jit.c 91 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431
  1. /*
  2. * Copyright (C) 2016-2018 Netronome Systems, Inc.
  3. *
  4. * This software is dual licensed under the GNU General License Version 2,
  5. * June 1991 as shown in the file COPYING in the top-level directory of this
  6. * source tree or the BSD 2-Clause License provided below. You have the
  7. * option to license this software under the complete terms of either license.
  8. *
  9. * The BSD 2-Clause License:
  10. *
  11. * Redistribution and use in source and binary forms, with or
  12. * without modification, are permitted provided that the following
  13. * conditions are met:
  14. *
  15. * 1. Redistributions of source code must retain the above
  16. * copyright notice, this list of conditions and the following
  17. * disclaimer.
  18. *
  19. * 2. Redistributions in binary form must reproduce the above
  20. * copyright notice, this list of conditions and the following
  21. * disclaimer in the documentation and/or other materials
  22. * provided with the distribution.
  23. *
  24. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  25. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  26. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  27. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  28. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  29. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  30. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  31. * SOFTWARE.
  32. */
  33. #define pr_fmt(fmt) "NFP net bpf: " fmt
  34. #include <linux/bug.h>
  35. #include <linux/kernel.h>
  36. #include <linux/bpf.h>
  37. #include <linux/filter.h>
  38. #include <linux/pkt_cls.h>
  39. #include <linux/unistd.h>
  40. #include "main.h"
  41. #include "../nfp_asm.h"
  42. /* --- NFP prog --- */
  43. /* Foreach "multiple" entries macros provide pos and next<n> pointers.
  44. * It's safe to modify the next pointers (but not pos).
  45. */
  46. #define nfp_for_each_insn_walk2(nfp_prog, pos, next) \
  47. for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
  48. next = list_next_entry(pos, l); \
  49. &(nfp_prog)->insns != &pos->l && \
  50. &(nfp_prog)->insns != &next->l; \
  51. pos = nfp_meta_next(pos), \
  52. next = nfp_meta_next(pos))
  53. #define nfp_for_each_insn_walk3(nfp_prog, pos, next, next2) \
  54. for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
  55. next = list_next_entry(pos, l), \
  56. next2 = list_next_entry(next, l); \
  57. &(nfp_prog)->insns != &pos->l && \
  58. &(nfp_prog)->insns != &next->l && \
  59. &(nfp_prog)->insns != &next2->l; \
  60. pos = nfp_meta_next(pos), \
  61. next = nfp_meta_next(pos), \
  62. next2 = nfp_meta_next(next))
  63. static bool
  64. nfp_meta_has_prev(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  65. {
  66. return meta->l.prev != &nfp_prog->insns;
  67. }
  68. static void nfp_prog_push(struct nfp_prog *nfp_prog, u64 insn)
  69. {
  70. if (nfp_prog->__prog_alloc_len / sizeof(u64) == nfp_prog->prog_len) {
  71. pr_warn("instruction limit reached (%u NFP instructions)\n",
  72. nfp_prog->prog_len);
  73. nfp_prog->error = -ENOSPC;
  74. return;
  75. }
  76. nfp_prog->prog[nfp_prog->prog_len] = insn;
  77. nfp_prog->prog_len++;
  78. }
  79. static unsigned int nfp_prog_current_offset(struct nfp_prog *nfp_prog)
  80. {
  81. return nfp_prog->prog_len;
  82. }
  83. static bool
  84. nfp_prog_confirm_current_offset(struct nfp_prog *nfp_prog, unsigned int off)
  85. {
  86. /* If there is a recorded error we may have dropped instructions;
  87. * that doesn't have to be due to translator bug, and the translation
  88. * will fail anyway, so just return OK.
  89. */
  90. if (nfp_prog->error)
  91. return true;
  92. return !WARN_ON_ONCE(nfp_prog_current_offset(nfp_prog) != off);
  93. }
  94. /* --- Emitters --- */
  95. static void
  96. __emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op,
  97. u8 mode, u8 xfer, u8 areg, u8 breg, u8 size, enum cmd_ctx_swap ctx,
  98. bool indir)
  99. {
  100. u64 insn;
  101. insn = FIELD_PREP(OP_CMD_A_SRC, areg) |
  102. FIELD_PREP(OP_CMD_CTX, ctx) |
  103. FIELD_PREP(OP_CMD_B_SRC, breg) |
  104. FIELD_PREP(OP_CMD_TOKEN, cmd_tgt_act[op].token) |
  105. FIELD_PREP(OP_CMD_XFER, xfer) |
  106. FIELD_PREP(OP_CMD_CNT, size) |
  107. FIELD_PREP(OP_CMD_SIG, ctx != CMD_CTX_NO_SWAP) |
  108. FIELD_PREP(OP_CMD_TGT_CMD, cmd_tgt_act[op].tgt_cmd) |
  109. FIELD_PREP(OP_CMD_INDIR, indir) |
  110. FIELD_PREP(OP_CMD_MODE, mode);
  111. nfp_prog_push(nfp_prog, insn);
  112. }
  113. static void
  114. emit_cmd_any(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
  115. swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx, bool indir)
  116. {
  117. struct nfp_insn_re_regs reg;
  118. int err;
  119. err = swreg_to_restricted(reg_none(), lreg, rreg, &reg, false);
  120. if (err) {
  121. nfp_prog->error = err;
  122. return;
  123. }
  124. if (reg.swap) {
  125. pr_err("cmd can't swap arguments\n");
  126. nfp_prog->error = -EFAULT;
  127. return;
  128. }
  129. if (reg.dst_lmextn || reg.src_lmextn) {
  130. pr_err("cmd can't use LMextn\n");
  131. nfp_prog->error = -EFAULT;
  132. return;
  133. }
  134. __emit_cmd(nfp_prog, op, mode, xfer, reg.areg, reg.breg, size, ctx,
  135. indir);
  136. }
  137. static void
  138. emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
  139. swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx)
  140. {
  141. emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, ctx, false);
  142. }
  143. static void
  144. emit_cmd_indir(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
  145. swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx)
  146. {
  147. emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, ctx, true);
  148. }
  149. static void
  150. __emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, enum br_ev_pip ev_pip,
  151. enum br_ctx_signal_state css, u16 addr, u8 defer)
  152. {
  153. u16 addr_lo, addr_hi;
  154. u64 insn;
  155. addr_lo = addr & (OP_BR_ADDR_LO >> __bf_shf(OP_BR_ADDR_LO));
  156. addr_hi = addr != addr_lo;
  157. insn = OP_BR_BASE |
  158. FIELD_PREP(OP_BR_MASK, mask) |
  159. FIELD_PREP(OP_BR_EV_PIP, ev_pip) |
  160. FIELD_PREP(OP_BR_CSS, css) |
  161. FIELD_PREP(OP_BR_DEFBR, defer) |
  162. FIELD_PREP(OP_BR_ADDR_LO, addr_lo) |
  163. FIELD_PREP(OP_BR_ADDR_HI, addr_hi);
  164. nfp_prog_push(nfp_prog, insn);
  165. }
  166. static void
  167. emit_br_relo(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer,
  168. enum nfp_relo_type relo)
  169. {
  170. if (mask == BR_UNC && defer > 2) {
  171. pr_err("BUG: branch defer out of bounds %d\n", defer);
  172. nfp_prog->error = -EFAULT;
  173. return;
  174. }
  175. __emit_br(nfp_prog, mask,
  176. mask != BR_UNC ? BR_EV_PIP_COND : BR_EV_PIP_UNCOND,
  177. BR_CSS_NONE, addr, defer);
  178. nfp_prog->prog[nfp_prog->prog_len - 1] |=
  179. FIELD_PREP(OP_RELO_TYPE, relo);
  180. }
  181. static void
  182. emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer)
  183. {
  184. emit_br_relo(nfp_prog, mask, addr, defer, RELO_BR_REL);
  185. }
  186. static void
  187. __emit_immed(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi,
  188. enum immed_width width, bool invert,
  189. enum immed_shift shift, bool wr_both,
  190. bool dst_lmextn, bool src_lmextn)
  191. {
  192. u64 insn;
  193. insn = OP_IMMED_BASE |
  194. FIELD_PREP(OP_IMMED_A_SRC, areg) |
  195. FIELD_PREP(OP_IMMED_B_SRC, breg) |
  196. FIELD_PREP(OP_IMMED_IMM, imm_hi) |
  197. FIELD_PREP(OP_IMMED_WIDTH, width) |
  198. FIELD_PREP(OP_IMMED_INV, invert) |
  199. FIELD_PREP(OP_IMMED_SHIFT, shift) |
  200. FIELD_PREP(OP_IMMED_WR_AB, wr_both) |
  201. FIELD_PREP(OP_IMMED_SRC_LMEXTN, src_lmextn) |
  202. FIELD_PREP(OP_IMMED_DST_LMEXTN, dst_lmextn);
  203. nfp_prog_push(nfp_prog, insn);
  204. }
  205. static void
  206. emit_immed(struct nfp_prog *nfp_prog, swreg dst, u16 imm,
  207. enum immed_width width, bool invert, enum immed_shift shift)
  208. {
  209. struct nfp_insn_ur_regs reg;
  210. int err;
  211. if (swreg_type(dst) == NN_REG_IMM) {
  212. nfp_prog->error = -EFAULT;
  213. return;
  214. }
  215. err = swreg_to_unrestricted(dst, dst, reg_imm(imm & 0xff), &reg);
  216. if (err) {
  217. nfp_prog->error = err;
  218. return;
  219. }
  220. /* Use reg.dst when destination is No-Dest. */
  221. __emit_immed(nfp_prog,
  222. swreg_type(dst) == NN_REG_NONE ? reg.dst : reg.areg,
  223. reg.breg, imm >> 8, width, invert, shift,
  224. reg.wr_both, reg.dst_lmextn, reg.src_lmextn);
  225. }
  226. static void
  227. __emit_shf(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
  228. enum shf_sc sc, u8 shift,
  229. u16 areg, enum shf_op op, u16 breg, bool i8, bool sw, bool wr_both,
  230. bool dst_lmextn, bool src_lmextn)
  231. {
  232. u64 insn;
  233. if (!FIELD_FIT(OP_SHF_SHIFT, shift)) {
  234. nfp_prog->error = -EFAULT;
  235. return;
  236. }
  237. if (sc == SHF_SC_L_SHF)
  238. shift = 32 - shift;
  239. insn = OP_SHF_BASE |
  240. FIELD_PREP(OP_SHF_A_SRC, areg) |
  241. FIELD_PREP(OP_SHF_SC, sc) |
  242. FIELD_PREP(OP_SHF_B_SRC, breg) |
  243. FIELD_PREP(OP_SHF_I8, i8) |
  244. FIELD_PREP(OP_SHF_SW, sw) |
  245. FIELD_PREP(OP_SHF_DST, dst) |
  246. FIELD_PREP(OP_SHF_SHIFT, shift) |
  247. FIELD_PREP(OP_SHF_OP, op) |
  248. FIELD_PREP(OP_SHF_DST_AB, dst_ab) |
  249. FIELD_PREP(OP_SHF_WR_AB, wr_both) |
  250. FIELD_PREP(OP_SHF_SRC_LMEXTN, src_lmextn) |
  251. FIELD_PREP(OP_SHF_DST_LMEXTN, dst_lmextn);
  252. nfp_prog_push(nfp_prog, insn);
  253. }
  254. static void
  255. emit_shf(struct nfp_prog *nfp_prog, swreg dst,
  256. swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc, u8 shift)
  257. {
  258. struct nfp_insn_re_regs reg;
  259. int err;
  260. err = swreg_to_restricted(dst, lreg, rreg, &reg, true);
  261. if (err) {
  262. nfp_prog->error = err;
  263. return;
  264. }
  265. __emit_shf(nfp_prog, reg.dst, reg.dst_ab, sc, shift,
  266. reg.areg, op, reg.breg, reg.i8, reg.swap, reg.wr_both,
  267. reg.dst_lmextn, reg.src_lmextn);
  268. }
  269. static void
  270. __emit_alu(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
  271. u16 areg, enum alu_op op, u16 breg, bool swap, bool wr_both,
  272. bool dst_lmextn, bool src_lmextn)
  273. {
  274. u64 insn;
  275. insn = OP_ALU_BASE |
  276. FIELD_PREP(OP_ALU_A_SRC, areg) |
  277. FIELD_PREP(OP_ALU_B_SRC, breg) |
  278. FIELD_PREP(OP_ALU_DST, dst) |
  279. FIELD_PREP(OP_ALU_SW, swap) |
  280. FIELD_PREP(OP_ALU_OP, op) |
  281. FIELD_PREP(OP_ALU_DST_AB, dst_ab) |
  282. FIELD_PREP(OP_ALU_WR_AB, wr_both) |
  283. FIELD_PREP(OP_ALU_SRC_LMEXTN, src_lmextn) |
  284. FIELD_PREP(OP_ALU_DST_LMEXTN, dst_lmextn);
  285. nfp_prog_push(nfp_prog, insn);
  286. }
  287. static void
  288. emit_alu(struct nfp_prog *nfp_prog, swreg dst,
  289. swreg lreg, enum alu_op op, swreg rreg)
  290. {
  291. struct nfp_insn_ur_regs reg;
  292. int err;
  293. err = swreg_to_unrestricted(dst, lreg, rreg, &reg);
  294. if (err) {
  295. nfp_prog->error = err;
  296. return;
  297. }
  298. __emit_alu(nfp_prog, reg.dst, reg.dst_ab,
  299. reg.areg, op, reg.breg, reg.swap, reg.wr_both,
  300. reg.dst_lmextn, reg.src_lmextn);
  301. }
  302. static void
  303. __emit_ld_field(struct nfp_prog *nfp_prog, enum shf_sc sc,
  304. u8 areg, u8 bmask, u8 breg, u8 shift, bool imm8,
  305. bool zero, bool swap, bool wr_both,
  306. bool dst_lmextn, bool src_lmextn)
  307. {
  308. u64 insn;
  309. insn = OP_LDF_BASE |
  310. FIELD_PREP(OP_LDF_A_SRC, areg) |
  311. FIELD_PREP(OP_LDF_SC, sc) |
  312. FIELD_PREP(OP_LDF_B_SRC, breg) |
  313. FIELD_PREP(OP_LDF_I8, imm8) |
  314. FIELD_PREP(OP_LDF_SW, swap) |
  315. FIELD_PREP(OP_LDF_ZF, zero) |
  316. FIELD_PREP(OP_LDF_BMASK, bmask) |
  317. FIELD_PREP(OP_LDF_SHF, shift) |
  318. FIELD_PREP(OP_LDF_WR_AB, wr_both) |
  319. FIELD_PREP(OP_LDF_SRC_LMEXTN, src_lmextn) |
  320. FIELD_PREP(OP_LDF_DST_LMEXTN, dst_lmextn);
  321. nfp_prog_push(nfp_prog, insn);
  322. }
  323. static void
  324. emit_ld_field_any(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
  325. enum shf_sc sc, u8 shift, bool zero)
  326. {
  327. struct nfp_insn_re_regs reg;
  328. int err;
  329. /* Note: ld_field is special as it uses one of the src regs as dst */
  330. err = swreg_to_restricted(dst, dst, src, &reg, true);
  331. if (err) {
  332. nfp_prog->error = err;
  333. return;
  334. }
  335. __emit_ld_field(nfp_prog, sc, reg.areg, bmask, reg.breg, shift,
  336. reg.i8, zero, reg.swap, reg.wr_both,
  337. reg.dst_lmextn, reg.src_lmextn);
  338. }
  339. static void
  340. emit_ld_field(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
  341. enum shf_sc sc, u8 shift)
  342. {
  343. emit_ld_field_any(nfp_prog, dst, bmask, src, sc, shift, false);
  344. }
  345. static void
  346. __emit_lcsr(struct nfp_prog *nfp_prog, u16 areg, u16 breg, bool wr, u16 addr,
  347. bool dst_lmextn, bool src_lmextn)
  348. {
  349. u64 insn;
  350. insn = OP_LCSR_BASE |
  351. FIELD_PREP(OP_LCSR_A_SRC, areg) |
  352. FIELD_PREP(OP_LCSR_B_SRC, breg) |
  353. FIELD_PREP(OP_LCSR_WRITE, wr) |
  354. FIELD_PREP(OP_LCSR_ADDR, addr / 4) |
  355. FIELD_PREP(OP_LCSR_SRC_LMEXTN, src_lmextn) |
  356. FIELD_PREP(OP_LCSR_DST_LMEXTN, dst_lmextn);
  357. nfp_prog_push(nfp_prog, insn);
  358. }
  359. static void emit_csr_wr(struct nfp_prog *nfp_prog, swreg src, u16 addr)
  360. {
  361. struct nfp_insn_ur_regs reg;
  362. int err;
  363. /* This instruction takes immeds instead of reg_none() for the ignored
  364. * operand, but we can't encode 2 immeds in one instr with our normal
  365. * swreg infra so if param is an immed, we encode as reg_none() and
  366. * copy the immed to both operands.
  367. */
  368. if (swreg_type(src) == NN_REG_IMM) {
  369. err = swreg_to_unrestricted(reg_none(), src, reg_none(), &reg);
  370. reg.breg = reg.areg;
  371. } else {
  372. err = swreg_to_unrestricted(reg_none(), src, reg_imm(0), &reg);
  373. }
  374. if (err) {
  375. nfp_prog->error = err;
  376. return;
  377. }
  378. __emit_lcsr(nfp_prog, reg.areg, reg.breg, true, addr,
  379. false, reg.src_lmextn);
  380. }
  381. /* CSR value is read in following immed[gpr, 0] */
  382. static void __emit_csr_rd(struct nfp_prog *nfp_prog, u16 addr)
  383. {
  384. __emit_lcsr(nfp_prog, 0, 0, false, addr, false, false);
  385. }
  386. static void emit_nop(struct nfp_prog *nfp_prog)
  387. {
  388. __emit_immed(nfp_prog, UR_REG_IMM, UR_REG_IMM, 0, 0, 0, 0, 0, 0, 0);
  389. }
  390. /* --- Wrappers --- */
  391. static bool pack_immed(u32 imm, u16 *val, enum immed_shift *shift)
  392. {
  393. if (!(imm & 0xffff0000)) {
  394. *val = imm;
  395. *shift = IMMED_SHIFT_0B;
  396. } else if (!(imm & 0xff0000ff)) {
  397. *val = imm >> 8;
  398. *shift = IMMED_SHIFT_1B;
  399. } else if (!(imm & 0x0000ffff)) {
  400. *val = imm >> 16;
  401. *shift = IMMED_SHIFT_2B;
  402. } else {
  403. return false;
  404. }
  405. return true;
  406. }
  407. static void wrp_immed(struct nfp_prog *nfp_prog, swreg dst, u32 imm)
  408. {
  409. enum immed_shift shift;
  410. u16 val;
  411. if (pack_immed(imm, &val, &shift)) {
  412. emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, false, shift);
  413. } else if (pack_immed(~imm, &val, &shift)) {
  414. emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, true, shift);
  415. } else {
  416. emit_immed(nfp_prog, dst, imm & 0xffff, IMMED_WIDTH_ALL,
  417. false, IMMED_SHIFT_0B);
  418. emit_immed(nfp_prog, dst, imm >> 16, IMMED_WIDTH_WORD,
  419. false, IMMED_SHIFT_2B);
  420. }
  421. }
  422. static void
  423. wrp_immed_relo(struct nfp_prog *nfp_prog, swreg dst, u32 imm,
  424. enum nfp_relo_type relo)
  425. {
  426. if (imm > 0xffff) {
  427. pr_err("relocation of a large immediate!\n");
  428. nfp_prog->error = -EFAULT;
  429. return;
  430. }
  431. emit_immed(nfp_prog, dst, imm, IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
  432. nfp_prog->prog[nfp_prog->prog_len - 1] |=
  433. FIELD_PREP(OP_RELO_TYPE, relo);
  434. }
  435. /* ur_load_imm_any() - encode immediate or use tmp register (unrestricted)
  436. * If the @imm is small enough encode it directly in operand and return
  437. * otherwise load @imm to a spare register and return its encoding.
  438. */
  439. static swreg ur_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
  440. {
  441. if (FIELD_FIT(UR_REG_IMM_MAX, imm))
  442. return reg_imm(imm);
  443. wrp_immed(nfp_prog, tmp_reg, imm);
  444. return tmp_reg;
  445. }
  446. /* re_load_imm_any() - encode immediate or use tmp register (restricted)
  447. * If the @imm is small enough encode it directly in operand and return
  448. * otherwise load @imm to a spare register and return its encoding.
  449. */
  450. static swreg re_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
  451. {
  452. if (FIELD_FIT(RE_REG_IMM_MAX, imm))
  453. return reg_imm(imm);
  454. wrp_immed(nfp_prog, tmp_reg, imm);
  455. return tmp_reg;
  456. }
  457. static void wrp_nops(struct nfp_prog *nfp_prog, unsigned int count)
  458. {
  459. while (count--)
  460. emit_nop(nfp_prog);
  461. }
  462. static void wrp_mov(struct nfp_prog *nfp_prog, swreg dst, swreg src)
  463. {
  464. emit_alu(nfp_prog, dst, reg_none(), ALU_OP_NONE, src);
  465. }
  466. static void wrp_reg_mov(struct nfp_prog *nfp_prog, u16 dst, u16 src)
  467. {
  468. wrp_mov(nfp_prog, reg_both(dst), reg_b(src));
  469. }
  470. /* wrp_reg_subpart() - load @field_len bytes from @offset of @src, write the
  471. * result to @dst from low end.
  472. */
  473. static void
  474. wrp_reg_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src, u8 field_len,
  475. u8 offset)
  476. {
  477. enum shf_sc sc = offset ? SHF_SC_R_SHF : SHF_SC_NONE;
  478. u8 mask = (1 << field_len) - 1;
  479. emit_ld_field_any(nfp_prog, dst, mask, src, sc, offset * 8, true);
  480. }
  481. /* wrp_reg_or_subpart() - load @field_len bytes from low end of @src, or the
  482. * result to @dst from offset, there is no change on the other bits of @dst.
  483. */
  484. static void
  485. wrp_reg_or_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src,
  486. u8 field_len, u8 offset)
  487. {
  488. enum shf_sc sc = offset ? SHF_SC_L_SHF : SHF_SC_NONE;
  489. u8 mask = ((1 << field_len) - 1) << offset;
  490. emit_ld_field(nfp_prog, dst, mask, src, sc, 32 - offset * 8);
  491. }
  492. static void
  493. addr40_offset(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
  494. swreg *rega, swreg *regb)
  495. {
  496. if (offset == reg_imm(0)) {
  497. *rega = reg_a(src_gpr);
  498. *regb = reg_b(src_gpr + 1);
  499. return;
  500. }
  501. emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(src_gpr), ALU_OP_ADD, offset);
  502. emit_alu(nfp_prog, imm_b(nfp_prog), reg_b(src_gpr + 1), ALU_OP_ADD_C,
  503. reg_imm(0));
  504. *rega = imm_a(nfp_prog);
  505. *regb = imm_b(nfp_prog);
  506. }
  507. /* NFP has Command Push Pull bus which supports bluk memory operations. */
  508. static int nfp_cpp_memcpy(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  509. {
  510. bool descending_seq = meta->ldst_gather_len < 0;
  511. s16 len = abs(meta->ldst_gather_len);
  512. swreg src_base, off;
  513. bool src_40bit_addr;
  514. unsigned int i;
  515. u8 xfer_num;
  516. off = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
  517. src_40bit_addr = meta->ptr.type == PTR_TO_MAP_VALUE;
  518. src_base = reg_a(meta->insn.src_reg * 2);
  519. xfer_num = round_up(len, 4) / 4;
  520. if (src_40bit_addr)
  521. addr40_offset(nfp_prog, meta->insn.src_reg, off, &src_base,
  522. &off);
  523. /* Setup PREV_ALU fields to override memory read length. */
  524. if (len > 32)
  525. wrp_immed(nfp_prog, reg_none(),
  526. CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
  527. /* Memory read from source addr into transfer-in registers. */
  528. emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP,
  529. src_40bit_addr ? CMD_MODE_40b_BA : CMD_MODE_32b, 0,
  530. src_base, off, xfer_num - 1, CMD_CTX_SWAP, len > 32);
  531. /* Move from transfer-in to transfer-out. */
  532. for (i = 0; i < xfer_num; i++)
  533. wrp_mov(nfp_prog, reg_xfer(i), reg_xfer(i));
  534. off = re_load_imm_any(nfp_prog, meta->paired_st->off, imm_b(nfp_prog));
  535. if (len <= 8) {
  536. /* Use single direct_ref write8. */
  537. emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
  538. reg_a(meta->paired_st->dst_reg * 2), off, len - 1,
  539. CMD_CTX_SWAP);
  540. } else if (len <= 32 && IS_ALIGNED(len, 4)) {
  541. /* Use single direct_ref write32. */
  542. emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
  543. reg_a(meta->paired_st->dst_reg * 2), off, xfer_num - 1,
  544. CMD_CTX_SWAP);
  545. } else if (len <= 32) {
  546. /* Use single indirect_ref write8. */
  547. wrp_immed(nfp_prog, reg_none(),
  548. CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, len - 1));
  549. emit_cmd_indir(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
  550. reg_a(meta->paired_st->dst_reg * 2), off,
  551. len - 1, CMD_CTX_SWAP);
  552. } else if (IS_ALIGNED(len, 4)) {
  553. /* Use single indirect_ref write32. */
  554. wrp_immed(nfp_prog, reg_none(),
  555. CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
  556. emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
  557. reg_a(meta->paired_st->dst_reg * 2), off,
  558. xfer_num - 1, CMD_CTX_SWAP);
  559. } else if (len <= 40) {
  560. /* Use one direct_ref write32 to write the first 32-bytes, then
  561. * another direct_ref write8 to write the remaining bytes.
  562. */
  563. emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
  564. reg_a(meta->paired_st->dst_reg * 2), off, 7,
  565. CMD_CTX_SWAP);
  566. off = re_load_imm_any(nfp_prog, meta->paired_st->off + 32,
  567. imm_b(nfp_prog));
  568. emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 8,
  569. reg_a(meta->paired_st->dst_reg * 2), off, len - 33,
  570. CMD_CTX_SWAP);
  571. } else {
  572. /* Use one indirect_ref write32 to write 4-bytes aligned length,
  573. * then another direct_ref write8 to write the remaining bytes.
  574. */
  575. u8 new_off;
  576. wrp_immed(nfp_prog, reg_none(),
  577. CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 2));
  578. emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
  579. reg_a(meta->paired_st->dst_reg * 2), off,
  580. xfer_num - 2, CMD_CTX_SWAP);
  581. new_off = meta->paired_st->off + (xfer_num - 1) * 4;
  582. off = re_load_imm_any(nfp_prog, new_off, imm_b(nfp_prog));
  583. emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b,
  584. xfer_num - 1, reg_a(meta->paired_st->dst_reg * 2), off,
  585. (len & 0x3) - 1, CMD_CTX_SWAP);
  586. }
  587. /* TODO: The following extra load is to make sure data flow be identical
  588. * before and after we do memory copy optimization.
  589. *
  590. * The load destination register is not guaranteed to be dead, so we
  591. * need to make sure it is loaded with the value the same as before
  592. * this transformation.
  593. *
  594. * These extra loads could be removed once we have accurate register
  595. * usage information.
  596. */
  597. if (descending_seq)
  598. xfer_num = 0;
  599. else if (BPF_SIZE(meta->insn.code) != BPF_DW)
  600. xfer_num = xfer_num - 1;
  601. else
  602. xfer_num = xfer_num - 2;
  603. switch (BPF_SIZE(meta->insn.code)) {
  604. case BPF_B:
  605. wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
  606. reg_xfer(xfer_num), 1,
  607. IS_ALIGNED(len, 4) ? 3 : (len & 3) - 1);
  608. break;
  609. case BPF_H:
  610. wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
  611. reg_xfer(xfer_num), 2, (len & 3) ^ 2);
  612. break;
  613. case BPF_W:
  614. wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
  615. reg_xfer(0));
  616. break;
  617. case BPF_DW:
  618. wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
  619. reg_xfer(xfer_num));
  620. wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1),
  621. reg_xfer(xfer_num + 1));
  622. break;
  623. }
  624. if (BPF_SIZE(meta->insn.code) != BPF_DW)
  625. wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
  626. return 0;
  627. }
  628. static int
  629. data_ld(struct nfp_prog *nfp_prog, swreg offset, u8 dst_gpr, int size)
  630. {
  631. unsigned int i;
  632. u16 shift, sz;
  633. /* We load the value from the address indicated in @offset and then
  634. * shift out the data we don't need. Note: this is big endian!
  635. */
  636. sz = max(size, 4);
  637. shift = size < 4 ? 4 - size : 0;
  638. emit_cmd(nfp_prog, CMD_TGT_READ8, CMD_MODE_32b, 0,
  639. pptr_reg(nfp_prog), offset, sz - 1, CMD_CTX_SWAP);
  640. i = 0;
  641. if (shift)
  642. emit_shf(nfp_prog, reg_both(dst_gpr), reg_none(), SHF_OP_NONE,
  643. reg_xfer(0), SHF_SC_R_SHF, shift * 8);
  644. else
  645. for (; i * 4 < size; i++)
  646. wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
  647. if (i < 2)
  648. wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0);
  649. return 0;
  650. }
  651. static int
  652. data_ld_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr,
  653. swreg lreg, swreg rreg, int size, enum cmd_mode mode)
  654. {
  655. unsigned int i;
  656. u8 mask, sz;
  657. /* We load the value from the address indicated in rreg + lreg and then
  658. * mask out the data we don't need. Note: this is little endian!
  659. */
  660. sz = max(size, 4);
  661. mask = size < 4 ? GENMASK(size - 1, 0) : 0;
  662. emit_cmd(nfp_prog, CMD_TGT_READ32_SWAP, mode, 0,
  663. lreg, rreg, sz / 4 - 1, CMD_CTX_SWAP);
  664. i = 0;
  665. if (mask)
  666. emit_ld_field_any(nfp_prog, reg_both(dst_gpr), mask,
  667. reg_xfer(0), SHF_SC_NONE, 0, true);
  668. else
  669. for (; i * 4 < size; i++)
  670. wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
  671. if (i < 2)
  672. wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0);
  673. return 0;
  674. }
  675. static int
  676. data_ld_host_order_addr32(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
  677. u8 dst_gpr, u8 size)
  678. {
  679. return data_ld_host_order(nfp_prog, dst_gpr, reg_a(src_gpr), offset,
  680. size, CMD_MODE_32b);
  681. }
  682. static int
  683. data_ld_host_order_addr40(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
  684. u8 dst_gpr, u8 size)
  685. {
  686. swreg rega, regb;
  687. addr40_offset(nfp_prog, src_gpr, offset, &rega, &regb);
  688. return data_ld_host_order(nfp_prog, dst_gpr, rega, regb,
  689. size, CMD_MODE_40b_BA);
  690. }
  691. static int
  692. construct_data_ind_ld(struct nfp_prog *nfp_prog, u16 offset, u16 src, u8 size)
  693. {
  694. swreg tmp_reg;
  695. /* Calculate the true offset (src_reg + imm) */
  696. tmp_reg = ur_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
  697. emit_alu(nfp_prog, imm_both(nfp_prog), reg_a(src), ALU_OP_ADD, tmp_reg);
  698. /* Check packet length (size guaranteed to fit b/c it's u8) */
  699. emit_alu(nfp_prog, imm_a(nfp_prog),
  700. imm_a(nfp_prog), ALU_OP_ADD, reg_imm(size));
  701. emit_alu(nfp_prog, reg_none(),
  702. plen_reg(nfp_prog), ALU_OP_SUB, imm_a(nfp_prog));
  703. emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT);
  704. /* Load data */
  705. return data_ld(nfp_prog, imm_b(nfp_prog), 0, size);
  706. }
  707. static int construct_data_ld(struct nfp_prog *nfp_prog, u16 offset, u8 size)
  708. {
  709. swreg tmp_reg;
  710. /* Check packet length */
  711. tmp_reg = ur_load_imm_any(nfp_prog, offset + size, imm_a(nfp_prog));
  712. emit_alu(nfp_prog, reg_none(), plen_reg(nfp_prog), ALU_OP_SUB, tmp_reg);
  713. emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT);
  714. /* Load data */
  715. tmp_reg = re_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
  716. return data_ld(nfp_prog, tmp_reg, 0, size);
  717. }
  718. static int
  719. data_stx_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
  720. u8 src_gpr, u8 size)
  721. {
  722. unsigned int i;
  723. for (i = 0; i * 4 < size; i++)
  724. wrp_mov(nfp_prog, reg_xfer(i), reg_a(src_gpr + i));
  725. emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
  726. reg_a(dst_gpr), offset, size - 1, CMD_CTX_SWAP);
  727. return 0;
  728. }
  729. static int
  730. data_st_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
  731. u64 imm, u8 size)
  732. {
  733. wrp_immed(nfp_prog, reg_xfer(0), imm);
  734. if (size == 8)
  735. wrp_immed(nfp_prog, reg_xfer(1), imm >> 32);
  736. emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
  737. reg_a(dst_gpr), offset, size - 1, CMD_CTX_SWAP);
  738. return 0;
  739. }
  740. typedef int
  741. (*lmem_step)(struct nfp_prog *nfp_prog, u8 gpr, u8 gpr_byte, s32 off,
  742. unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
  743. bool needs_inc);
  744. static int
  745. wrp_lmem_load(struct nfp_prog *nfp_prog, u8 dst, u8 dst_byte, s32 off,
  746. unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
  747. bool needs_inc)
  748. {
  749. bool should_inc = needs_inc && new_gpr && !last;
  750. u32 idx, src_byte;
  751. enum shf_sc sc;
  752. swreg reg;
  753. int shf;
  754. u8 mask;
  755. if (WARN_ON_ONCE(dst_byte + size > 4 || off % 4 + size > 4))
  756. return -EOPNOTSUPP;
  757. idx = off / 4;
  758. /* Move the entire word */
  759. if (size == 4) {
  760. wrp_mov(nfp_prog, reg_both(dst),
  761. should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx));
  762. return 0;
  763. }
  764. if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
  765. return -EOPNOTSUPP;
  766. src_byte = off % 4;
  767. mask = (1 << size) - 1;
  768. mask <<= dst_byte;
  769. if (WARN_ON_ONCE(mask > 0xf))
  770. return -EOPNOTSUPP;
  771. shf = abs(src_byte - dst_byte) * 8;
  772. if (src_byte == dst_byte) {
  773. sc = SHF_SC_NONE;
  774. } else if (src_byte < dst_byte) {
  775. shf = 32 - shf;
  776. sc = SHF_SC_L_SHF;
  777. } else {
  778. sc = SHF_SC_R_SHF;
  779. }
  780. /* ld_field can address fewer indexes, if offset too large do RMW.
  781. * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
  782. */
  783. if (idx <= RE_REG_LM_IDX_MAX) {
  784. reg = reg_lm(lm3 ? 3 : 0, idx);
  785. } else {
  786. reg = imm_a(nfp_prog);
  787. /* If it's not the first part of the load and we start a new GPR
  788. * that means we are loading a second part of the LMEM word into
  789. * a new GPR. IOW we've already looked that LMEM word and
  790. * therefore it has been loaded into imm_a().
  791. */
  792. if (first || !new_gpr)
  793. wrp_mov(nfp_prog, reg, reg_lm(0, idx));
  794. }
  795. emit_ld_field_any(nfp_prog, reg_both(dst), mask, reg, sc, shf, new_gpr);
  796. if (should_inc)
  797. wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
  798. return 0;
  799. }
  800. static int
  801. wrp_lmem_store(struct nfp_prog *nfp_prog, u8 src, u8 src_byte, s32 off,
  802. unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
  803. bool needs_inc)
  804. {
  805. bool should_inc = needs_inc && new_gpr && !last;
  806. u32 idx, dst_byte;
  807. enum shf_sc sc;
  808. swreg reg;
  809. int shf;
  810. u8 mask;
  811. if (WARN_ON_ONCE(src_byte + size > 4 || off % 4 + size > 4))
  812. return -EOPNOTSUPP;
  813. idx = off / 4;
  814. /* Move the entire word */
  815. if (size == 4) {
  816. wrp_mov(nfp_prog,
  817. should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx),
  818. reg_b(src));
  819. return 0;
  820. }
  821. if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
  822. return -EOPNOTSUPP;
  823. dst_byte = off % 4;
  824. mask = (1 << size) - 1;
  825. mask <<= dst_byte;
  826. if (WARN_ON_ONCE(mask > 0xf))
  827. return -EOPNOTSUPP;
  828. shf = abs(src_byte - dst_byte) * 8;
  829. if (src_byte == dst_byte) {
  830. sc = SHF_SC_NONE;
  831. } else if (src_byte < dst_byte) {
  832. shf = 32 - shf;
  833. sc = SHF_SC_L_SHF;
  834. } else {
  835. sc = SHF_SC_R_SHF;
  836. }
  837. /* ld_field can address fewer indexes, if offset too large do RMW.
  838. * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
  839. */
  840. if (idx <= RE_REG_LM_IDX_MAX) {
  841. reg = reg_lm(lm3 ? 3 : 0, idx);
  842. } else {
  843. reg = imm_a(nfp_prog);
  844. /* Only first and last LMEM locations are going to need RMW,
  845. * the middle location will be overwritten fully.
  846. */
  847. if (first || last)
  848. wrp_mov(nfp_prog, reg, reg_lm(0, idx));
  849. }
  850. emit_ld_field(nfp_prog, reg, mask, reg_b(src), sc, shf);
  851. if (new_gpr || last) {
  852. if (idx > RE_REG_LM_IDX_MAX)
  853. wrp_mov(nfp_prog, reg_lm(0, idx), reg);
  854. if (should_inc)
  855. wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
  856. }
  857. return 0;
  858. }
  859. static int
  860. mem_op_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
  861. unsigned int size, unsigned int ptr_off, u8 gpr, u8 ptr_gpr,
  862. bool clr_gpr, lmem_step step)
  863. {
  864. s32 off = nfp_prog->stack_depth + meta->insn.off + ptr_off;
  865. bool first = true, last;
  866. bool needs_inc = false;
  867. swreg stack_off_reg;
  868. u8 prev_gpr = 255;
  869. u32 gpr_byte = 0;
  870. bool lm3 = true;
  871. int ret;
  872. if (meta->ptr_not_const) {
  873. /* Use of the last encountered ptr_off is OK, they all have
  874. * the same alignment. Depend on low bits of value being
  875. * discarded when written to LMaddr register.
  876. */
  877. stack_off_reg = ur_load_imm_any(nfp_prog, meta->insn.off,
  878. stack_imm(nfp_prog));
  879. emit_alu(nfp_prog, imm_b(nfp_prog),
  880. reg_a(ptr_gpr), ALU_OP_ADD, stack_off_reg);
  881. needs_inc = true;
  882. } else if (off + size <= 64) {
  883. /* We can reach bottom 64B with LMaddr0 */
  884. lm3 = false;
  885. } else if (round_down(off, 32) == round_down(off + size - 1, 32)) {
  886. /* We have to set up a new pointer. If we know the offset
  887. * and the entire access falls into a single 32 byte aligned
  888. * window we won't have to increment the LM pointer.
  889. * The 32 byte alignment is imporant because offset is ORed in
  890. * not added when doing *l$indexN[off].
  891. */
  892. stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 32),
  893. stack_imm(nfp_prog));
  894. emit_alu(nfp_prog, imm_b(nfp_prog),
  895. stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
  896. off %= 32;
  897. } else {
  898. stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 4),
  899. stack_imm(nfp_prog));
  900. emit_alu(nfp_prog, imm_b(nfp_prog),
  901. stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
  902. needs_inc = true;
  903. }
  904. if (lm3) {
  905. emit_csr_wr(nfp_prog, imm_b(nfp_prog), NFP_CSR_ACT_LM_ADDR3);
  906. /* For size < 4 one slot will be filled by zeroing of upper. */
  907. wrp_nops(nfp_prog, clr_gpr && size < 8 ? 2 : 3);
  908. }
  909. if (clr_gpr && size < 8)
  910. wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
  911. while (size) {
  912. u32 slice_end;
  913. u8 slice_size;
  914. slice_size = min(size, 4 - gpr_byte);
  915. slice_end = min(off + slice_size, round_up(off + 1, 4));
  916. slice_size = slice_end - off;
  917. last = slice_size == size;
  918. if (needs_inc)
  919. off %= 4;
  920. ret = step(nfp_prog, gpr, gpr_byte, off, slice_size,
  921. first, gpr != prev_gpr, last, lm3, needs_inc);
  922. if (ret)
  923. return ret;
  924. prev_gpr = gpr;
  925. first = false;
  926. gpr_byte += slice_size;
  927. if (gpr_byte >= 4) {
  928. gpr_byte -= 4;
  929. gpr++;
  930. }
  931. size -= slice_size;
  932. off += slice_size;
  933. }
  934. return 0;
  935. }
  936. static void
  937. wrp_alu_imm(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u32 imm)
  938. {
  939. swreg tmp_reg;
  940. if (alu_op == ALU_OP_AND) {
  941. if (!imm)
  942. wrp_immed(nfp_prog, reg_both(dst), 0);
  943. if (!imm || !~imm)
  944. return;
  945. }
  946. if (alu_op == ALU_OP_OR) {
  947. if (!~imm)
  948. wrp_immed(nfp_prog, reg_both(dst), ~0U);
  949. if (!imm || !~imm)
  950. return;
  951. }
  952. if (alu_op == ALU_OP_XOR) {
  953. if (!~imm)
  954. emit_alu(nfp_prog, reg_both(dst), reg_none(),
  955. ALU_OP_NOT, reg_b(dst));
  956. if (!imm || !~imm)
  957. return;
  958. }
  959. tmp_reg = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
  960. emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, tmp_reg);
  961. }
  962. static int
  963. wrp_alu64_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
  964. enum alu_op alu_op, bool skip)
  965. {
  966. const struct bpf_insn *insn = &meta->insn;
  967. u64 imm = insn->imm; /* sign extend */
  968. if (skip) {
  969. meta->skip = true;
  970. return 0;
  971. }
  972. wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, imm & ~0U);
  973. wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, alu_op, imm >> 32);
  974. return 0;
  975. }
  976. static int
  977. wrp_alu64_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
  978. enum alu_op alu_op)
  979. {
  980. u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
  981. emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
  982. emit_alu(nfp_prog, reg_both(dst + 1),
  983. reg_a(dst + 1), alu_op, reg_b(src + 1));
  984. return 0;
  985. }
  986. static int
  987. wrp_alu32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
  988. enum alu_op alu_op, bool skip)
  989. {
  990. const struct bpf_insn *insn = &meta->insn;
  991. if (skip) {
  992. meta->skip = true;
  993. return 0;
  994. }
  995. wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, insn->imm);
  996. wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
  997. return 0;
  998. }
  999. static int
  1000. wrp_alu32_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
  1001. enum alu_op alu_op)
  1002. {
  1003. u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
  1004. emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
  1005. wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
  1006. return 0;
  1007. }
  1008. static void
  1009. wrp_test_reg_one(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u8 src,
  1010. enum br_mask br_mask, u16 off)
  1011. {
  1012. emit_alu(nfp_prog, reg_none(), reg_a(dst), alu_op, reg_b(src));
  1013. emit_br(nfp_prog, br_mask, off, 0);
  1014. }
  1015. static int
  1016. wrp_test_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
  1017. enum alu_op alu_op, enum br_mask br_mask)
  1018. {
  1019. const struct bpf_insn *insn = &meta->insn;
  1020. wrp_test_reg_one(nfp_prog, insn->dst_reg * 2, alu_op,
  1021. insn->src_reg * 2, br_mask, insn->off);
  1022. wrp_test_reg_one(nfp_prog, insn->dst_reg * 2 + 1, alu_op,
  1023. insn->src_reg * 2 + 1, br_mask, insn->off);
  1024. return 0;
  1025. }
  1026. static const struct jmp_code_map {
  1027. enum br_mask br_mask;
  1028. bool swap;
  1029. } jmp_code_map[] = {
  1030. [BPF_JGT >> 4] = { BR_BLO, true },
  1031. [BPF_JGE >> 4] = { BR_BHS, false },
  1032. [BPF_JLT >> 4] = { BR_BLO, false },
  1033. [BPF_JLE >> 4] = { BR_BHS, true },
  1034. [BPF_JSGT >> 4] = { BR_BLT, true },
  1035. [BPF_JSGE >> 4] = { BR_BGE, false },
  1036. [BPF_JSLT >> 4] = { BR_BLT, false },
  1037. [BPF_JSLE >> 4] = { BR_BGE, true },
  1038. };
  1039. static const struct jmp_code_map *nfp_jmp_code_get(struct nfp_insn_meta *meta)
  1040. {
  1041. unsigned int op;
  1042. op = BPF_OP(meta->insn.code) >> 4;
  1043. /* br_mask of 0 is BR_BEQ which we don't use in jump code table */
  1044. if (WARN_ONCE(op >= ARRAY_SIZE(jmp_code_map) ||
  1045. !jmp_code_map[op].br_mask,
  1046. "no code found for jump instruction"))
  1047. return NULL;
  1048. return &jmp_code_map[op];
  1049. }
  1050. static int cmp_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1051. {
  1052. const struct bpf_insn *insn = &meta->insn;
  1053. u64 imm = insn->imm; /* sign extend */
  1054. const struct jmp_code_map *code;
  1055. enum alu_op alu_op, carry_op;
  1056. u8 reg = insn->dst_reg * 2;
  1057. swreg tmp_reg;
  1058. code = nfp_jmp_code_get(meta);
  1059. if (!code)
  1060. return -EINVAL;
  1061. alu_op = meta->jump_neg_op ? ALU_OP_ADD : ALU_OP_SUB;
  1062. carry_op = meta->jump_neg_op ? ALU_OP_ADD_C : ALU_OP_SUB_C;
  1063. tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
  1064. if (!code->swap)
  1065. emit_alu(nfp_prog, reg_none(), reg_a(reg), alu_op, tmp_reg);
  1066. else
  1067. emit_alu(nfp_prog, reg_none(), tmp_reg, alu_op, reg_a(reg));
  1068. tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
  1069. if (!code->swap)
  1070. emit_alu(nfp_prog, reg_none(),
  1071. reg_a(reg + 1), carry_op, tmp_reg);
  1072. else
  1073. emit_alu(nfp_prog, reg_none(),
  1074. tmp_reg, carry_op, reg_a(reg + 1));
  1075. emit_br(nfp_prog, code->br_mask, insn->off, 0);
  1076. return 0;
  1077. }
  1078. static int cmp_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1079. {
  1080. const struct bpf_insn *insn = &meta->insn;
  1081. const struct jmp_code_map *code;
  1082. u8 areg, breg;
  1083. code = nfp_jmp_code_get(meta);
  1084. if (!code)
  1085. return -EINVAL;
  1086. areg = insn->dst_reg * 2;
  1087. breg = insn->src_reg * 2;
  1088. if (code->swap) {
  1089. areg ^= breg;
  1090. breg ^= areg;
  1091. areg ^= breg;
  1092. }
  1093. emit_alu(nfp_prog, reg_none(), reg_a(areg), ALU_OP_SUB, reg_b(breg));
  1094. emit_alu(nfp_prog, reg_none(),
  1095. reg_a(areg + 1), ALU_OP_SUB_C, reg_b(breg + 1));
  1096. emit_br(nfp_prog, code->br_mask, insn->off, 0);
  1097. return 0;
  1098. }
  1099. static void wrp_end32(struct nfp_prog *nfp_prog, swreg reg_in, u8 gpr_out)
  1100. {
  1101. emit_ld_field(nfp_prog, reg_both(gpr_out), 0xf, reg_in,
  1102. SHF_SC_R_ROT, 8);
  1103. emit_ld_field(nfp_prog, reg_both(gpr_out), 0x5, reg_a(gpr_out),
  1104. SHF_SC_R_ROT, 16);
  1105. }
  1106. static int adjust_head(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1107. {
  1108. swreg tmp = imm_a(nfp_prog), tmp_len = imm_b(nfp_prog);
  1109. struct nfp_bpf_cap_adjust_head *adjust_head;
  1110. u32 ret_einval, end;
  1111. adjust_head = &nfp_prog->bpf->adjust_head;
  1112. /* Optimized version - 5 vs 14 cycles */
  1113. if (nfp_prog->adjust_head_location != UINT_MAX) {
  1114. if (WARN_ON_ONCE(nfp_prog->adjust_head_location != meta->n))
  1115. return -EINVAL;
  1116. emit_alu(nfp_prog, pptr_reg(nfp_prog),
  1117. reg_a(2 * 2), ALU_OP_ADD, pptr_reg(nfp_prog));
  1118. emit_alu(nfp_prog, plen_reg(nfp_prog),
  1119. plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
  1120. emit_alu(nfp_prog, pv_len(nfp_prog),
  1121. pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
  1122. wrp_immed(nfp_prog, reg_both(0), 0);
  1123. wrp_immed(nfp_prog, reg_both(1), 0);
  1124. /* TODO: when adjust head is guaranteed to succeed we can
  1125. * also eliminate the following if (r0 == 0) branch.
  1126. */
  1127. return 0;
  1128. }
  1129. ret_einval = nfp_prog_current_offset(nfp_prog) + 14;
  1130. end = ret_einval + 2;
  1131. /* We need to use a temp because offset is just a part of the pkt ptr */
  1132. emit_alu(nfp_prog, tmp,
  1133. reg_a(2 * 2), ALU_OP_ADD_2B, pptr_reg(nfp_prog));
  1134. /* Validate result will fit within FW datapath constraints */
  1135. emit_alu(nfp_prog, reg_none(),
  1136. tmp, ALU_OP_SUB, reg_imm(adjust_head->off_min));
  1137. emit_br(nfp_prog, BR_BLO, ret_einval, 0);
  1138. emit_alu(nfp_prog, reg_none(),
  1139. reg_imm(adjust_head->off_max), ALU_OP_SUB, tmp);
  1140. emit_br(nfp_prog, BR_BLO, ret_einval, 0);
  1141. /* Validate the length is at least ETH_HLEN */
  1142. emit_alu(nfp_prog, tmp_len,
  1143. plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
  1144. emit_alu(nfp_prog, reg_none(),
  1145. tmp_len, ALU_OP_SUB, reg_imm(ETH_HLEN));
  1146. emit_br(nfp_prog, BR_BMI, ret_einval, 0);
  1147. /* Load the ret code */
  1148. wrp_immed(nfp_prog, reg_both(0), 0);
  1149. wrp_immed(nfp_prog, reg_both(1), 0);
  1150. /* Modify the packet metadata */
  1151. emit_ld_field(nfp_prog, pptr_reg(nfp_prog), 0x3, tmp, SHF_SC_NONE, 0);
  1152. /* Skip over the -EINVAL ret code (defer 2) */
  1153. emit_br(nfp_prog, BR_UNC, end, 2);
  1154. emit_alu(nfp_prog, plen_reg(nfp_prog),
  1155. plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
  1156. emit_alu(nfp_prog, pv_len(nfp_prog),
  1157. pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
  1158. /* return -EINVAL target */
  1159. if (!nfp_prog_confirm_current_offset(nfp_prog, ret_einval))
  1160. return -EINVAL;
  1161. wrp_immed(nfp_prog, reg_both(0), -22);
  1162. wrp_immed(nfp_prog, reg_both(1), ~0);
  1163. if (!nfp_prog_confirm_current_offset(nfp_prog, end))
  1164. return -EINVAL;
  1165. return 0;
  1166. }
  1167. static int
  1168. map_call_stack_common(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1169. {
  1170. bool load_lm_ptr;
  1171. u32 ret_tgt;
  1172. s64 lm_off;
  1173. /* We only have to reload LM0 if the key is not at start of stack */
  1174. lm_off = nfp_prog->stack_depth;
  1175. lm_off += meta->arg2.reg.var_off.value + meta->arg2.reg.off;
  1176. load_lm_ptr = meta->arg2.var_off || lm_off;
  1177. /* Set LM0 to start of key */
  1178. if (load_lm_ptr)
  1179. emit_csr_wr(nfp_prog, reg_b(2 * 2), NFP_CSR_ACT_LM_ADDR0);
  1180. if (meta->func_id == BPF_FUNC_map_update_elem)
  1181. emit_csr_wr(nfp_prog, reg_b(3 * 2), NFP_CSR_ACT_LM_ADDR2);
  1182. emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO + meta->func_id,
  1183. 2, RELO_BR_HELPER);
  1184. ret_tgt = nfp_prog_current_offset(nfp_prog) + 2;
  1185. /* Load map ID into A0 */
  1186. wrp_mov(nfp_prog, reg_a(0), reg_a(2));
  1187. /* Load the return address into B0 */
  1188. wrp_immed_relo(nfp_prog, reg_b(0), ret_tgt, RELO_IMMED_REL);
  1189. if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
  1190. return -EINVAL;
  1191. /* Reset the LM0 pointer */
  1192. if (!load_lm_ptr)
  1193. return 0;
  1194. emit_csr_wr(nfp_prog, stack_reg(nfp_prog), NFP_CSR_ACT_LM_ADDR0);
  1195. wrp_nops(nfp_prog, 3);
  1196. return 0;
  1197. }
  1198. static int
  1199. nfp_get_prandom_u32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1200. {
  1201. __emit_csr_rd(nfp_prog, NFP_CSR_PSEUDO_RND_NUM);
  1202. /* CSR value is read in following immed[gpr, 0] */
  1203. emit_immed(nfp_prog, reg_both(0), 0,
  1204. IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
  1205. emit_immed(nfp_prog, reg_both(1), 0,
  1206. IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
  1207. return 0;
  1208. }
  1209. static int
  1210. nfp_perf_event_output(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1211. {
  1212. swreg ptr_type;
  1213. u32 ret_tgt;
  1214. ptr_type = ur_load_imm_any(nfp_prog, meta->arg1.type, imm_a(nfp_prog));
  1215. ret_tgt = nfp_prog_current_offset(nfp_prog) + 3;
  1216. emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO + meta->func_id,
  1217. 2, RELO_BR_HELPER);
  1218. /* Load ptr type into A1 */
  1219. wrp_mov(nfp_prog, reg_a(1), ptr_type);
  1220. /* Load the return address into B0 */
  1221. wrp_immed_relo(nfp_prog, reg_b(0), ret_tgt, RELO_IMMED_REL);
  1222. if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
  1223. return -EINVAL;
  1224. return 0;
  1225. }
  1226. /* --- Callbacks --- */
  1227. static int mov_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1228. {
  1229. const struct bpf_insn *insn = &meta->insn;
  1230. u8 dst = insn->dst_reg * 2;
  1231. u8 src = insn->src_reg * 2;
  1232. if (insn->src_reg == BPF_REG_10) {
  1233. swreg stack_depth_reg;
  1234. stack_depth_reg = ur_load_imm_any(nfp_prog,
  1235. nfp_prog->stack_depth,
  1236. stack_imm(nfp_prog));
  1237. emit_alu(nfp_prog, reg_both(dst),
  1238. stack_reg(nfp_prog), ALU_OP_ADD, stack_depth_reg);
  1239. wrp_immed(nfp_prog, reg_both(dst + 1), 0);
  1240. } else {
  1241. wrp_reg_mov(nfp_prog, dst, src);
  1242. wrp_reg_mov(nfp_prog, dst + 1, src + 1);
  1243. }
  1244. return 0;
  1245. }
  1246. static int mov_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1247. {
  1248. u64 imm = meta->insn.imm; /* sign extend */
  1249. wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2), imm & ~0U);
  1250. wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), imm >> 32);
  1251. return 0;
  1252. }
  1253. static int xor_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1254. {
  1255. return wrp_alu64_reg(nfp_prog, meta, ALU_OP_XOR);
  1256. }
  1257. static int xor_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1258. {
  1259. return wrp_alu64_imm(nfp_prog, meta, ALU_OP_XOR, !meta->insn.imm);
  1260. }
  1261. static int and_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1262. {
  1263. return wrp_alu64_reg(nfp_prog, meta, ALU_OP_AND);
  1264. }
  1265. static int and_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1266. {
  1267. return wrp_alu64_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
  1268. }
  1269. static int or_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1270. {
  1271. return wrp_alu64_reg(nfp_prog, meta, ALU_OP_OR);
  1272. }
  1273. static int or_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1274. {
  1275. return wrp_alu64_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
  1276. }
  1277. static int add_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1278. {
  1279. const struct bpf_insn *insn = &meta->insn;
  1280. emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
  1281. reg_a(insn->dst_reg * 2), ALU_OP_ADD,
  1282. reg_b(insn->src_reg * 2));
  1283. emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
  1284. reg_a(insn->dst_reg * 2 + 1), ALU_OP_ADD_C,
  1285. reg_b(insn->src_reg * 2 + 1));
  1286. return 0;
  1287. }
  1288. static int add_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1289. {
  1290. const struct bpf_insn *insn = &meta->insn;
  1291. u64 imm = insn->imm; /* sign extend */
  1292. wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_ADD, imm & ~0U);
  1293. wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_ADD_C, imm >> 32);
  1294. return 0;
  1295. }
  1296. static int sub_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1297. {
  1298. const struct bpf_insn *insn = &meta->insn;
  1299. emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
  1300. reg_a(insn->dst_reg * 2), ALU_OP_SUB,
  1301. reg_b(insn->src_reg * 2));
  1302. emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
  1303. reg_a(insn->dst_reg * 2 + 1), ALU_OP_SUB_C,
  1304. reg_b(insn->src_reg * 2 + 1));
  1305. return 0;
  1306. }
  1307. static int sub_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1308. {
  1309. const struct bpf_insn *insn = &meta->insn;
  1310. u64 imm = insn->imm; /* sign extend */
  1311. wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_SUB, imm & ~0U);
  1312. wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_SUB_C, imm >> 32);
  1313. return 0;
  1314. }
  1315. static int neg_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1316. {
  1317. const struct bpf_insn *insn = &meta->insn;
  1318. emit_alu(nfp_prog, reg_both(insn->dst_reg * 2), reg_imm(0),
  1319. ALU_OP_SUB, reg_b(insn->dst_reg * 2));
  1320. emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1), reg_imm(0),
  1321. ALU_OP_SUB_C, reg_b(insn->dst_reg * 2 + 1));
  1322. return 0;
  1323. }
  1324. static int shl_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1325. {
  1326. const struct bpf_insn *insn = &meta->insn;
  1327. u8 dst = insn->dst_reg * 2;
  1328. if (insn->imm < 32) {
  1329. emit_shf(nfp_prog, reg_both(dst + 1),
  1330. reg_a(dst + 1), SHF_OP_NONE, reg_b(dst),
  1331. SHF_SC_R_DSHF, 32 - insn->imm);
  1332. emit_shf(nfp_prog, reg_both(dst),
  1333. reg_none(), SHF_OP_NONE, reg_b(dst),
  1334. SHF_SC_L_SHF, insn->imm);
  1335. } else if (insn->imm == 32) {
  1336. wrp_reg_mov(nfp_prog, dst + 1, dst);
  1337. wrp_immed(nfp_prog, reg_both(dst), 0);
  1338. } else if (insn->imm > 32) {
  1339. emit_shf(nfp_prog, reg_both(dst + 1),
  1340. reg_none(), SHF_OP_NONE, reg_b(dst),
  1341. SHF_SC_L_SHF, insn->imm - 32);
  1342. wrp_immed(nfp_prog, reg_both(dst), 0);
  1343. }
  1344. return 0;
  1345. }
  1346. static int shr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1347. {
  1348. const struct bpf_insn *insn = &meta->insn;
  1349. u8 dst = insn->dst_reg * 2;
  1350. if (insn->imm < 32) {
  1351. emit_shf(nfp_prog, reg_both(dst),
  1352. reg_a(dst + 1), SHF_OP_NONE, reg_b(dst),
  1353. SHF_SC_R_DSHF, insn->imm);
  1354. emit_shf(nfp_prog, reg_both(dst + 1),
  1355. reg_none(), SHF_OP_NONE, reg_b(dst + 1),
  1356. SHF_SC_R_SHF, insn->imm);
  1357. } else if (insn->imm == 32) {
  1358. wrp_reg_mov(nfp_prog, dst, dst + 1);
  1359. wrp_immed(nfp_prog, reg_both(dst + 1), 0);
  1360. } else if (insn->imm > 32) {
  1361. emit_shf(nfp_prog, reg_both(dst),
  1362. reg_none(), SHF_OP_NONE, reg_b(dst + 1),
  1363. SHF_SC_R_SHF, insn->imm - 32);
  1364. wrp_immed(nfp_prog, reg_both(dst + 1), 0);
  1365. }
  1366. return 0;
  1367. }
  1368. static int mov_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1369. {
  1370. const struct bpf_insn *insn = &meta->insn;
  1371. wrp_reg_mov(nfp_prog, insn->dst_reg * 2, insn->src_reg * 2);
  1372. wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
  1373. return 0;
  1374. }
  1375. static int mov_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1376. {
  1377. const struct bpf_insn *insn = &meta->insn;
  1378. wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2), insn->imm);
  1379. wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
  1380. return 0;
  1381. }
  1382. static int xor_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1383. {
  1384. return wrp_alu32_reg(nfp_prog, meta, ALU_OP_XOR);
  1385. }
  1386. static int xor_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1387. {
  1388. return wrp_alu32_imm(nfp_prog, meta, ALU_OP_XOR, !~meta->insn.imm);
  1389. }
  1390. static int and_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1391. {
  1392. return wrp_alu32_reg(nfp_prog, meta, ALU_OP_AND);
  1393. }
  1394. static int and_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1395. {
  1396. return wrp_alu32_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
  1397. }
  1398. static int or_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1399. {
  1400. return wrp_alu32_reg(nfp_prog, meta, ALU_OP_OR);
  1401. }
  1402. static int or_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1403. {
  1404. return wrp_alu32_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
  1405. }
  1406. static int add_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1407. {
  1408. return wrp_alu32_reg(nfp_prog, meta, ALU_OP_ADD);
  1409. }
  1410. static int add_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1411. {
  1412. return wrp_alu32_imm(nfp_prog, meta, ALU_OP_ADD, !meta->insn.imm);
  1413. }
  1414. static int sub_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1415. {
  1416. return wrp_alu32_reg(nfp_prog, meta, ALU_OP_SUB);
  1417. }
  1418. static int sub_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1419. {
  1420. return wrp_alu32_imm(nfp_prog, meta, ALU_OP_SUB, !meta->insn.imm);
  1421. }
  1422. static int neg_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1423. {
  1424. u8 dst = meta->insn.dst_reg * 2;
  1425. emit_alu(nfp_prog, reg_both(dst), reg_imm(0), ALU_OP_SUB, reg_b(dst));
  1426. wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
  1427. return 0;
  1428. }
  1429. static int shl_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1430. {
  1431. const struct bpf_insn *insn = &meta->insn;
  1432. if (!insn->imm)
  1433. return 1; /* TODO: zero shift means indirect */
  1434. emit_shf(nfp_prog, reg_both(insn->dst_reg * 2),
  1435. reg_none(), SHF_OP_NONE, reg_b(insn->dst_reg * 2),
  1436. SHF_SC_L_SHF, insn->imm);
  1437. wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
  1438. return 0;
  1439. }
  1440. static int end_reg32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1441. {
  1442. const struct bpf_insn *insn = &meta->insn;
  1443. u8 gpr = insn->dst_reg * 2;
  1444. switch (insn->imm) {
  1445. case 16:
  1446. emit_ld_field(nfp_prog, reg_both(gpr), 0x9, reg_b(gpr),
  1447. SHF_SC_R_ROT, 8);
  1448. emit_ld_field(nfp_prog, reg_both(gpr), 0xe, reg_a(gpr),
  1449. SHF_SC_R_SHF, 16);
  1450. wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
  1451. break;
  1452. case 32:
  1453. wrp_end32(nfp_prog, reg_a(gpr), gpr);
  1454. wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
  1455. break;
  1456. case 64:
  1457. wrp_mov(nfp_prog, imm_a(nfp_prog), reg_b(gpr + 1));
  1458. wrp_end32(nfp_prog, reg_a(gpr), gpr + 1);
  1459. wrp_end32(nfp_prog, imm_a(nfp_prog), gpr);
  1460. break;
  1461. }
  1462. return 0;
  1463. }
  1464. static int imm_ld8_part2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1465. {
  1466. struct nfp_insn_meta *prev = nfp_meta_prev(meta);
  1467. u32 imm_lo, imm_hi;
  1468. u8 dst;
  1469. dst = prev->insn.dst_reg * 2;
  1470. imm_lo = prev->insn.imm;
  1471. imm_hi = meta->insn.imm;
  1472. wrp_immed(nfp_prog, reg_both(dst), imm_lo);
  1473. /* mov is always 1 insn, load imm may be two, so try to use mov */
  1474. if (imm_hi == imm_lo)
  1475. wrp_mov(nfp_prog, reg_both(dst + 1), reg_a(dst));
  1476. else
  1477. wrp_immed(nfp_prog, reg_both(dst + 1), imm_hi);
  1478. return 0;
  1479. }
  1480. static int imm_ld8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1481. {
  1482. meta->double_cb = imm_ld8_part2;
  1483. return 0;
  1484. }
  1485. static int data_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1486. {
  1487. return construct_data_ld(nfp_prog, meta->insn.imm, 1);
  1488. }
  1489. static int data_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1490. {
  1491. return construct_data_ld(nfp_prog, meta->insn.imm, 2);
  1492. }
  1493. static int data_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1494. {
  1495. return construct_data_ld(nfp_prog, meta->insn.imm, 4);
  1496. }
  1497. static int data_ind_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1498. {
  1499. return construct_data_ind_ld(nfp_prog, meta->insn.imm,
  1500. meta->insn.src_reg * 2, 1);
  1501. }
  1502. static int data_ind_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1503. {
  1504. return construct_data_ind_ld(nfp_prog, meta->insn.imm,
  1505. meta->insn.src_reg * 2, 2);
  1506. }
  1507. static int data_ind_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1508. {
  1509. return construct_data_ind_ld(nfp_prog, meta->insn.imm,
  1510. meta->insn.src_reg * 2, 4);
  1511. }
  1512. static int
  1513. mem_ldx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
  1514. unsigned int size, unsigned int ptr_off)
  1515. {
  1516. return mem_op_stack(nfp_prog, meta, size, ptr_off,
  1517. meta->insn.dst_reg * 2, meta->insn.src_reg * 2,
  1518. true, wrp_lmem_load);
  1519. }
  1520. static int mem_ldx_skb(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
  1521. u8 size)
  1522. {
  1523. swreg dst = reg_both(meta->insn.dst_reg * 2);
  1524. switch (meta->insn.off) {
  1525. case offsetof(struct __sk_buff, len):
  1526. if (size != FIELD_SIZEOF(struct __sk_buff, len))
  1527. return -EOPNOTSUPP;
  1528. wrp_mov(nfp_prog, dst, plen_reg(nfp_prog));
  1529. break;
  1530. case offsetof(struct __sk_buff, data):
  1531. if (size != FIELD_SIZEOF(struct __sk_buff, data))
  1532. return -EOPNOTSUPP;
  1533. wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
  1534. break;
  1535. case offsetof(struct __sk_buff, data_end):
  1536. if (size != FIELD_SIZEOF(struct __sk_buff, data_end))
  1537. return -EOPNOTSUPP;
  1538. emit_alu(nfp_prog, dst,
  1539. plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
  1540. break;
  1541. default:
  1542. return -EOPNOTSUPP;
  1543. }
  1544. wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
  1545. return 0;
  1546. }
  1547. static int mem_ldx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
  1548. u8 size)
  1549. {
  1550. swreg dst = reg_both(meta->insn.dst_reg * 2);
  1551. switch (meta->insn.off) {
  1552. case offsetof(struct xdp_md, data):
  1553. if (size != FIELD_SIZEOF(struct xdp_md, data))
  1554. return -EOPNOTSUPP;
  1555. wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
  1556. break;
  1557. case offsetof(struct xdp_md, data_end):
  1558. if (size != FIELD_SIZEOF(struct xdp_md, data_end))
  1559. return -EOPNOTSUPP;
  1560. emit_alu(nfp_prog, dst,
  1561. plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
  1562. break;
  1563. default:
  1564. return -EOPNOTSUPP;
  1565. }
  1566. wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
  1567. return 0;
  1568. }
  1569. static int
  1570. mem_ldx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
  1571. unsigned int size)
  1572. {
  1573. swreg tmp_reg;
  1574. tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
  1575. return data_ld_host_order_addr32(nfp_prog, meta->insn.src_reg * 2,
  1576. tmp_reg, meta->insn.dst_reg * 2, size);
  1577. }
  1578. static int
  1579. mem_ldx_emem(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
  1580. unsigned int size)
  1581. {
  1582. swreg tmp_reg;
  1583. tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
  1584. return data_ld_host_order_addr40(nfp_prog, meta->insn.src_reg * 2,
  1585. tmp_reg, meta->insn.dst_reg * 2, size);
  1586. }
  1587. static void
  1588. mem_ldx_data_init_pktcache(struct nfp_prog *nfp_prog,
  1589. struct nfp_insn_meta *meta)
  1590. {
  1591. s16 range_start = meta->pkt_cache.range_start;
  1592. s16 range_end = meta->pkt_cache.range_end;
  1593. swreg src_base, off;
  1594. u8 xfer_num, len;
  1595. bool indir;
  1596. off = re_load_imm_any(nfp_prog, range_start, imm_b(nfp_prog));
  1597. src_base = reg_a(meta->insn.src_reg * 2);
  1598. len = range_end - range_start;
  1599. xfer_num = round_up(len, REG_WIDTH) / REG_WIDTH;
  1600. indir = len > 8 * REG_WIDTH;
  1601. /* Setup PREV_ALU for indirect mode. */
  1602. if (indir)
  1603. wrp_immed(nfp_prog, reg_none(),
  1604. CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
  1605. /* Cache memory into transfer-in registers. */
  1606. emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP, CMD_MODE_32b, 0, src_base,
  1607. off, xfer_num - 1, CMD_CTX_SWAP, indir);
  1608. }
  1609. static int
  1610. mem_ldx_data_from_pktcache_unaligned(struct nfp_prog *nfp_prog,
  1611. struct nfp_insn_meta *meta,
  1612. unsigned int size)
  1613. {
  1614. s16 range_start = meta->pkt_cache.range_start;
  1615. s16 insn_off = meta->insn.off - range_start;
  1616. swreg dst_lo, dst_hi, src_lo, src_mid;
  1617. u8 dst_gpr = meta->insn.dst_reg * 2;
  1618. u8 len_lo = size, len_mid = 0;
  1619. u8 idx = insn_off / REG_WIDTH;
  1620. u8 off = insn_off % REG_WIDTH;
  1621. dst_hi = reg_both(dst_gpr + 1);
  1622. dst_lo = reg_both(dst_gpr);
  1623. src_lo = reg_xfer(idx);
  1624. /* The read length could involve as many as three registers. */
  1625. if (size > REG_WIDTH - off) {
  1626. /* Calculate the part in the second register. */
  1627. len_lo = REG_WIDTH - off;
  1628. len_mid = size - len_lo;
  1629. /* Calculate the part in the third register. */
  1630. if (size > 2 * REG_WIDTH - off)
  1631. len_mid = REG_WIDTH;
  1632. }
  1633. wrp_reg_subpart(nfp_prog, dst_lo, src_lo, len_lo, off);
  1634. if (!len_mid) {
  1635. wrp_immed(nfp_prog, dst_hi, 0);
  1636. return 0;
  1637. }
  1638. src_mid = reg_xfer(idx + 1);
  1639. if (size <= REG_WIDTH) {
  1640. wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid, len_mid, len_lo);
  1641. wrp_immed(nfp_prog, dst_hi, 0);
  1642. } else {
  1643. swreg src_hi = reg_xfer(idx + 2);
  1644. wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid,
  1645. REG_WIDTH - len_lo, len_lo);
  1646. wrp_reg_subpart(nfp_prog, dst_hi, src_mid, len_lo,
  1647. REG_WIDTH - len_lo);
  1648. wrp_reg_or_subpart(nfp_prog, dst_hi, src_hi, REG_WIDTH - len_lo,
  1649. len_lo);
  1650. }
  1651. return 0;
  1652. }
  1653. static int
  1654. mem_ldx_data_from_pktcache_aligned(struct nfp_prog *nfp_prog,
  1655. struct nfp_insn_meta *meta,
  1656. unsigned int size)
  1657. {
  1658. swreg dst_lo, dst_hi, src_lo;
  1659. u8 dst_gpr, idx;
  1660. idx = (meta->insn.off - meta->pkt_cache.range_start) / REG_WIDTH;
  1661. dst_gpr = meta->insn.dst_reg * 2;
  1662. dst_hi = reg_both(dst_gpr + 1);
  1663. dst_lo = reg_both(dst_gpr);
  1664. src_lo = reg_xfer(idx);
  1665. if (size < REG_WIDTH) {
  1666. wrp_reg_subpart(nfp_prog, dst_lo, src_lo, size, 0);
  1667. wrp_immed(nfp_prog, dst_hi, 0);
  1668. } else if (size == REG_WIDTH) {
  1669. wrp_mov(nfp_prog, dst_lo, src_lo);
  1670. wrp_immed(nfp_prog, dst_hi, 0);
  1671. } else {
  1672. swreg src_hi = reg_xfer(idx + 1);
  1673. wrp_mov(nfp_prog, dst_lo, src_lo);
  1674. wrp_mov(nfp_prog, dst_hi, src_hi);
  1675. }
  1676. return 0;
  1677. }
  1678. static int
  1679. mem_ldx_data_from_pktcache(struct nfp_prog *nfp_prog,
  1680. struct nfp_insn_meta *meta, unsigned int size)
  1681. {
  1682. u8 off = meta->insn.off - meta->pkt_cache.range_start;
  1683. if (IS_ALIGNED(off, REG_WIDTH))
  1684. return mem_ldx_data_from_pktcache_aligned(nfp_prog, meta, size);
  1685. return mem_ldx_data_from_pktcache_unaligned(nfp_prog, meta, size);
  1686. }
  1687. static int
  1688. mem_ldx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
  1689. unsigned int size)
  1690. {
  1691. if (meta->ldst_gather_len)
  1692. return nfp_cpp_memcpy(nfp_prog, meta);
  1693. if (meta->ptr.type == PTR_TO_CTX) {
  1694. if (nfp_prog->type == BPF_PROG_TYPE_XDP)
  1695. return mem_ldx_xdp(nfp_prog, meta, size);
  1696. else
  1697. return mem_ldx_skb(nfp_prog, meta, size);
  1698. }
  1699. if (meta->ptr.type == PTR_TO_PACKET) {
  1700. if (meta->pkt_cache.range_end) {
  1701. if (meta->pkt_cache.do_init)
  1702. mem_ldx_data_init_pktcache(nfp_prog, meta);
  1703. return mem_ldx_data_from_pktcache(nfp_prog, meta, size);
  1704. } else {
  1705. return mem_ldx_data(nfp_prog, meta, size);
  1706. }
  1707. }
  1708. if (meta->ptr.type == PTR_TO_STACK)
  1709. return mem_ldx_stack(nfp_prog, meta, size,
  1710. meta->ptr.off + meta->ptr.var_off.value);
  1711. if (meta->ptr.type == PTR_TO_MAP_VALUE)
  1712. return mem_ldx_emem(nfp_prog, meta, size);
  1713. return -EOPNOTSUPP;
  1714. }
  1715. static int mem_ldx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1716. {
  1717. return mem_ldx(nfp_prog, meta, 1);
  1718. }
  1719. static int mem_ldx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1720. {
  1721. return mem_ldx(nfp_prog, meta, 2);
  1722. }
  1723. static int mem_ldx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1724. {
  1725. return mem_ldx(nfp_prog, meta, 4);
  1726. }
  1727. static int mem_ldx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1728. {
  1729. return mem_ldx(nfp_prog, meta, 8);
  1730. }
  1731. static int
  1732. mem_st_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
  1733. unsigned int size)
  1734. {
  1735. u64 imm = meta->insn.imm; /* sign extend */
  1736. swreg off_reg;
  1737. off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
  1738. return data_st_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
  1739. imm, size);
  1740. }
  1741. static int mem_st(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
  1742. unsigned int size)
  1743. {
  1744. if (meta->ptr.type == PTR_TO_PACKET)
  1745. return mem_st_data(nfp_prog, meta, size);
  1746. return -EOPNOTSUPP;
  1747. }
  1748. static int mem_st1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1749. {
  1750. return mem_st(nfp_prog, meta, 1);
  1751. }
  1752. static int mem_st2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1753. {
  1754. return mem_st(nfp_prog, meta, 2);
  1755. }
  1756. static int mem_st4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1757. {
  1758. return mem_st(nfp_prog, meta, 4);
  1759. }
  1760. static int mem_st8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1761. {
  1762. return mem_st(nfp_prog, meta, 8);
  1763. }
  1764. static int
  1765. mem_stx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
  1766. unsigned int size)
  1767. {
  1768. swreg off_reg;
  1769. off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
  1770. return data_stx_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
  1771. meta->insn.src_reg * 2, size);
  1772. }
  1773. static int
  1774. mem_stx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
  1775. unsigned int size, unsigned int ptr_off)
  1776. {
  1777. return mem_op_stack(nfp_prog, meta, size, ptr_off,
  1778. meta->insn.src_reg * 2, meta->insn.dst_reg * 2,
  1779. false, wrp_lmem_store);
  1780. }
  1781. static int
  1782. mem_stx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
  1783. unsigned int size)
  1784. {
  1785. if (meta->ptr.type == PTR_TO_PACKET)
  1786. return mem_stx_data(nfp_prog, meta, size);
  1787. if (meta->ptr.type == PTR_TO_STACK)
  1788. return mem_stx_stack(nfp_prog, meta, size,
  1789. meta->ptr.off + meta->ptr.var_off.value);
  1790. return -EOPNOTSUPP;
  1791. }
  1792. static int mem_stx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1793. {
  1794. return mem_stx(nfp_prog, meta, 1);
  1795. }
  1796. static int mem_stx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1797. {
  1798. return mem_stx(nfp_prog, meta, 2);
  1799. }
  1800. static int mem_stx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1801. {
  1802. return mem_stx(nfp_prog, meta, 4);
  1803. }
  1804. static int mem_stx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1805. {
  1806. return mem_stx(nfp_prog, meta, 8);
  1807. }
  1808. static int
  1809. mem_xadd(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, bool is64)
  1810. {
  1811. u8 dst_gpr = meta->insn.dst_reg * 2;
  1812. u8 src_gpr = meta->insn.src_reg * 2;
  1813. unsigned int full_add, out;
  1814. swreg addra, addrb, off;
  1815. off = ur_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
  1816. /* We can fit 16 bits into command immediate, if we know the immediate
  1817. * is guaranteed to either always or never fit into 16 bit we only
  1818. * generate code to handle that particular case, otherwise generate
  1819. * code for both.
  1820. */
  1821. out = nfp_prog_current_offset(nfp_prog);
  1822. full_add = nfp_prog_current_offset(nfp_prog);
  1823. if (meta->insn.off) {
  1824. out += 2;
  1825. full_add += 2;
  1826. }
  1827. if (meta->xadd_maybe_16bit) {
  1828. out += 3;
  1829. full_add += 3;
  1830. }
  1831. if (meta->xadd_over_16bit)
  1832. out += 2 + is64;
  1833. if (meta->xadd_maybe_16bit && meta->xadd_over_16bit) {
  1834. out += 5;
  1835. full_add += 5;
  1836. }
  1837. /* Generate the branch for choosing add_imm vs add */
  1838. if (meta->xadd_maybe_16bit && meta->xadd_over_16bit) {
  1839. swreg max_imm = imm_a(nfp_prog);
  1840. wrp_immed(nfp_prog, max_imm, 0xffff);
  1841. emit_alu(nfp_prog, reg_none(),
  1842. max_imm, ALU_OP_SUB, reg_b(src_gpr));
  1843. emit_alu(nfp_prog, reg_none(),
  1844. reg_imm(0), ALU_OP_SUB_C, reg_b(src_gpr + 1));
  1845. emit_br(nfp_prog, BR_BLO, full_add, meta->insn.off ? 2 : 0);
  1846. /* defer for add */
  1847. }
  1848. /* If insn has an offset add to the address */
  1849. if (!meta->insn.off) {
  1850. addra = reg_a(dst_gpr);
  1851. addrb = reg_b(dst_gpr + 1);
  1852. } else {
  1853. emit_alu(nfp_prog, imma_a(nfp_prog),
  1854. reg_a(dst_gpr), ALU_OP_ADD, off);
  1855. emit_alu(nfp_prog, imma_b(nfp_prog),
  1856. reg_a(dst_gpr + 1), ALU_OP_ADD_C, reg_imm(0));
  1857. addra = imma_a(nfp_prog);
  1858. addrb = imma_b(nfp_prog);
  1859. }
  1860. /* Generate the add_imm if 16 bits are possible */
  1861. if (meta->xadd_maybe_16bit) {
  1862. swreg prev_alu = imm_a(nfp_prog);
  1863. wrp_immed(nfp_prog, prev_alu,
  1864. FIELD_PREP(CMD_OVE_DATA, 2) |
  1865. CMD_OVE_LEN |
  1866. FIELD_PREP(CMD_OV_LEN, 0x8 | is64 << 2));
  1867. wrp_reg_or_subpart(nfp_prog, prev_alu, reg_b(src_gpr), 2, 2);
  1868. emit_cmd_indir(nfp_prog, CMD_TGT_ADD_IMM, CMD_MODE_40b_BA, 0,
  1869. addra, addrb, 0, CMD_CTX_NO_SWAP);
  1870. if (meta->xadd_over_16bit)
  1871. emit_br(nfp_prog, BR_UNC, out, 0);
  1872. }
  1873. if (!nfp_prog_confirm_current_offset(nfp_prog, full_add))
  1874. return -EINVAL;
  1875. /* Generate the add if 16 bits are not guaranteed */
  1876. if (meta->xadd_over_16bit) {
  1877. emit_cmd(nfp_prog, CMD_TGT_ADD, CMD_MODE_40b_BA, 0,
  1878. addra, addrb, is64 << 2,
  1879. is64 ? CMD_CTX_SWAP_DEFER2 : CMD_CTX_SWAP_DEFER1);
  1880. wrp_mov(nfp_prog, reg_xfer(0), reg_a(src_gpr));
  1881. if (is64)
  1882. wrp_mov(nfp_prog, reg_xfer(1), reg_a(src_gpr + 1));
  1883. }
  1884. if (!nfp_prog_confirm_current_offset(nfp_prog, out))
  1885. return -EINVAL;
  1886. return 0;
  1887. }
  1888. static int mem_xadd4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1889. {
  1890. return mem_xadd(nfp_prog, meta, false);
  1891. }
  1892. static int mem_xadd8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1893. {
  1894. return mem_xadd(nfp_prog, meta, true);
  1895. }
  1896. static int jump(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1897. {
  1898. emit_br(nfp_prog, BR_UNC, meta->insn.off, 0);
  1899. return 0;
  1900. }
  1901. static int jeq_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1902. {
  1903. const struct bpf_insn *insn = &meta->insn;
  1904. u64 imm = insn->imm; /* sign extend */
  1905. swreg or1, or2, tmp_reg;
  1906. or1 = reg_a(insn->dst_reg * 2);
  1907. or2 = reg_b(insn->dst_reg * 2 + 1);
  1908. if (imm & ~0U) {
  1909. tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
  1910. emit_alu(nfp_prog, imm_a(nfp_prog),
  1911. reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
  1912. or1 = imm_a(nfp_prog);
  1913. }
  1914. if (imm >> 32) {
  1915. tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
  1916. emit_alu(nfp_prog, imm_b(nfp_prog),
  1917. reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
  1918. or2 = imm_b(nfp_prog);
  1919. }
  1920. emit_alu(nfp_prog, reg_none(), or1, ALU_OP_OR, or2);
  1921. emit_br(nfp_prog, BR_BEQ, insn->off, 0);
  1922. return 0;
  1923. }
  1924. static int jset_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1925. {
  1926. const struct bpf_insn *insn = &meta->insn;
  1927. u64 imm = insn->imm; /* sign extend */
  1928. swreg tmp_reg;
  1929. if (!imm) {
  1930. meta->skip = true;
  1931. return 0;
  1932. }
  1933. if (imm & ~0U) {
  1934. tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
  1935. emit_alu(nfp_prog, reg_none(),
  1936. reg_a(insn->dst_reg * 2), ALU_OP_AND, tmp_reg);
  1937. emit_br(nfp_prog, BR_BNE, insn->off, 0);
  1938. }
  1939. if (imm >> 32) {
  1940. tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
  1941. emit_alu(nfp_prog, reg_none(),
  1942. reg_a(insn->dst_reg * 2 + 1), ALU_OP_AND, tmp_reg);
  1943. emit_br(nfp_prog, BR_BNE, insn->off, 0);
  1944. }
  1945. return 0;
  1946. }
  1947. static int jne_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1948. {
  1949. const struct bpf_insn *insn = &meta->insn;
  1950. u64 imm = insn->imm; /* sign extend */
  1951. swreg tmp_reg;
  1952. if (!imm) {
  1953. emit_alu(nfp_prog, reg_none(), reg_a(insn->dst_reg * 2),
  1954. ALU_OP_OR, reg_b(insn->dst_reg * 2 + 1));
  1955. emit_br(nfp_prog, BR_BNE, insn->off, 0);
  1956. return 0;
  1957. }
  1958. tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
  1959. emit_alu(nfp_prog, reg_none(),
  1960. reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
  1961. emit_br(nfp_prog, BR_BNE, insn->off, 0);
  1962. tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
  1963. emit_alu(nfp_prog, reg_none(),
  1964. reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
  1965. emit_br(nfp_prog, BR_BNE, insn->off, 0);
  1966. return 0;
  1967. }
  1968. static int jeq_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1969. {
  1970. const struct bpf_insn *insn = &meta->insn;
  1971. emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(insn->dst_reg * 2),
  1972. ALU_OP_XOR, reg_b(insn->src_reg * 2));
  1973. emit_alu(nfp_prog, imm_b(nfp_prog), reg_a(insn->dst_reg * 2 + 1),
  1974. ALU_OP_XOR, reg_b(insn->src_reg * 2 + 1));
  1975. emit_alu(nfp_prog, reg_none(),
  1976. imm_a(nfp_prog), ALU_OP_OR, imm_b(nfp_prog));
  1977. emit_br(nfp_prog, BR_BEQ, insn->off, 0);
  1978. return 0;
  1979. }
  1980. static int jset_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1981. {
  1982. return wrp_test_reg(nfp_prog, meta, ALU_OP_AND, BR_BNE);
  1983. }
  1984. static int jne_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1985. {
  1986. return wrp_test_reg(nfp_prog, meta, ALU_OP_XOR, BR_BNE);
  1987. }
  1988. static int call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  1989. {
  1990. switch (meta->insn.imm) {
  1991. case BPF_FUNC_xdp_adjust_head:
  1992. return adjust_head(nfp_prog, meta);
  1993. case BPF_FUNC_map_lookup_elem:
  1994. case BPF_FUNC_map_update_elem:
  1995. case BPF_FUNC_map_delete_elem:
  1996. return map_call_stack_common(nfp_prog, meta);
  1997. case BPF_FUNC_get_prandom_u32:
  1998. return nfp_get_prandom_u32(nfp_prog, meta);
  1999. case BPF_FUNC_perf_event_output:
  2000. return nfp_perf_event_output(nfp_prog, meta);
  2001. default:
  2002. WARN_ONCE(1, "verifier allowed unsupported function\n");
  2003. return -EOPNOTSUPP;
  2004. }
  2005. }
  2006. static int goto_out(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  2007. {
  2008. emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 0, RELO_BR_GO_OUT);
  2009. return 0;
  2010. }
  2011. static const instr_cb_t instr_cb[256] = {
  2012. [BPF_ALU64 | BPF_MOV | BPF_X] = mov_reg64,
  2013. [BPF_ALU64 | BPF_MOV | BPF_K] = mov_imm64,
  2014. [BPF_ALU64 | BPF_XOR | BPF_X] = xor_reg64,
  2015. [BPF_ALU64 | BPF_XOR | BPF_K] = xor_imm64,
  2016. [BPF_ALU64 | BPF_AND | BPF_X] = and_reg64,
  2017. [BPF_ALU64 | BPF_AND | BPF_K] = and_imm64,
  2018. [BPF_ALU64 | BPF_OR | BPF_X] = or_reg64,
  2019. [BPF_ALU64 | BPF_OR | BPF_K] = or_imm64,
  2020. [BPF_ALU64 | BPF_ADD | BPF_X] = add_reg64,
  2021. [BPF_ALU64 | BPF_ADD | BPF_K] = add_imm64,
  2022. [BPF_ALU64 | BPF_SUB | BPF_X] = sub_reg64,
  2023. [BPF_ALU64 | BPF_SUB | BPF_K] = sub_imm64,
  2024. [BPF_ALU64 | BPF_NEG] = neg_reg64,
  2025. [BPF_ALU64 | BPF_LSH | BPF_K] = shl_imm64,
  2026. [BPF_ALU64 | BPF_RSH | BPF_K] = shr_imm64,
  2027. [BPF_ALU | BPF_MOV | BPF_X] = mov_reg,
  2028. [BPF_ALU | BPF_MOV | BPF_K] = mov_imm,
  2029. [BPF_ALU | BPF_XOR | BPF_X] = xor_reg,
  2030. [BPF_ALU | BPF_XOR | BPF_K] = xor_imm,
  2031. [BPF_ALU | BPF_AND | BPF_X] = and_reg,
  2032. [BPF_ALU | BPF_AND | BPF_K] = and_imm,
  2033. [BPF_ALU | BPF_OR | BPF_X] = or_reg,
  2034. [BPF_ALU | BPF_OR | BPF_K] = or_imm,
  2035. [BPF_ALU | BPF_ADD | BPF_X] = add_reg,
  2036. [BPF_ALU | BPF_ADD | BPF_K] = add_imm,
  2037. [BPF_ALU | BPF_SUB | BPF_X] = sub_reg,
  2038. [BPF_ALU | BPF_SUB | BPF_K] = sub_imm,
  2039. [BPF_ALU | BPF_NEG] = neg_reg,
  2040. [BPF_ALU | BPF_LSH | BPF_K] = shl_imm,
  2041. [BPF_ALU | BPF_END | BPF_X] = end_reg32,
  2042. [BPF_LD | BPF_IMM | BPF_DW] = imm_ld8,
  2043. [BPF_LD | BPF_ABS | BPF_B] = data_ld1,
  2044. [BPF_LD | BPF_ABS | BPF_H] = data_ld2,
  2045. [BPF_LD | BPF_ABS | BPF_W] = data_ld4,
  2046. [BPF_LD | BPF_IND | BPF_B] = data_ind_ld1,
  2047. [BPF_LD | BPF_IND | BPF_H] = data_ind_ld2,
  2048. [BPF_LD | BPF_IND | BPF_W] = data_ind_ld4,
  2049. [BPF_LDX | BPF_MEM | BPF_B] = mem_ldx1,
  2050. [BPF_LDX | BPF_MEM | BPF_H] = mem_ldx2,
  2051. [BPF_LDX | BPF_MEM | BPF_W] = mem_ldx4,
  2052. [BPF_LDX | BPF_MEM | BPF_DW] = mem_ldx8,
  2053. [BPF_STX | BPF_MEM | BPF_B] = mem_stx1,
  2054. [BPF_STX | BPF_MEM | BPF_H] = mem_stx2,
  2055. [BPF_STX | BPF_MEM | BPF_W] = mem_stx4,
  2056. [BPF_STX | BPF_MEM | BPF_DW] = mem_stx8,
  2057. [BPF_STX | BPF_XADD | BPF_W] = mem_xadd4,
  2058. [BPF_STX | BPF_XADD | BPF_DW] = mem_xadd8,
  2059. [BPF_ST | BPF_MEM | BPF_B] = mem_st1,
  2060. [BPF_ST | BPF_MEM | BPF_H] = mem_st2,
  2061. [BPF_ST | BPF_MEM | BPF_W] = mem_st4,
  2062. [BPF_ST | BPF_MEM | BPF_DW] = mem_st8,
  2063. [BPF_JMP | BPF_JA | BPF_K] = jump,
  2064. [BPF_JMP | BPF_JEQ | BPF_K] = jeq_imm,
  2065. [BPF_JMP | BPF_JGT | BPF_K] = cmp_imm,
  2066. [BPF_JMP | BPF_JGE | BPF_K] = cmp_imm,
  2067. [BPF_JMP | BPF_JLT | BPF_K] = cmp_imm,
  2068. [BPF_JMP | BPF_JLE | BPF_K] = cmp_imm,
  2069. [BPF_JMP | BPF_JSGT | BPF_K] = cmp_imm,
  2070. [BPF_JMP | BPF_JSGE | BPF_K] = cmp_imm,
  2071. [BPF_JMP | BPF_JSLT | BPF_K] = cmp_imm,
  2072. [BPF_JMP | BPF_JSLE | BPF_K] = cmp_imm,
  2073. [BPF_JMP | BPF_JSET | BPF_K] = jset_imm,
  2074. [BPF_JMP | BPF_JNE | BPF_K] = jne_imm,
  2075. [BPF_JMP | BPF_JEQ | BPF_X] = jeq_reg,
  2076. [BPF_JMP | BPF_JGT | BPF_X] = cmp_reg,
  2077. [BPF_JMP | BPF_JGE | BPF_X] = cmp_reg,
  2078. [BPF_JMP | BPF_JLT | BPF_X] = cmp_reg,
  2079. [BPF_JMP | BPF_JLE | BPF_X] = cmp_reg,
  2080. [BPF_JMP | BPF_JSGT | BPF_X] = cmp_reg,
  2081. [BPF_JMP | BPF_JSGE | BPF_X] = cmp_reg,
  2082. [BPF_JMP | BPF_JSLT | BPF_X] = cmp_reg,
  2083. [BPF_JMP | BPF_JSLE | BPF_X] = cmp_reg,
  2084. [BPF_JMP | BPF_JSET | BPF_X] = jset_reg,
  2085. [BPF_JMP | BPF_JNE | BPF_X] = jne_reg,
  2086. [BPF_JMP | BPF_CALL] = call,
  2087. [BPF_JMP | BPF_EXIT] = goto_out,
  2088. };
  2089. /* --- Assembler logic --- */
  2090. static int nfp_fixup_branches(struct nfp_prog *nfp_prog)
  2091. {
  2092. struct nfp_insn_meta *meta, *jmp_dst;
  2093. u32 idx, br_idx;
  2094. list_for_each_entry(meta, &nfp_prog->insns, l) {
  2095. if (meta->skip)
  2096. continue;
  2097. if (meta->insn.code == (BPF_JMP | BPF_CALL))
  2098. continue;
  2099. if (BPF_CLASS(meta->insn.code) != BPF_JMP)
  2100. continue;
  2101. if (list_is_last(&meta->l, &nfp_prog->insns))
  2102. br_idx = nfp_prog->last_bpf_off;
  2103. else
  2104. br_idx = list_next_entry(meta, l)->off - 1;
  2105. if (!nfp_is_br(nfp_prog->prog[br_idx])) {
  2106. pr_err("Fixup found block not ending in branch %d %02x %016llx!!\n",
  2107. br_idx, meta->insn.code, nfp_prog->prog[br_idx]);
  2108. return -ELOOP;
  2109. }
  2110. /* Leave special branches for later */
  2111. if (FIELD_GET(OP_RELO_TYPE, nfp_prog->prog[br_idx]) !=
  2112. RELO_BR_REL)
  2113. continue;
  2114. if (!meta->jmp_dst) {
  2115. pr_err("Non-exit jump doesn't have destination info recorded!!\n");
  2116. return -ELOOP;
  2117. }
  2118. jmp_dst = meta->jmp_dst;
  2119. if (jmp_dst->skip) {
  2120. pr_err("Branch landing on removed instruction!!\n");
  2121. return -ELOOP;
  2122. }
  2123. for (idx = meta->off; idx <= br_idx; idx++) {
  2124. if (!nfp_is_br(nfp_prog->prog[idx]))
  2125. continue;
  2126. br_set_offset(&nfp_prog->prog[idx], jmp_dst->off);
  2127. }
  2128. }
  2129. return 0;
  2130. }
  2131. static void nfp_intro(struct nfp_prog *nfp_prog)
  2132. {
  2133. wrp_immed(nfp_prog, plen_reg(nfp_prog), GENMASK(13, 0));
  2134. emit_alu(nfp_prog, plen_reg(nfp_prog),
  2135. plen_reg(nfp_prog), ALU_OP_AND, pv_len(nfp_prog));
  2136. }
  2137. static void nfp_outro_tc_da(struct nfp_prog *nfp_prog)
  2138. {
  2139. /* TC direct-action mode:
  2140. * 0,1 ok NOT SUPPORTED[1]
  2141. * 2 drop 0x22 -> drop, count as stat1
  2142. * 4,5 nuke 0x02 -> drop
  2143. * 7 redir 0x44 -> redir, count as stat2
  2144. * * unspec 0x11 -> pass, count as stat0
  2145. *
  2146. * [1] We can't support OK and RECLASSIFY because we can't tell TC
  2147. * the exact decision made. We are forced to support UNSPEC
  2148. * to handle aborts so that's the only one we handle for passing
  2149. * packets up the stack.
  2150. */
  2151. /* Target for aborts */
  2152. nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
  2153. emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
  2154. wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
  2155. emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x11), SHF_SC_L_SHF, 16);
  2156. /* Target for normal exits */
  2157. nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
  2158. /* if R0 > 7 jump to abort */
  2159. emit_alu(nfp_prog, reg_none(), reg_imm(7), ALU_OP_SUB, reg_b(0));
  2160. emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
  2161. wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
  2162. wrp_immed(nfp_prog, reg_b(2), 0x41221211);
  2163. wrp_immed(nfp_prog, reg_b(3), 0x41001211);
  2164. emit_shf(nfp_prog, reg_a(1),
  2165. reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 2);
  2166. emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
  2167. emit_shf(nfp_prog, reg_a(2),
  2168. reg_imm(0xf), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
  2169. emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
  2170. emit_shf(nfp_prog, reg_b(2),
  2171. reg_imm(0xf), SHF_OP_AND, reg_b(3), SHF_SC_R_SHF, 0);
  2172. emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
  2173. emit_shf(nfp_prog, reg_b(2),
  2174. reg_a(2), SHF_OP_OR, reg_b(2), SHF_SC_L_SHF, 4);
  2175. emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
  2176. }
  2177. static void nfp_outro_xdp(struct nfp_prog *nfp_prog)
  2178. {
  2179. /* XDP return codes:
  2180. * 0 aborted 0x82 -> drop, count as stat3
  2181. * 1 drop 0x22 -> drop, count as stat1
  2182. * 2 pass 0x11 -> pass, count as stat0
  2183. * 3 tx 0x44 -> redir, count as stat2
  2184. * * unknown 0x82 -> drop, count as stat3
  2185. */
  2186. /* Target for aborts */
  2187. nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
  2188. emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
  2189. wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
  2190. emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x82), SHF_SC_L_SHF, 16);
  2191. /* Target for normal exits */
  2192. nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
  2193. /* if R0 > 3 jump to abort */
  2194. emit_alu(nfp_prog, reg_none(), reg_imm(3), ALU_OP_SUB, reg_b(0));
  2195. emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
  2196. wrp_immed(nfp_prog, reg_b(2), 0x44112282);
  2197. emit_shf(nfp_prog, reg_a(1),
  2198. reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 3);
  2199. emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
  2200. emit_shf(nfp_prog, reg_b(2),
  2201. reg_imm(0xff), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
  2202. emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
  2203. wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
  2204. emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
  2205. }
  2206. static void nfp_outro(struct nfp_prog *nfp_prog)
  2207. {
  2208. switch (nfp_prog->type) {
  2209. case BPF_PROG_TYPE_SCHED_CLS:
  2210. nfp_outro_tc_da(nfp_prog);
  2211. break;
  2212. case BPF_PROG_TYPE_XDP:
  2213. nfp_outro_xdp(nfp_prog);
  2214. break;
  2215. default:
  2216. WARN_ON(1);
  2217. }
  2218. }
  2219. static int nfp_translate(struct nfp_prog *nfp_prog)
  2220. {
  2221. struct nfp_insn_meta *meta;
  2222. int err;
  2223. nfp_intro(nfp_prog);
  2224. if (nfp_prog->error)
  2225. return nfp_prog->error;
  2226. list_for_each_entry(meta, &nfp_prog->insns, l) {
  2227. instr_cb_t cb = instr_cb[meta->insn.code];
  2228. meta->off = nfp_prog_current_offset(nfp_prog);
  2229. if (meta->skip) {
  2230. nfp_prog->n_translated++;
  2231. continue;
  2232. }
  2233. if (nfp_meta_has_prev(nfp_prog, meta) &&
  2234. nfp_meta_prev(meta)->double_cb)
  2235. cb = nfp_meta_prev(meta)->double_cb;
  2236. if (!cb)
  2237. return -ENOENT;
  2238. err = cb(nfp_prog, meta);
  2239. if (err)
  2240. return err;
  2241. if (nfp_prog->error)
  2242. return nfp_prog->error;
  2243. nfp_prog->n_translated++;
  2244. }
  2245. nfp_prog->last_bpf_off = nfp_prog_current_offset(nfp_prog) - 1;
  2246. nfp_outro(nfp_prog);
  2247. if (nfp_prog->error)
  2248. return nfp_prog->error;
  2249. wrp_nops(nfp_prog, NFP_USTORE_PREFETCH_WINDOW);
  2250. if (nfp_prog->error)
  2251. return nfp_prog->error;
  2252. return nfp_fixup_branches(nfp_prog);
  2253. }
  2254. /* --- Optimizations --- */
  2255. static void nfp_bpf_opt_reg_init(struct nfp_prog *nfp_prog)
  2256. {
  2257. struct nfp_insn_meta *meta;
  2258. list_for_each_entry(meta, &nfp_prog->insns, l) {
  2259. struct bpf_insn insn = meta->insn;
  2260. /* Programs converted from cBPF start with register xoring */
  2261. if (insn.code == (BPF_ALU64 | BPF_XOR | BPF_X) &&
  2262. insn.src_reg == insn.dst_reg)
  2263. continue;
  2264. /* Programs start with R6 = R1 but we ignore the skb pointer */
  2265. if (insn.code == (BPF_ALU64 | BPF_MOV | BPF_X) &&
  2266. insn.src_reg == 1 && insn.dst_reg == 6)
  2267. meta->skip = true;
  2268. /* Return as soon as something doesn't match */
  2269. if (!meta->skip)
  2270. return;
  2271. }
  2272. }
  2273. /* abs(insn.imm) will fit better into unrestricted reg immediate -
  2274. * convert add/sub of a negative number into a sub/add of a positive one.
  2275. */
  2276. static void nfp_bpf_opt_neg_add_sub(struct nfp_prog *nfp_prog)
  2277. {
  2278. struct nfp_insn_meta *meta;
  2279. list_for_each_entry(meta, &nfp_prog->insns, l) {
  2280. struct bpf_insn insn = meta->insn;
  2281. if (meta->skip)
  2282. continue;
  2283. if (BPF_CLASS(insn.code) != BPF_ALU &&
  2284. BPF_CLASS(insn.code) != BPF_ALU64 &&
  2285. BPF_CLASS(insn.code) != BPF_JMP)
  2286. continue;
  2287. if (BPF_SRC(insn.code) != BPF_K)
  2288. continue;
  2289. if (insn.imm >= 0)
  2290. continue;
  2291. if (BPF_CLASS(insn.code) == BPF_JMP) {
  2292. switch (BPF_OP(insn.code)) {
  2293. case BPF_JGE:
  2294. case BPF_JSGE:
  2295. case BPF_JLT:
  2296. case BPF_JSLT:
  2297. meta->jump_neg_op = true;
  2298. break;
  2299. default:
  2300. continue;
  2301. }
  2302. } else {
  2303. if (BPF_OP(insn.code) == BPF_ADD)
  2304. insn.code = BPF_CLASS(insn.code) | BPF_SUB;
  2305. else if (BPF_OP(insn.code) == BPF_SUB)
  2306. insn.code = BPF_CLASS(insn.code) | BPF_ADD;
  2307. else
  2308. continue;
  2309. meta->insn.code = insn.code | BPF_K;
  2310. }
  2311. meta->insn.imm = -insn.imm;
  2312. }
  2313. }
  2314. /* Remove masking after load since our load guarantees this is not needed */
  2315. static void nfp_bpf_opt_ld_mask(struct nfp_prog *nfp_prog)
  2316. {
  2317. struct nfp_insn_meta *meta1, *meta2;
  2318. const s32 exp_mask[] = {
  2319. [BPF_B] = 0x000000ffU,
  2320. [BPF_H] = 0x0000ffffU,
  2321. [BPF_W] = 0xffffffffU,
  2322. };
  2323. nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
  2324. struct bpf_insn insn, next;
  2325. insn = meta1->insn;
  2326. next = meta2->insn;
  2327. if (BPF_CLASS(insn.code) != BPF_LD)
  2328. continue;
  2329. if (BPF_MODE(insn.code) != BPF_ABS &&
  2330. BPF_MODE(insn.code) != BPF_IND)
  2331. continue;
  2332. if (next.code != (BPF_ALU64 | BPF_AND | BPF_K))
  2333. continue;
  2334. if (!exp_mask[BPF_SIZE(insn.code)])
  2335. continue;
  2336. if (exp_mask[BPF_SIZE(insn.code)] != next.imm)
  2337. continue;
  2338. if (next.src_reg || next.dst_reg)
  2339. continue;
  2340. if (meta2->flags & FLAG_INSN_IS_JUMP_DST)
  2341. continue;
  2342. meta2->skip = true;
  2343. }
  2344. }
  2345. static void nfp_bpf_opt_ld_shift(struct nfp_prog *nfp_prog)
  2346. {
  2347. struct nfp_insn_meta *meta1, *meta2, *meta3;
  2348. nfp_for_each_insn_walk3(nfp_prog, meta1, meta2, meta3) {
  2349. struct bpf_insn insn, next1, next2;
  2350. insn = meta1->insn;
  2351. next1 = meta2->insn;
  2352. next2 = meta3->insn;
  2353. if (BPF_CLASS(insn.code) != BPF_LD)
  2354. continue;
  2355. if (BPF_MODE(insn.code) != BPF_ABS &&
  2356. BPF_MODE(insn.code) != BPF_IND)
  2357. continue;
  2358. if (BPF_SIZE(insn.code) != BPF_W)
  2359. continue;
  2360. if (!(next1.code == (BPF_LSH | BPF_K | BPF_ALU64) &&
  2361. next2.code == (BPF_RSH | BPF_K | BPF_ALU64)) &&
  2362. !(next1.code == (BPF_RSH | BPF_K | BPF_ALU64) &&
  2363. next2.code == (BPF_LSH | BPF_K | BPF_ALU64)))
  2364. continue;
  2365. if (next1.src_reg || next1.dst_reg ||
  2366. next2.src_reg || next2.dst_reg)
  2367. continue;
  2368. if (next1.imm != 0x20 || next2.imm != 0x20)
  2369. continue;
  2370. if (meta2->flags & FLAG_INSN_IS_JUMP_DST ||
  2371. meta3->flags & FLAG_INSN_IS_JUMP_DST)
  2372. continue;
  2373. meta2->skip = true;
  2374. meta3->skip = true;
  2375. }
  2376. }
  2377. /* load/store pair that forms memory copy sould look like the following:
  2378. *
  2379. * ld_width R, [addr_src + offset_src]
  2380. * st_width [addr_dest + offset_dest], R
  2381. *
  2382. * The destination register of load and source register of store should
  2383. * be the same, load and store should also perform at the same width.
  2384. * If either of addr_src or addr_dest is stack pointer, we don't do the
  2385. * CPP optimization as stack is modelled by registers on NFP.
  2386. */
  2387. static bool
  2388. curr_pair_is_memcpy(struct nfp_insn_meta *ld_meta,
  2389. struct nfp_insn_meta *st_meta)
  2390. {
  2391. struct bpf_insn *ld = &ld_meta->insn;
  2392. struct bpf_insn *st = &st_meta->insn;
  2393. if (!is_mbpf_load(ld_meta) || !is_mbpf_store(st_meta))
  2394. return false;
  2395. if (ld_meta->ptr.type != PTR_TO_PACKET)
  2396. return false;
  2397. if (st_meta->ptr.type != PTR_TO_PACKET)
  2398. return false;
  2399. if (BPF_SIZE(ld->code) != BPF_SIZE(st->code))
  2400. return false;
  2401. if (ld->dst_reg != st->src_reg)
  2402. return false;
  2403. /* There is jump to the store insn in this pair. */
  2404. if (st_meta->flags & FLAG_INSN_IS_JUMP_DST)
  2405. return false;
  2406. return true;
  2407. }
  2408. /* Currently, we only support chaining load/store pairs if:
  2409. *
  2410. * - Their address base registers are the same.
  2411. * - Their address offsets are in the same order.
  2412. * - They operate at the same memory width.
  2413. * - There is no jump into the middle of them.
  2414. */
  2415. static bool
  2416. curr_pair_chain_with_previous(struct nfp_insn_meta *ld_meta,
  2417. struct nfp_insn_meta *st_meta,
  2418. struct bpf_insn *prev_ld,
  2419. struct bpf_insn *prev_st)
  2420. {
  2421. u8 prev_size, curr_size, prev_ld_base, prev_st_base, prev_ld_dst;
  2422. struct bpf_insn *ld = &ld_meta->insn;
  2423. struct bpf_insn *st = &st_meta->insn;
  2424. s16 prev_ld_off, prev_st_off;
  2425. /* This pair is the start pair. */
  2426. if (!prev_ld)
  2427. return true;
  2428. prev_size = BPF_LDST_BYTES(prev_ld);
  2429. curr_size = BPF_LDST_BYTES(ld);
  2430. prev_ld_base = prev_ld->src_reg;
  2431. prev_st_base = prev_st->dst_reg;
  2432. prev_ld_dst = prev_ld->dst_reg;
  2433. prev_ld_off = prev_ld->off;
  2434. prev_st_off = prev_st->off;
  2435. if (ld->dst_reg != prev_ld_dst)
  2436. return false;
  2437. if (ld->src_reg != prev_ld_base || st->dst_reg != prev_st_base)
  2438. return false;
  2439. if (curr_size != prev_size)
  2440. return false;
  2441. /* There is jump to the head of this pair. */
  2442. if (ld_meta->flags & FLAG_INSN_IS_JUMP_DST)
  2443. return false;
  2444. /* Both in ascending order. */
  2445. if (prev_ld_off + prev_size == ld->off &&
  2446. prev_st_off + prev_size == st->off)
  2447. return true;
  2448. /* Both in descending order. */
  2449. if (ld->off + curr_size == prev_ld_off &&
  2450. st->off + curr_size == prev_st_off)
  2451. return true;
  2452. return false;
  2453. }
  2454. /* Return TRUE if cross memory access happens. Cross memory access means
  2455. * store area is overlapping with load area that a later load might load
  2456. * the value from previous store, for this case we can't treat the sequence
  2457. * as an memory copy.
  2458. */
  2459. static bool
  2460. cross_mem_access(struct bpf_insn *ld, struct nfp_insn_meta *head_ld_meta,
  2461. struct nfp_insn_meta *head_st_meta)
  2462. {
  2463. s16 head_ld_off, head_st_off, ld_off;
  2464. /* Different pointer types does not overlap. */
  2465. if (head_ld_meta->ptr.type != head_st_meta->ptr.type)
  2466. return false;
  2467. /* load and store are both PTR_TO_PACKET, check ID info. */
  2468. if (head_ld_meta->ptr.id != head_st_meta->ptr.id)
  2469. return true;
  2470. /* Canonicalize the offsets. Turn all of them against the original
  2471. * base register.
  2472. */
  2473. head_ld_off = head_ld_meta->insn.off + head_ld_meta->ptr.off;
  2474. head_st_off = head_st_meta->insn.off + head_st_meta->ptr.off;
  2475. ld_off = ld->off + head_ld_meta->ptr.off;
  2476. /* Ascending order cross. */
  2477. if (ld_off > head_ld_off &&
  2478. head_ld_off < head_st_off && ld_off >= head_st_off)
  2479. return true;
  2480. /* Descending order cross. */
  2481. if (ld_off < head_ld_off &&
  2482. head_ld_off > head_st_off && ld_off <= head_st_off)
  2483. return true;
  2484. return false;
  2485. }
  2486. /* This pass try to identify the following instructoin sequences.
  2487. *
  2488. * load R, [regA + offA]
  2489. * store [regB + offB], R
  2490. * load R, [regA + offA + const_imm_A]
  2491. * store [regB + offB + const_imm_A], R
  2492. * load R, [regA + offA + 2 * const_imm_A]
  2493. * store [regB + offB + 2 * const_imm_A], R
  2494. * ...
  2495. *
  2496. * Above sequence is typically generated by compiler when lowering
  2497. * memcpy. NFP prefer using CPP instructions to accelerate it.
  2498. */
  2499. static void nfp_bpf_opt_ldst_gather(struct nfp_prog *nfp_prog)
  2500. {
  2501. struct nfp_insn_meta *head_ld_meta = NULL;
  2502. struct nfp_insn_meta *head_st_meta = NULL;
  2503. struct nfp_insn_meta *meta1, *meta2;
  2504. struct bpf_insn *prev_ld = NULL;
  2505. struct bpf_insn *prev_st = NULL;
  2506. u8 count = 0;
  2507. nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
  2508. struct bpf_insn *ld = &meta1->insn;
  2509. struct bpf_insn *st = &meta2->insn;
  2510. /* Reset record status if any of the following if true:
  2511. * - The current insn pair is not load/store.
  2512. * - The load/store pair doesn't chain with previous one.
  2513. * - The chained load/store pair crossed with previous pair.
  2514. * - The chained load/store pair has a total size of memory
  2515. * copy beyond 128 bytes which is the maximum length a
  2516. * single NFP CPP command can transfer.
  2517. */
  2518. if (!curr_pair_is_memcpy(meta1, meta2) ||
  2519. !curr_pair_chain_with_previous(meta1, meta2, prev_ld,
  2520. prev_st) ||
  2521. (head_ld_meta && (cross_mem_access(ld, head_ld_meta,
  2522. head_st_meta) ||
  2523. head_ld_meta->ldst_gather_len >= 128))) {
  2524. if (!count)
  2525. continue;
  2526. if (count > 1) {
  2527. s16 prev_ld_off = prev_ld->off;
  2528. s16 prev_st_off = prev_st->off;
  2529. s16 head_ld_off = head_ld_meta->insn.off;
  2530. if (prev_ld_off < head_ld_off) {
  2531. head_ld_meta->insn.off = prev_ld_off;
  2532. head_st_meta->insn.off = prev_st_off;
  2533. head_ld_meta->ldst_gather_len =
  2534. -head_ld_meta->ldst_gather_len;
  2535. }
  2536. head_ld_meta->paired_st = &head_st_meta->insn;
  2537. head_st_meta->skip = true;
  2538. } else {
  2539. head_ld_meta->ldst_gather_len = 0;
  2540. }
  2541. /* If the chain is ended by an load/store pair then this
  2542. * could serve as the new head of the the next chain.
  2543. */
  2544. if (curr_pair_is_memcpy(meta1, meta2)) {
  2545. head_ld_meta = meta1;
  2546. head_st_meta = meta2;
  2547. head_ld_meta->ldst_gather_len =
  2548. BPF_LDST_BYTES(ld);
  2549. meta1 = nfp_meta_next(meta1);
  2550. meta2 = nfp_meta_next(meta2);
  2551. prev_ld = ld;
  2552. prev_st = st;
  2553. count = 1;
  2554. } else {
  2555. head_ld_meta = NULL;
  2556. head_st_meta = NULL;
  2557. prev_ld = NULL;
  2558. prev_st = NULL;
  2559. count = 0;
  2560. }
  2561. continue;
  2562. }
  2563. if (!head_ld_meta) {
  2564. head_ld_meta = meta1;
  2565. head_st_meta = meta2;
  2566. } else {
  2567. meta1->skip = true;
  2568. meta2->skip = true;
  2569. }
  2570. head_ld_meta->ldst_gather_len += BPF_LDST_BYTES(ld);
  2571. meta1 = nfp_meta_next(meta1);
  2572. meta2 = nfp_meta_next(meta2);
  2573. prev_ld = ld;
  2574. prev_st = st;
  2575. count++;
  2576. }
  2577. }
  2578. static void nfp_bpf_opt_pkt_cache(struct nfp_prog *nfp_prog)
  2579. {
  2580. struct nfp_insn_meta *meta, *range_node = NULL;
  2581. s16 range_start = 0, range_end = 0;
  2582. bool cache_avail = false;
  2583. struct bpf_insn *insn;
  2584. s32 range_ptr_off = 0;
  2585. u32 range_ptr_id = 0;
  2586. list_for_each_entry(meta, &nfp_prog->insns, l) {
  2587. if (meta->flags & FLAG_INSN_IS_JUMP_DST)
  2588. cache_avail = false;
  2589. if (meta->skip)
  2590. continue;
  2591. insn = &meta->insn;
  2592. if (is_mbpf_store_pkt(meta) ||
  2593. insn->code == (BPF_JMP | BPF_CALL) ||
  2594. is_mbpf_classic_store_pkt(meta) ||
  2595. is_mbpf_classic_load(meta)) {
  2596. cache_avail = false;
  2597. continue;
  2598. }
  2599. if (!is_mbpf_load(meta))
  2600. continue;
  2601. if (meta->ptr.type != PTR_TO_PACKET || meta->ldst_gather_len) {
  2602. cache_avail = false;
  2603. continue;
  2604. }
  2605. if (!cache_avail) {
  2606. cache_avail = true;
  2607. if (range_node)
  2608. goto end_current_then_start_new;
  2609. goto start_new;
  2610. }
  2611. /* Check ID to make sure two reads share the same
  2612. * variable offset against PTR_TO_PACKET, and check OFF
  2613. * to make sure they also share the same constant
  2614. * offset.
  2615. *
  2616. * OFFs don't really need to be the same, because they
  2617. * are the constant offsets against PTR_TO_PACKET, so
  2618. * for different OFFs, we could canonicalize them to
  2619. * offsets against original packet pointer. We don't
  2620. * support this.
  2621. */
  2622. if (meta->ptr.id == range_ptr_id &&
  2623. meta->ptr.off == range_ptr_off) {
  2624. s16 new_start = range_start;
  2625. s16 end, off = insn->off;
  2626. s16 new_end = range_end;
  2627. bool changed = false;
  2628. if (off < range_start) {
  2629. new_start = off;
  2630. changed = true;
  2631. }
  2632. end = off + BPF_LDST_BYTES(insn);
  2633. if (end > range_end) {
  2634. new_end = end;
  2635. changed = true;
  2636. }
  2637. if (!changed)
  2638. continue;
  2639. if (new_end - new_start <= 64) {
  2640. /* Install new range. */
  2641. range_start = new_start;
  2642. range_end = new_end;
  2643. continue;
  2644. }
  2645. }
  2646. end_current_then_start_new:
  2647. range_node->pkt_cache.range_start = range_start;
  2648. range_node->pkt_cache.range_end = range_end;
  2649. start_new:
  2650. range_node = meta;
  2651. range_node->pkt_cache.do_init = true;
  2652. range_ptr_id = range_node->ptr.id;
  2653. range_ptr_off = range_node->ptr.off;
  2654. range_start = insn->off;
  2655. range_end = insn->off + BPF_LDST_BYTES(insn);
  2656. }
  2657. if (range_node) {
  2658. range_node->pkt_cache.range_start = range_start;
  2659. range_node->pkt_cache.range_end = range_end;
  2660. }
  2661. list_for_each_entry(meta, &nfp_prog->insns, l) {
  2662. if (meta->skip)
  2663. continue;
  2664. if (is_mbpf_load_pkt(meta) && !meta->ldst_gather_len) {
  2665. if (meta->pkt_cache.do_init) {
  2666. range_start = meta->pkt_cache.range_start;
  2667. range_end = meta->pkt_cache.range_end;
  2668. } else {
  2669. meta->pkt_cache.range_start = range_start;
  2670. meta->pkt_cache.range_end = range_end;
  2671. }
  2672. }
  2673. }
  2674. }
  2675. static int nfp_bpf_optimize(struct nfp_prog *nfp_prog)
  2676. {
  2677. nfp_bpf_opt_reg_init(nfp_prog);
  2678. nfp_bpf_opt_neg_add_sub(nfp_prog);
  2679. nfp_bpf_opt_ld_mask(nfp_prog);
  2680. nfp_bpf_opt_ld_shift(nfp_prog);
  2681. nfp_bpf_opt_ldst_gather(nfp_prog);
  2682. nfp_bpf_opt_pkt_cache(nfp_prog);
  2683. return 0;
  2684. }
  2685. static int nfp_bpf_replace_map_ptrs(struct nfp_prog *nfp_prog)
  2686. {
  2687. struct nfp_insn_meta *meta1, *meta2;
  2688. struct nfp_bpf_map *nfp_map;
  2689. struct bpf_map *map;
  2690. nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
  2691. if (meta1->skip || meta2->skip)
  2692. continue;
  2693. if (meta1->insn.code != (BPF_LD | BPF_IMM | BPF_DW) ||
  2694. meta1->insn.src_reg != BPF_PSEUDO_MAP_FD)
  2695. continue;
  2696. map = (void *)(unsigned long)((u32)meta1->insn.imm |
  2697. (u64)meta2->insn.imm << 32);
  2698. if (bpf_map_offload_neutral(map))
  2699. continue;
  2700. nfp_map = map_to_offmap(map)->dev_priv;
  2701. meta1->insn.imm = nfp_map->tid;
  2702. meta2->insn.imm = 0;
  2703. }
  2704. return 0;
  2705. }
  2706. static int nfp_bpf_ustore_calc(u64 *prog, unsigned int len)
  2707. {
  2708. __le64 *ustore = (__force __le64 *)prog;
  2709. int i;
  2710. for (i = 0; i < len; i++) {
  2711. int err;
  2712. err = nfp_ustore_check_valid_no_ecc(prog[i]);
  2713. if (err)
  2714. return err;
  2715. ustore[i] = cpu_to_le64(nfp_ustore_calc_ecc_insn(prog[i]));
  2716. }
  2717. return 0;
  2718. }
  2719. static void nfp_bpf_prog_trim(struct nfp_prog *nfp_prog)
  2720. {
  2721. void *prog;
  2722. prog = kvmalloc_array(nfp_prog->prog_len, sizeof(u64), GFP_KERNEL);
  2723. if (!prog)
  2724. return;
  2725. nfp_prog->__prog_alloc_len = nfp_prog->prog_len * sizeof(u64);
  2726. memcpy(prog, nfp_prog->prog, nfp_prog->__prog_alloc_len);
  2727. kvfree(nfp_prog->prog);
  2728. nfp_prog->prog = prog;
  2729. }
  2730. int nfp_bpf_jit(struct nfp_prog *nfp_prog)
  2731. {
  2732. int ret;
  2733. ret = nfp_bpf_replace_map_ptrs(nfp_prog);
  2734. if (ret)
  2735. return ret;
  2736. ret = nfp_bpf_optimize(nfp_prog);
  2737. if (ret)
  2738. return ret;
  2739. ret = nfp_translate(nfp_prog);
  2740. if (ret) {
  2741. pr_err("Translation failed with error %d (translated: %u)\n",
  2742. ret, nfp_prog->n_translated);
  2743. return -EINVAL;
  2744. }
  2745. nfp_bpf_prog_trim(nfp_prog);
  2746. return ret;
  2747. }
  2748. void nfp_bpf_jit_prepare(struct nfp_prog *nfp_prog, unsigned int cnt)
  2749. {
  2750. struct nfp_insn_meta *meta;
  2751. /* Another pass to record jump information. */
  2752. list_for_each_entry(meta, &nfp_prog->insns, l) {
  2753. u64 code = meta->insn.code;
  2754. if (BPF_CLASS(code) == BPF_JMP && BPF_OP(code) != BPF_EXIT &&
  2755. BPF_OP(code) != BPF_CALL) {
  2756. struct nfp_insn_meta *dst_meta;
  2757. unsigned short dst_indx;
  2758. dst_indx = meta->n + 1 + meta->insn.off;
  2759. dst_meta = nfp_bpf_goto_meta(nfp_prog, meta, dst_indx,
  2760. cnt);
  2761. meta->jmp_dst = dst_meta;
  2762. dst_meta->flags |= FLAG_INSN_IS_JUMP_DST;
  2763. }
  2764. }
  2765. }
  2766. bool nfp_bpf_supported_opcode(u8 code)
  2767. {
  2768. return !!instr_cb[code];
  2769. }
  2770. void *nfp_bpf_relo_for_vnic(struct nfp_prog *nfp_prog, struct nfp_bpf_vnic *bv)
  2771. {
  2772. unsigned int i;
  2773. u64 *prog;
  2774. int err;
  2775. prog = kmemdup(nfp_prog->prog, nfp_prog->prog_len * sizeof(u64),
  2776. GFP_KERNEL);
  2777. if (!prog)
  2778. return ERR_PTR(-ENOMEM);
  2779. for (i = 0; i < nfp_prog->prog_len; i++) {
  2780. enum nfp_relo_type special;
  2781. u32 val;
  2782. special = FIELD_GET(OP_RELO_TYPE, prog[i]);
  2783. switch (special) {
  2784. case RELO_NONE:
  2785. continue;
  2786. case RELO_BR_REL:
  2787. br_add_offset(&prog[i], bv->start_off);
  2788. break;
  2789. case RELO_BR_GO_OUT:
  2790. br_set_offset(&prog[i],
  2791. nfp_prog->tgt_out + bv->start_off);
  2792. break;
  2793. case RELO_BR_GO_ABORT:
  2794. br_set_offset(&prog[i],
  2795. nfp_prog->tgt_abort + bv->start_off);
  2796. break;
  2797. case RELO_BR_NEXT_PKT:
  2798. br_set_offset(&prog[i], bv->tgt_done);
  2799. break;
  2800. case RELO_BR_HELPER:
  2801. val = br_get_offset(prog[i]);
  2802. val -= BR_OFF_RELO;
  2803. switch (val) {
  2804. case BPF_FUNC_map_lookup_elem:
  2805. val = nfp_prog->bpf->helpers.map_lookup;
  2806. break;
  2807. case BPF_FUNC_map_update_elem:
  2808. val = nfp_prog->bpf->helpers.map_update;
  2809. break;
  2810. case BPF_FUNC_map_delete_elem:
  2811. val = nfp_prog->bpf->helpers.map_delete;
  2812. break;
  2813. case BPF_FUNC_perf_event_output:
  2814. val = nfp_prog->bpf->helpers.perf_event_output;
  2815. break;
  2816. default:
  2817. pr_err("relocation of unknown helper %d\n",
  2818. val);
  2819. err = -EINVAL;
  2820. goto err_free_prog;
  2821. }
  2822. br_set_offset(&prog[i], val);
  2823. break;
  2824. case RELO_IMMED_REL:
  2825. immed_add_value(&prog[i], bv->start_off);
  2826. break;
  2827. }
  2828. prog[i] &= ~OP_RELO_TYPE;
  2829. }
  2830. err = nfp_bpf_ustore_calc(prog, nfp_prog->prog_len);
  2831. if (err)
  2832. goto err_free_prog;
  2833. return prog;
  2834. err_free_prog:
  2835. kfree(prog);
  2836. return ERR_PTR(err);
  2837. }