intel_pm.c 178 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include "i915_drv.h"
  29. #include "intel_drv.h"
  30. #include "../../../platform/x86/intel_ips.h"
  31. #include <linux/module.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/i915_powerwell.h>
  34. #include <linux/pm_runtime.h>
  35. /**
  36. * RC6 is a special power stage which allows the GPU to enter an very
  37. * low-voltage mode when idle, using down to 0V while at this stage. This
  38. * stage is entered automatically when the GPU is idle when RC6 support is
  39. * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  40. *
  41. * There are different RC6 modes available in Intel GPU, which differentiate
  42. * among each other with the latency required to enter and leave RC6 and
  43. * voltage consumed by the GPU in different states.
  44. *
  45. * The combination of the following flags define which states GPU is allowed
  46. * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  47. * RC6pp is deepest RC6. Their support by hardware varies according to the
  48. * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  49. * which brings the most power savings; deeper states save more power, but
  50. * require higher latency to switch to and wake up.
  51. */
  52. #define INTEL_RC6_ENABLE (1<<0)
  53. #define INTEL_RC6p_ENABLE (1<<1)
  54. #define INTEL_RC6pp_ENABLE (1<<2)
  55. /* FBC, or Frame Buffer Compression, is a technique employed to compress the
  56. * framebuffer contents in-memory, aiming at reducing the required bandwidth
  57. * during in-memory transfers and, therefore, reduce the power packet.
  58. *
  59. * The benefits of FBC are mostly visible with solid backgrounds and
  60. * variation-less patterns.
  61. *
  62. * FBC-related functionality can be enabled by the means of the
  63. * i915.i915_enable_fbc parameter
  64. */
  65. static void i8xx_disable_fbc(struct drm_device *dev)
  66. {
  67. struct drm_i915_private *dev_priv = dev->dev_private;
  68. u32 fbc_ctl;
  69. /* Disable compression */
  70. fbc_ctl = I915_READ(FBC_CONTROL);
  71. if ((fbc_ctl & FBC_CTL_EN) == 0)
  72. return;
  73. fbc_ctl &= ~FBC_CTL_EN;
  74. I915_WRITE(FBC_CONTROL, fbc_ctl);
  75. /* Wait for compressing bit to clear */
  76. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  77. DRM_DEBUG_KMS("FBC idle timed out\n");
  78. return;
  79. }
  80. DRM_DEBUG_KMS("disabled FBC\n");
  81. }
  82. static void i8xx_enable_fbc(struct drm_crtc *crtc)
  83. {
  84. struct drm_device *dev = crtc->dev;
  85. struct drm_i915_private *dev_priv = dev->dev_private;
  86. struct drm_framebuffer *fb = crtc->fb;
  87. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  88. struct drm_i915_gem_object *obj = intel_fb->obj;
  89. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  90. int cfb_pitch;
  91. int plane, i;
  92. u32 fbc_ctl;
  93. cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
  94. if (fb->pitches[0] < cfb_pitch)
  95. cfb_pitch = fb->pitches[0];
  96. /* FBC_CTL wants 32B or 64B units */
  97. if (IS_GEN2(dev))
  98. cfb_pitch = (cfb_pitch / 32) - 1;
  99. else
  100. cfb_pitch = (cfb_pitch / 64) - 1;
  101. plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  102. /* Clear old tags */
  103. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  104. I915_WRITE(FBC_TAG + (i * 4), 0);
  105. if (IS_GEN4(dev)) {
  106. u32 fbc_ctl2;
  107. /* Set it up... */
  108. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  109. fbc_ctl2 |= plane;
  110. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  111. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  112. }
  113. /* enable it... */
  114. fbc_ctl = I915_READ(FBC_CONTROL);
  115. fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
  116. fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
  117. if (IS_I945GM(dev))
  118. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  119. fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  120. fbc_ctl |= obj->fence_reg;
  121. I915_WRITE(FBC_CONTROL, fbc_ctl);
  122. DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
  123. cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
  124. }
  125. static bool i8xx_fbc_enabled(struct drm_device *dev)
  126. {
  127. struct drm_i915_private *dev_priv = dev->dev_private;
  128. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  129. }
  130. static void g4x_enable_fbc(struct drm_crtc *crtc)
  131. {
  132. struct drm_device *dev = crtc->dev;
  133. struct drm_i915_private *dev_priv = dev->dev_private;
  134. struct drm_framebuffer *fb = crtc->fb;
  135. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  136. struct drm_i915_gem_object *obj = intel_fb->obj;
  137. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  138. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  139. u32 dpfc_ctl;
  140. dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
  141. dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
  142. I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
  143. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  144. /* enable it... */
  145. I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
  146. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  147. }
  148. static void g4x_disable_fbc(struct drm_device *dev)
  149. {
  150. struct drm_i915_private *dev_priv = dev->dev_private;
  151. u32 dpfc_ctl;
  152. /* Disable compression */
  153. dpfc_ctl = I915_READ(DPFC_CONTROL);
  154. if (dpfc_ctl & DPFC_CTL_EN) {
  155. dpfc_ctl &= ~DPFC_CTL_EN;
  156. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  157. DRM_DEBUG_KMS("disabled FBC\n");
  158. }
  159. }
  160. static bool g4x_fbc_enabled(struct drm_device *dev)
  161. {
  162. struct drm_i915_private *dev_priv = dev->dev_private;
  163. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  164. }
  165. static void sandybridge_blit_fbc_update(struct drm_device *dev)
  166. {
  167. struct drm_i915_private *dev_priv = dev->dev_private;
  168. u32 blt_ecoskpd;
  169. /* Make sure blitter notifies FBC of writes */
  170. /* Blitter is part of Media powerwell on VLV. No impact of
  171. * his param in other platforms for now */
  172. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
  173. blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
  174. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
  175. GEN6_BLITTER_LOCK_SHIFT;
  176. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  177. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
  178. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  179. blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
  180. GEN6_BLITTER_LOCK_SHIFT);
  181. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  182. POSTING_READ(GEN6_BLITTER_ECOSKPD);
  183. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
  184. }
  185. static void ironlake_enable_fbc(struct drm_crtc *crtc)
  186. {
  187. struct drm_device *dev = crtc->dev;
  188. struct drm_i915_private *dev_priv = dev->dev_private;
  189. struct drm_framebuffer *fb = crtc->fb;
  190. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  191. struct drm_i915_gem_object *obj = intel_fb->obj;
  192. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  193. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  194. u32 dpfc_ctl;
  195. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  196. dpfc_ctl &= DPFC_RESERVED;
  197. dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
  198. /* Set persistent mode for front-buffer rendering, ala X. */
  199. dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
  200. dpfc_ctl |= DPFC_CTL_FENCE_EN;
  201. if (IS_GEN5(dev))
  202. dpfc_ctl |= obj->fence_reg;
  203. I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
  204. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  205. I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
  206. /* enable it... */
  207. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  208. if (IS_GEN6(dev)) {
  209. I915_WRITE(SNB_DPFC_CTL_SA,
  210. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  211. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  212. sandybridge_blit_fbc_update(dev);
  213. }
  214. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  215. }
  216. static void ironlake_disable_fbc(struct drm_device *dev)
  217. {
  218. struct drm_i915_private *dev_priv = dev->dev_private;
  219. u32 dpfc_ctl;
  220. /* Disable compression */
  221. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  222. if (dpfc_ctl & DPFC_CTL_EN) {
  223. dpfc_ctl &= ~DPFC_CTL_EN;
  224. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  225. DRM_DEBUG_KMS("disabled FBC\n");
  226. }
  227. }
  228. static bool ironlake_fbc_enabled(struct drm_device *dev)
  229. {
  230. struct drm_i915_private *dev_priv = dev->dev_private;
  231. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  232. }
  233. static void gen7_enable_fbc(struct drm_crtc *crtc)
  234. {
  235. struct drm_device *dev = crtc->dev;
  236. struct drm_i915_private *dev_priv = dev->dev_private;
  237. struct drm_framebuffer *fb = crtc->fb;
  238. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  239. struct drm_i915_gem_object *obj = intel_fb->obj;
  240. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  241. I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
  242. I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
  243. IVB_DPFC_CTL_FENCE_EN |
  244. intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
  245. if (IS_IVYBRIDGE(dev)) {
  246. /* WaFbcAsynchFlipDisableFbcQueue:ivb */
  247. I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
  248. } else {
  249. /* WaFbcAsynchFlipDisableFbcQueue:hsw */
  250. I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
  251. HSW_BYPASS_FBC_QUEUE);
  252. }
  253. I915_WRITE(SNB_DPFC_CTL_SA,
  254. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  255. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  256. sandybridge_blit_fbc_update(dev);
  257. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  258. }
  259. bool intel_fbc_enabled(struct drm_device *dev)
  260. {
  261. struct drm_i915_private *dev_priv = dev->dev_private;
  262. if (!dev_priv->display.fbc_enabled)
  263. return false;
  264. return dev_priv->display.fbc_enabled(dev);
  265. }
  266. static void intel_fbc_work_fn(struct work_struct *__work)
  267. {
  268. struct intel_fbc_work *work =
  269. container_of(to_delayed_work(__work),
  270. struct intel_fbc_work, work);
  271. struct drm_device *dev = work->crtc->dev;
  272. struct drm_i915_private *dev_priv = dev->dev_private;
  273. mutex_lock(&dev->struct_mutex);
  274. if (work == dev_priv->fbc.fbc_work) {
  275. /* Double check that we haven't switched fb without cancelling
  276. * the prior work.
  277. */
  278. if (work->crtc->fb == work->fb) {
  279. dev_priv->display.enable_fbc(work->crtc);
  280. dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
  281. dev_priv->fbc.fb_id = work->crtc->fb->base.id;
  282. dev_priv->fbc.y = work->crtc->y;
  283. }
  284. dev_priv->fbc.fbc_work = NULL;
  285. }
  286. mutex_unlock(&dev->struct_mutex);
  287. kfree(work);
  288. }
  289. static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
  290. {
  291. if (dev_priv->fbc.fbc_work == NULL)
  292. return;
  293. DRM_DEBUG_KMS("cancelling pending FBC enable\n");
  294. /* Synchronisation is provided by struct_mutex and checking of
  295. * dev_priv->fbc.fbc_work, so we can perform the cancellation
  296. * entirely asynchronously.
  297. */
  298. if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
  299. /* tasklet was killed before being run, clean up */
  300. kfree(dev_priv->fbc.fbc_work);
  301. /* Mark the work as no longer wanted so that if it does
  302. * wake-up (because the work was already running and waiting
  303. * for our mutex), it will discover that is no longer
  304. * necessary to run.
  305. */
  306. dev_priv->fbc.fbc_work = NULL;
  307. }
  308. static void intel_enable_fbc(struct drm_crtc *crtc)
  309. {
  310. struct intel_fbc_work *work;
  311. struct drm_device *dev = crtc->dev;
  312. struct drm_i915_private *dev_priv = dev->dev_private;
  313. if (!dev_priv->display.enable_fbc)
  314. return;
  315. intel_cancel_fbc_work(dev_priv);
  316. work = kzalloc(sizeof(*work), GFP_KERNEL);
  317. if (work == NULL) {
  318. DRM_ERROR("Failed to allocate FBC work structure\n");
  319. dev_priv->display.enable_fbc(crtc);
  320. return;
  321. }
  322. work->crtc = crtc;
  323. work->fb = crtc->fb;
  324. INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
  325. dev_priv->fbc.fbc_work = work;
  326. /* Delay the actual enabling to let pageflipping cease and the
  327. * display to settle before starting the compression. Note that
  328. * this delay also serves a second purpose: it allows for a
  329. * vblank to pass after disabling the FBC before we attempt
  330. * to modify the control registers.
  331. *
  332. * A more complicated solution would involve tracking vblanks
  333. * following the termination of the page-flipping sequence
  334. * and indeed performing the enable as a co-routine and not
  335. * waiting synchronously upon the vblank.
  336. *
  337. * WaFbcWaitForVBlankBeforeEnable:ilk,snb
  338. */
  339. schedule_delayed_work(&work->work, msecs_to_jiffies(50));
  340. }
  341. void intel_disable_fbc(struct drm_device *dev)
  342. {
  343. struct drm_i915_private *dev_priv = dev->dev_private;
  344. intel_cancel_fbc_work(dev_priv);
  345. if (!dev_priv->display.disable_fbc)
  346. return;
  347. dev_priv->display.disable_fbc(dev);
  348. dev_priv->fbc.plane = -1;
  349. }
  350. static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
  351. enum no_fbc_reason reason)
  352. {
  353. if (dev_priv->fbc.no_fbc_reason == reason)
  354. return false;
  355. dev_priv->fbc.no_fbc_reason = reason;
  356. return true;
  357. }
  358. /**
  359. * intel_update_fbc - enable/disable FBC as needed
  360. * @dev: the drm_device
  361. *
  362. * Set up the framebuffer compression hardware at mode set time. We
  363. * enable it if possible:
  364. * - plane A only (on pre-965)
  365. * - no pixel mulitply/line duplication
  366. * - no alpha buffer discard
  367. * - no dual wide
  368. * - framebuffer <= max_hdisplay in width, max_vdisplay in height
  369. *
  370. * We can't assume that any compression will take place (worst case),
  371. * so the compressed buffer has to be the same size as the uncompressed
  372. * one. It also must reside (along with the line length buffer) in
  373. * stolen memory.
  374. *
  375. * We need to enable/disable FBC on a global basis.
  376. */
  377. void intel_update_fbc(struct drm_device *dev)
  378. {
  379. struct drm_i915_private *dev_priv = dev->dev_private;
  380. struct drm_crtc *crtc = NULL, *tmp_crtc;
  381. struct intel_crtc *intel_crtc;
  382. struct drm_framebuffer *fb;
  383. struct intel_framebuffer *intel_fb;
  384. struct drm_i915_gem_object *obj;
  385. const struct drm_display_mode *adjusted_mode;
  386. unsigned int max_width, max_height;
  387. if (!I915_HAS_FBC(dev)) {
  388. set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
  389. return;
  390. }
  391. if (!i915_powersave) {
  392. if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
  393. DRM_DEBUG_KMS("fbc disabled per module param\n");
  394. return;
  395. }
  396. /*
  397. * If FBC is already on, we just have to verify that we can
  398. * keep it that way...
  399. * Need to disable if:
  400. * - more than one pipe is active
  401. * - changing FBC params (stride, fence, mode)
  402. * - new fb is too large to fit in compressed buffer
  403. * - going to an unsupported config (interlace, pixel multiply, etc.)
  404. */
  405. list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
  406. if (intel_crtc_active(tmp_crtc) &&
  407. to_intel_crtc(tmp_crtc)->primary_enabled) {
  408. if (crtc) {
  409. if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
  410. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  411. goto out_disable;
  412. }
  413. crtc = tmp_crtc;
  414. }
  415. }
  416. if (!crtc || crtc->fb == NULL) {
  417. if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
  418. DRM_DEBUG_KMS("no output, disabling\n");
  419. goto out_disable;
  420. }
  421. intel_crtc = to_intel_crtc(crtc);
  422. fb = crtc->fb;
  423. intel_fb = to_intel_framebuffer(fb);
  424. obj = intel_fb->obj;
  425. adjusted_mode = &intel_crtc->config.adjusted_mode;
  426. if (i915_enable_fbc < 0 &&
  427. INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
  428. if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
  429. DRM_DEBUG_KMS("disabled per chip default\n");
  430. goto out_disable;
  431. }
  432. if (!i915_enable_fbc) {
  433. if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
  434. DRM_DEBUG_KMS("fbc disabled per module param\n");
  435. goto out_disable;
  436. }
  437. if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
  438. (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
  439. if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
  440. DRM_DEBUG_KMS("mode incompatible with compression, "
  441. "disabling\n");
  442. goto out_disable;
  443. }
  444. if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
  445. max_width = 4096;
  446. max_height = 2048;
  447. } else {
  448. max_width = 2048;
  449. max_height = 1536;
  450. }
  451. if (intel_crtc->config.pipe_src_w > max_width ||
  452. intel_crtc->config.pipe_src_h > max_height) {
  453. if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
  454. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  455. goto out_disable;
  456. }
  457. if ((INTEL_INFO(dev)->gen < 4 || IS_HASWELL(dev)) &&
  458. intel_crtc->plane != PLANE_A) {
  459. if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
  460. DRM_DEBUG_KMS("plane not A, disabling compression\n");
  461. goto out_disable;
  462. }
  463. /* The use of a CPU fence is mandatory in order to detect writes
  464. * by the CPU to the scanout and trigger updates to the FBC.
  465. */
  466. if (obj->tiling_mode != I915_TILING_X ||
  467. obj->fence_reg == I915_FENCE_REG_NONE) {
  468. if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
  469. DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
  470. goto out_disable;
  471. }
  472. /* If the kernel debugger is active, always disable compression */
  473. if (in_dbg_master())
  474. goto out_disable;
  475. if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
  476. if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
  477. DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
  478. goto out_disable;
  479. }
  480. /* If the scanout has not changed, don't modify the FBC settings.
  481. * Note that we make the fundamental assumption that the fb->obj
  482. * cannot be unpinned (and have its GTT offset and fence revoked)
  483. * without first being decoupled from the scanout and FBC disabled.
  484. */
  485. if (dev_priv->fbc.plane == intel_crtc->plane &&
  486. dev_priv->fbc.fb_id == fb->base.id &&
  487. dev_priv->fbc.y == crtc->y)
  488. return;
  489. if (intel_fbc_enabled(dev)) {
  490. /* We update FBC along two paths, after changing fb/crtc
  491. * configuration (modeswitching) and after page-flipping
  492. * finishes. For the latter, we know that not only did
  493. * we disable the FBC at the start of the page-flip
  494. * sequence, but also more than one vblank has passed.
  495. *
  496. * For the former case of modeswitching, it is possible
  497. * to switch between two FBC valid configurations
  498. * instantaneously so we do need to disable the FBC
  499. * before we can modify its control registers. We also
  500. * have to wait for the next vblank for that to take
  501. * effect. However, since we delay enabling FBC we can
  502. * assume that a vblank has passed since disabling and
  503. * that we can safely alter the registers in the deferred
  504. * callback.
  505. *
  506. * In the scenario that we go from a valid to invalid
  507. * and then back to valid FBC configuration we have
  508. * no strict enforcement that a vblank occurred since
  509. * disabling the FBC. However, along all current pipe
  510. * disabling paths we do need to wait for a vblank at
  511. * some point. And we wait before enabling FBC anyway.
  512. */
  513. DRM_DEBUG_KMS("disabling active FBC for update\n");
  514. intel_disable_fbc(dev);
  515. }
  516. intel_enable_fbc(crtc);
  517. dev_priv->fbc.no_fbc_reason = FBC_OK;
  518. return;
  519. out_disable:
  520. /* Multiple disables should be harmless */
  521. if (intel_fbc_enabled(dev)) {
  522. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  523. intel_disable_fbc(dev);
  524. }
  525. i915_gem_stolen_cleanup_compression(dev);
  526. }
  527. static void i915_pineview_get_mem_freq(struct drm_device *dev)
  528. {
  529. drm_i915_private_t *dev_priv = dev->dev_private;
  530. u32 tmp;
  531. tmp = I915_READ(CLKCFG);
  532. switch (tmp & CLKCFG_FSB_MASK) {
  533. case CLKCFG_FSB_533:
  534. dev_priv->fsb_freq = 533; /* 133*4 */
  535. break;
  536. case CLKCFG_FSB_800:
  537. dev_priv->fsb_freq = 800; /* 200*4 */
  538. break;
  539. case CLKCFG_FSB_667:
  540. dev_priv->fsb_freq = 667; /* 167*4 */
  541. break;
  542. case CLKCFG_FSB_400:
  543. dev_priv->fsb_freq = 400; /* 100*4 */
  544. break;
  545. }
  546. switch (tmp & CLKCFG_MEM_MASK) {
  547. case CLKCFG_MEM_533:
  548. dev_priv->mem_freq = 533;
  549. break;
  550. case CLKCFG_MEM_667:
  551. dev_priv->mem_freq = 667;
  552. break;
  553. case CLKCFG_MEM_800:
  554. dev_priv->mem_freq = 800;
  555. break;
  556. }
  557. /* detect pineview DDR3 setting */
  558. tmp = I915_READ(CSHRDDR3CTL);
  559. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  560. }
  561. static void i915_ironlake_get_mem_freq(struct drm_device *dev)
  562. {
  563. drm_i915_private_t *dev_priv = dev->dev_private;
  564. u16 ddrpll, csipll;
  565. ddrpll = I915_READ16(DDRMPLL1);
  566. csipll = I915_READ16(CSIPLL0);
  567. switch (ddrpll & 0xff) {
  568. case 0xc:
  569. dev_priv->mem_freq = 800;
  570. break;
  571. case 0x10:
  572. dev_priv->mem_freq = 1066;
  573. break;
  574. case 0x14:
  575. dev_priv->mem_freq = 1333;
  576. break;
  577. case 0x18:
  578. dev_priv->mem_freq = 1600;
  579. break;
  580. default:
  581. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  582. ddrpll & 0xff);
  583. dev_priv->mem_freq = 0;
  584. break;
  585. }
  586. dev_priv->ips.r_t = dev_priv->mem_freq;
  587. switch (csipll & 0x3ff) {
  588. case 0x00c:
  589. dev_priv->fsb_freq = 3200;
  590. break;
  591. case 0x00e:
  592. dev_priv->fsb_freq = 3733;
  593. break;
  594. case 0x010:
  595. dev_priv->fsb_freq = 4266;
  596. break;
  597. case 0x012:
  598. dev_priv->fsb_freq = 4800;
  599. break;
  600. case 0x014:
  601. dev_priv->fsb_freq = 5333;
  602. break;
  603. case 0x016:
  604. dev_priv->fsb_freq = 5866;
  605. break;
  606. case 0x018:
  607. dev_priv->fsb_freq = 6400;
  608. break;
  609. default:
  610. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  611. csipll & 0x3ff);
  612. dev_priv->fsb_freq = 0;
  613. break;
  614. }
  615. if (dev_priv->fsb_freq == 3200) {
  616. dev_priv->ips.c_m = 0;
  617. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  618. dev_priv->ips.c_m = 1;
  619. } else {
  620. dev_priv->ips.c_m = 2;
  621. }
  622. }
  623. static const struct cxsr_latency cxsr_latency_table[] = {
  624. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  625. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  626. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  627. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  628. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  629. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  630. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  631. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  632. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  633. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  634. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  635. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  636. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  637. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  638. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  639. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  640. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  641. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  642. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  643. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  644. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  645. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  646. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  647. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  648. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  649. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  650. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  651. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  652. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  653. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  654. };
  655. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  656. int is_ddr3,
  657. int fsb,
  658. int mem)
  659. {
  660. const struct cxsr_latency *latency;
  661. int i;
  662. if (fsb == 0 || mem == 0)
  663. return NULL;
  664. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  665. latency = &cxsr_latency_table[i];
  666. if (is_desktop == latency->is_desktop &&
  667. is_ddr3 == latency->is_ddr3 &&
  668. fsb == latency->fsb_freq && mem == latency->mem_freq)
  669. return latency;
  670. }
  671. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  672. return NULL;
  673. }
  674. static void pineview_disable_cxsr(struct drm_device *dev)
  675. {
  676. struct drm_i915_private *dev_priv = dev->dev_private;
  677. /* deactivate cxsr */
  678. I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
  679. }
  680. /*
  681. * Latency for FIFO fetches is dependent on several factors:
  682. * - memory configuration (speed, channels)
  683. * - chipset
  684. * - current MCH state
  685. * It can be fairly high in some situations, so here we assume a fairly
  686. * pessimal value. It's a tradeoff between extra memory fetches (if we
  687. * set this value too high, the FIFO will fetch frequently to stay full)
  688. * and power consumption (set it too low to save power and we might see
  689. * FIFO underruns and display "flicker").
  690. *
  691. * A value of 5us seems to be a good balance; safe for very low end
  692. * platforms but not overly aggressive on lower latency configs.
  693. */
  694. static const int latency_ns = 5000;
  695. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  696. {
  697. struct drm_i915_private *dev_priv = dev->dev_private;
  698. uint32_t dsparb = I915_READ(DSPARB);
  699. int size;
  700. size = dsparb & 0x7f;
  701. if (plane)
  702. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  703. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  704. plane ? "B" : "A", size);
  705. return size;
  706. }
  707. static int i85x_get_fifo_size(struct drm_device *dev, int plane)
  708. {
  709. struct drm_i915_private *dev_priv = dev->dev_private;
  710. uint32_t dsparb = I915_READ(DSPARB);
  711. int size;
  712. size = dsparb & 0x1ff;
  713. if (plane)
  714. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  715. size >>= 1; /* Convert to cachelines */
  716. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  717. plane ? "B" : "A", size);
  718. return size;
  719. }
  720. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  721. {
  722. struct drm_i915_private *dev_priv = dev->dev_private;
  723. uint32_t dsparb = I915_READ(DSPARB);
  724. int size;
  725. size = dsparb & 0x7f;
  726. size >>= 2; /* Convert to cachelines */
  727. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  728. plane ? "B" : "A",
  729. size);
  730. return size;
  731. }
  732. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  733. {
  734. struct drm_i915_private *dev_priv = dev->dev_private;
  735. uint32_t dsparb = I915_READ(DSPARB);
  736. int size;
  737. size = dsparb & 0x7f;
  738. size >>= 1; /* Convert to cachelines */
  739. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  740. plane ? "B" : "A", size);
  741. return size;
  742. }
  743. /* Pineview has different values for various configs */
  744. static const struct intel_watermark_params pineview_display_wm = {
  745. PINEVIEW_DISPLAY_FIFO,
  746. PINEVIEW_MAX_WM,
  747. PINEVIEW_DFT_WM,
  748. PINEVIEW_GUARD_WM,
  749. PINEVIEW_FIFO_LINE_SIZE
  750. };
  751. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  752. PINEVIEW_DISPLAY_FIFO,
  753. PINEVIEW_MAX_WM,
  754. PINEVIEW_DFT_HPLLOFF_WM,
  755. PINEVIEW_GUARD_WM,
  756. PINEVIEW_FIFO_LINE_SIZE
  757. };
  758. static const struct intel_watermark_params pineview_cursor_wm = {
  759. PINEVIEW_CURSOR_FIFO,
  760. PINEVIEW_CURSOR_MAX_WM,
  761. PINEVIEW_CURSOR_DFT_WM,
  762. PINEVIEW_CURSOR_GUARD_WM,
  763. PINEVIEW_FIFO_LINE_SIZE,
  764. };
  765. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  766. PINEVIEW_CURSOR_FIFO,
  767. PINEVIEW_CURSOR_MAX_WM,
  768. PINEVIEW_CURSOR_DFT_WM,
  769. PINEVIEW_CURSOR_GUARD_WM,
  770. PINEVIEW_FIFO_LINE_SIZE
  771. };
  772. static const struct intel_watermark_params g4x_wm_info = {
  773. G4X_FIFO_SIZE,
  774. G4X_MAX_WM,
  775. G4X_MAX_WM,
  776. 2,
  777. G4X_FIFO_LINE_SIZE,
  778. };
  779. static const struct intel_watermark_params g4x_cursor_wm_info = {
  780. I965_CURSOR_FIFO,
  781. I965_CURSOR_MAX_WM,
  782. I965_CURSOR_DFT_WM,
  783. 2,
  784. G4X_FIFO_LINE_SIZE,
  785. };
  786. static const struct intel_watermark_params valleyview_wm_info = {
  787. VALLEYVIEW_FIFO_SIZE,
  788. VALLEYVIEW_MAX_WM,
  789. VALLEYVIEW_MAX_WM,
  790. 2,
  791. G4X_FIFO_LINE_SIZE,
  792. };
  793. static const struct intel_watermark_params valleyview_cursor_wm_info = {
  794. I965_CURSOR_FIFO,
  795. VALLEYVIEW_CURSOR_MAX_WM,
  796. I965_CURSOR_DFT_WM,
  797. 2,
  798. G4X_FIFO_LINE_SIZE,
  799. };
  800. static const struct intel_watermark_params i965_cursor_wm_info = {
  801. I965_CURSOR_FIFO,
  802. I965_CURSOR_MAX_WM,
  803. I965_CURSOR_DFT_WM,
  804. 2,
  805. I915_FIFO_LINE_SIZE,
  806. };
  807. static const struct intel_watermark_params i945_wm_info = {
  808. I945_FIFO_SIZE,
  809. I915_MAX_WM,
  810. 1,
  811. 2,
  812. I915_FIFO_LINE_SIZE
  813. };
  814. static const struct intel_watermark_params i915_wm_info = {
  815. I915_FIFO_SIZE,
  816. I915_MAX_WM,
  817. 1,
  818. 2,
  819. I915_FIFO_LINE_SIZE
  820. };
  821. static const struct intel_watermark_params i855_wm_info = {
  822. I855GM_FIFO_SIZE,
  823. I915_MAX_WM,
  824. 1,
  825. 2,
  826. I830_FIFO_LINE_SIZE
  827. };
  828. static const struct intel_watermark_params i830_wm_info = {
  829. I830_FIFO_SIZE,
  830. I915_MAX_WM,
  831. 1,
  832. 2,
  833. I830_FIFO_LINE_SIZE
  834. };
  835. static const struct intel_watermark_params ironlake_display_wm_info = {
  836. ILK_DISPLAY_FIFO,
  837. ILK_DISPLAY_MAXWM,
  838. ILK_DISPLAY_DFTWM,
  839. 2,
  840. ILK_FIFO_LINE_SIZE
  841. };
  842. static const struct intel_watermark_params ironlake_cursor_wm_info = {
  843. ILK_CURSOR_FIFO,
  844. ILK_CURSOR_MAXWM,
  845. ILK_CURSOR_DFTWM,
  846. 2,
  847. ILK_FIFO_LINE_SIZE
  848. };
  849. static const struct intel_watermark_params ironlake_display_srwm_info = {
  850. ILK_DISPLAY_SR_FIFO,
  851. ILK_DISPLAY_MAX_SRWM,
  852. ILK_DISPLAY_DFT_SRWM,
  853. 2,
  854. ILK_FIFO_LINE_SIZE
  855. };
  856. static const struct intel_watermark_params ironlake_cursor_srwm_info = {
  857. ILK_CURSOR_SR_FIFO,
  858. ILK_CURSOR_MAX_SRWM,
  859. ILK_CURSOR_DFT_SRWM,
  860. 2,
  861. ILK_FIFO_LINE_SIZE
  862. };
  863. static const struct intel_watermark_params sandybridge_display_wm_info = {
  864. SNB_DISPLAY_FIFO,
  865. SNB_DISPLAY_MAXWM,
  866. SNB_DISPLAY_DFTWM,
  867. 2,
  868. SNB_FIFO_LINE_SIZE
  869. };
  870. static const struct intel_watermark_params sandybridge_cursor_wm_info = {
  871. SNB_CURSOR_FIFO,
  872. SNB_CURSOR_MAXWM,
  873. SNB_CURSOR_DFTWM,
  874. 2,
  875. SNB_FIFO_LINE_SIZE
  876. };
  877. static const struct intel_watermark_params sandybridge_display_srwm_info = {
  878. SNB_DISPLAY_SR_FIFO,
  879. SNB_DISPLAY_MAX_SRWM,
  880. SNB_DISPLAY_DFT_SRWM,
  881. 2,
  882. SNB_FIFO_LINE_SIZE
  883. };
  884. static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
  885. SNB_CURSOR_SR_FIFO,
  886. SNB_CURSOR_MAX_SRWM,
  887. SNB_CURSOR_DFT_SRWM,
  888. 2,
  889. SNB_FIFO_LINE_SIZE
  890. };
  891. /**
  892. * intel_calculate_wm - calculate watermark level
  893. * @clock_in_khz: pixel clock
  894. * @wm: chip FIFO params
  895. * @pixel_size: display pixel size
  896. * @latency_ns: memory latency for the platform
  897. *
  898. * Calculate the watermark level (the level at which the display plane will
  899. * start fetching from memory again). Each chip has a different display
  900. * FIFO size and allocation, so the caller needs to figure that out and pass
  901. * in the correct intel_watermark_params structure.
  902. *
  903. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  904. * on the pixel size. When it reaches the watermark level, it'll start
  905. * fetching FIFO line sized based chunks from memory until the FIFO fills
  906. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  907. * will occur, and a display engine hang could result.
  908. */
  909. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  910. const struct intel_watermark_params *wm,
  911. int fifo_size,
  912. int pixel_size,
  913. unsigned long latency_ns)
  914. {
  915. long entries_required, wm_size;
  916. /*
  917. * Note: we need to make sure we don't overflow for various clock &
  918. * latency values.
  919. * clocks go from a few thousand to several hundred thousand.
  920. * latency is usually a few thousand
  921. */
  922. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  923. 1000;
  924. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  925. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  926. wm_size = fifo_size - (entries_required + wm->guard_size);
  927. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  928. /* Don't promote wm_size to unsigned... */
  929. if (wm_size > (long)wm->max_wm)
  930. wm_size = wm->max_wm;
  931. if (wm_size <= 0)
  932. wm_size = wm->default_wm;
  933. return wm_size;
  934. }
  935. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  936. {
  937. struct drm_crtc *crtc, *enabled = NULL;
  938. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  939. if (intel_crtc_active(crtc)) {
  940. if (enabled)
  941. return NULL;
  942. enabled = crtc;
  943. }
  944. }
  945. return enabled;
  946. }
  947. static void pineview_update_wm(struct drm_crtc *unused_crtc)
  948. {
  949. struct drm_device *dev = unused_crtc->dev;
  950. struct drm_i915_private *dev_priv = dev->dev_private;
  951. struct drm_crtc *crtc;
  952. const struct cxsr_latency *latency;
  953. u32 reg;
  954. unsigned long wm;
  955. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  956. dev_priv->fsb_freq, dev_priv->mem_freq);
  957. if (!latency) {
  958. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  959. pineview_disable_cxsr(dev);
  960. return;
  961. }
  962. crtc = single_enabled_crtc(dev);
  963. if (crtc) {
  964. const struct drm_display_mode *adjusted_mode;
  965. int pixel_size = crtc->fb->bits_per_pixel / 8;
  966. int clock;
  967. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  968. clock = adjusted_mode->crtc_clock;
  969. /* Display SR */
  970. wm = intel_calculate_wm(clock, &pineview_display_wm,
  971. pineview_display_wm.fifo_size,
  972. pixel_size, latency->display_sr);
  973. reg = I915_READ(DSPFW1);
  974. reg &= ~DSPFW_SR_MASK;
  975. reg |= wm << DSPFW_SR_SHIFT;
  976. I915_WRITE(DSPFW1, reg);
  977. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  978. /* cursor SR */
  979. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  980. pineview_display_wm.fifo_size,
  981. pixel_size, latency->cursor_sr);
  982. reg = I915_READ(DSPFW3);
  983. reg &= ~DSPFW_CURSOR_SR_MASK;
  984. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  985. I915_WRITE(DSPFW3, reg);
  986. /* Display HPLL off SR */
  987. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  988. pineview_display_hplloff_wm.fifo_size,
  989. pixel_size, latency->display_hpll_disable);
  990. reg = I915_READ(DSPFW3);
  991. reg &= ~DSPFW_HPLL_SR_MASK;
  992. reg |= wm & DSPFW_HPLL_SR_MASK;
  993. I915_WRITE(DSPFW3, reg);
  994. /* cursor HPLL off SR */
  995. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  996. pineview_display_hplloff_wm.fifo_size,
  997. pixel_size, latency->cursor_hpll_disable);
  998. reg = I915_READ(DSPFW3);
  999. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  1000. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  1001. I915_WRITE(DSPFW3, reg);
  1002. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  1003. /* activate cxsr */
  1004. I915_WRITE(DSPFW3,
  1005. I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
  1006. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  1007. } else {
  1008. pineview_disable_cxsr(dev);
  1009. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  1010. }
  1011. }
  1012. static bool g4x_compute_wm0(struct drm_device *dev,
  1013. int plane,
  1014. const struct intel_watermark_params *display,
  1015. int display_latency_ns,
  1016. const struct intel_watermark_params *cursor,
  1017. int cursor_latency_ns,
  1018. int *plane_wm,
  1019. int *cursor_wm)
  1020. {
  1021. struct drm_crtc *crtc;
  1022. const struct drm_display_mode *adjusted_mode;
  1023. int htotal, hdisplay, clock, pixel_size;
  1024. int line_time_us, line_count;
  1025. int entries, tlb_miss;
  1026. crtc = intel_get_crtc_for_plane(dev, plane);
  1027. if (!intel_crtc_active(crtc)) {
  1028. *cursor_wm = cursor->guard_size;
  1029. *plane_wm = display->guard_size;
  1030. return false;
  1031. }
  1032. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1033. clock = adjusted_mode->crtc_clock;
  1034. htotal = adjusted_mode->htotal;
  1035. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1036. pixel_size = crtc->fb->bits_per_pixel / 8;
  1037. /* Use the small buffer method to calculate plane watermark */
  1038. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  1039. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  1040. if (tlb_miss > 0)
  1041. entries += tlb_miss;
  1042. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  1043. *plane_wm = entries + display->guard_size;
  1044. if (*plane_wm > (int)display->max_wm)
  1045. *plane_wm = display->max_wm;
  1046. /* Use the large buffer method to calculate cursor watermark */
  1047. line_time_us = ((htotal * 1000) / clock);
  1048. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  1049. entries = line_count * 64 * pixel_size;
  1050. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  1051. if (tlb_miss > 0)
  1052. entries += tlb_miss;
  1053. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1054. *cursor_wm = entries + cursor->guard_size;
  1055. if (*cursor_wm > (int)cursor->max_wm)
  1056. *cursor_wm = (int)cursor->max_wm;
  1057. return true;
  1058. }
  1059. /*
  1060. * Check the wm result.
  1061. *
  1062. * If any calculated watermark values is larger than the maximum value that
  1063. * can be programmed into the associated watermark register, that watermark
  1064. * must be disabled.
  1065. */
  1066. static bool g4x_check_srwm(struct drm_device *dev,
  1067. int display_wm, int cursor_wm,
  1068. const struct intel_watermark_params *display,
  1069. const struct intel_watermark_params *cursor)
  1070. {
  1071. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  1072. display_wm, cursor_wm);
  1073. if (display_wm > display->max_wm) {
  1074. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  1075. display_wm, display->max_wm);
  1076. return false;
  1077. }
  1078. if (cursor_wm > cursor->max_wm) {
  1079. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  1080. cursor_wm, cursor->max_wm);
  1081. return false;
  1082. }
  1083. if (!(display_wm || cursor_wm)) {
  1084. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  1085. return false;
  1086. }
  1087. return true;
  1088. }
  1089. static bool g4x_compute_srwm(struct drm_device *dev,
  1090. int plane,
  1091. int latency_ns,
  1092. const struct intel_watermark_params *display,
  1093. const struct intel_watermark_params *cursor,
  1094. int *display_wm, int *cursor_wm)
  1095. {
  1096. struct drm_crtc *crtc;
  1097. const struct drm_display_mode *adjusted_mode;
  1098. int hdisplay, htotal, pixel_size, clock;
  1099. unsigned long line_time_us;
  1100. int line_count, line_size;
  1101. int small, large;
  1102. int entries;
  1103. if (!latency_ns) {
  1104. *display_wm = *cursor_wm = 0;
  1105. return false;
  1106. }
  1107. crtc = intel_get_crtc_for_plane(dev, plane);
  1108. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1109. clock = adjusted_mode->crtc_clock;
  1110. htotal = adjusted_mode->htotal;
  1111. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1112. pixel_size = crtc->fb->bits_per_pixel / 8;
  1113. line_time_us = (htotal * 1000) / clock;
  1114. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1115. line_size = hdisplay * pixel_size;
  1116. /* Use the minimum of the small and large buffer method for primary */
  1117. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1118. large = line_count * line_size;
  1119. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1120. *display_wm = entries + display->guard_size;
  1121. /* calculate the self-refresh watermark for display cursor */
  1122. entries = line_count * pixel_size * 64;
  1123. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1124. *cursor_wm = entries + cursor->guard_size;
  1125. return g4x_check_srwm(dev,
  1126. *display_wm, *cursor_wm,
  1127. display, cursor);
  1128. }
  1129. static bool vlv_compute_drain_latency(struct drm_device *dev,
  1130. int plane,
  1131. int *plane_prec_mult,
  1132. int *plane_dl,
  1133. int *cursor_prec_mult,
  1134. int *cursor_dl)
  1135. {
  1136. struct drm_crtc *crtc;
  1137. int clock, pixel_size;
  1138. int entries;
  1139. crtc = intel_get_crtc_for_plane(dev, plane);
  1140. if (!intel_crtc_active(crtc))
  1141. return false;
  1142. clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
  1143. pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
  1144. entries = (clock / 1000) * pixel_size;
  1145. *plane_prec_mult = (entries > 256) ?
  1146. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1147. *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
  1148. pixel_size);
  1149. entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
  1150. *cursor_prec_mult = (entries > 256) ?
  1151. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1152. *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
  1153. return true;
  1154. }
  1155. /*
  1156. * Update drain latency registers of memory arbiter
  1157. *
  1158. * Valleyview SoC has a new memory arbiter and needs drain latency registers
  1159. * to be programmed. Each plane has a drain latency multiplier and a drain
  1160. * latency value.
  1161. */
  1162. static void vlv_update_drain_latency(struct drm_device *dev)
  1163. {
  1164. struct drm_i915_private *dev_priv = dev->dev_private;
  1165. int planea_prec, planea_dl, planeb_prec, planeb_dl;
  1166. int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
  1167. int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
  1168. either 16 or 32 */
  1169. /* For plane A, Cursor A */
  1170. if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
  1171. &cursor_prec_mult, &cursora_dl)) {
  1172. cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1173. DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
  1174. planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1175. DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
  1176. I915_WRITE(VLV_DDL1, cursora_prec |
  1177. (cursora_dl << DDL_CURSORA_SHIFT) |
  1178. planea_prec | planea_dl);
  1179. }
  1180. /* For plane B, Cursor B */
  1181. if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
  1182. &cursor_prec_mult, &cursorb_dl)) {
  1183. cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1184. DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
  1185. planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1186. DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
  1187. I915_WRITE(VLV_DDL2, cursorb_prec |
  1188. (cursorb_dl << DDL_CURSORB_SHIFT) |
  1189. planeb_prec | planeb_dl);
  1190. }
  1191. }
  1192. #define single_plane_enabled(mask) is_power_of_2(mask)
  1193. static void valleyview_update_wm(struct drm_crtc *crtc)
  1194. {
  1195. struct drm_device *dev = crtc->dev;
  1196. static const int sr_latency_ns = 12000;
  1197. struct drm_i915_private *dev_priv = dev->dev_private;
  1198. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1199. int plane_sr, cursor_sr;
  1200. int ignore_plane_sr, ignore_cursor_sr;
  1201. unsigned int enabled = 0;
  1202. vlv_update_drain_latency(dev);
  1203. if (g4x_compute_wm0(dev, PIPE_A,
  1204. &valleyview_wm_info, latency_ns,
  1205. &valleyview_cursor_wm_info, latency_ns,
  1206. &planea_wm, &cursora_wm))
  1207. enabled |= 1 << PIPE_A;
  1208. if (g4x_compute_wm0(dev, PIPE_B,
  1209. &valleyview_wm_info, latency_ns,
  1210. &valleyview_cursor_wm_info, latency_ns,
  1211. &planeb_wm, &cursorb_wm))
  1212. enabled |= 1 << PIPE_B;
  1213. if (single_plane_enabled(enabled) &&
  1214. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1215. sr_latency_ns,
  1216. &valleyview_wm_info,
  1217. &valleyview_cursor_wm_info,
  1218. &plane_sr, &ignore_cursor_sr) &&
  1219. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1220. 2*sr_latency_ns,
  1221. &valleyview_wm_info,
  1222. &valleyview_cursor_wm_info,
  1223. &ignore_plane_sr, &cursor_sr)) {
  1224. I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
  1225. } else {
  1226. I915_WRITE(FW_BLC_SELF_VLV,
  1227. I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
  1228. plane_sr = cursor_sr = 0;
  1229. }
  1230. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1231. planea_wm, cursora_wm,
  1232. planeb_wm, cursorb_wm,
  1233. plane_sr, cursor_sr);
  1234. I915_WRITE(DSPFW1,
  1235. (plane_sr << DSPFW_SR_SHIFT) |
  1236. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1237. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1238. planea_wm);
  1239. I915_WRITE(DSPFW2,
  1240. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1241. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1242. I915_WRITE(DSPFW3,
  1243. (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
  1244. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1245. }
  1246. static void g4x_update_wm(struct drm_crtc *crtc)
  1247. {
  1248. struct drm_device *dev = crtc->dev;
  1249. static const int sr_latency_ns = 12000;
  1250. struct drm_i915_private *dev_priv = dev->dev_private;
  1251. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1252. int plane_sr, cursor_sr;
  1253. unsigned int enabled = 0;
  1254. if (g4x_compute_wm0(dev, PIPE_A,
  1255. &g4x_wm_info, latency_ns,
  1256. &g4x_cursor_wm_info, latency_ns,
  1257. &planea_wm, &cursora_wm))
  1258. enabled |= 1 << PIPE_A;
  1259. if (g4x_compute_wm0(dev, PIPE_B,
  1260. &g4x_wm_info, latency_ns,
  1261. &g4x_cursor_wm_info, latency_ns,
  1262. &planeb_wm, &cursorb_wm))
  1263. enabled |= 1 << PIPE_B;
  1264. if (single_plane_enabled(enabled) &&
  1265. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1266. sr_latency_ns,
  1267. &g4x_wm_info,
  1268. &g4x_cursor_wm_info,
  1269. &plane_sr, &cursor_sr)) {
  1270. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1271. } else {
  1272. I915_WRITE(FW_BLC_SELF,
  1273. I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
  1274. plane_sr = cursor_sr = 0;
  1275. }
  1276. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1277. planea_wm, cursora_wm,
  1278. planeb_wm, cursorb_wm,
  1279. plane_sr, cursor_sr);
  1280. I915_WRITE(DSPFW1,
  1281. (plane_sr << DSPFW_SR_SHIFT) |
  1282. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1283. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1284. planea_wm);
  1285. I915_WRITE(DSPFW2,
  1286. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1287. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1288. /* HPLL off in SR has some issues on G4x... disable it */
  1289. I915_WRITE(DSPFW3,
  1290. (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
  1291. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1292. }
  1293. static void i965_update_wm(struct drm_crtc *unused_crtc)
  1294. {
  1295. struct drm_device *dev = unused_crtc->dev;
  1296. struct drm_i915_private *dev_priv = dev->dev_private;
  1297. struct drm_crtc *crtc;
  1298. int srwm = 1;
  1299. int cursor_sr = 16;
  1300. /* Calc sr entries for one plane configs */
  1301. crtc = single_enabled_crtc(dev);
  1302. if (crtc) {
  1303. /* self-refresh has much higher latency */
  1304. static const int sr_latency_ns = 12000;
  1305. const struct drm_display_mode *adjusted_mode =
  1306. &to_intel_crtc(crtc)->config.adjusted_mode;
  1307. int clock = adjusted_mode->crtc_clock;
  1308. int htotal = adjusted_mode->htotal;
  1309. int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1310. int pixel_size = crtc->fb->bits_per_pixel / 8;
  1311. unsigned long line_time_us;
  1312. int entries;
  1313. line_time_us = ((htotal * 1000) / clock);
  1314. /* Use ns/us then divide to preserve precision */
  1315. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1316. pixel_size * hdisplay;
  1317. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1318. srwm = I965_FIFO_SIZE - entries;
  1319. if (srwm < 0)
  1320. srwm = 1;
  1321. srwm &= 0x1ff;
  1322. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1323. entries, srwm);
  1324. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1325. pixel_size * 64;
  1326. entries = DIV_ROUND_UP(entries,
  1327. i965_cursor_wm_info.cacheline_size);
  1328. cursor_sr = i965_cursor_wm_info.fifo_size -
  1329. (entries + i965_cursor_wm_info.guard_size);
  1330. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1331. cursor_sr = i965_cursor_wm_info.max_wm;
  1332. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1333. "cursor %d\n", srwm, cursor_sr);
  1334. if (IS_CRESTLINE(dev))
  1335. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1336. } else {
  1337. /* Turn off self refresh if both pipes are enabled */
  1338. if (IS_CRESTLINE(dev))
  1339. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  1340. & ~FW_BLC_SELF_EN);
  1341. }
  1342. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1343. srwm);
  1344. /* 965 has limitations... */
  1345. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
  1346. (8 << 16) | (8 << 8) | (8 << 0));
  1347. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  1348. /* update cursor SR watermark */
  1349. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1350. }
  1351. static void i9xx_update_wm(struct drm_crtc *unused_crtc)
  1352. {
  1353. struct drm_device *dev = unused_crtc->dev;
  1354. struct drm_i915_private *dev_priv = dev->dev_private;
  1355. const struct intel_watermark_params *wm_info;
  1356. uint32_t fwater_lo;
  1357. uint32_t fwater_hi;
  1358. int cwm, srwm = 1;
  1359. int fifo_size;
  1360. int planea_wm, planeb_wm;
  1361. struct drm_crtc *crtc, *enabled = NULL;
  1362. if (IS_I945GM(dev))
  1363. wm_info = &i945_wm_info;
  1364. else if (!IS_GEN2(dev))
  1365. wm_info = &i915_wm_info;
  1366. else
  1367. wm_info = &i855_wm_info;
  1368. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  1369. crtc = intel_get_crtc_for_plane(dev, 0);
  1370. if (intel_crtc_active(crtc)) {
  1371. const struct drm_display_mode *adjusted_mode;
  1372. int cpp = crtc->fb->bits_per_pixel / 8;
  1373. if (IS_GEN2(dev))
  1374. cpp = 4;
  1375. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1376. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1377. wm_info, fifo_size, cpp,
  1378. latency_ns);
  1379. enabled = crtc;
  1380. } else
  1381. planea_wm = fifo_size - wm_info->guard_size;
  1382. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  1383. crtc = intel_get_crtc_for_plane(dev, 1);
  1384. if (intel_crtc_active(crtc)) {
  1385. const struct drm_display_mode *adjusted_mode;
  1386. int cpp = crtc->fb->bits_per_pixel / 8;
  1387. if (IS_GEN2(dev))
  1388. cpp = 4;
  1389. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1390. planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1391. wm_info, fifo_size, cpp,
  1392. latency_ns);
  1393. if (enabled == NULL)
  1394. enabled = crtc;
  1395. else
  1396. enabled = NULL;
  1397. } else
  1398. planeb_wm = fifo_size - wm_info->guard_size;
  1399. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1400. /*
  1401. * Overlay gets an aggressive default since video jitter is bad.
  1402. */
  1403. cwm = 2;
  1404. /* Play safe and disable self-refresh before adjusting watermarks. */
  1405. if (IS_I945G(dev) || IS_I945GM(dev))
  1406. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
  1407. else if (IS_I915GM(dev))
  1408. I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
  1409. /* Calc sr entries for one plane configs */
  1410. if (HAS_FW_BLC(dev) && enabled) {
  1411. /* self-refresh has much higher latency */
  1412. static const int sr_latency_ns = 6000;
  1413. const struct drm_display_mode *adjusted_mode =
  1414. &to_intel_crtc(enabled)->config.adjusted_mode;
  1415. int clock = adjusted_mode->crtc_clock;
  1416. int htotal = adjusted_mode->htotal;
  1417. int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
  1418. int pixel_size = enabled->fb->bits_per_pixel / 8;
  1419. unsigned long line_time_us;
  1420. int entries;
  1421. line_time_us = (htotal * 1000) / clock;
  1422. /* Use ns/us then divide to preserve precision */
  1423. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1424. pixel_size * hdisplay;
  1425. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1426. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1427. srwm = wm_info->fifo_size - entries;
  1428. if (srwm < 0)
  1429. srwm = 1;
  1430. if (IS_I945G(dev) || IS_I945GM(dev))
  1431. I915_WRITE(FW_BLC_SELF,
  1432. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1433. else if (IS_I915GM(dev))
  1434. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1435. }
  1436. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1437. planea_wm, planeb_wm, cwm, srwm);
  1438. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1439. fwater_hi = (cwm & 0x1f);
  1440. /* Set request length to 8 cachelines per fetch */
  1441. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1442. fwater_hi = fwater_hi | (1 << 8);
  1443. I915_WRITE(FW_BLC, fwater_lo);
  1444. I915_WRITE(FW_BLC2, fwater_hi);
  1445. if (HAS_FW_BLC(dev)) {
  1446. if (enabled) {
  1447. if (IS_I945G(dev) || IS_I945GM(dev))
  1448. I915_WRITE(FW_BLC_SELF,
  1449. FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  1450. else if (IS_I915GM(dev))
  1451. I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
  1452. DRM_DEBUG_KMS("memory self refresh enabled\n");
  1453. } else
  1454. DRM_DEBUG_KMS("memory self refresh disabled\n");
  1455. }
  1456. }
  1457. static void i830_update_wm(struct drm_crtc *unused_crtc)
  1458. {
  1459. struct drm_device *dev = unused_crtc->dev;
  1460. struct drm_i915_private *dev_priv = dev->dev_private;
  1461. struct drm_crtc *crtc;
  1462. const struct drm_display_mode *adjusted_mode;
  1463. uint32_t fwater_lo;
  1464. int planea_wm;
  1465. crtc = single_enabled_crtc(dev);
  1466. if (crtc == NULL)
  1467. return;
  1468. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1469. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1470. &i830_wm_info,
  1471. dev_priv->display.get_fifo_size(dev, 0),
  1472. 4, latency_ns);
  1473. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1474. fwater_lo |= (3<<8) | planea_wm;
  1475. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  1476. I915_WRITE(FW_BLC, fwater_lo);
  1477. }
  1478. /*
  1479. * Check the wm result.
  1480. *
  1481. * If any calculated watermark values is larger than the maximum value that
  1482. * can be programmed into the associated watermark register, that watermark
  1483. * must be disabled.
  1484. */
  1485. static bool ironlake_check_srwm(struct drm_device *dev, int level,
  1486. int fbc_wm, int display_wm, int cursor_wm,
  1487. const struct intel_watermark_params *display,
  1488. const struct intel_watermark_params *cursor)
  1489. {
  1490. struct drm_i915_private *dev_priv = dev->dev_private;
  1491. DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
  1492. " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
  1493. if (fbc_wm > SNB_FBC_MAX_SRWM) {
  1494. DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
  1495. fbc_wm, SNB_FBC_MAX_SRWM, level);
  1496. /* fbc has it's own way to disable FBC WM */
  1497. I915_WRITE(DISP_ARB_CTL,
  1498. I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
  1499. return false;
  1500. } else if (INTEL_INFO(dev)->gen >= 6) {
  1501. /* enable FBC WM (except on ILK, where it must remain off) */
  1502. I915_WRITE(DISP_ARB_CTL,
  1503. I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
  1504. }
  1505. if (display_wm > display->max_wm) {
  1506. DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
  1507. display_wm, SNB_DISPLAY_MAX_SRWM, level);
  1508. return false;
  1509. }
  1510. if (cursor_wm > cursor->max_wm) {
  1511. DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
  1512. cursor_wm, SNB_CURSOR_MAX_SRWM, level);
  1513. return false;
  1514. }
  1515. if (!(fbc_wm || display_wm || cursor_wm)) {
  1516. DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
  1517. return false;
  1518. }
  1519. return true;
  1520. }
  1521. /*
  1522. * Compute watermark values of WM[1-3],
  1523. */
  1524. static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
  1525. int latency_ns,
  1526. const struct intel_watermark_params *display,
  1527. const struct intel_watermark_params *cursor,
  1528. int *fbc_wm, int *display_wm, int *cursor_wm)
  1529. {
  1530. struct drm_crtc *crtc;
  1531. const struct drm_display_mode *adjusted_mode;
  1532. unsigned long line_time_us;
  1533. int hdisplay, htotal, pixel_size, clock;
  1534. int line_count, line_size;
  1535. int small, large;
  1536. int entries;
  1537. if (!latency_ns) {
  1538. *fbc_wm = *display_wm = *cursor_wm = 0;
  1539. return false;
  1540. }
  1541. crtc = intel_get_crtc_for_plane(dev, plane);
  1542. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1543. clock = adjusted_mode->crtc_clock;
  1544. htotal = adjusted_mode->htotal;
  1545. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1546. pixel_size = crtc->fb->bits_per_pixel / 8;
  1547. line_time_us = (htotal * 1000) / clock;
  1548. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1549. line_size = hdisplay * pixel_size;
  1550. /* Use the minimum of the small and large buffer method for primary */
  1551. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1552. large = line_count * line_size;
  1553. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1554. *display_wm = entries + display->guard_size;
  1555. /*
  1556. * Spec says:
  1557. * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
  1558. */
  1559. *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
  1560. /* calculate the self-refresh watermark for display cursor */
  1561. entries = line_count * pixel_size * 64;
  1562. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1563. *cursor_wm = entries + cursor->guard_size;
  1564. return ironlake_check_srwm(dev, level,
  1565. *fbc_wm, *display_wm, *cursor_wm,
  1566. display, cursor);
  1567. }
  1568. static void ironlake_update_wm(struct drm_crtc *crtc)
  1569. {
  1570. struct drm_device *dev = crtc->dev;
  1571. struct drm_i915_private *dev_priv = dev->dev_private;
  1572. int fbc_wm, plane_wm, cursor_wm;
  1573. unsigned int enabled;
  1574. enabled = 0;
  1575. if (g4x_compute_wm0(dev, PIPE_A,
  1576. &ironlake_display_wm_info,
  1577. dev_priv->wm.pri_latency[0] * 100,
  1578. &ironlake_cursor_wm_info,
  1579. dev_priv->wm.cur_latency[0] * 100,
  1580. &plane_wm, &cursor_wm)) {
  1581. I915_WRITE(WM0_PIPEA_ILK,
  1582. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  1583. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1584. " plane %d, " "cursor: %d\n",
  1585. plane_wm, cursor_wm);
  1586. enabled |= 1 << PIPE_A;
  1587. }
  1588. if (g4x_compute_wm0(dev, PIPE_B,
  1589. &ironlake_display_wm_info,
  1590. dev_priv->wm.pri_latency[0] * 100,
  1591. &ironlake_cursor_wm_info,
  1592. dev_priv->wm.cur_latency[0] * 100,
  1593. &plane_wm, &cursor_wm)) {
  1594. I915_WRITE(WM0_PIPEB_ILK,
  1595. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  1596. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1597. " plane %d, cursor: %d\n",
  1598. plane_wm, cursor_wm);
  1599. enabled |= 1 << PIPE_B;
  1600. }
  1601. /*
  1602. * Calculate and update the self-refresh watermark only when one
  1603. * display plane is used.
  1604. */
  1605. I915_WRITE(WM3_LP_ILK, 0);
  1606. I915_WRITE(WM2_LP_ILK, 0);
  1607. I915_WRITE(WM1_LP_ILK, 0);
  1608. if (!single_plane_enabled(enabled))
  1609. return;
  1610. enabled = ffs(enabled) - 1;
  1611. /* WM1 */
  1612. if (!ironlake_compute_srwm(dev, 1, enabled,
  1613. dev_priv->wm.pri_latency[1] * 500,
  1614. &ironlake_display_srwm_info,
  1615. &ironlake_cursor_srwm_info,
  1616. &fbc_wm, &plane_wm, &cursor_wm))
  1617. return;
  1618. I915_WRITE(WM1_LP_ILK,
  1619. WM1_LP_SR_EN |
  1620. (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
  1621. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1622. (plane_wm << WM1_LP_SR_SHIFT) |
  1623. cursor_wm);
  1624. /* WM2 */
  1625. if (!ironlake_compute_srwm(dev, 2, enabled,
  1626. dev_priv->wm.pri_latency[2] * 500,
  1627. &ironlake_display_srwm_info,
  1628. &ironlake_cursor_srwm_info,
  1629. &fbc_wm, &plane_wm, &cursor_wm))
  1630. return;
  1631. I915_WRITE(WM2_LP_ILK,
  1632. WM2_LP_EN |
  1633. (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
  1634. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1635. (plane_wm << WM1_LP_SR_SHIFT) |
  1636. cursor_wm);
  1637. /*
  1638. * WM3 is unsupported on ILK, probably because we don't have latency
  1639. * data for that power state
  1640. */
  1641. }
  1642. static void sandybridge_update_wm(struct drm_crtc *crtc)
  1643. {
  1644. struct drm_device *dev = crtc->dev;
  1645. struct drm_i915_private *dev_priv = dev->dev_private;
  1646. int latency = dev_priv->wm.pri_latency[0] * 100; /* In unit 0.1us */
  1647. u32 val;
  1648. int fbc_wm, plane_wm, cursor_wm;
  1649. unsigned int enabled;
  1650. enabled = 0;
  1651. if (g4x_compute_wm0(dev, PIPE_A,
  1652. &sandybridge_display_wm_info, latency,
  1653. &sandybridge_cursor_wm_info, latency,
  1654. &plane_wm, &cursor_wm)) {
  1655. val = I915_READ(WM0_PIPEA_ILK);
  1656. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1657. I915_WRITE(WM0_PIPEA_ILK, val |
  1658. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1659. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1660. " plane %d, " "cursor: %d\n",
  1661. plane_wm, cursor_wm);
  1662. enabled |= 1 << PIPE_A;
  1663. }
  1664. if (g4x_compute_wm0(dev, PIPE_B,
  1665. &sandybridge_display_wm_info, latency,
  1666. &sandybridge_cursor_wm_info, latency,
  1667. &plane_wm, &cursor_wm)) {
  1668. val = I915_READ(WM0_PIPEB_ILK);
  1669. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1670. I915_WRITE(WM0_PIPEB_ILK, val |
  1671. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1672. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1673. " plane %d, cursor: %d\n",
  1674. plane_wm, cursor_wm);
  1675. enabled |= 1 << PIPE_B;
  1676. }
  1677. /*
  1678. * Calculate and update the self-refresh watermark only when one
  1679. * display plane is used.
  1680. *
  1681. * SNB support 3 levels of watermark.
  1682. *
  1683. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  1684. * and disabled in the descending order
  1685. *
  1686. */
  1687. I915_WRITE(WM3_LP_ILK, 0);
  1688. I915_WRITE(WM2_LP_ILK, 0);
  1689. I915_WRITE(WM1_LP_ILK, 0);
  1690. if (!single_plane_enabled(enabled) ||
  1691. dev_priv->sprite_scaling_enabled)
  1692. return;
  1693. enabled = ffs(enabled) - 1;
  1694. /* WM1 */
  1695. if (!ironlake_compute_srwm(dev, 1, enabled,
  1696. dev_priv->wm.pri_latency[1] * 500,
  1697. &sandybridge_display_srwm_info,
  1698. &sandybridge_cursor_srwm_info,
  1699. &fbc_wm, &plane_wm, &cursor_wm))
  1700. return;
  1701. I915_WRITE(WM1_LP_ILK,
  1702. WM1_LP_SR_EN |
  1703. (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
  1704. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1705. (plane_wm << WM1_LP_SR_SHIFT) |
  1706. cursor_wm);
  1707. /* WM2 */
  1708. if (!ironlake_compute_srwm(dev, 2, enabled,
  1709. dev_priv->wm.pri_latency[2] * 500,
  1710. &sandybridge_display_srwm_info,
  1711. &sandybridge_cursor_srwm_info,
  1712. &fbc_wm, &plane_wm, &cursor_wm))
  1713. return;
  1714. I915_WRITE(WM2_LP_ILK,
  1715. WM2_LP_EN |
  1716. (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
  1717. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1718. (plane_wm << WM1_LP_SR_SHIFT) |
  1719. cursor_wm);
  1720. /* WM3 */
  1721. if (!ironlake_compute_srwm(dev, 3, enabled,
  1722. dev_priv->wm.pri_latency[3] * 500,
  1723. &sandybridge_display_srwm_info,
  1724. &sandybridge_cursor_srwm_info,
  1725. &fbc_wm, &plane_wm, &cursor_wm))
  1726. return;
  1727. I915_WRITE(WM3_LP_ILK,
  1728. WM3_LP_EN |
  1729. (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
  1730. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1731. (plane_wm << WM1_LP_SR_SHIFT) |
  1732. cursor_wm);
  1733. }
  1734. static void ivybridge_update_wm(struct drm_crtc *crtc)
  1735. {
  1736. struct drm_device *dev = crtc->dev;
  1737. struct drm_i915_private *dev_priv = dev->dev_private;
  1738. int latency = dev_priv->wm.pri_latency[0] * 100; /* In unit 0.1us */
  1739. u32 val;
  1740. int fbc_wm, plane_wm, cursor_wm;
  1741. int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
  1742. unsigned int enabled;
  1743. enabled = 0;
  1744. if (g4x_compute_wm0(dev, PIPE_A,
  1745. &sandybridge_display_wm_info, latency,
  1746. &sandybridge_cursor_wm_info, latency,
  1747. &plane_wm, &cursor_wm)) {
  1748. val = I915_READ(WM0_PIPEA_ILK);
  1749. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1750. I915_WRITE(WM0_PIPEA_ILK, val |
  1751. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1752. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1753. " plane %d, " "cursor: %d\n",
  1754. plane_wm, cursor_wm);
  1755. enabled |= 1 << PIPE_A;
  1756. }
  1757. if (g4x_compute_wm0(dev, PIPE_B,
  1758. &sandybridge_display_wm_info, latency,
  1759. &sandybridge_cursor_wm_info, latency,
  1760. &plane_wm, &cursor_wm)) {
  1761. val = I915_READ(WM0_PIPEB_ILK);
  1762. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1763. I915_WRITE(WM0_PIPEB_ILK, val |
  1764. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1765. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1766. " plane %d, cursor: %d\n",
  1767. plane_wm, cursor_wm);
  1768. enabled |= 1 << PIPE_B;
  1769. }
  1770. if (g4x_compute_wm0(dev, PIPE_C,
  1771. &sandybridge_display_wm_info, latency,
  1772. &sandybridge_cursor_wm_info, latency,
  1773. &plane_wm, &cursor_wm)) {
  1774. val = I915_READ(WM0_PIPEC_IVB);
  1775. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1776. I915_WRITE(WM0_PIPEC_IVB, val |
  1777. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1778. DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
  1779. " plane %d, cursor: %d\n",
  1780. plane_wm, cursor_wm);
  1781. enabled |= 1 << PIPE_C;
  1782. }
  1783. /*
  1784. * Calculate and update the self-refresh watermark only when one
  1785. * display plane is used.
  1786. *
  1787. * SNB support 3 levels of watermark.
  1788. *
  1789. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  1790. * and disabled in the descending order
  1791. *
  1792. */
  1793. I915_WRITE(WM3_LP_ILK, 0);
  1794. I915_WRITE(WM2_LP_ILK, 0);
  1795. I915_WRITE(WM1_LP_ILK, 0);
  1796. if (!single_plane_enabled(enabled) ||
  1797. dev_priv->sprite_scaling_enabled)
  1798. return;
  1799. enabled = ffs(enabled) - 1;
  1800. /* WM1 */
  1801. if (!ironlake_compute_srwm(dev, 1, enabled,
  1802. dev_priv->wm.pri_latency[1] * 500,
  1803. &sandybridge_display_srwm_info,
  1804. &sandybridge_cursor_srwm_info,
  1805. &fbc_wm, &plane_wm, &cursor_wm))
  1806. return;
  1807. I915_WRITE(WM1_LP_ILK,
  1808. WM1_LP_SR_EN |
  1809. (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
  1810. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1811. (plane_wm << WM1_LP_SR_SHIFT) |
  1812. cursor_wm);
  1813. /* WM2 */
  1814. if (!ironlake_compute_srwm(dev, 2, enabled,
  1815. dev_priv->wm.pri_latency[2] * 500,
  1816. &sandybridge_display_srwm_info,
  1817. &sandybridge_cursor_srwm_info,
  1818. &fbc_wm, &plane_wm, &cursor_wm))
  1819. return;
  1820. I915_WRITE(WM2_LP_ILK,
  1821. WM2_LP_EN |
  1822. (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
  1823. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1824. (plane_wm << WM1_LP_SR_SHIFT) |
  1825. cursor_wm);
  1826. /* WM3, note we have to correct the cursor latency */
  1827. if (!ironlake_compute_srwm(dev, 3, enabled,
  1828. dev_priv->wm.pri_latency[3] * 500,
  1829. &sandybridge_display_srwm_info,
  1830. &sandybridge_cursor_srwm_info,
  1831. &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
  1832. !ironlake_compute_srwm(dev, 3, enabled,
  1833. dev_priv->wm.cur_latency[3] * 500,
  1834. &sandybridge_display_srwm_info,
  1835. &sandybridge_cursor_srwm_info,
  1836. &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
  1837. return;
  1838. I915_WRITE(WM3_LP_ILK,
  1839. WM3_LP_EN |
  1840. (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
  1841. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1842. (plane_wm << WM1_LP_SR_SHIFT) |
  1843. cursor_wm);
  1844. }
  1845. static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
  1846. struct drm_crtc *crtc)
  1847. {
  1848. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1849. uint32_t pixel_rate;
  1850. pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
  1851. /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
  1852. * adjust the pixel_rate here. */
  1853. if (intel_crtc->config.pch_pfit.enabled) {
  1854. uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
  1855. uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
  1856. pipe_w = intel_crtc->config.pipe_src_w;
  1857. pipe_h = intel_crtc->config.pipe_src_h;
  1858. pfit_w = (pfit_size >> 16) & 0xFFFF;
  1859. pfit_h = pfit_size & 0xFFFF;
  1860. if (pipe_w < pfit_w)
  1861. pipe_w = pfit_w;
  1862. if (pipe_h < pfit_h)
  1863. pipe_h = pfit_h;
  1864. pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
  1865. pfit_w * pfit_h);
  1866. }
  1867. return pixel_rate;
  1868. }
  1869. /* latency must be in 0.1us units. */
  1870. static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
  1871. uint32_t latency)
  1872. {
  1873. uint64_t ret;
  1874. if (WARN(latency == 0, "Latency value missing\n"))
  1875. return UINT_MAX;
  1876. ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
  1877. ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
  1878. return ret;
  1879. }
  1880. /* latency must be in 0.1us units. */
  1881. static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  1882. uint32_t horiz_pixels, uint8_t bytes_per_pixel,
  1883. uint32_t latency)
  1884. {
  1885. uint32_t ret;
  1886. if (WARN(latency == 0, "Latency value missing\n"))
  1887. return UINT_MAX;
  1888. ret = (latency * pixel_rate) / (pipe_htotal * 10000);
  1889. ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
  1890. ret = DIV_ROUND_UP(ret, 64) + 2;
  1891. return ret;
  1892. }
  1893. static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
  1894. uint8_t bytes_per_pixel)
  1895. {
  1896. return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
  1897. }
  1898. struct hsw_pipe_wm_parameters {
  1899. bool active;
  1900. uint32_t pipe_htotal;
  1901. uint32_t pixel_rate;
  1902. struct intel_plane_wm_parameters pri;
  1903. struct intel_plane_wm_parameters spr;
  1904. struct intel_plane_wm_parameters cur;
  1905. };
  1906. struct hsw_wm_maximums {
  1907. uint16_t pri;
  1908. uint16_t spr;
  1909. uint16_t cur;
  1910. uint16_t fbc;
  1911. };
  1912. /* used in computing the new watermarks state */
  1913. struct intel_wm_config {
  1914. unsigned int num_pipes_active;
  1915. bool sprites_enabled;
  1916. bool sprites_scaled;
  1917. };
  1918. /*
  1919. * For both WM_PIPE and WM_LP.
  1920. * mem_value must be in 0.1us units.
  1921. */
  1922. static uint32_t ilk_compute_pri_wm(const struct hsw_pipe_wm_parameters *params,
  1923. uint32_t mem_value,
  1924. bool is_lp)
  1925. {
  1926. uint32_t method1, method2;
  1927. if (!params->active || !params->pri.enabled)
  1928. return 0;
  1929. method1 = ilk_wm_method1(params->pixel_rate,
  1930. params->pri.bytes_per_pixel,
  1931. mem_value);
  1932. if (!is_lp)
  1933. return method1;
  1934. method2 = ilk_wm_method2(params->pixel_rate,
  1935. params->pipe_htotal,
  1936. params->pri.horiz_pixels,
  1937. params->pri.bytes_per_pixel,
  1938. mem_value);
  1939. return min(method1, method2);
  1940. }
  1941. /*
  1942. * For both WM_PIPE and WM_LP.
  1943. * mem_value must be in 0.1us units.
  1944. */
  1945. static uint32_t ilk_compute_spr_wm(const struct hsw_pipe_wm_parameters *params,
  1946. uint32_t mem_value)
  1947. {
  1948. uint32_t method1, method2;
  1949. if (!params->active || !params->spr.enabled)
  1950. return 0;
  1951. method1 = ilk_wm_method1(params->pixel_rate,
  1952. params->spr.bytes_per_pixel,
  1953. mem_value);
  1954. method2 = ilk_wm_method2(params->pixel_rate,
  1955. params->pipe_htotal,
  1956. params->spr.horiz_pixels,
  1957. params->spr.bytes_per_pixel,
  1958. mem_value);
  1959. return min(method1, method2);
  1960. }
  1961. /*
  1962. * For both WM_PIPE and WM_LP.
  1963. * mem_value must be in 0.1us units.
  1964. */
  1965. static uint32_t ilk_compute_cur_wm(const struct hsw_pipe_wm_parameters *params,
  1966. uint32_t mem_value)
  1967. {
  1968. if (!params->active || !params->cur.enabled)
  1969. return 0;
  1970. return ilk_wm_method2(params->pixel_rate,
  1971. params->pipe_htotal,
  1972. params->cur.horiz_pixels,
  1973. params->cur.bytes_per_pixel,
  1974. mem_value);
  1975. }
  1976. /* Only for WM_LP. */
  1977. static uint32_t ilk_compute_fbc_wm(const struct hsw_pipe_wm_parameters *params,
  1978. uint32_t pri_val)
  1979. {
  1980. if (!params->active || !params->pri.enabled)
  1981. return 0;
  1982. return ilk_wm_fbc(pri_val,
  1983. params->pri.horiz_pixels,
  1984. params->pri.bytes_per_pixel);
  1985. }
  1986. static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
  1987. {
  1988. if (INTEL_INFO(dev)->gen >= 8)
  1989. return 3072;
  1990. else if (INTEL_INFO(dev)->gen >= 7)
  1991. return 768;
  1992. else
  1993. return 512;
  1994. }
  1995. /* Calculate the maximum primary/sprite plane watermark */
  1996. static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
  1997. int level,
  1998. const struct intel_wm_config *config,
  1999. enum intel_ddb_partitioning ddb_partitioning,
  2000. bool is_sprite)
  2001. {
  2002. unsigned int fifo_size = ilk_display_fifo_size(dev);
  2003. unsigned int max;
  2004. /* if sprites aren't enabled, sprites get nothing */
  2005. if (is_sprite && !config->sprites_enabled)
  2006. return 0;
  2007. /* HSW allows LP1+ watermarks even with multiple pipes */
  2008. if (level == 0 || config->num_pipes_active > 1) {
  2009. fifo_size /= INTEL_INFO(dev)->num_pipes;
  2010. /*
  2011. * For some reason the non self refresh
  2012. * FIFO size is only half of the self
  2013. * refresh FIFO size on ILK/SNB.
  2014. */
  2015. if (INTEL_INFO(dev)->gen <= 6)
  2016. fifo_size /= 2;
  2017. }
  2018. if (config->sprites_enabled) {
  2019. /* level 0 is always calculated with 1:1 split */
  2020. if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
  2021. if (is_sprite)
  2022. fifo_size *= 5;
  2023. fifo_size /= 6;
  2024. } else {
  2025. fifo_size /= 2;
  2026. }
  2027. }
  2028. /* clamp to max that the registers can hold */
  2029. if (INTEL_INFO(dev)->gen >= 8)
  2030. max = level == 0 ? 255 : 2047;
  2031. else if (INTEL_INFO(dev)->gen >= 7)
  2032. /* IVB/HSW primary/sprite plane watermarks */
  2033. max = level == 0 ? 127 : 1023;
  2034. else if (!is_sprite)
  2035. /* ILK/SNB primary plane watermarks */
  2036. max = level == 0 ? 127 : 511;
  2037. else
  2038. /* ILK/SNB sprite plane watermarks */
  2039. max = level == 0 ? 63 : 255;
  2040. return min(fifo_size, max);
  2041. }
  2042. /* Calculate the maximum cursor plane watermark */
  2043. static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
  2044. int level,
  2045. const struct intel_wm_config *config)
  2046. {
  2047. /* HSW LP1+ watermarks w/ multiple pipes */
  2048. if (level > 0 && config->num_pipes_active > 1)
  2049. return 64;
  2050. /* otherwise just report max that registers can hold */
  2051. if (INTEL_INFO(dev)->gen >= 7)
  2052. return level == 0 ? 63 : 255;
  2053. else
  2054. return level == 0 ? 31 : 63;
  2055. }
  2056. /* Calculate the maximum FBC watermark */
  2057. static unsigned int ilk_fbc_wm_max(struct drm_device *dev)
  2058. {
  2059. /* max that registers can hold */
  2060. if (INTEL_INFO(dev)->gen >= 8)
  2061. return 31;
  2062. else
  2063. return 15;
  2064. }
  2065. static void ilk_compute_wm_maximums(struct drm_device *dev,
  2066. int level,
  2067. const struct intel_wm_config *config,
  2068. enum intel_ddb_partitioning ddb_partitioning,
  2069. struct hsw_wm_maximums *max)
  2070. {
  2071. max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
  2072. max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
  2073. max->cur = ilk_cursor_wm_max(dev, level, config);
  2074. max->fbc = ilk_fbc_wm_max(dev);
  2075. }
  2076. static bool ilk_validate_wm_level(int level,
  2077. const struct hsw_wm_maximums *max,
  2078. struct intel_wm_level *result)
  2079. {
  2080. bool ret;
  2081. /* already determined to be invalid? */
  2082. if (!result->enable)
  2083. return false;
  2084. result->enable = result->pri_val <= max->pri &&
  2085. result->spr_val <= max->spr &&
  2086. result->cur_val <= max->cur;
  2087. ret = result->enable;
  2088. /*
  2089. * HACK until we can pre-compute everything,
  2090. * and thus fail gracefully if LP0 watermarks
  2091. * are exceeded...
  2092. */
  2093. if (level == 0 && !result->enable) {
  2094. if (result->pri_val > max->pri)
  2095. DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
  2096. level, result->pri_val, max->pri);
  2097. if (result->spr_val > max->spr)
  2098. DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
  2099. level, result->spr_val, max->spr);
  2100. if (result->cur_val > max->cur)
  2101. DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
  2102. level, result->cur_val, max->cur);
  2103. result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
  2104. result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
  2105. result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
  2106. result->enable = true;
  2107. }
  2108. return ret;
  2109. }
  2110. static void ilk_compute_wm_level(struct drm_i915_private *dev_priv,
  2111. int level,
  2112. const struct hsw_pipe_wm_parameters *p,
  2113. struct intel_wm_level *result)
  2114. {
  2115. uint16_t pri_latency = dev_priv->wm.pri_latency[level];
  2116. uint16_t spr_latency = dev_priv->wm.spr_latency[level];
  2117. uint16_t cur_latency = dev_priv->wm.cur_latency[level];
  2118. /* WM1+ latency values stored in 0.5us units */
  2119. if (level > 0) {
  2120. pri_latency *= 5;
  2121. spr_latency *= 5;
  2122. cur_latency *= 5;
  2123. }
  2124. result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
  2125. result->spr_val = ilk_compute_spr_wm(p, spr_latency);
  2126. result->cur_val = ilk_compute_cur_wm(p, cur_latency);
  2127. result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
  2128. result->enable = true;
  2129. }
  2130. static uint32_t
  2131. hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
  2132. {
  2133. struct drm_i915_private *dev_priv = dev->dev_private;
  2134. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2135. struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
  2136. u32 linetime, ips_linetime;
  2137. if (!intel_crtc_active(crtc))
  2138. return 0;
  2139. /* The WM are computed with base on how long it takes to fill a single
  2140. * row at the given clock rate, multiplied by 8.
  2141. * */
  2142. linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
  2143. ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
  2144. intel_ddi_get_cdclk_freq(dev_priv));
  2145. return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
  2146. PIPE_WM_LINETIME_TIME(linetime);
  2147. }
  2148. static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
  2149. {
  2150. struct drm_i915_private *dev_priv = dev->dev_private;
  2151. if (IS_HASWELL(dev)) {
  2152. uint64_t sskpd = I915_READ64(MCH_SSKPD);
  2153. wm[0] = (sskpd >> 56) & 0xFF;
  2154. if (wm[0] == 0)
  2155. wm[0] = sskpd & 0xF;
  2156. wm[1] = (sskpd >> 4) & 0xFF;
  2157. wm[2] = (sskpd >> 12) & 0xFF;
  2158. wm[3] = (sskpd >> 20) & 0x1FF;
  2159. wm[4] = (sskpd >> 32) & 0x1FF;
  2160. } else if (INTEL_INFO(dev)->gen >= 6) {
  2161. uint32_t sskpd = I915_READ(MCH_SSKPD);
  2162. wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
  2163. wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
  2164. wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
  2165. wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
  2166. } else if (INTEL_INFO(dev)->gen >= 5) {
  2167. uint32_t mltr = I915_READ(MLTR_ILK);
  2168. /* ILK primary LP0 latency is 700 ns */
  2169. wm[0] = 7;
  2170. wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
  2171. wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
  2172. }
  2173. }
  2174. static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
  2175. {
  2176. /* ILK sprite LP0 latency is 1300 ns */
  2177. if (INTEL_INFO(dev)->gen == 5)
  2178. wm[0] = 13;
  2179. }
  2180. static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
  2181. {
  2182. /* ILK cursor LP0 latency is 1300 ns */
  2183. if (INTEL_INFO(dev)->gen == 5)
  2184. wm[0] = 13;
  2185. /* WaDoubleCursorLP3Latency:ivb */
  2186. if (IS_IVYBRIDGE(dev))
  2187. wm[3] *= 2;
  2188. }
  2189. static int ilk_wm_max_level(const struct drm_device *dev)
  2190. {
  2191. /* how many WM levels are we expecting */
  2192. if (IS_HASWELL(dev))
  2193. return 4;
  2194. else if (INTEL_INFO(dev)->gen >= 6)
  2195. return 3;
  2196. else
  2197. return 2;
  2198. }
  2199. static void intel_print_wm_latency(struct drm_device *dev,
  2200. const char *name,
  2201. const uint16_t wm[5])
  2202. {
  2203. int level, max_level = ilk_wm_max_level(dev);
  2204. for (level = 0; level <= max_level; level++) {
  2205. unsigned int latency = wm[level];
  2206. if (latency == 0) {
  2207. DRM_ERROR("%s WM%d latency not provided\n",
  2208. name, level);
  2209. continue;
  2210. }
  2211. /* WM1+ latency values in 0.5us units */
  2212. if (level > 0)
  2213. latency *= 5;
  2214. DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
  2215. name, level, wm[level],
  2216. latency / 10, latency % 10);
  2217. }
  2218. }
  2219. static void intel_setup_wm_latency(struct drm_device *dev)
  2220. {
  2221. struct drm_i915_private *dev_priv = dev->dev_private;
  2222. intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
  2223. memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
  2224. sizeof(dev_priv->wm.pri_latency));
  2225. memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
  2226. sizeof(dev_priv->wm.pri_latency));
  2227. intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
  2228. intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
  2229. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  2230. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  2231. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  2232. }
  2233. static void hsw_compute_wm_parameters(struct drm_crtc *crtc,
  2234. struct hsw_pipe_wm_parameters *p,
  2235. struct intel_wm_config *config)
  2236. {
  2237. struct drm_device *dev = crtc->dev;
  2238. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2239. enum pipe pipe = intel_crtc->pipe;
  2240. struct drm_plane *plane;
  2241. p->active = intel_crtc_active(crtc);
  2242. if (p->active) {
  2243. p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
  2244. p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
  2245. p->pri.bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
  2246. p->cur.bytes_per_pixel = 4;
  2247. p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
  2248. p->cur.horiz_pixels = 64;
  2249. /* TODO: for now, assume primary and cursor planes are always enabled. */
  2250. p->pri.enabled = true;
  2251. p->cur.enabled = true;
  2252. }
  2253. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
  2254. config->num_pipes_active += intel_crtc_active(crtc);
  2255. list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
  2256. struct intel_plane *intel_plane = to_intel_plane(plane);
  2257. if (intel_plane->pipe == pipe)
  2258. p->spr = intel_plane->wm;
  2259. config->sprites_enabled |= intel_plane->wm.enabled;
  2260. config->sprites_scaled |= intel_plane->wm.scaled;
  2261. }
  2262. }
  2263. /* Compute new watermarks for the pipe */
  2264. static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
  2265. const struct hsw_pipe_wm_parameters *params,
  2266. struct intel_pipe_wm *pipe_wm)
  2267. {
  2268. struct drm_device *dev = crtc->dev;
  2269. struct drm_i915_private *dev_priv = dev->dev_private;
  2270. int level, max_level = ilk_wm_max_level(dev);
  2271. /* LP0 watermark maximums depend on this pipe alone */
  2272. struct intel_wm_config config = {
  2273. .num_pipes_active = 1,
  2274. .sprites_enabled = params->spr.enabled,
  2275. .sprites_scaled = params->spr.scaled,
  2276. };
  2277. struct hsw_wm_maximums max;
  2278. /* LP0 watermarks always use 1/2 DDB partitioning */
  2279. ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
  2280. /* ILK/SNB: LP2+ watermarks only w/o sprites */
  2281. if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
  2282. max_level = 1;
  2283. /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
  2284. if (params->spr.scaled)
  2285. max_level = 0;
  2286. for (level = 0; level <= max_level; level++)
  2287. ilk_compute_wm_level(dev_priv, level, params,
  2288. &pipe_wm->wm[level]);
  2289. if (IS_HASWELL(dev))
  2290. pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
  2291. /* At least LP0 must be valid */
  2292. return ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]);
  2293. }
  2294. /*
  2295. * Merge the watermarks from all active pipes for a specific level.
  2296. */
  2297. static void ilk_merge_wm_level(struct drm_device *dev,
  2298. int level,
  2299. struct intel_wm_level *ret_wm)
  2300. {
  2301. const struct intel_crtc *intel_crtc;
  2302. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
  2303. const struct intel_wm_level *wm =
  2304. &intel_crtc->wm.active.wm[level];
  2305. if (!wm->enable)
  2306. return;
  2307. ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
  2308. ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
  2309. ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
  2310. ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
  2311. }
  2312. ret_wm->enable = true;
  2313. }
  2314. /*
  2315. * Merge all low power watermarks for all active pipes.
  2316. */
  2317. static void ilk_wm_merge(struct drm_device *dev,
  2318. const struct intel_wm_config *config,
  2319. const struct hsw_wm_maximums *max,
  2320. struct intel_pipe_wm *merged)
  2321. {
  2322. int level, max_level = ilk_wm_max_level(dev);
  2323. /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
  2324. if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
  2325. config->num_pipes_active > 1)
  2326. return;
  2327. /* ILK: FBC WM must be disabled always */
  2328. merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
  2329. /* merge each WM1+ level */
  2330. for (level = 1; level <= max_level; level++) {
  2331. struct intel_wm_level *wm = &merged->wm[level];
  2332. ilk_merge_wm_level(dev, level, wm);
  2333. if (!ilk_validate_wm_level(level, max, wm))
  2334. break;
  2335. /*
  2336. * The spec says it is preferred to disable
  2337. * FBC WMs instead of disabling a WM level.
  2338. */
  2339. if (wm->fbc_val > max->fbc) {
  2340. merged->fbc_wm_enabled = false;
  2341. wm->fbc_val = 0;
  2342. }
  2343. }
  2344. /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
  2345. /*
  2346. * FIXME this is racy. FBC might get enabled later.
  2347. * What we should check here is whether FBC can be
  2348. * enabled sometime later.
  2349. */
  2350. if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
  2351. for (level = 2; level <= max_level; level++) {
  2352. struct intel_wm_level *wm = &merged->wm[level];
  2353. wm->enable = false;
  2354. }
  2355. }
  2356. }
  2357. static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
  2358. {
  2359. /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
  2360. return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
  2361. }
  2362. /* The value we need to program into the WM_LPx latency field */
  2363. static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
  2364. {
  2365. struct drm_i915_private *dev_priv = dev->dev_private;
  2366. if (IS_HASWELL(dev))
  2367. return 2 * level;
  2368. else
  2369. return dev_priv->wm.pri_latency[level];
  2370. }
  2371. static void hsw_compute_wm_results(struct drm_device *dev,
  2372. const struct intel_pipe_wm *merged,
  2373. enum intel_ddb_partitioning partitioning,
  2374. struct hsw_wm_values *results)
  2375. {
  2376. struct intel_crtc *intel_crtc;
  2377. int level, wm_lp;
  2378. results->enable_fbc_wm = merged->fbc_wm_enabled;
  2379. results->partitioning = partitioning;
  2380. /* LP1+ register values */
  2381. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2382. const struct intel_wm_level *r;
  2383. level = ilk_wm_lp_to_level(wm_lp, merged);
  2384. r = &merged->wm[level];
  2385. if (!r->enable)
  2386. break;
  2387. results->wm_lp[wm_lp - 1] = WM3_LP_EN |
  2388. (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
  2389. (r->pri_val << WM1_LP_SR_SHIFT) |
  2390. r->cur_val;
  2391. if (INTEL_INFO(dev)->gen >= 8)
  2392. results->wm_lp[wm_lp - 1] |=
  2393. r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
  2394. else
  2395. results->wm_lp[wm_lp - 1] |=
  2396. r->fbc_val << WM1_LP_FBC_SHIFT;
  2397. if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
  2398. WARN_ON(wm_lp != 1);
  2399. results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
  2400. } else
  2401. results->wm_lp_spr[wm_lp - 1] = r->spr_val;
  2402. }
  2403. /* LP0 register values */
  2404. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
  2405. enum pipe pipe = intel_crtc->pipe;
  2406. const struct intel_wm_level *r =
  2407. &intel_crtc->wm.active.wm[0];
  2408. if (WARN_ON(!r->enable))
  2409. continue;
  2410. results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
  2411. results->wm_pipe[pipe] =
  2412. (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
  2413. (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
  2414. r->cur_val;
  2415. }
  2416. }
  2417. /* Find the result with the highest level enabled. Check for enable_fbc_wm in
  2418. * case both are at the same level. Prefer r1 in case they're the same. */
  2419. static struct intel_pipe_wm *hsw_find_best_result(struct drm_device *dev,
  2420. struct intel_pipe_wm *r1,
  2421. struct intel_pipe_wm *r2)
  2422. {
  2423. int level, max_level = ilk_wm_max_level(dev);
  2424. int level1 = 0, level2 = 0;
  2425. for (level = 1; level <= max_level; level++) {
  2426. if (r1->wm[level].enable)
  2427. level1 = level;
  2428. if (r2->wm[level].enable)
  2429. level2 = level;
  2430. }
  2431. if (level1 == level2) {
  2432. if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
  2433. return r2;
  2434. else
  2435. return r1;
  2436. } else if (level1 > level2) {
  2437. return r1;
  2438. } else {
  2439. return r2;
  2440. }
  2441. }
  2442. /* dirty bits used to track which watermarks need changes */
  2443. #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
  2444. #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
  2445. #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
  2446. #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
  2447. #define WM_DIRTY_FBC (1 << 24)
  2448. #define WM_DIRTY_DDB (1 << 25)
  2449. static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
  2450. const struct hsw_wm_values *old,
  2451. const struct hsw_wm_values *new)
  2452. {
  2453. unsigned int dirty = 0;
  2454. enum pipe pipe;
  2455. int wm_lp;
  2456. for_each_pipe(pipe) {
  2457. if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
  2458. dirty |= WM_DIRTY_LINETIME(pipe);
  2459. /* Must disable LP1+ watermarks too */
  2460. dirty |= WM_DIRTY_LP_ALL;
  2461. }
  2462. if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
  2463. dirty |= WM_DIRTY_PIPE(pipe);
  2464. /* Must disable LP1+ watermarks too */
  2465. dirty |= WM_DIRTY_LP_ALL;
  2466. }
  2467. }
  2468. if (old->enable_fbc_wm != new->enable_fbc_wm) {
  2469. dirty |= WM_DIRTY_FBC;
  2470. /* Must disable LP1+ watermarks too */
  2471. dirty |= WM_DIRTY_LP_ALL;
  2472. }
  2473. if (old->partitioning != new->partitioning) {
  2474. dirty |= WM_DIRTY_DDB;
  2475. /* Must disable LP1+ watermarks too */
  2476. dirty |= WM_DIRTY_LP_ALL;
  2477. }
  2478. /* LP1+ watermarks already deemed dirty, no need to continue */
  2479. if (dirty & WM_DIRTY_LP_ALL)
  2480. return dirty;
  2481. /* Find the lowest numbered LP1+ watermark in need of an update... */
  2482. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2483. if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
  2484. old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
  2485. break;
  2486. }
  2487. /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
  2488. for (; wm_lp <= 3; wm_lp++)
  2489. dirty |= WM_DIRTY_LP(wm_lp);
  2490. return dirty;
  2491. }
  2492. /*
  2493. * The spec says we shouldn't write when we don't need, because every write
  2494. * causes WMs to be re-evaluated, expending some power.
  2495. */
  2496. static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
  2497. struct hsw_wm_values *results)
  2498. {
  2499. struct drm_device *dev = dev_priv->dev;
  2500. struct hsw_wm_values *previous = &dev_priv->wm.hw;
  2501. unsigned int dirty;
  2502. uint32_t val;
  2503. dirty = ilk_compute_wm_dirty(dev_priv->dev, previous, results);
  2504. if (!dirty)
  2505. return;
  2506. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
  2507. previous->wm_lp[2] &= ~WM1_LP_SR_EN;
  2508. I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
  2509. }
  2510. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
  2511. previous->wm_lp[1] &= ~WM1_LP_SR_EN;
  2512. I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
  2513. }
  2514. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
  2515. previous->wm_lp[0] &= ~WM1_LP_SR_EN;
  2516. I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
  2517. }
  2518. /*
  2519. * Don't touch WM1S_LP_EN here.
  2520. * Doing so could cause underruns.
  2521. */
  2522. if (dirty & WM_DIRTY_PIPE(PIPE_A))
  2523. I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
  2524. if (dirty & WM_DIRTY_PIPE(PIPE_B))
  2525. I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
  2526. if (dirty & WM_DIRTY_PIPE(PIPE_C))
  2527. I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
  2528. if (dirty & WM_DIRTY_LINETIME(PIPE_A))
  2529. I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
  2530. if (dirty & WM_DIRTY_LINETIME(PIPE_B))
  2531. I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
  2532. if (dirty & WM_DIRTY_LINETIME(PIPE_C))
  2533. I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
  2534. if (dirty & WM_DIRTY_DDB) {
  2535. if (IS_HASWELL(dev)) {
  2536. val = I915_READ(WM_MISC);
  2537. if (results->partitioning == INTEL_DDB_PART_1_2)
  2538. val &= ~WM_MISC_DATA_PARTITION_5_6;
  2539. else
  2540. val |= WM_MISC_DATA_PARTITION_5_6;
  2541. I915_WRITE(WM_MISC, val);
  2542. } else {
  2543. val = I915_READ(DISP_ARB_CTL2);
  2544. if (results->partitioning == INTEL_DDB_PART_1_2)
  2545. val &= ~DISP_DATA_PARTITION_5_6;
  2546. else
  2547. val |= DISP_DATA_PARTITION_5_6;
  2548. I915_WRITE(DISP_ARB_CTL2, val);
  2549. }
  2550. }
  2551. if (dirty & WM_DIRTY_FBC) {
  2552. val = I915_READ(DISP_ARB_CTL);
  2553. if (results->enable_fbc_wm)
  2554. val &= ~DISP_FBC_WM_DIS;
  2555. else
  2556. val |= DISP_FBC_WM_DIS;
  2557. I915_WRITE(DISP_ARB_CTL, val);
  2558. }
  2559. if (INTEL_INFO(dev)->gen <= 6) {
  2560. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp_spr[0] != results->wm_lp_spr[0])
  2561. I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
  2562. } else {
  2563. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp_spr[0] != results->wm_lp_spr[0])
  2564. I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
  2565. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
  2566. I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
  2567. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
  2568. I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
  2569. }
  2570. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
  2571. I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
  2572. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
  2573. I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
  2574. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
  2575. I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
  2576. dev_priv->wm.hw = *results;
  2577. }
  2578. static void haswell_update_wm(struct drm_crtc *crtc)
  2579. {
  2580. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2581. struct drm_device *dev = crtc->dev;
  2582. struct drm_i915_private *dev_priv = dev->dev_private;
  2583. struct hsw_wm_maximums max;
  2584. struct hsw_pipe_wm_parameters params = {};
  2585. struct hsw_wm_values results = {};
  2586. enum intel_ddb_partitioning partitioning;
  2587. struct intel_pipe_wm pipe_wm = {};
  2588. struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
  2589. struct intel_wm_config config = {};
  2590. hsw_compute_wm_parameters(crtc, &params, &config);
  2591. intel_compute_pipe_wm(crtc, &params, &pipe_wm);
  2592. if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
  2593. return;
  2594. intel_crtc->wm.active = pipe_wm;
  2595. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
  2596. ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
  2597. /* 5/6 split only in single pipe config on IVB+ */
  2598. if (INTEL_INFO(dev)->gen >= 7 &&
  2599. config.num_pipes_active == 1 && config.sprites_enabled) {
  2600. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
  2601. ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
  2602. best_lp_wm = hsw_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
  2603. } else {
  2604. best_lp_wm = &lp_wm_1_2;
  2605. }
  2606. partitioning = (best_lp_wm == &lp_wm_1_2) ?
  2607. INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
  2608. hsw_compute_wm_results(dev, best_lp_wm, partitioning, &results);
  2609. hsw_write_wm_values(dev_priv, &results);
  2610. }
  2611. static void haswell_update_sprite_wm(struct drm_plane *plane,
  2612. struct drm_crtc *crtc,
  2613. uint32_t sprite_width, int pixel_size,
  2614. bool enabled, bool scaled)
  2615. {
  2616. struct intel_plane *intel_plane = to_intel_plane(plane);
  2617. intel_plane->wm.enabled = enabled;
  2618. intel_plane->wm.scaled = scaled;
  2619. intel_plane->wm.horiz_pixels = sprite_width;
  2620. intel_plane->wm.bytes_per_pixel = pixel_size;
  2621. haswell_update_wm(crtc);
  2622. }
  2623. static bool
  2624. sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
  2625. uint32_t sprite_width, int pixel_size,
  2626. const struct intel_watermark_params *display,
  2627. int display_latency_ns, int *sprite_wm)
  2628. {
  2629. struct drm_crtc *crtc;
  2630. int clock;
  2631. int entries, tlb_miss;
  2632. crtc = intel_get_crtc_for_plane(dev, plane);
  2633. if (!intel_crtc_active(crtc)) {
  2634. *sprite_wm = display->guard_size;
  2635. return false;
  2636. }
  2637. clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
  2638. /* Use the small buffer method to calculate the sprite watermark */
  2639. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  2640. tlb_miss = display->fifo_size*display->cacheline_size -
  2641. sprite_width * 8;
  2642. if (tlb_miss > 0)
  2643. entries += tlb_miss;
  2644. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  2645. *sprite_wm = entries + display->guard_size;
  2646. if (*sprite_wm > (int)display->max_wm)
  2647. *sprite_wm = display->max_wm;
  2648. return true;
  2649. }
  2650. static bool
  2651. sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
  2652. uint32_t sprite_width, int pixel_size,
  2653. const struct intel_watermark_params *display,
  2654. int latency_ns, int *sprite_wm)
  2655. {
  2656. struct drm_crtc *crtc;
  2657. unsigned long line_time_us;
  2658. int clock;
  2659. int line_count, line_size;
  2660. int small, large;
  2661. int entries;
  2662. if (!latency_ns) {
  2663. *sprite_wm = 0;
  2664. return false;
  2665. }
  2666. crtc = intel_get_crtc_for_plane(dev, plane);
  2667. clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
  2668. if (!clock) {
  2669. *sprite_wm = 0;
  2670. return false;
  2671. }
  2672. line_time_us = (sprite_width * 1000) / clock;
  2673. if (!line_time_us) {
  2674. *sprite_wm = 0;
  2675. return false;
  2676. }
  2677. line_count = (latency_ns / line_time_us + 1000) / 1000;
  2678. line_size = sprite_width * pixel_size;
  2679. /* Use the minimum of the small and large buffer method for primary */
  2680. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  2681. large = line_count * line_size;
  2682. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  2683. *sprite_wm = entries + display->guard_size;
  2684. return *sprite_wm > 0x3ff ? false : true;
  2685. }
  2686. static void sandybridge_update_sprite_wm(struct drm_plane *plane,
  2687. struct drm_crtc *crtc,
  2688. uint32_t sprite_width, int pixel_size,
  2689. bool enabled, bool scaled)
  2690. {
  2691. struct drm_device *dev = plane->dev;
  2692. struct drm_i915_private *dev_priv = dev->dev_private;
  2693. int pipe = to_intel_plane(plane)->pipe;
  2694. int latency = dev_priv->wm.spr_latency[0] * 100; /* In unit 0.1us */
  2695. u32 val;
  2696. int sprite_wm, reg;
  2697. int ret;
  2698. if (!enabled)
  2699. return;
  2700. switch (pipe) {
  2701. case 0:
  2702. reg = WM0_PIPEA_ILK;
  2703. break;
  2704. case 1:
  2705. reg = WM0_PIPEB_ILK;
  2706. break;
  2707. case 2:
  2708. reg = WM0_PIPEC_IVB;
  2709. break;
  2710. default:
  2711. return; /* bad pipe */
  2712. }
  2713. ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
  2714. &sandybridge_display_wm_info,
  2715. latency, &sprite_wm);
  2716. if (!ret) {
  2717. DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
  2718. pipe_name(pipe));
  2719. return;
  2720. }
  2721. val = I915_READ(reg);
  2722. val &= ~WM0_PIPE_SPRITE_MASK;
  2723. I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
  2724. DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
  2725. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  2726. pixel_size,
  2727. &sandybridge_display_srwm_info,
  2728. dev_priv->wm.spr_latency[1] * 500,
  2729. &sprite_wm);
  2730. if (!ret) {
  2731. DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
  2732. pipe_name(pipe));
  2733. return;
  2734. }
  2735. I915_WRITE(WM1S_LP_ILK, sprite_wm);
  2736. /* Only IVB has two more LP watermarks for sprite */
  2737. if (!IS_IVYBRIDGE(dev))
  2738. return;
  2739. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  2740. pixel_size,
  2741. &sandybridge_display_srwm_info,
  2742. dev_priv->wm.spr_latency[2] * 500,
  2743. &sprite_wm);
  2744. if (!ret) {
  2745. DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
  2746. pipe_name(pipe));
  2747. return;
  2748. }
  2749. I915_WRITE(WM2S_LP_IVB, sprite_wm);
  2750. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  2751. pixel_size,
  2752. &sandybridge_display_srwm_info,
  2753. dev_priv->wm.spr_latency[3] * 500,
  2754. &sprite_wm);
  2755. if (!ret) {
  2756. DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
  2757. pipe_name(pipe));
  2758. return;
  2759. }
  2760. I915_WRITE(WM3S_LP_IVB, sprite_wm);
  2761. }
  2762. static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  2763. {
  2764. struct drm_device *dev = crtc->dev;
  2765. struct drm_i915_private *dev_priv = dev->dev_private;
  2766. struct hsw_wm_values *hw = &dev_priv->wm.hw;
  2767. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2768. struct intel_pipe_wm *active = &intel_crtc->wm.active;
  2769. enum pipe pipe = intel_crtc->pipe;
  2770. static const unsigned int wm0_pipe_reg[] = {
  2771. [PIPE_A] = WM0_PIPEA_ILK,
  2772. [PIPE_B] = WM0_PIPEB_ILK,
  2773. [PIPE_C] = WM0_PIPEC_IVB,
  2774. };
  2775. hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
  2776. if (IS_HASWELL(dev))
  2777. hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  2778. if (intel_crtc_active(crtc)) {
  2779. u32 tmp = hw->wm_pipe[pipe];
  2780. /*
  2781. * For active pipes LP0 watermark is marked as
  2782. * enabled, and LP1+ watermaks as disabled since
  2783. * we can't really reverse compute them in case
  2784. * multiple pipes are active.
  2785. */
  2786. active->wm[0].enable = true;
  2787. active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
  2788. active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
  2789. active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
  2790. active->linetime = hw->wm_linetime[pipe];
  2791. } else {
  2792. int level, max_level = ilk_wm_max_level(dev);
  2793. /*
  2794. * For inactive pipes, all watermark levels
  2795. * should be marked as enabled but zeroed,
  2796. * which is what we'd compute them to.
  2797. */
  2798. for (level = 0; level <= max_level; level++)
  2799. active->wm[level].enable = true;
  2800. }
  2801. }
  2802. void ilk_wm_get_hw_state(struct drm_device *dev)
  2803. {
  2804. struct drm_i915_private *dev_priv = dev->dev_private;
  2805. struct hsw_wm_values *hw = &dev_priv->wm.hw;
  2806. struct drm_crtc *crtc;
  2807. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
  2808. ilk_pipe_wm_get_hw_state(crtc);
  2809. hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
  2810. hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
  2811. hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
  2812. hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
  2813. hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
  2814. hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
  2815. if (IS_HASWELL(dev))
  2816. hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
  2817. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  2818. else if (IS_IVYBRIDGE(dev))
  2819. hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
  2820. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  2821. hw->enable_fbc_wm =
  2822. !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
  2823. }
  2824. /**
  2825. * intel_update_watermarks - update FIFO watermark values based on current modes
  2826. *
  2827. * Calculate watermark values for the various WM regs based on current mode
  2828. * and plane configuration.
  2829. *
  2830. * There are several cases to deal with here:
  2831. * - normal (i.e. non-self-refresh)
  2832. * - self-refresh (SR) mode
  2833. * - lines are large relative to FIFO size (buffer can hold up to 2)
  2834. * - lines are small relative to FIFO size (buffer can hold more than 2
  2835. * lines), so need to account for TLB latency
  2836. *
  2837. * The normal calculation is:
  2838. * watermark = dotclock * bytes per pixel * latency
  2839. * where latency is platform & configuration dependent (we assume pessimal
  2840. * values here).
  2841. *
  2842. * The SR calculation is:
  2843. * watermark = (trunc(latency/line time)+1) * surface width *
  2844. * bytes per pixel
  2845. * where
  2846. * line time = htotal / dotclock
  2847. * surface width = hdisplay for normal plane and 64 for cursor
  2848. * and latency is assumed to be high, as above.
  2849. *
  2850. * The final value programmed to the register should always be rounded up,
  2851. * and include an extra 2 entries to account for clock crossings.
  2852. *
  2853. * We don't use the sprite, so we can ignore that. And on Crestline we have
  2854. * to set the non-SR watermarks to 8.
  2855. */
  2856. void intel_update_watermarks(struct drm_crtc *crtc)
  2857. {
  2858. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  2859. if (dev_priv->display.update_wm)
  2860. dev_priv->display.update_wm(crtc);
  2861. }
  2862. void intel_update_sprite_watermarks(struct drm_plane *plane,
  2863. struct drm_crtc *crtc,
  2864. uint32_t sprite_width, int pixel_size,
  2865. bool enabled, bool scaled)
  2866. {
  2867. struct drm_i915_private *dev_priv = plane->dev->dev_private;
  2868. if (dev_priv->display.update_sprite_wm)
  2869. dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
  2870. pixel_size, enabled, scaled);
  2871. }
  2872. static struct drm_i915_gem_object *
  2873. intel_alloc_context_page(struct drm_device *dev)
  2874. {
  2875. struct drm_i915_gem_object *ctx;
  2876. int ret;
  2877. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  2878. ctx = i915_gem_alloc_object(dev, 4096);
  2879. if (!ctx) {
  2880. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  2881. return NULL;
  2882. }
  2883. ret = i915_gem_obj_ggtt_pin(ctx, 4096, true, false);
  2884. if (ret) {
  2885. DRM_ERROR("failed to pin power context: %d\n", ret);
  2886. goto err_unref;
  2887. }
  2888. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  2889. if (ret) {
  2890. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  2891. goto err_unpin;
  2892. }
  2893. return ctx;
  2894. err_unpin:
  2895. i915_gem_object_unpin(ctx);
  2896. err_unref:
  2897. drm_gem_object_unreference(&ctx->base);
  2898. return NULL;
  2899. }
  2900. /**
  2901. * Lock protecting IPS related data structures
  2902. */
  2903. DEFINE_SPINLOCK(mchdev_lock);
  2904. /* Global for IPS driver to get at the current i915 device. Protected by
  2905. * mchdev_lock. */
  2906. static struct drm_i915_private *i915_mch_dev;
  2907. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  2908. {
  2909. struct drm_i915_private *dev_priv = dev->dev_private;
  2910. u16 rgvswctl;
  2911. assert_spin_locked(&mchdev_lock);
  2912. rgvswctl = I915_READ16(MEMSWCTL);
  2913. if (rgvswctl & MEMCTL_CMD_STS) {
  2914. DRM_DEBUG("gpu busy, RCS change rejected\n");
  2915. return false; /* still busy with another command */
  2916. }
  2917. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  2918. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  2919. I915_WRITE16(MEMSWCTL, rgvswctl);
  2920. POSTING_READ16(MEMSWCTL);
  2921. rgvswctl |= MEMCTL_CMD_STS;
  2922. I915_WRITE16(MEMSWCTL, rgvswctl);
  2923. return true;
  2924. }
  2925. static void ironlake_enable_drps(struct drm_device *dev)
  2926. {
  2927. struct drm_i915_private *dev_priv = dev->dev_private;
  2928. u32 rgvmodectl = I915_READ(MEMMODECTL);
  2929. u8 fmax, fmin, fstart, vstart;
  2930. spin_lock_irq(&mchdev_lock);
  2931. /* Enable temp reporting */
  2932. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  2933. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  2934. /* 100ms RC evaluation intervals */
  2935. I915_WRITE(RCUPEI, 100000);
  2936. I915_WRITE(RCDNEI, 100000);
  2937. /* Set max/min thresholds to 90ms and 80ms respectively */
  2938. I915_WRITE(RCBMAXAVG, 90000);
  2939. I915_WRITE(RCBMINAVG, 80000);
  2940. I915_WRITE(MEMIHYST, 1);
  2941. /* Set up min, max, and cur for interrupt handling */
  2942. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  2943. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  2944. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  2945. MEMMODE_FSTART_SHIFT;
  2946. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  2947. PXVFREQ_PX_SHIFT;
  2948. dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  2949. dev_priv->ips.fstart = fstart;
  2950. dev_priv->ips.max_delay = fstart;
  2951. dev_priv->ips.min_delay = fmin;
  2952. dev_priv->ips.cur_delay = fstart;
  2953. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  2954. fmax, fmin, fstart);
  2955. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  2956. /*
  2957. * Interrupts will be enabled in ironlake_irq_postinstall
  2958. */
  2959. I915_WRITE(VIDSTART, vstart);
  2960. POSTING_READ(VIDSTART);
  2961. rgvmodectl |= MEMMODE_SWMODE_EN;
  2962. I915_WRITE(MEMMODECTL, rgvmodectl);
  2963. if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  2964. DRM_ERROR("stuck trying to change perf mode\n");
  2965. mdelay(1);
  2966. ironlake_set_drps(dev, fstart);
  2967. dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  2968. I915_READ(0x112e0);
  2969. dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  2970. dev_priv->ips.last_count2 = I915_READ(0x112f4);
  2971. getrawmonotonic(&dev_priv->ips.last_time2);
  2972. spin_unlock_irq(&mchdev_lock);
  2973. }
  2974. static void ironlake_disable_drps(struct drm_device *dev)
  2975. {
  2976. struct drm_i915_private *dev_priv = dev->dev_private;
  2977. u16 rgvswctl;
  2978. spin_lock_irq(&mchdev_lock);
  2979. rgvswctl = I915_READ16(MEMSWCTL);
  2980. /* Ack interrupts, disable EFC interrupt */
  2981. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  2982. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  2983. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  2984. I915_WRITE(DEIIR, DE_PCU_EVENT);
  2985. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  2986. /* Go back to the starting frequency */
  2987. ironlake_set_drps(dev, dev_priv->ips.fstart);
  2988. mdelay(1);
  2989. rgvswctl |= MEMCTL_CMD_STS;
  2990. I915_WRITE(MEMSWCTL, rgvswctl);
  2991. mdelay(1);
  2992. spin_unlock_irq(&mchdev_lock);
  2993. }
  2994. /* There's a funny hw issue where the hw returns all 0 when reading from
  2995. * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  2996. * ourselves, instead of doing a rmw cycle (which might result in us clearing
  2997. * all limits and the gpu stuck at whatever frequency it is at atm).
  2998. */
  2999. static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
  3000. {
  3001. u32 limits;
  3002. /* Only set the down limit when we've reached the lowest level to avoid
  3003. * getting more interrupts, otherwise leave this clear. This prevents a
  3004. * race in the hw when coming out of rc6: There's a tiny window where
  3005. * the hw runs at the minimal clock before selecting the desired
  3006. * frequency, if the down threshold expires in that window we will not
  3007. * receive a down interrupt. */
  3008. limits = dev_priv->rps.max_delay << 24;
  3009. if (val <= dev_priv->rps.min_delay)
  3010. limits |= dev_priv->rps.min_delay << 16;
  3011. return limits;
  3012. }
  3013. static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
  3014. {
  3015. int new_power;
  3016. new_power = dev_priv->rps.power;
  3017. switch (dev_priv->rps.power) {
  3018. case LOW_POWER:
  3019. if (val > dev_priv->rps.rpe_delay + 1 && val > dev_priv->rps.cur_delay)
  3020. new_power = BETWEEN;
  3021. break;
  3022. case BETWEEN:
  3023. if (val <= dev_priv->rps.rpe_delay && val < dev_priv->rps.cur_delay)
  3024. new_power = LOW_POWER;
  3025. else if (val >= dev_priv->rps.rp0_delay && val > dev_priv->rps.cur_delay)
  3026. new_power = HIGH_POWER;
  3027. break;
  3028. case HIGH_POWER:
  3029. if (val < (dev_priv->rps.rp1_delay + dev_priv->rps.rp0_delay) >> 1 && val < dev_priv->rps.cur_delay)
  3030. new_power = BETWEEN;
  3031. break;
  3032. }
  3033. /* Max/min bins are special */
  3034. if (val == dev_priv->rps.min_delay)
  3035. new_power = LOW_POWER;
  3036. if (val == dev_priv->rps.max_delay)
  3037. new_power = HIGH_POWER;
  3038. if (new_power == dev_priv->rps.power)
  3039. return;
  3040. /* Note the units here are not exactly 1us, but 1280ns. */
  3041. switch (new_power) {
  3042. case LOW_POWER:
  3043. /* Upclock if more than 95% busy over 16ms */
  3044. I915_WRITE(GEN6_RP_UP_EI, 12500);
  3045. I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
  3046. /* Downclock if less than 85% busy over 32ms */
  3047. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  3048. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
  3049. I915_WRITE(GEN6_RP_CONTROL,
  3050. GEN6_RP_MEDIA_TURBO |
  3051. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3052. GEN6_RP_MEDIA_IS_GFX |
  3053. GEN6_RP_ENABLE |
  3054. GEN6_RP_UP_BUSY_AVG |
  3055. GEN6_RP_DOWN_IDLE_AVG);
  3056. break;
  3057. case BETWEEN:
  3058. /* Upclock if more than 90% busy over 13ms */
  3059. I915_WRITE(GEN6_RP_UP_EI, 10250);
  3060. I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
  3061. /* Downclock if less than 75% busy over 32ms */
  3062. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  3063. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
  3064. I915_WRITE(GEN6_RP_CONTROL,
  3065. GEN6_RP_MEDIA_TURBO |
  3066. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3067. GEN6_RP_MEDIA_IS_GFX |
  3068. GEN6_RP_ENABLE |
  3069. GEN6_RP_UP_BUSY_AVG |
  3070. GEN6_RP_DOWN_IDLE_AVG);
  3071. break;
  3072. case HIGH_POWER:
  3073. /* Upclock if more than 85% busy over 10ms */
  3074. I915_WRITE(GEN6_RP_UP_EI, 8000);
  3075. I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
  3076. /* Downclock if less than 60% busy over 32ms */
  3077. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  3078. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
  3079. I915_WRITE(GEN6_RP_CONTROL,
  3080. GEN6_RP_MEDIA_TURBO |
  3081. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3082. GEN6_RP_MEDIA_IS_GFX |
  3083. GEN6_RP_ENABLE |
  3084. GEN6_RP_UP_BUSY_AVG |
  3085. GEN6_RP_DOWN_IDLE_AVG);
  3086. break;
  3087. }
  3088. dev_priv->rps.power = new_power;
  3089. dev_priv->rps.last_adj = 0;
  3090. }
  3091. void gen6_set_rps(struct drm_device *dev, u8 val)
  3092. {
  3093. struct drm_i915_private *dev_priv = dev->dev_private;
  3094. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3095. WARN_ON(val > dev_priv->rps.max_delay);
  3096. WARN_ON(val < dev_priv->rps.min_delay);
  3097. if (val == dev_priv->rps.cur_delay)
  3098. return;
  3099. gen6_set_rps_thresholds(dev_priv, val);
  3100. if (IS_HASWELL(dev))
  3101. I915_WRITE(GEN6_RPNSWREQ,
  3102. HSW_FREQUENCY(val));
  3103. else
  3104. I915_WRITE(GEN6_RPNSWREQ,
  3105. GEN6_FREQUENCY(val) |
  3106. GEN6_OFFSET(0) |
  3107. GEN6_AGGRESSIVE_TURBO);
  3108. /* Make sure we continue to get interrupts
  3109. * until we hit the minimum or maximum frequencies.
  3110. */
  3111. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  3112. gen6_rps_limits(dev_priv, val));
  3113. POSTING_READ(GEN6_RPNSWREQ);
  3114. dev_priv->rps.cur_delay = val;
  3115. trace_intel_gpu_freq_change(val * 50);
  3116. }
  3117. void gen6_rps_idle(struct drm_i915_private *dev_priv)
  3118. {
  3119. struct drm_device *dev = dev_priv->dev;
  3120. mutex_lock(&dev_priv->rps.hw_lock);
  3121. if (dev_priv->rps.enabled) {
  3122. if (IS_VALLEYVIEW(dev))
  3123. valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
  3124. else
  3125. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
  3126. dev_priv->rps.last_adj = 0;
  3127. }
  3128. mutex_unlock(&dev_priv->rps.hw_lock);
  3129. }
  3130. void gen6_rps_boost(struct drm_i915_private *dev_priv)
  3131. {
  3132. struct drm_device *dev = dev_priv->dev;
  3133. mutex_lock(&dev_priv->rps.hw_lock);
  3134. if (dev_priv->rps.enabled) {
  3135. if (IS_VALLEYVIEW(dev))
  3136. valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
  3137. else
  3138. gen6_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
  3139. dev_priv->rps.last_adj = 0;
  3140. }
  3141. mutex_unlock(&dev_priv->rps.hw_lock);
  3142. }
  3143. void valleyview_set_rps(struct drm_device *dev, u8 val)
  3144. {
  3145. struct drm_i915_private *dev_priv = dev->dev_private;
  3146. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3147. WARN_ON(val > dev_priv->rps.max_delay);
  3148. WARN_ON(val < dev_priv->rps.min_delay);
  3149. DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
  3150. vlv_gpu_freq(dev_priv, dev_priv->rps.cur_delay),
  3151. dev_priv->rps.cur_delay,
  3152. vlv_gpu_freq(dev_priv, val), val);
  3153. if (val == dev_priv->rps.cur_delay)
  3154. return;
  3155. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  3156. dev_priv->rps.cur_delay = val;
  3157. trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
  3158. }
  3159. static void gen6_disable_rps_interrupts(struct drm_device *dev)
  3160. {
  3161. struct drm_i915_private *dev_priv = dev->dev_private;
  3162. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  3163. I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
  3164. /* Complete PM interrupt masking here doesn't race with the rps work
  3165. * item again unmasking PM interrupts because that is using a different
  3166. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  3167. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  3168. spin_lock_irq(&dev_priv->irq_lock);
  3169. dev_priv->rps.pm_iir = 0;
  3170. spin_unlock_irq(&dev_priv->irq_lock);
  3171. I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
  3172. }
  3173. static void gen6_disable_rps(struct drm_device *dev)
  3174. {
  3175. struct drm_i915_private *dev_priv = dev->dev_private;
  3176. I915_WRITE(GEN6_RC_CONTROL, 0);
  3177. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  3178. gen6_disable_rps_interrupts(dev);
  3179. }
  3180. static void valleyview_disable_rps(struct drm_device *dev)
  3181. {
  3182. struct drm_i915_private *dev_priv = dev->dev_private;
  3183. I915_WRITE(GEN6_RC_CONTROL, 0);
  3184. gen6_disable_rps_interrupts(dev);
  3185. if (dev_priv->vlv_pctx) {
  3186. drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
  3187. dev_priv->vlv_pctx = NULL;
  3188. }
  3189. }
  3190. static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
  3191. {
  3192. if (IS_GEN6(dev))
  3193. DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
  3194. if (IS_HASWELL(dev))
  3195. DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
  3196. DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
  3197. (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
  3198. (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
  3199. (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
  3200. }
  3201. int intel_enable_rc6(const struct drm_device *dev)
  3202. {
  3203. /* No RC6 before Ironlake */
  3204. if (INTEL_INFO(dev)->gen < 5)
  3205. return 0;
  3206. /* Respect the kernel parameter if it is set */
  3207. if (i915_enable_rc6 >= 0)
  3208. return i915_enable_rc6;
  3209. /* Disable RC6 on Ironlake */
  3210. if (INTEL_INFO(dev)->gen == 5)
  3211. return 0;
  3212. if (IS_HASWELL(dev))
  3213. return INTEL_RC6_ENABLE;
  3214. /* snb/ivb have more than one rc6 state. */
  3215. if (INTEL_INFO(dev)->gen == 6)
  3216. return INTEL_RC6_ENABLE;
  3217. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  3218. }
  3219. static void gen6_enable_rps_interrupts(struct drm_device *dev)
  3220. {
  3221. struct drm_i915_private *dev_priv = dev->dev_private;
  3222. u32 enabled_intrs;
  3223. spin_lock_irq(&dev_priv->irq_lock);
  3224. WARN_ON(dev_priv->rps.pm_iir);
  3225. snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
  3226. I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
  3227. spin_unlock_irq(&dev_priv->irq_lock);
  3228. /* only unmask PM interrupts we need. Mask all others. */
  3229. enabled_intrs = GEN6_PM_RPS_EVENTS;
  3230. /* IVB and SNB hard hangs on looping batchbuffer
  3231. * if GEN6_PM_UP_EI_EXPIRED is masked.
  3232. */
  3233. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  3234. enabled_intrs |= GEN6_PM_RP_UP_EI_EXPIRED;
  3235. I915_WRITE(GEN6_PMINTRMSK, ~enabled_intrs);
  3236. }
  3237. static void gen8_enable_rps(struct drm_device *dev)
  3238. {
  3239. struct drm_i915_private *dev_priv = dev->dev_private;
  3240. struct intel_ring_buffer *ring;
  3241. uint32_t rc6_mask = 0, rp_state_cap;
  3242. int unused;
  3243. /* 1a: Software RC state - RC0 */
  3244. I915_WRITE(GEN6_RC_STATE, 0);
  3245. /* 1c & 1d: Get forcewake during program sequence. Although the driver
  3246. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  3247. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  3248. /* 2a: Disable RC states. */
  3249. I915_WRITE(GEN6_RC_CONTROL, 0);
  3250. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  3251. /* 2b: Program RC6 thresholds.*/
  3252. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  3253. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  3254. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  3255. for_each_ring(ring, dev_priv, unused)
  3256. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3257. I915_WRITE(GEN6_RC_SLEEP, 0);
  3258. I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
  3259. /* 3: Enable RC6 */
  3260. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  3261. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  3262. DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
  3263. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  3264. GEN6_RC_CTL_EI_MODE(1) |
  3265. rc6_mask);
  3266. /* 4 Program defaults and thresholds for RPS*/
  3267. I915_WRITE(GEN6_RPNSWREQ, HSW_FREQUENCY(10)); /* Request 500 MHz */
  3268. I915_WRITE(GEN6_RC_VIDEO_FREQ, HSW_FREQUENCY(12)); /* Request 600 MHz */
  3269. /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
  3270. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
  3271. /* Docs recommend 900MHz, and 300 MHz respectively */
  3272. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  3273. dev_priv->rps.max_delay << 24 |
  3274. dev_priv->rps.min_delay << 16);
  3275. I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
  3276. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
  3277. I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
  3278. I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
  3279. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3280. /* 5: Enable RPS */
  3281. I915_WRITE(GEN6_RP_CONTROL,
  3282. GEN6_RP_MEDIA_TURBO |
  3283. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3284. GEN6_RP_MEDIA_IS_GFX |
  3285. GEN6_RP_ENABLE |
  3286. GEN6_RP_UP_BUSY_AVG |
  3287. GEN6_RP_DOWN_IDLE_AVG);
  3288. /* 6: Ring frequency + overclocking (our driver does this later */
  3289. gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
  3290. gen6_enable_rps_interrupts(dev);
  3291. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3292. }
  3293. static void gen6_enable_rps(struct drm_device *dev)
  3294. {
  3295. struct drm_i915_private *dev_priv = dev->dev_private;
  3296. struct intel_ring_buffer *ring;
  3297. u32 rp_state_cap;
  3298. u32 gt_perf_status;
  3299. u32 rc6vids, pcu_mbox, rc6_mask = 0;
  3300. u32 gtfifodbg;
  3301. int rc6_mode;
  3302. int i, ret;
  3303. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3304. /* Here begins a magic sequence of register writes to enable
  3305. * auto-downclocking.
  3306. *
  3307. * Perhaps there might be some value in exposing these to
  3308. * userspace...
  3309. */
  3310. I915_WRITE(GEN6_RC_STATE, 0);
  3311. /* Clear the DBG now so we don't confuse earlier errors */
  3312. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  3313. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  3314. I915_WRITE(GTFIFODBG, gtfifodbg);
  3315. }
  3316. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  3317. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  3318. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  3319. /* In units of 50MHz */
  3320. dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
  3321. dev_priv->rps.min_delay = (rp_state_cap >> 16) & 0xff;
  3322. dev_priv->rps.rp1_delay = (rp_state_cap >> 8) & 0xff;
  3323. dev_priv->rps.rp0_delay = (rp_state_cap >> 0) & 0xff;
  3324. dev_priv->rps.rpe_delay = dev_priv->rps.rp1_delay;
  3325. dev_priv->rps.cur_delay = 0;
  3326. /* disable the counters and set deterministic thresholds */
  3327. I915_WRITE(GEN6_RC_CONTROL, 0);
  3328. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  3329. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  3330. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  3331. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  3332. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  3333. for_each_ring(ring, dev_priv, i)
  3334. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3335. I915_WRITE(GEN6_RC_SLEEP, 0);
  3336. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  3337. if (IS_IVYBRIDGE(dev))
  3338. I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
  3339. else
  3340. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  3341. I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
  3342. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  3343. /* Check if we are enabling RC6 */
  3344. rc6_mode = intel_enable_rc6(dev_priv->dev);
  3345. if (rc6_mode & INTEL_RC6_ENABLE)
  3346. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  3347. /* We don't use those on Haswell */
  3348. if (!IS_HASWELL(dev)) {
  3349. if (rc6_mode & INTEL_RC6p_ENABLE)
  3350. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  3351. if (rc6_mode & INTEL_RC6pp_ENABLE)
  3352. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  3353. }
  3354. intel_print_rc6_info(dev, rc6_mask);
  3355. I915_WRITE(GEN6_RC_CONTROL,
  3356. rc6_mask |
  3357. GEN6_RC_CTL_EI_MODE(1) |
  3358. GEN6_RC_CTL_HW_ENABLE);
  3359. /* Power down if completely idle for over 50ms */
  3360. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
  3361. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3362. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
  3363. if (!ret) {
  3364. pcu_mbox = 0;
  3365. ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
  3366. if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
  3367. DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
  3368. (dev_priv->rps.max_delay & 0xff) * 50,
  3369. (pcu_mbox & 0xff) * 50);
  3370. dev_priv->rps.hw_max = pcu_mbox & 0xff;
  3371. }
  3372. } else {
  3373. DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
  3374. }
  3375. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  3376. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
  3377. gen6_enable_rps_interrupts(dev);
  3378. rc6vids = 0;
  3379. ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  3380. if (IS_GEN6(dev) && ret) {
  3381. DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  3382. } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  3383. DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  3384. GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  3385. rc6vids &= 0xffff00;
  3386. rc6vids |= GEN6_ENCODE_RC6_VID(450);
  3387. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  3388. if (ret)
  3389. DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  3390. }
  3391. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3392. }
  3393. void gen6_update_ring_freq(struct drm_device *dev)
  3394. {
  3395. struct drm_i915_private *dev_priv = dev->dev_private;
  3396. int min_freq = 15;
  3397. unsigned int gpu_freq;
  3398. unsigned int max_ia_freq, min_ring_freq;
  3399. int scaling_factor = 180;
  3400. struct cpufreq_policy *policy;
  3401. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3402. policy = cpufreq_cpu_get(0);
  3403. if (policy) {
  3404. max_ia_freq = policy->cpuinfo.max_freq;
  3405. cpufreq_cpu_put(policy);
  3406. } else {
  3407. /*
  3408. * Default to measured freq if none found, PCU will ensure we
  3409. * don't go over
  3410. */
  3411. max_ia_freq = tsc_khz;
  3412. }
  3413. /* Convert from kHz to MHz */
  3414. max_ia_freq /= 1000;
  3415. min_ring_freq = I915_READ(DCLK) & 0xf;
  3416. /* convert DDR frequency from units of 266.6MHz to bandwidth */
  3417. min_ring_freq = mult_frac(min_ring_freq, 8, 3);
  3418. /*
  3419. * For each potential GPU frequency, load a ring frequency we'd like
  3420. * to use for memory access. We do this by specifying the IA frequency
  3421. * the PCU should use as a reference to determine the ring frequency.
  3422. */
  3423. for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
  3424. gpu_freq--) {
  3425. int diff = dev_priv->rps.max_delay - gpu_freq;
  3426. unsigned int ia_freq = 0, ring_freq = 0;
  3427. if (INTEL_INFO(dev)->gen >= 8) {
  3428. /* max(2 * GT, DDR). NB: GT is 50MHz units */
  3429. ring_freq = max(min_ring_freq, gpu_freq);
  3430. } else if (IS_HASWELL(dev)) {
  3431. ring_freq = mult_frac(gpu_freq, 5, 4);
  3432. ring_freq = max(min_ring_freq, ring_freq);
  3433. /* leave ia_freq as the default, chosen by cpufreq */
  3434. } else {
  3435. /* On older processors, there is no separate ring
  3436. * clock domain, so in order to boost the bandwidth
  3437. * of the ring, we need to upclock the CPU (ia_freq).
  3438. *
  3439. * For GPU frequencies less than 750MHz,
  3440. * just use the lowest ring freq.
  3441. */
  3442. if (gpu_freq < min_freq)
  3443. ia_freq = 800;
  3444. else
  3445. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  3446. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  3447. }
  3448. sandybridge_pcode_write(dev_priv,
  3449. GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  3450. ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
  3451. ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
  3452. gpu_freq);
  3453. }
  3454. }
  3455. int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
  3456. {
  3457. u32 val, rp0;
  3458. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  3459. rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
  3460. /* Clamp to max */
  3461. rp0 = min_t(u32, rp0, 0xea);
  3462. return rp0;
  3463. }
  3464. static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  3465. {
  3466. u32 val, rpe;
  3467. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
  3468. rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
  3469. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
  3470. rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
  3471. return rpe;
  3472. }
  3473. int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
  3474. {
  3475. return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
  3476. }
  3477. static void valleyview_setup_pctx(struct drm_device *dev)
  3478. {
  3479. struct drm_i915_private *dev_priv = dev->dev_private;
  3480. struct drm_i915_gem_object *pctx;
  3481. unsigned long pctx_paddr;
  3482. u32 pcbr;
  3483. int pctx_size = 24*1024;
  3484. pcbr = I915_READ(VLV_PCBR);
  3485. if (pcbr) {
  3486. /* BIOS set it up already, grab the pre-alloc'd space */
  3487. int pcbr_offset;
  3488. pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
  3489. pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
  3490. pcbr_offset,
  3491. I915_GTT_OFFSET_NONE,
  3492. pctx_size);
  3493. goto out;
  3494. }
  3495. /*
  3496. * From the Gunit register HAS:
  3497. * The Gfx driver is expected to program this register and ensure
  3498. * proper allocation within Gfx stolen memory. For example, this
  3499. * register should be programmed such than the PCBR range does not
  3500. * overlap with other ranges, such as the frame buffer, protected
  3501. * memory, or any other relevant ranges.
  3502. */
  3503. pctx = i915_gem_object_create_stolen(dev, pctx_size);
  3504. if (!pctx) {
  3505. DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
  3506. return;
  3507. }
  3508. pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
  3509. I915_WRITE(VLV_PCBR, pctx_paddr);
  3510. out:
  3511. dev_priv->vlv_pctx = pctx;
  3512. }
  3513. static void valleyview_enable_rps(struct drm_device *dev)
  3514. {
  3515. struct drm_i915_private *dev_priv = dev->dev_private;
  3516. struct intel_ring_buffer *ring;
  3517. u32 gtfifodbg, val, rc6_mode = 0;
  3518. int i;
  3519. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3520. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  3521. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  3522. gtfifodbg);
  3523. I915_WRITE(GTFIFODBG, gtfifodbg);
  3524. }
  3525. valleyview_setup_pctx(dev);
  3526. /* If VLV, Forcewake all wells, else re-direct to regular path */
  3527. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  3528. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  3529. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  3530. I915_WRITE(GEN6_RP_UP_EI, 66000);
  3531. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  3532. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3533. I915_WRITE(GEN6_RP_CONTROL,
  3534. GEN6_RP_MEDIA_TURBO |
  3535. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3536. GEN6_RP_MEDIA_IS_GFX |
  3537. GEN6_RP_ENABLE |
  3538. GEN6_RP_UP_BUSY_AVG |
  3539. GEN6_RP_DOWN_IDLE_CONT);
  3540. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
  3541. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  3542. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  3543. for_each_ring(ring, dev_priv, i)
  3544. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3545. I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
  3546. /* allows RC6 residency counter to work */
  3547. I915_WRITE(VLV_COUNTER_CONTROL,
  3548. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
  3549. VLV_MEDIA_RC6_COUNT_EN |
  3550. VLV_RENDER_RC6_COUNT_EN));
  3551. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  3552. rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
  3553. intel_print_rc6_info(dev, rc6_mode);
  3554. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  3555. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  3556. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
  3557. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  3558. dev_priv->rps.cur_delay = (val >> 8) & 0xff;
  3559. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  3560. vlv_gpu_freq(dev_priv, dev_priv->rps.cur_delay),
  3561. dev_priv->rps.cur_delay);
  3562. dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
  3563. dev_priv->rps.hw_max = dev_priv->rps.max_delay;
  3564. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  3565. vlv_gpu_freq(dev_priv, dev_priv->rps.max_delay),
  3566. dev_priv->rps.max_delay);
  3567. dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
  3568. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  3569. vlv_gpu_freq(dev_priv, dev_priv->rps.rpe_delay),
  3570. dev_priv->rps.rpe_delay);
  3571. dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
  3572. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  3573. vlv_gpu_freq(dev_priv, dev_priv->rps.min_delay),
  3574. dev_priv->rps.min_delay);
  3575. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  3576. vlv_gpu_freq(dev_priv, dev_priv->rps.rpe_delay),
  3577. dev_priv->rps.rpe_delay);
  3578. valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
  3579. gen6_enable_rps_interrupts(dev);
  3580. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3581. }
  3582. void ironlake_teardown_rc6(struct drm_device *dev)
  3583. {
  3584. struct drm_i915_private *dev_priv = dev->dev_private;
  3585. if (dev_priv->ips.renderctx) {
  3586. i915_gem_object_unpin(dev_priv->ips.renderctx);
  3587. drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
  3588. dev_priv->ips.renderctx = NULL;
  3589. }
  3590. if (dev_priv->ips.pwrctx) {
  3591. i915_gem_object_unpin(dev_priv->ips.pwrctx);
  3592. drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
  3593. dev_priv->ips.pwrctx = NULL;
  3594. }
  3595. }
  3596. static void ironlake_disable_rc6(struct drm_device *dev)
  3597. {
  3598. struct drm_i915_private *dev_priv = dev->dev_private;
  3599. if (I915_READ(PWRCTXA)) {
  3600. /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
  3601. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
  3602. wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
  3603. 50);
  3604. I915_WRITE(PWRCTXA, 0);
  3605. POSTING_READ(PWRCTXA);
  3606. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  3607. POSTING_READ(RSTDBYCTL);
  3608. }
  3609. }
  3610. static int ironlake_setup_rc6(struct drm_device *dev)
  3611. {
  3612. struct drm_i915_private *dev_priv = dev->dev_private;
  3613. if (dev_priv->ips.renderctx == NULL)
  3614. dev_priv->ips.renderctx = intel_alloc_context_page(dev);
  3615. if (!dev_priv->ips.renderctx)
  3616. return -ENOMEM;
  3617. if (dev_priv->ips.pwrctx == NULL)
  3618. dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
  3619. if (!dev_priv->ips.pwrctx) {
  3620. ironlake_teardown_rc6(dev);
  3621. return -ENOMEM;
  3622. }
  3623. return 0;
  3624. }
  3625. static void ironlake_enable_rc6(struct drm_device *dev)
  3626. {
  3627. struct drm_i915_private *dev_priv = dev->dev_private;
  3628. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  3629. bool was_interruptible;
  3630. int ret;
  3631. /* rc6 disabled by default due to repeated reports of hanging during
  3632. * boot and resume.
  3633. */
  3634. if (!intel_enable_rc6(dev))
  3635. return;
  3636. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3637. ret = ironlake_setup_rc6(dev);
  3638. if (ret)
  3639. return;
  3640. was_interruptible = dev_priv->mm.interruptible;
  3641. dev_priv->mm.interruptible = false;
  3642. /*
  3643. * GPU can automatically power down the render unit if given a page
  3644. * to save state.
  3645. */
  3646. ret = intel_ring_begin(ring, 6);
  3647. if (ret) {
  3648. ironlake_teardown_rc6(dev);
  3649. dev_priv->mm.interruptible = was_interruptible;
  3650. return;
  3651. }
  3652. intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
  3653. intel_ring_emit(ring, MI_SET_CONTEXT);
  3654. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
  3655. MI_MM_SPACE_GTT |
  3656. MI_SAVE_EXT_STATE_EN |
  3657. MI_RESTORE_EXT_STATE_EN |
  3658. MI_RESTORE_INHIBIT);
  3659. intel_ring_emit(ring, MI_SUSPEND_FLUSH);
  3660. intel_ring_emit(ring, MI_NOOP);
  3661. intel_ring_emit(ring, MI_FLUSH);
  3662. intel_ring_advance(ring);
  3663. /*
  3664. * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
  3665. * does an implicit flush, combined with MI_FLUSH above, it should be
  3666. * safe to assume that renderctx is valid
  3667. */
  3668. ret = intel_ring_idle(ring);
  3669. dev_priv->mm.interruptible = was_interruptible;
  3670. if (ret) {
  3671. DRM_ERROR("failed to enable ironlake power savings\n");
  3672. ironlake_teardown_rc6(dev);
  3673. return;
  3674. }
  3675. I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
  3676. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  3677. intel_print_rc6_info(dev, INTEL_RC6_ENABLE);
  3678. }
  3679. static unsigned long intel_pxfreq(u32 vidfreq)
  3680. {
  3681. unsigned long freq;
  3682. int div = (vidfreq & 0x3f0000) >> 16;
  3683. int post = (vidfreq & 0x3000) >> 12;
  3684. int pre = (vidfreq & 0x7);
  3685. if (!pre)
  3686. return 0;
  3687. freq = ((div * 133333) / ((1<<post) * pre));
  3688. return freq;
  3689. }
  3690. static const struct cparams {
  3691. u16 i;
  3692. u16 t;
  3693. u16 m;
  3694. u16 c;
  3695. } cparams[] = {
  3696. { 1, 1333, 301, 28664 },
  3697. { 1, 1066, 294, 24460 },
  3698. { 1, 800, 294, 25192 },
  3699. { 0, 1333, 276, 27605 },
  3700. { 0, 1066, 276, 27605 },
  3701. { 0, 800, 231, 23784 },
  3702. };
  3703. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  3704. {
  3705. u64 total_count, diff, ret;
  3706. u32 count1, count2, count3, m = 0, c = 0;
  3707. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  3708. int i;
  3709. assert_spin_locked(&mchdev_lock);
  3710. diff1 = now - dev_priv->ips.last_time1;
  3711. /* Prevent division-by-zero if we are asking too fast.
  3712. * Also, we don't get interesting results if we are polling
  3713. * faster than once in 10ms, so just return the saved value
  3714. * in such cases.
  3715. */
  3716. if (diff1 <= 10)
  3717. return dev_priv->ips.chipset_power;
  3718. count1 = I915_READ(DMIEC);
  3719. count2 = I915_READ(DDREC);
  3720. count3 = I915_READ(CSIEC);
  3721. total_count = count1 + count2 + count3;
  3722. /* FIXME: handle per-counter overflow */
  3723. if (total_count < dev_priv->ips.last_count1) {
  3724. diff = ~0UL - dev_priv->ips.last_count1;
  3725. diff += total_count;
  3726. } else {
  3727. diff = total_count - dev_priv->ips.last_count1;
  3728. }
  3729. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  3730. if (cparams[i].i == dev_priv->ips.c_m &&
  3731. cparams[i].t == dev_priv->ips.r_t) {
  3732. m = cparams[i].m;
  3733. c = cparams[i].c;
  3734. break;
  3735. }
  3736. }
  3737. diff = div_u64(diff, diff1);
  3738. ret = ((m * diff) + c);
  3739. ret = div_u64(ret, 10);
  3740. dev_priv->ips.last_count1 = total_count;
  3741. dev_priv->ips.last_time1 = now;
  3742. dev_priv->ips.chipset_power = ret;
  3743. return ret;
  3744. }
  3745. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  3746. {
  3747. unsigned long val;
  3748. if (dev_priv->info->gen != 5)
  3749. return 0;
  3750. spin_lock_irq(&mchdev_lock);
  3751. val = __i915_chipset_val(dev_priv);
  3752. spin_unlock_irq(&mchdev_lock);
  3753. return val;
  3754. }
  3755. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  3756. {
  3757. unsigned long m, x, b;
  3758. u32 tsfs;
  3759. tsfs = I915_READ(TSFS);
  3760. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  3761. x = I915_READ8(TR1);
  3762. b = tsfs & TSFS_INTR_MASK;
  3763. return ((m * x) / 127) - b;
  3764. }
  3765. static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  3766. {
  3767. static const struct v_table {
  3768. u16 vd; /* in .1 mil */
  3769. u16 vm; /* in .1 mil */
  3770. } v_table[] = {
  3771. { 0, 0, },
  3772. { 375, 0, },
  3773. { 500, 0, },
  3774. { 625, 0, },
  3775. { 750, 0, },
  3776. { 875, 0, },
  3777. { 1000, 0, },
  3778. { 1125, 0, },
  3779. { 4125, 3000, },
  3780. { 4125, 3000, },
  3781. { 4125, 3000, },
  3782. { 4125, 3000, },
  3783. { 4125, 3000, },
  3784. { 4125, 3000, },
  3785. { 4125, 3000, },
  3786. { 4125, 3000, },
  3787. { 4125, 3000, },
  3788. { 4125, 3000, },
  3789. { 4125, 3000, },
  3790. { 4125, 3000, },
  3791. { 4125, 3000, },
  3792. { 4125, 3000, },
  3793. { 4125, 3000, },
  3794. { 4125, 3000, },
  3795. { 4125, 3000, },
  3796. { 4125, 3000, },
  3797. { 4125, 3000, },
  3798. { 4125, 3000, },
  3799. { 4125, 3000, },
  3800. { 4125, 3000, },
  3801. { 4125, 3000, },
  3802. { 4125, 3000, },
  3803. { 4250, 3125, },
  3804. { 4375, 3250, },
  3805. { 4500, 3375, },
  3806. { 4625, 3500, },
  3807. { 4750, 3625, },
  3808. { 4875, 3750, },
  3809. { 5000, 3875, },
  3810. { 5125, 4000, },
  3811. { 5250, 4125, },
  3812. { 5375, 4250, },
  3813. { 5500, 4375, },
  3814. { 5625, 4500, },
  3815. { 5750, 4625, },
  3816. { 5875, 4750, },
  3817. { 6000, 4875, },
  3818. { 6125, 5000, },
  3819. { 6250, 5125, },
  3820. { 6375, 5250, },
  3821. { 6500, 5375, },
  3822. { 6625, 5500, },
  3823. { 6750, 5625, },
  3824. { 6875, 5750, },
  3825. { 7000, 5875, },
  3826. { 7125, 6000, },
  3827. { 7250, 6125, },
  3828. { 7375, 6250, },
  3829. { 7500, 6375, },
  3830. { 7625, 6500, },
  3831. { 7750, 6625, },
  3832. { 7875, 6750, },
  3833. { 8000, 6875, },
  3834. { 8125, 7000, },
  3835. { 8250, 7125, },
  3836. { 8375, 7250, },
  3837. { 8500, 7375, },
  3838. { 8625, 7500, },
  3839. { 8750, 7625, },
  3840. { 8875, 7750, },
  3841. { 9000, 7875, },
  3842. { 9125, 8000, },
  3843. { 9250, 8125, },
  3844. { 9375, 8250, },
  3845. { 9500, 8375, },
  3846. { 9625, 8500, },
  3847. { 9750, 8625, },
  3848. { 9875, 8750, },
  3849. { 10000, 8875, },
  3850. { 10125, 9000, },
  3851. { 10250, 9125, },
  3852. { 10375, 9250, },
  3853. { 10500, 9375, },
  3854. { 10625, 9500, },
  3855. { 10750, 9625, },
  3856. { 10875, 9750, },
  3857. { 11000, 9875, },
  3858. { 11125, 10000, },
  3859. { 11250, 10125, },
  3860. { 11375, 10250, },
  3861. { 11500, 10375, },
  3862. { 11625, 10500, },
  3863. { 11750, 10625, },
  3864. { 11875, 10750, },
  3865. { 12000, 10875, },
  3866. { 12125, 11000, },
  3867. { 12250, 11125, },
  3868. { 12375, 11250, },
  3869. { 12500, 11375, },
  3870. { 12625, 11500, },
  3871. { 12750, 11625, },
  3872. { 12875, 11750, },
  3873. { 13000, 11875, },
  3874. { 13125, 12000, },
  3875. { 13250, 12125, },
  3876. { 13375, 12250, },
  3877. { 13500, 12375, },
  3878. { 13625, 12500, },
  3879. { 13750, 12625, },
  3880. { 13875, 12750, },
  3881. { 14000, 12875, },
  3882. { 14125, 13000, },
  3883. { 14250, 13125, },
  3884. { 14375, 13250, },
  3885. { 14500, 13375, },
  3886. { 14625, 13500, },
  3887. { 14750, 13625, },
  3888. { 14875, 13750, },
  3889. { 15000, 13875, },
  3890. { 15125, 14000, },
  3891. { 15250, 14125, },
  3892. { 15375, 14250, },
  3893. { 15500, 14375, },
  3894. { 15625, 14500, },
  3895. { 15750, 14625, },
  3896. { 15875, 14750, },
  3897. { 16000, 14875, },
  3898. { 16125, 15000, },
  3899. };
  3900. if (dev_priv->info->is_mobile)
  3901. return v_table[pxvid].vm;
  3902. else
  3903. return v_table[pxvid].vd;
  3904. }
  3905. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  3906. {
  3907. struct timespec now, diff1;
  3908. u64 diff;
  3909. unsigned long diffms;
  3910. u32 count;
  3911. assert_spin_locked(&mchdev_lock);
  3912. getrawmonotonic(&now);
  3913. diff1 = timespec_sub(now, dev_priv->ips.last_time2);
  3914. /* Don't divide by 0 */
  3915. diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
  3916. if (!diffms)
  3917. return;
  3918. count = I915_READ(GFXEC);
  3919. if (count < dev_priv->ips.last_count2) {
  3920. diff = ~0UL - dev_priv->ips.last_count2;
  3921. diff += count;
  3922. } else {
  3923. diff = count - dev_priv->ips.last_count2;
  3924. }
  3925. dev_priv->ips.last_count2 = count;
  3926. dev_priv->ips.last_time2 = now;
  3927. /* More magic constants... */
  3928. diff = diff * 1181;
  3929. diff = div_u64(diff, diffms * 10);
  3930. dev_priv->ips.gfx_power = diff;
  3931. }
  3932. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  3933. {
  3934. if (dev_priv->info->gen != 5)
  3935. return;
  3936. spin_lock_irq(&mchdev_lock);
  3937. __i915_update_gfx_val(dev_priv);
  3938. spin_unlock_irq(&mchdev_lock);
  3939. }
  3940. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  3941. {
  3942. unsigned long t, corr, state1, corr2, state2;
  3943. u32 pxvid, ext_v;
  3944. assert_spin_locked(&mchdev_lock);
  3945. pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
  3946. pxvid = (pxvid >> 24) & 0x7f;
  3947. ext_v = pvid_to_extvid(dev_priv, pxvid);
  3948. state1 = ext_v;
  3949. t = i915_mch_val(dev_priv);
  3950. /* Revel in the empirically derived constants */
  3951. /* Correction factor in 1/100000 units */
  3952. if (t > 80)
  3953. corr = ((t * 2349) + 135940);
  3954. else if (t >= 50)
  3955. corr = ((t * 964) + 29317);
  3956. else /* < 50 */
  3957. corr = ((t * 301) + 1004);
  3958. corr = corr * ((150142 * state1) / 10000 - 78642);
  3959. corr /= 100000;
  3960. corr2 = (corr * dev_priv->ips.corr);
  3961. state2 = (corr2 * state1) / 10000;
  3962. state2 /= 100; /* convert to mW */
  3963. __i915_update_gfx_val(dev_priv);
  3964. return dev_priv->ips.gfx_power + state2;
  3965. }
  3966. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  3967. {
  3968. unsigned long val;
  3969. if (dev_priv->info->gen != 5)
  3970. return 0;
  3971. spin_lock_irq(&mchdev_lock);
  3972. val = __i915_gfx_val(dev_priv);
  3973. spin_unlock_irq(&mchdev_lock);
  3974. return val;
  3975. }
  3976. /**
  3977. * i915_read_mch_val - return value for IPS use
  3978. *
  3979. * Calculate and return a value for the IPS driver to use when deciding whether
  3980. * we have thermal and power headroom to increase CPU or GPU power budget.
  3981. */
  3982. unsigned long i915_read_mch_val(void)
  3983. {
  3984. struct drm_i915_private *dev_priv;
  3985. unsigned long chipset_val, graphics_val, ret = 0;
  3986. spin_lock_irq(&mchdev_lock);
  3987. if (!i915_mch_dev)
  3988. goto out_unlock;
  3989. dev_priv = i915_mch_dev;
  3990. chipset_val = __i915_chipset_val(dev_priv);
  3991. graphics_val = __i915_gfx_val(dev_priv);
  3992. ret = chipset_val + graphics_val;
  3993. out_unlock:
  3994. spin_unlock_irq(&mchdev_lock);
  3995. return ret;
  3996. }
  3997. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  3998. /**
  3999. * i915_gpu_raise - raise GPU frequency limit
  4000. *
  4001. * Raise the limit; IPS indicates we have thermal headroom.
  4002. */
  4003. bool i915_gpu_raise(void)
  4004. {
  4005. struct drm_i915_private *dev_priv;
  4006. bool ret = true;
  4007. spin_lock_irq(&mchdev_lock);
  4008. if (!i915_mch_dev) {
  4009. ret = false;
  4010. goto out_unlock;
  4011. }
  4012. dev_priv = i915_mch_dev;
  4013. if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  4014. dev_priv->ips.max_delay--;
  4015. out_unlock:
  4016. spin_unlock_irq(&mchdev_lock);
  4017. return ret;
  4018. }
  4019. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  4020. /**
  4021. * i915_gpu_lower - lower GPU frequency limit
  4022. *
  4023. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  4024. * frequency maximum.
  4025. */
  4026. bool i915_gpu_lower(void)
  4027. {
  4028. struct drm_i915_private *dev_priv;
  4029. bool ret = true;
  4030. spin_lock_irq(&mchdev_lock);
  4031. if (!i915_mch_dev) {
  4032. ret = false;
  4033. goto out_unlock;
  4034. }
  4035. dev_priv = i915_mch_dev;
  4036. if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  4037. dev_priv->ips.max_delay++;
  4038. out_unlock:
  4039. spin_unlock_irq(&mchdev_lock);
  4040. return ret;
  4041. }
  4042. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  4043. /**
  4044. * i915_gpu_busy - indicate GPU business to IPS
  4045. *
  4046. * Tell the IPS driver whether or not the GPU is busy.
  4047. */
  4048. bool i915_gpu_busy(void)
  4049. {
  4050. struct drm_i915_private *dev_priv;
  4051. struct intel_ring_buffer *ring;
  4052. bool ret = false;
  4053. int i;
  4054. spin_lock_irq(&mchdev_lock);
  4055. if (!i915_mch_dev)
  4056. goto out_unlock;
  4057. dev_priv = i915_mch_dev;
  4058. for_each_ring(ring, dev_priv, i)
  4059. ret |= !list_empty(&ring->request_list);
  4060. out_unlock:
  4061. spin_unlock_irq(&mchdev_lock);
  4062. return ret;
  4063. }
  4064. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  4065. /**
  4066. * i915_gpu_turbo_disable - disable graphics turbo
  4067. *
  4068. * Disable graphics turbo by resetting the max frequency and setting the
  4069. * current frequency to the default.
  4070. */
  4071. bool i915_gpu_turbo_disable(void)
  4072. {
  4073. struct drm_i915_private *dev_priv;
  4074. bool ret = true;
  4075. spin_lock_irq(&mchdev_lock);
  4076. if (!i915_mch_dev) {
  4077. ret = false;
  4078. goto out_unlock;
  4079. }
  4080. dev_priv = i915_mch_dev;
  4081. dev_priv->ips.max_delay = dev_priv->ips.fstart;
  4082. if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
  4083. ret = false;
  4084. out_unlock:
  4085. spin_unlock_irq(&mchdev_lock);
  4086. return ret;
  4087. }
  4088. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  4089. /**
  4090. * Tells the intel_ips driver that the i915 driver is now loaded, if
  4091. * IPS got loaded first.
  4092. *
  4093. * This awkward dance is so that neither module has to depend on the
  4094. * other in order for IPS to do the appropriate communication of
  4095. * GPU turbo limits to i915.
  4096. */
  4097. static void
  4098. ips_ping_for_i915_load(void)
  4099. {
  4100. void (*link)(void);
  4101. link = symbol_get(ips_link_to_i915_driver);
  4102. if (link) {
  4103. link();
  4104. symbol_put(ips_link_to_i915_driver);
  4105. }
  4106. }
  4107. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  4108. {
  4109. /* We only register the i915 ips part with intel-ips once everything is
  4110. * set up, to avoid intel-ips sneaking in and reading bogus values. */
  4111. spin_lock_irq(&mchdev_lock);
  4112. i915_mch_dev = dev_priv;
  4113. spin_unlock_irq(&mchdev_lock);
  4114. ips_ping_for_i915_load();
  4115. }
  4116. void intel_gpu_ips_teardown(void)
  4117. {
  4118. spin_lock_irq(&mchdev_lock);
  4119. i915_mch_dev = NULL;
  4120. spin_unlock_irq(&mchdev_lock);
  4121. }
  4122. static void intel_init_emon(struct drm_device *dev)
  4123. {
  4124. struct drm_i915_private *dev_priv = dev->dev_private;
  4125. u32 lcfuse;
  4126. u8 pxw[16];
  4127. int i;
  4128. /* Disable to program */
  4129. I915_WRITE(ECR, 0);
  4130. POSTING_READ(ECR);
  4131. /* Program energy weights for various events */
  4132. I915_WRITE(SDEW, 0x15040d00);
  4133. I915_WRITE(CSIEW0, 0x007f0000);
  4134. I915_WRITE(CSIEW1, 0x1e220004);
  4135. I915_WRITE(CSIEW2, 0x04000004);
  4136. for (i = 0; i < 5; i++)
  4137. I915_WRITE(PEW + (i * 4), 0);
  4138. for (i = 0; i < 3; i++)
  4139. I915_WRITE(DEW + (i * 4), 0);
  4140. /* Program P-state weights to account for frequency power adjustment */
  4141. for (i = 0; i < 16; i++) {
  4142. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  4143. unsigned long freq = intel_pxfreq(pxvidfreq);
  4144. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  4145. PXVFREQ_PX_SHIFT;
  4146. unsigned long val;
  4147. val = vid * vid;
  4148. val *= (freq / 1000);
  4149. val *= 255;
  4150. val /= (127*127*900);
  4151. if (val > 0xff)
  4152. DRM_ERROR("bad pxval: %ld\n", val);
  4153. pxw[i] = val;
  4154. }
  4155. /* Render standby states get 0 weight */
  4156. pxw[14] = 0;
  4157. pxw[15] = 0;
  4158. for (i = 0; i < 4; i++) {
  4159. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  4160. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  4161. I915_WRITE(PXW + (i * 4), val);
  4162. }
  4163. /* Adjust magic regs to magic values (more experimental results) */
  4164. I915_WRITE(OGW0, 0);
  4165. I915_WRITE(OGW1, 0);
  4166. I915_WRITE(EG0, 0x00007f00);
  4167. I915_WRITE(EG1, 0x0000000e);
  4168. I915_WRITE(EG2, 0x000e0000);
  4169. I915_WRITE(EG3, 0x68000300);
  4170. I915_WRITE(EG4, 0x42000000);
  4171. I915_WRITE(EG5, 0x00140031);
  4172. I915_WRITE(EG6, 0);
  4173. I915_WRITE(EG7, 0);
  4174. for (i = 0; i < 8; i++)
  4175. I915_WRITE(PXWL + (i * 4), 0);
  4176. /* Enable PMON + select events */
  4177. I915_WRITE(ECR, 0x80000019);
  4178. lcfuse = I915_READ(LCFUSE02);
  4179. dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  4180. }
  4181. void intel_disable_gt_powersave(struct drm_device *dev)
  4182. {
  4183. struct drm_i915_private *dev_priv = dev->dev_private;
  4184. /* Interrupts should be disabled already to avoid re-arming. */
  4185. WARN_ON(dev->irq_enabled);
  4186. if (IS_IRONLAKE_M(dev)) {
  4187. ironlake_disable_drps(dev);
  4188. ironlake_disable_rc6(dev);
  4189. } else if (INTEL_INFO(dev)->gen >= 6) {
  4190. cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
  4191. cancel_work_sync(&dev_priv->rps.work);
  4192. mutex_lock(&dev_priv->rps.hw_lock);
  4193. if (IS_VALLEYVIEW(dev))
  4194. valleyview_disable_rps(dev);
  4195. else
  4196. gen6_disable_rps(dev);
  4197. dev_priv->rps.enabled = false;
  4198. mutex_unlock(&dev_priv->rps.hw_lock);
  4199. }
  4200. }
  4201. static void intel_gen6_powersave_work(struct work_struct *work)
  4202. {
  4203. struct drm_i915_private *dev_priv =
  4204. container_of(work, struct drm_i915_private,
  4205. rps.delayed_resume_work.work);
  4206. struct drm_device *dev = dev_priv->dev;
  4207. mutex_lock(&dev_priv->rps.hw_lock);
  4208. if (IS_VALLEYVIEW(dev)) {
  4209. valleyview_enable_rps(dev);
  4210. } else if (IS_BROADWELL(dev)) {
  4211. gen8_enable_rps(dev);
  4212. gen6_update_ring_freq(dev);
  4213. } else {
  4214. gen6_enable_rps(dev);
  4215. gen6_update_ring_freq(dev);
  4216. }
  4217. dev_priv->rps.enabled = true;
  4218. mutex_unlock(&dev_priv->rps.hw_lock);
  4219. }
  4220. void intel_enable_gt_powersave(struct drm_device *dev)
  4221. {
  4222. struct drm_i915_private *dev_priv = dev->dev_private;
  4223. if (IS_IRONLAKE_M(dev)) {
  4224. ironlake_enable_drps(dev);
  4225. ironlake_enable_rc6(dev);
  4226. intel_init_emon(dev);
  4227. } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
  4228. /*
  4229. * PCU communication is slow and this doesn't need to be
  4230. * done at any specific time, so do this out of our fast path
  4231. * to make resume and init faster.
  4232. */
  4233. schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
  4234. round_jiffies_up_relative(HZ));
  4235. }
  4236. }
  4237. static void ibx_init_clock_gating(struct drm_device *dev)
  4238. {
  4239. struct drm_i915_private *dev_priv = dev->dev_private;
  4240. /*
  4241. * On Ibex Peak and Cougar Point, we need to disable clock
  4242. * gating for the panel power sequencer or it will fail to
  4243. * start up when no ports are active.
  4244. */
  4245. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  4246. }
  4247. static void g4x_disable_trickle_feed(struct drm_device *dev)
  4248. {
  4249. struct drm_i915_private *dev_priv = dev->dev_private;
  4250. int pipe;
  4251. for_each_pipe(pipe) {
  4252. I915_WRITE(DSPCNTR(pipe),
  4253. I915_READ(DSPCNTR(pipe)) |
  4254. DISPPLANE_TRICKLE_FEED_DISABLE);
  4255. intel_flush_primary_plane(dev_priv, pipe);
  4256. }
  4257. }
  4258. static void ilk_init_lp_watermarks(struct drm_device *dev)
  4259. {
  4260. struct drm_i915_private *dev_priv = dev->dev_private;
  4261. I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
  4262. I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
  4263. I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
  4264. /*
  4265. * Don't touch WM1S_LP_EN here.
  4266. * Doing so could cause underruns.
  4267. */
  4268. }
  4269. static void ironlake_init_clock_gating(struct drm_device *dev)
  4270. {
  4271. struct drm_i915_private *dev_priv = dev->dev_private;
  4272. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4273. /*
  4274. * Required for FBC
  4275. * WaFbcDisableDpfcClockGating:ilk
  4276. */
  4277. dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  4278. ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  4279. ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  4280. I915_WRITE(PCH_3DCGDIS0,
  4281. MARIUNIT_CLOCK_GATE_DISABLE |
  4282. SVSMUNIT_CLOCK_GATE_DISABLE);
  4283. I915_WRITE(PCH_3DCGDIS1,
  4284. VFMUNIT_CLOCK_GATE_DISABLE);
  4285. /*
  4286. * According to the spec the following bits should be set in
  4287. * order to enable memory self-refresh
  4288. * The bit 22/21 of 0x42004
  4289. * The bit 5 of 0x42020
  4290. * The bit 15 of 0x45000
  4291. */
  4292. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4293. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  4294. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  4295. dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  4296. I915_WRITE(DISP_ARB_CTL,
  4297. (I915_READ(DISP_ARB_CTL) |
  4298. DISP_FBC_WM_DIS));
  4299. ilk_init_lp_watermarks(dev);
  4300. /*
  4301. * Based on the document from hardware guys the following bits
  4302. * should be set unconditionally in order to enable FBC.
  4303. * The bit 22 of 0x42000
  4304. * The bit 22 of 0x42004
  4305. * The bit 7,8,9 of 0x42020.
  4306. */
  4307. if (IS_IRONLAKE_M(dev)) {
  4308. /* WaFbcAsynchFlipDisableFbcQueue:ilk */
  4309. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4310. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4311. ILK_FBCQ_DIS);
  4312. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4313. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4314. ILK_DPARB_GATE);
  4315. }
  4316. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4317. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4318. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4319. ILK_ELPIN_409_SELECT);
  4320. I915_WRITE(_3D_CHICKEN2,
  4321. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  4322. _3D_CHICKEN2_WM_READ_PIPELINED);
  4323. /* WaDisableRenderCachePipelinedFlush:ilk */
  4324. I915_WRITE(CACHE_MODE_0,
  4325. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  4326. g4x_disable_trickle_feed(dev);
  4327. ibx_init_clock_gating(dev);
  4328. }
  4329. static void cpt_init_clock_gating(struct drm_device *dev)
  4330. {
  4331. struct drm_i915_private *dev_priv = dev->dev_private;
  4332. int pipe;
  4333. uint32_t val;
  4334. /*
  4335. * On Ibex Peak and Cougar Point, we need to disable clock
  4336. * gating for the panel power sequencer or it will fail to
  4337. * start up when no ports are active.
  4338. */
  4339. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
  4340. PCH_DPLUNIT_CLOCK_GATE_DISABLE |
  4341. PCH_CPUNIT_CLOCK_GATE_DISABLE);
  4342. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  4343. DPLS_EDP_PPS_FIX_DIS);
  4344. /* The below fixes the weird display corruption, a few pixels shifted
  4345. * downward, on (only) LVDS of some HP laptops with IVY.
  4346. */
  4347. for_each_pipe(pipe) {
  4348. val = I915_READ(TRANS_CHICKEN2(pipe));
  4349. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  4350. val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4351. if (dev_priv->vbt.fdi_rx_polarity_inverted)
  4352. val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4353. val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
  4354. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
  4355. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
  4356. I915_WRITE(TRANS_CHICKEN2(pipe), val);
  4357. }
  4358. /* WADP0ClockGatingDisable */
  4359. for_each_pipe(pipe) {
  4360. I915_WRITE(TRANS_CHICKEN1(pipe),
  4361. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4362. }
  4363. }
  4364. static void gen6_check_mch_setup(struct drm_device *dev)
  4365. {
  4366. struct drm_i915_private *dev_priv = dev->dev_private;
  4367. uint32_t tmp;
  4368. tmp = I915_READ(MCH_SSKPD);
  4369. if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
  4370. DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
  4371. DRM_INFO("This can cause pipe underruns and display issues.\n");
  4372. DRM_INFO("Please upgrade your BIOS to fix this.\n");
  4373. }
  4374. }
  4375. static void gen6_init_clock_gating(struct drm_device *dev)
  4376. {
  4377. struct drm_i915_private *dev_priv = dev->dev_private;
  4378. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4379. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4380. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4381. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4382. ILK_ELPIN_409_SELECT);
  4383. /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
  4384. I915_WRITE(_3D_CHICKEN,
  4385. _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
  4386. /* WaSetupGtModeTdRowDispatch:snb */
  4387. if (IS_SNB_GT1(dev))
  4388. I915_WRITE(GEN6_GT_MODE,
  4389. _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
  4390. ilk_init_lp_watermarks(dev);
  4391. I915_WRITE(CACHE_MODE_0,
  4392. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  4393. I915_WRITE(GEN6_UCGCTL1,
  4394. I915_READ(GEN6_UCGCTL1) |
  4395. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  4396. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  4397. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4398. * gating disable must be set. Failure to set it results in
  4399. * flickering pixels due to Z write ordering failures after
  4400. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4401. * Sanctuary and Tropics, and apparently anything else with
  4402. * alpha test or pixel discard.
  4403. *
  4404. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4405. * but we didn't debug actual testcases to find it out.
  4406. *
  4407. * Also apply WaDisableVDSUnitClockGating:snb and
  4408. * WaDisableRCPBUnitClockGating:snb.
  4409. */
  4410. I915_WRITE(GEN6_UCGCTL2,
  4411. GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
  4412. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  4413. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4414. /* Bspec says we need to always set all mask bits. */
  4415. I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
  4416. _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
  4417. /*
  4418. * According to the spec the following bits should be
  4419. * set in order to enable memory self-refresh and fbc:
  4420. * The bit21 and bit22 of 0x42000
  4421. * The bit21 and bit22 of 0x42004
  4422. * The bit5 and bit7 of 0x42020
  4423. * The bit14 of 0x70180
  4424. * The bit14 of 0x71180
  4425. *
  4426. * WaFbcAsynchFlipDisableFbcQueue:snb
  4427. */
  4428. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4429. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4430. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  4431. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4432. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4433. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  4434. I915_WRITE(ILK_DSPCLK_GATE_D,
  4435. I915_READ(ILK_DSPCLK_GATE_D) |
  4436. ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
  4437. ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  4438. g4x_disable_trickle_feed(dev);
  4439. /* The default value should be 0x200 according to docs, but the two
  4440. * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
  4441. I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
  4442. I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
  4443. cpt_init_clock_gating(dev);
  4444. gen6_check_mch_setup(dev);
  4445. }
  4446. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  4447. {
  4448. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  4449. reg &= ~GEN7_FF_SCHED_MASK;
  4450. reg |= GEN7_FF_TS_SCHED_HW;
  4451. reg |= GEN7_FF_VS_SCHED_HW;
  4452. reg |= GEN7_FF_DS_SCHED_HW;
  4453. if (IS_HASWELL(dev_priv->dev))
  4454. reg &= ~GEN7_FF_VS_REF_CNT_FFME;
  4455. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  4456. }
  4457. static void lpt_init_clock_gating(struct drm_device *dev)
  4458. {
  4459. struct drm_i915_private *dev_priv = dev->dev_private;
  4460. /*
  4461. * TODO: this bit should only be enabled when really needed, then
  4462. * disabled when not needed anymore in order to save power.
  4463. */
  4464. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
  4465. I915_WRITE(SOUTH_DSPCLK_GATE_D,
  4466. I915_READ(SOUTH_DSPCLK_GATE_D) |
  4467. PCH_LP_PARTITION_LEVEL_DISABLE);
  4468. /* WADPOClockGatingDisable:hsw */
  4469. I915_WRITE(_TRANSA_CHICKEN1,
  4470. I915_READ(_TRANSA_CHICKEN1) |
  4471. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4472. }
  4473. static void lpt_suspend_hw(struct drm_device *dev)
  4474. {
  4475. struct drm_i915_private *dev_priv = dev->dev_private;
  4476. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  4477. uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
  4478. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  4479. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  4480. }
  4481. }
  4482. static void gen8_init_clock_gating(struct drm_device *dev)
  4483. {
  4484. struct drm_i915_private *dev_priv = dev->dev_private;
  4485. enum pipe i;
  4486. I915_WRITE(WM3_LP_ILK, 0);
  4487. I915_WRITE(WM2_LP_ILK, 0);
  4488. I915_WRITE(WM1_LP_ILK, 0);
  4489. /* FIXME(BDW): Check all the w/a, some might only apply to
  4490. * pre-production hw. */
  4491. WARN(!i915_preliminary_hw_support,
  4492. "GEN8_CENTROID_PIXEL_OPT_DIS not be needed for production\n");
  4493. I915_WRITE(HALF_SLICE_CHICKEN3,
  4494. _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
  4495. I915_WRITE(HALF_SLICE_CHICKEN3,
  4496. _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
  4497. I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
  4498. I915_WRITE(_3D_CHICKEN3,
  4499. _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));
  4500. I915_WRITE(COMMON_SLICE_CHICKEN2,
  4501. _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
  4502. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4503. _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
  4504. /* WaSwitchSolVfFArbitrationPriority:bdw */
  4505. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  4506. /* WaPsrDPAMaskVBlankInSRD:bdw */
  4507. I915_WRITE(CHICKEN_PAR1_1,
  4508. I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
  4509. /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
  4510. for_each_pipe(i) {
  4511. I915_WRITE(CHICKEN_PIPESL_1(i),
  4512. I915_READ(CHICKEN_PIPESL_1(i) |
  4513. DPRS_MASK_VBLANK_SRD));
  4514. }
  4515. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  4516. * workaround for for a possible hang in the unlikely event a TLB
  4517. * invalidation occurs during a PSD flush.
  4518. */
  4519. I915_WRITE(HDC_CHICKEN0,
  4520. I915_READ(HDC_CHICKEN0) |
  4521. _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
  4522. /* WaVSRefCountFullforceMissDisable:bdw */
  4523. /* WaDSRefCountFullforceMissDisable:bdw */
  4524. I915_WRITE(GEN7_FF_THREAD_MODE,
  4525. I915_READ(GEN7_FF_THREAD_MODE) &
  4526. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  4527. }
  4528. static void haswell_init_clock_gating(struct drm_device *dev)
  4529. {
  4530. struct drm_i915_private *dev_priv = dev->dev_private;
  4531. ilk_init_lp_watermarks(dev);
  4532. /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4533. * This implements the WaDisableRCZUnitClockGating:hsw workaround.
  4534. */
  4535. I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  4536. /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
  4537. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4538. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4539. /* WaApplyL3ControlAndL3ChickenMode:hsw */
  4540. I915_WRITE(GEN7_L3CNTLREG1,
  4541. GEN7_WA_FOR_GEN7_L3_CONTROL);
  4542. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  4543. GEN7_WA_L3_CHICKEN_MODE);
  4544. /* L3 caching of data atomics doesn't work -- disable it. */
  4545. I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
  4546. I915_WRITE(HSW_ROW_CHICKEN3,
  4547. _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
  4548. /* This is required by WaCatErrorRejectionIssue:hsw */
  4549. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4550. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4551. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4552. /* WaVSRefCountFullforceMissDisable:hsw */
  4553. gen7_setup_fixed_func_scheduler(dev_priv);
  4554. /* WaDisable4x2SubspanOptimization:hsw */
  4555. I915_WRITE(CACHE_MODE_1,
  4556. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4557. /* WaSwitchSolVfFArbitrationPriority:hsw */
  4558. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  4559. /* WaRsPkgCStateDisplayPMReq:hsw */
  4560. I915_WRITE(CHICKEN_PAR1_1,
  4561. I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
  4562. lpt_init_clock_gating(dev);
  4563. }
  4564. static void ivybridge_init_clock_gating(struct drm_device *dev)
  4565. {
  4566. struct drm_i915_private *dev_priv = dev->dev_private;
  4567. uint32_t snpcr;
  4568. ilk_init_lp_watermarks(dev);
  4569. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  4570. /* WaDisableEarlyCull:ivb */
  4571. I915_WRITE(_3D_CHICKEN3,
  4572. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  4573. /* WaDisableBackToBackFlipFix:ivb */
  4574. I915_WRITE(IVB_CHICKEN3,
  4575. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  4576. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  4577. /* WaDisablePSDDualDispatchEnable:ivb */
  4578. if (IS_IVB_GT1(dev))
  4579. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4580. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4581. else
  4582. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
  4583. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4584. /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
  4585. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4586. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4587. /* WaApplyL3ControlAndL3ChickenMode:ivb */
  4588. I915_WRITE(GEN7_L3CNTLREG1,
  4589. GEN7_WA_FOR_GEN7_L3_CONTROL);
  4590. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  4591. GEN7_WA_L3_CHICKEN_MODE);
  4592. if (IS_IVB_GT1(dev))
  4593. I915_WRITE(GEN7_ROW_CHICKEN2,
  4594. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4595. else
  4596. I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  4597. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4598. /* WaForceL3Serialization:ivb */
  4599. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  4600. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  4601. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4602. * gating disable must be set. Failure to set it results in
  4603. * flickering pixels due to Z write ordering failures after
  4604. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4605. * Sanctuary and Tropics, and apparently anything else with
  4606. * alpha test or pixel discard.
  4607. *
  4608. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4609. * but we didn't debug actual testcases to find it out.
  4610. *
  4611. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4612. * This implements the WaDisableRCZUnitClockGating:ivb workaround.
  4613. */
  4614. I915_WRITE(GEN6_UCGCTL2,
  4615. GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
  4616. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4617. /* This is required by WaCatErrorRejectionIssue:ivb */
  4618. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4619. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4620. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4621. g4x_disable_trickle_feed(dev);
  4622. /* WaVSRefCountFullforceMissDisable:ivb */
  4623. gen7_setup_fixed_func_scheduler(dev_priv);
  4624. /* WaDisable4x2SubspanOptimization:ivb */
  4625. I915_WRITE(CACHE_MODE_1,
  4626. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4627. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  4628. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  4629. snpcr |= GEN6_MBC_SNPCR_MED;
  4630. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  4631. if (!HAS_PCH_NOP(dev))
  4632. cpt_init_clock_gating(dev);
  4633. gen6_check_mch_setup(dev);
  4634. }
  4635. static void valleyview_init_clock_gating(struct drm_device *dev)
  4636. {
  4637. struct drm_i915_private *dev_priv = dev->dev_private;
  4638. u32 val;
  4639. mutex_lock(&dev_priv->rps.hw_lock);
  4640. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  4641. mutex_unlock(&dev_priv->rps.hw_lock);
  4642. switch ((val >> 6) & 3) {
  4643. case 0:
  4644. dev_priv->mem_freq = 800;
  4645. break;
  4646. case 1:
  4647. dev_priv->mem_freq = 1066;
  4648. break;
  4649. case 2:
  4650. dev_priv->mem_freq = 1333;
  4651. break;
  4652. case 3:
  4653. dev_priv->mem_freq = 1333;
  4654. break;
  4655. }
  4656. DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
  4657. I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
  4658. /* WaDisableEarlyCull:vlv */
  4659. I915_WRITE(_3D_CHICKEN3,
  4660. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  4661. /* WaDisableBackToBackFlipFix:vlv */
  4662. I915_WRITE(IVB_CHICKEN3,
  4663. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  4664. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  4665. /* WaDisablePSDDualDispatchEnable:vlv */
  4666. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4667. _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
  4668. GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4669. /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
  4670. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4671. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4672. /* WaApplyL3ControlAndL3ChickenMode:vlv */
  4673. I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
  4674. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
  4675. /* WaForceL3Serialization:vlv */
  4676. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  4677. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  4678. /* WaDisableDopClockGating:vlv */
  4679. I915_WRITE(GEN7_ROW_CHICKEN2,
  4680. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4681. /* This is required by WaCatErrorRejectionIssue:vlv */
  4682. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4683. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4684. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4685. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4686. * gating disable must be set. Failure to set it results in
  4687. * flickering pixels due to Z write ordering failures after
  4688. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4689. * Sanctuary and Tropics, and apparently anything else with
  4690. * alpha test or pixel discard.
  4691. *
  4692. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4693. * but we didn't debug actual testcases to find it out.
  4694. *
  4695. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4696. * This implements the WaDisableRCZUnitClockGating:vlv workaround.
  4697. *
  4698. * Also apply WaDisableVDSUnitClockGating:vlv and
  4699. * WaDisableRCPBUnitClockGating:vlv.
  4700. */
  4701. I915_WRITE(GEN6_UCGCTL2,
  4702. GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
  4703. GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
  4704. GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
  4705. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  4706. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4707. I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  4708. I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
  4709. I915_WRITE(CACHE_MODE_1,
  4710. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4711. /*
  4712. * WaDisableVLVClockGating_VBIIssue:vlv
  4713. * Disable clock gating on th GCFG unit to prevent a delay
  4714. * in the reporting of vblank events.
  4715. */
  4716. I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
  4717. /* Conservative clock gating settings for now */
  4718. I915_WRITE(0x9400, 0xffffffff);
  4719. I915_WRITE(0x9404, 0xffffffff);
  4720. I915_WRITE(0x9408, 0xffffffff);
  4721. I915_WRITE(0x940c, 0xffffffff);
  4722. I915_WRITE(0x9410, 0xffffffff);
  4723. I915_WRITE(0x9414, 0xffffffff);
  4724. I915_WRITE(0x9418, 0xffffffff);
  4725. }
  4726. static void g4x_init_clock_gating(struct drm_device *dev)
  4727. {
  4728. struct drm_i915_private *dev_priv = dev->dev_private;
  4729. uint32_t dspclk_gate;
  4730. I915_WRITE(RENCLK_GATE_D1, 0);
  4731. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  4732. GS_UNIT_CLOCK_GATE_DISABLE |
  4733. CL_UNIT_CLOCK_GATE_DISABLE);
  4734. I915_WRITE(RAMCLK_GATE_D, 0);
  4735. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  4736. OVRUNIT_CLOCK_GATE_DISABLE |
  4737. OVCUNIT_CLOCK_GATE_DISABLE;
  4738. if (IS_GM45(dev))
  4739. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  4740. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  4741. /* WaDisableRenderCachePipelinedFlush */
  4742. I915_WRITE(CACHE_MODE_0,
  4743. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  4744. g4x_disable_trickle_feed(dev);
  4745. }
  4746. static void crestline_init_clock_gating(struct drm_device *dev)
  4747. {
  4748. struct drm_i915_private *dev_priv = dev->dev_private;
  4749. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  4750. I915_WRITE(RENCLK_GATE_D2, 0);
  4751. I915_WRITE(DSPCLK_GATE_D, 0);
  4752. I915_WRITE(RAMCLK_GATE_D, 0);
  4753. I915_WRITE16(DEUC, 0);
  4754. I915_WRITE(MI_ARB_STATE,
  4755. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  4756. }
  4757. static void broadwater_init_clock_gating(struct drm_device *dev)
  4758. {
  4759. struct drm_i915_private *dev_priv = dev->dev_private;
  4760. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  4761. I965_RCC_CLOCK_GATE_DISABLE |
  4762. I965_RCPB_CLOCK_GATE_DISABLE |
  4763. I965_ISC_CLOCK_GATE_DISABLE |
  4764. I965_FBC_CLOCK_GATE_DISABLE);
  4765. I915_WRITE(RENCLK_GATE_D2, 0);
  4766. I915_WRITE(MI_ARB_STATE,
  4767. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  4768. }
  4769. static void gen3_init_clock_gating(struct drm_device *dev)
  4770. {
  4771. struct drm_i915_private *dev_priv = dev->dev_private;
  4772. u32 dstate = I915_READ(D_STATE);
  4773. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  4774. DSTATE_DOT_CLOCK_GATING;
  4775. I915_WRITE(D_STATE, dstate);
  4776. if (IS_PINEVIEW(dev))
  4777. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  4778. /* IIR "flip pending" means done if this bit is set */
  4779. I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  4780. }
  4781. static void i85x_init_clock_gating(struct drm_device *dev)
  4782. {
  4783. struct drm_i915_private *dev_priv = dev->dev_private;
  4784. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  4785. }
  4786. static void i830_init_clock_gating(struct drm_device *dev)
  4787. {
  4788. struct drm_i915_private *dev_priv = dev->dev_private;
  4789. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  4790. }
  4791. void intel_init_clock_gating(struct drm_device *dev)
  4792. {
  4793. struct drm_i915_private *dev_priv = dev->dev_private;
  4794. dev_priv->display.init_clock_gating(dev);
  4795. }
  4796. void intel_suspend_hw(struct drm_device *dev)
  4797. {
  4798. if (HAS_PCH_LPT(dev))
  4799. lpt_suspend_hw(dev);
  4800. }
  4801. #define for_each_power_well(i, power_well, domain_mask, power_domains) \
  4802. for (i = 0; \
  4803. i < (power_domains)->power_well_count && \
  4804. ((power_well) = &(power_domains)->power_wells[i]); \
  4805. i++) \
  4806. if ((power_well)->domains & (domain_mask))
  4807. #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
  4808. for (i = (power_domains)->power_well_count - 1; \
  4809. i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
  4810. i--) \
  4811. if ((power_well)->domains & (domain_mask))
  4812. /**
  4813. * We should only use the power well if we explicitly asked the hardware to
  4814. * enable it, so check if it's enabled and also check if we've requested it to
  4815. * be enabled.
  4816. */
  4817. static bool hsw_power_well_enabled(struct drm_device *dev,
  4818. struct i915_power_well *power_well)
  4819. {
  4820. struct drm_i915_private *dev_priv = dev->dev_private;
  4821. return I915_READ(HSW_PWR_WELL_DRIVER) ==
  4822. (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
  4823. }
  4824. bool intel_display_power_enabled_sw(struct drm_device *dev,
  4825. enum intel_display_power_domain domain)
  4826. {
  4827. struct drm_i915_private *dev_priv = dev->dev_private;
  4828. struct i915_power_domains *power_domains;
  4829. power_domains = &dev_priv->power_domains;
  4830. return power_domains->domain_use_count[domain];
  4831. }
  4832. bool intel_display_power_enabled(struct drm_device *dev,
  4833. enum intel_display_power_domain domain)
  4834. {
  4835. struct drm_i915_private *dev_priv = dev->dev_private;
  4836. struct i915_power_domains *power_domains;
  4837. struct i915_power_well *power_well;
  4838. bool is_enabled;
  4839. int i;
  4840. power_domains = &dev_priv->power_domains;
  4841. is_enabled = true;
  4842. mutex_lock(&power_domains->lock);
  4843. for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
  4844. if (power_well->always_on)
  4845. continue;
  4846. if (!power_well->is_enabled(dev, power_well)) {
  4847. is_enabled = false;
  4848. break;
  4849. }
  4850. }
  4851. mutex_unlock(&power_domains->lock);
  4852. return is_enabled;
  4853. }
  4854. static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
  4855. {
  4856. struct drm_device *dev = dev_priv->dev;
  4857. unsigned long irqflags;
  4858. /*
  4859. * After we re-enable the power well, if we touch VGA register 0x3d5
  4860. * we'll get unclaimed register interrupts. This stops after we write
  4861. * anything to the VGA MSR register. The vgacon module uses this
  4862. * register all the time, so if we unbind our driver and, as a
  4863. * consequence, bind vgacon, we'll get stuck in an infinite loop at
  4864. * console_unlock(). So make here we touch the VGA MSR register, making
  4865. * sure vgacon can keep working normally without triggering interrupts
  4866. * and error messages.
  4867. */
  4868. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  4869. outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
  4870. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  4871. if (IS_BROADWELL(dev)) {
  4872. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  4873. I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
  4874. dev_priv->de_irq_mask[PIPE_B]);
  4875. I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
  4876. ~dev_priv->de_irq_mask[PIPE_B] |
  4877. GEN8_PIPE_VBLANK);
  4878. I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
  4879. dev_priv->de_irq_mask[PIPE_C]);
  4880. I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
  4881. ~dev_priv->de_irq_mask[PIPE_C] |
  4882. GEN8_PIPE_VBLANK);
  4883. POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
  4884. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  4885. }
  4886. }
  4887. static void hsw_power_well_post_disable(struct drm_i915_private *dev_priv)
  4888. {
  4889. struct drm_device *dev = dev_priv->dev;
  4890. enum pipe p;
  4891. unsigned long irqflags;
  4892. /*
  4893. * After this, the registers on the pipes that are part of the power
  4894. * well will become zero, so we have to adjust our counters according to
  4895. * that.
  4896. *
  4897. * FIXME: Should we do this in general in drm_vblank_post_modeset?
  4898. */
  4899. spin_lock_irqsave(&dev->vbl_lock, irqflags);
  4900. for_each_pipe(p)
  4901. if (p != PIPE_A)
  4902. dev->vblank[p].last = 0;
  4903. spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
  4904. }
  4905. static void hsw_set_power_well(struct drm_device *dev,
  4906. struct i915_power_well *power_well, bool enable)
  4907. {
  4908. struct drm_i915_private *dev_priv = dev->dev_private;
  4909. bool is_enabled, enable_requested;
  4910. uint32_t tmp;
  4911. WARN_ON(dev_priv->pc8.enabled);
  4912. tmp = I915_READ(HSW_PWR_WELL_DRIVER);
  4913. is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
  4914. enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
  4915. if (enable) {
  4916. if (!enable_requested)
  4917. I915_WRITE(HSW_PWR_WELL_DRIVER,
  4918. HSW_PWR_WELL_ENABLE_REQUEST);
  4919. if (!is_enabled) {
  4920. DRM_DEBUG_KMS("Enabling power well\n");
  4921. if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
  4922. HSW_PWR_WELL_STATE_ENABLED), 20))
  4923. DRM_ERROR("Timeout enabling power well\n");
  4924. }
  4925. hsw_power_well_post_enable(dev_priv);
  4926. } else {
  4927. if (enable_requested) {
  4928. I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
  4929. POSTING_READ(HSW_PWR_WELL_DRIVER);
  4930. DRM_DEBUG_KMS("Requesting to disable the power well\n");
  4931. hsw_power_well_post_disable(dev_priv);
  4932. }
  4933. }
  4934. }
  4935. static void __intel_power_well_get(struct drm_device *dev,
  4936. struct i915_power_well *power_well)
  4937. {
  4938. struct drm_i915_private *dev_priv = dev->dev_private;
  4939. if (!power_well->count++ && power_well->set) {
  4940. hsw_disable_package_c8(dev_priv);
  4941. power_well->set(dev, power_well, true);
  4942. }
  4943. }
  4944. static void __intel_power_well_put(struct drm_device *dev,
  4945. struct i915_power_well *power_well)
  4946. {
  4947. struct drm_i915_private *dev_priv = dev->dev_private;
  4948. WARN_ON(!power_well->count);
  4949. if (!--power_well->count && power_well->set &&
  4950. i915_disable_power_well) {
  4951. power_well->set(dev, power_well, false);
  4952. hsw_enable_package_c8(dev_priv);
  4953. }
  4954. }
  4955. void intel_display_power_get(struct drm_device *dev,
  4956. enum intel_display_power_domain domain)
  4957. {
  4958. struct drm_i915_private *dev_priv = dev->dev_private;
  4959. struct i915_power_domains *power_domains;
  4960. struct i915_power_well *power_well;
  4961. int i;
  4962. power_domains = &dev_priv->power_domains;
  4963. mutex_lock(&power_domains->lock);
  4964. for_each_power_well(i, power_well, BIT(domain), power_domains)
  4965. __intel_power_well_get(dev, power_well);
  4966. power_domains->domain_use_count[domain]++;
  4967. mutex_unlock(&power_domains->lock);
  4968. }
  4969. void intel_display_power_put(struct drm_device *dev,
  4970. enum intel_display_power_domain domain)
  4971. {
  4972. struct drm_i915_private *dev_priv = dev->dev_private;
  4973. struct i915_power_domains *power_domains;
  4974. struct i915_power_well *power_well;
  4975. int i;
  4976. power_domains = &dev_priv->power_domains;
  4977. mutex_lock(&power_domains->lock);
  4978. WARN_ON(!power_domains->domain_use_count[domain]);
  4979. power_domains->domain_use_count[domain]--;
  4980. for_each_power_well_rev(i, power_well, BIT(domain), power_domains)
  4981. __intel_power_well_put(dev, power_well);
  4982. mutex_unlock(&power_domains->lock);
  4983. }
  4984. static struct i915_power_domains *hsw_pwr;
  4985. /* Display audio driver power well request */
  4986. void i915_request_power_well(void)
  4987. {
  4988. struct drm_i915_private *dev_priv;
  4989. if (WARN_ON(!hsw_pwr))
  4990. return;
  4991. dev_priv = container_of(hsw_pwr, struct drm_i915_private,
  4992. power_domains);
  4993. intel_display_power_get(dev_priv->dev, POWER_DOMAIN_AUDIO);
  4994. }
  4995. EXPORT_SYMBOL_GPL(i915_request_power_well);
  4996. /* Display audio driver power well release */
  4997. void i915_release_power_well(void)
  4998. {
  4999. struct drm_i915_private *dev_priv;
  5000. if (WARN_ON(!hsw_pwr))
  5001. return;
  5002. dev_priv = container_of(hsw_pwr, struct drm_i915_private,
  5003. power_domains);
  5004. intel_display_power_put(dev_priv->dev, POWER_DOMAIN_AUDIO);
  5005. }
  5006. EXPORT_SYMBOL_GPL(i915_release_power_well);
  5007. static struct i915_power_well i9xx_always_on_power_well[] = {
  5008. {
  5009. .name = "always-on",
  5010. .always_on = 1,
  5011. .domains = POWER_DOMAIN_MASK,
  5012. },
  5013. };
  5014. static struct i915_power_well hsw_power_wells[] = {
  5015. {
  5016. .name = "always-on",
  5017. .always_on = 1,
  5018. .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
  5019. },
  5020. {
  5021. .name = "display",
  5022. .domains = POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS,
  5023. .is_enabled = hsw_power_well_enabled,
  5024. .set = hsw_set_power_well,
  5025. },
  5026. };
  5027. static struct i915_power_well bdw_power_wells[] = {
  5028. {
  5029. .name = "always-on",
  5030. .always_on = 1,
  5031. .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
  5032. },
  5033. {
  5034. .name = "display",
  5035. .domains = POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS,
  5036. .is_enabled = hsw_power_well_enabled,
  5037. .set = hsw_set_power_well,
  5038. },
  5039. };
  5040. #define set_power_wells(power_domains, __power_wells) ({ \
  5041. (power_domains)->power_wells = (__power_wells); \
  5042. (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
  5043. })
  5044. int intel_power_domains_init(struct drm_device *dev)
  5045. {
  5046. struct drm_i915_private *dev_priv = dev->dev_private;
  5047. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  5048. mutex_init(&power_domains->lock);
  5049. /*
  5050. * The enabling order will be from lower to higher indexed wells,
  5051. * the disabling order is reversed.
  5052. */
  5053. if (IS_HASWELL(dev)) {
  5054. set_power_wells(power_domains, hsw_power_wells);
  5055. hsw_pwr = power_domains;
  5056. } else if (IS_BROADWELL(dev)) {
  5057. set_power_wells(power_domains, bdw_power_wells);
  5058. hsw_pwr = power_domains;
  5059. } else {
  5060. set_power_wells(power_domains, i9xx_always_on_power_well);
  5061. }
  5062. return 0;
  5063. }
  5064. void intel_power_domains_remove(struct drm_device *dev)
  5065. {
  5066. hsw_pwr = NULL;
  5067. }
  5068. static void intel_power_domains_resume(struct drm_device *dev)
  5069. {
  5070. struct drm_i915_private *dev_priv = dev->dev_private;
  5071. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  5072. struct i915_power_well *power_well;
  5073. int i;
  5074. mutex_lock(&power_domains->lock);
  5075. for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
  5076. if (power_well->set)
  5077. power_well->set(dev, power_well, power_well->count > 0);
  5078. }
  5079. mutex_unlock(&power_domains->lock);
  5080. }
  5081. /*
  5082. * Starting with Haswell, we have a "Power Down Well" that can be turned off
  5083. * when not needed anymore. We have 4 registers that can request the power well
  5084. * to be enabled, and it will only be disabled if none of the registers is
  5085. * requesting it to be enabled.
  5086. */
  5087. void intel_power_domains_init_hw(struct drm_device *dev)
  5088. {
  5089. struct drm_i915_private *dev_priv = dev->dev_private;
  5090. /* For now, we need the power well to be always enabled. */
  5091. intel_display_set_init_power(dev, true);
  5092. intel_power_domains_resume(dev);
  5093. if (!(IS_HASWELL(dev) || IS_BROADWELL(dev)))
  5094. return;
  5095. /* We're taking over the BIOS, so clear any requests made by it since
  5096. * the driver is in charge now. */
  5097. if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
  5098. I915_WRITE(HSW_PWR_WELL_BIOS, 0);
  5099. }
  5100. /* Disables PC8 so we can use the GMBUS and DP AUX interrupts. */
  5101. void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
  5102. {
  5103. hsw_disable_package_c8(dev_priv);
  5104. }
  5105. void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
  5106. {
  5107. hsw_enable_package_c8(dev_priv);
  5108. }
  5109. void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
  5110. {
  5111. struct drm_device *dev = dev_priv->dev;
  5112. struct device *device = &dev->pdev->dev;
  5113. if (!HAS_RUNTIME_PM(dev))
  5114. return;
  5115. pm_runtime_get_sync(device);
  5116. WARN(dev_priv->pm.suspended, "Device still suspended.\n");
  5117. }
  5118. void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
  5119. {
  5120. struct drm_device *dev = dev_priv->dev;
  5121. struct device *device = &dev->pdev->dev;
  5122. if (!HAS_RUNTIME_PM(dev))
  5123. return;
  5124. pm_runtime_mark_last_busy(device);
  5125. pm_runtime_put_autosuspend(device);
  5126. }
  5127. void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
  5128. {
  5129. struct drm_device *dev = dev_priv->dev;
  5130. struct device *device = &dev->pdev->dev;
  5131. dev_priv->pm.suspended = false;
  5132. if (!HAS_RUNTIME_PM(dev))
  5133. return;
  5134. pm_runtime_set_active(device);
  5135. pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
  5136. pm_runtime_mark_last_busy(device);
  5137. pm_runtime_use_autosuspend(device);
  5138. }
  5139. void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
  5140. {
  5141. struct drm_device *dev = dev_priv->dev;
  5142. struct device *device = &dev->pdev->dev;
  5143. if (!HAS_RUNTIME_PM(dev))
  5144. return;
  5145. /* Make sure we're not suspended first. */
  5146. pm_runtime_get_sync(device);
  5147. pm_runtime_disable(device);
  5148. }
  5149. /* Set up chip specific power management-related functions */
  5150. void intel_init_pm(struct drm_device *dev)
  5151. {
  5152. struct drm_i915_private *dev_priv = dev->dev_private;
  5153. if (I915_HAS_FBC(dev)) {
  5154. if (INTEL_INFO(dev)->gen >= 7) {
  5155. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  5156. dev_priv->display.enable_fbc = gen7_enable_fbc;
  5157. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  5158. } else if (INTEL_INFO(dev)->gen >= 5) {
  5159. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  5160. dev_priv->display.enable_fbc = ironlake_enable_fbc;
  5161. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  5162. } else if (IS_GM45(dev)) {
  5163. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  5164. dev_priv->display.enable_fbc = g4x_enable_fbc;
  5165. dev_priv->display.disable_fbc = g4x_disable_fbc;
  5166. } else {
  5167. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  5168. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  5169. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  5170. /* This value was pulled out of someone's hat */
  5171. I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
  5172. }
  5173. }
  5174. /* For cxsr */
  5175. if (IS_PINEVIEW(dev))
  5176. i915_pineview_get_mem_freq(dev);
  5177. else if (IS_GEN5(dev))
  5178. i915_ironlake_get_mem_freq(dev);
  5179. /* For FIFO watermark updates */
  5180. if (HAS_PCH_SPLIT(dev)) {
  5181. intel_setup_wm_latency(dev);
  5182. if (IS_GEN5(dev)) {
  5183. if (dev_priv->wm.pri_latency[1] &&
  5184. dev_priv->wm.spr_latency[1] &&
  5185. dev_priv->wm.cur_latency[1])
  5186. dev_priv->display.update_wm = ironlake_update_wm;
  5187. else {
  5188. DRM_DEBUG_KMS("Failed to get proper latency. "
  5189. "Disable CxSR\n");
  5190. dev_priv->display.update_wm = NULL;
  5191. }
  5192. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  5193. } else if (IS_GEN6(dev)) {
  5194. if (dev_priv->wm.pri_latency[0] &&
  5195. dev_priv->wm.spr_latency[0] &&
  5196. dev_priv->wm.cur_latency[0]) {
  5197. dev_priv->display.update_wm = sandybridge_update_wm;
  5198. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  5199. } else {
  5200. DRM_DEBUG_KMS("Failed to read display plane latency. "
  5201. "Disable CxSR\n");
  5202. dev_priv->display.update_wm = NULL;
  5203. }
  5204. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  5205. } else if (IS_IVYBRIDGE(dev)) {
  5206. if (dev_priv->wm.pri_latency[0] &&
  5207. dev_priv->wm.spr_latency[0] &&
  5208. dev_priv->wm.cur_latency[0]) {
  5209. dev_priv->display.update_wm = ivybridge_update_wm;
  5210. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  5211. } else {
  5212. DRM_DEBUG_KMS("Failed to read display plane latency. "
  5213. "Disable CxSR\n");
  5214. dev_priv->display.update_wm = NULL;
  5215. }
  5216. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  5217. } else if (IS_HASWELL(dev)) {
  5218. if (dev_priv->wm.pri_latency[0] &&
  5219. dev_priv->wm.spr_latency[0] &&
  5220. dev_priv->wm.cur_latency[0]) {
  5221. dev_priv->display.update_wm = haswell_update_wm;
  5222. dev_priv->display.update_sprite_wm =
  5223. haswell_update_sprite_wm;
  5224. } else {
  5225. DRM_DEBUG_KMS("Failed to read display plane latency. "
  5226. "Disable CxSR\n");
  5227. dev_priv->display.update_wm = NULL;
  5228. }
  5229. dev_priv->display.init_clock_gating = haswell_init_clock_gating;
  5230. } else if (INTEL_INFO(dev)->gen == 8) {
  5231. dev_priv->display.init_clock_gating = gen8_init_clock_gating;
  5232. } else
  5233. dev_priv->display.update_wm = NULL;
  5234. } else if (IS_VALLEYVIEW(dev)) {
  5235. dev_priv->display.update_wm = valleyview_update_wm;
  5236. dev_priv->display.init_clock_gating =
  5237. valleyview_init_clock_gating;
  5238. } else if (IS_PINEVIEW(dev)) {
  5239. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  5240. dev_priv->is_ddr3,
  5241. dev_priv->fsb_freq,
  5242. dev_priv->mem_freq)) {
  5243. DRM_INFO("failed to find known CxSR latency "
  5244. "(found ddr%s fsb freq %d, mem freq %d), "
  5245. "disabling CxSR\n",
  5246. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  5247. dev_priv->fsb_freq, dev_priv->mem_freq);
  5248. /* Disable CxSR and never update its watermark again */
  5249. pineview_disable_cxsr(dev);
  5250. dev_priv->display.update_wm = NULL;
  5251. } else
  5252. dev_priv->display.update_wm = pineview_update_wm;
  5253. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  5254. } else if (IS_G4X(dev)) {
  5255. dev_priv->display.update_wm = g4x_update_wm;
  5256. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  5257. } else if (IS_GEN4(dev)) {
  5258. dev_priv->display.update_wm = i965_update_wm;
  5259. if (IS_CRESTLINE(dev))
  5260. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  5261. else if (IS_BROADWATER(dev))
  5262. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  5263. } else if (IS_GEN3(dev)) {
  5264. dev_priv->display.update_wm = i9xx_update_wm;
  5265. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  5266. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  5267. } else if (IS_I865G(dev)) {
  5268. dev_priv->display.update_wm = i830_update_wm;
  5269. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  5270. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  5271. } else if (IS_I85X(dev)) {
  5272. dev_priv->display.update_wm = i9xx_update_wm;
  5273. dev_priv->display.get_fifo_size = i85x_get_fifo_size;
  5274. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  5275. } else {
  5276. dev_priv->display.update_wm = i830_update_wm;
  5277. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  5278. if (IS_845G(dev))
  5279. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  5280. else
  5281. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  5282. }
  5283. }
  5284. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
  5285. {
  5286. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5287. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  5288. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
  5289. return -EAGAIN;
  5290. }
  5291. I915_WRITE(GEN6_PCODE_DATA, *val);
  5292. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  5293. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  5294. 500)) {
  5295. DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
  5296. return -ETIMEDOUT;
  5297. }
  5298. *val = I915_READ(GEN6_PCODE_DATA);
  5299. I915_WRITE(GEN6_PCODE_DATA, 0);
  5300. return 0;
  5301. }
  5302. int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
  5303. {
  5304. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5305. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  5306. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
  5307. return -EAGAIN;
  5308. }
  5309. I915_WRITE(GEN6_PCODE_DATA, val);
  5310. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  5311. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  5312. 500)) {
  5313. DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
  5314. return -ETIMEDOUT;
  5315. }
  5316. I915_WRITE(GEN6_PCODE_DATA, 0);
  5317. return 0;
  5318. }
  5319. int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
  5320. {
  5321. int div;
  5322. /* 4 x czclk */
  5323. switch (dev_priv->mem_freq) {
  5324. case 800:
  5325. div = 10;
  5326. break;
  5327. case 1066:
  5328. div = 12;
  5329. break;
  5330. case 1333:
  5331. div = 16;
  5332. break;
  5333. default:
  5334. return -1;
  5335. }
  5336. return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
  5337. }
  5338. int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
  5339. {
  5340. int mul;
  5341. /* 4 x czclk */
  5342. switch (dev_priv->mem_freq) {
  5343. case 800:
  5344. mul = 10;
  5345. break;
  5346. case 1066:
  5347. mul = 12;
  5348. break;
  5349. case 1333:
  5350. mul = 16;
  5351. break;
  5352. default:
  5353. return -1;
  5354. }
  5355. return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
  5356. }
  5357. void intel_pm_init(struct drm_device *dev)
  5358. {
  5359. struct drm_i915_private *dev_priv = dev->dev_private;
  5360. INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
  5361. intel_gen6_powersave_work);
  5362. }