|
|
@@ -1,668 +0,0 @@
|
|
|
-/*
|
|
|
- * Sleepable Read-Copy Update mechanism for mutual exclusion.
|
|
|
- *
|
|
|
- * This program is free software; you can redistribute it and/or modify
|
|
|
- * it under the terms of the GNU General Public License as published by
|
|
|
- * the Free Software Foundation; either version 2 of the License, or
|
|
|
- * (at your option) any later version.
|
|
|
- *
|
|
|
- * This program is distributed in the hope that it will be useful,
|
|
|
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
- * GNU General Public License for more details.
|
|
|
- *
|
|
|
- * You should have received a copy of the GNU General Public License
|
|
|
- * along with this program; if not, you can access it online at
|
|
|
- * http://www.gnu.org/licenses/gpl-2.0.html.
|
|
|
- *
|
|
|
- * Copyright (C) IBM Corporation, 2006
|
|
|
- * Copyright (C) Fujitsu, 2012
|
|
|
- *
|
|
|
- * Author: Paul McKenney <paulmck@us.ibm.com>
|
|
|
- * Lai Jiangshan <laijs@cn.fujitsu.com>
|
|
|
- *
|
|
|
- * For detailed explanation of Read-Copy Update mechanism see -
|
|
|
- * Documentation/RCU/ *.txt
|
|
|
- *
|
|
|
- */
|
|
|
-
|
|
|
-#include <linux/export.h>
|
|
|
-#include <linux/mutex.h>
|
|
|
-#include <linux/percpu.h>
|
|
|
-#include <linux/preempt.h>
|
|
|
-#include <linux/rcupdate_wait.h>
|
|
|
-#include <linux/sched.h>
|
|
|
-#include <linux/smp.h>
|
|
|
-#include <linux/delay.h>
|
|
|
-#include <linux/srcu.h>
|
|
|
-
|
|
|
-#include "rcu.h"
|
|
|
-
|
|
|
-/*
|
|
|
- * Initialize an rcu_batch structure to empty.
|
|
|
- */
|
|
|
-static inline void rcu_batch_init(struct rcu_batch *b)
|
|
|
-{
|
|
|
- b->head = NULL;
|
|
|
- b->tail = &b->head;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Enqueue a callback onto the tail of the specified rcu_batch structure.
|
|
|
- */
|
|
|
-static inline void rcu_batch_queue(struct rcu_batch *b, struct rcu_head *head)
|
|
|
-{
|
|
|
- *b->tail = head;
|
|
|
- b->tail = &head->next;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Is the specified rcu_batch structure empty?
|
|
|
- */
|
|
|
-static inline bool rcu_batch_empty(struct rcu_batch *b)
|
|
|
-{
|
|
|
- return b->tail == &b->head;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Remove the callback at the head of the specified rcu_batch structure
|
|
|
- * and return a pointer to it, or return NULL if the structure is empty.
|
|
|
- */
|
|
|
-static inline struct rcu_head *rcu_batch_dequeue(struct rcu_batch *b)
|
|
|
-{
|
|
|
- struct rcu_head *head;
|
|
|
-
|
|
|
- if (rcu_batch_empty(b))
|
|
|
- return NULL;
|
|
|
-
|
|
|
- head = b->head;
|
|
|
- b->head = head->next;
|
|
|
- if (b->tail == &head->next)
|
|
|
- rcu_batch_init(b);
|
|
|
-
|
|
|
- return head;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Move all callbacks from the rcu_batch structure specified by "from" to
|
|
|
- * the structure specified by "to".
|
|
|
- */
|
|
|
-static inline void rcu_batch_move(struct rcu_batch *to, struct rcu_batch *from)
|
|
|
-{
|
|
|
- if (!rcu_batch_empty(from)) {
|
|
|
- *to->tail = from->head;
|
|
|
- to->tail = from->tail;
|
|
|
- rcu_batch_init(from);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-static int init_srcu_struct_fields(struct srcu_struct *sp)
|
|
|
-{
|
|
|
- sp->completed = 0;
|
|
|
- spin_lock_init(&sp->queue_lock);
|
|
|
- sp->running = false;
|
|
|
- rcu_batch_init(&sp->batch_queue);
|
|
|
- rcu_batch_init(&sp->batch_check0);
|
|
|
- rcu_batch_init(&sp->batch_check1);
|
|
|
- rcu_batch_init(&sp->batch_done);
|
|
|
- INIT_DELAYED_WORK(&sp->work, process_srcu);
|
|
|
- sp->per_cpu_ref = alloc_percpu(struct srcu_array);
|
|
|
- return sp->per_cpu_ref ? 0 : -ENOMEM;
|
|
|
-}
|
|
|
-
|
|
|
-#ifdef CONFIG_DEBUG_LOCK_ALLOC
|
|
|
-
|
|
|
-int __init_srcu_struct(struct srcu_struct *sp, const char *name,
|
|
|
- struct lock_class_key *key)
|
|
|
-{
|
|
|
- /* Don't re-initialize a lock while it is held. */
|
|
|
- debug_check_no_locks_freed((void *)sp, sizeof(*sp));
|
|
|
- lockdep_init_map(&sp->dep_map, name, key, 0);
|
|
|
- return init_srcu_struct_fields(sp);
|
|
|
-}
|
|
|
-EXPORT_SYMBOL_GPL(__init_srcu_struct);
|
|
|
-
|
|
|
-#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
|
|
|
-
|
|
|
-/**
|
|
|
- * init_srcu_struct - initialize a sleep-RCU structure
|
|
|
- * @sp: structure to initialize.
|
|
|
- *
|
|
|
- * Must invoke this on a given srcu_struct before passing that srcu_struct
|
|
|
- * to any other function. Each srcu_struct represents a separate domain
|
|
|
- * of SRCU protection.
|
|
|
- */
|
|
|
-int init_srcu_struct(struct srcu_struct *sp)
|
|
|
-{
|
|
|
- return init_srcu_struct_fields(sp);
|
|
|
-}
|
|
|
-EXPORT_SYMBOL_GPL(init_srcu_struct);
|
|
|
-
|
|
|
-#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
|
|
|
-
|
|
|
-/*
|
|
|
- * Returns approximate total of the readers' ->lock_count[] values for the
|
|
|
- * rank of per-CPU counters specified by idx.
|
|
|
- */
|
|
|
-static unsigned long srcu_readers_lock_idx(struct srcu_struct *sp, int idx)
|
|
|
-{
|
|
|
- int cpu;
|
|
|
- unsigned long sum = 0;
|
|
|
-
|
|
|
- for_each_possible_cpu(cpu) {
|
|
|
- struct srcu_array *cpuc = per_cpu_ptr(sp->per_cpu_ref, cpu);
|
|
|
-
|
|
|
- sum += READ_ONCE(cpuc->lock_count[idx]);
|
|
|
- }
|
|
|
- return sum;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Returns approximate total of the readers' ->unlock_count[] values for the
|
|
|
- * rank of per-CPU counters specified by idx.
|
|
|
- */
|
|
|
-static unsigned long srcu_readers_unlock_idx(struct srcu_struct *sp, int idx)
|
|
|
-{
|
|
|
- int cpu;
|
|
|
- unsigned long sum = 0;
|
|
|
-
|
|
|
- for_each_possible_cpu(cpu) {
|
|
|
- struct srcu_array *cpuc = per_cpu_ptr(sp->per_cpu_ref, cpu);
|
|
|
-
|
|
|
- sum += READ_ONCE(cpuc->unlock_count[idx]);
|
|
|
- }
|
|
|
- return sum;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Return true if the number of pre-existing readers is determined to
|
|
|
- * be zero.
|
|
|
- */
|
|
|
-static bool srcu_readers_active_idx_check(struct srcu_struct *sp, int idx)
|
|
|
-{
|
|
|
- unsigned long unlocks;
|
|
|
-
|
|
|
- unlocks = srcu_readers_unlock_idx(sp, idx);
|
|
|
-
|
|
|
- /*
|
|
|
- * Make sure that a lock is always counted if the corresponding unlock
|
|
|
- * is counted. Needs to be a smp_mb() as the read side may contain a
|
|
|
- * read from a variable that is written to before the synchronize_srcu()
|
|
|
- * in the write side. In this case smp_mb()s A and B act like the store
|
|
|
- * buffering pattern.
|
|
|
- *
|
|
|
- * This smp_mb() also pairs with smp_mb() C to prevent accesses after the
|
|
|
- * synchronize_srcu() from being executed before the grace period ends.
|
|
|
- */
|
|
|
- smp_mb(); /* A */
|
|
|
-
|
|
|
- /*
|
|
|
- * If the locks are the same as the unlocks, then there must have
|
|
|
- * been no readers on this index at some time in between. This does not
|
|
|
- * mean that there are no more readers, as one could have read the
|
|
|
- * current index but not have incremented the lock counter yet.
|
|
|
- *
|
|
|
- * Possible bug: There is no guarantee that there haven't been ULONG_MAX
|
|
|
- * increments of ->lock_count[] since the unlocks were counted, meaning
|
|
|
- * that this could return true even if there are still active readers.
|
|
|
- * Since there are no memory barriers around srcu_flip(), the CPU is not
|
|
|
- * required to increment ->completed before running
|
|
|
- * srcu_readers_unlock_idx(), which means that there could be an
|
|
|
- * arbitrarily large number of critical sections that execute after
|
|
|
- * srcu_readers_unlock_idx() but use the old value of ->completed.
|
|
|
- */
|
|
|
- return srcu_readers_lock_idx(sp, idx) == unlocks;
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * srcu_readers_active - returns true if there are readers. and false
|
|
|
- * otherwise
|
|
|
- * @sp: which srcu_struct to count active readers (holding srcu_read_lock).
|
|
|
- *
|
|
|
- * Note that this is not an atomic primitive, and can therefore suffer
|
|
|
- * severe errors when invoked on an active srcu_struct. That said, it
|
|
|
- * can be useful as an error check at cleanup time.
|
|
|
- */
|
|
|
-static bool srcu_readers_active(struct srcu_struct *sp)
|
|
|
-{
|
|
|
- int cpu;
|
|
|
- unsigned long sum = 0;
|
|
|
-
|
|
|
- for_each_possible_cpu(cpu) {
|
|
|
- struct srcu_array *cpuc = per_cpu_ptr(sp->per_cpu_ref, cpu);
|
|
|
-
|
|
|
- sum += READ_ONCE(cpuc->lock_count[0]);
|
|
|
- sum += READ_ONCE(cpuc->lock_count[1]);
|
|
|
- sum -= READ_ONCE(cpuc->unlock_count[0]);
|
|
|
- sum -= READ_ONCE(cpuc->unlock_count[1]);
|
|
|
- }
|
|
|
- return sum;
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * cleanup_srcu_struct - deconstruct a sleep-RCU structure
|
|
|
- * @sp: structure to clean up.
|
|
|
- *
|
|
|
- * Must invoke this only after you are finished using a given srcu_struct
|
|
|
- * that was initialized via init_srcu_struct(). This code does some
|
|
|
- * probabalistic checking, spotting late uses of srcu_read_lock(),
|
|
|
- * synchronize_srcu(), synchronize_srcu_expedited(), and call_srcu().
|
|
|
- * If any such late uses are detected, the per-CPU memory associated with
|
|
|
- * the srcu_struct is simply leaked and WARN_ON() is invoked. If the
|
|
|
- * caller frees the srcu_struct itself, a use-after-free crash will likely
|
|
|
- * ensue, but at least there will be a warning printed.
|
|
|
- */
|
|
|
-void cleanup_srcu_struct(struct srcu_struct *sp)
|
|
|
-{
|
|
|
- if (WARN_ON(srcu_readers_active(sp)))
|
|
|
- return; /* Leakage unless caller handles error. */
|
|
|
- free_percpu(sp->per_cpu_ref);
|
|
|
- sp->per_cpu_ref = NULL;
|
|
|
-}
|
|
|
-EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
|
|
|
-
|
|
|
-/*
|
|
|
- * Counts the new reader in the appropriate per-CPU element of the
|
|
|
- * srcu_struct.
|
|
|
- * Returns an index that must be passed to the matching srcu_read_unlock().
|
|
|
- */
|
|
|
-int __srcu_read_lock(struct srcu_struct *sp)
|
|
|
-{
|
|
|
- int idx;
|
|
|
-
|
|
|
- idx = READ_ONCE(sp->completed) & 0x1;
|
|
|
- this_cpu_inc(sp->per_cpu_ref->lock_count[idx]);
|
|
|
- smp_mb(); /* B */ /* Avoid leaking the critical section. */
|
|
|
- return idx;
|
|
|
-}
|
|
|
-EXPORT_SYMBOL_GPL(__srcu_read_lock);
|
|
|
-
|
|
|
-/*
|
|
|
- * Removes the count for the old reader from the appropriate per-CPU
|
|
|
- * element of the srcu_struct. Note that this may well be a different
|
|
|
- * CPU than that which was incremented by the corresponding srcu_read_lock().
|
|
|
- */
|
|
|
-void __srcu_read_unlock(struct srcu_struct *sp, int idx)
|
|
|
-{
|
|
|
- smp_mb(); /* C */ /* Avoid leaking the critical section. */
|
|
|
- this_cpu_inc(sp->per_cpu_ref->unlock_count[idx]);
|
|
|
-}
|
|
|
-EXPORT_SYMBOL_GPL(__srcu_read_unlock);
|
|
|
-
|
|
|
-/*
|
|
|
- * We use an adaptive strategy for synchronize_srcu() and especially for
|
|
|
- * synchronize_srcu_expedited(). We spin for a fixed time period
|
|
|
- * (defined below) to allow SRCU readers to exit their read-side critical
|
|
|
- * sections. If there are still some readers after 10 microseconds,
|
|
|
- * we repeatedly block for 1-millisecond time periods. This approach
|
|
|
- * has done well in testing, so there is no need for a config parameter.
|
|
|
- */
|
|
|
-#define SRCU_RETRY_CHECK_DELAY 5
|
|
|
-#define SYNCHRONIZE_SRCU_TRYCOUNT 2
|
|
|
-#define SYNCHRONIZE_SRCU_EXP_TRYCOUNT 12
|
|
|
-
|
|
|
-/*
|
|
|
- * @@@ Wait until all pre-existing readers complete. Such readers
|
|
|
- * will have used the index specified by "idx".
|
|
|
- * the caller should ensures the ->completed is not changed while checking
|
|
|
- * and idx = (->completed & 1) ^ 1
|
|
|
- */
|
|
|
-static bool try_check_zero(struct srcu_struct *sp, int idx, int trycount)
|
|
|
-{
|
|
|
- for (;;) {
|
|
|
- if (srcu_readers_active_idx_check(sp, idx))
|
|
|
- return true;
|
|
|
- if (--trycount <= 0)
|
|
|
- return false;
|
|
|
- udelay(SRCU_RETRY_CHECK_DELAY);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Increment the ->completed counter so that future SRCU readers will
|
|
|
- * use the other rank of the ->(un)lock_count[] arrays. This allows
|
|
|
- * us to wait for pre-existing readers in a starvation-free manner.
|
|
|
- */
|
|
|
-static void srcu_flip(struct srcu_struct *sp)
|
|
|
-{
|
|
|
- WRITE_ONCE(sp->completed, sp->completed + 1);
|
|
|
-
|
|
|
- /*
|
|
|
- * Ensure that if the updater misses an __srcu_read_unlock()
|
|
|
- * increment, that task's next __srcu_read_lock() will see the
|
|
|
- * above counter update. Note that both this memory barrier
|
|
|
- * and the one in srcu_readers_active_idx_check() provide the
|
|
|
- * guarantee for __srcu_read_lock().
|
|
|
- */
|
|
|
- smp_mb(); /* D */ /* Pairs with C. */
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Enqueue an SRCU callback on the specified srcu_struct structure,
|
|
|
- * initiating grace-period processing if it is not already running.
|
|
|
- *
|
|
|
- * Note that all CPUs must agree that the grace period extended beyond
|
|
|
- * all pre-existing SRCU read-side critical section. On systems with
|
|
|
- * more than one CPU, this means that when "func()" is invoked, each CPU
|
|
|
- * is guaranteed to have executed a full memory barrier since the end of
|
|
|
- * its last corresponding SRCU read-side critical section whose beginning
|
|
|
- * preceded the call to call_rcu(). It also means that each CPU executing
|
|
|
- * an SRCU read-side critical section that continues beyond the start of
|
|
|
- * "func()" must have executed a memory barrier after the call_rcu()
|
|
|
- * but before the beginning of that SRCU read-side critical section.
|
|
|
- * Note that these guarantees include CPUs that are offline, idle, or
|
|
|
- * executing in user mode, as well as CPUs that are executing in the kernel.
|
|
|
- *
|
|
|
- * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
|
|
|
- * resulting SRCU callback function "func()", then both CPU A and CPU
|
|
|
- * B are guaranteed to execute a full memory barrier during the time
|
|
|
- * interval between the call to call_rcu() and the invocation of "func()".
|
|
|
- * This guarantee applies even if CPU A and CPU B are the same CPU (but
|
|
|
- * again only if the system has more than one CPU).
|
|
|
- *
|
|
|
- * Of course, these guarantees apply only for invocations of call_srcu(),
|
|
|
- * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
|
|
|
- * srcu_struct structure.
|
|
|
- */
|
|
|
-void call_srcu(struct srcu_struct *sp, struct rcu_head *head,
|
|
|
- rcu_callback_t func)
|
|
|
-{
|
|
|
- unsigned long flags;
|
|
|
-
|
|
|
- head->next = NULL;
|
|
|
- head->func = func;
|
|
|
- spin_lock_irqsave(&sp->queue_lock, flags);
|
|
|
- smp_mb__after_unlock_lock(); /* Caller's prior accesses before GP. */
|
|
|
- rcu_batch_queue(&sp->batch_queue, head);
|
|
|
- if (!sp->running) {
|
|
|
- sp->running = true;
|
|
|
- queue_delayed_work(system_power_efficient_wq, &sp->work, 0);
|
|
|
- }
|
|
|
- spin_unlock_irqrestore(&sp->queue_lock, flags);
|
|
|
-}
|
|
|
-EXPORT_SYMBOL_GPL(call_srcu);
|
|
|
-
|
|
|
-static void srcu_advance_batches(struct srcu_struct *sp, int trycount);
|
|
|
-static void srcu_reschedule(struct srcu_struct *sp);
|
|
|
-
|
|
|
-/*
|
|
|
- * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
|
|
|
- */
|
|
|
-static void __synchronize_srcu(struct srcu_struct *sp, int trycount)
|
|
|
-{
|
|
|
- struct rcu_synchronize rcu;
|
|
|
- struct rcu_head *head = &rcu.head;
|
|
|
- bool done = false;
|
|
|
-
|
|
|
- RCU_LOCKDEP_WARN(lock_is_held(&sp->dep_map) ||
|
|
|
- lock_is_held(&rcu_bh_lock_map) ||
|
|
|
- lock_is_held(&rcu_lock_map) ||
|
|
|
- lock_is_held(&rcu_sched_lock_map),
|
|
|
- "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
|
|
|
-
|
|
|
- might_sleep();
|
|
|
- init_completion(&rcu.completion);
|
|
|
-
|
|
|
- head->next = NULL;
|
|
|
- head->func = wakeme_after_rcu;
|
|
|
- spin_lock_irq(&sp->queue_lock);
|
|
|
- smp_mb__after_unlock_lock(); /* Caller's prior accesses before GP. */
|
|
|
- if (!sp->running) {
|
|
|
- /* steal the processing owner */
|
|
|
- sp->running = true;
|
|
|
- rcu_batch_queue(&sp->batch_check0, head);
|
|
|
- spin_unlock_irq(&sp->queue_lock);
|
|
|
-
|
|
|
- srcu_advance_batches(sp, trycount);
|
|
|
- if (!rcu_batch_empty(&sp->batch_done)) {
|
|
|
- BUG_ON(sp->batch_done.head != head);
|
|
|
- rcu_batch_dequeue(&sp->batch_done);
|
|
|
- done = true;
|
|
|
- }
|
|
|
- /* give the processing owner to work_struct */
|
|
|
- srcu_reschedule(sp);
|
|
|
- } else {
|
|
|
- rcu_batch_queue(&sp->batch_queue, head);
|
|
|
- spin_unlock_irq(&sp->queue_lock);
|
|
|
- }
|
|
|
-
|
|
|
- if (!done) {
|
|
|
- wait_for_completion(&rcu.completion);
|
|
|
- smp_mb(); /* Caller's later accesses after GP. */
|
|
|
- }
|
|
|
-
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * synchronize_srcu - wait for prior SRCU read-side critical-section completion
|
|
|
- * @sp: srcu_struct with which to synchronize.
|
|
|
- *
|
|
|
- * Wait for the count to drain to zero of both indexes. To avoid the
|
|
|
- * possible starvation of synchronize_srcu(), it waits for the count of
|
|
|
- * the index=((->completed & 1) ^ 1) to drain to zero at first,
|
|
|
- * and then flip the completed and wait for the count of the other index.
|
|
|
- *
|
|
|
- * Can block; must be called from process context.
|
|
|
- *
|
|
|
- * Note that it is illegal to call synchronize_srcu() from the corresponding
|
|
|
- * SRCU read-side critical section; doing so will result in deadlock.
|
|
|
- * However, it is perfectly legal to call synchronize_srcu() on one
|
|
|
- * srcu_struct from some other srcu_struct's read-side critical section,
|
|
|
- * as long as the resulting graph of srcu_structs is acyclic.
|
|
|
- *
|
|
|
- * There are memory-ordering constraints implied by synchronize_srcu().
|
|
|
- * On systems with more than one CPU, when synchronize_srcu() returns,
|
|
|
- * each CPU is guaranteed to have executed a full memory barrier since
|
|
|
- * the end of its last corresponding SRCU-sched read-side critical section
|
|
|
- * whose beginning preceded the call to synchronize_srcu(). In addition,
|
|
|
- * each CPU having an SRCU read-side critical section that extends beyond
|
|
|
- * the return from synchronize_srcu() is guaranteed to have executed a
|
|
|
- * full memory barrier after the beginning of synchronize_srcu() and before
|
|
|
- * the beginning of that SRCU read-side critical section. Note that these
|
|
|
- * guarantees include CPUs that are offline, idle, or executing in user mode,
|
|
|
- * as well as CPUs that are executing in the kernel.
|
|
|
- *
|
|
|
- * Furthermore, if CPU A invoked synchronize_srcu(), which returned
|
|
|
- * to its caller on CPU B, then both CPU A and CPU B are guaranteed
|
|
|
- * to have executed a full memory barrier during the execution of
|
|
|
- * synchronize_srcu(). This guarantee applies even if CPU A and CPU B
|
|
|
- * are the same CPU, but again only if the system has more than one CPU.
|
|
|
- *
|
|
|
- * Of course, these memory-ordering guarantees apply only when
|
|
|
- * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
|
|
|
- * passed the same srcu_struct structure.
|
|
|
- */
|
|
|
-void synchronize_srcu(struct srcu_struct *sp)
|
|
|
-{
|
|
|
- __synchronize_srcu(sp, (rcu_gp_is_expedited() && !rcu_gp_is_normal())
|
|
|
- ? SYNCHRONIZE_SRCU_EXP_TRYCOUNT
|
|
|
- : SYNCHRONIZE_SRCU_TRYCOUNT);
|
|
|
-}
|
|
|
-EXPORT_SYMBOL_GPL(synchronize_srcu);
|
|
|
-
|
|
|
-/**
|
|
|
- * synchronize_srcu_expedited - Brute-force SRCU grace period
|
|
|
- * @sp: srcu_struct with which to synchronize.
|
|
|
- *
|
|
|
- * Wait for an SRCU grace period to elapse, but be more aggressive about
|
|
|
- * spinning rather than blocking when waiting.
|
|
|
- *
|
|
|
- * Note that synchronize_srcu_expedited() has the same deadlock and
|
|
|
- * memory-ordering properties as does synchronize_srcu().
|
|
|
- */
|
|
|
-void synchronize_srcu_expedited(struct srcu_struct *sp)
|
|
|
-{
|
|
|
- __synchronize_srcu(sp, SYNCHRONIZE_SRCU_EXP_TRYCOUNT);
|
|
|
-}
|
|
|
-EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
|
|
|
-
|
|
|
-/**
|
|
|
- * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
|
|
|
- * @sp: srcu_struct on which to wait for in-flight callbacks.
|
|
|
- */
|
|
|
-void srcu_barrier(struct srcu_struct *sp)
|
|
|
-{
|
|
|
- synchronize_srcu(sp);
|
|
|
-}
|
|
|
-EXPORT_SYMBOL_GPL(srcu_barrier);
|
|
|
-
|
|
|
-/**
|
|
|
- * srcu_batches_completed - return batches completed.
|
|
|
- * @sp: srcu_struct on which to report batch completion.
|
|
|
- *
|
|
|
- * Report the number of batches, correlated with, but not necessarily
|
|
|
- * precisely the same as, the number of grace periods that have elapsed.
|
|
|
- */
|
|
|
-unsigned long srcu_batches_completed(struct srcu_struct *sp)
|
|
|
-{
|
|
|
- return sp->completed;
|
|
|
-}
|
|
|
-EXPORT_SYMBOL_GPL(srcu_batches_completed);
|
|
|
-
|
|
|
-#define SRCU_CALLBACK_BATCH 10
|
|
|
-#define SRCU_INTERVAL 1
|
|
|
-
|
|
|
-/*
|
|
|
- * Move any new SRCU callbacks to the first stage of the SRCU grace
|
|
|
- * period pipeline.
|
|
|
- */
|
|
|
-static void srcu_collect_new(struct srcu_struct *sp)
|
|
|
-{
|
|
|
- if (!rcu_batch_empty(&sp->batch_queue)) {
|
|
|
- spin_lock_irq(&sp->queue_lock);
|
|
|
- rcu_batch_move(&sp->batch_check0, &sp->batch_queue);
|
|
|
- spin_unlock_irq(&sp->queue_lock);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Core SRCU state machine. Advance callbacks from ->batch_check0 to
|
|
|
- * ->batch_check1 and then to ->batch_done as readers drain.
|
|
|
- */
|
|
|
-static void srcu_advance_batches(struct srcu_struct *sp, int trycount)
|
|
|
-{
|
|
|
- int idx = 1 ^ (sp->completed & 1);
|
|
|
-
|
|
|
- /*
|
|
|
- * Because readers might be delayed for an extended period after
|
|
|
- * fetching ->completed for their index, at any point in time there
|
|
|
- * might well be readers using both idx=0 and idx=1. We therefore
|
|
|
- * need to wait for readers to clear from both index values before
|
|
|
- * invoking a callback.
|
|
|
- */
|
|
|
-
|
|
|
- if (rcu_batch_empty(&sp->batch_check0) &&
|
|
|
- rcu_batch_empty(&sp->batch_check1))
|
|
|
- return; /* no callbacks need to be advanced */
|
|
|
-
|
|
|
- if (!try_check_zero(sp, idx, trycount))
|
|
|
- return; /* failed to advance, will try after SRCU_INTERVAL */
|
|
|
-
|
|
|
- /*
|
|
|
- * The callbacks in ->batch_check1 have already done with their
|
|
|
- * first zero check and flip back when they were enqueued on
|
|
|
- * ->batch_check0 in a previous invocation of srcu_advance_batches().
|
|
|
- * (Presumably try_check_zero() returned false during that
|
|
|
- * invocation, leaving the callbacks stranded on ->batch_check1.)
|
|
|
- * They are therefore ready to invoke, so move them to ->batch_done.
|
|
|
- */
|
|
|
- rcu_batch_move(&sp->batch_done, &sp->batch_check1);
|
|
|
-
|
|
|
- if (rcu_batch_empty(&sp->batch_check0))
|
|
|
- return; /* no callbacks need to be advanced */
|
|
|
- srcu_flip(sp);
|
|
|
-
|
|
|
- /*
|
|
|
- * The callbacks in ->batch_check0 just finished their
|
|
|
- * first check zero and flip, so move them to ->batch_check1
|
|
|
- * for future checking on the other idx.
|
|
|
- */
|
|
|
- rcu_batch_move(&sp->batch_check1, &sp->batch_check0);
|
|
|
-
|
|
|
- /*
|
|
|
- * SRCU read-side critical sections are normally short, so check
|
|
|
- * at least twice in quick succession after a flip.
|
|
|
- */
|
|
|
- trycount = trycount < 2 ? 2 : trycount;
|
|
|
- if (!try_check_zero(sp, idx^1, trycount))
|
|
|
- return; /* failed to advance, will try after SRCU_INTERVAL */
|
|
|
-
|
|
|
- /*
|
|
|
- * The callbacks in ->batch_check1 have now waited for all
|
|
|
- * pre-existing readers using both idx values. They are therefore
|
|
|
- * ready to invoke, so move them to ->batch_done.
|
|
|
- */
|
|
|
- rcu_batch_move(&sp->batch_done, &sp->batch_check1);
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Invoke a limited number of SRCU callbacks that have passed through
|
|
|
- * their grace period. If there are more to do, SRCU will reschedule
|
|
|
- * the workqueue. Note that needed memory barriers have been executed
|
|
|
- * in this task's context by srcu_readers_active_idx_check().
|
|
|
- */
|
|
|
-static void srcu_invoke_callbacks(struct srcu_struct *sp)
|
|
|
-{
|
|
|
- int i;
|
|
|
- struct rcu_head *head;
|
|
|
-
|
|
|
- for (i = 0; i < SRCU_CALLBACK_BATCH; i++) {
|
|
|
- head = rcu_batch_dequeue(&sp->batch_done);
|
|
|
- if (!head)
|
|
|
- break;
|
|
|
- local_bh_disable();
|
|
|
- head->func(head);
|
|
|
- local_bh_enable();
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Finished one round of SRCU grace period. Start another if there are
|
|
|
- * more SRCU callbacks queued, otherwise put SRCU into not-running state.
|
|
|
- */
|
|
|
-static void srcu_reschedule(struct srcu_struct *sp)
|
|
|
-{
|
|
|
- bool pending = true;
|
|
|
-
|
|
|
- if (rcu_batch_empty(&sp->batch_done) &&
|
|
|
- rcu_batch_empty(&sp->batch_check1) &&
|
|
|
- rcu_batch_empty(&sp->batch_check0) &&
|
|
|
- rcu_batch_empty(&sp->batch_queue)) {
|
|
|
- spin_lock_irq(&sp->queue_lock);
|
|
|
- if (rcu_batch_empty(&sp->batch_done) &&
|
|
|
- rcu_batch_empty(&sp->batch_check1) &&
|
|
|
- rcu_batch_empty(&sp->batch_check0) &&
|
|
|
- rcu_batch_empty(&sp->batch_queue)) {
|
|
|
- sp->running = false;
|
|
|
- pending = false;
|
|
|
- }
|
|
|
- spin_unlock_irq(&sp->queue_lock);
|
|
|
- }
|
|
|
-
|
|
|
- if (pending)
|
|
|
- queue_delayed_work(system_power_efficient_wq,
|
|
|
- &sp->work, SRCU_INTERVAL);
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * This is the work-queue function that handles SRCU grace periods.
|
|
|
- */
|
|
|
-void process_srcu(struct work_struct *work)
|
|
|
-{
|
|
|
- struct srcu_struct *sp;
|
|
|
-
|
|
|
- sp = container_of(work, struct srcu_struct, work.work);
|
|
|
-
|
|
|
- srcu_collect_new(sp);
|
|
|
- srcu_advance_batches(sp, 1);
|
|
|
- srcu_invoke_callbacks(sp);
|
|
|
- srcu_reschedule(sp);
|
|
|
-}
|
|
|
-EXPORT_SYMBOL_GPL(process_srcu);
|
|
|
-
|
|
|
-static int __init srcu_bootup_announce(void)
|
|
|
-{
|
|
|
- pr_info("Classic SRCU implementation.\n");
|
|
|
- return 0;
|
|
|
-}
|
|
|
-early_initcall(srcu_bootup_announce);
|