|
|
@@ -2,43 +2,48 @@
|
|
|
Memory Hotplug
|
|
|
==============
|
|
|
|
|
|
-Created: Jul 28 2007
|
|
|
-Add description of notifier of memory hotplug Oct 11 2007
|
|
|
+:Created: Jul 28 2007
|
|
|
+:Updated: Add description of notifier of memory hotplug: Oct 11 2007
|
|
|
|
|
|
This document is about memory hotplug including how-to-use and current status.
|
|
|
Because Memory Hotplug is still under development, contents of this text will
|
|
|
be changed often.
|
|
|
|
|
|
-1. Introduction
|
|
|
- 1.1 purpose of memory hotplug
|
|
|
- 1.2. Phases of memory hotplug
|
|
|
- 1.3. Unit of Memory online/offline operation
|
|
|
-2. Kernel Configuration
|
|
|
-3. sysfs files for memory hotplug
|
|
|
-4. Physical memory hot-add phase
|
|
|
- 4.1 Hardware(Firmware) Support
|
|
|
- 4.2 Notify memory hot-add event by hand
|
|
|
-5. Logical Memory hot-add phase
|
|
|
- 5.1. State of memory
|
|
|
- 5.2. How to online memory
|
|
|
-6. Logical memory remove
|
|
|
- 6.1 Memory offline and ZONE_MOVABLE
|
|
|
- 6.2. How to offline memory
|
|
|
-7. Physical memory remove
|
|
|
-8. Memory hotplug event notifier
|
|
|
-9. Future Work List
|
|
|
-
|
|
|
-Note(1): x86_64's has special implementation for memory hotplug.
|
|
|
- This text does not describe it.
|
|
|
-Note(2): This text assumes that sysfs is mounted at /sys.
|
|
|
+.. CONTENTS
|
|
|
|
|
|
+ 1. Introduction
|
|
|
+ 1.1 purpose of memory hotplug
|
|
|
+ 1.2. Phases of memory hotplug
|
|
|
+ 1.3. Unit of Memory online/offline operation
|
|
|
+ 2. Kernel Configuration
|
|
|
+ 3. sysfs files for memory hotplug
|
|
|
+ 4. Physical memory hot-add phase
|
|
|
+ 4.1 Hardware(Firmware) Support
|
|
|
+ 4.2 Notify memory hot-add event by hand
|
|
|
+ 5. Logical Memory hot-add phase
|
|
|
+ 5.1. State of memory
|
|
|
+ 5.2. How to online memory
|
|
|
+ 6. Logical memory remove
|
|
|
+ 6.1 Memory offline and ZONE_MOVABLE
|
|
|
+ 6.2. How to offline memory
|
|
|
+ 7. Physical memory remove
|
|
|
+ 8. Memory hotplug event notifier
|
|
|
+ 9. Future Work List
|
|
|
|
|
|
----------------
|
|
|
-1. Introduction
|
|
|
----------------
|
|
|
|
|
|
-1.1 purpose of memory hotplug
|
|
|
-------------
|
|
|
+.. note::
|
|
|
+
|
|
|
+ (1) x86_64's has special implementation for memory hotplug.
|
|
|
+ This text does not describe it.
|
|
|
+ (2) This text assumes that sysfs is mounted at /sys.
|
|
|
+
|
|
|
+
|
|
|
+Introduction
|
|
|
+============
|
|
|
+
|
|
|
+purpose of memory hotplug
|
|
|
+-------------------------
|
|
|
+
|
|
|
Memory Hotplug allows users to increase/decrease the amount of memory.
|
|
|
Generally, there are two purposes.
|
|
|
|
|
|
@@ -53,9 +58,11 @@ hardware which supports memory power management.
|
|
|
Linux memory hotplug is designed for both purpose.
|
|
|
|
|
|
|
|
|
-1.2. Phases of memory hotplug
|
|
|
----------------
|
|
|
-There are 2 phases in Memory Hotplug.
|
|
|
+Phases of memory hotplug
|
|
|
+------------------------
|
|
|
+
|
|
|
+There are 2 phases in Memory Hotplug:
|
|
|
+
|
|
|
1) Physical Memory Hotplug phase
|
|
|
2) Logical Memory Hotplug phase.
|
|
|
|
|
|
@@ -70,7 +77,7 @@ management tables, and makes sysfs files for new memory's operation.
|
|
|
If firmware supports notification of connection of new memory to OS,
|
|
|
this phase is triggered automatically. ACPI can notify this event. If not,
|
|
|
"probe" operation by system administration is used instead.
|
|
|
-(see Section 4.).
|
|
|
+(see :ref:`memory_hotplug_physical_mem`).
|
|
|
|
|
|
Logical Memory Hotplug phase is to change memory state into
|
|
|
available/unavailable for users. Amount of memory from user's view is
|
|
|
@@ -83,11 +90,12 @@ Logical Memory Hotplug phase is triggered by write of sysfs file by system
|
|
|
administrator. For the hot-add case, it must be executed after Physical Hotplug
|
|
|
phase by hand.
|
|
|
(However, if you writes udev's hotplug scripts for memory hotplug, these
|
|
|
- phases can be execute in seamless way.)
|
|
|
+phases can be execute in seamless way.)
|
|
|
+
|
|
|
|
|
|
+Unit of Memory online/offline operation
|
|
|
+---------------------------------------
|
|
|
|
|
|
-1.3. Unit of Memory online/offline operation
|
|
|
-------------
|
|
|
Memory hotplug uses SPARSEMEM memory model which allows memory to be divided
|
|
|
into chunks of the same size. These chunks are called "sections". The size of
|
|
|
a memory section is architecture dependent. For example, power uses 16MiB, ia64
|
|
|
@@ -97,46 +105,50 @@ Memory sections are combined into chunks referred to as "memory blocks". The
|
|
|
size of a memory block is architecture dependent and represents the logical
|
|
|
unit upon which memory online/offline operations are to be performed. The
|
|
|
default size of a memory block is the same as memory section size unless an
|
|
|
-architecture specifies otherwise. (see Section 3.)
|
|
|
+architecture specifies otherwise. (see :ref:`memory_hotplug_sysfs_files`.)
|
|
|
|
|
|
To determine the size (in bytes) of a memory block please read this file:
|
|
|
|
|
|
/sys/devices/system/memory/block_size_bytes
|
|
|
|
|
|
|
|
|
------------------------
|
|
|
-2. Kernel Configuration
|
|
|
------------------------
|
|
|
+Kernel Configuration
|
|
|
+====================
|
|
|
+
|
|
|
To use memory hotplug feature, kernel must be compiled with following
|
|
|
config options.
|
|
|
|
|
|
-- For all memory hotplug
|
|
|
- Memory model -> Sparse Memory (CONFIG_SPARSEMEM)
|
|
|
- Allow for memory hot-add (CONFIG_MEMORY_HOTPLUG)
|
|
|
+- For all memory hotplug:
|
|
|
+ - Memory model -> Sparse Memory (CONFIG_SPARSEMEM)
|
|
|
+ - Allow for memory hot-add (CONFIG_MEMORY_HOTPLUG)
|
|
|
|
|
|
-- To enable memory removal, the following are also necessary
|
|
|
- Allow for memory hot remove (CONFIG_MEMORY_HOTREMOVE)
|
|
|
- Page Migration (CONFIG_MIGRATION)
|
|
|
+- To enable memory removal, the following are also necessary:
|
|
|
+ - Allow for memory hot remove (CONFIG_MEMORY_HOTREMOVE)
|
|
|
+ - Page Migration (CONFIG_MIGRATION)
|
|
|
|
|
|
-- For ACPI memory hotplug, the following are also necessary
|
|
|
- Memory hotplug (under ACPI Support menu) (CONFIG_ACPI_HOTPLUG_MEMORY)
|
|
|
- This option can be kernel module.
|
|
|
+- For ACPI memory hotplug, the following are also necessary:
|
|
|
+ - Memory hotplug (under ACPI Support menu) (CONFIG_ACPI_HOTPLUG_MEMORY)
|
|
|
+ - This option can be kernel module.
|
|
|
|
|
|
- As a related configuration, if your box has a feature of NUMA-node hotplug
|
|
|
via ACPI, then this option is necessary too.
|
|
|
- ACPI0004,PNP0A05 and PNP0A06 Container Driver (under ACPI Support menu)
|
|
|
- (CONFIG_ACPI_CONTAINER).
|
|
|
- This option can be kernel module too.
|
|
|
|
|
|
+ - ACPI0004,PNP0A05 and PNP0A06 Container Driver (under ACPI Support menu)
|
|
|
+ (CONFIG_ACPI_CONTAINER).
|
|
|
+
|
|
|
+ This option can be kernel module too.
|
|
|
+
|
|
|
+
|
|
|
+.. _memory_hotplug_sysfs_files:
|
|
|
+
|
|
|
+sysfs files for memory hotplug
|
|
|
+==============================
|
|
|
|
|
|
---------------------------------
|
|
|
-3 sysfs files for memory hotplug
|
|
|
---------------------------------
|
|
|
All memory blocks have their device information in sysfs. Each memory block
|
|
|
-is described under /sys/devices/system/memory as
|
|
|
+is described under /sys/devices/system/memory as:
|
|
|
|
|
|
-/sys/devices/system/memory/memoryXXX
|
|
|
-(XXX is the memory block id.)
|
|
|
+ /sys/devices/system/memory/memoryXXX
|
|
|
+ (XXX is the memory block id.)
|
|
|
|
|
|
For the memory block covered by the sysfs directory. It is expected that all
|
|
|
memory sections in this range are present and no memory holes exist in the
|
|
|
@@ -145,43 +157,53 @@ the existence of one should not affect the hotplug capabilities of the memory
|
|
|
block.
|
|
|
|
|
|
For example, assume 1GiB memory block size. A device for a memory starting at
|
|
|
-0x100000000 is /sys/device/system/memory/memory4
|
|
|
-(0x100000000 / 1Gib = 4)
|
|
|
+0x100000000 is /sys/device/system/memory/memory4::
|
|
|
+
|
|
|
+ (0x100000000 / 1Gib = 4)
|
|
|
+
|
|
|
This device covers address range [0x100000000 ... 0x140000000)
|
|
|
|
|
|
Under each memory block, you can see 5 files:
|
|
|
|
|
|
-/sys/devices/system/memory/memoryXXX/phys_index
|
|
|
-/sys/devices/system/memory/memoryXXX/phys_device
|
|
|
-/sys/devices/system/memory/memoryXXX/state
|
|
|
-/sys/devices/system/memory/memoryXXX/removable
|
|
|
-/sys/devices/system/memory/memoryXXX/valid_zones
|
|
|
+- /sys/devices/system/memory/memoryXXX/phys_index
|
|
|
+- /sys/devices/system/memory/memoryXXX/phys_device
|
|
|
+- /sys/devices/system/memory/memoryXXX/state
|
|
|
+- /sys/devices/system/memory/memoryXXX/removable
|
|
|
+- /sys/devices/system/memory/memoryXXX/valid_zones
|
|
|
+
|
|
|
+=================== ============================================================
|
|
|
+``phys_index`` read-only and contains memory block id, same as XXX.
|
|
|
+``state`` read-write
|
|
|
+
|
|
|
+ - at read: contains online/offline state of memory.
|
|
|
+ - at write: user can specify "online_kernel",
|
|
|
|
|
|
-'phys_index' : read-only and contains memory block id, same as XXX.
|
|
|
-'state' : read-write
|
|
|
- at read: contains online/offline state of memory.
|
|
|
- at write: user can specify "online_kernel",
|
|
|
"online_movable", "online", "offline" command
|
|
|
which will be performed on all sections in the block.
|
|
|
-'phys_device' : read-only: designed to show the name of physical memory
|
|
|
+``phys_device`` read-only: designed to show the name of physical memory
|
|
|
device. This is not well implemented now.
|
|
|
-'removable' : read-only: contains an integer value indicating
|
|
|
+``removable`` read-only: contains an integer value indicating
|
|
|
whether the memory block is removable or not
|
|
|
removable. A value of 1 indicates that the memory
|
|
|
block is removable and a value of 0 indicates that
|
|
|
it is not removable. A memory block is removable only if
|
|
|
every section in the block is removable.
|
|
|
-'valid_zones' : read-only: designed to show which zones this memory block
|
|
|
+``valid_zones`` read-only: designed to show which zones this memory block
|
|
|
can be onlined to.
|
|
|
- The first column shows it's default zone.
|
|
|
+
|
|
|
+ The first column shows it`s default zone.
|
|
|
+
|
|
|
"memory6/valid_zones: Normal Movable" shows this memoryblock
|
|
|
can be onlined to ZONE_NORMAL by default and to ZONE_MOVABLE
|
|
|
by online_movable.
|
|
|
+
|
|
|
"memory7/valid_zones: Movable Normal" shows this memoryblock
|
|
|
can be onlined to ZONE_MOVABLE by default and to ZONE_NORMAL
|
|
|
by online_kernel.
|
|
|
+=================== ============================================================
|
|
|
+
|
|
|
+.. note::
|
|
|
|
|
|
-NOTE:
|
|
|
These directories/files appear after physical memory hotplug phase.
|
|
|
|
|
|
If CONFIG_NUMA is enabled the memoryXXX/ directories can also be accessed
|
|
|
@@ -193,13 +215,14 @@ For example:
|
|
|
A backlink will also be created:
|
|
|
/sys/devices/system/memory/memory9/node0 -> ../../node/node0
|
|
|
|
|
|
+.. _memory_hotplug_physical_mem:
|
|
|
+
|
|
|
+Physical memory hot-add phase
|
|
|
+=============================
|
|
|
|
|
|
---------------------------------
|
|
|
-4. Physical memory hot-add phase
|
|
|
---------------------------------
|
|
|
+Hardware(Firmware) Support
|
|
|
+--------------------------
|
|
|
|
|
|
-4.1 Hardware(Firmware) Support
|
|
|
-------------
|
|
|
On x86_64/ia64 platform, memory hotplug by ACPI is supported.
|
|
|
|
|
|
In general, the firmware (ACPI) which supports memory hotplug defines
|
|
|
@@ -209,7 +232,8 @@ script. This will be done automatically.
|
|
|
|
|
|
But scripts for memory hotplug are not contained in generic udev package(now).
|
|
|
You may have to write it by yourself or online/offline memory by hand.
|
|
|
-Please see "How to online memory", "How to offline memory" in this text.
|
|
|
+Please see :ref:`memory_hotplug_how_to_online_memory` and
|
|
|
+:ref:`memory_hotplug_how_to_offline_memory`.
|
|
|
|
|
|
If firmware supports NUMA-node hotplug, and defines an object _HID "ACPI0004",
|
|
|
"PNP0A05", or "PNP0A06", notification is asserted to it, and ACPI handler
|
|
|
@@ -217,8 +241,9 @@ calls hotplug code for all of objects which are defined in it.
|
|
|
If memory device is found, memory hotplug code will be called.
|
|
|
|
|
|
|
|
|
-4.2 Notify memory hot-add event by hand
|
|
|
-------------
|
|
|
+Notify memory hot-add event by hand
|
|
|
+-----------------------------------
|
|
|
+
|
|
|
On some architectures, the firmware may not notify the kernel of a memory
|
|
|
hotplug event. Therefore, the memory "probe" interface is supported to
|
|
|
explicitly notify the kernel. This interface depends on
|
|
|
@@ -229,45 +254,48 @@ notification.
|
|
|
Probe interface is located at
|
|
|
/sys/devices/system/memory/probe
|
|
|
|
|
|
-You can tell the physical address of new memory to the kernel by
|
|
|
+You can tell the physical address of new memory to the kernel by::
|
|
|
|
|
|
-% echo start_address_of_new_memory > /sys/devices/system/memory/probe
|
|
|
+ % echo start_address_of_new_memory > /sys/devices/system/memory/probe
|
|
|
|
|
|
Then, [start_address_of_new_memory, start_address_of_new_memory +
|
|
|
memory_block_size] memory range is hot-added. In this case, hotplug script is
|
|
|
not called (in current implementation). You'll have to online memory by
|
|
|
-yourself. Please see "How to online memory" in this text.
|
|
|
+yourself. Please see :ref:`memory_hotplug_how_to_online_memory`.
|
|
|
|
|
|
|
|
|
-------------------------------
|
|
|
-5. Logical Memory hot-add phase
|
|
|
-------------------------------
|
|
|
+Logical Memory hot-add phase
|
|
|
+============================
|
|
|
|
|
|
-5.1. State of memory
|
|
|
-------------
|
|
|
-To see (online/offline) state of a memory block, read 'state' file.
|
|
|
+State of memory
|
|
|
+---------------
|
|
|
+
|
|
|
+To see (online/offline) state of a memory block, read 'state' file::
|
|
|
+
|
|
|
+ % cat /sys/device/system/memory/memoryXXX/state
|
|
|
|
|
|
-% cat /sys/device/system/memory/memoryXXX/state
|
|
|
|
|
|
+- If the memory block is online, you'll read "online".
|
|
|
+- If the memory block is offline, you'll read "offline".
|
|
|
|
|
|
-If the memory block is online, you'll read "online".
|
|
|
-If the memory block is offline, you'll read "offline".
|
|
|
|
|
|
+.. _memory_hotplug_how_to_online_memory:
|
|
|
+
|
|
|
+How to online memory
|
|
|
+--------------------
|
|
|
|
|
|
-5.2. How to online memory
|
|
|
-------------
|
|
|
When the memory is hot-added, the kernel decides whether or not to "online"
|
|
|
-it according to the policy which can be read from "auto_online_blocks" file:
|
|
|
+it according to the policy which can be read from "auto_online_blocks" file::
|
|
|
|
|
|
-% cat /sys/devices/system/memory/auto_online_blocks
|
|
|
+ % cat /sys/devices/system/memory/auto_online_blocks
|
|
|
|
|
|
The default depends on the CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE kernel config
|
|
|
option. If it is disabled the default is "offline" which means the newly added
|
|
|
memory is not in a ready-to-use state and you have to "online" the newly added
|
|
|
memory blocks manually. Automatic onlining can be requested by writing "online"
|
|
|
-to "auto_online_blocks" file:
|
|
|
+to "auto_online_blocks" file::
|
|
|
|
|
|
-% echo online > /sys/devices/system/memory/auto_online_blocks
|
|
|
+ % echo online > /sys/devices/system/memory/auto_online_blocks
|
|
|
|
|
|
This sets a global policy and impacts all memory blocks that will subsequently
|
|
|
be hotplugged. Currently offline blocks keep their state. It is possible, under
|
|
|
@@ -277,24 +305,26 @@ online. User space tools can check their "state" files
|
|
|
|
|
|
If the automatic onlining wasn't requested, failed, or some memory block was
|
|
|
offlined it is possible to change the individual block's state by writing to the
|
|
|
-"state" file:
|
|
|
+"state" file::
|
|
|
|
|
|
-% echo online > /sys/devices/system/memory/memoryXXX/state
|
|
|
+ % echo online > /sys/devices/system/memory/memoryXXX/state
|
|
|
|
|
|
This onlining will not change the ZONE type of the target memory block,
|
|
|
If the memory block doesn't belong to any zone an appropriate kernel zone
|
|
|
(usually ZONE_NORMAL) will be used unless movable_node kernel command line
|
|
|
option is specified when ZONE_MOVABLE will be used.
|
|
|
|
|
|
-You can explicitly request to associate it with ZONE_MOVABLE by
|
|
|
+You can explicitly request to associate it with ZONE_MOVABLE by::
|
|
|
+
|
|
|
+ % echo online_movable > /sys/devices/system/memory/memoryXXX/state
|
|
|
|
|
|
-% echo online_movable > /sys/devices/system/memory/memoryXXX/state
|
|
|
-(NOTE: current limit: this memory block must be adjacent to ZONE_MOVABLE)
|
|
|
+.. note:: current limit: this memory block must be adjacent to ZONE_MOVABLE
|
|
|
|
|
|
-Or you can explicitly request a kernel zone (usually ZONE_NORMAL) by:
|
|
|
+Or you can explicitly request a kernel zone (usually ZONE_NORMAL) by::
|
|
|
|
|
|
-% echo online_kernel > /sys/devices/system/memory/memoryXXX/state
|
|
|
-(NOTE: current limit: this memory block must be adjacent to ZONE_NORMAL)
|
|
|
+ % echo online_kernel > /sys/devices/system/memory/memoryXXX/state
|
|
|
+
|
|
|
+.. note:: current limit: this memory block must be adjacent to ZONE_NORMAL
|
|
|
|
|
|
An explicit zone onlining can fail (e.g. when the range is already within
|
|
|
and existing and incompatible zone already).
|
|
|
@@ -306,12 +336,12 @@ This may be changed in future.
|
|
|
|
|
|
|
|
|
|
|
|
-------------------------
|
|
|
-6. Logical memory remove
|
|
|
-------------------------
|
|
|
+Logical memory remove
|
|
|
+=====================
|
|
|
+
|
|
|
+Memory offline and ZONE_MOVABLE
|
|
|
+-------------------------------
|
|
|
|
|
|
-6.1 Memory offline and ZONE_MOVABLE
|
|
|
-------------
|
|
|
Memory offlining is more complicated than memory online. Because memory offline
|
|
|
has to make the whole memory block be unused, memory offline can fail if
|
|
|
the memory block includes memory which cannot be freed.
|
|
|
@@ -336,24 +366,27 @@ Assume the system has "TOTAL" amount of memory at boot time, this boot option
|
|
|
creates ZONE_MOVABLE as following.
|
|
|
|
|
|
1) When kernelcore=YYYY boot option is used,
|
|
|
- Size of memory not for movable pages (not for offline) is YYYY.
|
|
|
- Size of memory for movable pages (for offline) is TOTAL-YYYY.
|
|
|
+ Size of memory not for movable pages (not for offline) is YYYY.
|
|
|
+ Size of memory for movable pages (for offline) is TOTAL-YYYY.
|
|
|
|
|
|
2) When movablecore=ZZZZ boot option is used,
|
|
|
- Size of memory not for movable pages (not for offline) is TOTAL - ZZZZ.
|
|
|
- Size of memory for movable pages (for offline) is ZZZZ.
|
|
|
+ Size of memory not for movable pages (not for offline) is TOTAL - ZZZZ.
|
|
|
+ Size of memory for movable pages (for offline) is ZZZZ.
|
|
|
+
|
|
|
+.. note::
|
|
|
|
|
|
+ Unfortunately, there is no information to show which memory block belongs
|
|
|
+ to ZONE_MOVABLE. This is TBD.
|
|
|
|
|
|
-Note: Unfortunately, there is no information to show which memory block belongs
|
|
|
-to ZONE_MOVABLE. This is TBD.
|
|
|
+.. _memory_hotplug_how_to_offline_memory:
|
|
|
|
|
|
+How to offline memory
|
|
|
+---------------------
|
|
|
|
|
|
-6.2. How to offline memory
|
|
|
-------------
|
|
|
You can offline a memory block by using the same sysfs interface that was used
|
|
|
-in memory onlining.
|
|
|
+in memory onlining::
|
|
|
|
|
|
-% echo offline > /sys/devices/system/memory/memoryXXX/state
|
|
|
+ % echo offline > /sys/devices/system/memory/memoryXXX/state
|
|
|
|
|
|
If offline succeeds, the state of the memory block is changed to be "offline".
|
|
|
If it fails, some error core (like -EBUSY) will be returned by the kernel.
|
|
|
@@ -367,22 +400,22 @@ able to offline it (or not). (For example, a page is referred to by some kernel
|
|
|
internal call and released soon.)
|
|
|
|
|
|
Consideration:
|
|
|
-Memory hotplug's design direction is to make the possibility of memory offlining
|
|
|
-higher and to guarantee unplugging memory under any situation. But it needs
|
|
|
-more work. Returning -EBUSY under some situation may be good because the user
|
|
|
-can decide to retry more or not by himself. Currently, memory offlining code
|
|
|
-does some amount of retry with 120 seconds timeout.
|
|
|
+ Memory hotplug's design direction is to make the possibility of memory
|
|
|
+ offlining higher and to guarantee unplugging memory under any situation. But
|
|
|
+ it needs more work. Returning -EBUSY under some situation may be good because
|
|
|
+ the user can decide to retry more or not by himself. Currently, memory
|
|
|
+ offlining code does some amount of retry with 120 seconds timeout.
|
|
|
+
|
|
|
+Physical memory remove
|
|
|
+======================
|
|
|
|
|
|
--------------------------
|
|
|
-7. Physical memory remove
|
|
|
--------------------------
|
|
|
Need more implementation yet....
|
|
|
- Notification completion of remove works by OS to firmware.
|
|
|
- Guard from remove if not yet.
|
|
|
|
|
|
---------------------------------
|
|
|
-8. Memory hotplug event notifier
|
|
|
---------------------------------
|
|
|
+Memory hotplug event notifier
|
|
|
+=============================
|
|
|
+
|
|
|
Hotplugging events are sent to a notification queue.
|
|
|
|
|
|
There are six types of notification defined in include/linux/memory.h:
|
|
|
@@ -412,14 +445,14 @@ MEM_CANCEL_OFFLINE
|
|
|
MEM_OFFLINE
|
|
|
Generated after offlining memory is complete.
|
|
|
|
|
|
-A callback routine can be registered by calling
|
|
|
+A callback routine can be registered by calling::
|
|
|
|
|
|
hotplug_memory_notifier(callback_func, priority)
|
|
|
|
|
|
Callback functions with higher values of priority are called before callback
|
|
|
functions with lower values.
|
|
|
|
|
|
-A callback function must have the following prototype:
|
|
|
+A callback function must have the following prototype::
|
|
|
|
|
|
int callback_func(
|
|
|
struct notifier_block *self, unsigned long action, void *arg);
|
|
|
@@ -427,27 +460,28 @@ A callback function must have the following prototype:
|
|
|
The first argument of the callback function (self) is a pointer to the block
|
|
|
of the notifier chain that points to the callback function itself.
|
|
|
The second argument (action) is one of the event types described above.
|
|
|
-The third argument (arg) passes a pointer of struct memory_notify.
|
|
|
-
|
|
|
-struct memory_notify {
|
|
|
- unsigned long start_pfn;
|
|
|
- unsigned long nr_pages;
|
|
|
- int status_change_nid_normal;
|
|
|
- int status_change_nid_high;
|
|
|
- int status_change_nid;
|
|
|
-}
|
|
|
-
|
|
|
-start_pfn is start_pfn of online/offline memory.
|
|
|
-nr_pages is # of pages of online/offline memory.
|
|
|
-status_change_nid_normal is set node id when N_NORMAL_MEMORY of nodemask
|
|
|
-is (will be) set/clear, if this is -1, then nodemask status is not changed.
|
|
|
-status_change_nid_high is set node id when N_HIGH_MEMORY of nodemask
|
|
|
-is (will be) set/clear, if this is -1, then nodemask status is not changed.
|
|
|
-status_change_nid is set node id when N_MEMORY of nodemask is (will be)
|
|
|
-set/clear. It means a new(memoryless) node gets new memory by online and a
|
|
|
-node loses all memory. If this is -1, then nodemask status is not changed.
|
|
|
-If status_changed_nid* >= 0, callback should create/discard structures for the
|
|
|
-node if necessary.
|
|
|
+The third argument (arg) passes a pointer of struct memory_notify::
|
|
|
+
|
|
|
+ struct memory_notify {
|
|
|
+ unsigned long start_pfn;
|
|
|
+ unsigned long nr_pages;
|
|
|
+ int status_change_nid_normal;
|
|
|
+ int status_change_nid_high;
|
|
|
+ int status_change_nid;
|
|
|
+ }
|
|
|
+
|
|
|
+- start_pfn is start_pfn of online/offline memory.
|
|
|
+- nr_pages is # of pages of online/offline memory.
|
|
|
+- status_change_nid_normal is set node id when N_NORMAL_MEMORY of nodemask
|
|
|
+ is (will be) set/clear, if this is -1, then nodemask status is not changed.
|
|
|
+- status_change_nid_high is set node id when N_HIGH_MEMORY of nodemask
|
|
|
+ is (will be) set/clear, if this is -1, then nodemask status is not changed.
|
|
|
+- status_change_nid is set node id when N_MEMORY of nodemask is (will be)
|
|
|
+ set/clear. It means a new(memoryless) node gets new memory by online and a
|
|
|
+ node loses all memory. If this is -1, then nodemask status is not changed.
|
|
|
+
|
|
|
+ If status_changed_nid* >= 0, callback should create/discard structures for the
|
|
|
+ node if necessary.
|
|
|
|
|
|
The callback routine shall return one of the values
|
|
|
NOTIFY_DONE, NOTIFY_OK, NOTIFY_BAD, NOTIFY_STOP
|
|
|
@@ -461,9 +495,9 @@ further processing of the notification queue.
|
|
|
|
|
|
NOTIFY_STOP stops further processing of the notification queue.
|
|
|
|
|
|
---------------
|
|
|
-9. Future Work
|
|
|
---------------
|
|
|
+Future Work
|
|
|
+===========
|
|
|
+
|
|
|
- allowing memory hot-add to ZONE_MOVABLE. maybe we need some switch like
|
|
|
sysctl or new control file.
|
|
|
- showing memory block and physical device relationship.
|
|
|
@@ -471,4 +505,3 @@ NOTIFY_STOP stops further processing of the notification queue.
|
|
|
- support HugeTLB page migration and offlining.
|
|
|
- memmap removing at memory offline.
|
|
|
- physical remove memory.
|
|
|
-
|