book3s_hv_rm_mmu.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922
  1. /*
  2. * This program is free software; you can redistribute it and/or modify
  3. * it under the terms of the GNU General Public License, version 2, as
  4. * published by the Free Software Foundation.
  5. *
  6. * Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  7. */
  8. #include <linux/types.h>
  9. #include <linux/string.h>
  10. #include <linux/kvm.h>
  11. #include <linux/kvm_host.h>
  12. #include <linux/hugetlb.h>
  13. #include <linux/module.h>
  14. #include <asm/tlbflush.h>
  15. #include <asm/kvm_ppc.h>
  16. #include <asm/kvm_book3s.h>
  17. #include <asm/mmu-hash64.h>
  18. #include <asm/hvcall.h>
  19. #include <asm/synch.h>
  20. #include <asm/ppc-opcode.h>
  21. /* Translate address of a vmalloc'd thing to a linear map address */
  22. static void *real_vmalloc_addr(void *x)
  23. {
  24. unsigned long addr = (unsigned long) x;
  25. pte_t *p;
  26. p = find_linux_pte_or_hugepte(swapper_pg_dir, addr, NULL);
  27. if (!p || !pte_present(*p))
  28. return NULL;
  29. /* assume we don't have huge pages in vmalloc space... */
  30. addr = (pte_pfn(*p) << PAGE_SHIFT) | (addr & ~PAGE_MASK);
  31. return __va(addr);
  32. }
  33. /* Return 1 if we need to do a global tlbie, 0 if we can use tlbiel */
  34. static int global_invalidates(struct kvm *kvm, unsigned long flags)
  35. {
  36. int global;
  37. /*
  38. * If there is only one vcore, and it's currently running,
  39. * as indicated by local_paca->kvm_hstate.kvm_vcpu being set,
  40. * we can use tlbiel as long as we mark all other physical
  41. * cores as potentially having stale TLB entries for this lpid.
  42. * If we're not using MMU notifiers, we never take pages away
  43. * from the guest, so we can use tlbiel if requested.
  44. * Otherwise, don't use tlbiel.
  45. */
  46. if (kvm->arch.online_vcores == 1 && local_paca->kvm_hstate.kvm_vcpu)
  47. global = 0;
  48. else if (kvm->arch.using_mmu_notifiers)
  49. global = 1;
  50. else
  51. global = !(flags & H_LOCAL);
  52. if (!global) {
  53. /* any other core might now have stale TLB entries... */
  54. smp_wmb();
  55. cpumask_setall(&kvm->arch.need_tlb_flush);
  56. cpumask_clear_cpu(local_paca->kvm_hstate.kvm_vcore->pcpu,
  57. &kvm->arch.need_tlb_flush);
  58. }
  59. return global;
  60. }
  61. /*
  62. * Add this HPTE into the chain for the real page.
  63. * Must be called with the chain locked; it unlocks the chain.
  64. */
  65. void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev,
  66. unsigned long *rmap, long pte_index, int realmode)
  67. {
  68. struct revmap_entry *head, *tail;
  69. unsigned long i;
  70. if (*rmap & KVMPPC_RMAP_PRESENT) {
  71. i = *rmap & KVMPPC_RMAP_INDEX;
  72. head = &kvm->arch.revmap[i];
  73. if (realmode)
  74. head = real_vmalloc_addr(head);
  75. tail = &kvm->arch.revmap[head->back];
  76. if (realmode)
  77. tail = real_vmalloc_addr(tail);
  78. rev->forw = i;
  79. rev->back = head->back;
  80. tail->forw = pte_index;
  81. head->back = pte_index;
  82. } else {
  83. rev->forw = rev->back = pte_index;
  84. *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) |
  85. pte_index | KVMPPC_RMAP_PRESENT;
  86. }
  87. unlock_rmap(rmap);
  88. }
  89. EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain);
  90. /* Remove this HPTE from the chain for a real page */
  91. static void remove_revmap_chain(struct kvm *kvm, long pte_index,
  92. struct revmap_entry *rev,
  93. unsigned long hpte_v, unsigned long hpte_r)
  94. {
  95. struct revmap_entry *next, *prev;
  96. unsigned long gfn, ptel, head;
  97. struct kvm_memory_slot *memslot;
  98. unsigned long *rmap;
  99. unsigned long rcbits;
  100. rcbits = hpte_r & (HPTE_R_R | HPTE_R_C);
  101. ptel = rev->guest_rpte |= rcbits;
  102. gfn = hpte_rpn(ptel, hpte_page_size(hpte_v, ptel));
  103. memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
  104. if (!memslot)
  105. return;
  106. rmap = real_vmalloc_addr(&memslot->arch.rmap[gfn - memslot->base_gfn]);
  107. lock_rmap(rmap);
  108. head = *rmap & KVMPPC_RMAP_INDEX;
  109. next = real_vmalloc_addr(&kvm->arch.revmap[rev->forw]);
  110. prev = real_vmalloc_addr(&kvm->arch.revmap[rev->back]);
  111. next->back = rev->back;
  112. prev->forw = rev->forw;
  113. if (head == pte_index) {
  114. head = rev->forw;
  115. if (head == pte_index)
  116. *rmap &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
  117. else
  118. *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | head;
  119. }
  120. *rmap |= rcbits << KVMPPC_RMAP_RC_SHIFT;
  121. unlock_rmap(rmap);
  122. }
  123. static pte_t lookup_linux_pte_and_update(pgd_t *pgdir, unsigned long hva,
  124. int writing, unsigned long *pte_sizep)
  125. {
  126. pte_t *ptep;
  127. unsigned long ps = *pte_sizep;
  128. unsigned int hugepage_shift;
  129. ptep = find_linux_pte_or_hugepte(pgdir, hva, &hugepage_shift);
  130. if (!ptep)
  131. return __pte(0);
  132. if (hugepage_shift)
  133. *pte_sizep = 1ul << hugepage_shift;
  134. else
  135. *pte_sizep = PAGE_SIZE;
  136. if (ps > *pte_sizep)
  137. return __pte(0);
  138. return kvmppc_read_update_linux_pte(ptep, writing, hugepage_shift);
  139. }
  140. static inline void unlock_hpte(unsigned long *hpte, unsigned long hpte_v)
  141. {
  142. asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
  143. hpte[0] = hpte_v;
  144. }
  145. long kvmppc_do_h_enter(struct kvm *kvm, unsigned long flags,
  146. long pte_index, unsigned long pteh, unsigned long ptel,
  147. pgd_t *pgdir, bool realmode, unsigned long *pte_idx_ret)
  148. {
  149. unsigned long i, pa, gpa, gfn, psize;
  150. unsigned long slot_fn, hva;
  151. unsigned long *hpte;
  152. struct revmap_entry *rev;
  153. unsigned long g_ptel;
  154. struct kvm_memory_slot *memslot;
  155. unsigned long *physp, pte_size;
  156. unsigned long is_io;
  157. unsigned long *rmap;
  158. pte_t pte;
  159. unsigned int writing;
  160. unsigned long mmu_seq;
  161. unsigned long rcbits;
  162. psize = hpte_page_size(pteh, ptel);
  163. if (!psize)
  164. return H_PARAMETER;
  165. writing = hpte_is_writable(ptel);
  166. pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
  167. ptel &= ~HPTE_GR_RESERVED;
  168. g_ptel = ptel;
  169. /* used later to detect if we might have been invalidated */
  170. mmu_seq = kvm->mmu_notifier_seq;
  171. smp_rmb();
  172. /* Find the memslot (if any) for this address */
  173. gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
  174. gfn = gpa >> PAGE_SHIFT;
  175. memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
  176. pa = 0;
  177. is_io = ~0ul;
  178. rmap = NULL;
  179. if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID))) {
  180. /* PPC970 can't do emulated MMIO */
  181. if (!cpu_has_feature(CPU_FTR_ARCH_206))
  182. return H_PARAMETER;
  183. /* Emulated MMIO - mark this with key=31 */
  184. pteh |= HPTE_V_ABSENT;
  185. ptel |= HPTE_R_KEY_HI | HPTE_R_KEY_LO;
  186. goto do_insert;
  187. }
  188. /* Check if the requested page fits entirely in the memslot. */
  189. if (!slot_is_aligned(memslot, psize))
  190. return H_PARAMETER;
  191. slot_fn = gfn - memslot->base_gfn;
  192. rmap = &memslot->arch.rmap[slot_fn];
  193. if (!kvm->arch.using_mmu_notifiers) {
  194. physp = memslot->arch.slot_phys;
  195. if (!physp)
  196. return H_PARAMETER;
  197. physp += slot_fn;
  198. if (realmode)
  199. physp = real_vmalloc_addr(physp);
  200. pa = *physp;
  201. if (!pa)
  202. return H_TOO_HARD;
  203. is_io = pa & (HPTE_R_I | HPTE_R_W);
  204. pte_size = PAGE_SIZE << (pa & KVMPPC_PAGE_ORDER_MASK);
  205. pa &= PAGE_MASK;
  206. pa |= gpa & ~PAGE_MASK;
  207. } else {
  208. /* Translate to host virtual address */
  209. hva = __gfn_to_hva_memslot(memslot, gfn);
  210. /* Look up the Linux PTE for the backing page */
  211. pte_size = psize;
  212. pte = lookup_linux_pte_and_update(pgdir, hva, writing,
  213. &pte_size);
  214. if (pte_present(pte) && !pte_numa(pte)) {
  215. if (writing && !pte_write(pte))
  216. /* make the actual HPTE be read-only */
  217. ptel = hpte_make_readonly(ptel);
  218. is_io = hpte_cache_bits(pte_val(pte));
  219. pa = pte_pfn(pte) << PAGE_SHIFT;
  220. pa |= hva & (pte_size - 1);
  221. pa |= gpa & ~PAGE_MASK;
  222. }
  223. }
  224. if (pte_size < psize)
  225. return H_PARAMETER;
  226. ptel &= ~(HPTE_R_PP0 - psize);
  227. ptel |= pa;
  228. if (pa)
  229. pteh |= HPTE_V_VALID;
  230. else
  231. pteh |= HPTE_V_ABSENT;
  232. /* Check WIMG */
  233. if (is_io != ~0ul && !hpte_cache_flags_ok(ptel, is_io)) {
  234. if (is_io)
  235. return H_PARAMETER;
  236. /*
  237. * Allow guest to map emulated device memory as
  238. * uncacheable, but actually make it cacheable.
  239. */
  240. ptel &= ~(HPTE_R_W|HPTE_R_I|HPTE_R_G);
  241. ptel |= HPTE_R_M;
  242. }
  243. /* Find and lock the HPTEG slot to use */
  244. do_insert:
  245. if (pte_index >= kvm->arch.hpt_npte)
  246. return H_PARAMETER;
  247. if (likely((flags & H_EXACT) == 0)) {
  248. pte_index &= ~7UL;
  249. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  250. for (i = 0; i < 8; ++i) {
  251. if ((*hpte & HPTE_V_VALID) == 0 &&
  252. try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
  253. HPTE_V_ABSENT))
  254. break;
  255. hpte += 2;
  256. }
  257. if (i == 8) {
  258. /*
  259. * Since try_lock_hpte doesn't retry (not even stdcx.
  260. * failures), it could be that there is a free slot
  261. * but we transiently failed to lock it. Try again,
  262. * actually locking each slot and checking it.
  263. */
  264. hpte -= 16;
  265. for (i = 0; i < 8; ++i) {
  266. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  267. cpu_relax();
  268. if (!(*hpte & (HPTE_V_VALID | HPTE_V_ABSENT)))
  269. break;
  270. *hpte &= ~HPTE_V_HVLOCK;
  271. hpte += 2;
  272. }
  273. if (i == 8)
  274. return H_PTEG_FULL;
  275. }
  276. pte_index += i;
  277. } else {
  278. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  279. if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
  280. HPTE_V_ABSENT)) {
  281. /* Lock the slot and check again */
  282. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  283. cpu_relax();
  284. if (*hpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
  285. *hpte &= ~HPTE_V_HVLOCK;
  286. return H_PTEG_FULL;
  287. }
  288. }
  289. }
  290. /* Save away the guest's idea of the second HPTE dword */
  291. rev = &kvm->arch.revmap[pte_index];
  292. if (realmode)
  293. rev = real_vmalloc_addr(rev);
  294. if (rev) {
  295. rev->guest_rpte = g_ptel;
  296. note_hpte_modification(kvm, rev);
  297. }
  298. /* Link HPTE into reverse-map chain */
  299. if (pteh & HPTE_V_VALID) {
  300. if (realmode)
  301. rmap = real_vmalloc_addr(rmap);
  302. lock_rmap(rmap);
  303. /* Check for pending invalidations under the rmap chain lock */
  304. if (kvm->arch.using_mmu_notifiers &&
  305. mmu_notifier_retry(kvm, mmu_seq)) {
  306. /* inval in progress, write a non-present HPTE */
  307. pteh |= HPTE_V_ABSENT;
  308. pteh &= ~HPTE_V_VALID;
  309. unlock_rmap(rmap);
  310. } else {
  311. kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index,
  312. realmode);
  313. /* Only set R/C in real HPTE if already set in *rmap */
  314. rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
  315. ptel &= rcbits | ~(HPTE_R_R | HPTE_R_C);
  316. }
  317. }
  318. hpte[1] = ptel;
  319. /* Write the first HPTE dword, unlocking the HPTE and making it valid */
  320. eieio();
  321. hpte[0] = pteh;
  322. asm volatile("ptesync" : : : "memory");
  323. *pte_idx_ret = pte_index;
  324. return H_SUCCESS;
  325. }
  326. EXPORT_SYMBOL_GPL(kvmppc_do_h_enter);
  327. long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
  328. long pte_index, unsigned long pteh, unsigned long ptel)
  329. {
  330. return kvmppc_do_h_enter(vcpu->kvm, flags, pte_index, pteh, ptel,
  331. vcpu->arch.pgdir, true, &vcpu->arch.gpr[4]);
  332. }
  333. #ifdef __BIG_ENDIAN__
  334. #define LOCK_TOKEN (*(u32 *)(&get_paca()->lock_token))
  335. #else
  336. #define LOCK_TOKEN (*(u32 *)(&get_paca()->paca_index))
  337. #endif
  338. static inline int try_lock_tlbie(unsigned int *lock)
  339. {
  340. unsigned int tmp, old;
  341. unsigned int token = LOCK_TOKEN;
  342. asm volatile("1:lwarx %1,0,%2\n"
  343. " cmpwi cr0,%1,0\n"
  344. " bne 2f\n"
  345. " stwcx. %3,0,%2\n"
  346. " bne- 1b\n"
  347. " isync\n"
  348. "2:"
  349. : "=&r" (tmp), "=&r" (old)
  350. : "r" (lock), "r" (token)
  351. : "cc", "memory");
  352. return old == 0;
  353. }
  354. /*
  355. * tlbie/tlbiel is a bit different on the PPC970 compared to later
  356. * processors such as POWER7; the large page bit is in the instruction
  357. * not RB, and the top 16 bits and the bottom 12 bits of the VA
  358. * in RB must be 0.
  359. */
  360. static void do_tlbies_970(struct kvm *kvm, unsigned long *rbvalues,
  361. long npages, int global, bool need_sync)
  362. {
  363. long i;
  364. if (global) {
  365. while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
  366. cpu_relax();
  367. if (need_sync)
  368. asm volatile("ptesync" : : : "memory");
  369. for (i = 0; i < npages; ++i) {
  370. unsigned long rb = rbvalues[i];
  371. if (rb & 1) /* large page */
  372. asm volatile("tlbie %0,1" : :
  373. "r" (rb & 0x0000fffffffff000ul));
  374. else
  375. asm volatile("tlbie %0,0" : :
  376. "r" (rb & 0x0000fffffffff000ul));
  377. }
  378. asm volatile("eieio; tlbsync; ptesync" : : : "memory");
  379. kvm->arch.tlbie_lock = 0;
  380. } else {
  381. if (need_sync)
  382. asm volatile("ptesync" : : : "memory");
  383. for (i = 0; i < npages; ++i) {
  384. unsigned long rb = rbvalues[i];
  385. if (rb & 1) /* large page */
  386. asm volatile("tlbiel %0,1" : :
  387. "r" (rb & 0x0000fffffffff000ul));
  388. else
  389. asm volatile("tlbiel %0,0" : :
  390. "r" (rb & 0x0000fffffffff000ul));
  391. }
  392. asm volatile("ptesync" : : : "memory");
  393. }
  394. }
  395. static void do_tlbies(struct kvm *kvm, unsigned long *rbvalues,
  396. long npages, int global, bool need_sync)
  397. {
  398. long i;
  399. if (cpu_has_feature(CPU_FTR_ARCH_201)) {
  400. /* PPC970 tlbie instruction is a bit different */
  401. do_tlbies_970(kvm, rbvalues, npages, global, need_sync);
  402. return;
  403. }
  404. if (global) {
  405. while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
  406. cpu_relax();
  407. if (need_sync)
  408. asm volatile("ptesync" : : : "memory");
  409. for (i = 0; i < npages; ++i)
  410. asm volatile(PPC_TLBIE(%1,%0) : :
  411. "r" (rbvalues[i]), "r" (kvm->arch.lpid));
  412. asm volatile("eieio; tlbsync; ptesync" : : : "memory");
  413. kvm->arch.tlbie_lock = 0;
  414. } else {
  415. if (need_sync)
  416. asm volatile("ptesync" : : : "memory");
  417. for (i = 0; i < npages; ++i)
  418. asm volatile("tlbiel %0" : : "r" (rbvalues[i]));
  419. asm volatile("ptesync" : : : "memory");
  420. }
  421. }
  422. long kvmppc_do_h_remove(struct kvm *kvm, unsigned long flags,
  423. unsigned long pte_index, unsigned long avpn,
  424. unsigned long *hpret)
  425. {
  426. unsigned long *hpte;
  427. unsigned long v, r, rb;
  428. struct revmap_entry *rev;
  429. if (pte_index >= kvm->arch.hpt_npte)
  430. return H_PARAMETER;
  431. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  432. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  433. cpu_relax();
  434. if ((hpte[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
  435. ((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn) ||
  436. ((flags & H_ANDCOND) && (hpte[0] & avpn) != 0)) {
  437. hpte[0] &= ~HPTE_V_HVLOCK;
  438. return H_NOT_FOUND;
  439. }
  440. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  441. v = hpte[0] & ~HPTE_V_HVLOCK;
  442. if (v & HPTE_V_VALID) {
  443. hpte[0] &= ~HPTE_V_VALID;
  444. rb = compute_tlbie_rb(v, hpte[1], pte_index);
  445. do_tlbies(kvm, &rb, 1, global_invalidates(kvm, flags), true);
  446. /* Read PTE low word after tlbie to get final R/C values */
  447. remove_revmap_chain(kvm, pte_index, rev, v, hpte[1]);
  448. }
  449. r = rev->guest_rpte & ~HPTE_GR_RESERVED;
  450. note_hpte_modification(kvm, rev);
  451. unlock_hpte(hpte, 0);
  452. hpret[0] = v;
  453. hpret[1] = r;
  454. return H_SUCCESS;
  455. }
  456. EXPORT_SYMBOL_GPL(kvmppc_do_h_remove);
  457. long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags,
  458. unsigned long pte_index, unsigned long avpn)
  459. {
  460. return kvmppc_do_h_remove(vcpu->kvm, flags, pte_index, avpn,
  461. &vcpu->arch.gpr[4]);
  462. }
  463. long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
  464. {
  465. struct kvm *kvm = vcpu->kvm;
  466. unsigned long *args = &vcpu->arch.gpr[4];
  467. unsigned long *hp, *hptes[4], tlbrb[4];
  468. long int i, j, k, n, found, indexes[4];
  469. unsigned long flags, req, pte_index, rcbits;
  470. int global;
  471. long int ret = H_SUCCESS;
  472. struct revmap_entry *rev, *revs[4];
  473. global = global_invalidates(kvm, 0);
  474. for (i = 0; i < 4 && ret == H_SUCCESS; ) {
  475. n = 0;
  476. for (; i < 4; ++i) {
  477. j = i * 2;
  478. pte_index = args[j];
  479. flags = pte_index >> 56;
  480. pte_index &= ((1ul << 56) - 1);
  481. req = flags >> 6;
  482. flags &= 3;
  483. if (req == 3) { /* no more requests */
  484. i = 4;
  485. break;
  486. }
  487. if (req != 1 || flags == 3 ||
  488. pte_index >= kvm->arch.hpt_npte) {
  489. /* parameter error */
  490. args[j] = ((0xa0 | flags) << 56) + pte_index;
  491. ret = H_PARAMETER;
  492. break;
  493. }
  494. hp = (unsigned long *)
  495. (kvm->arch.hpt_virt + (pte_index << 4));
  496. /* to avoid deadlock, don't spin except for first */
  497. if (!try_lock_hpte(hp, HPTE_V_HVLOCK)) {
  498. if (n)
  499. break;
  500. while (!try_lock_hpte(hp, HPTE_V_HVLOCK))
  501. cpu_relax();
  502. }
  503. found = 0;
  504. if (hp[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) {
  505. switch (flags & 3) {
  506. case 0: /* absolute */
  507. found = 1;
  508. break;
  509. case 1: /* andcond */
  510. if (!(hp[0] & args[j + 1]))
  511. found = 1;
  512. break;
  513. case 2: /* AVPN */
  514. if ((hp[0] & ~0x7fUL) == args[j + 1])
  515. found = 1;
  516. break;
  517. }
  518. }
  519. if (!found) {
  520. hp[0] &= ~HPTE_V_HVLOCK;
  521. args[j] = ((0x90 | flags) << 56) + pte_index;
  522. continue;
  523. }
  524. args[j] = ((0x80 | flags) << 56) + pte_index;
  525. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  526. note_hpte_modification(kvm, rev);
  527. if (!(hp[0] & HPTE_V_VALID)) {
  528. /* insert R and C bits from PTE */
  529. rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
  530. args[j] |= rcbits << (56 - 5);
  531. hp[0] = 0;
  532. continue;
  533. }
  534. hp[0] &= ~HPTE_V_VALID; /* leave it locked */
  535. tlbrb[n] = compute_tlbie_rb(hp[0], hp[1], pte_index);
  536. indexes[n] = j;
  537. hptes[n] = hp;
  538. revs[n] = rev;
  539. ++n;
  540. }
  541. if (!n)
  542. break;
  543. /* Now that we've collected a batch, do the tlbies */
  544. do_tlbies(kvm, tlbrb, n, global, true);
  545. /* Read PTE low words after tlbie to get final R/C values */
  546. for (k = 0; k < n; ++k) {
  547. j = indexes[k];
  548. pte_index = args[j] & ((1ul << 56) - 1);
  549. hp = hptes[k];
  550. rev = revs[k];
  551. remove_revmap_chain(kvm, pte_index, rev, hp[0], hp[1]);
  552. rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
  553. args[j] |= rcbits << (56 - 5);
  554. hp[0] = 0;
  555. }
  556. }
  557. return ret;
  558. }
  559. long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
  560. unsigned long pte_index, unsigned long avpn,
  561. unsigned long va)
  562. {
  563. struct kvm *kvm = vcpu->kvm;
  564. unsigned long *hpte;
  565. struct revmap_entry *rev;
  566. unsigned long v, r, rb, mask, bits;
  567. if (pte_index >= kvm->arch.hpt_npte)
  568. return H_PARAMETER;
  569. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  570. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  571. cpu_relax();
  572. if ((hpte[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
  573. ((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn)) {
  574. hpte[0] &= ~HPTE_V_HVLOCK;
  575. return H_NOT_FOUND;
  576. }
  577. v = hpte[0];
  578. bits = (flags << 55) & HPTE_R_PP0;
  579. bits |= (flags << 48) & HPTE_R_KEY_HI;
  580. bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);
  581. /* Update guest view of 2nd HPTE dword */
  582. mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N |
  583. HPTE_R_KEY_HI | HPTE_R_KEY_LO;
  584. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  585. if (rev) {
  586. r = (rev->guest_rpte & ~mask) | bits;
  587. rev->guest_rpte = r;
  588. note_hpte_modification(kvm, rev);
  589. }
  590. r = (hpte[1] & ~mask) | bits;
  591. /* Update HPTE */
  592. if (v & HPTE_V_VALID) {
  593. rb = compute_tlbie_rb(v, r, pte_index);
  594. hpte[0] = v & ~HPTE_V_VALID;
  595. do_tlbies(kvm, &rb, 1, global_invalidates(kvm, flags), true);
  596. /*
  597. * If the host has this page as readonly but the guest
  598. * wants to make it read/write, reduce the permissions.
  599. * Checking the host permissions involves finding the
  600. * memslot and then the Linux PTE for the page.
  601. */
  602. if (hpte_is_writable(r) && kvm->arch.using_mmu_notifiers) {
  603. unsigned long psize, gfn, hva;
  604. struct kvm_memory_slot *memslot;
  605. pgd_t *pgdir = vcpu->arch.pgdir;
  606. pte_t pte;
  607. psize = hpte_page_size(v, r);
  608. gfn = ((r & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT;
  609. memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
  610. if (memslot) {
  611. hva = __gfn_to_hva_memslot(memslot, gfn);
  612. pte = lookup_linux_pte_and_update(pgdir, hva,
  613. 1, &psize);
  614. if (pte_present(pte) && !pte_write(pte))
  615. r = hpte_make_readonly(r);
  616. }
  617. }
  618. }
  619. hpte[1] = r;
  620. eieio();
  621. hpte[0] = v & ~HPTE_V_HVLOCK;
  622. asm volatile("ptesync" : : : "memory");
  623. return H_SUCCESS;
  624. }
  625. long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags,
  626. unsigned long pte_index)
  627. {
  628. struct kvm *kvm = vcpu->kvm;
  629. unsigned long *hpte, v, r;
  630. int i, n = 1;
  631. struct revmap_entry *rev = NULL;
  632. if (pte_index >= kvm->arch.hpt_npte)
  633. return H_PARAMETER;
  634. if (flags & H_READ_4) {
  635. pte_index &= ~3;
  636. n = 4;
  637. }
  638. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  639. for (i = 0; i < n; ++i, ++pte_index) {
  640. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  641. v = hpte[0] & ~HPTE_V_HVLOCK;
  642. r = hpte[1];
  643. if (v & HPTE_V_ABSENT) {
  644. v &= ~HPTE_V_ABSENT;
  645. v |= HPTE_V_VALID;
  646. }
  647. if (v & HPTE_V_VALID) {
  648. r = rev[i].guest_rpte | (r & (HPTE_R_R | HPTE_R_C));
  649. r &= ~HPTE_GR_RESERVED;
  650. }
  651. vcpu->arch.gpr[4 + i * 2] = v;
  652. vcpu->arch.gpr[5 + i * 2] = r;
  653. }
  654. return H_SUCCESS;
  655. }
  656. void kvmppc_invalidate_hpte(struct kvm *kvm, unsigned long *hptep,
  657. unsigned long pte_index)
  658. {
  659. unsigned long rb;
  660. hptep[0] &= ~HPTE_V_VALID;
  661. rb = compute_tlbie_rb(hptep[0], hptep[1], pte_index);
  662. do_tlbies(kvm, &rb, 1, 1, true);
  663. }
  664. EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte);
  665. void kvmppc_clear_ref_hpte(struct kvm *kvm, unsigned long *hptep,
  666. unsigned long pte_index)
  667. {
  668. unsigned long rb;
  669. unsigned char rbyte;
  670. rb = compute_tlbie_rb(hptep[0], hptep[1], pte_index);
  671. rbyte = (hptep[1] & ~HPTE_R_R) >> 8;
  672. /* modify only the second-last byte, which contains the ref bit */
  673. *((char *)hptep + 14) = rbyte;
  674. do_tlbies(kvm, &rb, 1, 1, false);
  675. }
  676. EXPORT_SYMBOL_GPL(kvmppc_clear_ref_hpte);
  677. static int slb_base_page_shift[4] = {
  678. 24, /* 16M */
  679. 16, /* 64k */
  680. 34, /* 16G */
  681. 20, /* 1M, unsupported */
  682. };
  683. /* When called from virtmode, this func should be protected by
  684. * preempt_disable(), otherwise, the holding of HPTE_V_HVLOCK
  685. * can trigger deadlock issue.
  686. */
  687. long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v,
  688. unsigned long valid)
  689. {
  690. unsigned int i;
  691. unsigned int pshift;
  692. unsigned long somask;
  693. unsigned long vsid, hash;
  694. unsigned long avpn;
  695. unsigned long *hpte;
  696. unsigned long mask, val;
  697. unsigned long v, r;
  698. /* Get page shift, work out hash and AVPN etc. */
  699. mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY;
  700. val = 0;
  701. pshift = 12;
  702. if (slb_v & SLB_VSID_L) {
  703. mask |= HPTE_V_LARGE;
  704. val |= HPTE_V_LARGE;
  705. pshift = slb_base_page_shift[(slb_v & SLB_VSID_LP) >> 4];
  706. }
  707. if (slb_v & SLB_VSID_B_1T) {
  708. somask = (1UL << 40) - 1;
  709. vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T;
  710. vsid ^= vsid << 25;
  711. } else {
  712. somask = (1UL << 28) - 1;
  713. vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT;
  714. }
  715. hash = (vsid ^ ((eaddr & somask) >> pshift)) & kvm->arch.hpt_mask;
  716. avpn = slb_v & ~(somask >> 16); /* also includes B */
  717. avpn |= (eaddr & somask) >> 16;
  718. if (pshift >= 24)
  719. avpn &= ~((1UL << (pshift - 16)) - 1);
  720. else
  721. avpn &= ~0x7fUL;
  722. val |= avpn;
  723. for (;;) {
  724. hpte = (unsigned long *)(kvm->arch.hpt_virt + (hash << 7));
  725. for (i = 0; i < 16; i += 2) {
  726. /* Read the PTE racily */
  727. v = hpte[i] & ~HPTE_V_HVLOCK;
  728. /* Check valid/absent, hash, segment size and AVPN */
  729. if (!(v & valid) || (v & mask) != val)
  730. continue;
  731. /* Lock the PTE and read it under the lock */
  732. while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK))
  733. cpu_relax();
  734. v = hpte[i] & ~HPTE_V_HVLOCK;
  735. r = hpte[i+1];
  736. /*
  737. * Check the HPTE again, including base page size
  738. */
  739. if ((v & valid) && (v & mask) == val &&
  740. hpte_base_page_size(v, r) == (1ul << pshift))
  741. /* Return with the HPTE still locked */
  742. return (hash << 3) + (i >> 1);
  743. /* Unlock and move on */
  744. hpte[i] = v;
  745. }
  746. if (val & HPTE_V_SECONDARY)
  747. break;
  748. val |= HPTE_V_SECONDARY;
  749. hash = hash ^ kvm->arch.hpt_mask;
  750. }
  751. return -1;
  752. }
  753. EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte);
  754. /*
  755. * Called in real mode to check whether an HPTE not found fault
  756. * is due to accessing a paged-out page or an emulated MMIO page,
  757. * or if a protection fault is due to accessing a page that the
  758. * guest wanted read/write access to but which we made read-only.
  759. * Returns a possibly modified status (DSISR) value if not
  760. * (i.e. pass the interrupt to the guest),
  761. * -1 to pass the fault up to host kernel mode code, -2 to do that
  762. * and also load the instruction word (for MMIO emulation),
  763. * or 0 if we should make the guest retry the access.
  764. */
  765. long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  766. unsigned long slb_v, unsigned int status, bool data)
  767. {
  768. struct kvm *kvm = vcpu->kvm;
  769. long int index;
  770. unsigned long v, r, gr;
  771. unsigned long *hpte;
  772. unsigned long valid;
  773. struct revmap_entry *rev;
  774. unsigned long pp, key;
  775. /* For protection fault, expect to find a valid HPTE */
  776. valid = HPTE_V_VALID;
  777. if (status & DSISR_NOHPTE)
  778. valid |= HPTE_V_ABSENT;
  779. index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid);
  780. if (index < 0) {
  781. if (status & DSISR_NOHPTE)
  782. return status; /* there really was no HPTE */
  783. return 0; /* for prot fault, HPTE disappeared */
  784. }
  785. hpte = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
  786. v = hpte[0] & ~HPTE_V_HVLOCK;
  787. r = hpte[1];
  788. rev = real_vmalloc_addr(&kvm->arch.revmap[index]);
  789. gr = rev->guest_rpte;
  790. unlock_hpte(hpte, v);
  791. /* For not found, if the HPTE is valid by now, retry the instruction */
  792. if ((status & DSISR_NOHPTE) && (v & HPTE_V_VALID))
  793. return 0;
  794. /* Check access permissions to the page */
  795. pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
  796. key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
  797. status &= ~DSISR_NOHPTE; /* DSISR_NOHPTE == SRR1_ISI_NOPT */
  798. if (!data) {
  799. if (gr & (HPTE_R_N | HPTE_R_G))
  800. return status | SRR1_ISI_N_OR_G;
  801. if (!hpte_read_permission(pp, slb_v & key))
  802. return status | SRR1_ISI_PROT;
  803. } else if (status & DSISR_ISSTORE) {
  804. /* check write permission */
  805. if (!hpte_write_permission(pp, slb_v & key))
  806. return status | DSISR_PROTFAULT;
  807. } else {
  808. if (!hpte_read_permission(pp, slb_v & key))
  809. return status | DSISR_PROTFAULT;
  810. }
  811. /* Check storage key, if applicable */
  812. if (data && (vcpu->arch.shregs.msr & MSR_DR)) {
  813. unsigned int perm = hpte_get_skey_perm(gr, vcpu->arch.amr);
  814. if (status & DSISR_ISSTORE)
  815. perm >>= 1;
  816. if (perm & 1)
  817. return status | DSISR_KEYFAULT;
  818. }
  819. /* Save HPTE info for virtual-mode handler */
  820. vcpu->arch.pgfault_addr = addr;
  821. vcpu->arch.pgfault_index = index;
  822. vcpu->arch.pgfault_hpte[0] = v;
  823. vcpu->arch.pgfault_hpte[1] = r;
  824. /* Check the storage key to see if it is possibly emulated MMIO */
  825. if (data && (vcpu->arch.shregs.msr & MSR_IR) &&
  826. (r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
  827. (HPTE_R_KEY_HI | HPTE_R_KEY_LO))
  828. return -2; /* MMIO emulation - load instr word */
  829. return -1; /* send fault up to host kernel mode */
  830. }