Workaround batchbuffer to combat CS tlb bug. */
  1654. if (HAS_BROKEN_CS_TLB(dev)) {
  1655. struct drm_i915_gem_object *obj;
  1656. int ret;
  1657. obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
  1658. if (obj == NULL) {
  1659. DRM_ERROR("Failed to allocate batch bo\n");
  1660. return -ENOMEM;
  1661. }
  1662. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  1663. if (ret != 0) {
  1664. drm_gem_object_unreference(&obj->base);
  1665. DRM_ERROR("Failed to ping batch bo\n");
  1666. return ret;
  1667. }
  1668. ring->scratch.obj = obj;
  1669. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  1670. }
  1671. return intel_init_ring_buffer(dev, ring);
  1672. }
  1673. int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
  1674. {
  1675. struct drm_i915_private *dev_priv = dev->dev_private;
  1676. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  1677. int ret;
  1678. ring->name = "render ring";
  1679. ring->id = RCS;
  1680. ring->mmio_base = RENDER_RING_BASE;
  1681. if (INTEL_INFO(dev)->gen >= 6) {
  1682. /* non-kms not supported on gen6+ */
  1683. return -ENODEV;
  1684. }
  1685. /* Note: gem is not supported on gen5/ilk without kms (the corresponding
  1686. * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
  1687. * the special gen5 functions. */
  1688. ring->add_request = i9xx_add_request;
  1689. if (INTEL_INFO(dev)->gen < 4)
  1690. ring->flush = gen2_render_ring_flush;
  1691. else
  1692. ring->flush = gen4_render_ring_flush;
  1693. ring->get_seqno = ring_get_seqno;
  1694. ring->set_seqno = ring_set_seqno;
  1695. if (IS_GEN2(dev)) {
  1696. ring->irq_get = i8xx_ring_get_irq;
  1697. ring->irq_put = i8xx_ring_put_irq;
  1698. } else {
  1699. ring->irq_get = i9xx_ring_get_irq;
  1700. ring->irq_put = i9xx_ring_put_irq;
  1701. }
  1702. ring->irq_enable_mask = I915_USER_INTERRUPT;
  1703. ring->write_tail = ring_write_tail;
  1704. if (INTEL_INFO(dev)->gen >= 4)
  1705. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1706. else if (IS_I830(dev) || IS_845G(dev))
  1707. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  1708. else
  1709. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  1710. ring->init = init_render_ring;
  1711. ring->cleanup = render_ring_cleanup;
  1712. ring->dev = dev;
  1713. INIT_LIST_HEAD(&ring->active_list);
  1714. INIT_LIST_HEAD(&ring->request_list);
  1715. ring->size = size;
  1716. ring->effective_size = ring->size;
  1717. if (IS_I830(ring->dev) || IS_845G(ring->dev))
  1718. ring->effective_size -= 128;
  1719. ring->virtual_start = ioremap_wc(start, size);
  1720. if (ring->virtual_start == NULL) {
  1721. DRM_ERROR("can not ioremap virtual address for"
  1722. " ring buffer\n");
  1723. return -ENOMEM;
  1724. }
  1725. if (!I915_NEED_GFX_HWS(dev)) {
  1726. ret = init_phys_status_page(ring);
  1727. if (ret)
  1728. return ret;
  1729. }
  1730. return 0;
  1731. }
  1732. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  1733. {
  1734. struct drm_i915_private *dev_priv = dev->dev_private;
  1735. struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
  1736. ring->name = "bsd ring";
  1737. ring->id = VCS;
  1738. ring->write_tail = ring_write_tail;
  1739. if (INTEL_INFO(dev)->gen >= 6) {
  1740. ring->mmio_base = GEN6_BSD_RING_BASE;
  1741. /* gen6 bsd needs a special wa for tail updates */
  1742. if (IS_GEN6(dev))
  1743. ring->write_tail = gen6_bsd_ring_write_tail;
  1744. ring->flush = gen6_bsd_ring_flush;
  1745. ring->add_request = gen6_add_request;
  1746. ring->get_seqno = gen6_ring_get_seqno;
  1747. ring->set_seqno = ring_set_seqno;
  1748. if (INTEL_INFO(dev)->gen >= 8) {
  1749. ring->irq_enable_mask =
  1750. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  1751. ring->irq_get = gen8_ring_get_irq;
  1752. ring->irq_put = gen8_ring_put_irq;
  1753. ring->dispatch_execbuffer =
  1754. gen8_ring_dispatch_execbuffer;
  1755. } else {
  1756. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  1757. ring->irq_get = gen6_ring_get_irq;
  1758. ring->irq_put = gen6_ring_put_irq;
  1759. ring->dispatch_execbuffer =
  1760. gen6_ring_dispatch_execbuffer;
  1761. }
  1762. ring->sync_to = gen6_ring_sync;
  1763. ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
  1764. ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  1765. ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
  1766. ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
  1767. ring->signal_mbox[RCS] = GEN6_RVSYNC;
  1768. ring->signal_mbox[VCS] = GEN6_NOSYNC;
  1769. ring->signal_mbox[BCS] = GEN6_BVSYNC;
  1770. ring->signal_mbox[VECS] = GEN6_VEVSYNC;
  1771. } else {
  1772. ring->mmio_base = BSD_RING_BASE;
  1773. ring->flush = bsd_ring_flush;
  1774. ring->add_request = i9xx_add_request;
  1775. ring->get_seqno = ring_get_seqno;
  1776. ring->set_seqno = ring_set_seqno;
  1777. if (IS_GEN5(dev)) {
  1778. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  1779. ring->irq_get = gen5_ring_get_irq;
  1780. ring->irq_put = gen5_ring_put_irq;
  1781. } else {
  1782. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  1783. ring->irq_get = i9xx_ring_get_irq;
  1784. ring->irq_put = i9xx_ring_put_irq;
  1785. }
  1786. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1787. }
  1788. ring->init = init_ring_common;
  1789. return intel_init_ring_buffer(dev, ring);
  1790. }
  1791. int intel_init_blt_ring_buffer(struct drm_device *dev)
  1792. {
  1793. struct drm_i915_private *dev_priv = dev->dev_private;
  1794. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  1795. ring->name = "blitter ring";
  1796. ring->id = BCS;
  1797. ring->mmio_base = BLT_RING_BASE;
  1798. ring->write_tail = ring_write_tail;
  1799. ring->flush = gen6_ring_flush;
  1800. ring->add_request = gen6_add_request;
  1801. ring->get_seqno = gen6_ring_get_seqno;
  1802. ring->set_seqno = ring_set_seqno;
  1803. if (INTEL_INFO(dev)->gen >= 8) {
  1804. ring->irq_enable_mask =
  1805. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  1806. ring->irq_get = gen8_ring_get_irq;
  1807. ring->irq_put = gen8_ring_put_irq;
  1808. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  1809. } else {
  1810. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  1811. ring->irq_get = gen6_ring_get_irq;
  1812. ring->irq_put = gen6_ring_put_irq;
  1813. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1814. }
  1815. ring->sync_to = gen6_ring_sync;
  1816. ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
  1817. ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
  1818. ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  1819. ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
  1820. ring->signal_mbox[RCS] = GEN6_RBSYNC;
  1821. ring->signal_mbox[VCS] = GEN6_VBSYNC;
  1822. ring->signal_mbox[BCS] = GEN6_NOSYNC;
  1823. ring->signal_mbox[VECS] = GEN6_VEBSYNC;
  1824. ring->init = init_ring_common;
  1825. return intel_init_ring_buffer(dev, ring);
  1826. }
  1827. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  1828. {
  1829. struct drm_i915_private *dev_priv = dev->dev_private;
  1830. struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
  1831. ring->name = "video enhancement ring";
  1832. ring->id = VECS;
  1833. ring->mmio_base = VEBOX_RING_BASE;
  1834. ring->write_tail = ring_write_tail;
  1835. ring->flush = gen6_ring_flush;
  1836. ring->add_request = gen6_add_request;
  1837. ring->get_seqno = gen6_ring_get_seqno;
  1838. ring->set_seqno = ring_set_seqno;
  1839. if (INTEL_INFO(dev)->gen >= 8) {
  1840. ring->irq_enable_mask =
  1841. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  1842. ring->irq_get = gen8_ring_get_irq;
  1843. ring->irq_put = gen8_ring_put_irq;
  1844. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  1845. } else {
  1846. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  1847. ring->irq_get = hsw_vebox_get_irq;
  1848. ring->irq_put = hsw_vebox_put_irq;
  1849. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1850. }
  1851. ring->sync_to = gen6_ring_sync;
  1852. ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
  1853. ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
  1854. ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
  1855. ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  1856. ring->signal_mbox[RCS] = GEN6_RVESYNC;
  1857. ring->signal_mbox[VCS] = GEN6_VVESYNC;
  1858. ring->signal_mbox[BCS] = GEN6_BVESYNC;
  1859. ring->signal_mbox[VECS] = GEN6_NOSYNC;
  1860. ring->init = init_ring_common;
  1861. return intel_init_ring_buffer(dev, ring);
  1862. }
  1863. int
  1864. intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
  1865. {
  1866. int ret;
  1867. if (!ring->gpu_caches_dirty)
  1868. return 0;
  1869. ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
  1870. if (ret)
  1871. return ret;
  1872. trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
  1873. ring->gpu_caches_dirty = false;
  1874. return 0;
  1875. }
  1876. int
  1877. intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
  1878. {
  1879. uint32_t flush_domains;
  1880. int ret;
  1881. flush_domains = 0;
  1882. if (ring->gpu_caches_dirty)
  1883. flush_domains = I915_GEM_GPU_DOMAINS;
  1884. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  1885. if (ret)
  1886. return ret;
  1887. trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  1888. ring->gpu_caches_dirty = false;
  1889. return 0;
  1890. }