|
|
@@ -480,6 +480,80 @@ static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
|
|
|
return regoff[regno];
|
|
|
}
|
|
|
|
|
|
+/**
|
|
|
+ * get_reg_offset_16() - Obtain offset of register indicated by instruction
|
|
|
+ * @insn: Instruction containing ModRM byte
|
|
|
+ * @regs: Register values as seen when entering kernel mode
|
|
|
+ * @offs1: Offset of the first operand register
|
|
|
+ * @offs2: Offset of the second opeand register, if applicable
|
|
|
+ *
|
|
|
+ * Obtain the offset, in pt_regs, of the registers indicated by the ModRM byte
|
|
|
+ * in @insn. This function is to be used with 16-bit address encodings. The
|
|
|
+ * @offs1 and @offs2 will be written with the offset of the two registers
|
|
|
+ * indicated by the instruction. In cases where any of the registers is not
|
|
|
+ * referenced by the instruction, the value will be set to -EDOM.
|
|
|
+ *
|
|
|
+ * Returns:
|
|
|
+ *
|
|
|
+ * 0 on success, -EINVAL on error.
|
|
|
+ */
|
|
|
+static int get_reg_offset_16(struct insn *insn, struct pt_regs *regs,
|
|
|
+ int *offs1, int *offs2)
|
|
|
+{
|
|
|
+ /*
|
|
|
+ * 16-bit addressing can use one or two registers. Specifics of
|
|
|
+ * encodings are given in Table 2-1. "16-Bit Addressing Forms with the
|
|
|
+ * ModR/M Byte" of the Intel Software Development Manual.
|
|
|
+ */
|
|
|
+ static const int regoff1[] = {
|
|
|
+ offsetof(struct pt_regs, bx),
|
|
|
+ offsetof(struct pt_regs, bx),
|
|
|
+ offsetof(struct pt_regs, bp),
|
|
|
+ offsetof(struct pt_regs, bp),
|
|
|
+ offsetof(struct pt_regs, si),
|
|
|
+ offsetof(struct pt_regs, di),
|
|
|
+ offsetof(struct pt_regs, bp),
|
|
|
+ offsetof(struct pt_regs, bx),
|
|
|
+ };
|
|
|
+
|
|
|
+ static const int regoff2[] = {
|
|
|
+ offsetof(struct pt_regs, si),
|
|
|
+ offsetof(struct pt_regs, di),
|
|
|
+ offsetof(struct pt_regs, si),
|
|
|
+ offsetof(struct pt_regs, di),
|
|
|
+ -EDOM,
|
|
|
+ -EDOM,
|
|
|
+ -EDOM,
|
|
|
+ -EDOM,
|
|
|
+ };
|
|
|
+
|
|
|
+ if (!offs1 || !offs2)
|
|
|
+ return -EINVAL;
|
|
|
+
|
|
|
+ /* Operand is a register, use the generic function. */
|
|
|
+ if (X86_MODRM_MOD(insn->modrm.value) == 3) {
|
|
|
+ *offs1 = insn_get_modrm_rm_off(insn, regs);
|
|
|
+ *offs2 = -EDOM;
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ *offs1 = regoff1[X86_MODRM_RM(insn->modrm.value)];
|
|
|
+ *offs2 = regoff2[X86_MODRM_RM(insn->modrm.value)];
|
|
|
+
|
|
|
+ /*
|
|
|
+ * If ModRM.mod is 0 and ModRM.rm is 110b, then we use displacement-
|
|
|
+ * only addressing. This means that no registers are involved in
|
|
|
+ * computing the effective address. Thus, ensure that the first
|
|
|
+ * register offset is invalild. The second register offset is already
|
|
|
+ * invalid under the aforementioned conditions.
|
|
|
+ */
|
|
|
+ if ((X86_MODRM_MOD(insn->modrm.value) == 0) &&
|
|
|
+ (X86_MODRM_RM(insn->modrm.value) == 6))
|
|
|
+ *offs1 = -EDOM;
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
/**
|
|
|
* get_desc() - Obtain pointer to a segment descriptor
|
|
|
* @sel: Segment selector
|
|
|
@@ -815,7 +889,9 @@ static int get_eff_addr_reg(struct insn *insn, struct pt_regs *regs,
|
|
|
return -EINVAL;
|
|
|
|
|
|
/* Ignore bytes that are outside the address size. */
|
|
|
- if (insn->addr_bytes == 4)
|
|
|
+ if (insn->addr_bytes == 2)
|
|
|
+ *eff_addr = regs_get_register(regs, *regoff) & 0xffff;
|
|
|
+ else if (insn->addr_bytes == 4)
|
|
|
*eff_addr = regs_get_register(regs, *regoff) & 0xffffffff;
|
|
|
else /* 64-bit address */
|
|
|
*eff_addr = regs_get_register(regs, *regoff);
|
|
|
@@ -890,6 +966,74 @@ static int get_eff_addr_modrm(struct insn *insn, struct pt_regs *regs,
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
+/**
|
|
|
+ * get_eff_addr_modrm_16() - Obtain referenced effective address via ModRM
|
|
|
+ * @insn: Instruction. Must be valid.
|
|
|
+ * @regs: Register values as seen when entering kernel mode
|
|
|
+ * @regoff: Obtained operand offset, in pt_regs, associated with segment
|
|
|
+ * @eff_addr: Obtained effective address
|
|
|
+ *
|
|
|
+ * Obtain the 16-bit effective address referenced by the ModRM byte of @insn.
|
|
|
+ * After identifying the registers involved in the register-indirect memory
|
|
|
+ * reference, its value is obtained from the operands in @regs. The computed
|
|
|
+ * address is stored @eff_addr. Also, the register operand that indicates
|
|
|
+ * the associated segment is stored in @regoff, this parameter can later be used
|
|
|
+ * to determine such segment.
|
|
|
+ *
|
|
|
+ * Returns:
|
|
|
+ *
|
|
|
+ * 0 on success. @eff_addr will have the referenced effective address. @regoff
|
|
|
+ * will have a register, as an offset from the base of pt_regs, that can be used
|
|
|
+ * to resolve the associated segment.
|
|
|
+ *
|
|
|
+ * -EINVAL on error.
|
|
|
+ */
|
|
|
+static int get_eff_addr_modrm_16(struct insn *insn, struct pt_regs *regs,
|
|
|
+ int *regoff, short *eff_addr)
|
|
|
+{
|
|
|
+ int addr_offset1, addr_offset2, ret;
|
|
|
+ short addr1 = 0, addr2 = 0, displacement;
|
|
|
+
|
|
|
+ if (insn->addr_bytes != 2)
|
|
|
+ return -EINVAL;
|
|
|
+
|
|
|
+ insn_get_modrm(insn);
|
|
|
+
|
|
|
+ if (!insn->modrm.nbytes)
|
|
|
+ return -EINVAL;
|
|
|
+
|
|
|
+ if (X86_MODRM_MOD(insn->modrm.value) > 2)
|
|
|
+ return -EINVAL;
|
|
|
+
|
|
|
+ ret = get_reg_offset_16(insn, regs, &addr_offset1, &addr_offset2);
|
|
|
+ if (ret < 0)
|
|
|
+ return -EINVAL;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Don't fail on invalid offset values. They might be invalid because
|
|
|
+ * they cannot be used for this particular value of ModRM. Instead, use
|
|
|
+ * them in the computation only if they contain a valid value.
|
|
|
+ */
|
|
|
+ if (addr_offset1 != -EDOM)
|
|
|
+ addr1 = regs_get_register(regs, addr_offset1) & 0xffff;
|
|
|
+
|
|
|
+ if (addr_offset2 != -EDOM)
|
|
|
+ addr2 = regs_get_register(regs, addr_offset2) & 0xffff;
|
|
|
+
|
|
|
+ displacement = insn->displacement.value & 0xffff;
|
|
|
+ *eff_addr = addr1 + addr2 + displacement;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * The first operand register could indicate to use of either SS or DS
|
|
|
+ * registers to obtain the segment selector. The second operand
|
|
|
+ * register can only indicate the use of DS. Thus, the first operand
|
|
|
+ * will be used to obtain the segment selector.
|
|
|
+ */
|
|
|
+ *regoff = addr_offset1;
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
/**
|
|
|
* get_eff_addr_sib() - Obtain referenced effective address via SIB
|
|
|
* @insn: Instruction. Must be valid.
|
|
|
@@ -974,6 +1118,71 @@ static int get_eff_addr_sib(struct insn *insn, struct pt_regs *regs,
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
+/**
|
|
|
+ * get_addr_ref_16() - Obtain the 16-bit address referred by instruction
|
|
|
+ * @insn: Instruction containing ModRM byte and displacement
|
|
|
+ * @regs: Register values as seen when entering kernel mode
|
|
|
+ *
|
|
|
+ * This function is to be used with 16-bit address encodings. Obtain the memory
|
|
|
+ * address referred by the instruction's ModRM and displacement bytes. Also, the
|
|
|
+ * segment used as base is determined by either any segment override prefixes in
|
|
|
+ * @insn or the default segment of the registers involved in the address
|
|
|
+ * computation. In protected mode, segment limits are enforced.
|
|
|
+ *
|
|
|
+ * Returns:
|
|
|
+ *
|
|
|
+ * Linear address referenced by the instruction operands on success.
|
|
|
+ *
|
|
|
+ * -1L on error.
|
|
|
+ */
|
|
|
+static void __user *get_addr_ref_16(struct insn *insn, struct pt_regs *regs)
|
|
|
+{
|
|
|
+ unsigned long linear_addr = -1L, seg_base, seg_limit;
|
|
|
+ int ret, regoff;
|
|
|
+ short eff_addr;
|
|
|
+ long tmp;
|
|
|
+
|
|
|
+ insn_get_modrm(insn);
|
|
|
+ insn_get_displacement(insn);
|
|
|
+
|
|
|
+ if (insn->addr_bytes != 2)
|
|
|
+ goto out;
|
|
|
+
|
|
|
+ if (X86_MODRM_MOD(insn->modrm.value) == 3) {
|
|
|
+ ret = get_eff_addr_reg(insn, regs, ®off, &tmp);
|
|
|
+ if (ret)
|
|
|
+ goto out;
|
|
|
+
|
|
|
+ eff_addr = tmp;
|
|
|
+ } else {
|
|
|
+ ret = get_eff_addr_modrm_16(insn, regs, ®off, &eff_addr);
|
|
|
+ if (ret)
|
|
|
+ goto out;
|
|
|
+ }
|
|
|
+
|
|
|
+ ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
|
|
|
+ if (ret)
|
|
|
+ goto out;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Before computing the linear address, make sure the effective address
|
|
|
+ * is within the limits of the segment. In virtual-8086 mode, segment
|
|
|
+ * limits are not enforced. In such a case, the segment limit is -1L to
|
|
|
+ * reflect this fact.
|
|
|
+ */
|
|
|
+ if ((unsigned long)(eff_addr & 0xffff) > seg_limit)
|
|
|
+ goto out;
|
|
|
+
|
|
|
+ linear_addr = (unsigned long)(eff_addr & 0xffff) + seg_base;
|
|
|
+
|
|
|
+ /* Limit linear address to 20 bits */
|
|
|
+ if (v8086_mode(regs))
|
|
|
+ linear_addr &= 0xfffff;
|
|
|
+
|
|
|
+out:
|
|
|
+ return (void __user *)linear_addr;
|
|
|
+}
|
|
|
+
|
|
|
/**
|
|
|
* get_addr_ref_32() - Obtain a 32-bit linear address
|
|
|
* @insn: Instruction with ModRM, SIB bytes and displacement
|
|
|
@@ -1143,6 +1352,8 @@ void __user *insn_get_addr_ref(struct insn *insn, struct pt_regs *regs)
|
|
|
return (void __user *)-1L;
|
|
|
|
|
|
switch (insn->addr_bytes) {
|
|
|
+ case 2:
|
|
|
+ return get_addr_ref_16(insn, regs);
|
|
|
case 4:
|
|
|
return get_addr_ref_32(insn, regs);
|
|
|
case 8:
|